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ABSTRACT
Normally Supportive Sublattices of Crystallographic Space Groups

Miles A. Clemens
Department of Physics and Astronomy, BYU
Master of Science

Normal subgroups can be thought of as the primary building blocks for decomposing math-
ematical groups into quotient groups. The properties of the resulting quotient groups are often
used to determine properties of the group itself. This thesis considers normal subgroups of three-
dimensional crystallographic space groups that are themselves three-dimensional crystallographic
space groups; for convenience, we refer to such a subgroup as a csg-normal subgroup. We identify
practical restrictions on csg-normal subgroups that facilitate their tabulation. First, the point group
of an csg-normal subgroup must be a normal subgroup of the crystallographic point group of the
space group, which we refer to for convenience as a cpg-normal subgroup. For each of the cpg-
normal subgroups, which are all well known, we identify the abstract quotient group. Secondly,
we identify necessary conditions on the sublattice basis of any csg-normal subgroup, and tabulate
the "normally supportive" sublattices that meet these conditions, where some tables are symbolic
forms that represent infinite families of sublattices. For a given space group, every csg-normal
subgroup must be an extension of such a normally supportive sublattice, though some normally
supportive sublattices may not actually support such extensions.

Keywords: space groups, normal subgroups, crystallography
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Chapter 1

Introduction

1.1 Groups and Crystal-Symmetry Groups

A group, by definition, is a set with a binary operation with the following four properties:
closure, associativity, an identity, and inverses for each element [1-4]. Closure means that the
product of any two elements in the group will result in another element in the group (it is common
to refer to the binary operation as multiplication and the result as the product). Associativity means
that the order of operations is irrelevant, that is a(bc) = (ab)c for any elements a, b, and c¢ in the
group. The identity is an element (usually denoted as e) that leaves any other element invariant,
that is to say ae = a for any element a in the group. The inverse of an element (usually denoted
by —1 in the superscript) is the element that returns the identity when multiplied by the original

la = e for any element a in the group.

element, that is to say a—
We say that two elements a,b € G are conjugate elements if there exists some g € G such that
a =g 'bg. Any set of elements in G that are all mutually conjugate is known as a conjugacy

class. The set of all conjugacy classes of elements in G partition the group, meaning that they are

mutually disjoint and that their union is G. The identity is always alone in a conjugacy class since
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g leg=g lg=eforevery g € G.

A subgroup H of G is a subset of G that possesses all of the properties that define a group under
the same binary operation [1-4]. If H is a subgroup of G, which we denote as H C G, then for
any a € G we call the set aH = {ah|h € H} a coset of H in G containing a. If N C G such that
aN = Na for every element a € G then we call N a normal subgroup of G, which we denote as
N <G [1,2,4]. A normal subgroup will only contain complete conjugacy classes of the parent, or
in other words, either all of the elements in a conjugacy class are in the normal subgroup or none
of them are. If H C G, then we call the largest subgroup of H that is normal in G the normal core
of H in G, and denote it as Ny (G).

A normal subgroup N <G is special in that the set of its cosets in G form a group under the coset
multiplication operation: (aN)(bN) = abN for any a,b € G (subgroups that are not normal do not
have this property). This group of cosets is known as a quotient group (sometimes called a factor
group) and is denoted by G/N [1-4]. Coset multiplication is not well defined for a non-normal
subgroup.

Group theory is relevant to the study of crystalline structures because the symmetries of a
crystal form a group. A symmetry is any action on an object that leaves the object invariant. More
generally, the symmetries of any physical system (e.g. an object, field, collection of objects and
fields, model, or physical theory) form a group, wherein the group elements are transformations
of the system and where the binary operation is composition. For objects like molecules and
crystals, the relevant symmetries are geometric Euclidean isometries, which can be translations,
point operations, or combinations of the two. A point symmetry leaves at least one point invariant.
Examples are inversion, reflection about a plane, or rotation around a line. A translation symmetry
translates the entire space by a fixed vector amount. The set of all point symmetries possessed
by a crystal comprise a crystallographic point group [3]. The set of all symmetries possessed

by a crystal comprise a crystallographic space group. A space group contains point symmetries,
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translational symmetries, and combinations of the two (glide planes and screw axes) [1, 3]. The
set of all pure translational symmetries possessed by a crystal comprise a crystallographic lattice
group. This infinite lattice, whose rank is the dimension of the crystal, is a normal subgroup of the

space group of the crystal. We will only consider three-dimensional crystals in the present work.

1.2 A Simple Example

To illustrate the concepts presented above, consider the six point symmetries of a 2D equilat-
eral triangle, which form the dihedral group denoted as D3. Let us define the composition ab of

geometric symmetries a and b such that the action of b is applied to the object first, followed by

e r \V rj( v
RVANRVAN

4 l L N

Figure 1.1 The symmetries of an equilateral triangle, commonly known as the dihedral
group of order 6 and denoted as Ds.

the action of a.

The subgroups of D are {e}, {e,f}, {e, fr}, {e,fr*}, {e,r,r*}, and {e,r, 7, f, fr, fr*}. Of
these subgroups, both {e} and D3 are obviously normal subgroups. If we let H = {e,r,7*} then H
has two possible cosets, namely eH = rH = r’H = {e,r,r*} and fH = frH = fr’H = { f, fr, fr*}.

Furthermore, we can see that He = Hr = Hr* = {e,r,r*} and Hf = Hfr = Hfr* = {f, fr, fr*}.
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Thus for any element a € D3, aH = Ha so that {e,r,r*} is a normal subgroup of D;. If we
instead choose H = {e, fr}, the cosets of H are eH = frH = {e, fr}, rH = fH = {r,f}, and
r’H = fr*H = {r?, fr?}. However, Hr = {r, fr*} # rH so that {e, fr} is not a normal subgroup
of D3. We see that {e}, {e,r,7*}, and D5 are the only normal subgroups of Ds.

The cosets of the normal subgroup N = {e,r,r’} are N = {e,r,r*} and fN = {f, fr, fr*}.
Under coset multiplication, (N)(N) = (fN)(fN) = {e,r,r?} = N and (N)(fN) = (fN)(N) =
{f,fr,fr*} = fN. Thus with N as the identity, {N, fN} is a group under the coset multipli-
cation operation. In contrast, the cosets of non-normal subgroup H = {e, fr} are H = {e, fr},
rH = {r, f}, and r*H = {r?, fr*}, in which case (rH)(r’H) = {e,r?, fr, fr*} which is not one of

the cosets of H. Because the cosets do not satisfy the closure condition, they do not form a group.

1.3 Affine Matrix Representation of Space-Group Elements

We find it convenient to use 4 x 4 affine-transformation matrices to represent the elements of
a crystallographic space group, which allows us to employ matrix multiplication in performing
symmetry-group calculations. The matrices are defined in the usual way relative to a basis of the
lattice group of the crystal.

As an example, let g be a 21 screw axis in the +z direction. The affine matrix representation of

g1is
-1 0 00
pe t 0 -1 00
g=|" U= (1.1
0 1 0o 0 1 3
0 0 01

where p, is a 3 x 3 matrix representing the point symmetry part and #, is a 3 x 1 translation vector.
Every affine matrix has a 1 x 3 block of zeros on the bottom row followed by a 1 in the bottom

right corner.
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The application of this affine matrix is the equivalent of applying the point operation first and

then the translation. For example, the action of g on coordinate y = (x,y,z) is

X -1 0 O X 0 —X
8X="rg|ly|Ttg=1 0 -1 0 yl+|0|= -y |- (1.2)
Z 0 0 1 Z % Z+%

In other words, it will map the coordinate (x,y,z) to (—x,—y,z+ 3 ).
The International Tables for Crystallography presents representative space group elements (one
for each coset of the translation subgroup) of each space group in terms of their action on coordi-

nate (x,y,z). The conversion of this action into affine matrix form is very straightforward.

1.4 Applications of Normal Subgroups of Space Groups

Normal subgroups and the corresponding quotients have seen a number of important appli-
cations in the context of crystallography. Let H C G and let K be the smallest subgroup of
G such that H is a proper normal subgroup of K; K is then known as the normalizer of H in
G [5]. Normalizers (Euclidean or affine) are commonly used for the identification of equivalent
but symmetrically-unrelated Wyckoff orbits or crystal-structure coordinate descriptions [6—8]. The
subperiodic groups (e.g. layer, rod, and frieze groups) of space groups have been systematically
classified via their isomorphisms to space-group quotients [9,10]. Quotient groups of space groups
with respect to normal subgroups are also employed in the construction of symmetry groups in
higher than three dimensions via the use of subdirect products [11-13]. Subperiodic groups are
associated via scanning tables with the symmetries of interfaces between crystal domains below a
phase transition [14,15]. For a low-temperature phase transition giving rise to a ferroelectric space
group (or ferromagntic space group) H relative to a paraelectric (or paramagnetic) parent space-

group G, the ferroic domains correspond to the cosets of H in G, and the action of the normal core
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Ng(G) on these cosets reveals the minimal symmetry of a multi-domain crystal with a spatially
balanced domain configuration [16—18]. The ISOTROPY software program employs the action of
the normal core to identify symmetry-unique domain-pair interfaces [19].

In 1987, Kopsky laid out plans to identify and understand the normal subgroups of crystallo-
graphic space groups, and expected to follow his first article on this topic with a series of more
specific results, though the subsequent articles never came to fruition. In that same article, he
showed that only space groups that are irreducible (there is not a subgroup of the translation group
that is left invariant the point group) have a finite number of csg-normal subgroups with nontriv-
ial point groups [20]. A year later, it was reported that a table of normal subgroups of reducible
space groups "require too much volume to be published in a journal” [21], which is a slightly odd
statement given that the number of normal subgroups in such a case is actually infinite. In any
case, the difficulty of the situation was clearly recognized. The present work is a key step towards
an exhaustive table of three-dimensional normal subgroups of three-dimensional crystallographic
space groups. One of our essential innovations has been the preparation of a finite table of in-
finite families of normally supportive sublattices in symbolic matrix form. Though Kopsky and
others clearly envisioned progress in this area, the computational tools that we used for symbolic

algebraic reduction and manipulation were not available at that time.

1.5 Goals and Strategy

In the future, we hope to classify all csg-normal subgroups of each of the 230 crystallographic
space groups, as well as the corresponding quotient groups. To accomplish this, our strategy is
outlined as follows. Firstly, a space group G is broken down into its point group, Pg, and its
translation group, 7. Secondly, all the normal subgroups of the point groups, Py < Pg, are found

individually. Thirdly, for each Py, we must find the normal subgroups of the translation group,
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Ty <Tg, that support the normality of Ty X Py in G (the symbol x indicates a semidirect product);
we explain what it means to support normality below in chapter 3 [12, 22]. Fourthly, identify
extensions N of Py by Ty such that N <G (i.e. non-symmorphic space groups in the arithmetic

crystal class of symmorphic space group Ty x Py).

N G Q

Figure 1.2 A commutative diagram consisting of short, exact sequences. The first arrow
in any straight line points to a group from a normal subgroup of that group (e.g. N < G).
The second arrow points to the quotient of the two groups (e.g. Q = G/N).

1.6 Motivating Example: Domain Structure of YMnO;

Here, we provide a motivating example that illustrates the use of csg-normal subgroups of a
space group. Consider the domains of hexagonal yttrium manganite (YMnO3). YMnO3 has a
symmetry-lowering ferrielectric phase transition at 1258K wherein atoms are displaced along the
hexagonal c axis to form a low-symmetry hexagonal phase [23]. Below the transition temperature,
there are six possible domains of the low temperature child structure which correspond to different
directions of the ferroelectric and antiferroelectric order parameters [24]. The ferroelectric order
parameter displaces all atoms of a given type in the same direction, whereas the antiferroelectric
order parameter displaces some atoms of a given type in the +z direction and the others in the —z

direction (see Figure 1.3) [25]. These six domains have been observed to meet at a one-dimensional
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topological defect, around which they form a six-fold pinwheel pattern (see Figure 1.4) [26,27].

Figure 1.3 The displacements of yttrium atoms in the unit cells of each YMnO3 domain.
[25]

Here, the space group H of the low temperature phase (P63cm, #185) is a subgroup of the
space group G of the high temperature phase (P63/mmc, #194); or in other words, H C G [23].
However, because H € G, the cosets of H in G do not form a quotient group, though the cosets of
the normal core, Ny (G) (P3c, #158), do result in a quotient group Q = G/Ny(G). Because Q is
a group of cosets of H in G, every element of G acting on a coset is guaranteed to return another
coset by closure. In other words, the action of G permutes the elements of Q. This is physically
meaningful because there is a one to one correspondence between the cosets of H in G and the
physical domains of the YMnOs crystal [28]. The elements of G permute the elements of Q in the
same way the symmetries of the parent space group permute the low-temperature domains.

To visualize the physical significance of Q, consider Figure 1.3, where we focus attention on
the three yttrium atoms in the unit cell. Notice that the B domain, if rotated 180 degrees about
an axis parallel to the plane of the page, becomes the B~ domain. This rotation is a symmetry of
the parent group which is not present in the child. Furthermore, the ¥ domain, if rotated along
the exact same axis, becomes the Y~ domain. If a crystal had a domain boundary between the f©
and 7y~ domains, the boundary energy would have to be the same as that between the B~ and Y™

domains because their boundaries are equivalent by symmetry. In general, if a pair of domains can
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Topview

Sideview

Figure 1.4 A ferroelectric map overlayed on an antiferroelectric map of YMnO3. This
shows that all six domains come together to form topological defects. [27]

be transformed into another pair of domains by a symmetry operation of the parent group, then
their boundary energies must be identical. The action of G on the elements of Q is transitive, so
that any domain can be permuted into any other domain. However, this action is not transitive over
domain pairs. Some domain pairs are not related to one another by any permutation enacted by G.
Because not all pairs are symmetrically equivalent, we can group domain pairs into equivalence
classes (Figure 1.5).

Using this idea, a graph of the domain boundary energies can be made to help visualize how the
domains might meet in a crystal. Because Q is isomorphic to three dimensional point group 6mm
(Schonflies Dg or abstract D3 x Z,), there is a natural way to embed the corresponding coset graph
into the three-dimensional volume of the crystal. Assuming that the domain interfaces of one of the
domain-pair equivalence classes will be energetically favorable relative to the others, we can select
only the edges of that class from the coset graph to include in the embedding. In Figure 1.5, only
the domain-pair equivalence class indicated by blue lines can yield the observed six-fold pinwheel

pattern of Figure 1.4, wherein each domain favors interfaces with the two adjacement domains of
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B+

Figure 1.5 A domain graph of YMnOs. Each black vertex represents a domain and
each connecting line between vertices represents a domain pair, where color indicates
the domain-pair equivalence class.

the pinwheel. The green class breaks up into two subclasses of three domains each, either one of
which would yield a three-fold pinwheel; and the red class breaks up into three subclasses of two
domains, any of which would yield only single planar domain boundary.

We envision using this same approach to characterize domain-boundary topology in any crystal
that exhibits symmetry-lowering phase transitions. For any G and H (both space groups), find the
normal core, Ny (G), and the quotient group, G/Ng(G), generate the coset graph, and employ it to
better understand the possible domain-interface topologies that can result. Hence the need to know
the normal subgroups of crystallographic space groups, which have not been exhaustively studied

in previous work.



Chapter 2

Point Groups

2.1 Normal Subgroups and Quotients of Crystallographic Point
Groups

The subgroups of each crystallographic point group are tabulated in the International Tables of
Crystallography. [29] Our objective in this section is to identify each of the normal subgroups and
to tabulate the corresponding quotient groups. That is, for a given subgroup Py C P; we check
to see if gPy = Pyg for every g € Pg. If this is satisfied then Py < P;. Though not required for
the derivation of normally supportive sublattices, point group quotients may prove to be useful in
understanding the topology of defects in crystals. After finding the normal subgroups of a point
group, it is not difficult to find the corresponding quotient group for each one.

Once we have tabulated every Py < Pg, we can then tabulate every Pp = P /Py. To do this for
a given P; and Py, we first find the cosets of Py in Pg by calculating gPy with every g € P;. This
group of cosets under coset multiplication is Pp = Pg/Py. Table 2.1 lists each crystallographic
point group P and every cpg-normal subgroup Py with the corresponding quotient group FPp.

Though the contents of Table 2.1 have, no doubt, been derived in the past, we’re not aware of a

11
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comparable presentation.

Since Py is the group of cosets of Py in Fg, it is convenient to express Py as an isomorphic
abstract group. To do this, we see how each element of Py permutes the elements of Py. We
can then compare this permutation group to the permutation groups of the same order to find
which groups are isomorphic. Table 2.2 lists the crystallographic point groups according to their
isomorphism to abstract finite groups.

Tables 2.1 and 2.2 use symbols such as Z,, and D,, to represent abstract groups. A brief explana-
tion of each abstract group follows. Z,, represents the cyclic group of order n, which is isomorphic
to the set of integers O through n — 1 under addition modulo n. D, is the dihedral group of order
2n, which is isomorphic to the group of symmetries of a regular n-gon in two dimensions. A, is
the alternating group of degree n, which is isomorphic to the set of even permutations of n objects
and has order n!/2. S, is the symmetric group of degree n, which is isomorphic to the set of all

permutations of n objects and has order n!.
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Table 2.1 A table of normal subgroups of crystallographic point groups and corresponding quotient
groups. The first column is the crystallographic point group Pg, the second column is a crystallo-
graphic point group that is a normal subgroup Py < Pg, the third column is an abstract group that
is isomorphic to the quotient group Py = Pg/Py. A subscript was added to the Py symbol where
needed to clarify which crystallographic axis corresponds to the normal subgroup.

B P PR P Py Py P P P Ps Py P P JNE
i 1 7, 4mm 1 D4 21 1 Dy 622 1 Ds g/mmm 3ml D,
2 1 7, 4mm 2 Dy R 3 7 622 2, Ds g/mmm 3lm D,
m 1 Zy 4mm mm2 7, 3ml 1 D3 622 3 D, 6/mmm 3lm Z,
2/m 1 D, 4mm 4 Zy 3ml 3 Zy 622 312 7 6/mmm 3ml Zy
2/m 1 Zy 42m 1 Dy 3lm 1 Ds 622 321 Zp 6/mmm 6 D,
2/m 2 Zo 42m 2, D, 3lm 3 Zo 622 6 Zo 6/mmm 6 D,
2/m m Zo 42m 222 Zo 3Im 1 Dg 6mm 1 D¢ 6/mmm 6/m 7,
222 1 D, 42m 4 Zo 3Im 1 Ds 6mm 2, D3 6/mmm 622 7,
22 2 7 4m2 1 Dy 3lm 3 D> 6mm 3 D, 6/mmm 6mm Z,
mm2 1 D 4m2 2, D> 3lm 3 7 6mm 3ml  Z, 6/mmm 6m2 7,
mm2 2 Zy 4m2 mm2  Zp 3lm 312 7, 6mm 3lm  Zp 6/mmm 62m  Z,
mmm 1 Dy X Z, | 4m2 4 Zy 3lm 3lm Z, 6mm 6 Zo 23 1 Ay
mmm 1 Dy 4/mmm 1 Dy xZy | 3ml 1 D¢ 6m2 1 D¢ 23 222 Z3
mmm 2 D> 4/mmm 1 Dy 3ml 1 Ds 6m2 m, D3 m3 1 Ay x 7o
mmm m D, 4/mmm 2, Dy xZ | 3ml 3 D 6m2 3 D, m3 1 Ay
mmm 2/m  Z, 4/mmm  m, Dy 3ml 3 Zo 6m2 312 Zp m3 222 Zg
mmm 222 7, 4/mmm 2/m; D, 3ml 321 Z, 6m2 3ml  Z, m3 mmm 73
mmm mm2 Z, 4/mmm 222 D, 3ml 3ml Z, 6m2 6 Zs m3 23 Zs
4 1 m 4/mmm mm2, D, 6 1 Ze 62m 1 Dg 432 1 M
4 2 Zn 4/mmm mmm Zp 6 2 Z3 62m m, D3 432 222 D3
i 1 74 4/mmm 4 D, 6 3 7 m 3 D, 432 23 7,
4 2 Zo 4/mmm 4 D, 6 1 Zg 62m 321 7 43m 1 Sy
4/m 1 Zy X Zy | 4/mmm  4/m Zy 6 m Z3 62m 3lm 7, 43m 222 Ds
4/m 1 Zy 4/mmm 422 7, 6 3 Zo 62m 6 Z> 43m 23 Zo
4/m 2 D, 4/mmm 4mm 7, 6/m 1 Ze X Zy | 6/mmm 1 D¢ x Zp | m3m 1 Sy X Zo
4/m m Za 4/mmm 42m 7, 6/m 1 Ze 6/mmm 1 D m3m 1 Sy
4m  2m 7, 4/mmm 4m2 7, 6/m 2 Ze 6/mmm 2, D¢ m3m 222 D¢
4/m 4 Zo 3 1 VA 6/m m Ze 6/mmm m, Dg m3m mmm D3
4/m 4 Zs 3 1 Zs 6/m 2/m 73 6/mmm 2/m, Ds m3m 23 D>
422 1 Dy 3 1 VA 6/m 3 D 6/mmm 3 Dy x7Z, | m3m m3 7
422 2, D, 3 3 Zo 6/m 3 Zy 6/mmm 3 D, m3m 432 Zo
422 222 7, 312 1 D3 6m 6  Zy 6/mmm 312 D, m3m  43m  Z
422 4 7 312 3 Z, 6m &  Zy 6/mmm 321 D,
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Table 2.2 A table of abstract groups and all the crystallographic point groups that are

isomorphic to each.

Order | Abstract Groups Isomorphic Point Groups
1 VA 1

2 Z, = Dy 1~2>~m

3 73 3

4 Dy =2 7h X 7Zn 222 Zmm?2 = 2/m

4 Zs 44

6 D3 312 = 31Im

6 T =273 X 7o 32626

8 Dy X Zin = 7Vin X Zin X Zn | mmm

8 Dy 422 >~ 4mm = 42m

8 Ly X Ly 4/m

12 D¢ =2 D3 X Z» 31m =2 622 = 6mm =2 6m2
12 Ay 23

12 T X L 6/m

16 Dy X 7Z» 4/mmm

24 Ay X 7y m3

24 Sy 432 = 43m

24 D¢ X Z» 6/mmm

48 Sa X Zon m3m




Chapter 3

Normally Supportive Sublattices

3.1 The Hermite Normal Form of a Sublattice Basis

All matrices and vectors presented in this work are defined in the primitive parent setting,
where the elements of T can be represented as elements of Z> (the set of all integer triplets). Any

sublattice Ty C T can then be represented as an integer matrix in Hermite normal form:

B O 0
By = By By O (3'1)
B31 B3 B3z

where the columns of By are basis vectors of the sublattice Ty, and 0 < {Bj1,B22,B33}, 0 < By <
By, and 0 < {B3,B3} < B33. The sublattice Ty is then the set of translations {Byt,|t, € 73},
There are an infinite number of possible bases that span any given lattice, however each set of
basis vectors will reduce to the same Hermite normal form matrix. By searching for a representa-
tion of 7Ty in Hermite normal form, we are guaranteeing that each unique solution will represent a

unique 7Ty.

15
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3.2 Normally Supportive Conditions

For a given parent space group G, tabulating all of the possible normal subgroups of the point
group Py < Py is not difficult since Pg is finite [29]. Because any translation group is abelian,
all elements of 7; commute, and any possible sublattice Ty of 7T will be a normal subgroup of
T;. However, a given Py < Pg and an arbitrary Ty < T may not be compatible for the purpose
of generating subgroups of G, let alone normal subgroups of G [21]. Because of this, we need to
apply some restrictions on the form that 7y can take.

In the setting of the parent lattice, each space group element can be expressed as a block affine

matrix in the form

- DPg Ig _ pg Jfetug+vg cG (3.2)
0 1 0 1

where p, € Pg is a 3 X 3 matrix representing the point component and 7, is a 3 X 1 vector repre-
senting the translational component. The translation can be broken into three parts. The first part
is a sublattice translation v, € Ty. The second part is a parent lattice translation u, € T that lies
within the unit cell of the sublattice (i.e. within the parallelepiped formed by the column vectors
of By). The third part is a fractional translation f, that accommodates glide planes and screw axes.
Let us assume that N < G and see what restrictions on 7y result. Since normality requires

ghg™! € N for every h € N and g € G, let us consider a g that is simply a translation of the parent

lattice. For any u, +v, € T and any p;, € Py it follows that

E u,+v Pr E —(u,+v prn —pPulug+ve)+th+u,+v
g Ve (g +vyg) _ (g +vg) LGN 3.3)

0 1 0 1 0 1 0 1
However since

N, (3.4)
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it follows that uy + v, — py(ug +vg) € Ty which can be rearranged as
(E — pn)(ug +vg) € Ty. (3.5)

Furthermore for any v, € Ty, normality requires that

pe te|\ [E vl [pg' —pg't E pgvy
£ SR Tlen (3.6)
0 1 0 1 0 1 0 1
and thus
Pgvi € Ii. (3.7)

It’s important to recognize that applying B;,l to every v, € Ty yields the set of all integer
triplets: {B;,lvhh/h € Ty} = Z3. Thus, we can multiply equation 3.5 on the left side by B;,l to
obtain

By (E — pp)(ug +v,) € Z°. (3.8)
Equation 3.8 holds for every possible translation u, + v, which runs over all of Z3. Only an integer

matrix can transform every triplet in Z> to Z3. Thus, equation 3.8 requires that

By (E — py) € %3 (3.9)

Z3><3

where is the set of all 3 x3 integer matrices.

Similarly we can multiply equation 3.7 on the left by B;,l to get B;,l PgVh € 73 or equivalently
(By'peBn)(By'vi) € Z° (3.10)

and since B;,lvh can be any integer triplet then we must have
By'peBy € 27 (3.11)

For convenience, we refer to this condition as Pg-invariance. To support the normality condition,
the basis of the sublattice must satisfy both equation 3.9 and equation 3.11 for every p;, € Py and

every p, € Fg.
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The focus of the present thesis, for a given G and Py, is to identify all By that satisfy both equa-
tions 3.9 and 3.11 simultaneously. When By satisfies both equations, we refer to the corresponding
sublattice Ty as “normally supportive” because it is capable of supporting an extension N of Py by
Ty that is normal in G. This doesn’t necessarily mean that such a normal extension will exist, only
that its existence is not prevented by equations 3.9 and 3.11.

One might imagine solving equations 3.9 and 3.11 separately, and then taking the intersection
of their solution spaces. However, equation 3.11 by itself generally results in a very difficult system
of Diophantine equations. Thus, we first use equation 3.9, which is straightforward to apply, to
narrow the candidate forms of By, and only then apply equation 3.11 to each candidate form in
order to further restrict the solution space of By. In the special case that Py = {e}, equation 3.9
becomes trivial, thus leaving us to solve equation 3.11 alone, which does not lend itself to the
computational tools used in this work and which would be impractical to treat by hand for every
crystallographic space group G. Instead, such a case can be handled by a numerical approach that
identifies all normally supportive By up to a fixed supercell (i.e. sublattice unit cell) volume rather

than determining all of the possibilities. [30]

3.3 Inclusion Sublattices

Here, we introduce another way of thinking about equation 3.9. Consider the group commuta-

tor of a lattice translation element 7, € T and a point group element p;, € Py, which is calculated

E t pn O E —t p_1 0 E (E—pp)t
8 g h _ ( )t ' (3.12)
0 1 0 1 0 1 0 1 0 1
By the conditions of normality, pj, is conjugated by 7, into another element of N whose point part

is py, which is then right-multiplied by p}:l to obtain a pure translation that must be included in

N. Or in other words, (E — pj)t, € Ty which is equivalent to equation 3.9 when 1, is cycled over
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all of Z3. However, the restrictions imposed on By are the same if we merely cycle ty over the
generators of Z3, which generators are just the columns of the identity matrix. Our alternative to
equation 3.9 then reduces to the statement that every row vector of E — pj, for each p;, € Py must
be included in 7. For this reason, we refer to these row vectors loosely as “inclusion vectors”.
In general, the set of all row vectors obtained from each of the matrices E — p;, result in some
redundancy; in our implementation, we employ lattice-basis reduction to obtain a minimal set of
inclusion vectors, which form the basis of an "inclusion sublattice" TA’, C Ty. The restrictions on
By are then precisely those that allow only those sublattices 7y that contain 7},.

The inclusion sublattice depends only upon the form of the operators p; € Py in the primitive
parent setting, which in turn depend upon the lattice-centering type of G. When we consider
all of the possibilities, we find 129 unique combinations of a parent lattice-centering type and
a cpg-normal subgroup. We applied equation 3.9 to each of these 129 combinations and found
only 41 unique inclusion sublattices, as detailed in Table 3.1. Thus, for any choice of G and Py,
the restrictions imposed on By from equation 3.9 will be identified with one of the 41 inclusion
sublattices in this table. The actual restriction is that B;,lb € 7?3 for each basis vector b in the

inclusion sublattice.

Table 3.1 A table of the unique inclusion sublattice bases. The first column is an integer
index for convenience. The second column contains unique inclusion sublattice bases,
where each row is a single basis vector. The third column lists each of the pairs of parent
lattice-centering type and cpg-normal subgroup that share the same inclusion sublattice.
The 39™ inclusion sublattice, for example, lists 15 of such pairs.

Inclusion sublattice Py with corresponding centering type

A CF 1 PR
1<000> I 1 1 1 1 1

2<ooz> nfﬂf
3(01-1) n‘j
y

Continued on next page
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Table 3.1 — continued from previous page

Inclusion vectors Py with corresponding centering type

5 (020) nf
6 (1-1 -1) nf
7 (1-10) nf
8 (1-11) nf
)
9 (101) ni
;
10(11-1) n‘j
11(110) nfni
'y 4
12 (200) n‘jnf
11 0 L
13 2, mm2y
1 1 2
o 11 0 b
1 2 0 3 3lm
s 0 1 -1 A A
20 0 2, mm2,
0 1 -1
16 21
201 1 *
17 02 0 b p
00 2 2y mm2y

Continued on next page
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Table 3.1 — continued from previous page

Inclusion vectors Py with corresponding centering type

18 1 -1 0 C C
0 0 2 2, mm2,
19 1 -1 1 F F
1 1 1 2, mm2,
-0 1 0 -1 R R
0 1 -1 3 3ml
1 0 -1
21 I
0 1 1 mma2,
1 0 -1
22 21
1 2 1 Y
s [T 00 b b p
01 0 3ml 6 6mm
1 0 1
24 I
0 1 -1 mm2,
55 1 0 1 I I I
4 dmm mm2
0 1 1 ‘
o6 1 1 -1 F F
1 1 -1 2c mm2,
o 1 1 -1 F F
1 1 1 2, mm2,

Continued on next page
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Inclusion vectors

Table 3.1 — continued from previous page

Py with corresponding centering type

28

29

30

31

32

33

34

35

C P P P
mm2, 4 4mm mm2y

Na
@)

mm?2,

Eadle”
av]

mm2y

(@]
jav]
jav]

P P P
321 6 62m
I
2/my

F F F F F
23 432 43m m3 m3m

Continued on next page
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Table 3.1 — continued from previous page

Inclusion vectors Py with corresponding centering type

1 0 0
P P P P P P P P
36 010 3 312 3lm 3ml 622 6/m 6m2 6/mmm
0 0 2
1 0 1
1
37 -1 0 1 2/m,
0 2 0
10 1 I 1 1 1 I 11 I
422 432 4/m 4m2 4/mmm m3 m3m  mmm
38 0 1 1
P P P P P R R R
0 -1 1 23 432 43m  m3 m3m 3 321 3ml
110 c ¢ ¢ C 1 I I P
222 2/m, 2 222 2 222
39 110 /m Jmy  mmm d /m;  mmmy d
P P P P P P P
0O 0 2 4 422 2m  4/m  dm2 4/mmm  mmmy
1 1 1
F F F F F
40 11 -l 222 2/my 2/my 2/m; mmm
-1 -1 1
2 0 0
C C F I P P P P P P R
41 020 1 2/m; 1 1 1 222 2/my 2/my 2/m, mmm 1
0 0 2
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3.4 The Extension Problem

Because the fractional translation f, of each space group element is fixed by the choice of par-
ent space group G, and the point operators pj, are fixed by the choice of Py, only the u translations
remain to be determined. Any set of u translations that yields a valid subgroup (i.e. results in a set
of operators that obey the same multiplication table as those of Py under multiplication modulo Ty)
is an extension of Py by Ty in G. Because the u;, translation of any p;, must be contained within the
unit cell of the sublattice, there are only a finite number of ways to assign u translations to each of
the point operators, most of which will not result in subgroups. When a set of u translations does
yield a subgroup of G, that subgroup is a space group from the same arithmetic crystal class as G
(they are extensions of the same non-symmorphic group). In the remainder of this section, we will
assume that the u translations have already been restricted so that the extension N of Py by Ty is a
valid subgroup of G.

In general, normality of N in G requires that » = ghg~! € N for every h € N and g € G. We can

express this in affine matrix form as

pr frtur+ve| Py fotugtve| [pn Satuwntn) [t =g (feFug+vy)

0 1 0 1 0 1 0 1
(3.13)

After expanding the product in equation 3.13, the point part reduces to
Pr=DgPnPg (3.14)
and the translational part reduces to
frturtvr = (E = pr)(fo +ug+ve) + pe(fi +un+vn). (3.15)

Equation 3.14 merely requires that Py < Pg, which is obvious. Since v, € Ty, we can rearrange

equation 3.15 as

Ve =[(E—pr)fo+pe(fr+un) — (fr +ur)] + (E — pr)(ug+vg) + pgvi € Iy. (3.16)
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From equations 3.5, 3.7, and 3.16, it follows that

(E_pr)fg+Pg(fh+”h)_(fr+”r) € Iy. (3.17)

Equation 3.17 will be satisfied if and only if extension N of Py by Ty is normal in G. Again,
we emphasize that for some normally supportive sublattices Ty of G with Py, it may be that none
of the extensions of Py by 7Ty in G will be normal in G. Thus some of the normally supportive
sublattices obtained using the method described in the preceding sections may not actually support
any normal extensions. But the sublattice of any csg-normal subgroup of G must be normally
supportive. Futhermore, because equations 3.9 and 3.11 do not involve the translational parts of
the space-group operators, the normally-supportive sublattices 7y with Py of two space groups G

and G, will be the same so long as G and G, belong to the same arithmetic crystal class.



Chapter 4

Algorithm

4.1 Overview

With a given point group P and a normal subgroup Py < Pg, the first step is to apply equation
3.9 with each pj, € Py to find constraints on By. In general, each element of the matrix that results
from the product on the left hand side of equation 3.9 can be a complicated rational expression
containing all of the elements of By. Each of the matrix elements for each of the p, € Py must
simultaneously take on integer values in order to satisfy the equation. We used Mathematica’s
built-in Reduce command to apply the integer restrictions and thereby find the values that the
entries of By can take.

Next, starting with the restricted form of By resulting from equation 3.9, we do a similar thing
with the much more difficult equation 3.11, where the elements of the matrix products for all
Pg € Pc must simultaneously take on integer values. Of these terms, we are only interested in the
ones that are not obviously integers. That is, we are interested in the terms with quotients. Again,
we can use Mathematica’s Reduce command to apply the integer-value restriction, and thereby

obtain the restricted forms of By that satisfy both equations 3.9 and 3.11. There are some quotient

26
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terms that are too complicated for Mathematica’s built in reduction features. When this is the case,
we simply keep track of these quotients and include the requirement that they be integral as extra
conditions.

Because the normally supportive sublattices are identical for every space group in a given
arithmetic crystal class, we organize our output according to the 73 arithmetic crystal classes, each
of which is represented by its unique symmorphic space-group G. For a given G and cpg-normal
subgroup Py, the output of our algorithm is a set of triplets, where the symmetry-restricted form of
By itself is the second part of each triplet. The first part of each triplet contains a list of inequalities
that indicate the range of each variable in the corresponding By matrix (this part is empty if there
are no variables in By). The third part of each triplet contains any additional quotient expressions
that must have integer values. In most cases, it was possible to achieve a standard form for the
triplet in which the range of each variable is the set of all non-negative integers. The full set of
triplets should collectively span the space of all normally supportive sublattices Ty of G with Py.

And all triplets should be mutually disjoint so as to entirely avoid redundancies.

4.2 Subroutines

The essential challenge with each of the many processing steps that we applied to the Mathe-
matica’s Reduce output was to modify the symbolic form of By and its conditions without altering
the solution space that they represent (i.e. the space of normally supportive sublattices). Thus
every step of the processing yields a correct form but not necessarily a form that looks nice or is
easy to understand. This effort required considerable attention to detail.

Depending on the specific case, the output from Reduce can take on a variety of different forms.
A major component of the present research effort was devoted to bringing the output to a uniform

format that follows relatively nice rules. First, simple steps were taken to extract information
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about the By matrix and the conditions on its elements, eliminate special conditions that were
obviously true, simplify complicated logical statements, and separate joint statements into lists of
simultaneous conditions. A number of subroutines were then developed in order to further shape
the output, each one handling a specific issue. We describe each subroutine below, where each
paragraph begins with the name of the subroutine in quotes for easy reference to the Mathematica
code.

The "relabelvars" module was used to relabel variables for convenience. To make each triplet
look uniform, each variable is presented in the form of a letter combined with a number. Each
variable that appears in an extra condition is denoted as d,, while all the other variables are denoted
as ¢, where n is an integer. Each variable is then numbered in the order that it appears in the By
matrix, starting from the top and left side and proceeding row by row with the ¢ variables and d
variables numbered separately (i.e. a triplet can contain both ¢y and dj). Because many of the
subroutines introduce new variables into the triplets they modify, it was convenient to periodically
relabel all of the variables in a triplet in a uniform way during the multi-step reduction process.

The "eliminatesimpleton" module was used to get rid of simple extra conditions. The extra
conditions often took the form of an integer divided by a lone variable. To simplify this, we set the
variable to a divisor of the numerator. Doing this can have multiple solutions when the numerator
has multiple divisors. In such a case, the triplet bifurcates into multiple less complicated triplets,
one for each solution.

The "removequotients" module was used to make the By matrices look nicer. Sometimes the
output of Reduce leaves quotients in the By matrix. Since each By must be in Hermite normal
form, its entries must all be integers. For this reason, it was convenient to replace such a quotient
with a new variable in By, and then solve for one of the other variables, adding the resulting
quotient to the list of extra conditions in the last portion of the triplet.

The "cleanuptriplet" module was used to eliminate obvious extra conditions. Most of these
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subroutines aim to simplify the extra conditions, which sometimes leaves extra conditions that
are unnecessary, redundant, or sometimes even impossible to satisfy. In the event that a triplet
contains an extra condition that cannot possibly be an integer, such as d; + %, it does not represent
any possible normally supportive sublattices, and thus the entire triplet can be deleted. In the event
that an extra condition is obviously an integer, e.g. 2, d; + 1, 2d>(1 — d»), etc., we needn’t keep
track of it and thus it can be removed from the list of extra conditions. In the event that two extra

. . 1-d3 1-d3 o 1-d3
conditions are linearly dependent, for example —— and T;’ the less restricting of the two (—-

in our example) is redundant and can be removed from the list of extra conditions. This module is
implemented frequently because many of the other subroutines change the extra conditions so as
to leave cases that can be cleaned up.

The "hyperreduce" module was used to simplify variable ranges. After removing the quotients
from the By matrices, some quotients are introduced into the conditions. This often tends to make
the ranges on variables very complicated. To remedy this, we again use the Reduce command, but
this time only on the obviously complicated conditions. This step sometimes has the side effect of
making a single triplet split into multiple but nicer looking triplets.

The "eliminatefractional" module was used to simplify certain extra conditions. Sometimes
there are extra conditions in the form Z—;d where d is a variable in the By matrix and »n; and n; are
integers. This can be simplified a little because the only values of d that will satisfy this condition
are multiples of ny. If we simply let 7 = d/ny, then we can replace all instances of d in the triplet
with nyh and thus we will have one less extra condition in these cases (the / will then be relabeled
as a new c or d variable).

The "replaceprettyuglies” module was used to simplify some of the nicer looking extra condi-

tions. Sometimes there are extra conditions where a variable appears only once in the numerator

polynomial+nd

solynomials where n is a

of an extra condition. In other words, the extra condition has the form

constant integer, d is a variable in the By matrix and the polynomials do not contain the variable d.
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t polynomial{+nd

This condition can be eliminated with a little work. If we le bolynomial,

= k then we can replace
all instances of d in the triplet with ,—ll(kpolynomialz — polynomialy) which will eliminate this extra
condition (k will then be relabeled as a new c or d variable). The standard form doesn’t allow any
variable expression in By that are not obviously integers. To avoid introducing numerical fractions
in By in this step, we make a second replacement to remove any % that might appear in the triplet.

The "eliminatedependentvars" module was used to restrict the number of variables to a min-
imum. Sometimes the output of Reduce gives more variables than is necessary. For exam-
ple, a particular By matrix might have only three elements with variables which have the form
23+dy+dr+d3), 2(4+d) +2d;), and 4(3+d; +dy + d3). By inspection it can be seen that
the third element is exactly double the first element and thus there are only two linearly indepen-
dent polynomials. This is a problem because there are three variables to span By which means
that there are redundancies. The desired format is by definition free of variable redundancies — it
doesn’t permit more than one set of variable values to achieve the same numerical By matrix. To fix
this problem, it was necessary to rewrite these polynomials in terms of only two variables that span
the same By space. To do this we implemented Mathematica’s GroebnerBasis command which
takes a series of polynomials and returns a set of linearly independent polynomials that span the
same space. In the example above, the Grobner basis is {dy — d3,d; +2d3}. If we let fi =dy — d3
and f> = dj + 2d3 then we can replace every instance of d; with f, —2d3 and every instance of
dy with fi + ds then the original expressions above become 2(3 + fi + f2), 2(1+2f1 + f2), and
4(3 + f1 + f>) which has only two variables; the f variables will then be relabeled as ¢ or d vari-
ables.

The "removeexcesscondvars" module was used to get rid of unnecessary conditions on the
ranges of the variables. While the eliminatedependentvars routine does an excellent job at re-
moving unnecessary variables in the By matrices, it fails to reduce the corresponding number of

variables in the list of conditions. To illustrate this problem, consider the example in the previous
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paragraph where dy, d», and d3 could be any non-negative integer. After replacing d| with f; —2d3
and d, with f] + d3, our conditions become f> —2d3 > 0, fi +d3 > 0, and d3 > 0. It is no longer
necessary to keep track of ds since it was eliminated from By, however d3 is necessary to deter-
mine what values f; and f> can take. To eliminate d3 from the conditions, we first isolate it in each
inequality which f>/2 > d3, d3 > —f}, and d3 > 0. We can then combine these three conditions
into the following two compound inequalities f/2 > ds > 0 and f>/2 > d3 > — f}. Since the value
of d3 makes no difference in By, we can choose to set it equal to the shared maximum value in
both compound inequalities which then simplifies them to f,/2 > 0 and f,/2 > — f] and thus dj3 is
now completely removed from the triplet. This module has the unfortunate side effect of leaving
somewhat awkward conditions, which are later improved by the hyperreduce subroutine.

The order in which the subroutines were applied is somewhat strategic and somewhat arbi-
trary. Often, the application of one subroutine recreated undesirable structures within the matrix
or conditions that were resolved by a previous subroutine, so that the first subroutine needed to be
reapplied. This led to seemingly arbitrary iterations in the application of certain groups of subrou-
tines. The specific and rather delicate ordering of subroutine calls that we ultimately converged on
did bring all cases into the desired uniform format; but it is likely that other orderings might also
accomplish this. However, we also point out some small and seemingly unimportant deviations

from the specific ordering that we applied failed spectacularly to deliver the desired format.



Chapter 5

Results and Discussion

5.1 Tables

Normally supportive sublattices have been tabulated and are listed in appendix A. Many table
entries contain a symbolic By matrix that actually represents an infinite family of sublattices. Table
5.1 is a summary of Table A.1 organized by arithmetic crystal class. The first column is an integer
index for the 73 arithmetic crystal classes. The second column is the symmorphic crytallographic
space group symbol that represents the arithmetic class. The third column is the total number
of By matrices from all cpg-normal subgroups of the arithmetic class. The last column indicates
the number of By families in square brackets associated with each cpg-normal subgroup of an
arithmetic class.

There are a total of 1773 By families accounted for in Table 5.1. Keep in mind that some
families are larger than others due to differences in dimensionality (i.e. the number of free variables
of infinite range in the symbolic form). For a given cpg-normal subgroup, one three-dimensional
By family is vastly larger than three zero-dimensional By families, but collectively equivalent

in size to three one-dimensional By families. For example, ACC R3 (#39) lists only one cpg-
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normal subgroup, which has only a single By family, which turns out to be a one-dimensional
infinite family. ACC P1 (#2), on the other hand, lists only one cpg-normal subgroup, which has
16 different By families, all of which turn out to be zero-dimensional (i.e. families containing one
individual each).

Due to the exceptional complexity of most cases for which the cpg-normal subgroup is 1, all
of these cases were excluded from the present work and tables, including the handful of cases that
proved to be readily solvable using the present methods. As mentioned earlier, cases for which the

npg-subgroup is 1 can be treated numerically by method of Morgan and Hart. [30]

Table 5.1 The number of families of normally-supportive sublattices for each arithmetic
crystal class (ACC), and for each cpg-normal subgroup of each ACC.

ACC total cpg-normal subgroups and number of corresponding By families
1Pl - -

2P1 16 1[16]

3pP2 11 2,[11]

4C2 11 2,[11]

5Pm 5 m[5]

6 Cm 5 m,[5]

7 P2/m 48 1[16] 2,[11] m,[5] 2/m,[16]
8 C2/m 48 1[16] 2,[11] m,[5] 2/m,[16]
9P222 49 2,[11] 2,[11] 2.[11] 222[16]
10 C222 19 2.(6] 2,[3] 2,[5] 222[5]

11 F222 15 2,[4] 2,[3] 2.[3] 222[5]

12 1222 21 2,[5] 2,[5] 2.[5] 222[6]

13 Pmm2 44 2,[11] m,[11] my[11] mm?2,[11]
14 Cmm?2 14 2.[5] m,[2] my[4] mm?2,[3]
15 Amm2 85 2,[3] my[77] m,[2] mm?2,[3]
16 Fmm?2 19 2.[3] m,[2] m,[11] mm2,[3]
17 Imm?2 34 2.[5] m,[7] my[20] mm?2,[2]

Continued on next page
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Table 5.1 — continued from previous page

ACC total cpg-normal subgroups and number of corresponding By families

18 Pmmm | 192 | 1[16] 2,[11] 2,[11] 2.[11] m,[11] m,[11] m,[8]
2/m,[16]  2/my[16] 2/m,[16]  222[16] mm2,[11] mm2,[11] mm2,[11]
mmm[16]

19 Cmmm | 77 1[8] 2.[6] 2y[3] 2.[5] my[2] my[4] m.[9]
2/m,[5] 2/m,[5] 2/m,[8] 222[5] mm?2,[6] mm2,[3] mm?2,[3]
mmm[5]

20 Fmmm | 79 | 1[6] 2,[4] 2,[3] 2,[3] m,[2] m,[11] m,[15]
2/m,[5] 2/my[5] 2/m,[5] 222[5] mm?2,[4] mm2,y[3] mm2,[3]
mmm([5]

21Immm | 83 | 1[6] 2,[5] 2,[5] 2,[5] m,[7] m,[20] m,[12]
2/m,[3] 2/my[3] 2/m,[3] 222[6] mm?2,[2] mm2,y[2] mm2,[2]
mmm|[2]

22 P4 8 2,[5] 4(3]

2314 7 2.[5] 4[2]

24 P4 10 2.[5] 4[5]

2514 11 2,[5] 4[6]

26 P4/m 42 | 118 2.[5] m,[8] 2/m,[8] 4[3] a[5] 4/m[5]

27 I4/m 34 1[4] 2,[5] m,[12] 2/m,[3] 4[2] 4[6] 4/m[2]

28 P422 26 2,[5] 222[8] 222415] 4[3] 422[5]

291422 18 | 2.[5] 222[6] 222,031  4[2] 422[2]

30 P4mm 19 2.[5] mm2,[5] mm2,[3] 4[3] 4mm[3]

31 I4mm 16 2,[5] mm?2,[2] mm2,4[5] 4[2] 4mm|[2]

32 P42m 26 2,[5] 222[8] mm24(3]  4[5] 42m[5]

33 PAm2 25 | 2.[5] 222,051 mm2.[5] 4[5] Am2[5]

34 14m2 18 2,[5] 2224[3]  mm2.[2]  4[6] 4m2[2]

35142m 28 2,[5] 222[6] mm2,[5]  4[6] 42m[6]

36 P4/mmm | 107 | 1[8] 2.[5] m,[16] 2/m,[8] 222[8] 2224[5] mm2,[5]
mm24[3]  mmm[8] mmmg[5] 4[3] 4[5] 4/m([5] 422[5]

Continued on next page
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Table 5.1 — continued from previous page

ACC total cpg-normal subgroups and number of corresponding By families

36 P4/mmm | 107 | 4mm[3]  42m[5]  4m2[5]  4/mmm[5]

37 14/mmm | 69 | 1[4] 2,[5] m,[12] 2/m,[3] 222[6] 2224[3] mm2,[2]
mm2y[5] mmm[2] mmmg[3] 4[2] 416] 4/m[2] 422[2]
4mm][2] 42m[6]  4m2[2] 4/mmm][2]

38 P3 4 3[4]

39 R3 1 3[1]

40 P3 10 | 1[4] 3[4] 3[2]

41R3 7 1[4] 3[1] 3[2]

42 P312 6 3[4] 312[2]

43 P321 6 3[2] 321[4]

44 R32 3 3[1] 321[2]

45 P3ml 3 3[2] 3ml[1]

46 P31m 8 3[4] 31m([4]

47 R3m 2 3[1] 3ml[1]

48 P31m 18 | 1[4 3[4] 3[2] 312[2] 31m[4] 31m[2]

49 P3ml1 15 | 1[4 3[2] 3[2] 321[4] 3ml[1] 3ml1[2]

50 R3m 12 | 1[4] 3[1] 3[2] 321[2] 3ml[1] 3ml[2]

51 P6 5 2.[2] 3[2] 6[1]

52 P6 13| m,[7] 3[2] 6[4]

53 P6/m 28 | 1[4] 2.[2] m,[7] 2/m,[4] 3[2] 3[2] 6[1]
6[4] 6/m[2]

54 P622 13| 2,[2] 3[2] 312[2] 321[4] 6[1] 622[2]

55P6mm | 9 2.[2] 3[2] 3ml[1] 31m[2] 6[1] 6mm[1]

56 P6m2 16 | my[5] 3[2] 312[2] 3ml[1] 6[4] 6m2([2]

57 P62m 21 | m[5] 3[2] 321[4] 31m[2] 6[4] 62m(4]

58 Po/mmm | 50 | 1[4] 2.[2] m,[5] 2/m,[4] 3[2] 3[2] 312[2]
321[4] 3ml[1]  31m[2] 31m[2] 3ml[2] 6[1] 6[4]
6/m[2] 622[2]  6mm[l]  6m2[2] 62m[4] 6/mmm|2]

Continued on next page
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Table 5.1 — continued from previous page

ACC total cpg-normal subgroups and number of corresponding By families

59 P23 6 222[4] 23[2]

60 F23 3 222[2] 23[1]

61123 12 | 222[6] 23[6]

62 Pm3 16 1[4] 222[4] mmm[4]  23[2] m3[2]

63 Fm3 9 1[3] 222[2]  mmm[2]  23[1] m3[1]

64 Im3 19 | 1[3] 222[6]  mmm[2]  23[6] m3[2]

65 P432 8 222[4] 23[2] 432[2]

66 F432 4 222[2] 23[1] 432[1]

67 1432 14 | 222[6] 23[6] 432[2]

68 P43m 8 222[4] 23[2] 43m[2]

69 F43m 4 222[2] 23[1] 43m[1]

70 143m 18 | 222[6] 23[6] 43m[6]

71 Pm3m 22 114] 222[4] mmm[4]  23[2] m3[2] 432[2] 43m[2]
m3m[2]

72 Fm3m 12 | 1[3] 222[2]  mmm[2]  23[1] m3([1] 432[1] 43m[1]
m3m[1]

73 Im3m 29 1[3] 222[6] mmm[2]  23[6] m3[2] 432[2] 43m[6]
m3m[2]

Consider the arithmetic class represented by crystallographic space group Pmmm (#18 in Table

5.1) which has my, my, and m, each listed as separate cpg-normal subgroups, where m, and m,

both have 11 By families while m, only has 8. Even the By families of m, and m, look very

different; no numerical instance of one is contained in the other. Because my, my, and m, are

equivalent in some sense (they can be conjugate subgroups of the normalizer of Pmmm with respect

to Euclidean transformations), this is immediately surprising. The resolution of this paradox lies

in the fact that By is presented as a column-HNF matrix, which is lower triangular so that the x, y

and z basis vectors can have different numbers of non-zero values. Thus, while the By families of
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these cpg-normal subgroups look very different, one can swap the first two rows of any numeric
instance of By associated with m, and reduce the result again to a column-HNF matrix to obtain
the corresponding numerical instance of By associated with m,,.

Of the four cpg-normal subgroups of ACC Amm2 (#15), cpg-normal subgroups 2,, m,, and
mm?2z each have 3 or fewer By families, while m, has an impressive 77 By families. This latter
cpg-normal subgroup proved exceptional in a variety of ways. Of the list of 74 unique conditions
listed in Table A.2, this case alone contributes 24 of them, including the only 4 cases where negative
variable values are allowed. ACCs that stood out amongst the others in terms of complexity were
those based on point groups mmm, 4/mmm, and 6/mmm. Here, the large numbers of total By
families per ACC arise due to large numbers of cpg-normal subgroups, and not because any one
normal subgroup provides an extraordinary number of By families.

The By matrices of Table A.1 are all presented in the primitive HNF setting of the parent space
group. To transform a By matrix from this table into the more familiar conventional setting, we
multiply it on the left by the appropriate transformation matrix from the list below according to

lattice-centering type (e.g. P, A, C, I, F, or R).

100 10 0 3 =3 0
OP)=(0 1 0 oA)=|o 1 -1 oC) =[5 3 0
00 1 o L 1 0 0 1
2 2 (5.1)

0o L 1 111 2 _1 _1

2 2 2 2 2 3 3 3

oF)=|(L o i o= 1 -1 1 OR)=|1 L -2
11 11 _1 11 1

2 2 2 2 2 3 3 3

As an example, if the sublattice basis in the primitive HNF setting of a face-centered cubic
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parent lattice is

By = 12 0 | (5.2)
14c1 ¢ 24

the new basis in the conventional face-centered setting would be

1 1 24 2+ 2+

03 3 0 0 i el

— |1 1 _ | 2 2+
23 0/ \1+er 1 2+¢ 1 1 0

Obviously, this is no longer in Hermite normal form.

5.2 Validation

Extensive brute-force testing of Table A.1 helped us to identify and resolve problems with the
computer algorithm. Though we have considerable confidence in the present table, we emphasize
that it is only practical to run tests over a finite range of the infinite space of possible numerical By
matrices. It is possible that a wider search would uncover problems that we have missed. For this
reason, we will make our code publicly available. To verify the legitimacy of our output, we have
performed the following three tests.

For the first test, a matrix is compared to the list of By matrices that have been tabulated. This
matrix is also checked to see if it supports normality by checking if it satisfies equations 3.9 and
3.11. The matrix should fit one of our tabulated By forms if and only if it supports normality. If
we find a matrix that fits one of our By forms but does not support normality or does not fit any
form but does support normality then we know that there is an error in our tabulations. We have
used this test with every possible Hermite normal form matrix with entries of values equal to or

less than 6.
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The second test focused on the variables in the By matrices. For each of our tabulated By, if
there are no variables we simply check that it supports normality. If there are variables, we plug
in values for those variables to make a matrix. The values that are plugged in are checked to see if
they satisfy any extra conditions that the By has (if any) and the matrix is then checked to see if it
supports normality. If there are any values that satisfy one but not the other then there is an error
in our tabulations. We have applied this test plugging in every combination of values up to 50 for
every one of our tabulated By matrices.

The third test focused on extra conditions and was not applied to any By that had no extra
conditions. For each case, different values are plugged in for each variable in a systematic order
until a combination of values that satisfy all extra conditions in a triplet are found. Then these
values are plugged into the By matrix and it is checked that is supports normality. We have used
this test to find every combination of values up to 250 that satisfy each set of extra conditions and
verify that each solution satisfies normality. The results of this test were also used as a brute force
method to check if there were even any solutions for each set of extra conditions (there were some

cases that had no solutions or had a finite number of solutions).



Chapter 6

Examples

6.1 A Simple Case

Consider space group P312 (#149), the point group of which has six elements: Pg = {(x,y,z2),
v, —x—,2), (—x—yx,2), (—=y,—x,—z), (x+y,—y,—2), (—x,x+y,—2z)}. P has three normal
subgroups: {(x,y,2), (»y—x —,2), (=x—¥,%,2), (=y,—x,—2), (x+¥,—¥ —2), (=, x+y,—2)},
{(x,3,2), (y,—x—,2), (—x—y,x,2)}, and {(x,y,z)}. For this example, let us consider the normal
subgroup Py = {(x,,2), (v, —x—y,2), (—x —y,x,2) }. The lattice-coordinate matrix representation

of the elements of Fg; is

1 00 0 -1 0 -1 10
010,71 =1 O0f>|—-1 0 0]»
0 0 1 0 0 1 0 01
6.1)
0 -1 0 1 0 O -1 1 0
-1 0 O {1 -1 0|10 1 O

40
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so that Py is represented as

1 00 0 -1 0 -1 10
0101 -1 0,|—-1 020 . (6.2)
0 01 0 0 1 0 01

When we impose equation 3.9 on each of the point operators of Py, the identity yields only trivial

conditions, whereas the other two elements yield

1 1
1 10 B B 0
-1 3x3
B _ = __1 _ By 2 _ By €7 6.3
N 120 By,  BiBn By,  BiB»n 0 6.3)
0 0 0 B3 —B»B31+By1Bsy, —2B3p | —ByB31+B2B3y) 0
B2)B33 B11B2B33 B B33 B11B22B33
and
_ 2 _ 1
2 1 0 B Bi] 0
-1 _ 2B 1 B 3x3
B = 1 2By . 21 ez, (64
N 10 By  BuB»n By, ' BiB»n 0 64)
0 0 0 —Bs —2B»B31+2By1B3; B3 —ByB31+B21B3y 0
B B33 B11B2B33 B2,B33 B11B2 B33

By inspection, it can be seen that equation 6.3 requires that BLH € Z. Because By is in Hermite
normal form, this is only possible if B;; = 1. Rather than manually applying such logic succes-
sively to each element of By, we simply set B;; = 1 and then used Mathematica’s Reduce function
to simultaneously require that every element be integral. The result is that By must take one of the

following forms:

1 0 O 1 0 O
Bv=1|(0 1 0 12 3 0 5
0 0 c1+1 0 0 c1+1
(6.5)
1 0 0 1 0 0
0 1 0 ) 0 1 0

2c14+2 2¢1+2 3c;+3 cir+1 ci1+1 3c1+3



6.1 A Simple Case 42

where ¢ can be any non-negative integer. Now let us try to further restrict the four By families in
equation 6.5 by imposing equation 3.11 on each one separately.

For the first matrix, we must have

10 0 10 0
01 0 [plo1 o |ez*? (6.6)
00 g 00 ¢ +1

for every p, € Pg. However, by inspection, we can see that every p, commutes with the matrix so
that the condition reduces to p, € 733, which does not further restrict By.
For the second matrix, the application of equation 3.11 to the five non-identity elements of Pg

yields the following matrices:

-2 =30 1 3 0 -2 -3 0 I 0 O 1 3 0
1 1 Ofsf{-1 290}y 1 2 O }|,f-1 -1 01510 =1 O )
0 0 1 0 0 1 0O 0 -1 0O 0 -1 0 0 -1

none of which contain fractions or depend on c; and thus do not further restrict By.

Application of equation 3.11 to the third and fourth matrices yields

0 -1 0\ (=110 0 -1 0
1 -1 0l,l=100l,]=1 0 o,
0 2 1 2 0 1 0 0 -1
(6.8)
1 0 0 1 1 0
1 -1 0o l,]o0 1 o0 € 733

-2 0 -1 0 -2 -1
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and
0 -1 0\ (=110 0 -1 0
1 -1 0l,l=100l,]=1 0 o,
0 1 1 1 0 1 0 0 -1
(6.9)
1 0 11 0
1 -1 ol,lo 1 o € 733

-1 0 -1 0 -1 -1
respectively. Again, both of these conditions are clearly true without further restricting the form of
By.
For this particular G and Py, imposing equation 3.11 does not restrict our solution any fur-
ther. Hence, the four infinite families in equation 6.5 span all the possible normally supportive

sublattices for the space group P312 (#149) and this particular normal cpg-subgroup Py.

6.2 A Case with Bifurcation

Consider space group Pmm2 (#25), which has a point group Pg = {(x,y,2), (—x,—y,2),

(—x,y,2), (x,—y,z)} with the lattice coordinate representation

1 00 -1 0 0 -1 00 1 0 0
01 o]0 =1 0f,]0 1 oOf,-]O0 =1 Of - (6.10)
0 01 0 0 1 0 01 0 0 1

PG has the fOHOWng five normal SUng'OUpSI {(X,y,Z)}, {(.X,y, Z)a (—X, _yvz)}’ {(xayu Z)7 (—X,y, Z)}’
{(x,¥,2), (x,—¥,2)}, and {(x,y,2), (—x,—y,2), (—x,¥,2), (x,—y,z)}. Let us consider the case of
Py = ny = {(xayuz)u (‘x7 —y,Z)}-

When we impose equation 3.9 on the non-identity elements of Py, Mathematica’s Reduce
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function yields the following eight By families:

I14+c 0 0 14+ 0 0
By = 0 1 0 ) 0 1 0 3

2¢o l14+cr4+c3 242+ 2c3 142¢cy; 14cr+c3 24+2c+2c;

I4+c; O 0 I4+c; O 0 I4+c; O 0
0 1 0 : 0 1 0 5 0 1 0 5
2c0 0 2+42c¢p+2c3 2c0 0 142c¢y+2c; 14+2c; 0 242cy+2c3
I+c1 O 0 I4+c O 0 I4+c O 0
0 1 0 ) 0 2 0 ) 1 2 0
14+2¢; 0 342cp+2c3 ) 0 1+cr+cs ) 0 1+cr+cs

6.11)

where ¢, ¢z, and c3 can be any non-negative integers.
For the sake of brevity, we’ll only consider the first By family in equation 6.11, to which the

application of equation 3.11 yields the condition

1
THe; 0 0 14y 0 0
0 1 0 pe| 0 1 0 €77 (6.12)
1 1
—m T2 2720126 2C2 1+C2+C3 2—|—2C2—|—2€3

for each p, € Pg. Inserting each p, then yields

1 00 -1 0 O -1 00 1 0 O
otof.f o —1o]|,] o 1ol |o-10]peZ¥ (613
00 1)\ 1) s o) o1

which has only one nontrivial condition: 5 +§§ic3 € Z. There are two ways to satisfy this condition.

The first is to let ¢ = 0 and the second is to let ¢ = ¢3 + 1. Applying these two replacements
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separately effectively bifurcates the original By family into the following two families:

14+c¢; 0 0 14c¢ 0 0
0 1 0 and 0 1 0 (6.14)
0 1+c 242c 242c) 2+42cr 4+4cr

where we have relabeled the old c¢3 as the new ¢, for convenience, and where c¢; and ¢, can be any

non-negative integers.

6.3 A Case with Extra Conditions

Consider space group Imm?2 (#44) which has a point group Pz = mm2, whose point-group
operators in the primitive setting are {(x,y,z), (y —z,x—z,—2), (x,x—z,x—y), (y —z,y,—x+Y)}

with the lattice coordinate representation

1 00 0 1 0 1 1 1 0 0 —1
o101 O O1]s]0 O =111 1 1 : (6.15)
00 1 -1 -1 -1 0 -1 0 -1 0 0

P has the following five normal subgroups: {(x,y,2)}, {(x,y,2), y —z,x—z,—2) }. {(x,,2), (x,x—
zx=y) 1 A{(x6»2), 0=z, —x+y)}, and {(x,y,2), (y —2,x—2,—2), (x,x—z,x—y), (y = 2,5, —x+
y)}. Let us consider the case of Py = m, = {(x,y,2), (x,x —z,x—y)}.

When we impose equation 3.9 on the non-identity elements of Py, Mathematica’s Reduce

function yields the following three By families:

l4+¢; 0 0 l4¢; O 0 l4¢; O 0
By = 0o 1 0}, 0 1 0 ; 0 1 0 (6.16)
0 01 c 1 24cr+4c3 14cy 1 24cr+cs

where c1, ¢, and c3 can be any non-negative integers.
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For this example, we’ll only consider the third By family in equation 6.16, to which the appli-

cation of equation 3.11 yields the condition

1
Te; 0 0 1+ C1 0 0
0 1 0 |ps| o 1 0 €z’ (6.17)
1+c 1 1
- (1+C1)(2+2L‘2+63) - 2+4cr4c3  2+4crtcs 1 + 2 12 + 2+ 3

for each p, € Pg. Inserting each p, then yields

1+ Yoot
1 00 —1+2 0 _+01C3
01 0], cl —C —1 —2—62—6‘3 )
_ (e1=c2)(2+c1+e2) 14c,
001 (I4c1)(2+c2+c3) 0 I+cy (6.18)
1+ 24cpte
1 0 0 —1+2 0 _ﬁ
ci—c —1 —2—cp—c3 |> 0 1 0 e 7373,
(c1=c2)(2+c14c2) 1+c
o 0 ! T (a2 Feta) Trer

. . o IS _ 4o _ 2+0ta _ (c1=c2)(24citer)
This essentially has three nontrivial conditions: {d; = § o dy = = o dy = (1501 2rertas) }
€ Z. Using Mathematica’s Reduce command under the assumption that all ¢ and d variables are
integers, we find that we can satisfy both of these conditions by bifurcating this By family into the
following three cases.

For the first case, we let dj = 1 and dp = 2 by setting ¢c; =c¢; and c3 = =2 —c1 + 2+ 2cy.

Making these substitutions will change d3 to 0, which is trivially integral, and simplify By to

l+c; O 0
0 1 0 (6.19)
l4+c¢c; 1 242¢
where ¢ can be any non-negative integer.

For the second case, we let d; = 1 by setting ¢» = ¢; and ¢3 = —2 — ¢| +d) + ¢1d>. Making
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these substitutions reduces ds to 0, which is trivially integral, and changes By to

14c¢; O 0
0 1 0 . (6.20)
l+c; 1 dy+cidr

2+ci1+c3

Because d) = = v

, where ¢ and c¢3 can take on any non-negative integers, an appropriate value
of c3 will achieve any desired integer value of d, greater than 1 for any given non-negative integer
value of c;. Thus, the range of d, is d» > 2. However, because we have already treated the d, = 2
case above, we will restrict the new By to the range d, > 3 in order to ensure that all By families
are mutually disjoint. Finally, because it is convenient to define each variable in the By family
over the range of non-negative integers, because d> does not appear in any extra conditions, and

because the old c¢; variable is no longer being used, we define a new variable ¢c; =d, —3 > 0 and

replace d> with ¢, + 3 within By to obtain

l4+c¢ 0 0
0 1 0 6.21)

14+c¢; 1 (1—|—C1)(3—|—C2)

where ¢ and ¢, can be any non-negative integers.

For the third case, we let c; = —1+dj 4+ cjd; and ¢c3 = —1 —d| — ¢1d| + dy + ¢1d>, which

1-d?
dy

reduces the d3 condition to € Z and By to

14c 0 0
0 1 0 . (6.22)

dit+cdy 1 dr+cidy

Using similar logic to that applied in the previous case, and skipping the previously-treated d; = 1
scenario, our d-variable ranges are now d; > 2 and d, > 1 +d;. For convenience, we replace

dy with 24 d; and d, with 3+ d; + d>. Making these substitutions reduces the d3 condition to
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3+4d,+d?
3+d1 +d2

€ Z and By to

1+c 0 0
0 1 0 , (6.23)
(1+C1)(2-|—d1) 1 (1+C1)(3+d1+d2)

3+4d,+d}

3+di+dy € Z.

where ¢y, d;, and d> can be any non-negative integers that satisfy

6.4 A Very Messy Case

Consider space group Amm?2 (#38) which has a point group P = mm?2, whose point-group op-
erators in the primitive setting are {(x,y,z), (—x,z,y), (—x,¥,2), (x,z,y) } with the lattice coordinate

representation

1 00 -1 0 0 -1 0 0 1 00
010,10 01,0 1T O0f,{0 01 . (6.24)
0 01 0 10 0 01 010

Fc has the fO]lOWing five normal subgroups: {(X,y,Z)}, {(x,y,z), (_X7Z>y)}’ {(xayvz>7 (—x,y,z)},
{(X,y,Z), (X7Z7y)}’ and {(x,y,z), (_X,Z,)’), (—x,y,z), (X,Z,y)}- Let us consider the case of PN -

my ={(x,9,2), (—x,y,2)}.

When we impose equation 3.9 on the non-identity elements of Py, Mathematica’s Reduce
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function yields the following eight By families:

1 0 0 1 0 0
By = 14c3 24 2c3 0 sy 143 242c3 0 )
14+ci+cr C1 24c1+2c C1 2cq 14+2c1+co
1 0 0 2 0 0
0 I+c; 0 10 14c3 0 )
0 l4+ci+ce 0 l4ci+ce
(6.25)
1 0 0 1 0 0
0 14+ 0 ) 0 I+c; 0 )

l4+ci4+c3  2c 242c1+2c3 24c1+ce3 142¢; 442¢)+2c3

1 0 0 1 0 0

0 I+ 0 ) 0 1+ 0

l4+ci4+c3 142c; 2+2c; +2c¢3 24c14+c3 242¢; 442c)+2c3

where c1, ¢, and c3 can be any non-negative integers.
For the sake of brevity, we’ll only consider the first By family in equation 6.25, to which the

application of equation 3.11 yields the condition

1 0 0
1+ 1
- 2+2622 TZ(’Z 0 pg
,2(1+62)2+c1(7172c2+03) . C1 1
(242¢2) (241 +2¢2) (242¢2)(2+c1+2¢3)  2+c1+2e; (6.26)
1 0 0
| 14c 2420 0 ez’

l14+ci+ca Cl 24c1+2c¢
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for each p, € Pg. Inserting each p, then yields

1 00 —1 0 0
010 2+cit+ortes c| 2+c142¢;
’ 242¢o 242¢o 242¢o !
00 1 (2—ci+2c)(2+ci+erte3)  2—ci+2er ¢
242¢7)(24+c14+2¢, 242¢o 2+2¢y
( ) ) 6.27)
—1 0 0 1 0 0
1+4c3 10 c1t+cr—c3 cl 24c1+2¢)
I+co ’ 242¢o 242¢o 242¢y
2(1+c2)2+cl(1+202—63) 01 _cte—c3 2—ci+2c0 ¢

(1+6‘2)(2+C1 +2C2) 242¢o 242¢o 242¢o

dr = _ 24142 d — c1+cr—c3 d4 —

which has five unique nontrivial conditions: {d; = 31203 3903

2+2€3

(c1+cr—c3)(2+c1+2¢3) d 2 (242¢3)?
(242¢3)(2+c1+2c2) > 95— (2+2C3)(2+c1+2C2

} Applying Mathematica’s Reduce function under the
assumption that all ¢ and d variables are integers, we find that we can satisfy most of these condi-
tions by breaking up By into the following seven cases.

For the first case, we set c; = ¢y = c3 =d| =d3z =ds = 0 and d» = d5 = 0. This simplifies the

By family to
1 00

1 2 0f- (6.28)

1 0 2

For the second case, we set c; =c3=0and ¢cp = —1+d, sothat d; =0, d3 = #, dy =

_é:l;dz ,and ds = %. This simplifies the By family to

1 0 O
1 2 0 (6.29)
d, 0 2d,

where d; can be any integer greater than or equal to 2 that satisfies { _1; B [} }€ Z. By inspection,

it can be seen that no possible values of d; that will simultaneously satisfy all of these conditions

and so this particular By family can be discarded.
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For the third case, we set ¢y =0 and ¢, = ¢3 so that dy =d3 =d4 =0 and dp = ds = 1. Then

we define ¢j[new| = c3[old] — 1 so as to replace c3 with ¢; + 1. This simplifies the By family to

1 0 0
24c; 442 0 (6.30)
24cy 0 4+42c

where ¢; > 0.

For the fourth case, we set cy =0 and ¢cp = —1+d> +c3dy sothat d; =0, d3 = —lzrdz’ dy =
7;{;12 ,and ds = %. This simplifies the By family to
1 0 0
I+c3  2+42c3 0 (6.31)

(1 —I—C3)d2 0 (2—|—2€3)d2

where c3, and d; are integers that satisfy czdy > 0, dy > 2, and { 71; L) , dlz }€ Z. By inspection, it

can be seen that there are no solutions to these conditions and thus this By family can be discarded.
For the fifth case, we set ¢y = 2d; and ¢; = ¢3 =0 so that d» = 1+d;, d3 = d4 = dy, and
ds = 1 —d,. Then we define ¢;[new] = d;[old] — 1 so as to replace d; with ¢; + 1. This simplifies

the By family to
1 0 0

1 2 0 (6.32)
34+2c1 2421 4+2c
where c; > 0.
For the sixth case, we set ¢co = ¢3 = % sothatdy, =1+4d,d3 =ds =d;,and d5s =1 —d.

This simplifies the By family to

1 0 0
a9 g0 (6.33)

C Cc
Cl—i-ﬁ cl Cl‘*‘i
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where c| and d; are any integers that satisfy ¢; > 2dy, d; > 1, and 2%1 € 7. Additional reduction

is needed to bring this family into our prescribed form, which is

1 0 0
2+c¢ 2(2+4¢) 0 (6.34)
(24¢c1)(34+2c2) 2(24c1)(1+c2) 2(24c¢1)(2+¢2)
where ¢; and c¢; can be any non-negative integers. However, we choose to skip the details here
because we instead want to focus more attention on the seventh case.

For the seventh and final case (to which the remainder of this section will be devoted), we set

_ —2dy—cidi+cidy _c1—2d; _ —l4+di+dy _ (1+d1)(_1+d1+d2) — 1_d12
=y and ¢3 = 2 so thatds = —5-—2,dy = 70 ,and ds = 5
This simplifies the By family to

1 0O 0
C1 C1
£ g 0 (6.35)
ci(di+d>) c1dy
2d, S
V(—1+d+d>)

where ¢y, di, and d; are any integers that satisfy dy > 14-dy, c; > 2d;,d; > 1, and { (1+d, o7 ,

1-d? ¢, —(2+c))di+ci1dy —1+d1+d2}€Z

dr, ° 2dy° 2d; ’ 2

Here the quotients in By are undesirable because each element must be integral. To simplify

By, we can replace d; with 2% which simplifies the By family to

1 0 0
dy 2d, 0 (6.36)
didr+ds 2ds 2dd>

where, for convenience, g; and ¢ have been relabeled as d; and ds, respectively, and d;, d», and

. . - d*—d?
ds can be any integers that satisfy dp > 1+ fl—?, dz > Z—?, 3—? > 1, and { (di+d3) (‘2[&2 d12+d2)+d3), (‘12 d23,
1 1

d](—1+d2)+d3 d_3
Qb+ by g,

This By family is not ideal because the allowed ranges of values are dependent on other vari-

ables. To remedy this, we can again apply Mathematica’s Reduce command which bifurcates
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the family into three subcases. The first subcase has dj = d3 = 1 and d; > 3. The second has
dy=1,dy>3,ds>2,and d, > 1 +d3. The third has d| > 2, d» > 3, di(—1+d5) > d3, and
d3 > dj. Once again, for the sake of brevity, we will only explore the second subcase, which nicely
illustrates some of the complexities encountered in producing Table A.1. For this subcase, By

simplifies to

1 0 0
1 2 0 ) (6.37)
di+dr 2d, 2d;

where for convenience, d, and d3 have been relabeled as d; and dj, respectively, and d; and

(14+dy)(—1+di+dy) —1+d3

dp can be any integers that satisfy dy > 3, dp > 2, di > 1 +d; and {

2d,; ’ d
—14d,+d
+ } c 7.
The extra condition W € Z can be eliminated if we define k; = w and then

replace each occurrence of d, with 1 —d; + 2k;. This substitution simplifies the By family to

1 0 0
1 2 01, (6.38)
14+2d, 2—-2dy+4d, 2d;
where k; has been relabeled d»[new| for convenience, and d; and d; can be any integers that satisfy
dy 23,24y > 1+dy,dy > 1 +dy and 2214 e 7,
While the extra conditions are looking much cleaner, the ranges of the variables have grown
significantly more convoluted. To remedy this, we again use Mathematica’s Reduce command

which replaces dy with 5+ 2d| +d, and d, with 3 +d| +d,. This simplifies the By family to

1 0 0
1 2 0 (6.39)
74+2d;+2d, 4+2d, 10+4d;+2d»

2(243d,+d?)

s2did, € L

where d| and d, can be any non-negative integers that satisfy
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We only followed the 2" subcase of the 7" case bifurcated from the 1% By family from the
application of equation 3.9. For G = Amm2 (ACC #15) and Py = m,, other threads were similarly
complicated. Hence the extraordinary number of unique By families associated with this case, as

seen in Table 5.1.



Chapter 7

Conclusions and Future Work

This thesis contains several key results. First, the cpg-normal subgroups for each crystallo-
graphic space group (i.e. normal subgroups of the point group of a space group) have been tabu-
lated and the corresponding abstract quotient groups have been calculated. Second, we established
two conditions that a sublattice 7Ty of crystallographic space group G must satisfy in order to sup-
port extensions with cpg-normal subgroup Py that are normal subgroups of G. Third, an algorithm
to find these normally supportive sublattices has been developed, along with Mathematica code
that implements the algorithm. The algorithm first applies the simpler condition (inclusion, equa-
tion 3.9) to narrow the range of candidate sublattices, and then applies the more difficult condition
(Pg-invariance, equation 3.11) to each sublattice that met the first condition. Fourth, the normally
supportive sublattices only depend on the lattice centering type of the parent space group G and
the cpg-normal subgroup Py of the point group P; of G; we found that there are only 129 unique
combinations of parent lattice centering and cpg-normal subgroup that need to be studied.

Fifth, we applied our code to determine and tabulate all of the normally supportive sublattices
for each of the cpg-normal subgroups Py of each of the 230 crystallographic space groups, ex-
cepting those cases for which Py was the trivial subgroup 1 (these cases were too complicated

with the present approach). Because space groups of the same arithmetic class have the same
55
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cpg-normal subgroups, this analysis was only performed for the unique symmorphic space group
from each arithmetic crystal class. Upon applying the inclusion condition (equation 3.9) to the 129
input scenarios, only 41 unique inclusion sublattices emerged. The Pg-invariance test (equation
3.11) required only the point-group operators of Pg and the unique inclusion sublattice associated
with Py C Ps. For a given arithemetic class and cpg-normal subgroup, the basis vectors of each
normally-supportive sublattice are represented symbolically in Table A.1 by the columns of a By
matrix in Hermite normal form. With considerable computer-guided algebraic manipulation, we
were able to bring all but a handful of the By matrices into a standard form in which all variables
have integer values, all variable ranges extend from zero to infinity, and no matrix elements contain
quotients; however, some cases do include additional conditions on the variables (a quotient ex-
pression that is required to be integral). Four cases had slightly more complicated variable ranges.
A matrix By containing symbolic variables actually represents an infinite family of sublattices, and
in most cases, the complete set of normally-supportive sublattices could only be described using
multiple By matrices that each represent multiple disjoint subfamilies. The most complicated case
required 77 such subfamilies. A total of 1773 such By families are presented in Table A.1. The
algebraic manipulation required to achieve the nice standard form was the most difficult aspect of
this research. Of particular interest, a paper by Litvin and Kopsky in 2000 claimed that cubic space
groups will only have a finite number of normal subgroups [9]. Our results support this claim as
there are no infinite By families corresponding to any of the cubic space groups (arithmetic crystal
classes 59-73).

The ultimate goal of this research is to determine, in general, the types of topological defects
that can be formed by the intersection of domain boundaries in crystals. During a crystal-crystal
phase transition involving a loss of symmetry, domains of the low-symmetry phase form and even-
tually fill the volume of the crystal. The cosets of the child symmetry group H of the low-symmetry

phase in the parent symmetry group G of the high-symmetry phase are acted upon by the symme-
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tries of the quotient group Q@ = G/N, where N is the normal core of H in G. This action of Q on
these cosets generates a coset graph, the topology of which appears to be relevant to the defect-
topology problem.

Now that the normally supportive sublattices have been tabulated, the broader vision of under-
standing and possibly classifying the topologies of domain-interface defects will require additional
work. The first step will be the group extension problem, or in other words combining Py and Ty
to obtain subgroups N of G (i.e. space groups in the same arithmetic crystal class as Ty x Py) [31].
The second step will be to enforce the normality condition N < G to obtain the csg-normal sub-
groups of G. Once the csg-normal subgroups of G are known, the third step will be to tabulate
quotient groups Q = G/N for each one. Fourth, a general strategy will be needed for generating
the coset graph of a given Q and using it to deduce the defect-interface topologies that might result.
By coset graph, we mean a complete colored digraph, wherein the vertices are the cosets of N in G,
the arcs are ordered vertex pairs and the quotient group Q is an externally-defined vertex-transitive
automorphism group whose action on the arcs assigns distinct colors to distinct arc orbits [32,33].
Figure 1.5 is an example of a coset graph with G = P63 /mmc (#194) and N = P3c (#158).

Though difficult, the determination of normally-supportive sublattices was a necessary step
in identifying and classifying the csg-normal subgroups of crystallographic space groups. The
results should be useful in future work that aims to understand the topology of domain-intersection
defects in crystals. After this work has been published, the code and relevant data files will be

made available in a public Github repository.
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Appendix A

Normally Supportive Sublattices

Table A.1 A table of normally supportive sublattices of crystallographic space groups
ordered by arithmetic crystal class and cpg-normal subgroup. The first column is the
arithmetic class number and crystallographic space group representative. The second
column is the cpg-normal subgroup Py with a number and a name. The cpg-normal
subgroup 1 in each case is omitted from this table for reasons explained in Chapter 3.
The third column is the HNF matrix that represents a normally supportive sublattice laid
out row by row. These matrices are numbered for convenience. The fourth column is
an index (c#) which identifies additional conditions on the d parameters in By (rational
polynomial functions that must have integer values) from Table A.2. An asterisk next to
the c# denotes conditions that have no possible solutions. When no c# is provided, the

variables can take on any non-negative integer values.

ACC Py By matrix row by row cH#
2P1 21 1 {{1,0,0},{0,1,0},{0,0,1}}
2 P1 21 2 {{1,0,0},{0,1,0},{1,1,2}}
2 P1 21 3 {{1,0,0},{0,1,0},{1,0,2}}
2P1 21 4 {{1,0,0},{0,1,0},{0,1,2}}
2 P1 21 5 {{1,0,0},{0,1,0},{0,0,2}}
2 P1 21 6 {{1,0,0},{1,2,0},{0,0,1}}
2 P1 21 7 {{1,0,0},{0,2,0},{0,0,1}}
2 P1 21 8 {{1,0,0},{1,2,0},{1,0,2}}
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Table A.1 — continued from previous page

ACC Py By matrix row by row c#
2 P1 21 9 {{1,0,0},{1,2,0},{0,0,2}}

2 P1 21 10 {{1,0,0},{0,2,0},{1,0,2}}

2 P1 21 11 {{1,0,0},{0,2,0},{0,0,2}}

2 P1 21 12 {{2,0,0},{0,1,0},{0,0,1}}

2 P1 21 13 {{2,0,0},{0,1,0},{0,1,2}}

2 P1 21 14 {{2,0,0},{0,1,0},{0,0,2}}

2 P1 21 15 {{2,0,0},{0,2,0},{0,0,1}}

2 P1 21 16 {{2,0,0},{0,2,0},{0,0,2}}

3P2 22, 1 {{1,0,0},{0,1,0},{14+c1,1+¢1,242¢1}}
3P2 22, 2 {{1,0,0},{0,1,0},{14¢1,0,2+2¢; }}
3P2 22, 3 {{1,0,0},{0,1,0},{0,14+c1,2+2c }}
3P2 22, 4 {{1,0,0},{0,1,0},{0,0,1+c1}}

3P2 22, 5 {{1,0,0},{1,2,0},{14¢1,0,2+2¢; }}
3P2 22, 6 {{1,0,0},{1,2,0},{0,0,1+c;}}

3P2 22, 7 {{1,0,0},{0,2,0},{14¢1,0,2+2c; }}
3P2 22, 8 {{1,0,0},{0,2,0},{0,0,1+c;}}

3P2 22, 9 {{2,0,0},{0,1,0},{0,14¢1,2+2c }}
3P2 22, 10 {{2,0,0},{0,1,0},{0,0,1+c;}}

3P2 22, 11 {{2,0,0},{0,2,0},{0,0,14¢;}}

4C2 22, 1 {{1,0,0},{0,1,0},{14+c1,1+¢c1,242¢1}}
4C2 22, 2 {{1,0,0},{0,1,0},{1+4¢1,0,24+2¢; }}
4C2 22, 3 {{1,0,0},{0,1,0},{0,1+¢c1,242¢; }}
4C2 22, 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

4C2 22, 5 {{1,0,0},{1,2,0},{14¢1,0,2+2c; }}
4C2 22, 6 {{1,0,0},{1,2,0},{0,0,1+c;}}

4C2 22, 7 {{1,0,0},{0,2,0},{1+¢1,0,242¢ }}
4C2 22, 8 {{1,0,0},{0,2,0},{0,0,1+c;}}

4C2 22, 9 {{2,0,0},{0,1,0},{0,14+c¢1,2+2c1 }}

Continued on next page
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Table A.1 — continued from previous page

ACC Py By matrix row by row c#
4C2 22, 10 {{2,0,0},{0,1,0},{0,0,1+¢}}

402 22, 11 {{2,0,0},{0,2,0},{0,0,1+¢}}

5 Pm 2m, 1 {{14¢1,0,0},{c2,1+c2+¢3,0},{0,0,1}}
5Pm 2 m, 2 {{1+4¢,0,0},{c2,14+¢2+¢3,0},{0,0,2}}
5 Pm 2 m, 3 {{14¢1,0,0},{c2, 1+ c2+¢3,0},{0,1,2}}
5 Pm 2m, 4 {{14+¢1,0,0},{c2, 1 +c2+¢3,0},{1,0,2}}
5 Pm 2 my 5 {{14¢1,0,0},{c2, 1 +c2+¢3,0},{1,1,2}}
6Cm 2 m, 1 {{14¢1,0,0},{c2,1+c2+¢3,0},{0,0,1}}
6 Cm 2 m, 2 {{14¢1,0,0},{cs, 1+ ¢2+¢3,0},{0,0,2}}
6Cm 2 my 3 {{1+4¢1,0,0},{c2,1+¢c2+¢3,0},{0,1,2}}
6Cm 2m, 4 {{14¢1,0,0},{c2,1+c2+¢3,0},{1,0,2}}
6 Cm 2 m, 5 {{14¢1,0,0},{c2, 1+ 2 +¢3,0},{1,1,2}}
7 P2/m 21 1 {{1,0,0},{0,1,0},{0,0,1}}

7P2/m 21 2 {{1,0,0},{0,1,0},{1,1,2}}

7 P2/m 21 3 {{1,0,0},{0,1,0},{1,0,2}}

7P2/m 21 4 {{1,0,0},10,1,0},{0,1,2}}

7P2/m 21 5 {{1,0,0},{0,1,0},{0,0,2}}

7 P2/m 21 6 {{1,0,0},{1,2,0},{0,0,1}}

7P2/m 21 7 {{1,0,0},{0,2,0},{0,0,1}}

7 P2/m 21 8 {{1,0,0},{1,2,0},{1,0,2}}

7 P2/m 21 9 {{1,0,0},{1,2,0},{0,0,2}}

7 P2/m 21 10 {{1,0,0},{0,2,0},{1,0,2}}

7 P2/m 21 11 {{1,0,0},{0,2,0},{0,0,2}}

7 P2/m 21 12 {{2,0,0},{0,1,0},{0,0,1}}

7 P2/m 21 13 {{2,0,0},{0,1,0},{0,1,2}}

7 P2/m 21 14 {{2,0,0},{0,1,0},{0,0,2}}

7 P2/m 21 15 {{2,0,0},{0,2,0},{0,0,1}}

7 P2/m 21 16 {{2,0,0},{0,2,0},{0,0,2}}

Continued on next page
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Table A.1 — continued from previous page

ACC Py By matrix row by row c#
7P2/m 32, 1 {{1,0,0},{0,1,0},{14ci,14+¢1,242¢1 }}
7P2/m 32, 2 {{1,0,0},{0,1,0},{14¢1,0,242c; }}
7P2/m 32, 3 {{1,0,0},{0,1,0},{0,1+¢1,242¢; }}
7P2/m 32, 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

7P2/m 32, 5 {{1,0,0},{1,2,0},{14¢1,0,242c; }}
7P2/m 32, 6 {{1,0,0},{1,2,0},{0,0,1+c;}}

7P2/m 32, 7 {{1,0,0},{0,2,0},{14+¢1,0,242¢ }}
7P2/m 32, 8 {{1,0,0},{0,2,0},{0,0,1+c;}}

7P2/m 32, 9 {{2,0,0},{0,1,0},{0,1+¢c1,242¢; }}
7P2/m 32, 10 {{2,0,0},{0,1,0},{0,0,14¢;}}

7P2/m 32, 11 {{2,0,0},{0,2,0},{0,0,14¢;}}
7P2/m 4 my 1 {{14+¢1,0,0},{c2,1+c2+¢3,0},{0,0,1}}
7P2/m 4 m, 2 {{14¢,0,0},{c2,1+¢c2+¢3,0},{0,0,2}}
7P2/m 4 my 3 {{14¢1,0,0},{c2,14+¢2+¢3,0},{0,1,2}}
7P2/m 4 m, 4 {{14¢1,0,0},{c2,1+c2+¢3,0},{1,0,2}}
7P2/m 4 my 5 {{1+4¢1,0,0},{c2,14+¢c2+4¢3,0},{1,1,2}}
7P2/m 52/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

7P2/m 52/m; 2 {{1,0,0},{0,1,0},{1,1,2}}

7P2/m 52/m, 3 {{1,0,0},{0,1,0},{1,0,2}}

7P2/m 52/m; 4 {{1,0,0},{0,1,0},{0,1,2}}

7P2/m 52/m; 5 {{1,0,0},{0,1,0},{0,0,2}}

7P2/m 52/m; 6 {{1,0,0},{1,2,0},{0,0,1}}

7P2/m 52/m, 7 {{1,0,0},{0,2,0},{0,0,1}}

7P2/m 52/m;, 8 {{1,0,0},{1,2,0},{1,0,2}}

7P2/m 52/m; 9 {{1,0,0},{1,2,0},{0,0,2}}

7P2/m 52/m, 10 {{1,0,0},{0,2,0},{1,0,2}}

7P2/m 52/m; 11 {{1,0,0},{0,2,0},{0,0,2}}

7P2/m 52/m; 12 {{2,0,0},{0,1,0},{0,0,1}}

Continued on next page
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Table A.1 — continued from previous page

ACC Py By matrix row by row c#
7P2/m 52/m, 13 {{2,0,0},{0,1,0},{0,1,2}}

7P2/m 52/m; 14 {{2,0,0},{0,1,0},{0,0,2}}

7P2/m 52/m, 15 {{2,0,0},{0,2,0},{0,0,1}}

7P2/m 52/m; 16 {{2,0,0},{0,2,0},{0,0,2}}

8C2/m 21 1 {{1,0,0},{0,1,0},{0,0,1}}

8C2/m 21 2 {{1,0,0},{0,1,0},{1,1,2}}

8C2/m 21 3 {{1,0,0},{0,1,0},{1,0,2}}

8C2/m 21 4 {{1,0,0},{0,1,0},{0,1,2}}

8C2/m 21 5 {{1,0,0},{0,1,0},{0,0,2}}

8C2/m 21 6 {{1,0,0},{1,2,0},{0,0,1}}

8C2/m 21 7 {{1,0,0},{0,2,0},{0,0,1}}

8C2/m 21 8 {{L1,0,0},{1,2,0},{1,0,2}}

8C2/m 21 9 {{1,0,0},{1,2,0},{0,0,2}}

8C2/m 21 10 {{1,0,0},{0,2,0},{1,0,2}}

8C2/m 21 11 {{1,0,0},{0,2,0},{0,0,2}}

8C2/m 21 12 {{2,0,0},{0,1,0},{0,0,1}}

8C2/m 21 13 {{2,0,0},{0,1,0},{0,1,2}}

8C2/m 21 14 {{2,0,0},{0,1,0},{0,0,2}}

8C2/m 21 15 {{2,0,0},{0,2,0},{0,0,1}}

8C2/m 21 16 {{2,0,0},{0,2,0},{0,0,2}}

8C2/m 32, 1 {{1,0,0},{0,1,0}, {1 +ci,1+c1,24+2¢c1}}
8C2/m 32, 2 {{1,0,0},{0,1,0},{14¢1,0,242¢; } }
8C2/m 32, 3 {{1,0,0},{0,1,0},{0,1+¢1,2+2¢; }}
8C2/m 32, 4 {{1,0,0},{0,1,0},{0,0,14¢;}}
8C2/m 32, 5 {{1,0,0},{1,2,0},{14¢1,0,242¢; } }
8C2/m 32, 6 {{1,0,0},{1,2,0},{0,0,1+c;}}
8C2/m 32, 7 {{1,0,0},{0,2,0},{1+¢1,0,24+2¢;}}
8C2/m 32, 8 {{1,0,0},{0,2,0},{0,0,1+¢;}}
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8C2/m 32, 9 {{2,0,0},{0,1,0},{0,14¢1,2+2c1 }}
8C2/m 32, 10 {{2,0,0},{0,1,0},{0,0,1+c;}}

8C2/m 32, 11 {{2,0,0},{0,2,0},{0,0,14¢;}}
8C2/m 4 my 1 {{14¢,0,0},{c2,14+¢2+¢3,0},{0,0,1}}
8C2/m 4 my 2 {{1+4¢1,0,0},{c2,14+¢2+¢3,0},{0,0,2}}
8C2/m 4 my 3 {{1+¢1,0,0},{c2,14+¢2+4¢3,0},{0,1,2}}
8C2/m 4 m, 4 {{14¢1,0,0},{c2,14+c2+¢3,0},{1,0,2}}
8C2/m 4 m, 5 {{1+4¢1,0,0},{c2,1 +¢c2+¢3,0},{1,1,2}}
8C2/m 52/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

8C2/m 52/m, 2 {{1,0,0},{0,1,0},{1,1,2}}

8C2/m 52/m; 3 {{1,0,0},{0,1,0},{1,0,2}}

8C2/m 52/m, 4 {{1,0,0},{0,1,0},{0,1,2}}

8C2/m 52/m, 5 {{1,0,0},{0,1,0},{0,0,2}}

8C2/m 52/m; 6 {{1,0,0},{1,2,0},{0,0,1}}

8C2/m 52/m; 7 {{1,0,0},{0,2,0},{0,0,1}}

8C2/m 52/m, 8 {{1,0,0},{1,2,0},{1,0,2}}

8C2/m 52/m, 9 {{1,0,0},{1,2,0},{0,0,2}}

8C2/m 52/m; 10 {{1,0,0},{0,2,0},{1,0,2}}

8C2/m 52/m, 11 {{1,0,0},{0,2,0},{0,0,2}}

8C2/m 52/m; 12 {{2,0,0},{0,1,0},{0,0,1}}

8C2/m 52/m;, 13 {{2,0,0},{0,1,0},{0,1,2}}

8C2/m 52/m; 14 {{2,0,0},{0,1,0},{0,0,2}}

8C2/m 52/m, 15 {{2,0,0},{0,2,0},{0,0,1}}

8C2/m 52/m; 16 {{2,0,0},{0,2,0},{0,0,2}}

9 P222 22, 1 {{1,0,0},{0,1,0},{1+c1,1+¢1,24+2¢1 }}
9 P222 22, 2 {{1,0,0},{0,1,0},{14¢1,0,2+2¢; }}

9 P222 22, 3 {{1,0,0},{0,1,0},{0,14c1,2+2c1 }}

9 P222 22, 4 {{1,0,0},{0,1,0},{0,0,1+c;}}
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9 P222 22, 5 {{1,0,0},{1,2,0},{14¢1,0,2+2c; }}
9 P222 22, 6 {{1,0,0},{1,2,0},{0,0,14c¢;}}

9 P222 22, 7 {{1,0,0},{0,2,0},{14¢1,0,242¢; }}
9 P222 22, 8 {{1,0,0},{0,2,0},{0,0,1+c;}}

9 P222 22, 9 {{2,0,0},{0,1,0},{0,14c1,24+2c1}}
9 P222 22, 10 {{2,0,0},{0,1,0},{0,0,14¢;}}

9 P222 22, 11 {{2,0,0},{0,2,0},{0,0,14¢;}}

9 P222 32, 1 {{1,0,0},{14¢1,2+2¢,0},{0,0,1}}
9 P222 32, 2 {{1,0,0},{0,14¢1,0},{0,0,1}}

9 P222 32, 3 {{1,0,0},{1+¢;,2+2¢,0},{1,0,2}}
9 P222 32, 4 {{1,0,0},{1+c1,2+2¢1,0},{0,0,2}}
9 P222 32, 5 {{1,0,0},{0,1+4¢1,0},{1,0,2}}

9 P222 32, 6 {{1,0,0},{0,14+¢,0},{1,1,2}}

9 P222 32, 7 {{1,0,0},{0,1+¢;,0},{0,0,2}}

9 P222 32, 8 {{1,0,0},{0,1+¢1,0},{0,1,2}}

9 P222 32, 9 {{2,0,0},{0,14¢;,0},{0,0,1}}

9 P222 32, 10 {{2,0,0},{0,1+¢;,0},{0,0,2}}

9 P222 32, 11 {{2,0,0},{0,1+¢;,0},{0,1,2}}

9 P222 42, 1 {{1+4¢,0,0},{0,1,0},{0,0,1}}

9 P222 42, 2 {{14¢,0,0},{0,1,0},{0,1,2}}

9 P222 42, 3 {{1+4¢1,0,0},{0,1,0},{1,1,2}}

9 P222 42, 4 {{1+4¢,0,0},{0,1,0},{0,0,2}}

9 P222 42, 5 {{14¢,0,0},{0,1,0},{1,0,2}}

9 P222 42, 6 {{1+4¢,0,0},{0,2,0},{0,0,1}}

9 P222 42, 7 {{1+¢,0,0},{1,2,0},{0,0,1}}

9 P222 42, 8 {{1+¢1,0,0},{0,2,0},{0,0,2}}

9 P222 42, 9 {{1+4¢,0,0},{0,2,0},{1,0,2}}

9 P222 42, 10 {{14¢,0,0},{1,2,0},{0,0,2}}
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9 P222 42, 11 {{1+4¢,0,0},{1,2,0},{1,0,2}}

9 P222 5222 1 {{1,0,0},{0,1,0},{0,0,1}}

9 P222 5222 2 {{1,0,0},{0,1,0},{1,1,2}}

9 P222 5222 3 {{1,0,0},{0,1,0},{1,0,2}}

9 P222 5222 4 {{1,0,0},{0,1,0},{0,1,2}}

9 P222 5222 5 {{1,0,0},{0,1,0},{0,0,2}}

9 P222 5222 6 {{1,0,0},{1,2,0},{0,0,1}}

9 P222 5222 7 {{1,0,0},{0,2,0},{0,0,1}}

9 P222 5222 8 {{1,0,0},{1,2,0},{1,0,2}}

9 P222 5222 9 {{1,0,0},{1,2,0},{0,0,2}}

9 P222 5222 10 {{1,0,0},{0,2,0},{1,0,2}}

9 P222 5222 11 {{1,0,0},{0,2,0},{0,0,2}}

9 P222 5222 12 {{2,0,0},{0,1,0},{0,0,1}}

9 P222 5222 13 {{2,0,0},{0,1,0},{0,1,2}}

9 P222 5222 14 {{2,0,0},{0,1,0},{0,0,2}}

9 P222 5222 15 {{2,0,0},{0,2,0},{0,0,1}}

9 P222 5222 16 {{2,0,0},{0,2,0},{0,0,2}}

10 C222 22, 1 {{1,0,0},{0,1,0}, {1 +c1,1+c1,24+2¢c1}}
10 C222 22, 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

10 C222 22, 3 {{1,0,0},{1,2,0},{14¢1,0,2+2¢; }}
10 C222 22, 4 {{1,0,0},{1,2,0},{0,0,14¢}}

10 C222 22, 5 {{2,0,0},{0,2,0},{0,0,1+c;}}

10 C222 32, 1 {{1,0,0},{ci,14¢,0},{0,0,1}}

10 C222 32, 2 {{1,0,0},{c1,1+¢1,0},{0,0,2}}

10 C222 32, 3 {{1,0,0},{c1,1+¢c1,0},{1,1,2}}

10 C222 42, 1 {{1,0,0},{0,1,0},{0,0,1}}

10 C222 42, 2 {{1,0,0},{1,24¢,0},{0,0,1}}

10 C222 42, 3 {{1,0,0},{0,1,0},{1,1,2}}
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10 C222 42, 4 {{1,0,0},{0,1,0},{0,0,2}}

10 C222 42, 5 {{1,0,0},{1,24¢,0},{0,0,2}}

10 C222 42, 6 {{1,0,0},{1,24¢1,0},{0,1,2}}

10 C222 5222 1 {{1,0,0},{1,2,0},{0,0,1}}

10 C222 5222 2 {{1,0,0},{0,1,0},{0,0,1}}

10 C222 5222 3 {{1,0,0},{1,2,0},{0,0,2}}

10 C222 5222 4 {{1,0,0},{0,1,0},{1,1,2}}

10 C222 5222 5 {{1,0,0},{0,1,0},{0,0,2}}

11 F222 22, 1 {{1,0,0},{c1,1+¢1,0},{1,0,2}}

11 F222 22, 2 {{1,0,0},{ci,14¢,0},{0,1,2}}

11 F222 22, 3 {{1,0,0},{c1,14¢1,0},{0,0,1}}

11 F222 32, 1 {{1,0,0},{1,2,0},{c1,0,14c1}}

11 F222 32, 2 {{1,0,0},{0,1,0},{c1,1+¢c1,2+2¢}}
11 F222 32, 3 {{1,0,0},{0,1,0},{c1,0,14+¢1}}

11 F222 42, 1 {{1,0,0},{1,2,0},{0,0,1}}

11 F222 42, 2 {{1,0,0},{1,2,0},{14c1,c1,2+c1}}
11 F222 42, 3 {{1,0,0},{0,1,0},{0,c1,1+c1}}

11 F222 42, 4 {{1,0,0},{0,1,0},{1 +c1,c1,24+2c1 }}
11 F222 5222 1 {{1,0,0},{0,1,0},{0,1,2}}

11 F222 5222 2 {{1,0,0},{0,1,0},{1,0,2}}

11 F222 5222 3 {{1,0,0},{0,1,0},{0,0,1}}

11 F222 5222 4 {{1,0,0},{1,2,0},{1,0,2}}

11 F222 5222 5 {{1,0,0},{1,2,0},{0,0,1}}

12 1222 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

12 1222 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

12 1222 22, 3 {{1,0,0},{1,2,0},{2,2,2(2+c¢1)}}

12 1222 22, 4 {{1,0,0},{0,1,0},{3+2¢1,3+2c1,4(1+c1)}}
12 1222 22, 5 {{1,0,0},{0,1,0},{1,1,24+¢1}}
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12 1222 32, 1 {{1,0,0},{0,2,0},{1,0,2}}

12 1222 32, 2 {{1,0,0},{0,1,0},{0,0,1}}

12 1222 32, 3 {{1,0,0},{0,2,0},{3+42¢1,2,2(2+c1)}}

12 1222 32, 4 {{1,0,0},{0,1,0},{3+4c1,3+2¢c1,4(14+¢1)}}
12 1222 32, 5 {{1,0,0},{0,1,0},{14c1,1,24c1 }}

12 1222 42, 1 {{1,0,0},{0,1,0},{0,0,1}}

12 1222 42, 2 {{1,0,0},{0,1,0},{3+42c1,3+4c1,4(1+c1)}}
12 1222 42, 3 {{1,0,0},{0,1,0},{1,14c1,24c1}}

12 1222 42, 4 {{2,0,0},{0,1,0},{0,1,2}}

12 1222 42, 5 {{2,0,0},{0,1,0},{2,3+2¢1,2(2+c1)}}

12 1222 5222 1 {{1,0,0},{0,1,0},{3,3,4}}

12 1222 5222 2 {{1,0,0},{0,1,0},{1,1,2}}

12 1222 5222 3 {{1,0,0},{0,1,0},{0,0,1}}

12 1222 5222 4 {{1,0,0},{0,1,0},{3,3,4}}

12 1222 5222 5 {{1,0,0},{0,1,0},{1,1,2}}

12 1222 5222 6 {{1,0,0},{0,1,0},{0,0,1}}

13 Pmm?2 22, 1 {{1,0,0},{0,1,0},{14+c1,1+¢c1,242¢1}}

13 Pmm?2 22, 2 {{1,0,0},{0,1,0},{14¢1,0,242c; }}

13 Pmm?2 22, 3 {{1,0,0},{0,1,0},{0,1+¢1,242¢; }}

13 Pmm?2 22, 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

13 Pmm?2 22, 5 {{1,0,0},{1,2,0},{1+4¢1,0,242c; }}

13 Pmm?2 22, 6 {{1,0,0},{1,2,0},{0,0,1+c;}}

13 Pmm?2 22, 7 {{1,0,0},{0,2,0},{1+¢1,0,242¢; }}

13 Pmm?2 22, 8 {{1,0,0},{0,2,0},{0,0,1+c;}}

13 Pmm?2 22, 9 {{2,0,0},{0,1,0},{0,14+¢1,24+2c1 }}

13 Pmm?2 22, 10 {{2,0,0},{0,1,0},{0,0,14¢;}}

13 Pmm?2 22, 11 {{2,0,0},{0,2,0},{0,0,14¢;}}

13 Pmm?2 3 my 1 {{1,0,0},{14c1,2(1+¢c1),0}, {1 +¢2,0,2(14+c2)}}
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13 Pmm2 3 my 2 {{1,0,0},{1+c1,2(1+¢1),0},{0,0,1 +c2}}

13 Pmm2 | 3my 3 {{1,0,0},{0,1+c1,0},{0,0,1+c2}}

13 Pmm2 | 3m, 4 {{1,0,0},{0,1+¢1,0},{0,1+¢2,2(1+¢c2)}}

13Pmm2 | 3my 5 {{2,0,0},{0,1+¢1,0},{0,0,1+c2}}

13 Pmm2 | 3my 6 {{2,0,0},{0,1+¢1,0},{0,1+¢2,2(1+c2)}}

13 Pmm2 | 3m, 7 {{1,0,0},{0,14¢1,0}, {1+¢2,0,2(1+c2)}}

13 Pmm2 | 3m, 8 {{1,0,0},{0,14¢1,0},{2(1+¢2),2(1 +¢2),4(1 +¢2)}}
13 Pmm2 | 3m, 9 {{1,0,0},{0,14¢1,0},{3+2¢2,3+2¢2,6+4c2}}

13 Pmm2 3 my 10 {{1,0,0},{0,14¢1,0},{1+2¢2,142c2,2+4c2 }}

13 Pmm2 3 my 11 {{1,0,0},{0,14¢1,0},{2(1+¢2),2(1+c2),4(1+c2)}}
13 Pmm2 4 m, 1 {{14¢1,0,0},{0,1,0},{0,14+¢2,2(1+c2)}}

13 Pmm2 4 my 2 {{1+¢,0,0},{0,1,0},{2(1+¢2),2(1 +¢2),4(1 +¢2)}}
13 Pmm?2 4 m, 3 {{14¢,0,0},{0,1,0},{14+2¢2,14+2¢2,24+4c2}}

13 Pmm2 4 my 4 {{14¢1,0,0},{0,1,0},{0,0,2(1 4+ ¢2)}}

13 Pmm?2 4 m, 5 {{14¢1,0,0},{0,1,0},{2(1 4+ ¢2),0,4(1 +c2)}}

13 Pmm2 | 4m, 6 {{1+¢1,0,0},{0,1,0},{0,0,1+2¢>}}

13 Pmm?2 4 m, 7 {{14+¢1,0,0},{0,1,0},{1+2¢2,0,2+4c2}}

13 Pmm2 | 4m, 8 {{1+¢c1,0,0},{0,2,0},{0,0,1+c2}}

13 Pmm?2 4 m, 9 {{14¢,0,0},{0,2,0},{14+¢2,0,2(1+¢2)}}

13 Pmm2 | 4m, 10 {{1+¢1,0,0},{1,2,0},{0,0,1 +c>}}

13 Pmm2 | 4m, 11 {{1+¢1,0,0},{1,2,0},{1+¢2,0,2(1+¢2)}}

13 Pmm2 5 mm2, 1 {{1,0,0},{0,1,0},{1+c1,14+c1,2+2¢c1 }}

13 Pmm2 | Smm2, | 2 {{1,0,0},{0,1,0},{1 +¢1,0,2+2¢}}

13 Pmm2 | Smm2, | 3 {{1,0,0},{0,1,0},{0,1+¢1,2+2¢}}

13 Pmm?2 5 mm2, 4 {{1,0,0},{0,1,0},{0,0,1+c1}}

13 Pmm?2 5 mm?2, 5 {{1,0,0},{1,2,0},{14¢1,0,242¢; }}

13Pmm2 | 5mm2, | 6 {{1,0,0},{1,2,0},{0,0,14¢}}

13 Pmm?2 5 mm2, 7 {{1,0,0},{0,2,0},{14¢1,0,2+2c; }}
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13 Pmm2 | Smm2, | 8 {{1,0,0},{0,2,0},{0,0,1+¢}}

13 Pmm2 | Smm2. | 9 {{2,0,0},{0,1,0},{0,1+¢,2+2¢1}}

13 Pmm?2 5 mm2, 10 {{2,0,0},{0,1,0},{0,0,1+c1}}

13Pmm2 | 5mm2, 11 {{2,0,0},{0,2,0},{0,0,14¢;}}

14Cmm2 | 22, 1 {{1,0,0},{0,1,0}, {1 +c1,1+c1,242c1}}

14cmm2 | 22, 2 {{1,0,0},{0,1,0},{0,0,14¢;}}

14cmm2 | 22, 3 {{1,0,0},{1,2,0},{1+¢1,0,24+2¢;}}

14Cmm2 | 22, 4 {{1,0,0},{1,2,0},{0,0,1+c;}}

14cmm2 | 22, 5 {{2,0,0},{0,2,0},{0,0,1+¢;}}

14 Cmm2 3 my 1 {{1,0,0},{ci,14¢1,0},{0,0,1+c2}}

14 Cmm?2 3 my 2 {{1,0,0},{c1,1+c1,0},{l+c2,14+¢2,2(1 +2)}}

14Cmm2 | 4m, 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

14Cnm2 | 4m, 2 {{1,0,0},{0,1,0}, {1 +c1,1+c1,2(1+¢1)}}

14Cnm2 | 4m, 3 {{1,0,0},{1,24+¢1,0},{0,0,1 + > }}

14Cmm2 | 4m, 4 {{1,0,0},{1,24¢1,0},{0,1+¢2,2(1 +c2)}}

14 Cmm2 5 mm2, 1 {{1,0,0},{1,2,0},{0,0,1+¢c;}}

14Cmm2 | Smm2, | 2 {{1,0,0},{0,1,0}, {1+ ¢, 14+¢1,242¢,}}

14Cmm2 | Smm2. | 3 {{1,0,0},{0,1,0},{0,0,1+¢c}}

15 Amm?2 22, 1 {{1,0,0},{0,1,0},{1+c1,14+2¢1,242¢1}}

15Amm2 | 22, 2 {{1,0,0},{0,1,0},{0,c1,1+¢c1}}

15Amm2 | 22, 3 {{2,0,0},{0,1,0},{0,c1,1+¢1}}

15Amm2 | 3my 1 {{1,0,0},{1,2,0},{1,0,2}}

15Amm2 | 3m, 2 {{1,0,0},{1,2,0}, {3+ 2¢1,2(1 +¢1),2(2 +¢1)}}

15Amm2 | 3m, 3 {{1,0,0},{1,2,0},{5+2¢1,2,4(2+c1)}}

15Amm2 | 3my 4 {{1,0,0},{2+¢c1,2(2+¢1),0},{2+¢1,0,2(2+ 1) }}

15 Amm2 3 my 5 {{1,0,0},{2+¢1,2(2+¢1),0},
{(24¢1)(3+2¢2),22+c1)(1+¢2),2(2+¢c1)(2+c2)}}

15Amm2 | 3my 6 {{1,0,0},{1,2,0},{7 +2d\ +2d,2(2+ds),2(5+2d; +d>)}} 21
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15 Amm2 3 my 7 {{1,0,0},{2+¢1,2(24¢1),0}, 57
{2+c1)(5+2d; +2d2),2(2+c1)(1 +d2),2(2+ 1) (4+2d) +do)}}

15 Amm2 3my 8 {{1,0,0},{2,4,0},{2,4,8}}

15 Amm?2 3 m, 9 {{1,0,0},{1,2,0},{1,2,2(2+¢1)}}

15 Amm2 3 my, 10 {{1,0,0},{3+¢1,2(3+¢1),0},{3+c1,2(3+¢1),4(3+c1)}}

15 Amm2 3 my 11 {{1,0,0},{1,2,0},{3+2d;,6+4d,,2(4+2d| +d>)}} 20

15 Amm2 3 my 12 {{1,0,0},{2,4,0},{2+4d;,4 +8d,,4(3+2d; +d>)}} 19

15 Amm2 3my 13 {{1,0,0},{2,4,0},{6+4d,,12+8d;,4(4+2d, +d»)}} 20

15 Amm2 3my 14 {{1,0,0},{3+c1,2(3+¢1),0}, 54
{B+c1)(1+2d1),(3+c1)(2+4d1),23+¢1)(3+2d) +da)}}

15 Amm2 3 my 15 {{1,0,0},{34¢c1,2(3+¢1),0}, 56
{(3+c1)(3+2d1),2(34¢1)(3+42d1),2(3+c1)(4+2d1 +do) } }

15 Amm?2 3 m, 16 {{1,0,0},{0,1,0},{0,0,1}}

15 Amm2 3 my 17 {{1,0,0},{0,2,0},{0,2,6}}

15 Amm2 3 my 18 {{1,0,0},{0,1,0},{0,1,3+c1}}

15 Amm2 3 my 19 {{1,0,0},{0,1,0},{0,1+¢c1,2+¢1}}

15 Amm2 3 my 20 {{1,0,0},{0,2+4¢;,0},{0,0,2+c}}

15 Amm2 3my 21 {{1,0,0},{0,3+¢1,0},{0,3+¢1,3(3+c1)}}

15Amm2 | 3my 22 {{1,0,0},{0,2+¢1,0},{0, 2+ c1)(1+¢2), 2+ ¢1)(2+e2)}}

15 Amm?2 3 my 23 {{1,0,0},{0,1,0},{0,2+dy,4+d, +d>}} 14

15 Amm2 3my 24 {{1,0,0},{0,2,0},{0,2(1+d1),2(4+di +da)}} 12

15 Amm2 3my 25 {{1,0,0},{0,2,0},{0,2(2+d),2(4+dy +da)}} 14

15 Amm2 3 my 26 {{1,0,0},{0,34¢1,0},{0,(3+c1)(1+d1),3+c1)(4+d) +d2)}} 45

15 Amm2 3my 27 {{1,0,0},{0,34¢1,0},{0,(34c1)(2+d1),3+c1)(4+di +d>)}} 47

15 Amm2 3 my 28 {{2,0,0},{0,1,0},{0,0,1}}

15 Amm?2 3 my 29 {{2,0,0},{0,2,0},{0,2,6}}

15 Amm2 3 my 30 {{2,0,0},{0,1,0},{0,1,3+¢}}

15 Amm2 3 my 31 {{2,0,0},{0,1,0},{0,1+¢c;,2+c1}}
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15 Amm2 3 my 32 {{2,0,0},{0,2+4¢;,0},{0,0,2+c}}

15 Amm?2 3 my 33 {{2,0,0},{0,3+¢1,0},{0,3+¢1,3(3+c1)}}

15Amm2 | 3my 34 {{2,0,0},{0,2+¢1,0},{0,(2+c1)(1 +¢2), 2+c1)(2+c2)}}

15 Amm?2 3 my 35 {{2,0,0},{0,1,0},{0,2+dy,4+d, +d>}} 14

15 Amm?2 3 my 36 {{2,0,0},{0,2,0},{0,2(1+d),2(4+d; +d>)}} 12

15 Amm?2 3 my 37 {{2,0,0},{0,2,0},{0,2(2+d),2(4+dy +da)}} 14

15Amm2 | 3my 38 {{2,0,0},{0,3+¢1,0},{0, 3+c1)(1+d1),(3+c1)(4+d +d)}} 45

15 Amm2 3 my 39 {{2,0,0},{0,34¢1,0},{0,(34c1)(2+d1),3+c1)(4+di +dr)}} 47

15 Amm?2 3 my 40 {{1,0,0},{0,2,0},{2,2,4}}

15 Amm2 3 m, 41 {{1,0,0},{0,2,0},{4,2,8}}

15 Amm2 3 my 42 {{1,0,0},{0,2(1+¢1),0},{4(14¢1),6(1+¢c1),8(14+c1)}}

15 Amm2 3 my, 43 {{1,0,0},{0,2(24¢1),0},{2(2+¢1),2(2+c1),4(2+c1)}}

15 Amm?2 3 my 44 {{1,0,0},{0,2(2+¢1),0},{4(2+¢1),2(2+¢1),8(2+¢1)}}

15 Amm2 3 my 45 {{1,0,0},{0,2(1+cy),0},
{2(14+c1)B+¢2),2(1+c1)(5+2¢2),4(1+c1)(3+c2)}}

15 Amm?2 3 my 46 {{1,0,0},{0,2,0},{2(4 +d) +2d),6 +4d| +4d>,4(4+dy +2d2)}} 26

15 Amm2 3 my 47 {{1,0,0},{0,2,0},{2(4 +d; +2d»),10+4d; +4d»,4(4 +d; +2d>)}} 27

15 Amm?2 3 my 48 {{1,0,0},{0,2,0},{2(3+d) +2d),2 +4d| +4dy,4(3+d) +2d2)}} 29

15 Amm?2 3 my 49 {{1,0,0},{0,2,0},{2(3+d| +2d>),6 +4d| +4d>,4(3+d) +2d2)}} 28

15 Amm?2 3 my 50 {{1,0,0},{0,2(2+¢;),0}, 37
{224c1)B+di +d2),2(2+c1)(1+2d1),42+c1)3+di +do) } }

15 Amm?2 3 my 51 {{1,0,0},{0,2(2+¢;),0}, 40
{224 ¢1)(3+d +d2),22+c1)(3+2d1),42+c1)(3+d; +do)}}

15 Amm2 3my 52 {{1,0,0},{0,2(24¢1),0},{4(2+¢c1),6(2+¢c1),8(2+c1)}}

15 Amm2 3 my 53 {{1,0,0},{0,1+2¢1,0},{2+4c1,1+2c1,4+8c1 }}

15 Amm?2 3 my 54 {{1,0,0},{0,3+2¢1,0},{342¢1,3+2¢1,6+4c }}

15 Amm2 3 my 55 {{1,0,0},{0,3+2¢1,0},{9+6¢1,5(3+2c1),6(3+2¢1)}}

15 Amm?2 3 my 56 {{1,0,0},{0,1+2¢1,0},{(142¢1)(3+c2),1+2¢1,2(1+2¢1)(3+¢2)}}
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15 Amm2 3 my 57 {{1,0,0},{0,3+2¢,0},
{B42¢1)(4+c2),(3+42c1)(T+2¢2),2(3+2¢1) (4 +c2)}}

15Amm2 | 3my, 58 {{1,0,0},{0,1,0},{4+d\ +d2,3+2d,,2(4+d) +do)}} 13

15 Amm?2 3my 59 {{1,0,0},{0,1,0},{4+d\ +d>,54+2d,,2(4+d) +d>)}} 15

15 Amm2 3my 60 {{1,0,0},{0,2(1+¢;),0}, 46
{20 +c1)d+di+d2),2(1+c1)(3+2d1),4(1 +c1)(4+di +dr) } }

15 Amm2 3 my 61 {{1,0,0},{0,2(14¢;),0}, 48
{2(14c1)(4+di +d2),2(1 +c1)(5+2d1),4(14c1)(4+di +do)} }

15 Amm2 3my 62 {{1,0,0},{0,1,0},{2,3,4}}

15 Amm?2 3 my 63 {{1,0,0},{0,2(1 +c¢1),0},{4(1+¢1),6(1+c1),8(1+c1)}}

15 Amm?2 3 my 64 {{1,0,0},{0,1+2¢1,0},{1+42¢1,142¢1,24+4c1}}

15 Amm?2 3 my 65 {{1,0,0},{0,1+2¢1,0},{(142¢1)(2+c2),1+2¢1,2(1+2¢1)(24¢c2)}}

15 Amm?2 3my 66 {{1,0,0},{0,1,0},{3+di +d>,34+2d;,2(3+d) +d>)}} 8

15 Amm2 3 my 67 {{1,0,0},{0,1,0},{3+di +d>,5+2d;,2(3+di +d>)}} 11

15 Amm2 3 my 68 {{1,0,0},{0,2(1+¢;),0}, 41
{20 +c1)B+di+d2),2(1+¢1)(3+2d1),4(1 +c1)3+d1 +dr) } }

15 Amm2 3 my 69 {{1,0,0},{0,2(1+c¢;),0}, 44
{21 +c1)3+di1+da),2(1+c1)(5+2d1),4(1 +c1)(3+di +da)}}

15 Amm2 3 my 70 {{1,0,0},{0,2,0},{4,6,8}}

15 Amm?2 3 my 71 {{1,0,0},{0,2(14¢1),0},{2(1 4+¢c1),2(1 4+c1),4(1 +c1)}}

15 Amm2 3my 72 {{1,0,0},{0,2(14¢1),0},{6(1+c1),10(1 +c1),12(14¢1)}}

15 Amm?2 3 my 73 {{1,0,0},{0,2(2+¢1),0},{4(2+¢1),6(24¢1),8(2+c1)}}

15Amm2 | 3m, 74 {{1,0,0},{0,2(1+¢),0},
{2(1+c1)2+¢2),2(14¢1),4(1+c1)2+c2)}}

15 Amm2 3 my 75 {{1,0,0},{0,2(1+¢;),0},
{2(1+c1)(d+¢2),2(14¢1)(T+2c2),4(1+c1)(4+c2)}}

15 Amm2 3 my 76 {{1,0,0},{0,2(1+¢;),0}, 46

{2(14+c1)(d+di +d2),2(1+c1)(3+2d1),4(1+c1)(4+di +do) }}
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15Amm2 | 3my 77 {{1,0,0},{0,2(1 +¢1),0}, 48
{2(14c1)(d+di +d2),2(1+c1)(5+2d1),4(1+c1)(4+di +do) }}

15 Amm?2 4 m, 1 {{14+¢,0,0},{0,1,0},{0,c2,14+c2}}

15 Amm?2 4 m, 2 {{14¢1,0,0},{0,1,0}, {1 +c2,1+2¢2,2(1 +¢2)}}

15 Amm?2 5 mm2, 1 {{1,0,0},{0,1,0},{1+c1,14+2¢1,24+2c1 }}

15 Amm2 5 mm2, 2 {{1,0,0},{0,1,0},{0,c1,1+¢c1}}

15 Amm?2 5 mm2, 3 {{2,0,0},{0,1,0},{0,c1,14+c1}}

16 Fmm2 | 22, 1 {{1,0,0},{c1,14¢1,0},{1,0,2}}

16 Fmm2 | 22, 2 {{1,0,0},{c1,1+¢1,0},{0,1,2}}

16 Fmm2 | 22, 3 {{1,0,0},{c1,1+¢1,0},{0,0,1}}

16 Fmm2 3 my 1 {{1,0,0},{c2,14¢2,0},{c1,0,14+c1}}

16 Fmm2 3 my 2 {{1,0,0},{c1,14+¢1,0},{c2, 1 +¢2,2(1 +¢2)}}

16 Fmm2 4 m, 1 {{1,0,0},{(1+c1)c2, 1 +c2+ci¢2,0},{0,c1,14¢1 }}

16 Fmm2 4 m, 2 {{1,0,0},{(1+c1)(14+2¢2),24¢1 +2¢c2 +2c¢1¢2,0},
{0,142¢1,2(14+¢1)}}

16 Fmm2 4 m, 3 {{1,0,0},{ci,14¢1,0},{1,0,2(1+c1)}}

16 Fmm?2 4 my 4 {{1,0,0},{c1,14+¢1,0},{2(1 +c2),1 +2¢2,2(2+¢1 +2¢2)}}

16 Fmm?2 4 my 5 {{1,0,0},{c1,1+¢c1,0},{3+2c2,2(14+¢2),2(3+c1 +2¢2) } }

16 Fmm2 4 m, 6 {{1,0,0},{1+2c3+2ci(1+ca+¢3),2(1+c3+cei(1+ca+c3)),0},
{142¢2,2¢2,2(14+c24+¢3)}}

16 Fmm2 4 my 7 {{1,0,0},{2+c2+3c3+2c1(1+c2+c¢3),
34+ca+3c3+2c1(1+c2+¢3),00 {142¢2,2¢2,2(1 +c2+¢3)} }

16 Fmm2 4 m, 8 {{1,0,0},{2(14+c3+c1(24+c2+¢3)),34+2¢c34+2¢1 (24 c2+¢3),0},
{2(14+¢2),14+2¢2,2(2+c2+¢3)}}

16 Fmm2 4 my 9 {{1,0,0},{4+c24+3c3+2c1(2+c2+c3),
54c+3c3+2c1(2+cr+¢3),04{2(1 +¢2), 1 4+2¢2,2(24+c2+¢3) } }

16 Fmm2 4 m, 10 {{1,0,0},{142c3+c1(34+2¢c2+2¢3),2(1+¢3) +c1(34+2¢2 4 2¢3),0},

{2(1+¢2),14+2¢2,34+2¢2+2c3}}
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16 Fmm2 4 m, 11 {{1,0,0},{2(1+¢c3)+c1(3+2c2+2¢3),34+2¢c3+¢1(3+2¢c2+2¢3),0},
{1+2¢2,2¢2,342¢c2 4+ 2¢3}}

16 Fmm2 5 mm2, 1 {{1,0,0},{c1,14¢1,0},{1,0,2}}

16 Fmm2 5 mm2, 2 {{1,0,0},{c1,14¢,0},{0,1,2}}

16 Fmm2 | 5mm2, | 3 {{1,0,0},{c1,1+c1,0},{0,0,1}}

17 Imm?2 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

17 Imm2 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

17 Imm2 | 22, 3 {{1,0,0},{1,2,0},{2.2,2(2 +¢1)}}

17 Imm2 | 22, 4 {{1,0,0},{0,1,0},{3+2¢;,3+2¢1,4(1+¢c1)}}

17 Imm2 | 22, 5 {{1,0,0},{0,1,0},{1,1,2+¢}}

17 Imm2 3m, 1 {{1,0,0},{0,1,0},{0,0,1}}

17 Imm2 | 3my 2 {{2+¢1,0,0},{0,1,0},{0,1,2+¢;}}

17 Imm?2 3 my 3 {{24¢1,0,0},{0,1,0},{(24c1)(1+¢2),1,(24+¢1)(24+¢2)}}

17 Imm2 3 my 4 {{1+¢1,0,0},{0,1,0}, {(1+c1)(1+d1),1,(14+c1)(3+di +do)}} 38

17 Imm2 | 3my 5 {{1+¢1,0,0},{0,1,0}, {1 +c1,1,2(1 +¢1)}}

17 Imm2 3 my 6 {{14¢1,0,0},{0,1,0},{1+ci,1,(1+c1)3+c2)}}

17 Imm2 3 my 7 {{14¢1,0,0},{0,1,0},{(1+¢1)2+di),1,(14c1)B+d1 +d»)}} 42

17 Imm2 | 4 m, 1 {{1,0,0},{0,1,0},{0,0,1}}

17 Imm2 4 m, 2 {{1,0,0},{0,1,0},{1,1,3}}

17 Imm2 4 m, 3 {{1,0,0},{0,2,0},{1,2,8}}

17 Imm2 | 4m, 4 {{1,0,0},{0,1,0},{1,1,4 +¢;}}

17 Imm2 4 m, 5 {{1,0,0},{0,2+¢;,0},{1,0,24c; }}

17 Imm?2 4 m, 6 {{1,0,0},{0,2+¢1,0},{1,24¢1,3(2+c1)}}

17 Imm2 4 m, 7 {{1,0,0},{0,3+¢1,0},{1,34+¢1,4(3+c1)}}

17 Imm?2 4 m, 8 {{1,0,0},{0,24¢1,0},{1,2+c1)(1+¢c2),(24+c1)(24+¢c2)}}

17 Imm2 4 m, 9 {{1,0,0},{0,1,0},{1,24+dy,5+d; +d>}} 17

17 Imm2 | 4m, 10 {{1,0,0},{0,2,0},{1,2(1 +&1),2(5+d; +d>)}} 16

17 Imm2 | 4 m, 11 {{1,0,0},{0,2,0},{1,2(2+d\),2(5+dy +d>)}} 17
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17 Imm2 4 m, 12 {{1,0,0},{0,34¢1,0},{1,3+c1)(1+d1),(34+c1)(5+d1+da)}} 49
17 Imm2 | 4 m, 13 {{1,0,0},{0,3+¢1,0},{1,(3+c1)(2+dy), 3 +c1)(5+dy +da)}} 50
17 Imm2 4 m, 14 {{1,0,0},{0,1,0},{1,24¢1,3+c1}}

17 Imm2 4 m, 15 {{1,0,0},{0,14¢;,0},{1,14+c1,2(1+c1)}}

17 Imm2 | 4m, 16 {{1,0,0},{0,14¢1,0},{1,1+c1,(1+c1)(3+c2)}}

17 Imm?2 4 m, 17 {{1,0,0},{0,2+¢1,0},{1,(24¢c1)(2+c2),2+c1)B+c2)}}

17 Imm2 | 4m, 18 {{1,0,0},{0,1,0},{1,3+dy,5+d; +d>}} 18
17 Imm2 | 4m, 19 {{1,0,0},{0,2+¢1,0},{1,(2+¢1)(2+dy), 2 +c1)(5+dy +da)}} 51
17 Imm2 | 4 m, 20 {{1,0,0},{0,2+¢1,0},{1,2+c1)3+d1),2+c1)(5+di +da)}} 52
17 Imm2 5 mm2, 1 {{1,0,0},{0,1,0},{0,0,1}}

17 Imm2 5 mm2, 2 {{1,0,0},{0,1,0},{1,1,2+c1}}

18 Pmmm | 21 1 {{1,0,0},{0,1,0},{0,0,1}}

18 Pmmm | 21 2 {{1,0,0},{0,1,0},{1,1,2}}

18 Pmmm 21 3 {{1,0,0},{0,1,0},{1,0,2}}

18 Pmmm | 21 4 {{1,0,0},{0,1,0},{0,1,2}}

18 Pmmm | 21 5 {{1,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 21 6 {{1,0,0},{1,2,0},{0,0,1}}

18 Pmmm | 21 7 {{1,0,0},{0,2,0},{0,0,1}}

18 Pmmm | 21 8 {{1,0,0},{1,2,0},{1,0,2}}

18 Pmmm | 21 9 {{1,0,0},{1,2,0},{0,0,2}}

18 Pmmm | 21 10 {{1,0,0},{0,2,0},{1,0,2}}

18 Pmmm | 21 11 {{1,0,0},{0,2,0},{0,0,2}}

18 Pmmm | 21 12 {{2,0,0},{0,1,0},{0,0,1}}

18 Pmmm | 21 13 {{2,0,0},{0,1,0},{0,1,2}}

18 Pmmm | 21 14 {{2,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 21 15 {{2,0,0},{0,2,0},{0,0,1}}

18 Pmmm | 21 16 {{2,0,0},{0,2,0},{0,0,2}}

18 Pmmm 32, 1 {{1,0,0},{0,1,0},{1+ci,1+c1,24+2c1 }}
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18 Pmmm | 32, 2 {{1,0,0},{0,1,0}, {1 +¢1,0,2+2¢;}}

18 Pmmm | 32, 3 {{1,0,0},{0,1,0},{0,1+c1,2+2¢1}}

18 Pmmm 32, 4 {{1,0,0},{0,1,0},{0,0,1+c1}}

18 Pmmm | 32, 5 {{1,0,0},{1,2,0},{1+¢1,0,24+2¢;}}

18 Pmmm | 32, 6 {{1,0,0},{1,2,0},{0,0,1+¢}}

18 Pmmm 32, 7 {{1,0,0},{0,2,0},{14¢1,0,242¢; }}

18 Pmmm | 32, 8 {{1,0,0},{0,2,0},{0,0,1+¢;}}

18 Pmmm | 32, 9 {{2,0,0},{0,1,0},{0,1+c1,2+2¢;}}

18 Pmmm | 32, 10 {{2,0,0},{0,1,0},{0,0,1+¢1}}

18 Pmmm | 32, 11 {{2,0,0},{0,2,0},{0,0,14¢;}}

18 Pmmm 42, 1 {{1,0,0},{1+¢c1,2+2¢;,0},{0,0,1}}

18 Pmmm | 42, 2 {{1,0,0},{0,14¢1,0},{0,0,1}}

18 Pmmm 42, 3 {{1,0,0},{1+¢1,2+2¢,0},{1,0,2}}

18 Prmm | 42, 4 {{1,0,0},{1+¢1,2+2¢1,0},{0,0,2}}

18 Pmmm | 42, 5 {{1,0,0},{0,14¢1,0},{1,0,2}}

18 Pmmm | 42, 6 {{1,0,0},{0,14¢;,0},{1,1,2}}

18 Pmmm | 42, 7 {{1,0,0},{0,1+¢;,0},{0,0,2}}

18 Pmmm | 42, 8 {{1,0,0},{0,1+cy,0},{0,1,2}}

18 Pmmm | 42, 9 {{2,0,0},{0,14¢1,0},{0,0,1}}

18 Prmm | 42, 10 {{2,0,0},{0,14¢;,0},{0,0,2}}

18 Pmmm | 42, 11 {{2,0,0},{0,1+¢1,0},{0,1,2}}

18 Pmmm 5 my 1 {{1,0,0},{1+¢1,2(1+¢1),0},{1 4+¢2,0,2(1+¢c2)}}
18 Pmmm 5 my 2 {{1,0,0},{1+¢1,2(1+¢1),0},{0,0,1+c2}}
18 Pmmm | 5my 3 {{1,0,0},{0,1+¢1,0},{0,0,1+c>}}

18 Pmmm 5 my 4 {{1,0,0},{0,14¢1,0},{0,1+c2,2(1 +¢c2)}}
18 Pmmm 5 my 5 {{2,0,0},{0,1+¢,0},{0,0,1+c2}}

18 Pmmm 5 my 6 {{2,0,0},{0,14¢1,0},{0,1+c2,2(14+¢c2)}}
18 Pmmm 5 my 7 {{1,0,0},{0,1+¢1,0},{1 +¢2,0,2(14+c2)}}
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18 Pmmm 5 my 8 {{1,0,0},{0,1+¢1,0},{2(14+¢2),2(1 4+ ¢2),4(14c2)}}
18 Pmmm 5 my 9 {{1,0,0},{0,1+¢1,0},{34+2¢2,34+2¢2,6+4c2}}

18 Pmmm 5 my 10 {{1,0,0},{0,14¢1,0},{142c2,14+2¢2,2+4c2}}

18 Pmmm 5 my 11 {{1,0,0},{0,14¢1,0},{2(1+¢2),2(1+c2),4(1+c2)}}
18 Pmmm | 62, 1 {{14¢1,0,0},{0,1,0},{0,0,1}}

18 Pmmm | 62, 2 {{1+¢1,0,0},{0,1,0},{0,1,2}}

18 Pmmm 62, 3 {{14¢,0,0},{0,1,0},{1,1,2}}

18 Pmmm | 62, 4 {{1+¢,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 62, 5 {{1+¢1,0,0},{0,1,0},{1,0,2}}

18 Pmmm | 62, 6 {{1+¢1,0,0},{0,2,0},{0,0,1}}

18 Pmmm | 62, 7 {{1+¢,0,0},{1,2,0},{0,0,1}}

18 Pmmm | 62, 8 {{1+c1,0,0},{0,2,0},{0,0,2}}

18 Pmmm 62, 9 {{1+4¢,0,0},{0,2,0},{1,0,2}}

18 Pmmm | 62, 10 {{1+¢,0,0},{1,2,0},{0,0,2}}

18 Pmmm | 62, 11 {{1+¢1,0,0},{1,2,0},{1,0,2}}

18 Pmmm 7 my 1 {{14+¢,0,0},{0,1,0},{0,14+¢2,2(14+¢2)}}

18 Pmmm 7 my 2 {{14¢1,0,0},{0,1,0},{2(14+¢2),2(1 +¢2),4(1 +¢c2)}}
18 Pmmm 7 my 3 {{14¢1,0,0},{0,1,0},{14+2¢2,14+2¢2,2+4c2}}

18 Pmmm 7 my 4 {{14¢,0,0},{0,1,0},{0,0,2(14¢)}}

18 Pmmm 7 my 5 {{14¢1,0,0},{0,1,0},{2(14¢2),0,4(1 +c2)}}

18 Pmmm | 7 m, 6 {{1+¢1,0,0},{0,1,0},{0,0,1+2c,}}

18 Pmmm 7 my 7 {{14¢,0,0},{0,1,0},{14+2¢2,0,24+4c2}}

18 Pmmm 7 my 8 {{1+¢1,0,0},{0,2,0},{0,0,1+c2}}

18 Pmmm 7 my 9 {{14¢1,0,0},{0,2,0},{1+¢2,0,2(14+c2)}}

18 Pmmm 7 my 10 {{1+¢,0,0},{1,2,0},{0,0,14+c2}}

18 Pmmm 7 my 11 {{14¢,0,0},{1,2,0},{14+¢2,0,2(1+c2)}}

18 Pmmm 8 m, I {{1+¢,0,0},{0,1+¢»,0},{0,0,1}}

18 Pmmm | 8m, 2 {{14¢1,0,0},{1+c2,2(1+¢2),0},{0,0,1}}
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18 Pmmm 8 m, 3 {{14¢1,0,0},{0,1+¢2,0},{0,0,2}}

18 Pmmm | 8m, 4 {{14¢1,0,0},{14c2,2(1+¢),0},{0,0,2}}
18 Pmmm 8 m, 5 {{1+¢1,0,0},{0,1+¢2,0},{0,1,2}}

18 Pmmm 8 m, 6 {{14¢,0,0},{0,1+¢2,0},{1,0,2}}

18 Pmmm | 8m, 7 {{14¢1,0,0},{1+¢2,2(1+¢2),0},{1,0,2}}
18 Pmmm 8 m; 8 {{14¢1,0,0},{0,1+¢2,0},{1,1,2}}

18 Pmmm | 92/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

18 Pmmm | 92/m. 2 {{1,0,0},{0,1,0},{1,1,2}}

18 Pmmm | 92/m, 3 {{1,0,0},{0,1,0},{1,0,2}}

18 Pmmm | 92/m, 4 {{1,0,0},{0,1,0},{0,1,2}}

18 Pmmm | 92/m, 5 {{1,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 92/m, 6 {{1,0,0},{1,2,0},{0,0,1}}

18 Pmmm | 92/m, 7 {{1,0,0},{0,2,0},{0,0,1}}

18 Pmmm | 92/m, 8 {{1,0,0},{1,2,0},{1,0,2}}

18 Pmmm | 92/m, 9 {{1,0,0},{1,2,0},{0,0,2}}

18 Pmmm | 92/m, 10 {{1,0,0},{0,2,0},{1,0,2}}

18 Pmmm | 92/m, 11 {{1,0,0},{0,2,0},{0,0,2}}

18 Pmmm | 92/m. 12 {{2,0,0},{0,1,0},{0,0,1}}

18 Pmmm | 92/m, 13 {{2,0,0},{0,1,0},{0,1,2}}

18 Pmmm | 92/m, 14 {{2,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 92/m, 15 {{2,0,0},{0,2,0},{0,0,1}}

18 Pmmm | 92/m, 16 {{2,0,0},{0,2,0},{0,0,2}}

18 Pmmm | 102/m, | 1 {{1,0,0},{0,1,0},{0,0,1}}

18 Pmmm | 102/m, | 2 {{1,0,0},{0,1,0},{1,1,2}}

18 Pmmm | 102/m, | 3 {{1,0,0},{0,1,0},{1,0,2}}

18 Pmmm | 102/my, | 4 {{1,0,0},{0,1,0},{0,1,2}}

18 Pmmm 102/my 5 {{1,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 102/m, | 6 {{1,0,0},{1,2,0},{0,0,1}}
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18 Pmmm 102/m, 7 {{1,0,0},{0,2,0},{0,0,1}}
18 Pmmm | 102/my | 8 {{1,0,0},{1,2,0},{1,0,2}}
18 Pmmm | 102/m, | 9 {{1,0,0},{1,2,0},{0,0,2}}
18 Pmmm | 102/m, | 10 {{1,0,0},10,2,0},{1,0,2}}
18 Pmmm | 102/m, | 11 {{1,0,0},{0,2,0},{0,0,2}}
18 Pmmm | 102/m, | 12 {{2,0,0},{0,1,0},{0,0,1}}
18 Pmmm | 102/m, | 13 {{2,0,0},{0,1,0},{0,1,2}}
18 Pmmm 102/my 14 {{2,0,0},{0,1,0},{0,0,2}}
18 Pmmm | 102/m, | 15 {{2,0,0},{0,2,0},{0,0,1}}
18 Pmmm | 102/m, | 16 {{2,0,0},10,2,0},{0,0,2}}
18 Pmmm 112/my 1 {{1,0,0},{0,1,0},{0,0,1}}
18 Pmmm | 112/my | 2 {{1,0,0},{0,1,0},{1,1,2}}
18 Pmmm | 112/my | 3 {{1,0,0},{0,1,0},{1,0,2}}
18 Pmmm | 112/m, | 4 {{1,0,0},{0,1,0},{0,1,2}}
18 Pmmm | 112/my | 5 {{1,0,0},{0,1,0},{0,0,2}}
18 Pmmm | 112/my | 6 {{1,0,0},{1,2,0},{0,0,1}}
18 Pmmm | 112/my | 7 {{1,0,0},{0,2,0},{0,0,1}}
18 Pmmm | 112/my | 8 {{1,0,0},{1,2,0},{1,0,2}}
18 Pmmm 112/m, 9 {{1,0,0},{1,2,0},{0,0,2}}
18 Pmmm | 112/my | 10 {{1,0,0},{0,2,0},{1,0,2}}
18 Pmmm 112/my 11 {{1,0,0},{0,2,0},{0,0,2}}
18 Pmmm | 112/my | 12 {{2,0,0},{0,1,0},{0,0,1}}
18 Pmmm | 112/m, | 13 {{2,0,0},{0,1,0},{0,1,2}}
18 Pmmm 112/m, 14 {{2,0,0},{0,1,0},{0,0,2}}
18 Pmmm | 112/my | 15 {{2,0,0},{0,2,0},{0,0,1}}
18 Pmmm | 112/my | 16 {{2,0,0},{0,2,0},{0,0,2}}
18 Pmmm | 12222 1 {{1,0,0},{0,1,0},{0,0,1}}
18 Pmmm | 12222 2 {{1,0,0},{0,1,0},{1,1,2}}
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18 Pmmm | 12222 3 {{1,0,0},{0,1,0},{1,0,2}}

18 Pmmm | 12222 4 {{1,0,0},{0,1,0},{0,1,2}}

18 Pmmm | 12222 5 {{1,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 12222 6 {{1,0,0},{1,2,0},{0,0,1}}

18 Pmmm | 12222 7 {{1,0,0},{0,2,0},{0,0,1}}

18 Pmmm | 12222 8 {{1,0,0},{1,2,0},{1,0,2}}

18 Pmmm | 12222 9 {{1,0,0},{1,2,0},{0,0,2}}

18 Pmmm | 12222 10 {{1,0,0},{0,2,0},{1,0,2}}

18 Pmmm | 12222 11 {{1,0,0},{0,2,0},{0,0,2}}

18 Pmmm | 12222 12 {{2,0,0},{0,1,0},{0,0,1}}

18 Pmmm | 12222 13 {{2,0,0},{0,1,0},{0,1,2}}

18 Pmmm | 12222 14 {{2,0,0},{0,1,0},{0,0,2}}

18 Pmmm | 12222 15 {{2,0,0},{0,2,0},{0,0,1}}

18 Pmmm | 12222 16 {{2,0,0},{0,2,0},{0,0,2}}

18 Pmmm 13 mm2, 1 {{1,0,0},{0,1,0},{1+ci,14+c1,24+2c1 }}
18 Pmmm 13 mm2, 2 {{1,0,0},{0,1,0},{14¢1,0,242¢; }}
18 Pmmm 13 mm?2, 3 {{1,0,0},{0,1,0},{0,14+¢1,2+2c }}
18 Pmmm 13 mm2, 4 {{1,0,0},{0,1,0},{0,0,1+4¢;}}

18 Pmmm 13 mm2, 5 {{1,0,0},{1,2,0},{14¢1,0,242¢; }}
18 Pmmm 13 mm?2, 6 {{1,0,0},{1,2,0},{0,0,1+c;}}

18 Pmmm 13 mm2, 7 {{1,0,0},{0,2,0},{1+4¢1,0,242c; }}
18 Pmmm 13 mm?2, 8 {{1,0,0},{0,2,0},{0,0,14¢;}}

18 Pmmm 13 mm?2, 9 {{2,0,0},{0,1,0},{0,1+¢1,2+2¢;}}
18 Pmmm 13 mm2, 10 {{2,0,0},{0,1,0},{0,0,14¢;}}

18 Pmmm 13 mm2, 11 {{2,0,0},{0,2,0},{0,0,1+c1}}

18 Pmmm 14 mm?2, 1 {{1,0,0},{1+¢;,2+2¢,0},{0,0,1}}
18 Pmmm 14 mm?2, 2 {{1,0,0},{0,14¢;,0},{0,0,1}}

18 Pmmm 14 mm2, 3 {{1,0,0},{1+4¢1,2+2¢1,0},{1,0,2}}
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18 Pmmm 14 mm?2, 4 {{1,0,0},{1+c1,2+2¢,0},{0,0,2}}
18 Pmmm 14 mm2, 5 {{1,0,0},{0,1+4¢;,0},{1,0,2}}
18 Pmmm 14 mm2, 6 {{1,0,0},{0,1+¢;,0},{1,1,2}}
18 Pmmm 14 mm?2, 7 {{1,0,0},{0,1+¢;,0},{0,0,2}}
18 Pmmm 14 mm2, 8 {{1,0,0},{0,1+¢,0},{0,1,2}}
18 Pmmm 14 mm2, 9 {{2,0,0},{0,1+¢,0},{0,0,1}}
18 Prmm | 14mm2, | 10 {{2,0,0},{0,1+¢1,0},{0,0,2}}
18 Pmmm 14 mm2, 11 {{2,0,0},{0,1+¢;,0},{0,1,2}}
18 Pmmm | 15mm2, | 1 {{14¢1,0,0},{0,1,0},{0,0,1}}
18 Pmmm 15 mm2, 2 {{1+4¢,0,0},{0,1,0},{0,1,2}}
18 Pmmm 15 mm?2, 3 {{1+4¢,0,0},{0,1,0},{1,1,2}}
18 Pmmm | 15mm2, | 4 {{14¢1,0,0},{0,1,0},{0,0,2}}
18 Pmmm 15 mm2, 5 {{1+4¢,0,0},{0,1,0},{1,0,2}}
18 Pmmm 15 mm2, 6 {{14¢,0,0},{0,2,0},{0,0,1}}
18 Pmmm | 15mm2, | 7 {{14¢1,0,0},{1,2,0},{0,0,1}}
18 Pmmm 15 mm2, 8 {{1+¢,0,0},{0,2,0},{0,0,2}}
18 Pmmm 15 mm?2, 9 {{14¢,0,0},{0,2,0},{1,0,2}}
18 Pmmm | 15mm2, | 10 {{14¢1,0,0},{1,2,0},{0,0,2}}
18 Pmmm 15 mm2, 11 {{1+¢1,0,0},{1,2,0},{1,0,2}}
18 Pmmm 16 mmm 1 {{1,0,0},{0,1,0},{0,0,1}}

18 Pmmm 16 mmm 2 {{1,0,0},{0,1,0},{1,1,2}}

18 Pmmm 16 mmm 3 {{1,0,0},{0,1,0},{1,0,2}}

18 Pmmm 16 mmm 4 {{1,0,0},{0,1,0},{0,1,2}}

18 Pmmm | 16 mmm | 5 {{1,0,0},{0,1,0},{0,0,2}}

18 Pmmm 16 mmm 6 {{1,0,0},{1,2,0},{0,0,1}}

18 Pmmm 16 mmm 7 {{1,0,0},{0,2,0},{0,0,1}}

18 Pmmm 16 mmm 8 {{1,0,0},{1,2,0},{1,0,2}}

18 Pmmm 16 mmm 9 {{1,0,0},{1,2,0},{0,0,2}}
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18 Pmmm 16 mmm 10 {{1,0,0},{0,2,0},{1,0,2}}

18 Pmmm 16 mmm 11 {{1,0,0},{0,2,0},{0,0,2}}

18 Pmmm 16 mmm 12 {{2,0,0},{0,1,0},{0,0,1}}

18 Pmmm 16 mmm 13 {{2,0,0},{0,1,0},{0,1,2}}

18 Pmmm 16 mmm 14 {{2,0,0},{0,1,0},{0,0,2}}

18 Pmmm 16 mmm 15 {{2,0,0},{0,2,0},{0,0,1}}

18 Pmmm 16 mmm 16 {{2,0,0},{0,2,0},{0,0,2}}

19 Cmmm | 21 1 {{1,0,0},{0,1,0},{0,0,1}}

19 Crmm~ | 21 2 {{1,0,0},{0,1,0},{1,1,2}}

19Cmmm | 21 3 {{1,0,0},{0,1,0},{0,0,2}}

19 Cmmm~ | 21 4 {{1,0,0},{1,2,0},{0,0,1}}

19 Crmm | 21 5 {{1,0,0},{1,2,0},{1,0,2}}

19 Cmmm | 21 6 {{1,0,0},{1,2,0},{0,0,2}}

19 Cmmm | 21 7 {{2,0,0},{0,2,0},{0,0,1}}

19 Cmmm | 21 8 {{2,0,0},{0,2,0},{0,0,2}}

19 Cmmm 32, 1 {{1,0,0},{0,1,0},{1+c1,14+c¢1,242c1}}
19 Cmmm~ | 32, 2 {{1,0,0},{0,1,0},{0,0,14¢;}}

19 Cmmm | 32, 3 {{1,0,0},{1,2,0},{1+¢1,0,2+2¢;}}

19 Cmmm 32, 4 {{1,0,0},{1,2,0},{0,0,1+c1}}

19 Cmmm~— | 32, 5 {{2,0,0},{0,2,0},{0,0,14¢;}}

19 Cmmm | 42, 1 {{1,0,0},{c1,1+¢1,0},{0,0,1}}

19 Cmmm | 42, 2 {{1,0,0},{c1,1+¢1,0},{0,0,2}}

19 Crimm | 42, 3 {{1,0,0},{c1,1+c1,0},{1,1,2}}

19 Cmmm 5 my 1 {{1,0,0},{c1,14+¢1,0},{0,0,14+c2}}

19 Cmmm 5 my 2 {{1,0,0},{ci,14¢1,0},{1+c2,1+¢2,2(1 +¢2)}}
19Cmmm | 62, 1 {{1,0,0},{0,1,0},{0,0,1}}

19 Cmmm 62, 2 {{1,0,0},{1,24¢,0},{0,0,1}}

19 Cmmm | 62, 3 {{1,0,0},{0,1,0},{1,1,2}}
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19Cmmm | 62, 4 {{1,0,0},{0,1,0},{0,0,2}}

19 Cmmm~ | 62, 5 {{1,0,0},{1,24¢1,0},{0,0,2}}

19 Cmmm | 62, 6 {{1,0,0},{1,2+¢1,0},{0,1,2}}

19 Cmmm 7 my 1 {{1,0,0},{0,1,0},{0,0,1+¢c;}}

19 Cmmm 7 my 2 {{1,0,0},{0,1,0},{14+c1,1+c1,2(1+c1)}}

19 Cmmm 7 my 3 {{1,0,0},{1,24+¢,0},{0,0,14+c>}}

19 Cmmm 7 my 4 {{1,0,0},{1,2+¢1,0},{0,14+¢2,2(14+c2)}}

19 Cmmm 8 m, 1 {{14¢,0,0},{0,1+¢;,0},{0,0,1}}

19 Crmm | 8 m, 2 {{14+¢1,0,0},{(1+e)(1+dy),(1+¢1)(2+dy +db),0},{0,0,1}} 33
19 Cmmm 8 m;, 3 {{14¢,0,0},{0,1+¢;,0},{0,0,2}}

19 Cmmm | 8m, 4 {{14¢1,0,01,{(1 +en)(1 +d1),(1+¢1)(2+di +db),0},{0,0,2}} 33
19 Cmmm 8 m;, 5 {{14¢1,0,0},{(1+c1)(1+2¢2),2(14¢1)(14¢2),0},{0,1,2}}

19 Cmmm | 8 m, 6 {{1+¢1,0,0},{(1+c1)(1+2d),(1+¢1)(3+2d) +dy),0},{0,1,2}} 54
19 Cmmm 8 my 7 {{1+¢1,0,0},{(14c1)(14+2¢2),2(1 4+ c1)(1 4+ ¢2),0},{1,0,2} }

19 Cmmm | 8 m. 8 {{1+¢c1,0,0},{(1+c1)(1+2d1),2(1+c1)(2+dy +db),0},{1,0,2}} 32
19 Crmm. | 8m, 9 {{1+¢1,0,0},{(1+c1)dr,(1+¢c1)(1+di +2dy),0},{1,1,2}} 66
19 Cmmm | 92/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

19 Cmmm | 92/m. 2 {{1,0,0},{0,1,0},{1,1,2}}

19 Crmm | 92/m, 3 {{1,0,0},{0,1,0},{0,0,2}}

19 Cmmm | 92/m, 4 {{1,0,0},{1,2,0},{0,0,1}}

19 Cmmm 92/m; 5 {{1,0,0},{1,2,0},{1,0,2}}

19 Cmmm | 92/m, 6 {{1,0,0},{1,2,0},{0,0,2}}

19 Cmmm | 92/m, 7 {{2,0,0},{0,2,0},{0,0,1}}

19 Cmmm | 92/m, 8 {{2,0,0},{0,2,0},{0,0,2}}

19 Cmmm | 102/my | 1 {{1,0,0},{1,2,0},{0,0,1}}

19 Comm | 102/my | 2 {{1,0,0},{0,1,0},{0,0,1}}

19 Comm | 102/m, | 3 {{1,0,0},{1,2,0},{0,0,2}}

19 Cmmm | 102/m, | 4 {{1,0,0},{0,1,0},{1,1,2}}
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19 Cmmm | 102/m, | 5 {{1,0,0},{0,1,0},{0,0,2}}

19 Cmmm | 112/my | 1 {{1,0,0},{1,2,0},{0,0,1}}

19 Cmmm 112/m, 2 {{1,0,0},{0,1,0},{0,0,1}}

19 Cmmm | 112/my | 3 {{1,0,0},{1,2,0},{0,0,2}}

19 Cmmm | 112/m, | 4 {{1,0,0},{0,1,0},{1,1,2}}

19 Cmmm 112/m, 5 {{1,0,0},{0,1,0},{0,0,2}}

19 Crmm | 12222 1 {{1,0,0},{1,2,0},{0,0,1}}

19 Cmmm | 12222 2 {{1,0,0},{0,1,0},{0,0,1}}

19 Cmmm | 12222 3 {{1,0,0},{1,2,0},{0,0,2}}

19 Crmm | 12222 4 {{1,0,0},{0,1,0},{1,1,2}}

19 Cmmm | 12222 5 {{1,0,0},{0,1,0},{0,0,2}}

19 Cmmm 13 mm2, 1 {{1,0,0},{1,2,0},{0,0,14¢; }}
19 Cmmm 13 mm2, 2 {{1,0,0},{0,1,0},{14ci,14¢1,242¢1 }}
19 Cmmm 13 mm2, 3 {{1,0,0},{0,1,0},{0,0,1+c;}}
19 Cmmm 14 mm?2, 1 {{1,0,0},{c1,1+4¢1,0},{0,0,1}}
19 Cmmm 14 mm?2, 2 {{1,0,0},{ci,14¢,0},{0,0,2}}
19 Cmmm 14 mm?2, 3 {{1,0,0},{c1,14¢1,0},{1,1,2}}
19 Cmmm | 15mm2, | 1 {{1,0,0},{0,1,0},{0,0,1}}

19 Cmmm 15 mm2, 2 {{1,0,0},{1,2+¢,0},{0,0,1}}
19 Cmmm 15 mm2, 3 {{1,0,0},{0,1,0},{1,1,2}}

19 Cmmm | 15mm2, | 4 {{1,0,0},{0,1,0},{0,0,2}}

19 Cmmm 15 mm2, 5 {{1,0,0},{1,2+¢,0},{0,0,2}}
19 Cmmm 15 mm2, 6 {{1,0,0},{1,24¢;,0},{0,1,2}}
19 Cmmm 16 mmm 1 {{1,0,0},{1,2,0},{0,0,1}}

19 Cmmm 16 mmm 2 {{1,0,0},{0,1,0},{0,0,1}}

19 Cmmm 16 mmm 3 {{1,0,0},{1,2,0},{0,0,2}}

19 Cmmm 16 mmm 4 {{1,0,0},{0,1,0},{1,1,2}}

19 Cmmm 16 mmm 5 {{1,0,0},{0,1,0},{0,0,2}}
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20 Fmmm | 21 1 {{1,0,0},{0,1,0},{0,0,1}}

20 Fmmm | 21 2 {{1,0,0},{0,1,0},{1,0,2}}

20 Fmmm | 21 3 {{1,0,0},{0,1,0},{0,1,2}}

20 Fmmm | 21 4 {{1,0,0},{1,2,0},{0,0,1}}

20 Fmmm | 21 5 {{1,0,0},{1,2,0},{1,0,2}}

20 Fmmm | 21 6 {{2,0,0},{0,2,0},{0,0,2}}

20 Fmmm | 32, 1 {{1,0,0},{c1,14¢1,0},{1,0,2}}

20 Frnmm | 32, 2 {{1,0,0},{c1,1+c1,0},{0,1,2}}

20 Fmmm | 32, 3 {{1,0,0},{c1,1+¢,0},{0,0,1}}

20 Fmmm | 42, 1 {{1,0,0},{1,2,0},{c1,0,1+¢;}}

20 Fmmm 42, 2 {{1,0,0},{0,1,0},{c1,1 +c1,2+2¢1}}

20 Fmmm | 42, 3 {{1,0,0},{0,1,0},{c1,0,1+¢1}}

20 Fmmm 5 my 1 {{1,0,0},{c2,1+¢2,0},{c1,0,1+c1}}

20 Fmmm 5 my 2 {{1,0,0},{c1,14¢1,0},{c2, 1 +¢2,2(1 +¢2)}}

20 Fmmm | 62, 1 {{1,0,0},{1,2,0},{0,0,1}}

20 Fmmm 62, 2 {{1,0,0},{1,2,0},{14c1,c1,2+c1}}

20 Fmmm | 62, 3 {{1,0,0},{0,1,0},{0,c1,1+¢c1}}

20 Fmmm | 62, 4 {{1,0,0},{0,1,0},{1+c1,c1,2+2c1}}

20 Fmmm 7 my 1 {{1,0,0},{(1+c1)c2, 1 +c2+c1¢2,0},{0,c1,14¢1 }}

20 Fmmm 7 my 2 {{1,0,0},{(1+c1)(14+2¢2),24¢i +2¢c2+2¢1¢2,0},
{0,142¢1,2(1 +c1)}}

20 Fmmm 7 my 3 {{1,0,0},{ci,14¢1,0},{1,0,2(1+c1)}}

20 Fmmm 7 my 4 {{1,0,0},{c1,14+¢1,0},{2(1 +c2),1 +2¢2,2(2+¢c1 +2¢2)}}

20 Fmmm 7 my 5 {{1,0,0},{c1,14+¢1,0},{34+2¢2,2(1 +¢2),2(3+¢c1 +2¢2)}}

20 Fmmm 7 my 6 {{1,0,0},{1+2c3+2ci(1+ca+c3),2(1+c3+ei(1+ca+c3)),0},
{142¢2,2¢2,2(1+c24¢3)}}

20 Fmmm 7 my 7 {{1,0,0},{2+c2+3c3+2¢ci1(14+c2+¢3),

34cy+3c3 +2C1(1—|—62+C3),0},{1 +2C2,26‘2,2(1 +C2—|—C3)}}
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20 Fmmm 7 my 8 {{1,0,0},{2(14+c3+c1(24+c2+¢3)),34+2c34+2¢1 (24 c2+¢3),0},
{2(14+¢2),14+2¢2,2(2+c2+c3)}}

20 Fmmm 7 my 9 {{1,0,0},{4+cr+3c3+2c1(2+c2+c3),
54c+3c3+2c1(2+ca+¢3),04{2(1 +¢2), 14+ 2¢2,2(24+c2+¢3) } }

20 Fmmm 7 my 10 {{1,0,0},{14+2c3+c1(34+2c242¢3),2(1 +¢3) +c1(3+2c2 + 2¢3),0},
{2(14¢2),14+2¢2,3+2¢c2+2c3}}

20 Fmmm 7 my 11 {{1,0,0},{2(1+¢3)+c1(3+2¢c2+2¢3),34+2¢c3+¢1(3+2¢c2+2¢3),0},
{142¢2,2¢2,3+2¢2 +2¢3}}

20 Fmmm | 8 m, 1 {{1,0,0},{0,1,0},{d1,d>, 1 +di +do}} 3

20 Fmmm 8 m; 2 {{1,0,0},{1,2,0},{14ci,c1,2+c1}}

20 Fmmm 8 m, 3 {{1,0,0},{1,2(1+¢1),0},{c1,0,14+c1}}

20 Fmmm | 8 m, 4 {{1,0,0},{1,2(3 +d) +d>),0},{5+2d +3d>,3 +dy +do,6+2d, +3d>}} | 25°

20 Fmmm 8 m, 5 {{1,0,0},{1,2(2+¢),0}, 58
{5+3c1 +2(2+c1)di +2(2+c1)d2,2(2+c1)dr, (24 ¢1)(3+2d, +2d2) } }

20 Fmmm | 8 m, 6 {{1,0,0},{1,2(2+¢1),0},{5+4d) +2d> + ¢, (3+2d, +d»), 55
(2+c)(1+2d1),24c1)(3+2d1 +da)}}

20 Fmmm 8 m, 7 {{1,0,0},{1,3+¢;,0}, 30
{24c1+@B+c)di+(B3+ci)dr, B34c1)di,(3+c1)(1+di +do)}}

20 Fmmm 8 m; 8 {{1,0,0},{1,2(1+d,),0}, 68
{3+3d1 +2(14+d\)dr+d3,(1+di)(1+2d>),4+3d; +2(1+dy)dr +d3}}

20 Fmmm | 8 m, 9 {{1,0,0},{1,2+d,,0}, 67
{24+d1+(2+d\)dr+d3,24+d)d2,3+d1 +(2+d))dr +d3}}

20 Fmmm | 8m, 10 {{1,0,0},{1,2(2+d; +d»),0},{4+2d, + 3dy +2(2+ di +do)ds, 72¢
(2+dy +do)(1+2d3),5+2d) +3d> +2(2+dy +do)ds }}

20 Fmmm | 8 m, 11 {{1,0,0},{1,2(3 +dy +d>),0}, {6 +2d; +3d> +2(3 +dy +d>)d3, 73*
(3+di +d2)(1+2d5),7+2d +3dr +2(3+di +dp)d3 } }

20 Fmmm | 8 m, 12 {{1,0,0},{1,2(3 +dy +d»),0}, {5+ 2d; +3d> +2(3 +dy +do)(1 +-d3), | 74*

(3+d1 +d2)(3+2d3)76+2d1 +3d2+2(3 +d; +d2)(1 +d3)}}
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20 Fmmm | 8m, 13 {{1,0,0},{1,4+2d) +d,0}, {2+d) +ds + (4+2d, + d>) (1 + d3), 69

(4+2d1 +d2)(1+d3),3+d1 +d2+(4+2d1 +d2)(1 +d3)}}

20 Fmmm | 8m, 14 {{1,0,0},{1,5+2d) +d5,0}, {2 +dy +do + (5+2d; +da)(1 +d3), 70*
(5+2d1+da)(14d3),34dy +dr+ (5+2d) +da) (1 +d3) } }

20 Fmmm | 8 m, 15 {{1,0,0},{1,6+2d, +d>,0}, {2+ d1 +ds + (6+2d1 +do) (1 +ds), 71*
(6+2d1+da)(14d3),34dy +dr + (6 +2dy +da) (1 +d3)} }

20 Fmmm | 92/m, 1 {{1,0,0},{0,1,0},{0,1,2}}

20 Fmmm 92/m, 2 {{1,0,0},{0,1,0},{1,0,2}}

20 Fmmm | 92/m. 3 {{1,0,0},{0,1,0},{0,0,1}}

20 Fmmm 92/m, 4 {{1,0,0},{1,2,0},{1,0,2}}

20 Fmmm 92/m, 5 {{1,0,0},{1,2,0},{0,0,1}}

20 Fmmm | 102/my | 1 {{1,0,0},{0,1,0},{0,1,2}}
20 Fmmm | 102/my | 2 {{1,0,0},10,1,0},{1,0,2}}
20 Fmmm 102/my 3 {{1,0,0},{0,1,0},{0,0,1}}
20 Fmmm | 102/my | 4 {{1,0,0},{1,2,0},{1,0,2}}
20 Fmmm | 102/my | 5 {{1,0,0},{1,2,0},{0,0,1}}
20 Fmmm | 112/me | 1 {{1,0,0},{0,1,0},{0,1,2}}
20 Fmmm | 112/my | 2 {{1,0,0},{0,1,0},{1,0,2}}
20 Fmmm 112/m, 3 {{1,0,0},{0,1,0},{0,0,1}}
20 Fmmm | 112/my | 4 {{1,0,0},{1,2,0},{1,0,2}}
20 Fmmm 112/my 5 {{1,0,0},{1,2,0},{0,0,1}}

20 Fmmm | 12222 1 {{1,0,0},{0,1,0},{0,1,2}}
20 Fmmm | 12222 2 {{1,0,0},{0,1,0},{1,0,2}}
20 Fmmm | 12222 3 {{1,0,0},{0,1,0},{0,0,1}}
20 Fmmm | 12222 4 {{1,0,0},{1,2,0},{1,0,2}}
20 Fmmm | 12222 5 {{1,0,0},{1,2,0},{0,0,1}}

20 Fmmm 13 mm2, 1 {{1,0,0},{c1,14¢1,0},{1,0,2}}
20 Fmmm 13 mm2, 2 {{1,0,0},{c1,1+¢1,0},{0,1,2}}
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20 Fmmm 13 mm?2, 3 {{1,0,0},{c1,14¢,0},{0,0,1}}

20 Fmmm | 14mm2, | 1 {{1,0,0},{1,2,0},{c1,0,1+c1}}

20 Fmmm 14 mm?2, 2 {{1,0,0},{0,1,0},{c1,1+c1,2+2¢; }}

20 Fmmm 14 mm?2, 3 {{1,0,0},{0,1,0},{c1,0,14+c¢1}}

20 Fmmm | 15mm2, | 1 {{1,0,0},{1,2,0},{0,0,1}}

20 Fmmm 15 mm2, 2 {{1,0,0},{1,2,0},{14c1,c1,2+c1}}

20 Fmmm 15 mm?2, 3 {{1,0,0},{0,1,0},{0,c1,14+c1}}

20 Fmmm 15 mm?2, 4 {{1,0,0},{0,1,0},{1+ci,c1,2+2¢c1}}

20 Fmmm 16 mmm 1 {{1,0,0},{0,1,0},{0,1,2}}

20 Fmmm 16 mmm 2 {{1,0,0},{0,1,0},{1,0,2}}

20 Fmmm | 16 mmm | 3 {{1,0,0},{0,1,0},{0,0,1}}

20 Fmmm 16 mmm 4 {{1,0,0},{1,2,0},{1,0,2}}

20 Fmmm 16 mmm 5 {{1,0,0},{1,2,0},{0,0,1}}

21 Immm | 21 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm | 21 2 {{1,0,0},{0,1,0},{1,1,2}}

20 Immm | 21 3 {{1,0,0},{1,2,0},{0,0,2}}

2 Immm | 21 4 {{1,0,0},{0,2,0},{1,0,2}}

21 Immm | 21 5 {{2,0,0},{0,1,0},{0,1,2}}

20 Immm | 21 6 {{2,0,0},{0,2,0},{0,0,2}}

21 Immm | 32, 1 {{1,0,0},{1,2,0},{0,0,2}}

21 Immm | 32, 2 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm | 32, 3 {{1,0,0},{1,2,0},{2,2,2(2+¢1)}}

21 Immm 32, 4 {{1,0,0},{0,1,0},{3+2¢1,3+2¢c1,4(1+c1)}}
21 Immm | 32, 5 {{1,0,0},{0,1,0},{1,1,2 4+ ¢;}}

21 Immm | 42, 1 {{1,0,0},{0,2,0},{1,0,2}}

20 Immm | 42, 2 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm 42, 3 {{1,0,0},{0,2,0},{342¢1,2,2(2+c1)}}

21 Immm | 42, 4 {{1,0,0},{0,1,0},{3+4c;,3+2¢1,4(1+¢c1)}}
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20 Immm | 42, 5 {{1,0,0},{0,1,0},{1+¢1,1,24¢1}}

21 Immm | 5 my 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm 5 my 2 {{2+¢1,0,0},{0,1,0},{0,1,24¢; }}

21 Immm 5 my 3 {{24¢1,0,0},{0,1,0},{(24c1)(1+¢2),1,(24+¢c1)(24+¢2)}}

21 Immm 5 my 4 {{14¢1,0,0},{0,1,0},{(1+c1)(1+di),1,(14c1)B+d) +do)}} 38
21 Immm 5 my 5 {{1+¢1,0,0},{0,1,0},{1+c1,1,2(1 +c1)}}

21 Immm 5 my 6 {{14¢1,0,0},{0,1,0},{1+c1,1,(14+c1)(3+c2)}}

21 Immm 5my, 7 {{14¢1,0,0},{0,1,0},{(1+¢1)2+d1),1,(14c1)B3+d; +do)}} 42
21 Immm | 62, 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm 62, 2 {{1,0,0},{0,1,0},{3+2¢1,3+4c1,4(1 +c1)}}

21 Immm 62, 3 {{1,0,0},{0,1,0},{1,14c1,24c1}}

21 Immm | 62, 4 {{2,0,0},{0,1,0},{0,1,2}}

21 Immm | 62, 5 {{2,0,01,{0,1,0},{2,3+2¢1,2(2 +¢1)}}

21 Immm 7 my 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm | Tmy 2 {{1,0,0},{0,1,0},{1,1,3}}

20 Immm | 7 my 3 {{1,0,0},{0,2,0},{1,2,8)}}

21 Immm 7 my 4 {{1,0,0},{0,1,0},{1,1,4+c1}}

21 Immm 7 my 5 {{1,0,0},{0,2+¢1,0},{1,0,24 ¢ }}

21 Immm 7 my 6 {{1,0,0},{0,2+¢1,0},{1,24¢1,3(24c1)}}

21 Immm 7 my 7 {{1,0,0},{0,3+¢1,0},{1,34+¢1,4(3+¢1)}}

21 Immm 7 my 8 {{1,0,0},{0,24¢1,0},{1,2+c1)(1+¢c2),(24+c1)(24+c2)}}

21 Immm | Tmy 9 {{1,0,0},{0,1,0},{1,2+dy,5+d, +d}} 17
21 Immm | 7 my 10 {{1,0,0},{0,2,0},{1,2(1 +1),2(5+d; +d>)}} 16
20 Immm | 7 my 11 {{1,0,0},{0,2,0},{1,2(2 +d),2(5+d; +d>)}} 17
21 Immm | 7m, 12 {{1,0,0},{0,3+¢1,0},{1,3+c1)(1 +d1), 3+c1)(5+di +d2)}} 49
21 Immm 7 my 13 {{1,0,0},{0,34+¢1,0},{1,(3+c1)(2+di),3+c1)(5+di+d>)}} 50
21 Immm T my 14 {{1,0,0},{0,1,0},{1,24c1,3+c1}}

21 Immm 7 my 15 {{1,0,0},{0,1+¢1,0},{1,14+c1,2(14+c1)}}
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21 Immm 7 my 16 {{1,0,0},{0,1+c¢1,0},{l,14+c;,(14+c1)B3+c2)}}

21 Immm 7 my 17 {{1,0,0},{0,24+¢1,0},{1,(24+c1)(2+¢c2),24c1)(3+c2)}}

21 Immm— | 7 my 18 {{1,0,0},{0,1,0},{1,3+d1,5+d| +d>}} 18
21 Immm | 7 my 19 {{1,0,0},{0,24¢1,0},{1,(2+¢1)(2+dy), 2+ c1)(5+dy +do)}} 51
21 Immm | Tmy 20 {{1,0,0},{0,2+¢1,0},{1,2+c1)3+d1),2+c1)(5+di +da)}} 52
21 Immm 8 m;, 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm | 8m, 2 {{1,0,0},{0,1,0}, {1 +dy,1 +d>,2 +dy +da}} 4
21 Immm 8 m; 3 {{1,0,0},{1,2,0},{0,0,2}}

21 Immm | 8 m, 4 {{1,0,0},{1,3,0},{0,3,6}}

21 Immm 8 m; 5 {{1,0,0},{1,2+¢,0},{0,0,2+¢; }}

21 Immm 8 m, 6 {{1,0,0},{1,2,0},{0,2,2(2+c1)}}

21 Immm 8 m, 7 {{1,0,0},{1,4+¢1,0},{0,44c1,2(4+c1)}}

21 Immm | 8m, 8 {{1,0,0},{1,2,0},{0,2(2+d),2(3+d +da)}} 9
21 Immm | 8m, 9 {{1,0,0},{1,3,0},{0,3(1+dy),3(3+di +d>)}} 6
21 Immm | 8 m, 10 {{1,0,0},{1,3,0},{0,3(2+d\),3(3+d +d>)}} 9
21 Immm | 8m, 11 {{1,0,0},{1,4+¢1,0},{0,(d+c))(1+dy),(4+c1)B+dy +do)}} 38
21 Immm 8 m, 12 {{1,0,0},{1,4+¢1,0},{0,(44c1)(2+d1),(44¢c1)(3+d +d2)}} 42
21 Immm | 92/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm | 92/m, 2 {{1,0,0},{1,2,0},{0,0,2}}

21 Immm 92/m, 3 {{1,0,0},{0,1,0},{1,1,2}}

20 Immm | 102/my | 1 {{1,0,0},{0,1,0},{1,1,2}}

21 Immm | 102/my | 2 {{1,0,0},{0,1,0},{0,0,1}}

20 Immm | 102/my | 3 {{1,0,0},{0,2,0},{1,0,2}}

21 Immm | 112/my | 1 {{1,0,0},{0,1,0},{1,1,2}}

20 Immm | 112/my | 2 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm 112/m, 3 {{2,0,0},{0,1,0},{0,1,2}}

21 Immm | 12222 1 {{1,0,0},{0,1,0},{3,3,4}}

21 Immm | 12222 2 {{1,0,0},{0,1,0},{1,1,2}}
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20 Immm | 12222 3 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm | 12222 4 {{1,0,0},{0,1,0},{3,3,4}}

2 Immm | 12222 5 {{1,0,0},{0,1,0},{1,1,2}}

20 Immm | 12222 6 {{1,0,0},{0,1,0},{0,0,1}}

20 Immm | 13mm2, | 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm 13 mm2, 2 {{1,0,0},{0,1,0},{1,1,2+c1}}

21 Immm 14 mm?2, 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm | 14mm2, | 2 {{1,0,0},{0,1,0},{1+c1,1,2+c1}}

20 Immm | 15mm2; | 1 {{1,0,0},{0,1,0},{0,0,1}}

21 Immm 15 mm?2, 2 {{1,0,0},{0,1,0},{1,14¢1,24c1}}

21 Immm 16 mmm 1 {{1,0,0},{0,1,0},{1,1,2}}

21 Immm 16 mmm 2 {{1,0,0},{0,1,0},{0,0,1}}

22 P4 22, 1 {{1,0,0},{0,1,0}, {1 +cf,1+c1,2+2¢}}
22 P4 22, 2 {{1,0,0},{0,1,0},{0,0,14¢;}}

22 P4 22, 3 {{1,0,0},{1,2,0},{1+¢c1,0,2+2¢;}}

22 P4 22, 4 {{1,0,0},11,2,0},{0,0,1+¢;}}

22 P4 22, 5 {{2,0,0},{0,2,0},{0,0,14¢;}}

22 P4 34 1 {{1,0,0},{1,2,0},{0,0,1 +¢c;}}

22 P4 34 2 {{1,0,0},{0,1,0}, {1 +¢c1, 1 +c1,2+2¢1}}
22 P4 34 3 {{1,0,0},{0,1,0},{0,0,1+c;}}

23 14 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

23 14 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

23 14 22, 3 {{1,0,0},{1,2,0},{2.2,22 +¢1)}}

23 14 22, 4 {{1,0,0},{0,1,0},{3+2c1,3+2¢1,4(1+¢1)}}
23 14 22, 5 {{1,0,0},{0,1,0},{1,1,2+¢}}

23 14 34 1 {{1,0,0},{0,1,0},{0,0,1}}

23 14 34 2 {{1,0,0},{0,1,0},{1,1,2+¢;}}

24 P 22, 1 {{1,0,0},{0,1,0}, {1 +c1,14+¢;,242¢,}}
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24 P4 22, 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

24 P4 22, 3 {{1,0,0},{1,2,0},{14¢1,0,242c; }}
24 P4 22, 4 {{1,0,0},{1,2,0},{0,0,14¢;}}

24 P4 22, 5 {{2,0,0},{0,2,0},{0,0,1+c;}}

24 P4 34 1 {{1,0,0},{1,2,0},{0,0,1}}

24 P4 34 2 {{1,0,0},{0,1,0},{0,0,1}}

24 P4 34 3 {{1,0,0},{1,2,0},{0,0,2}}

24 P4 34 4 {{1,0,0},{0,1,0},{1,1,2}}

24 P4 34 5 {{1,0,0},{0,1,0},{0,0,2}}

25 14 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

25 14 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

25 14 22, 3 {{1,0,0},{1,2,0},{2,2,2(24+c1)}}
25 14 22, 4 {{1,0,0},{0,1,0},{3+2¢1,3+2¢c1,4(1+c1)}}
25 14 22, 5 {{1,0,0},{0,1,0},{1,1,2+c}}

25 14 34 1 {{1,0,0},{0,1,0},{3,3,4}}

2514 34 2 {{1,0,0},{0,1,0},{1,1,2}}

25 14 34 3 {{1,0,0},{0,1,0},{0,0,1}}

25 14 34 4 {{1,0,0},{0,1,0},{3,3,4}}

2514 34 5 {{1,0,0},{0,1,0},{1,1,2}}

25 14 34 6 {{1,0,0},{0,1,0},{0,0,1}}

26 P4/m 21 1 {{1,0,0},{0,1,0},{0,0,1}}

26 P4/m 21 2 {{1,0,0},{0,1,0},{1,1,2}}

26 P4/m 21 3 {{1,0,0},{0,1,0},{0,0,2}}

26 P4/m 21 4 {{1,0,0},{1,2,0},{0,0,1}}

26 P4/m 21 5 {{1,0,0},{1,2,0},{1,0,2}}

26 P4/m 21 6 {{1,0,0},{1,2,0},{0,0,2}}

26 P4/m 21 7 {{2,0,0},{0,2,0},{0,0,1}}

26 P4/m 21 8 {{2,0,0},{0,2,0},{0,0,2}}

Continued on next page



97

Table A.1 — continued from previous page

ACC Py By matrix row by row c#
26 P4/m 32, 1 {{1,0,0},{0,1,0},{14+c1,1+c1,242¢1}}

26 P4/m 32, 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

26 P4/m 32, 3 {{1,0,0},{1,2,0},{14¢1,0,242¢; }}

26 P4/m 32, 4 {{1,0,0},{1,2,0},{0,0,14¢;}}

26 P4/m 32, 5 {{2,0,0},{0,2,0},{0,0,14+c¢;}}

26 P4/m 4 my 1 {{1+¢1,0,0},{0,1+¢1,0},{0,0,1}}

26 P4/m 4 my 2 {{14¢1,0,0},{(1+c1)(1+d1),(1+c1)(2+di +d>),0},{0,0,1}} 35
26 P4/m 4 my 3 {{1+4¢1,0,0},{0,1+¢;,0},{0,0,2}}

26 P4/m 4 my 4 {{14¢1,0,0},{(1+c1)(1+dy),(14¢1)(2+d) +d>),0},{0,0,2}} 35
26 P4/m 4 my 5 {{14¢1,0,0},{(1+c1)(1+2d1),(1+¢c1)(2+2d; +d>),0},{0,1,2}} 53
26 P4/m 4 my 6 {{1+¢1,0,0},{(L+c1)(1+42d1),2(14+c1)(1+d) +d»),0},{1,0,2}} 31
26 P4/m 4 my 7 {{1+¢1,0,0},{0,1+¢1,0},{1,1,2}}

26 P4/m 4 my 8 {{1+¢1,0,0},{(1+c1)di,(14+c1)(3+d+2d»),0},{1,1,2}} 64
26 P4/m 52/m; 1 {{1,0,0},{0,1,0},{0,0,1}}

26 P4/m 52/m; 2 {{1,0,0},{0,1,0},{1,1,2}}

26 P4/m 52/m, 3 {{1,0,0},{0,1,0},{0,0,2}}

26 P4/m 52/m, 4 {{1,0,0},{1,2,0},{0,0,1}}

26 P4/m 52/m; 5 {{1,0,0},{1,2,0},{1,0,2}}

26 P4/m 52/m, 6 {{1,0,0},{1,2,0},{0,0,2}}

26 P4/m 52/m; 7 {{2,0,0},{0,2,0},{0,0,1}}

26 P4/m 52/m; 8 {{2,0,0},{0,2,0},{0,0,2}}

26 P4/m 64 1 {{1,0,0},{1,2,0},{0,0,1}}

26 P4/m 64 2 {{1,0,0},{0,1,0},{0,0,1}}

26 P4/m 64 3 {{1,0,0},{1,2,0},{0,0,2}}

26 P4/m 64 4 {{1,0,0},{0,1,0},{1,1,2}}

26 P4/m 64 5 {{1,0,0},{0,1,0},{0,0,2}}

26 P4/m 74 1 {{1,0,0},{1,2,0},{0,0,1+¢c;}}

26 P4/m 74 2 {{1,0,0},{0,1,0},{14+c1,1 +c1,242c1 }}
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26 P4/m 74 3 {{1,0,0},{0,1,0},{0,0,1+c;}}

26 P4/m 84/m 1 {{1,0,0},{1,2,0},{0,0,1}}

26 P4/m 84/m 2 {{1,0,0},{0,1,0},{0,0,1}}

26 P4/m 84/m 3 {{1,0,0},{1,2,0},{0,0,2}}

26 P4/m 84/m 4 {{1,0,0},{0,1,0},{1,1,2}}

26 P4/m 84/m 5 {{1,0,0},{0,1,0},{0,0,2}}

2714 /m 21 1 {{1,0,0},{0,1,0},{0,0,1}}

27 14/m 21 2 {{1,0,0},{0,1,0},{1,1,2}}

27 14/m 21 3 {{1,0,0},{1,2,0},{0,0,2}}

27 14/m 21 4 {{2,0,0},{0,2,0},{0,0,2}}

27 14/m 32, 1 {{1,0,0},{1,2,0},{0,0,2}}

27 14/m 32, 2 {{1,0,0},{0,1,0},{0,0,1}}

2714 /m 32, 3 {{1,0,0},{1,2,0},{2,2,2(2+c1)}}

27 14/m 32, 4 {{1,0,0},{0,1,0},{3+2¢1,3+2¢c1,4(14+¢1)}}

27 14/m 32, 5 {{1,0,0},{0,1,0},{1,1,24¢1}}

27 14/m 4 my 1 {{1,0,0},{0,1,0},{0,0,1}}

2714 /m 4 m, 2 {{1,0,0},{0,1,0},{14+di,1+dp,24+d) +d>}} 5
27 14/m 4 my 3 {{1,0,0},{1,2,0},{0,0,2}}

27 14/m 4 my 4 {{1,0,0},{1,2,0},{0,2,4}}

2714 /m 4 my 5 {{1,0,0},{1,3,0},{0,3,6}}

27 14/m 4 my 6 {{1,0,0},{1,2+¢1,0},{0,0,24 ¢ }}

27 14/m 4 my 7 {{1,0,0},{1,4+¢1,0},{0,44c¢;,2(4+c1)}}

2714 /m 4 m, 8 {{1,0,0},{1,2,0},{0,2(2+4d;),2(3+d1+da)}} 10
27 14/m 4 my 9 {{1,0,0},{1,3,0},{0,3(1+d1),3(3+d1 +d2)}} 7
27 14/m 4 my 10 {{1,0,0},{1,3,0},{0,3(2+d1),3(3+d1+d2)}} 10
2714 /m 4 m, 11 {{1,0,0},{1,44¢1,0},{0,(4+c1)(1+d1),(44+c1)3+d1+da)}} 39
27 14/m 4 my 12 {{1,0,0},{1,4+¢1,0},{0,(4+c1)(2+d1),(4+c1)(3+d1 +dr)}} 43
27 14/m 52/m; 1 {{1,0,0},{0,1,0},{0,0,1}}
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27 14/m 52/m, 2 {{1,0,0},{1,2,0},{0,0,2}}

27 14/m 52/m; 3 {{1,0,0},{0,1,0},{1,1,2}}

27 14/m 64 1 {{1,0,0},{0,1,0},{3,3,4}}

2714 /m 64 2 {{1,0,0},{0,1,0},{1,1,2}}

27 14/m 64 3 {{1,0,0},{0,1,0},{0,0,1}}

27 14/m 64 4 {{1,0,0},{0,1,0},{3,3,4}}

2714 /m 64 5 {{1,0,0},{0,1,0},{1,1,2}}

27 14/m 64 6 {{1,0,0},{0,1,0},{0,0,1}}

27 14/m 74 1 {{1,0,0},{0,1,0},{0,0,1}}

27 14/m 74 2 {{1,0,0},{0,1,0},{1,1,2+c;}}

27 14/m 84/m 1 {{1,0,0},{0,1,0},{1,1,2}}

27 14/m 84/m 2 {{1,0,0},{0,1,0},{0,0,1}}

28 P422 22, 1 {{1,0,0},{0,1,0},{14+c1,1+¢1,242¢1}}
28 P422 22, 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

28 P422 22, 3 {{1,0,0},{1,2,0},{14¢1,0,242c; }}
28 P422 22, 4 {{1,0,0},{1,2,0},{0,0,14¢;}}

28 P422 22, 5 {{2,0,0},{0,2,0},{0,0,1+c;}}

28 P422 3222 1 {{1,0,0},{0,1,0},{0,0,1}}

28 P422 3222 2 {{1,0,0},{0,1,0},{1,1,2}}

28 P422 3222 3 {{1,0,0},{0,1,0},{0,0,2}}

28 P422 3222 4 {{1,0,0},{1,2,0},{0,0,1}}

28 P422 3222 5 {{1,0,0},{1,2,0},{1,0,2}}

28 P422 3222 6 {{1,0,0},{1,2,0},{0,0,2}}

28 P422 3222 7 {{2,0,0},{0,2,0},{0,0,1}}

28 P422 3222 8 {{2,0,0},{0,2,0},{0,0,2}}

28 P422 4222, 1 {{1,0,0},{1,2,0},{0,0,1}}

28 P422 4222, 2 {{1,0,0},{0,1,0},{0,0,1}}

28 P422 4222, 3 {{1,0,0},{1,2,0},{0,0,2}}
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28 P422 4222, 4 {{1,0,0},{0,1,0},{1,1,2}}

28 P422 4222, 5 {{1,0,0},{0,1,0},{0,0,2}}

28 P422 54 1 {{1,0,0},{1,2,0},{0,0,14¢;}}

28 P422 54 2 {{1,0,0},{0,1,0},{14c1,1+¢1,242¢1}}
28 P422 54 3 {{1,0,0},{0,1,0},{0,0,14c¢;}}

28 P422 6422 1 {{1,0,0},{1,2,0},{0,0,1}}

28 P422 6422 2 {{1,0,0},{0,1,0},{0,0,1}}

28 P422 6422 3 {{1,0,0},{1,2,0},{0,0,2}}

28 P422 6422 4 {{1,0,0},{0,1,0},{1,1,2}}

28 P422 6422 5 {{1,0,0},{0,1,0},{0,0,2}}

29 1422 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

29 1422 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

29 1422 22, 3 {{1,0,0},{1,2,0},{2,2,2(2+c1)}}

29 1422 22, 4 {{1,0,0},{0,1,0},{3+2¢1,3+2c1,4(1+c1)}}
29 1422 22, 5 {{1,0,0},{0,1,0},{1,1,24¢1}}

29 1422 3222 1 {{1,0,0},{0,1,0},{3,3,4}}

29 1422 3222 2 {{1,0,0},{0,1,0},{1,1,2}}

29 1422 3222 3 {{1,0,0},{0,1,0},{0,0,1}}

29 1422 3222 4 {{1,0,0},{0,1,0},{3,3,4}}

29 1422 3222 5 {{1,0,0},{0,1,0},{1,1,2}}

29 1422 3222 6 {{1,0,0},{0,1,0},{0,0,1}}

29 1422 4222, 1 {{1,0,0},{0,1,0},{0,0,1}}

29 1422 4222, 2 {{1,0,0},{1,2,0},{0,0,2}}

29 1422 4222, 3 {{1,0,0},{0,1,0},{1,1,2}}

29 1422 54 1 {{1,0,0},{0,1,0},{0,0,1}}

29 1422 54 2 {{1,0,0},{0,1,0},{1,1,2+c;}}

29 1422 6422 1 {{1,0,0},{0,1,0},{1,1,2}}

29 1422 6422 2 {{1,0,0},{0,1,0},{0,0,1}}
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30 Pdmm | 22, 1 {{1,0,0},{0,1,0}, {1 +¢c1,1+¢1,242¢1}}
30 Pdmm | 22, 2 {{1,0,0},{0,1,0},{0,0,1+¢;}}

30 Pdmm | 22, 3 {{1,0,0},{1,2,0},{1+¢1,0,2+2¢;}}

30 Phmm | 22, 4 {{1,0,0},{1,2,0},{0,0,1+¢;}}

30 Pdmm | 22, 5 {{2,0,0},{0,2,0},{0,0,1+¢}}

30 P4dmm 3 mm2, 1 {{1,0,0},{0,1,0},{14+c1,14+c1,2+2¢c1 }}
30 P4mm 3 mm2, 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

30 Phmm | 3mm2, | 3 {{1,0,0},{1,2,0},{1 +¢1,0,2+2¢;}}

30 Pdmm | 3mm2, | 4 {{1,0,0},{1,2,0},{0,0,1+¢;}}

30 P4mm 3 mm2, 5 {{2,0,0},{0,2,0},{0,0,1+c;}}

30 Phmm | 4 mm2y 1 {{1,0,0},{1,2,0},{0,0,1+¢c1}}

30 P4mm 4 mm2, 2 {{1,0,0},{0,1,0},{14+c1,1+c1,24+2¢c1}}
30 P4mm 4 mm2y4 3 {{1,0,0},{0,1,0},{0,0,1+c;}}

30 P4dmm 54 1 {{1,0,0},{1,2,0},{0,0,1+c1}}

30 Pdmm | 54 2 {{1,0,0},{0,1,0},{1+c1,1+c1,2+2c1 }}
30 Pdmm | 54 3 {{1,0,0},{0,1,0},{0,0,14¢;}}

30 P4mm 6 4mm 1 {{1,0,0},{1,2,0},{0,0,1+c;}}

30 P4mm 6 4mm 2 {{1,0,0},{0,1,0},{14+c1,1+c1,24+2¢c1}}
30 P4mm 6 4mm 3 {{1,0,0},{0,1,0},{0,0,1+c1}}

31 I4mm 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

31 14mm | 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

31 ldmm | 22, 3 {{1,0,0},{1,2,0},{2,2,2(2+¢1)}}

31 I4mm | 22, 4 {{1,0,0},{0,1,0},{3+2c1.3+2¢1,4(1+¢1)}}
31 14mm | 22, 5 {{1,0,0},{0,1,0},{1,1,2 4+ ¢;}}

31 f4mm | 3mm2, | 1 {{1,0,0},{0,1,0},{0,0,1}}

31 I4mm 3 mm2, 2 {{1,0,0},{0,1,0},{1,1,2+c;}}

31 I4mm 4 mm2, 1 {{1,0,0},{1,2,0},{0,0,2}}

31 fdmm | 4mm2g | 2 {{1,0,0},{0,1,0},{0,0,1}}
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31 Idmm 4 mm2y 3 {{1,0,0},{1,2,0},{2,2,2(2+c1)}}

31 tmm | dmm2g | 4 {{1,0,0},{0,1,0},{3+2¢1,3 4+ 2¢1,4(1 +¢1)}}
31 I4mm 4 mm2y 5 {{1,0,0},{0,1,0},{1,1,2+¢c;}}

31 Idmm 54 1 {{1,0,0},{0,1,0},{0,0,1}}

31 l4mm | 54 2 {{1,0,0},{0,1,0},{1,1,2+¢}}

31 I4mm 6 4mm 1 {{1,0,0},{0,1,0},{0,0,1}}

31 Idmm 6 4mm 2 {{1,0,0},{0,1,0},{1,1,2+c;}}

32Pm |22, 1 {{1,0,0},{0,1,0}, {1 +c1,1+c1,242¢,}}
2 P2m | 22, 2 {{1,0,0},{0,1,0},{0,0,1+¢;}}

32 PA2m 22, 3 {{1,0,0},{1,2,0},{1+¢1,0,2+2¢,}}

32 P42m 22, 4 {{1,0,0},{1,2,0},{0,0,1+c1}}

2 P2m | 22, 5 {{2,0,0},{0,2,0},{0,0,1+¢;}}

32 PA2m 3222 1 {{1,0,0},{0,1,0},{0,0,1}}

32 Pi2m 3222 2 {{1,0,0},{0,1,0},{1,1,2}}

2 P2m | 3222 3 {{1,0,0},{0,1,0},{0,0,2}}

32 PA2m 3222 4 {{1,0,0},{1,2,0},{0,0,1}}

32 PA2m 3222 5 {{1,0,0},{1,2,0},{1,0,2}}

2 PI2m | 3222 6 {{1,0,0},{1,2,0},{0,0,2}}

32 PA2m 3222 7 {{2,0,0},{0,2,0},{0,0,1}}

32P2m | 3222 8 {{2,0,0},{0,2,0},{0,0,2}}

2P2m | 4mm2g | 1 {{1,0,0},{1,2,0},{0,0,1+c}}

32 PA2m 4 mm2, 2 {{1,0,0},{0,1,0}, {1 4+c1,1 +c1,2+2¢c1 }}
32 P42m 4 mm2y 3 {{1,0,0},{0,1,0},{0,0,1+c1}}

2 Piom |54 1 {{1,0,0},{1,2,0},{0,0,1}}

2 PR2m |54 2 {{1,0,0},{0,1,0},{0,0,1}}

32 PA2m 53 3 {{1,0,0},{1,2,0},{0,0,2}}

2 Piom |54 4 {{1,0,0},{0,1,0},{1,1,2}}

2 PR2m |54 5 {{1,0,0},{0,1,0},{0,0,2}}
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32 P42m 6 42m 1 {{1,0,0},{1,2,0},{0,0,1}}

32 P42m 6 42m 2 {{1,0,0},{0,1,0},{0,0,1}}

32 P42m 6 42m 3 {{1,0,0},{1,2,0},{0,0,2}}

32 PA2m 6 42m 4 {{1,0,0},{0,1,0},{1,1,2}}

32 P42m 6 42m 5 {{1,0,0},{0,1,0},{0,0,2}}

33 Pdm2 22, 1 {{1,0,0},{0,1,0},{14+c1,1+¢1,242¢1}}
33 P4m2 22, 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

33 P4m2 22, 3 {{1,0,0},{1,2,0},{14¢1,0,242¢; }}

33 P4m2 22, 4 {{1,0,0},{1,2,0},{0,0,14¢;}}

33 P4m2 22, 5 {{2,0,0},{0,2,0},{0,0,1+c;}}

33 P4m2 3 mm2, 1 {{1,0,0},{0,1,0},{14+ci,14+¢1,242¢1 }}
33 P4m2 3 mm2, 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

33 Pdm2 3 mm2, 3 {{1,0,0},{1,2,0},{14¢1,0,2+2¢; }}

33 P4m2 3 mm2, 4 {{1,0,0},{1,2,0},{0,0,14¢}}

33 P4m2 3 mm2, 5 {{2,0,0},{0,2,0},{0,0,14c¢;}}

33 Pdm2 4222, 1 {{1,0,0},{1,2,0},{0,0,1}}

33 P4m2 4222, 2 {{1,0,0},{0,1,0},{0,0,1}}

33 P4m2 4222, 3 {{1,0,0},{1,2,0},{0,0,2}}

33 Pdm2 4222, 4 {{1,0,0},{0,1,0},{1,1,2}}

33 P4m2 4222, 5 {{1,0,0},{0,1,0},{0,0,2}}

33 P4m2 54 1 {{1,0,0},{1,2,0},{0,0,1}}

33 P4m2 54 2 {{1,0,0},{0,1,0},{0,0,1}}

33 Pdm2 54 3 {{1,0,0},{1,2,0},{0,0,2}}

33 P4m2 54 4 {{1,0,0},{0,1,0},{1,1,2}}

33 P4m2 54 5 {{1,0,0},{0,1,0},{0,0,2}}

33 P4m2 6 4m2 1 {{1,0,0},{1,2,0},{0,0,1}}

33 P4m2 6 4m2 2 {{1,0,0},{0,1,0},{0,0,1}}

33 P4m2 6 4m2 3 {{1,0,0},{1,2,0},{0,0,2}}
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33 P4m2 6 4m2 4 {{1,0,0},{0,1,0},{1,1,2}}

33 P4m2 6 4m2 5 {{1,0,0},{0,1,0},{0,0,2}}

34 I4m2 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

34 I4m2 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

34 14m2 22, 3 {{1,0,0},{1,2,0},{2,2,2(24+c1)}}

34 [4m2 22, 4 {{1,0,0},{0,1,0},{3+2c1,3+2¢c1,4(1+c1)}}
34 I4m2 22, 5 {{1,0,0},{0,1,0},{1,1,2+c;}}

34 14m2 3 mm2, 1 {{1,0,0},{0,1,0},{0,0,1}}

34 14m2 3 mm2, 2 {{1,0,0},{0,1,0},{1,1,2+¢c;}}

34 I4m2 4222, 1 {{1,0,0},{0,1,0},{0,0,1}}

34 14m2 4222, 2 {{1,0,0},{1,2,0},{0,0,2}}

34 14m2 4222, 3 {{1,0,0},{0,1,0},{1,1,2}}

34 I4m2 54 1 {{1,0,0},{0,1,0},{3,3,4}}

34 I4m2 54 2 {{1,0,0},{0,1,0},{1,1,2}}

34 14m2 54 3 {{1,0,0},{0,1,0},{0,0,1}}

34 14m2 54 4 {{1,0,0},{0,1,0},{3,3,4}}

34 I4m2 54 5 {{1,0,0},{0,1,0},{1,1,2}}

34 14m2 54 6 {{1,0,0},{0,1,0},{0,0,1}}

34 I4m2 6 4m2 1 {{1,0,0},{0,1,0},{1,1,2}}

34 I4m2 6 4m2 2 {{1,0,0},{0,1,0},{0,0,1}}

35142m 22, 1 {{1,0,0},{1,2,0},{0,0,2}}

35142m 22, 2 {{1,0,0},{0,1,0},{0,0,1}}

35142m 22, 3 {{1,0,0},{1,2,0},{2,2,2(2+c1)}}

35142m 22, 4 {{1,0,0},{0,1,0},{3+2¢1,3+2c1,4(1+c1)}}
35142m 22, 5 {{1,0,0},{0,1,0},{1,1,24¢1 }}

35142m 3222 1 {{1,0,0},{0,1,0},{3,3,4}}

35142m 3222 2 {{1,0,0},{0,1,0},{1,1,2}}

35142m 3222 3 {{1,0,0},{0,1,0},{0,0,1}}
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35142m 3222 4 {{1,0,0},{0,1,0},{3,3,4}}
35142m 3222 5 {{1,0,0},{0,1,0},{1,1,2}}

35 142m 3222 6 {{1,0,0},{0,1,0},{0,0,1}}
35142m 4 mm?2, 1 {{1,0,0},{1,2,0},{0,0,2}}
35142m 4 mm2y 2 {{1,0,0},{0,1,0},{0,0,1}}

35 142m 4 mm2y 3 {{1,0,0},{1,2,0},{2,2,2(2+c¢1)}}
35142m 4 mm2y 4 {{1,0,0},{0,1,0},{3+2¢1,3+2¢c1,4(1+c1)}}
35142m 4 mm2,4 5 {{1,0,0},{0,1,0},{1,1,2+c1}}
35142m 54 1 {{1,0,0},{0,1,0},{3,3,4}}

35 142m 54 2 {{1,0,0},{0,1,0},{1,1,2}}
35142m 54 3 {{1,0,0},{0,1,0},{0,0,1}}
35142m 54 4 {{1,0,0},{0,1,0},{3,3,4}}

35 142m 54 5 {{1,0,0},{0,1,0},{1,1,2}}
35142m 54 6 {{1,0,0},{0,1,0},{0,0,1}}
35142m 6 42m 1 {{1,0,0},{0,1,0},{3,3,4}}

35 142m 6 42m 2 {{1,0,0},{0,1,0},{1,1,2}}

35 142m 6 42m 3 {{1,0,0},{0,1,0},{0,0,1}}
35142m 6 42m 4 {{1,0,0},{0,1,0},{3,3,4}}

35 142m 6 42m 5 {{1,0,0},{0,1,0},{1,1,2}}

35 142m 6 42m 6 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 21 1 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 21 2 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 21 3 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 21 4 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 21 5 {{1,0,0},{1,2,0},{1,0,2}}

36 P4/mmm | 21 6 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 21 7 {{2,0,0},{0,2,0},{0,0,1}}

36 P4/mmm | 21 8 {{2,0,0},{0,2,0},{0,0,2}}
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36 P4/mmm | 32, 1 {{1,0,0},{0,1,0}, {1 +¢c1,1+¢1,242¢1}}

36 P4/mmm | 32, 2 {{1,0,0},{0,1,0},{0,0,1+¢;}}

36 P4/mmm | 32, 3 {{1,0,0},{1,2,0},{14¢1,0,242¢; }}

36 P4/mmm | 32, 4 {{1,0,0},{1,2,0},{0,0,14¢;}}

36 P4/mmm | 32, 5 {{2,0,0},{0,2,0},{0,0,1+¢}}

36 P4/mmm | 4m, 1 {{2(14¢1),0,0},{0,2(1 +¢1),0},{0,0,1}}

36 P4/mmm | 4 m, 2 {{2(14¢1),0,0},{2(14¢1),4(14¢1),0},{0,0,1}}

36 P4/mmm | 4m, 3 {{1+2¢1,0,0},{0,142¢1,0},{0,0,1}}

36 P4/mmm | 4 m, 4 {{1+2¢1,0,0},{1+42c1,2+4¢,0},{0,0,1}}

36 P4/mmm | 4m, 5 {{2(14¢1),0,0},{2(1 +¢1)(2+dp),4(1 +¢1)(2 +dy),0},{0,0,1}} 2
36 P4/mmm | 4 m, 6 {{142¢1,0,0},{(1+2c1)(2+d1),2(1+2¢1)(2+4d1),0},{0,0,1}} 2"
36 P4/mmm | 4 m, 7 {{2(1+¢1),0,0},{0,2(1+¢1),0},{0,0,2} }

36 P4/mmm | 4 m, 8 {{2(14¢1),0,0},{2(14¢1),4(1+¢1),0},{0,0,2}}

36 P4/mmm | 4m, 9 {{1+2¢1,0,0},{0,1+2¢1,0},{0,0,2}}

36 P4/mmm | 4 m, 10 {{1+2¢1,0,0},{1+2c¢1,2+4c(,0},{0,0,2}}

36 P4/mmm | 4m, 11 {{2(14¢1),0,0},{2(1+¢1)(2+d1),4(1+ c1)(2 +d1),0},{0,0,2}} 2
36 P4/mmm | 4m, 12 {{142¢1,0,0},{(1+2¢1)(2+d),2(1 +2¢1)(2 +dy),0},{0,0,2}} 2
36 P4/mmm | 4 m, 13 {{1,0,0},{1,2,0},{1,0,2}}

36 P4/mmm | 4m, 14 {{2+4¢1,0,0}, {2 +¢1,2(2+¢1),0},{1,0,2}}

36 P4/mmm | 4 m, 15 {{1,0,0},{2+d1,2(2+d}),0},{1,0,2}} *
36 P4/mmm | 4 m, 16 {{1+¢1,0,0},{0,1+¢1,0},{1,1,2}}

36 PA/mmm | 52/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 52/m, 2 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 52/m, 3 {{1,0,0},{0,1,0},{0,0,2}}

36 PA/mmm | 52/m, 4 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 52/m, 5 {{1,0,0},{1,2,0},{1,0,2}}

36 P4/mmm | 52/m, 6 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 52/m, 7 {{2,0,0},{0,2,0},{0,0,1}}
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36 P4/mmm | 52/m, 8 {{2,0,0},{0,2,0},{0,0,2}}

36 P4/mmm | 6222 1 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 6222 2 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 6222 3 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 6222 4 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 6222 5 {{1,0,0},{1,2,0},{1,0,2}}

36 P4/mmm | 6222 6 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 6222 7 {{2,0,0,{0,2,0},{0,0,1}}

36 P4/mmm | 6222 8 {{2,0,0},{0,2,0},{0,0,2}}

36 P4/mmm | T mm2, 1 {{1,0,0},{0,1,0},{14ci,14+¢1,242¢1 }}
36 P4/mmm | T mm2, 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

36 P4/mmm | T mm?2, 3 {{1,0,0},{1,2,0},{1+4¢1,0,2+2c; }}

36 P4/mmm | T mm2, 4 {{1,0,0},{1,2,0},{0,0,14¢;}}

36 P4/mmm | 7 mm2, 5 {{2,0,0},{0,2,0},{0,0,1+c;}}

36 PA/mmm | 8222, 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 8222, 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 82224 3 {{1,0,0},{1,2,0},{0,0,2}}

36 PA/mmm | 8222, 4 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 8222, 5 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 9 mm2, 1 {{1,0,0},{1,2,0},{0,0,1+¢c;}}

36 P4/mmm | 9 mm2, 2 {{1,0,0},{0,1,0},{14c1,1+c1,24+2¢1}}
36 P4/mmm | 9 mm2, 3 {{1,0,0},{0,1,0},{0,0,1+c1}}

36 P4/mmm | 103 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 104 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 104 3 {{1,0,0},{1,2,0},{0,0,2}}

36 PA/mmm | 104 4 {{1,0,0},10,1,0},{1,1,2}}

36 P4/mmm | 103 5 {{1,0,0},{0,1,0},{0,0,2}}

36 PA/mmm | 114 1 {{1,0,0},{1,2,0},{0,0,1+¢;}}
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36 P4/mmm | 114 2 {{1,0,0},{0,1,0}, {1 +c1,1+c1,242¢1}}
36 PA/mmm | 114 3 {{1,0,0},{0,1,0},{0,0,1+¢}}
36 P4/mmm | 12 mmm 1 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 12 mmm 2 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 12 mmm 3 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 12 mmm 4 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 12 mmm 5 {{1,0,0},{1,2,0},{1,0,2}}

36 P4/mmm | 12 mmm 6 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 12 mmm 7 {{2,0,0},{0,2,0},{0,0,1}}

36 P4/mmm | 12 mmm 8 {{2,0,0},{0,2,0},{0,0,2}}

36 P4/mmm | 13 mmmy | 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 13 mmmy | 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 13 mmmy | 3 {{1,0,0},{1,2,0},{0,0,2}}

36 PA/mmm | 13 mmmy | 4 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 13 mmmy | 5 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 144/m | 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 144/m | 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 144/m | 3 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 144/m | 4 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 144/m | 5 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 15422 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 15 422 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 15 422 3 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 15 422 4 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 15422 5 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 1642m | 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 16 42m 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 1642m | 3 {{1,0,0},{1,2,0},{0,0,2}}
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36 P4/mmm | 1642m | 4 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 1642m | 5 {{1,0,0},{0,1,0},{0,0,2}}

36 P4/mmm | 17 4m2 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 17 dm2 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 173dm2 | 3 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 17 4m2 4 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 17 dm2 5 {{1,0,0},{0,1,0},{0,0,2}}

36 PA/mmm | 184mm | 1 {{1,0,0},{1,2,0},{0,0,1+c}}

36 P4/mmm | 18 4mm 2 {{1,0,0},{0,1,0},{l4+c1,1 +c1,2+2¢c1 }}

36 P4/mmm | 18 4mm 3 {{1,0,0},{0,1,0},{0,0,1+c;}}

36 P4/mmm | 194/mmm | 1 {{1,0,0},{1,2,0},{0,0,1}}

36 P4/mmm | 194/mmm | 2 {{1,0,0},{0,1,0},{0,0,1}}

36 P4/mmm | 19 4/mmm | 3 {{1,0,0},{1,2,0},{0,0,2}}

36 P4/mmm | 194/mmm | 4 {{1,0,0},{0,1,0},{1,1,2}}

36 P4/mmm | 194/mmm | 5 {{1,0,0},{0,1,0},{0,0,2}}

37 14/mmm | 21 1 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 21 2 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 21 3 {{1,0,0},{1,2,0},{0,0,2}}

37 14/mmm | 21 4 {{2,0,0},10,2,0},{0,0,2}}

37 14 /mmm | 32, 1 {{1,0,0},{1,2,0},{0,0,2}}

37 14/mmm | 32, 2 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 32, 3 {{1,0,0},{1,2,0},{2,2,2(2+¢1)}}

37 14/mmm | 32, 4 {{1,0,0},{0,1,0},{3+2¢1,3+2c1,4(1+¢1)}}
37 14 /mmm | 32, 5 {{1,0,0},{0,1,0},{1,1,2 4+ ¢;}}

37 14/mmm | 4 m, 1 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 4m, 2 {{1,0,0},{0,1,0}, {1 +di, 1 +d,2+dy +do}} 2
3714 /mmm | 4m, 3 {{1,0,0},{1,2,0},{0,0,2}}

37 [4/mmm | 4 m, 4 {{1,0,0},{1,2,0},{0,2,4}}
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3714 /mmm | 4 m, 5 {{1,0,0},{1,3,0},{0,3,6}}

3714/ mmm | 4 m, 6 {{1,0,0},{1,2+¢1,0},{0,0,24c; }}

3714/ mmm | 4m, 7 {{1,0,0},{1,4+¢1,0},{0,44c¢1,2(4+c1)}}

3714 /mmm | 4m, 8 {{1,0,0},{1,2,0},{0,2(2+4d;),2(3+d1+da)}} 24*
3714 /mmm | 4 m, 9 {{1,0,0},{1,3,0},{0,3(1+4d;),3(3+di1 +d2)}} 23*
3714/mmm | 4 m, 10 {{1,0,0},{1,3,0},{0,3(2+d),3(3+d; +d2)}} 24*
37 14/mmm | 4 m, 11 {{1,0,0},{1,44¢1,0},{0,(4+c1)(1+d1),(44+c1)3+d+d2)}} 62*
3714 /mmm | 4 m, 12 {{1,0,0},{1,4+¢1,0},{0,(44+c1)24+d1),(4+c1)(3+d1 +d2)}} 63*
37 14/mmm | 52/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 52/m, 2 {{1,0,0},{1,2,0},{0,0,2}}

37 14/mmm | 52/m, 3 {{1,0,0},{0,1,0},{1,1,2}}

37 [4/mmm | 6222 1 {{1,0,0},{0,1,0},{3,3,4}}

37 14/mmm | 6222 2 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 6222 3 {{1,0,0},{0,1,0},{0,0,1}}

37 [4/mmm | 6222 4 {{1,0,0},{0,1,0},{3,3,4}}

37 14/mmm | 6222 5 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 6222 6 {{1,0,0},{0,1,0},{0,0,1}}

37 [4/mmm | Tmm2, | 1 {{1,0,0},{0,1,0},{0,0,1}}

37 14 /mmm | 7T mm2, 2 {{1,0,0},{0,1,0},{1,1,2+c1}}

37 14/mmm | 8222, 1 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 8222, 2 {{1,0,0},{1,2,0},{0,0,2}}

37 14/mmm | 8222, 3 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 9mm2, | 1 {{1,0,0},{1,2,0},{0,0,2}}

3714/ mmm | 9 mm2, 2 {{1,0,0},{0,1,0},{0,0,1}}

3714/ mmm | 9 mm2, 3 {{1,0,0},{1,2,0},{2,2,2(24+c1)}}

37 14/mmm | 9 mm2, 4 {{1,0,0},{0,1,0},{34+2c1,3+2¢c1,4(1+c1)}}

37 14/mmm | 9mm2, | 5 {{1,0,0},{0,1,0},{1,1,2+¢;}}

37 14/mmm | 104 1 {{1,0,0},{0,1,0},{3,3,41}

Continued on next page



111

Table A.1 — continued from previous page

ACC Py By matrix row by row c#
37 14/mmm | 104 2 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 104 3 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 103 4 {{1,0,0},{0,1,0},{3,3,4}}

37 14/mmm | 104 5 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 104 6 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 114 1 {{1,0,0},{0,1,0},{0,0,1}}

37 14 /mmm | 114 2 {{1,0,0},{0,1,0},{1,1,2+¢1}}
37 I4/mmm | 12 mmm 1 {{1,0,0},{0,1,0},{1,1,2}}

37 [4/mmm | 12mmm | 2 {{1,0,0},{0,1,0},{0,0,1}}
3714 /mmm | 13mmmy | 1 {{1,0,0},{0,1,0},{0,0,1}}

3714 /mmm | 13 mmmy | 2 {{1,0,0},{1,2,0},{0,0,2}}

37 14/mmm | 13 mmmy | 3 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 144/m | 1 {{1,0,0},{0,1,0},{1,1,2}}

3714 /mmm | 144/m 2 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 15422 1 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 15 422 2 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 16 32m 1 {{1,0,0},{0,1,0},{3,3,4}}

37 [4/mmm | 1682m | 2 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 1682m | 3 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 1642m | 4 {{1,0,0},{0,1,0},{3,3,4}}

37 14/mmm | 1642m | 5 {{1,0,0},{0,1,0},{1,1,2}}

37 [4/mmm | 1682m | 6 {{1,0,0},{0,1,0},{0,0,1}}

37 14/mmm | 174m2 | 1 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 17 4m2 2 {{1,0,0},{0,1,0},{0,0,1}}

37 [4/mmm | 18 4mm | 1 {{1,0,0},{0,1,0},{0,0,1}}

37 I4/mmm | 18 4mm 2 {{1,0,0},{0,1,0},{1,1,2+c;}}
3714 /mmm | 194/mmm | 1 {{1,0,0},{0,1,0},{1,1,2}}

37 14/mmm | 19 4/mmm | 2 {{1,0,0},{0,1,0},{0,0,1}}
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38 P3 23 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

38 P3 23 2 {{1,0,0},{0,1,0},{2+42¢1,242¢1,3+3c1 }}
38 P3 23 3 {{1,0,0},{0,1,0},{14+c1,1+¢1,34+3c1}}
38 P3 23 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

39 R3 23 1 {{1,0,0},{0,1,0},{c1,c1,1+c1}}

40 P3 21 1 {{1,0,0},{0,1,0},{0,0,1}}

40 P3 21 2 {{1,0,0},{0,1,0},{0,0,2}}

40 P3 21 3 {{2,0,0},{0,2,0},{0,0,1}}

40 P3 21 4 {{2,0,0},{0,2,0},{0,0,2}}

40 P3 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

40 P3 33 2 {{1,0,0},{0,1,0},{242¢1,242¢1,3+3c1}}
40 P3 33 3 {{1,0,0},{0,1,0},{14+c1,14+c1,34+3c1 }}
40 P3 33 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

40 P3 43 1 {{1,0,0},{0,1,0},{0,0,1}}

40 P3 43 2 {{1,0,0},{0,1,0},{0,0,2}}

41 R3 21 1 {{1,0,0},{0,1,0},{0,0,1}}

41 R3 21 2 {{1,0,0},{0,1,0},{1,1,2}}

41 R3 21 3 {{1,0,0},{1,2,0},{1,0,2}}

41 R3 21 4 {{2,0,0},{0,2,0},{0,0,2}}

41 R3 33 1 {{1,0,0},{0,1,0},{c1,c1,14+c1}}

41 R3 43 1 {{1,0,0},{0,1,0},{1,1,2}}

41 R3 43 2 {{1,0,0},{0,1,0},{0,0,1}}

42 P312 23 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

42 P312 23 2 {{1,0,0},{0,1,0},{2+42¢1,2+2¢1,3+3c1 }}
42 P312 23 3 {{1,0,0},{0,1,0},{14+ci,14+¢1,343c1 }}
42 P312 23 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

42 P312 3312 1 {{1,0,0},{0,1,0},{0,0,1}}

42 P312 3312 2 {{1,0,0},{0,1,0},{0,0,2}}
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43 P321 23 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

43 pP321 23 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

43 P321 3321 1 {{1,0,0},{2,3,0},{0,0,1}}

43 P321 3321 2 {{1,0,0},{0,1,0},{0,0,1}}

43 P321 3321 3 {{1,0,0},{2,3,0},{0,0,2}}

43 P321 3321 4 {{1,0,0},{0,1,0},{0,0,2}}

44 R32 23 1 {{1,0,0},{0,1,0},{c1,c1,14+¢c1}}

44 R32 3321 1 {{1,0,0},{0,1,0},{1,1,2}}

44 R32 3321 2 {{1,0,0},{0,1,0},{0,0,1}}

45 P3m1 23 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

45 P3m1 23 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

45 P3m1 33ml 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

46 P31m 23 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

46 P31m 23 2 {{1,0,0},{0,1,0},{2+42¢1,242¢1,3+3c1}}
46 P31m 23 3 {{1,0,0},{0,1,0},{14+ci,14+c1,34+3c1 }}
46 P31m 23 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

46 P31m 331m 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

46 P31m 331lm 2 {{1,0,0},{0,1,0},{2+42¢1,24+2¢1,3+3c1 }}
46 P31m 331m 3 {{1,0,0},{0,1,0},{14+c1,1+¢c1,34+3c1}}
46 P31m 331m 4 {{1,0,0},{0,1,0},{0,0,14¢;}}

47 R3m 23 1 {{1,0,0},{0,1,0},{c1,c1,1 +c1}}

47 R3m 33ml 1 {{1,0,0},{0,1,0},{c1,c1,14¢i}}

48 P31m 21 1 {{1,0,0},{0,1,0},{0,0,1}}

48 P31m 21 2 {{1,0,0},{0,1,0},{0,0,2}}

48 P31m 21 3 {{2,0,0},{0,2,0},{0,0,1}}

48 P31m 21 4 {{2,0,0},{0,2,0},{0,0,2}}

48 P31m 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

48 P31m 33 2 {{1,0,0},{0,1,0},{24+2¢1,2+2¢1,3+3c1}}
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48 P31m 33 3 {{1,0,0},{0,1,0},{14c1,1+c1,34+3c1}}
48 P31m 33 4 {{1,0,0},{0,1,0},{0,0,1+c;}}

48 P31m 43 1 {{1,0,0},{0,1,0},{0,0,1}}

48 P31m 43 2 {{1,0,0},{0,1,0},{0,0,2}}

48 P31m 531lm 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

48 P31m 531m 2 {{1,0,0},{0,1,0},{242¢1,2+2¢1,34+3c1}}
48 P31m 531m 3 {{1,0,0},{0,1,0},{14+c1,1+¢c1,34+3¢c1}}
48 P31m 531m 4 {{1,0,0},{0,1,0},{0,0,14¢}}

48 P31m 6312 1 {{1,0,0},{0,1,0},{0,0,1}}

48 P31m 6312 2 {{1,0,0},{0,1,0},{0,0,2}}

48 P31m 731m 1 {{1,0,0},{0,1,0},{0,0,1}}

48 P31m 731m 2 {{1,0,0},{0,1,0},{0,0,2}}

49 P3ml1 21 1 {{1,0,0},{0,1,0},{0,0,1}}

49 P3m1 21 2 {{1,0,0},{0,1,0},{0,0,2}}

49 P3m1 21 3 {{2,0,0},{0,2,0},{0,0,1}}

49 P3ml1 21 4 {{2,0,0},{0,2,0},{0,0,2}}

49 P3ml 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

49 P3m1 33 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

49 P3ml1 43 1 {{1,0,0},{0,1,0},{0,0,1}}

49 P3ml 43 2 {{1,0,0},{0,1,0},{0,0,2}}

49 P3ml 5321 1 {{1,0,0},{2,3,0},{0,0,1}}

49 P3m1 5321 2 {{1,0,0},{0,1,0},{0,0,1}}

49 P3ml1 5321 3 {{1,0,0},{2,3,0},{0,0,2}}

49 P3ml 5321 4 {{1,0,0},{0,1,0},{0,0,2}}

49 P3m1 6 3ml 1 {{1,0,0},{0,1,0},{0,0,14c¢;}}

49 P3ml1 7 3ml 1 {{1,0,0},{0,1,0},{0,0,1}}

49 P3ml 7 3ml 2 {{1,0,0},{0,1,0},{0,0,2}}

50 R3m 21 1 {{1,0,0},{0,1,0},{0,0,1}}
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50 R3m 21 2 {{1,0,0},{0,1,0},{1,1,2}}

50 R3m 21 3 {{1,0,0},{1,2,0},{1,0,2}}

50 R3m 21 4 {{2,0,0},{0,2,0},{0,0,2}}

50 R3m 33 1 {{1,0,0},{0,1,0},{c1,c1,14+¢1}}

50 R3m 43 1 {{1,0,0},{0,1,0},{1,1,2}}

50 R3m 43 2 {{1,0,0},{0,1,0},{0,0,1}}

50 R3m 5321 1 {{1,0,0},{0,1,0},{1,1,2}}

50 R3m 5321 2 {{1,0,0},{0,1,0},{0,0,1}}

50 R3m 6 3ml 1 {{1,0,0},{0,1,0},{c1,c1,14¢ci}}

50 R3m 7 3ml 1 {{1,0,0},{0,1,0},{1,1,2}}

50 R3m 7 3ml 2 {{1,0,0},{0,1,0},{0,0,1}}

51 P6 22, 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

51 P6 22, 2 {{2,0,0},{0,2,0},{0,0,1+c;}}

51 P6 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

51 P6 33 2 {{1,0,0},{0,1,0},{0,0,14¢;}}

51 P6 46 1 {{1,0,0},{0,1,0},{0,0,14¢;}}

52 P6 2 m; 1 {{1+4¢,0,0},{0,1+¢;,0},{0,0,1}}

52 P6 2 m, 2 {{14¢1,0,0},{(1+c1)(1+d1),(1+c1)(2+d; +d>),0},{0,0,1}} 34
52 P6 2 m; 3 {{1+¢1,0,0},{0,1+¢1,0},{0,0,2}}

52 P6 2 m; 4 {{14¢1,0,0},{(1+c1)(1+d1),(14¢1)(2+d; +d>),0},{0,0,2}} 34
52 P6 2 my 5 {{1+¢1,0,0},{(1+c1)(1+42d1),(14¢1)(3+2d, +d>»),0},{0,1,2}} 59*
52 P6 2 m; 6 {{1+¢1,0,0},{2(1+c1)(1+d1),2(1+¢1)(2+d1 +d2),0},{1,0,2}} 36*
52 P6 2 m; 7 {{14¢1,0,0},{(1+c1)(1+d1),(1+c1)(4+d; +2d2),0},{1,1,2}} 65*
52 P6 33 1 {{1,0,0},{2,3,0},{0,0,14¢;}}

52 P6 33 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

52 P6 46 1 {{1,0,0},{2,3,0},{0,0,1}}

52 P6 46 2 {{1,0,0},{0,1,0},{0,0,1}}

52 P6 46 3 {{1,0,0},{2,3,0},{0,0,2}}
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52 P6 46 4 {{1,0,0},{0,1,0},{0,0,2}}

53 P6/m 21 1 {{1,0,0},{0,1,0},{0,0,1}}

53 P6/m 21 2 {{1,0,0},{0,1,0},{0,0,2}}

53 P6/m 21 3 {{2,0,0},{0,2,0},{0,0,1}}

53 P6/m 21 4 {{2,0,0},{0,2,0},{0,0,2}}

53 P6/m 32, 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

53 P6/m 32, 2 {{2,0,0},{0,2,0},{0,0,1+c;}}

53 P6/m 4m, 1 {{14¢,0,0},{0,1+¢;,0},{0,0,1}}

53 P6/m 4m, 2 {{14¢1,0,0}, {(1+c))(1+d1),(14+¢1)(2+di +da),0},{0,0,1}} 34
53 P6/m 4m, 3 {{14¢1,0,0},{0,14¢;,0},{0,0,2}}

53 P6/m 4m, 4 {{14¢,0,0,{(1+c)(1+d)),(1+¢1)(2+d) +d»),0},{0,0,2}} 34
53 P6/m 4m, 5 {{14¢1,0,0}, {(1+c1)(1+2d1), (14 ¢1)(3+2d) +da),0},{0,1,2}} 59*
53 P6/m 4m, 6 {{14¢1,0,0},{2(14c1)(1+d1),2(1+¢1)(2+d; +d>),0},{1,0,2}} 36*
53 P6/m 4m, 7 {14¢,0,0},{(1+c)(1+d)),(1 +¢1)(4+d) +2d,),0},{1,1,2}} 65*
53 P6/m 53 1 {{1,0,0},{2,3,0},{0,0,1+c,}}

53 P6/m 53 2 {{1,0,0},{0,1,0},{0,0,1+¢}}

53 P6/m 62/m. 1 {{1,0,0},{0,1,0},{0,0,1}}

53 P6/m 62/m, 2 {{1,0,0},{0,1,0},{0,0,2}}

53 P6/m 62/m, 3 {{2,0,0},{0,2,0},{0,0,1}}

53 P6/m 62/m. 4 {{2,0,0},{0,2,0},{0,0,2}}

53 P6/m 73 1 {{1,0,0},{0,1,0},{0,0,1}}

53 P6/m 73 2 {{1,0,0},{0,1,0},{0,0,2}}

53 P6/m 86 1 {{1,0,0},{0,1,0},{0,0,14¢;}}

53 P6/m 96 1 {{1,0,0},{2,3,0},{0,0,1}}

53 P6/m 96 2 {{1,0,0},{0,1,0},{0,0,1}}

53 P6/m 96 3 {{1,0,0},{2,3,0},{0,0,2}}

53 P6/m 96 4 {{1,0,0},{0,1,0},{0,0,2}}

53 P6/m 10 6/m 1 {{1,0,0},{0,1,0},{0,0,1}}
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53 P6/m 10 6/m 2 {{1,0,0},{0,1,0},{0,0,2}}

54 P622 22, 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

54 P622 22, 2 {{2,0,0},{0,2,0},{0,0,1+c;}}

54 P622 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

54 P622 33 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

54 P622 46 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

54 P622 5321 1 {{1,0,0},{2,3,0},{0,0,1}}

54 P622 5321 2 {{1,0,0},{0,1,0},{0,0,1}}

54 P622 5321 3 {{1,0,0},{2,3,0},{0,0,2}}

54 P622 5321 4 {{1,0,0},{0,1,0},{0,0,2}}

54 P622 6312 1 {{1,0,0},{0,1,0},{0,0,1}}

54 P622 6312 2 {{1,0,0},{0,1,0},{0,0,2}}

54 P622 7622 1 {{1,0,0},{0,1,0},{0,0,1}}

54 P622 7622 2 {{1,0,0},{0,1,0},{0,0,2}}

55 Pémm 22, 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

55 Pémm 22, 2 {{2,0,0},{0,2,0},{0,0,1+c;}}

55 Pémm 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

55 Pémm 33 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

55 Pémm 46 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

55 Pémm 531m 1 {{1,0,0},{2,3,0},{0,0,1+¢c;}}

55 Pémm 531m 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

55 P6émm 6 3ml 1 {{1,0,0},{0,1,0},{0,0,1+c1}}

55 P6mm 7 6mm 1 {{1,0,0},{0,1,0},{0,0,1+c;}}

56 P6m2 2 m, 1 {{1+¢1,0,0},{0,1+¢;,0},{0,0,1}}

56 P6m2 2m, 2 {{14¢1,0,0},{(1+c)(1+d1),(1+c1)(2+d +d>),0},{0,0,1}} 61
56 P6m2 2 m; 3 {{1+4¢,0,0},{0,1+¢;,0},{0,0,2}}

56 P6m?2 2 my 4 {{14¢1,0,0},{(1+c1)(1+d1),(14¢1)(2+d; +d>),0},{0,0,2}} 61
56 P6m2 2 m; 5 {{14¢1,0,0},{2(1+c1)(1+d1),2(1 +c1)(2+di1 +d2),0},{1,0,2}} 60*
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56 P6m?2 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

56 P6m2 33 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

56 P6m2 46 1 {{1,0,0},{2,3,0},{0,0,1}}

56 P6m2 46 2 {{1,0,0},{0,1,0},{0,0,1}}

56 P6m2 46 3 {{1,0,0},{2,3,0},{0,0,2}}

56 P6m2 46 4 {{1,0,0},{0,1,0},{0,0,2}}

56 P6m2 5312 1 {{1,0,0},{0,1,0},{0,0,1}}

56 P6m?2 5312 2 {{1,0,0},{0,1,0},{0,0,2}}

56 P6m2 6 3ml 1 {{1,0,0},{0,1,0},{0,0,1+¢c;}}

56 P6m2 7 6m2 1 {{1,0,0},{0,1,0},{0,0,1}}

56 P6m?2 7 6m2 2 {{1,0,0},{0,1,0},{0,0,2}}

57 P62m 2 m; 1 {{14+¢1,0,0},{0,1+4¢;1,0},{0,0,1}}

57 P62m 2 m; 2 {{14¢1,0,0},{(1+c1)(1+d)),(1+c1)(2+d) +d»),0},{0,0,1}} 61
57 P62m 2 my 3 {{14¢1,0,0},{0,1+¢;,0},{0,0,2}}

57 P62m 2 m, 4 {{1+c¢1,0,0},{(1+c)(1+dy),(1+c1)(2+d; +dr),0},{0,0,2}} 61
57 P62m 2 m; 5 {{1+4¢1,0,0},{2(1+c1)(1+d1),2(1+¢1)(2+d1 +d2),0},{1,0,2}} 60*
57 P62m 33 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

57 P62m 33 2 {{1,0,0},{0,1,0},{0,0,14c¢;}}

57 P62m 4321 1 {{1,0,0},{2,3,0},{0,0,1}}

57 P62m 4321 2 {{1,0,0},{0,1,0},{0,0,1}}

57 P62m 4321 3 {{1,0,0},{2,3,0},{0,0,2}}

57 P62m 4321 4 {{1,0,0},{0,1,0},{0,0,2}}

57 P62m 531m 1 {{1,0,0},{2,3,0},{0,0,1+c;}}

57 P62m 531m 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

57 P62m 66 1 {{1,0,0},{2,3,0},{0,0,1}}

57 P62m 66 2 {{1,0,0},{0,1,0},{0,0,1}}

57 P62m 66 3 {{1,0,0},{2,3,0},{0,0,2}}

57 P62m 66 4 {{1,0,0},{0,1,0},{0,0,2}}
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57 P62m 7 62m 1 {{1,0,0},{2,3,0},{0,0,1}}

57 P62m 762m 2 {{1,0,0},{0,1,0},{0,0,1}}

57 P62m 7 62m 3 {{1,0,0},{2,3,0},{0,0,2}}

57 P62m 7 62m 4 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 21 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 2 1 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 2 1 3 {{2,0,0},{0,2,0},{0,0,1}}

58 P6/mmm | 2 1 4 {{2,0,0},{0,2,0},{0,0,2}}

58 P6/mmm | 32, 1 {{1,0,0},{0,1,0},{0,0,1+¢c;}}

58 P6/mmm | 32, 2 {{2,0,0},{0,2,0},{0,0,1+c;}}

58 P6/mmm | 4 m; 1 {{1+4¢,0,0},{0,1+¢;,0},{0,0,1}}

58 P6/mmm | 4 m, 2 {{1+¢1,0,0},{(1+c1)(1+d1),(1+c1)(2+d +d>),0},{0,0,1}} 61
58 P6/mmm | 4 m, 3 {{14¢,0,0},{0,1+¢;,0},{0,0,2}}

58 P6/mmm | 4 m; 4 {{14¢1,0,0},{(1+c1)(1+d1),(14¢1)(2+d; +d»),0},{0,0,2}} 61
58 P6/mmm | 4 m, 5 {{1+¢1,0,0},{2(1+c1)(14+d1),2(14+¢1)(2+d1 +d»),0},{1,0,2}} 60*
58 P6/mmm | 53 1 {{1,0,0},{2,3,0},{0,0,14¢;}}

58 P6/mmm | 53 2 {{1,0,0},{0,1,0},{0,0,1+c;}}

58 P6/mmm | 62/m, 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 62/m, 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 62/m; 3 {{2,0,0},{0,2,0},{0,0,1}}

58 P6/mmm | 62/m, 4 {{2,0,0},{0,2,0},{0,0,2}}

58 P6/mmm | 73 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 73 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 86 1 {{1,0,0},{0,1,0},{0,0,14¢;}}

58 P6/mmm | 9 321 1 {{1,0,0},{2,3,0},{0,0,1}}

58 P6/mmm | 9321 2 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 9321 3 {{1,0,0},{2,3,0},{0,0,2}}

58 P6/mmm | 9 321 4 {{1,0,0},{0,1,0},{0,0,2}}
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58 P6/mmm | 10 31m 1 {{1,0,0},{2,3,0},{0,0,1+c;}}
58 P6/mmm | 1031m | 2 {{1,0,0},{0,1,0},{0,0,1+¢;}}
58 P6/mmm | 116 1 {{1,0,0},{2,3,0},{0,0,1}}

58 P6 /mmm | 116 2 {{1,0,0},{0,1,0},{0,0,1}}

58 P6 /mmm | 116 3 {{1,0,0},{2,3,0},{0,0,2}}

58 P6/mmm | 116 4 {{1,0,0},10,1,0},{0,0,2}}

58 P6/mmm | 12312 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 12312 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6 /mmm | 13 3ml 1 {{1,0,0},{0,1,0},{0,0,1+c1}}
58 P6/mmm | 146/m | 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 146/m | 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6 /mmm | 15 3ml 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 15 3ml 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 16 622 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6 /mmm | 16 622 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 1762m | 1 {{1,0,0},{2,3,0},{0,0,1}}

58 P6/mmm | 17 62m 2 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 1762m | 3 {{1,0,0},{2,3,0},{0,0,2}}

58 P6/mmm | 1762m | 4 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 18 31m 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 1831m | 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 19 6mm 1 {{1,0,0},{0,1,0},{0,0,1+c1}}
58 P6/mmm | 20 6m2 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 206m2 | 2 {{1,0,0},{0,1,0},{0,0,2}}

58 P6/mmm | 21 6/mmm | 1 {{1,0,0},{0,1,0},{0,0,1}}

58 P6/mmm | 21 6/mmm | 2 {{1,0,0},{0,1,0},{0,0,2}}

59 P23 2222 1 {{1,0,0},{0,1,0},{0,0,1}}

59 P23 2222 2 {{1,0,0},{0,1,0},{1,1,2}}
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59 P23 2222 3 {{1,0,0},{1,2,0},{1,0,2}}
59 P23 2222 4 {{2,0,0},{0,2,0},{0,0,2}}
59 P23 323 1 {{1,0,0},{0,1,0},{1,1,2}}
59 P23 323 2 {{1,0,0},{0,1,0},{0,0,1}}
60 F23 2222 1 {{1,0,0},{0,1,0},{0,0,1}}
60 F23 2222 2 {{1,0,0},{1,2,0},{1,0,2}}
60 F23 323 1 {{1,0,0},{0,1,0},{0,0,1}}
61123 2222 1 {{1,0,0},{0,1,0},{3,3,4}}
61123 2222 2 {{1,0,0},{0,1,0},{1,1,2}}
61123 2222 3 {{1,0,0},{0,1,0},{0,0,1}}
61123 2222 4 {{1,0,0},{0,1,0},{3,3,4}}
61123 2222 5 {{1,0,0},{0,1,0},{1,1,2}}
61123 2222 6 {{1,0,0},{0,1,0},{0,0,1}}
61123 323 1 {{1,0,0},{0,1,0},{3,3,4}}
61123 323 2 {{1,0,0},{0,1,0},{1,1,2}}
61123 323 3 {{1,0,0},{0,1,0},{0,0,1}}
61123 323 4 {{1,0,0},{0,1,0},{3,3,4}}
61123 323 5 {{1,0,0},{0,1,0},{1,1,2}}
61123 323 6 {{1,0,0},{0,1,0},{0,0,1}}
62 Pm3 21 1 {{1,0,0},{0,1,0},{0,0,1}}
62 Pm3 21 2 {{1,0,0},{0,1,0},{1,1,2}}
62 Pm3 21 3 {{1,0,0},{1,2,0},{1,0,2}}
62 Pm3 21 4 {{2,0,0},{0,2,0},{0,0,2}}
62 Pm3 3222 1 {{1,0,0},{0,1,0},{0,0,1}}
62 Pm3 3222 2 {{1,0,0},{0,1,0},{1,1,2}}
62 Pm3 3222 3 {{1,0,0},{1,2,0},{1,0,2}}
62 Pm3 3222 4 {{2,0,0},{0,2,0},{0,0,2}}
62 Pm3 4 mmm 1 {{1,0,0},{0,1,0},{0,0,1}}
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62 Pm3 4 mmm 2 {{1,0,0},{0,1,0},{1,1,2}}
62 Pm3 4 mmm 3 {{1,0,0},{1,2,0},{1,0,2}}
62 Pm3 4 mmm 4 {{2,0,0},{0,2,0},{0,0,2}}
62 Pm3 523 1 {{1,0,0},{0,1,0},{1,1,2}}
62 Pm3 523 2 {{1,0,0},{0,1,0},{0,0,1}}
62 Pm3 6 m3 1 {{1,0,0},{0,1,0},{1,1,2}}
62 Pm3 6 m3 2 {{1,0,0},{0,1,0},{0,0,1}}
63 Fm3 21 1 {{1,0,0},{0,1,0},{0,0,1}}
63 Fm3 21 2 {{1,0,0},{1,2,0},{1,0,2}}
63 Fm3 21 3 {{2,0,0},{0,2,0},{0,0,2}}
63 Fm3 3222 1 {{1,0,0},{0,1,0},{0,0,1}}
63 Fm3 3222 2 {{1,0,0},{1,2,0},{1,0,2}}
63 Fm3 4 mmm 1 {{1,0,0},{0,1,0},{0,0,1}}
63 Fm3 4 mmm 2 {{1,0,0},{1,2,0},{1,0,2}}
63 Fm3 523 1 {{1,0,0},{0,1,0},{0,0,1}}
63 Fm3 6 m3 1 {{1,0,0},{0,1,0},{0,0,1}}
64 Im3 21 1 {{1,0,0},{0,1,0},{0,0,1}}
64 Im3 21 2 {{1,0,0},{0,1,0},{1,1,2}}
64 Im3 21 3 {{2,0,0},{0,2,0},{0,0,2}}
64 Im3 3222 1 {{1,0,0},{0,1,0},{3,3,4}}
64 Im3 3222 2 {{1,0,0},{0,1,0},{1,1,2}}
64 Im3 3222 3 {{1,0,0},{0,1,0},{0,0,1}}
64 Im3 3222 4 {{1,0,0},{0,1,0},{3,3,4}}
64 Im3 3222 5 {{1,0,0},{0,1,0},{1,1,2}}
64 Im3 3222 6 {{1,0,0},{0,1,0},{0,0,1}}
64 Im3 4 mmm 1 {{1,0,0},{0,1,0},{1,1,2}}
64 Im3 4 mmm 2 {{1,0,0},{0,1,0},{0,0,1}}
64 Im3 523 1 {{1,0,0},{0,1,0},{3,3,4}}
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64 Im3 523 2 {{1,0,0},{0,1,0},{1,1,2}}
64 Im3 523 3 {{1,0,0},{0,1,0},{0,0,1}}
64 Im3 523 4 {{1,0,0},{0,1,0},{3,3,4}}
64 Im3 523 5 {{1,0,0},{0,1,0},{1,1,2}}
64 Im3 523 6 {{1,0,0},{0,1,0},{0,0,1}}
64 Im3 6 m3 1 {{1,0,0},{0,1,0},{1,1,2}}
64 Im3 6 m3 2 {{1,0,0},{0,1,0},{0,0,1}}
65 P432 2222 1 {{1,0,0},{0,1,0},{0,0,1}}
65 P432 2222 2 {{1,0,0},{0,1,0},{1,1,2}}
65 P432 2222 3 {{1,0,0},{1,2,0},{1,0,2}}
65 P432 2222 4 {{2,0,0},{0,2,0},{0,0,2}}
65 P432 323 1 {{1,0,0},{0,1,0},{1,1,2}}
65 P432 323 2 {{1,0,0},{0,1,0},{0,0,1}}
65 P432 4432 1 {{1,0,0},{0,1,0},{1,1,2}}
65 P432 4432 2 {{1,0,0},{0,1,0},{0,0,1}}
66 F432 2222 1 {{1,0,0},{0,1,0},{0,0,1}}
66 F432 2222 2 {{1,0,0},{1,2,0},{1,0,2}}
66 F432 323 1 {{1,0,0},{0,1,0},{0,0,1}}
66 F432 4432 1 {{1,0,0},{0,1,0},{0,0,1}}
67 1432 2222 1 {{1,0,0},{0,1,0},{3,3,4}}
67 1432 2222 2 {{1,0,0},{0,1,0},{1,1,2}}
67 1432 2222 3 {{1,0,0},{0,1,0},{0,0,1}}
67 1432 2222 4 {{1,0,0},{0,1,0},{3,3,4}}
67 1432 2222 5 {{1,0,0},{0,1,0},{1,1,2}}
67 1432 2222 6 {{1,0,0},{0,1,0},{0,0,1}}
67 1432 323 1 {{1,0,0},{0,1,0},{3,3,4}}
67 1432 323 2 {{1,0,0},{0,1,0},{1,1,2}}
67 1432 323 3 {{1,0,0},{0,1,0},{0,0,1}}
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67 1432 323 4 {{1,0,0},{0,1,0},{3,3,4}}
67 1432 323 5 {{1,0,0},{0,1,0},{1,1,2}}
67 1432 323 6 {{1,0,0},{0,1,0},{0,0,1}}
67 1432 4432 1 {{1,0,0},{0,1,0},{1,1,2}}
67 1432 4432 2 {{1,0,0},{0,1,0},{0,0,1}}
68 P43m 2222 1 {{1,0,0},{0,1,0},{0,0,1}}
68 P43m 2222 2 {{1,0,0},{0,1,0},{1,1,2}}
68 P43m 2222 3 {{1,0,0},{1,2,0},{1,0,2}}
68 P43m 2222 4 {{2,0,0},{0,2,0},{0,0,2}}
68 P43m 323 1 {{1,0,0},{0,1,0},{1,1,2}}
68 P43m 323 2 {{1,0,0},{0,1,0},{0,0,1}}
68 P43m 4 43m 1 {{1,0,0},{0,1,0},{1,1,2}}
68 P43m 4 43m 2 {{1,0,0},{0,1,0},{0,0,1}}
69 F43m 2222 1 {{1,0,0},{0,1,0},{0,0,1}}
69 F43m 2222 2 {{1,0,0},{1,2,0},{1,0,2}}
69 F43m 323 1 {{1,0,0},{0,1,0},{0,0,1}}
69 F43m 443m 1 {{1,0,0},{0,1,0},{0,0,1}}
70 143m 2222 1 {{1,0,0},{0,1,0},{3,3,4}}
70 143m 2222 2 {{1,0,0},{0,1,0},{1,1,2}}
70 143m 2222 3 {{1,0,0},{0,1,0},{0,0,1}}
70 143m 2222 4 {{1,0,0},{0,1,0},{3,3,4}}
70 143m 2222 5 {{1,0,0},{0,1,0},{1,1,2}}
70 143m 2222 6 {{1,0,0},{0,1,0},{0,0,1}}
70 143m 323 1 {{1,0,0},{0,1,0},{3,3,4}}
70 143m 323 2 {{1,0,0},{0,1,0},{1,1,2}}
70 143m 323 3 {{1,0,0},{0,1,0},{0,0,1}}
70 143m 323 4 {{1,0,0},{0,1,0},{3,3,4}}
70 143m 323 5 {{1,0,0},{0,1,0},{1,1,2}}
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ACC Py By matrix row by row c#
70 133m 323 6 {{1,0,0},{0,1,0},{0,0,1}}
70 I43m 433m 1 {{1,0,0},{0,1,0},{3,3,4}}
70 133m 433m 2 {{1,0,0},{0,1,0},{1,1,2}}
70 133m 433m 3 {{1,0,0},{0,1,0},{0,0,1}}
70 133m 433m 4 {{1,0,0},{0,1,0},{3,3,4}}
70 133m 433m 5 {{1,0,0},{0,1,0},{1,1,2}}
70 133m 433m 6 {{1,0,0},{0,1,0},{0,0,1}}
71 Pmd3m | 21 1 {{1,0,0},{0,1,0},{0,0,1}}
71 Pmdm | 21 2 {{1,0,0},{0,1,0},{1,1,2}}
71 Pm3m | 21 3 {{1,0,0},{1,2,0},{1,0,2}}
71 Pmd3m | 21 4 {{2,0,0},{0,2,0},{0,0,2}}
71 Pmdm | 3222 1 {{1,0,0},{0,1,0},{0,0,1}}
71 Pm3m | 3222 2 {{1,0,0},{0,1,0},{1,1,2}}
71 Pm3m | 3222 3 {{1,0,0},{1,2,0},{1,0,2}}
71 Pmdm | 3222 4 {{2,0,0},{0,2,0},{0,0,2}}
71 Pm3m 4 mmm 1 {{1,0,0},{0,1,0},{0,0,1}}
71 Pm3m 4 mmm 2 {{1,0,0},{0,1,0},{1,1,2}}
71 Pmdm | 4 mmm 3 {{1,0,0},{1,2,0},{1,0,2}}
71 Pm3m 4 mmm 4 {{2,0,0},{0,2,0},{0,0,2}}
71 Pm3m | 523 1 {{1,0,0},{0,1,0},{1,1,2}}
71 Pm3m | 523 2 {{1,0,0},{0,1,0},{0,0,1}}
71 Pmdm | 6 m3 1 {{1,0,0},{0,1,0},{1,1,2}}
71 Pm3m | 6m3 2 {{1,0,0},{0,1,0},{0,0,1}}
71 Pm3m | 7432 1 {{1,0,0},{0,1,0},{1,1,2}}
71 Pmdm | 7432 2 {{1,0,0},{0,1,0},{0,0,1}}
71 Pm3m | 843m 1 {{1,0,0},{0,1,0},{1,1,2}}
71 Pmd3m | 8 43m 2 {{1,0,0},{0,1,0},{0,0,1}}
71 Pm3m | 9 m3m 1 {{1,0,0},{0,1,0},{1,1,2}}

Continued on next page
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ACC Py By matrix row by row c#
71 Pm3m | 9 m3m 2 {{1,0,0},{0,1,0},{0,0,1}}
72 Fm3m | 21 1 {{1,0,0},{0,1,0},{0,0,1}}
72 Fm3m | 21 2 {{1,0,0},{1,2,0},{1,0,2}}
72 Fm3m | 21 3 {{2,0,0},{0,2,0},{0,0,2}}
72 Fm3m | 3222 1 {{1,0,0},{0,1,0},{0,0,1}}
72 Fmd3m | 3222 2 {{1,0,0},{1,2,0},{1,0,2}}
72 Fm3m 4 mmm 1 {{1,0,0},{0,1,0},{0,0,1}}
72 Fm3m | 4 mmm 2 {{1,0,0},{1,2,0},{1,0,2}}
72 Fm3m | 523 1 {{1,0,0},{0,1,0},{0,0,1}}
72 Fm3m | 6m3 1 {{1,0,0},{0,1,0},{0,0,1}}
72 Fm3m | 7432 1 {{1,0,0},{0,1,0},{0,0,1}}
72 Fm3m | 843m 1 {{1,0,0},{0,1,0},{0,0,1}}
72 Fm3m | 9 m3m 1 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 21 1 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m | 21 2 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 21 3 {{2,0,0},{0,2,0},{0,0,2}}
73 Im3m 3222 1 {{1,0,0},{0,1,0},{3,3,4}}
73 Imdm | 3222 2 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 3222 3 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 3222 4 {{1,0,0},{0,1,0},{3,3,4}}
73 Imd3m | 3222 5 {{1,0,0},{0,1,0},{1,1,2}}
73 Imdm | 3222 6 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 4 mmm 1 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 4 mmm 2 {{1,0,0},{0,1,0},{0,0,1}}
73 Imdm | 523 1 {{1,0,0},{0,1,0},{3,3,4}}
73 Im3m | 523 2 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 523 3 {{1,0,0},{0,1,0},{0,0,1}}
73 Imdm | 523 4 {{1,0,0},{0,1,0},{3,3,4}}

Continued on next page
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ACC Py By matrix row by row c#
73 Im3m 523 5 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 523 6 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 6 m3 1 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 6 m3 2 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 7432 1 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 7432 2 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 8 43m 1 {{1,0,0},{0,1,0},{3,3,4}}
73 Im3m 8 43m 2 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 8 43m 3 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 8 43m 4 {{1,0,0},{0,1,0},{3,3,4}}
73 Im3m 8 43m 5 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 8 43m 6 {{1,0,0},{0,1,0},{0,0,1}}
73 Im3m 9 m3m 1 {{1,0,0},{0,1,0},{1,1,2}}
73 Im3m 9 m3m 2 {{1,0,0},{0,1,0},{0,0,1}}
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Table A.2 A list of extra conditions referenced in Table A.1. Each entry contains one
or more rational polynomial functions that must simultaneously take on integer values.
Furthermore, all variables are restricted to non-negative integer values, except for entries
26-29 where dj is further constrained by the inequalities presented and d; can be negative.
Some of these conditions have no solutions; some have only a finite number of solutions,
some have infinite families of solutions. A discussion of each of the solution space of
each condition follows the table.

c# extra conditions

1 S5+4d,+d;
Tdt2d,
’ 5+4d,+d;
Tdt2d,
3 | 2di(+d)
1+d1+d2

d\(2+d;)
2+di+d;
2+2d,+d}
2+4di+dy
dy(2+d;)
3+di+dy
2+2d,+d}
3+d+d>
3 2(243d; +d7)
3+di+dy
9 3+4d,+d?
3+d+d>
5+4d; +d?
10 | 2t2ditdi
3+d+d>
11 2(6-+5d;+d?)
3+d)+dp
dy(2+d,)
12 44-di+d,
13 2(2+3d;+d?)
4+d|+d2
3+4d,+d?
14 | 222000
4+d|+d2
15 2(6+5d;+d?)
4+d1+d2
d\(2+d;)
16 S5+di+d
3+4d,+d}
S5+di+dy
8+6d;+d?
S5+di+d,

17
18

Continued on next page
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Table A.2 — continued from previous page

c# extra conditions
2d,(1+d,)
19 342d1+d>
2(2+3d;+d?)
20 442d,+d,
71 2(2+3d;+d?)
512d1+d>
79 | di(2+d) 2+2d)+d?}
24d+d; 2+d +dy
23 | di2+d) 2+2d,+d?}
34di+d 3+di+dy
24 3+4d,+d? 5+4d,+d}
3+d+dy 3+di+dy
6+2d1+3d> 3+di+d;
26 —dlfjdzld_gjzdﬁ dy >Max[—1524 0] d; can be negative
7 dlgrdzﬂ;%dﬁ dy >Max[~1524 0] d; can be negative
5 )
28 | dy >Max[~d1,0]  dy can be negative
—2d?+dy—d; (2+3dy) i
29 e dy >Max[—d,0] dy can be negative
2d, (14d,)
30 1+dy+d;
31 1+2d;+2d?
1+d+d;
2d,(1+d,)
32 24d+dy
d(2+d,)
33 2+4dy+dy
1+d;+d}
34 24+di+d,
2+2d; +d?
35 24di+d>
36 3+6d;+4d}
2(2+d,+dy)
2dy(1+d;)
37 3+d+d,
d(2+dy)
38 34+d+d>
2+42d, +d?
39 | Zreditdy
34+d+dy
2(243d+d?
40 | 2ZEAd)
34+d+d>

Continued on next page
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Table A.2 — continued from previous page

c# extra conditions
A1 2(2+3d;+d?)
34+di+dp
3+4d)+d?
42 3+d+dy
5+4dy+d?
43 3+d+d,
2(6+5d;+d?)
44 3+d+dy
d|(2+d))
45 4+d|+d;
2(24-3d; +d7)
46 4+d+dy
3+4d,+d7
47 4+d+d;
2(6+5d,+d?)
48 4+d+d;
d; (2+d1)
49 S5+di+dy
3+4d,+d?
50 | Aditdy
S5+di+dy
51 3+4d,+d?
S5+di+d,
8+6d,+d?
59 | Stoditdy
S5+dy+d,
1+2d,+2d?
53 24+2d+d;
2d; (1+d,)
>4 3+2d,+d>
3+8d,+4d;
55 Br2di+dy
56 2(2+3d;+d?)
442d+d>
57 2(2+3d;+d?)
44-2d+d;
4d, (1+dy)
58 3+2d1+2d>
142d, +4d}
59 6+4d;+2d,
60 2d; (1+d,) 3+6d;+4d}
2+dy+dy 2(2+d,+d,)
61 1-d? 1+d+d}
2+d\+d> 2+dy+d>
62 | DCtdy) 2+2d,+d}
3+d|+d> 3+d|+d>

Continued on next page
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c# extra conditions

63 | 34 +d? 5+4d,+d?
3+d| +d2 3+d1 +d2

64 1+d? 1+dy+d (2+d)
3+di+2d, 3+d|+2d;

65 | Lt +d? 34+2dy+2d; (2+d)
4+d | +2d, 2(4+d +2dy)

66 1-d? (=1+d))d> (1+d))(1+d>)
I+d,+2d, I+d, +2d, T+d,+2d,

67 2(2+dy)dr (14dy) 2(3+d+2dyr+ddr+d3)
3+d\ +2dr+d\dy+d5 24+d,

68 (1+d,)(3+8dr+4d2) 443d,+2dr+2d  dp+-ds
44+2dr+d, (3+2d2)+d3 1+d;

69 2(1+d1)(1+d3) 2(1+d,)
T+4d3+dy (2+d3)+d, (3+2d3) 4+2d\+d,

70 2(2+d1)(1+d3) 2(2+d1)
8+5d3+d>(2+d3)+d (3+2d3) 5+2d+d;

71 2(3+d1)(1+d3) 2(3+d1)
94-6d3+dy(2+d3)+d1 (3+2d3) 6+2d, +d,

7 (14d;)(142d3) 1+d;
5+4d3+2d; (14+d3)+d» (3+2d3) 2+-dy+dy

73 (2+d; ) (1+2d3) 2+d,
T4+6d3+2d, (1+d3) +d2 (3+2d3) 3+d,+d,

74 (3+d1)(3+2d3) 3+d,
6(2+d3)+2d,(2+d3)+dr(5+2d3)  3+d+d,

For each c# that is not specifically listed in the paragraphs below, there are infinitely many

solutions. Each of these cases has a single quotient of polynomials of the form Z f(d)

W , where the

polynomial coefficients are all positive integers, and the variables d; and d> must be non-negative
integers, and g(d;) # 0. Thus, the integer value k of the quotient must be positive. Solving for d;
in terms of k, we obtain d, = @ — g(dy). For a given dy, every integer value of k > 0 that divides
f(dy) provides an integer solution for d,. For any dy, k = f(d;) will always be a solution; but there

will usually be others as well. Because d; has infinite range, the condition has an infinite number

of solutions.
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c#1and 2:

There are no solutions. To illustrate this, we can expand the quotient as 1 -l— Pt 5 204dr) Since

2+d )"

d‘ is a half-integer and 0 < 304d) Z’ the sum cannot be integral.

2+d )
cH# 22:

There is only one solution. Since both quotients must be integers, it follows that their differ-
ence must also be an integer. If we subtract the first quotient from the second, it yields szz

which is only an integer when d; = dp = 0.

c# 23, 24, 62, and 63:
There are no solutions. If we take the difference of the two quotients, we get m which

must lie strictly between 0 and 1, and therefore cannot be an integer.

c# 25:
There are no solutions. By observation, the second quotient is positive but less than or equal
to 1 with equality only when d, = 0. However, replacing d, with O reduces the first quotient to %

which is clearly not an integer.

c# 36, 59, 60, and 65:
There are no solutions. These cases contain a quotient where the numerator is odd while the

denominator is even; thus, it can never be an integer.

c# 58:
There is one infinite one-dimensional family of solutions. Clearly, d; = 0O is a solution for any

dr > 0. If dy # 0, then the numerator of the quotient is even while the denominator is odd, so the
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quotient cannot be integral.

c# 61:

. . . 2+d, .
There is only one solution. If we take the sum of the two quotients, we get Tid s which

2

will only be an integer if dp = 0. With this in mind we can rewrite the first quotient as ;Zi =
2—d— zf—dl which is only integral if d; = 1. Thus, the only solution for this case is d; = 1 and

dr, =0.

c# 69,70, 72, and 73:
There are no solutions. The second quotient in each case has a denominator that is strictly

greater than the non-zero numerator and thus it cannot be an integer.

c# 71 and 74:

There are no solutions. The second quotient in each case has a denominator that is d, greater
than the numerator, so that it is integral if and only if d, = 0. However, applying d» = O to the first
quotient makes its denominator 3 + d; greater than its numerator, so that the first quotient is not an

integer.

c# 26, 27, 28, 29, 64, 66, 67, and 68:
There are infinitely many solutions. These cases are more complicated and are still under

investigation.
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