
Calculating Radiation Emitted by Laser-Driven

Relativistic Electrons

Christoph Schulzke

A senior thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Justin Peatross and Michael Ware, Advisors

Department of Physics and Astronomy

Brigham Young University

2 January 2019

Copyright © 2019 Christoph Schulzke

All Rights Reserved



ABSTRACT

Calculating Radiation Emitted by Laser-Driven
Relativistic Electrons

Christoph Schulzke
Department of Physics and Astronomy, BYU

Bachelor of Science

Electrons driven by intense laser fields exhibit nonlinear Thomson scattering. Measuring these
radiation patterns has become of interest to many groups including our group at Brigham Young
University.The theoretical description of this phenomenon was outlined by Sarachik and Schappert
in 1970. The solution for the scattered light involves a numeric integral. They developed an
approximation which uses a series of Bessel functions in place of the integral. In this thesis we
investigate the efficacy of the Bessel-series approximation to see if gives an advantage over the
numerical-integration approach. We find only a modest advantage for certain parameters. Generally,
performing the integration numerically is a sensible approach.

Keywords: nonlinear optics, Thompson scattering
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Chapter 1

Electron in a Laser Field

With the invention of the laser in the 1960’s, a new regime of light-matter interactions became

available to researchers. Within a decade, researchers began theoretical investigations of super-

intense laser fields acting on charged particles [1, 2], many years in advance of laser technologies

reaching the field strengths studied. At sufficiently high laser power, a free electron in a laser field

can undergo relativistic motion in response to the oscillating light field.

Ignoring radiation reaction, the momentum ~p of the particle is governed by the Lorentz force

law
d~p
dt

= q(~E +~u×~B) (1.1)

where q is the particle charge,~u is its velocity, ~E is the electric field of the laser, and ~B the laser’s

magnetic field. At low intensities, the magnetic contribution is usually ignored. This greatly reduces

the complexity of the equation. However, if the particle moves relativistically, the magnetic field

becomes as important as the electric field. Additionally, at these intensities, a factor of γ must be

included in the definition of ~p such that

~p = m~uγ (1.2)

1
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Figure 1.1 The figure-8 trajectory motion taken from E. S. Sarachik and G. T. Schappert,
Phys. Rev. D 1 , 2738-2753 (1970). The larger figure-8 corresponds to a stronger laser
field. The path is for plane wave linearly polarized aligned vertically in the plane of the
page and propagating to the right.

where

γ =
1√

1−u2/c2
(1.3)

Since both γ and~u depend on t, we have to use the product rule on the left hand side. This, in

addition to the cross product on the right hand side, yields a nonlinear equation which requires the

aid of a computer in order to solve.

In 1970, two researchers at NASA, Sarachik and Schappert [2], solved the above equations

for an electron in a plane-wave electromagnetic field. The full solution involves an integral that

needs to be solved using numerical methods. The derivation of this solution is discussed in Chapter

2. They developed an analytic expression, in the average rest frame of the electron, for the the
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figure-8-shaped path of the electron trajectory. As the laser power increases, the length of one lap

around the path approaches the wavelength of the driving plane wave. This corresponds to the

electron approaching the speed of light.

Even though the path shape looks symmetric, the electron trajectory is rather asymmetric. The

position of the electron along the path as a function of time does not have an analytic solution,

although the shape of the path does. The electron spends more time on one half of the figure-8 than

the other. Moreover, the electron moves to the right on both the top and bottom of the figure-8 and

moves to the left on the vertical parts. This asymmetry has implication for the radiation.

1.1 Nonlinear Thomson Scattering

Having solved for the electron trajectory, Sarachik and Schappert also worked out a formula for the

radiation emitted by the electron [2], Because the relativistic motion of the electron is not a simple

sinusoid, it contains harmonic components of the driving field, both odd and even. The harmonics

represent a nonlinear form of Thomson scattering. Sarachik and Schappert developed an integral

expression for the harmonic components of the scattered light in the far field. The integral cannot be

solved analytically, however, so numerical methods are required to get any results. This is straight

forward today with the aid of computers, but in 1970 it presented a formidable challenge.

Sarachik and Schappert were able to perform the integral analytically after representing part

of the integrand as an infinite series of Bessel functions. By truncating the series, it is possible to

arrive at an approximation to the solution. However, without the help of a computer, there is not a

practical means of checking the reliability of their approximation. The details of this approximation

and its accuracy is the subject of this thesis.

Figures 1.2 and 1.3 show calculated polarization-resolved scattered radiation patterns of nonlin-

ear Thomson scattering according to the theory by Sarachik and Schappert.
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Figure 1.2 Calculated azimuthal (top) and longitudinal (bottom) polarization components
of the fundamental, second harmonic, and third harmonic of Thomson scattering in the far
field. Electrons are stimulated by linearly-polarized 800 nm light at 1.5×1018 W/cm2 and
λ = 800 nm.
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Figure 1.3 Calculated azimuthal (green) and longitudinal (blue) polarization components
of the fundamental, second harmonic, and third harmonic of Thomson scattering in the
plane of the ‘equator’ in Fig. 1.2.
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Figure 1.4 Measured and calculated third harmonic emission taken from Chen et al.,
Nature 396 , 653-655 (1998). The graph plots intensity in various directions perpendicular
to the laser beam out the side of the focus.

1.2 Measurements

In 1998, the group of Don Umstadter, while at the University of Michigan, experimentally measured

second and third harmonic light scattered from free electrons in an intense laser focus and compared

it with the predictions of Sarachik and Schappert [3]. They traced the shape of the the far-field

radiation distribution out the side of the laser focus. Their measured third-harmonic data is shown

in Fig. 1.4. More recently, the Umstadter group at the University of Nebraska-Lincoln’s Extreme

Light Laboratory, measured Thomson scattering for relativistic electrons colliding with laser pulses

at extraordinary intensities. The highly nonlinear interaction produces a beam of hard x-rays. The

principles remain the same in this extreme nonlinear reaction involving many orders of harmonics.

Our group at BYU is interested in measuring polarization-resolved nonlinear Thomson scattering

from electrons in an intense laser focus. Previous experiments measured the total light scattering

for both polarization components, whereas we will be attempting to measure individual polarization

curves for each harmonic, as shown in Fig. 1.3. For the new experiments, we are using a femtosecond

pulsed laser capable of reaching modestly relativistic intensities in the 1018/W/cm2 range. Measuring

the polarization requires the addition of a polarizer attached to a rotating stage to the experimental

setup. The added dimension of information that polarization carries can be associated with different

features in the figure-8 electron trajectory.
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1.3 Thesis Overview

For my senior-thesis project, I checked the accuracy and usefulness of the Bessel approximation

outlined by Sarachik and Schappert. The approximation is an alternative approach to calculating

emission such as that shown in Figs. 1.2 and 1.3. My objective is to compare the approximation to

numerically computing the integral. I found that the usefulness of the approximation depends on

the power of the laser, the harmonic order, and the number of terms that need to be included in the

series for accuracy. In chapter 2, I provide a derivation of the electron trajectory and its scattered

radiation. In chapter 3, I describe the Bessel-series approximation and assess its performance,



Chapter 2

Motion and Radiation of Relativistic

Electrons

2.1 Solving the Lorentz Force Law

As was mentioned, the solution to Eqs. (1.1)-(1.3) for an incident plane wave was first described

in a paper by Sarachik and Schappert in 1970 [2]. Their work established the now well-known

figure-8 trajectory of a charged particle within a laser field as shown in Fig. 1.1. They developed

their solution using the Hamilton-Jacobi formalism, which employs the vector potential. Instead,

here we follow the approach of Hartemann et al. [4], who worked directly with Eqs. (1.1)-(1.3).

To aid in solving the equations, we first develop an expression for
dγ

dt
. To do this, we take the

dot product of the velocity with the force equation, which eliminates the cross product with the

magnetic field and gives the compact expression

~u · d
dt
~uγ =

q
m
~u ·~E (2.1)

⇒ dγ

dt
=

q
mc2~u ·~E (2.2)

7
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To solve for the motion of the particle, we must first pick electric and magnetic fields. For the

purposes of this paper we pick a uniform plane wave with arbitrary elliptical polarization:

~E = E0(φ)
[
x̂
√

1−δ 2 cosφ + ŷδ sinφ

]
(2.3)

~B =
E0(φ)

c

[
− x̂δ sinφ + ŷ

√
1−δ 2 cosφ

]
(2.4)

These fields obey Maxwell’s equations inasmuch as the field envelope E0(φ) varies slowly. The

dimensionless parameter δ ranges from −1 to 1 and determines the ellipticity of the field. A value

of δ = 1 results in y-polarized light, δ = 0 yields x-polarized light, and δ =± 1√
2

gives circularly

polarized light. The variable φ is the phase of the laser given by φ = kz−ωt.

Substituting these electric and magnetic fields into our force equation and performing the dot

and cross products gives us a system of three coupled differential equations:

d
dt

γux =
qE0(φ)

m

√
1−δ 2

(
1− uz

c

)
cosφ (2.5)

d
dt

γuy =
qE0(φ)

m
δ

(
1− uz

c

)
sinφ (2.6)

d
dt

γuz =
qE0(φ)

m

(√
1−δ 2 cosφ

ux

c
+δ sinφ

uy

c

)
(2.7)

An interesting result is obtained when we subtract Eq. (2.7) from Eq. (2.2). After rearranging the

result we arrive at the fact that γ

(
1− uz

c

)
is constant with respect to time, since its time derivative

is zero. Thus,

γ

(
1− uz

c

)
= γ0

(
1− uz0

c

)
(2.8)

The subscript "0" indicates the initial value of the variable. This allows us to write the z component

of velocity as a function of only γ and initial conditions.

We are now in a position to solve the equation of motion for the charged particle in a uniform

laser field. We will need the time derivative of the laser phase which is easily obtained by taking the

derivative of the definition of the phase φ =
ω

c
z−ωt to get

dφ

dt
=

ω

c
uz−ω . We can now write the

equation as a derivative of φ instead of t. If we assume that the field envelope, E0(φ), varies slowly
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and is zero for φ0, we can integrate these equations directly to arrive at the solution:

~u
c
=

1
γ

[
γ0
~u0

c
− x̂α

√
1−δ 2 sinφ + ŷαδ cosφ + ẑ(γ− γ0)

]
(2.9)

where α (φ) ≡ qE0 (φ)

mωc
. In terms of laser intensity I and wavelength, this may be written as

α =
qλ

πmc2

√
I

2ε0c
. For 800 nm light, α = 1 when I = 2.1×1018 W/cm2.

We obtain an expression for γ by injecting Eq. (2.9) into Eq. (1.3) to obtain

γ = γ0 +
α

(
−
√

1−δ 2 ux0
c sinφ +δ

uy0
c cosφ

)
(
1− uz0

c

) +
α2 ((2δ 2−1

)
cos2φ +1

)
4γ0
(
1− uz0

c

) (2.10)

From here, we may take a derivative to acquire the acceleration and integrate to find the position:

~a =
d~u
dt

=
d~u
dφ

dφ

dt
=−ω

(
1− uz

c

) d~u
dφ

(2.11)

d~r
dt

=
d~r
dφ

dφ

dt
=−ω

(
1− uz

c

)
⇒~r =− 1

ωγ0

(
1− uz0

c

) ∫ φ

φ0

γ~udφ
′ (2.12)

2.2 Average Rest Frame

We would like to average the velocity over a period of motion T , where 2π = ω (z/c−T ). Since by

definition uzave = z/T , this may be rewritten as 1/T =−ωL (1−uzave/c)/2π . Using this together

with
dφ

dt
=

ω

c
uz−ω and (2.8), the velocity averaging may be expressed as ~uave =

1
T
∫ T

0 ~udt =

1−uzave/c
2πγ0(1−uz0/c)

∫ 2π

0 γ~udφ . All oscillatory terms in Eq. (2.9) and Eq. (2.10) vanish under this integration.

The result of the averaging yields

~uave =
~u0 + ẑcα̃2/4

1+ α̃2/4
where α̃ =

α

γ0
√

1−uz0/c
(2.13)

This formula shows that during the pulse, the average particle velocity is different than its initial

velocity. If we chose the initial velocity of the electron correctly, we can make the average velocity

in the presence of the field be zero. This takes place in a rest frame different from the laboratory

frame.
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In the average rest-frame, (2.9) simplifies to

γ~̄u ′

c
=−x̂′α

√
1−δ 2 sinφ + ŷ′αδ cosφ + ẑ′

α2

4

(
2δ 2−1

)√
1+ α2

2

cos2φ (2.14)

with γ =
1+α2

2 +α2
4 (2δ 2−1)cos2φ√

1+α2
2

. The position becomes

~r ′ =
c

ω ′
α√

1+ α2

2

−x̂′
√

1−δ 2 cosφ − ŷ′δ sinφ + ẑ′
(
1−2δ

2) α

8
√

1+ α2

2

sin2φ

 (2.15)

These expressions are parameterized by φ . After obtaining z from (2.15) for a given phase φ , one

can get the associated time t from φ =
ω

c
z−ωt.

Plotting the position in this average rest frame gives us the figure-8 shaped trajectory we showed

in Fig. 1.1, associated with δ = 0. While appearing highly symmetrical, the particle spends more

time on one half of the path than on the other. We will see this asymmetry’s affect when we

investigate the radiation emitted by the particle in the next section.

As the laser power increases, the speed approaches the speed of light and the length of one

lap around the figure-8 approaches a wavelength. The effects of laser power are asymptotic. This

asymptotic behavior will be discussed in Chapter 3 when we investigate the dependence of the

Bessel approximation on laser power.

2.3 Radiation of Relativistic Electrons

An electron executing the trajectory described above has an accompanying radiation pattern. The

formula for the far-field electric field radiated from a point charge is [5]

~E =
q

4πε0cR

R̂×

((
R̂−~u

c

)
×~a

c

)
(

1− R̂ ·~u
c

)3 (2.16)
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where R̂ is the unit vector pointing from the point charge to the detector. The field is evaluated at time

t whereas~u and~a are evaluated at the retarded time tr, which is related through t = tr+
(
R−~r · R̂

)
/c.

In order to see the harmonic distribution, we need to take the Fourier transform of this field:

~E(ω) =
q

4πε0cR
1√
2π

∫
∞

−∞

R̂×

((
R̂−~u

c

)
×~a

c

)
(

1− R̂ ·~u
c

)3 e−iωtdt (2.17)

After further manipulation and changing the integration variable to tr, we get

~E(ω) = iω
q

4πε0cR
1√
2π

∫
∞

−∞

R̂×

(
R̂×~u

c

)
e
−iω
(

tr+
1
c
(R−~r·R̂)

)
dtr (2.18)

It will be more convenient to express the electric field as a function of phase φ . So we use the

transformation

tr−
z
c
=− φ

ω0
⇒ dtr =−

dφ

ω0

(
1− uz

c

) (2.19)

where ω0 is the angular frequency of the laser (written without the subscript in the previous section).

Applying this transformation gives us

~E(ω) =−ie−iNRω0/c q
4πε0cR

1

γ0

(
1− uz0

c

) Nn√
2π

∫ 2π

0
R̂×

(
R̂× γ

~u
c

)
e

iN
(

φ+ω0(~r·R̂−z)/c
)

dφ (2.20)

where n is the number of cycles in the pulse and N is the harmonic order. Note that

R̂×
(

R̂×~u
)
= θ̂

(
−ux cosθ cosψ−uy cosθ sinψ +uz sinθ

)
+ ψ̂

(
ux sinψ−uy cosψ

)
(2.21)

~r · R̂ = xsinθ cosψ + ysinθ sinψ + zcosθ (2.22)

where we use ψ as the azimuthal angle to avoid confusion with the laser phase. The integral in the

formula can now be written as:

∫ 2π

0
γ

[
θ̂
(
−ux cosθ cosψ−uy cosθ sinψ +uz sinθ

)
+ ψ̂

(
ux sinψ−uy cosψ

)]
×

exp
[
− iNφ +

ω0

c

(
xsinθ cosψ + ysinθ sinψ + z(cosθ −1)

)]
dφ (2.23)
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This formula gives us the harmonic and polarization information of the radiation emitted

by a laser driven electron. This is the formula used to produce Figs. 1.2 and 1.3. Finding an

approximation for the integral in Eq. (2.23) is the subject of Chapter 3.



Chapter 3

Bessel Functions as an Approximation

3.1 Bessel Substitutions

The complex exponentials in Eq. (2.23) can be replaced with infinite series of Bessel functions.

Moreover, the Bessel functions allow us to accomplish the integration analytically. Our purpose is

to explore the usefulness of a truncated series to represent Eq. (2.23). Before introducing the series

of Bessel functions, it is helpful to write Eq. (2.20) as

~E (ω) = θ̂ (Ix cosθ cosψ− Iy cosθ sinψ + Iz sinθ)+ ψ̂ (−Ix sinψ− Iy cosψ) (3.1)

where

Ix =
√

1−δ 2Nσ

2π∫
0

dφ sinφe−iNφ+iN(ax cosφ+ay sinφ+az sin2φ)

Iy = δNσ

2π∫
0

dφ cosφe−iNφ+iN(ax cosφ+ay sinφ+az sin2φ)

Iz =
(
1−2δ 2) Nσ2

4

2π∫
0

dφ cos2φe−iNφ+iN(ax cosφ+ay sinφ+az sin2φ)

(3.2)

and
ax = σ

√
1−δ 2 cosθ cosψ

ay = σδ cosθ sinψ

az =
σ2

8

(
1−2δ 2)(1− cosθ)

(3.3)

13
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with

σ =
α√

1+α2/2
(3.4)

We may now introduce the following identities [6]:

eiρcosφ =
∞

∑
n=−∞

ineinφ Jn(ρ)

eiρsinφ =
∞

∑
n=−∞

einφ Jn(ρ)

(3.5)

With these formulas, we may write the integral in Ix as∫ 2π

0
dφ sinφe−iN(φ+ax cosφ+ay sinφ+az sin2φ) =

∞

∑
m=−∞

∞

∑
l=−∞

∞

∑
n=−∞

ilJn(Naz)Jm(Nax)Jl(Nay)
∫ 2π

0
dφ sinφeiφ(l+m+2n−N) (3.6)

Fortunately, this can be simplified considerably. The integration renders zero unless the argument

of the exponent is zero. This results in Kroneker delta function of the form δl+m+2n−N+1,0 and

δl+m+2n−N−1,0. We can now write l in terms of n and m: l = N−m−2n±1. This leaves us with a

simpler formula, but we still have a product of two infinite series to deal with:

−i
∞

∑
m=−∞

∞

∑
n=−∞

imJn(Naz)Jm(Nax)
[
JN−m−2n−1(Nay)− JN−m−2n+1(Nay)

]
(3.7)

We can collapse another of the series with the aid of the Graf addition formula [6]:
∞

∑
n=−∞

inJn(z2)Jn+m(z1) =
[z1 + iz2

z1− iz2

]m/2
Jm
(
[z2

1 + z2
2]

1/2) (3.8)

Note that the paper by Sarachik and Schappert presents and employs an incorrect version of the

Graf addition formula. Their left-hand side incorrectly includes a factor (−i)n in place of in. Using

the Graf addition formula we are able to compress the two series into one. We thus arrive at a

manageable formula for the radiation in terms of a sum:

Ix =−iπ
√

1−δ 2Nσ

∞

∑
n=−∞

Jn(Naz)

[(ay + iax

ay− iax

)N−2n−1
2 JN−2n−1

(
N
√

a2
y +a2

x

)

−
(ay + iax

ay− iax

)N−2n+1
2 JN−2n+1

(
N
√

a2
y +a2

x

)]
(3.9)
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By going through the same process with the Iy and Iz portions of the radiation integral we get:

Iy = πδNσ

∞

∑
n=−∞

Jn(Naz)

[(ay + iax

ay− iax

)N−2n−1
2 JN−2n−1

(
N
√

a2
y +a2

x

)

−
(ay + iax

ay− iax

)N−2n+1
2 JN−2n+1

(
N
√

a2
y +a2

x

)]
(3.10)

Iz = π(1−2δ
2)

Nσ2

4

∞

∑
n=−∞

Jn(Naz)

[(ay + iax

ay− iax

)N−2n−2
2 JN−2n−2

(
N
√

a2
y +a2

x

)

−
(ay + iax

ay− iax

)N−2n+2
2 JN−2n+2

(
N
√

a2
y +a2

x

)]
(3.11)

We now have an alternate formula for the scattered radiation, which avoids integration. However,

the price we pay is an infinite series of Bessel functions. However, it still requires the use of a

computer for most practical implementations. The question remains as to how many terms in the

infinite series are required to achieve a good approximation of the result. In referring to the order of

the approximation, we references the maximum size of n. Note that an nth-order approximation

actually has 2n+1 terms in it. This is due to the inclusion of both negative and positive values of n

plus zero.

3.2 Approximation Accuracy

We took our formula for the Bessel series and compared it to the numeric integral calculated in

Matlab. Our code is included as an appendix to this thesis. Our results are shown in Fig. 3.1 and

Fig. 3.2. The three curves show the result for varying intensities of incident laser light. Regardless

of intensity, we are able to come within 1% accuracy by using an approximation on the same order

as the generated harmonic.
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Figure 3.1 The fractional error plotted logarithmically for the first, second, and third
harmonics. The the order of the approximation is plotted on the x-axis and the error is
plotted on the y-axis. The parameter α describes the power of the laser, α = 1 corresponds
to approximately 1018 W/cm2.

This requirement relaxes for higher harmonics and fewer terms are required for the same degree

of accuracy. However, at higher harmonics the signal is weaker. Without sufficient laser power,

these harmonics are approximately zero. This results in both the integral and series being << 1.

Taking the error of such small quantities gives strange results. In this case, the fractional error goes

to 1.

As we include more terms in series, we achieve greater accuracy. Theoretically, as the number

of terms approaches ∞, the approximation becomes the exact result. Further investigation into

when the series accuracy surpasses that of the numeric integral may be of interest. That degree of

accuracy, however, is well beyond the precision of experimental conditions.

3.3 Computation Speed

Potentially the most useful aspect of using the Bessel series is the computation speed. Figures

3.3 and 3.4 show the computation time of the series for the 1st and 10th harmonic as a function

of the number of terms included. The computation time for the numeric integral is also shown

for reference. For the first harmonic, the computation time becomes equivalent when around 90
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Figure 3.2 The fractional error plotted logarithmically for the 10th, 25th, and 100th
harmonics. This plot is analogous to Fig. 3.1.

terms are included in the series, far more than is needed for high accuracy. For this harmonic

order, the series is an order of magnitude faster than the integral. When we look at the results for

the tenth harmonic, shown in Figure 3.4, we see that the equivalent computation time is reached

somewhere beyond 100 terms, but again the series only requires a fraction of this for high accuracy.

The computation time of the series approximation is an order of magnitude smaller than computing

the integral.

3.4 Conclusion

Using the Bessel series in place of the numeric integral is a legitimate approach to calculating the

radiation of an electron. The series approximation can be more cumbersome to code, however, with

only modest benefit. The series approach is about an order of magnitude faster, but the integral

can still be performed within a matter of seconds. The other advantage of the series approximation

is the ability to achieve, in principle, very high precision. This does not seem to be a particularly

compelling reason, given the adequate performance of the numeric integral. The choice of which to

use is a matter of preference.
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Figure 3.3 This graph shows the computation time on a laptop computer for both the
numeric integral and the series approximation for the first harmonic. The computation
time of the series is plotted in blue against the number of terms included in the series. The
red line shows the time required for the numeric integral.

Figure 3.4 This graph shows the computation time on a laptop computer for both the
numeric integral and the series approximation for the tenth harmonic. The computation
time of the series is plotted in blue against the number of terms included in the series. The
red line shows the time required for the numeric integral.



Appendix A

Code

The code for computing, comparing, and displaying the numeric integral and Bessel approximation.

c l e a r ; c l o s e a l l ;

f o r m a t long ;

a l = 1 0 ; d e l t a = 1 ;

s igma= a l / s q r t (1+ a l ^ 2 / 2 ) ;

N = 3 0 ; num = 5 0 ; t e r m s = 3 0 ;

[X, Y, Z]= s p h e r e ( num ) ;

c t = Z ;

c t ( 2 6 , : ) = c t ( 2 5 , : ) / 1 0 0 ;

s t = s q r t (1− c t . ^ 2 ) ;

s t ( 1 , : ) = s t ( 2 , : ) / 1 0 0 ;

s t ( num + 1 , : ) = s t ( num , : ) / 1 0 0 ;

cp = X . / s t ;

cp ( 1 , : ) = cp ( 2 , : ) ;

cp ( num + 1 , : ) = cp ( num , : ) ;
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sp = Y . / s t ;

sp ( : , 1 ) = sp ( : , 2 ) / 1 0 0 ;

sp ( : , 2 6 ) = sp ( : , 2 5 ) / 1 0 0 ;

sp ( : , num+1) = sp ( : , num ) / 1 0 0 ;

sp ( 1 , : ) = sp ( 2 , : ) / 1 0 0 ;

sp ( num + 1 , : ) = sp ( num , : ) / 1 0 0 ;

I =X* 0 ; I2 = I ;

f o r j =1 :num+1

j

f o r k =1:num+1

ax=sigma * s q r t (1− d e l t a ^2 )* s t ( j , k )* cp ( j , k ) ;

ay=sigma * d e l t a * s t ( j , k )* sp ( j , k ) ;

az=sigma ^2/8*(1−2* d e l t a ^2)*(1− c t ( j , k ) ) ;

% I n t e g r a t i o n a p p r o a c h

fx =(@( p h i ) s q r t (1− d e l t a ^2 )*N* sigma * s i n ( p h i ) . . .

. * exp (−1 i *N* p h i +1 i *N*( ax * cos ( p h i )+ ay * s i n ( p h i )+ az * s i n (2* p h i ) ) ) ) ;

fy =(@( p h i ) d e l t a *N* sigma * cos ( p h i ) . . .

. * exp (−1 i *N* p h i +1 i *N*( ax * cos ( p h i )+ ay * s i n ( p h i )+ az * s i n (2* p h i ) ) ) ) ;

f z =(@( p h i )(1−2* d e l t a ^2 )*N* sigma ^2 /4 * cos (2* p h i ) . . .

. * exp (1 i *N*(− p h i +ax * cos ( p h i )+ ay * s i n ( p h i )+ az * s i n (2* p h i ) ) ) ) ;

Ix2 = i n t e g r a l ( fx , 0 , 2 * p i ) ;

Iy2 = i n t e g r a l ( fy , 0 , 2 * p i ) ;

I z 2 = i n t e g r a l ( fz , 0 , 2 * p i ) ;

%

I t = abs ( Ix2 * c t ( j , k )* cp ( j , k)− Iy2 * c t ( j , k )* sp ( j , k )+ I z 2 * s t ( j , k ) ) ^ 2 ;
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Ip = abs (− Ix2 * sp ( j , k)− Iy2 * cp ( j , k ) ) ^ 2 ;

I ( j , k )= Ip + I t ;

% S e r i e s a p p r o a c h

Ix =0; Iy =0; I z =0;

i f d e l t a ==0

w = 1 i * s i g n ( ax ) ;

e l s e i f d e l t a ==1

w = s i g n ( ay ) ;

e l s e

w=( ay +1 i * ax ) / s q r t ( ay ^2+ ax ^ 2 ) ;

% Th i s a c c o u n t s f o r t h e f a c t o r o f 1 / 2 i n w e x p o n e n t

end

q=N* s q r t ( ax ^2+ ay ^ 2 ) ;

f o r n=− t e r m s : t e r m s

Ix =Ix−1 i * p i * s q r t (1− d e l t a ^2 )*N* sigma * b e s s e l j ( n ,N* az ) * . . .

(w^ ( ( N−2*n−1))* b e s s e l j (N−2*n−1,q)−w^ ( (N−2*n + 1 ) ) * b e s s e l j (N−2*n +1 , q ) ) ;

Iy = Iy + p i * d e l t a *N* sigma * b e s s e l j ( n ,N* az ) * . . .

(w^ ( ( N−2*n−1))* b e s s e l j (N−2*n−1,q )+w^ ( (N−2*n + 1 ) ) * b e s s e l j (N−2*n +1 , q ) ) ;

I z = I z + p i *(1−2* d e l t a ^2 )*N* sigma ^2 /4 * b e s s e l j ( n ,N* az ) * . . .

(w^ ( ( N−2*n−2))* b e s s e l j (N−2*n−2,q )+w^ ( (N−2*n + 2 ) ) * b e s s e l j (N−2*n +2 , q ) ) ;

end

%

I t = abs ( Ix * c t ( j , k )* cp ( j , k)− Iy * c t ( j , k )* sp ( j , k )+ I z * s t ( j , k ) ) ^ 2 ;

Ip = abs (− Ix * sp ( j , k)− Iy * cp ( j , k ) ) ^ 2 ;

I2 ( j , k )= Ip + I t ;
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end ;

end ;

I e r r o r = abs ( ( I2−I ) / ( max ( max ( I ) ) ) ) ;

MaxError = max ( max ( abs ( I e r r o r ) ) ) ;

f i g u r e ;

co lormap ( [ 0 0 0 ; 0 0 . 2 5 ; 0 0 . 5 ; 0 0 . 7 5 ; 0 0 1 ; 0 . 2 5 . 7 5 ; 0 . 5 . 5 ; . . .

0 . 7 5 . 2 5 ; 0 1 0 ; . 2 5 . 7 5 0 ; . 5 . 5 0 ; . 7 5 . 2 5 . 3 3 ; . . .

1 0 0 ; 1 . 2 5 . 2 5 ; 1 . 5 . 5 ; 1 . 7 5 . 7 5 ; 1 1 1 ] ) ;

s u r f (X, Y, Z , I e r r o r , ' Edgeco lo r ' , ' none ' )

x l a b e l ( ' x − a x i s ' )

y l a b e l ( ' y − a x i s ' )

z l a b e l ( ' z − a x i s ' )

s h a d i n g i n t e r p

a x i s e q u a l

a l p h a ( . 5 )
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