
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2018-10-04 

Using Machine Learning to Accurately Predict Ambient Using Machine Learning to Accurately Predict Ambient 

Soundscapes from Limited Data Sets Soundscapes from Limited Data Sets 

Katrina Lynn Pedersen 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Pedersen, Katrina Lynn, "Using Machine Learning to Accurately Predict Ambient Soundscapes from 
Limited Data Sets" (2018). Theses and Dissertations. 9272. 
https://scholarsarchive.byu.edu/etd/9272 

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion 
in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please 
contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F9272&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F9272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/9272?utm_source=scholarsarchive.byu.edu%2Fetd%2F9272&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Using Machine Learning to Accurately Predict Ambient

Soundscapes from Limited Data Sets

Katrina Lynn Pedersen

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Mark Transtrum, Chair
Kent Gee

Sean Warnick

Department of Physics and Astronomy

Brigham Young University

Copyright © 2018 Katrina Lynn Pedersen

All Rights Reserved



ABSTRACT

Using Machine Learning to Accurately Predict Ambient
Soundscapes from Limited Data Sets

Katrina Lynn Pedersen
Department of Physics and Astronomy, BYU

Master of Science

The ability to accurately characterize the soundscape, or combination of sounds, of diverse
geographic areas has many practical implications. Interested parties include the United States
military and the National Park Service, but applications also exist in areas such as public health,
ecology, community and social justice noise analyses, and real estate. I use an ensemble of machine
learning models to predict ambient sound levels throughout the contiguous United States. Our
data set consists of 607 training sites, where various acoustic metrics, such as overall daytime
L50 levels and one-third octave frequency band levels, have been obtained. I have data for 117
geospatial features for the entire contiguous United States, which include metrics such as distance
to the nearest road or airport, and the percentage of industrialization or forest in a specific area. I
discuss initial model predictions in the spatial, frequency, and temporal domains, and the statistical
advantages of using an ensemble of machine learning models, particularly for limited data sets. I
comment on uncertainty quantification for machine learning models originating from limited data
sets.

Keywords: acoustics, ensemble model, machine learning, soundscape, statistics, uncertainty
quantification



ACKNOWLEDGMENTS

Thanks to all of my family who have supported and encouraged me and made it possible for

me to get an education.

I would also like to thank Dr. Mark Transtrum for his patience and guidance as we worked on

this problem. I am grateful to Brigham Young University for giving me an opportunity to study and

gain an education. Thanks also to the rest of my committee, Dr. Kent Gee and Dr. Sean Warnick,

and Brooks Butler for their insightful comments and questions.

Thanks to Blue Ridge Reasearch and Consulting, LLC (BRRC) for obtaining and organizing a

database of geospatial features and acoustic metrics. Additionally, thanks to BRRC for providing

the code to create maps of sound level predictions.

This work was supported by BRRC via a U.S. Army Small Business Innovation Research

(SBIR) contract.



Contents

Table of Contents iv

List of Figures vi

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Geospatial Acoustics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Limited Data Sets in Machine Learning . . . . . . . . . . . . . . . . . . . 3

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Acoustics and Sound Level Metrics . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Principles of Machine Learning . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Methodology 24
2.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Computational Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Model Selection and Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Results 32
3.1 Ensemble of Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Ensemble Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Summer L10, L50, and L90 Day and Nighttime Maps . . . . . . . . . . . . 39
3.2.2 Frequency Group Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Hourly Summer L50 Frequency Group Maps . . . . . . . . . . . . . . . . 42

3.3 Leave-Four-Out Validation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Feature Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



CONTENTS v

3.4.1 Initial Feature Importance Rankings . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Error of Reduced Feature Model . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.3 Changes in Predictions from Reduced Feature Models . . . . . . . . . . . 56

4 Conclusions and Future Work 62
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix A Geospatial Features 64

Appendix B Acoustic Data 68

Appendix C Pipeline Code 70
C.1 README . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
C.2 Main.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.3 ParseData.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C.4 PipelinesPool.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
C.5 PrunedModels.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.6 Scalers.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
C.7 Validation.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
C.8 AnalysisTools.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
C.9 createFullConus.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.10 findMedian.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
C.11 Sample Data File: Data1008.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105



List of Figures

1.1 Statistical Sound Pressure Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 A-Weighting Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Random Forest Graphic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Neural Network Graphic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 K-Nearest Neighbors Graphic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Support Vector Machine Graphic . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Gaussian Process Regression Graphic . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Mean Upward Radiance at Night . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Proportion of Forest Landcover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Computational Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Residuals from Leave-One-Out Cross Validation . . . . . . . . . . . . . . . . . . 33

3.2 Gradient Boosted Regressor Predictions . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Neural Network Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Ensemble Model Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Standard Deviation Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Day and Night Predicted Exceedance Levels . . . . . . . . . . . . . . . . . . . . . 40

3.7 Ensemble Standard Deviation of Day and Night Predicted Exceedance Levels . . . 41

vi



LIST OF FIGURES vii

3.8 Ensemble Daytime L50 Frequency Groups in North Carolina . . . . . . . . . . . . 43

3.9 Ensemble High and Low Frequency Group Predictions for Asheville (4 a.m.) . . . 44

3.10 Ensemble High and Low Frequency Group Predictions for Asheville (8 a.m.) . . . 45

3.11 Ensemble High and Low Frequency Group Predictions for Asheville (10 p.m.) . . . 46

3.12 Leave-One-Out Daytime Predictions at First Two Validation Sites . . . . . . . . . 47

3.13 Leave-One-Out Daytime Predictions at Last Two Validation Sites . . . . . . . . . . 48

3.14 Leave-One-Out Nighttime Predictions at First Two Validation Sites . . . . . . . . . 49

3.15 Leave-One-Out Nighttime Predictions at Last Two Validation Sites . . . . . . . . . 50

3.16 Day and Nighttime Leave-Four-Out Predictions at First Two Validation Sites . . . . 52

3.17 Day and Nighttime Leave-Four-Out Predictions at Last Two Validation Sites . . . . 53

3.18 Error as a Function of the Number of Features (Gini Importance) . . . . . . . . . . 57

3.19 Error as a Function of the Number of Features (Neural Network Importance) . . . . 58

3.20 Change in Daytime L50 Predictions with Reduced Features (Gini Importance) . . . 59

3.21 Change in Daytime L50 Predictions with Reduced Features (Human Intuition) . . . 60



Chapter 1

Introduction

In this thesis, I examine two problems: the accurate prediction of geospatial sound levels, and the

practice of creating, validating, and improving machine learning models with limited data. This

chapter provides motivation for both problems, and also provides a summary of various acoustic

metrics and machine learning principles. Additionally, an overview of uncertainty quantification

and previous research is given.

1.1 Motivation

1.1.1 Geospatial Acoustics

The ability to accurately characterize the soundscape, or combination of sounds, of various

geographic areas has broad applications. It is specifically valuable to the United States military

and the National Park Service (NPS). It also holds weight in areas such as epidemiology and

ecology.

In the military, soundscape characterization is important to both avoid aural detection and

improve current detection of foreign aircraft. If we understand the limits of enemy detection,

1



1.1 Motivation 2

we will be able to get closer to foreign lands while avoiding detection. Therefore, knowledge of

the soundscape in an area may aid mission planning.

The NPS created the Natural Sounds and Night Skies Division to protect and restore the natural

soundscapes of the national parks [1, 2]. Natural sounds, or the lack thereof, affect the experience

of visitors to the national parks. In particular, recreational motorized noise has been shown

to negatively impact visitor appreciation for natural landscapes [3]. Research suggests natural

soundscapes play an important role in visitor experiences and ecological community processes

within national parks [2,4]. A study of a national park in Spain found that visitors were annoyed by

various anthropogenic noises while visiting the park, and were willing to pay a small entrance fee

to support a noise-reduction program [5]. Experiencing natural sounds is an important motivation

for visiting natural areas, such as the national parks [4].

Commercially, there are possible applications in community and social justice noise analyses,

real estate, epidemiological community health studies, and ecology. Predicting soundscapes

may aid in making decisions regarding construction in or near inhabited areas. Ambient sound

levels also affect housing prices and are correlated with depression and anxiety [6], as well as

hypertension [7–9]. In addition, epidemiological studies have found that increased noise may be

associated with changes in blood pressure, heart rate, and stress [7,9]. More specifically, a positive

correlation has been made between aircraft noise and cardiovascular risk [7, 9] and impaired

reading comprehension, recognition memory, and motivation in children [10]. In adults, sound that

varies significantly in pitch, timbre, or tempo over time has been shown to impair cognitive function

as well [11]. As the number and quality of epidemiological studies continues to increase [9],

providing access to a complete characterization of soundscapes over various geographical areas

will aid in identifying correlations between health and ambient sound levels.

Noise has also been linked to altering behavior, communication, and physiological state among

several animals, such as birds [12–15], marine life [16–20], and frogs and toads [21]. Changes in



1.1 Motivation 3

a soundscape have the ability to affect any animal however [14]. High levels of ambient noise can

lead to masking of communication within a species and also masking of predator noise, particularly

if the ambient noise is at the same frequency at which a species usually communicates [14, 15, 17,

18, 20]. This leads species to occasionally alter the time of day they are active, or to alter the

frequency with which they communicate [14, 15, 17, 18, 20]. Some species may also attempt to

increase the amplitude of their acoustic communication [14, 17]. The acoustic complexity of a

region (not including anthropogenic noise) has also been seen to correlate with higher biodiversity

[19, 22]. Accurate characterization of soundscapes will help ecologists determine the effects of a

variety of ambient sound levels on ecosystem dynamics.

1.1.2 Limited Data Sets in Machine Learning

Machine learning is comprised of a group of modeling techniques that use existing data to "learn"

some function relating inputs to outputs. After learning, the model is used to make predictions

on novel instances. More details on machine learning are given in Sec. 1.2.2. Machine learning

is generally performed on large data sets that are statistically similar to the data set on which

predictions will be made. Machine learning may also be used on limited data sets, but the success

of machine learning models is often dependent upon the ability of the data to characterize all

aspects of model behavior. Transfer learning has been applied successfully to limited data sets

when large amounts of labeled data are available for a task similar to the desired task [23].

Additionally, validation methods that are commonly used on big data sets are not well suited

to machine learning with limited data sets. Holdout validation methods generally require a large

amount of data to be removed during the learning, or training, process to use as a test set after

training. When large data sets are used, training data are not significantly affected by removing a

test set, so validation measures are likely a good approximation of the performance of the complete

model. However, holding out data for testing from a limited data set may significantly alter the



1.2 Background 4

trained model, assuming most instances carry unique information. In other words, in limited data

sets, each instance generally has a greater effect on the learning process than in big data sets. This

suggests that models trained on limited data sets are more likely to be sensitive to the removal

of data for validation. No standard practice currently exists for measuring performance error of

machine learning models trained on limited data sets.

Two important problems to consider are how to best improve machine learning models in

the limited data regime when transfer learning is not possible, and how to best measure the

performance of these models.

1.2 Background

1.2.1 Acoustics and Sound Level Metrics

Acoustic metrics are used to summarize noise across given temporal or frequency ranges. The

sound pressure level (SPL), or level, is defined in terms of the root mean square pressure:

Lp = SPL = 20log10(
Prms

Pre f
)

where Pre f is the reference pressure of the surrounding fluid and the SPL has units of decibels (dB).

In air, Pre f is close to 20 µPa. Note that SPL is measured on a logarithmic scale, so a doubling of

Prms corresponds to a 6 dB increase in level. To give some examples of approximate noise levels,

rustling leaves are 20 dB, whispering is 30 dB, conversational speech is 60 dB, and jet noise is 150

dB.

Statistical noise levels may be calculated from SPLs over any given time domain. More

specifically, the n-percent exceeded level, Ln, is the level exceeded n-percent of the time. The

L10, L50, and L90 are shown for an acoustic signal in Figure 1.1. Since the L10 is the noise level

exceeded 10 percent of the time, it will always be higher than the L50, assuming there is variation



1.2 Background 5

Figure 1.1 Plot of the SPL as a function of time. The L10, L50, and L90 are labeled.



1.2 Background 6

in the acoustic signal. Similarly, the L50 will always be higher than the L90. The L10 represents the

upper limits of fluctuation of the acoustic signal due to atypical or sporadic events, such as traffic

noise. The L90, on the other hand, is characteristic of the background noise level.

In addition to n-percent exceeded levels, the equivalent continuous sound level, or Leq, can be

used to describe the average sound energy over a given time. It is calculated from the mean square

pressure over some total time T from T1 to T2 as:

Leq = 10log10(
1

P2
re f

1
T

∫ T2

T1

P2(t)dt).

Common time intervals are hourly, daytime (7 a.m.-7 p.m.), nighttime (7 p.m.-7 a.m.), and

seasonal.

The frequency domain of an acoustic signal may also be specified. This is commonly done

for fractional octave spectra, such as one-third octave bands. Constant bandwidth spectra, in

which the acoustic source is measured using equally spaced frequency bands, are not as useful

as fractional octave spectra due to the frequency response of the human ear. One-third octave

spectra are determined such that the upper ( fu) and lower ( fl) band edges have a ratio fu/ fl = 21/3.

The center frequency ( fc) of a band is determined by the geometric mean: fc =
√

fl fu. Standard

one-third octave bands were used in the measurement process.

In addition to one-third octave bands, three groups of bands were used as part of this thesis to

analyze low (12.5-125 Hz), medium (160-1,250 Hz), and high (1,600-12,500 Hz) frequency noise.

The SPL for a given group (SPLg) was calculated from the k one-third octave spectral levels within

the given group:

SPLg = 10log10(∑
k

10Lk/10).

In addition to the decibel scale, other scales have been created to weight sound according to

how the human ear reacts to different frequencies. Flat-weighted or unweighted levels often use

units of dBZ since there is zero frequency weighting. The only other weighting discussed here is



1.2 Background 7

Figure 1.2 Plot of the A-weighting for frequencies from 10 Hz to 20 kHZ. The A-weighting is
added to flat-weighted frequency dependent SPLs to calculated the A-weighted SPLs.

the A-weighting, which uses units of dBA. The A-weighting was developed to impose a similar

frequency response as that of the human ear. Sound in the 1-6 kHz range is increased slightly,

while levels are decreased outside of that range. To calculate A-weighted levels, the A-weighting

curve (see Figure 1.2) is added to flat-weighted levels.

In this thesis, flat-weighted levels are used for all frequency measurements. However, all

other metrics will use A-weighted values, which are fairly standard for n-percent exceeded and

equivalent continuous sound levels.



1.2 Background 8

1.2.2 Principles of Machine Learning

Supervised and Unsupervised Learning

There are two main types of machine learning, supervised and unsupervised. Supervised machine

learning models fit model parameters to accurately map from an input space to an output space,

and are used to make predictions in the output space for novel input data. Input data are comprised

of a set of features. Supervised methods require a labeled training data set in which input and

output values are provided for all training instances. Prior to the training, or learning, process,

model hyperparameters, such as the maximum number of iterations or some error tolerance, are

specified by the user. During the training process, parameters are fit in attempts to minimize the

loss function of the model. After a supervised model has been trained, new instances, consisting

of novel input data, may be given to the model. The model provides predicted output values based

on the values of its parameters and hyperparameters.

On the other hand, unsupervised methods do not make predictions, but are used to look for

patterns or unique structures in a single data set. I will focus on applications of supervised

machine learning in this thesis since I want to predict ambient sound levels. Nevertheless, there

are applications of unsupervised methods that can aid in better understanding the data set and

identifying potential areas to improve it. As mentioned before, there is no standard method for

improving and effectively measuring the error of supervised machine learning models created from

limited data sets. However, unsupervised learning methods can help identify instances that are

underrepresented in the training data set.

In the following subsections, various supervised machine learning models are described.

The descriptions are not comprehensive, but rather a summary of the algorithms. For further

information, the reader is directed to Marsland’s text, Machine Learning: An Algorithmic

Perspective [24], or Bishop’s text, Pattern Recognition and Machine Learning [25].

Most supervised models are able to handle both classification and regression problems with



1.2 Background 9

minimal changes in the algorithm. Although I will focus on the regression problem when

predicting acoustic levels, several of the descriptions provided below address the classification

problem, which is often easier to visualize.

Gradient Boosted Regression Trees

Gradient boosted regression trees (GBR) utilize an ensemble of decision trees and gradient

boosting. The random forest algorithm is similar to GBR because both are composed of an

ensemble of decision trees. For simplicity, we first look at a graphic of a trained random forest

(see Figure 1.3) and examine how predictions are made after training. Each of the three shown

decision trees is comprised of several nodes, or junctions. At each junction, some Boolean question

is asked, and the resulting answer determines the path that is followed along each tree. The figure

shows three specific trees of n total trees, which make up the forest. When using the forest to make

predictions, we first find the final outcome or prediction of each individual tree. The most popular

outcome from all n trees determines the predicted output of the forest for a given instance. In the

regression model, each tree predicts a continuous value, rather than a classification.

There are various algorithms for creating decision trees, but I will use the ID3 algorithm [26] to

illustrate the training process of a single tree here. The ends of a tree where predictions are made

are called leaves, and the lines connecting nodes are branches. If all training instances have the

same value, a leaf is returned with that value. If there are no features left, a leaf is returned with the

most common or average value. Otherwise, a node is created that splits according to the feature

that maximizes the information gain, and then that feature is removed from the data set. Branches

are added from that node for all remaining features and the information gain of each feature is

recalculated. This process is iterated through until a tree is complete.

Boosting is the process of taking an ensemble of weak learners, which perform slightly better

than chance, and using them to make fairly good predictions. Assuming most of the trees give



1.2 Background 10

Figure 1.3 A simplified graphic of a RF model built from classification trees.



1.2 Background 11

the correct prediction for most of the data, and assuming that most incorrect predictions will not

give the same incorrect prediction, a boosted forest should make an accurate prediction. One

advantage of using GBR is that decision trees produce inspectable models [27]. In other words,

it is possible to identify which features are higher up on the decision trees, and therefore more

important to model predictions. This can be advantageous when trying to understand model

behavior. Additionally, GBR are better than a single decision tree at avoiding overfitting because

they use a boosted ensemble.

Neural Networks

Artificial neural networks (NNs) were inspired by the process of learning in the brain. Figure 1.4

shows a simplified graphic of a NN, where each node is loosely based off of a neuron. Although the

graphic only shows two hidden layers of nodes, it is possible to have many hidden layers between

the input and output nodes. It is also possible to only have one or zero hidden layers. Generally,

NNs with more hidden layers are better at modeling systems with high levels of complexity, but

they are also more prone to overfitting. All connections between nodes weight the output from the

previous node to the next node as information propagates from the left to the right of the graphic.

Each node may perform a different function, call an activation function, on the weighted input that

it receives. The activation function determines the output of a given node. The simplest nontrivial

activation function is a step function. If the input to a given node is above some threshold, it will

fire and send on the value 1. Otherwise, it will send on 0. NNs train by first stepping forward

through the model with a given instance, and then propagating the error back through the model to

adjust weights.

One type of NN is a multilayer perceptron. During the training phase for a multilayer

perceptron, all weights for the hidden and output nodes are first initialized to small random

numbers. The first instance is fed into the model and the activation of each neuron is calculated



1.2 Background 12

Figure 1.4 A simplified graphic of a NN with two hidden layers.

until the output node is reached. The error for the output node is calculated, and then the error

in the hidden layers is found. The output and hidden layer weights are updated according to their

error and the learning rate, a hyperparameter which determines how rapidly the weights change.

The process is repeated until learning stops and error is stable. After the model is trained and all

weights have been tuned, predictions are made by feeding instances through the model.

Unlike GBR, NNs with many hidden layers are difficult to inspect for physical meaning.

However, the relationships between input features and model outputs become more inspectable

when fewer hidden layers are used.

K-Nearest Neighbors

The k-nearest neighbors (KNN) algorithm is different than GBR and NNs in that no training is

required before predictions are made. The algorithm works by locating the k-nearest instances

from the training data set in the input data space, and then taking the average of the corresponding

k-outputs. It is possible to use different distance metrics. For example, the distances to all k-

outputs are sometimes weighted according to their distance from the new training instance. It is

important to normalize all features prior to calculating the k-nearest neighbors in order to give



1.2 Background 13

Figure 1.5 A graphic showing a KNN classification algorithm. If k = 3, the new example will be
classified as a red diamond, but if k = 5, the new example will be classified as a green square.

equal weight to distance contributions from each feature.

Figure 1.5 shows a KNN classification model for k equal to 3 and 5 for a novel instance. If

k = 3, the classification would be a red diamond, but if k = 5, the classification would be a green

square. This algorithm can be computationally expensive for models with large training sets and

numbers of input features because all distances must be calculated before identifying the k-nearest

instances. There are a few tricks to increase the efficiency of the algorithm, but KNN is generally

slow for large data sets.

Support Vector Machines

Before explaining how support vector machines (SVMs) are trained and make predictions, it is

important to understand the kernel trick, or kernel substitution. The kernel trick was inspired by

a desire to linearly separate data that was not linearly separable in the initial feature space. If

the data could be transformed into higher dimensional spaces, it is possible that it would become

linearly separable. For problems which only rely on the inner product of input vectors, the original



1.2 Background 14

inner product may be replaced by an inner product with a different choice of kernel. Consider

the nonlinear mapping φ(x) corresponding to a kernel function k(x,x′) = φ(x)T φ(x′). It is often

possible to calculate k(x,x′) without knowing φ(x) or φ(x′) because k(x,x′) can be expressed in

terms of the inner product of x and x′. The kernel is a symmetric function that allows us to work

in a high-dimensional space without ever truly transforming all data into that space or performing

calculations there. Kernel trick methods are commonly used for nearest neighbor methods, such as

KNN. Additionally, they are used for models, such as SVMs, that aim to partition data according

to the distance between different training points.

SVMs attempt to separate data such that data with similar output values are grouped together.

Decision boundaries, or hyperplanes, are used to partition data by creating a maximum margin

between different clusters as seen in Figure 1.6. Instances that are on the margin (the blue

triangle outline and red square outline) are called support vectors and are found during the training

process as a chosen loss function, such as the least-squares error, is minimized. SVMs handle

continuous data by using a free parameter ε to determine the maximum tolerable difference

between predictions of members in the same grouping. This helps limit the number of support

vectors. When making predictions, data that falls within ε of a boundary is predicted to have a

similar output value as other members within that boundary.

Kernel Ridge Regression

Kernel ridge (KR) regression uses the kernel trick and then linear regression to fit the data. A KR

model is very similar to a SVM, but instead of using some free parameter ε to determine the spread

allowed near a decision boundary, KR uses squared error loss.



1.2 Background 15

Figure 1.6 A graphic showing how SVMs partition data. The axes are input parameters and the
squares and triangles represent different classes or output values.



1.2 Background 16

Gaussian Process Regression

Gaussian process regression (GPR) is a stochastic process, or collection of random variables, that

uses functions sampled from a multivariate Gaussian distribution to identify probable predicted

values for novel instances. Figure 1.7 shows the prior and posterior distributions and predictions

of a Gaussian process. Prior distributions are generated as functions sampled from a multivariate

Gaussian distribution, generally with a mean of zero and covariance specified by the available input

data. In order to obtain the covariance matrix of the input data, it is necessary to choose a kernel,

such as the squared exponential or linear kernel. After priors have been generated, the training

data are used to constrain the functions and create the posterior distributions for all functions as

seen in the middle panel of Figure 1.7. Since all functions are Gaussian it is possible to calculate

confidence intervals of the predicted data. The plot on the right of Figure 1.7 shows the mean

prediction and one standard deviation above and below the mean. One of the advantages of GPR

is the availability of confidence intervals. Locations that have large confidence intervals identify

areas where the model could most benefit from the addition of new training data. GPR is not as

efficient in high dimensional spaces, particularly for more complex kernel functions, so the training

process often requires more time for data sets with large numbers of features.

Validation Methods

When large amounts of labeled data are available, it is common to split a data set into a training,

testing, and validation set. The ratio of their sizes is generally close to 50:25:25 or 60:20:20

respectively for training, testing, and validation sets, depending on the amount of available data.

The validation set is used during the training process to keep track of how well a given model

learns over time as model parameters are adjusted. If validation error begins increasing while the

training error is still decreasing, the model is likely beginning to overfit and training should be

stopped. After training is stopped, the test set is used to measure the final performance results.



1.2 Background 17

Figure 1.7 The left plot shows functions for a GPR model drawn from a prior distribution
determined by the initial training data. The middle plot shows functions drawn from the posterior
distribution, and the plot on the right shows mean model predictions and one standard deviation
above and below for x from 0 to 10 [28].

This type of validation is a type of holdout validation since instances are removed from the initial

training set to create validation and test sets.

Although this is standard for large data sets, especially when using NNs, it can be problematic

for limited data sets. In limited data sets, there may only be a few instances that contain necessary

information about the relationship between a specific input feature and model outputs. If these

instances are randomly selected to be in the validation or testing set, it is unlikely the trained

model will learn the effects of that feature. Hence, the testing error may vary greatly depending

on the random subsets selected for training, validation, and testing. Ideally, all three sets will be

statistically similar.

Another validation technique is k-fold cross validation. The training data are split into k equally

sized subsets and a model is trained on k−1 subsets while the remaining subset is used as a test set.

This process is repeated k times, each time using a different subset for testing. Error measures can

be averaged over the k results to provide a single error metric. When k is equal to the number of

training instances N, this process is called leave-one-out cross validation since only one instance is

left out of the training set and used for testing each time. Leave-one-out cross validation often takes

more time to calculate because the model must be trained N separate times. It can be better suited to



1.2 Background 18

limited data sets because the majority of model behavior is preserved each time a separate instance

is left out. However, this is not true when predictions are made on data that is statistically different

to the training data. In that case, validation methods, including leave-one-out cross validation, will

give optimistic error measures. There are other validation methods that split the training data in

different ways, but none are well suited to validating the performance of machine learning models

with limited data, especially when predictions are made on data that is statistically different to the

training data set.

The Curse of Dimensionality

Although it is reasonable to believe that machine learning models would perform best when given

as much information as possible, this is often not the case. When a large number of features are

used, training points become sparse in feature space. Hence, a large number of features requires

the availability of a large number of training instances. This is called the curse of dimensionality.

Feature reduction is often performed to remove features that provide minimal information to the

model and to avoid the curse of dimensionality. Further information on feature, or dimensionality,

reduction is given in Sec. 2.4.

1.2.3 Uncertainty Quantification

Uncertainty quantification has existed as long as probability and statistics, and is the science

of identifying, quantifying, and reducing uncertainty when predicting quantities of interest

[29]. There are two main types of uncertainty, aleatoric and epistemic uncertainty [29].

Aleatoric uncertainty, or statistical uncertainty, is inherent to a problem, and hence cannot be

reduced and is generally represented in terms of probabilities [29]. Epistemic, or systematic,

uncertainty originates from an incomplete knowledge or missing physics in a model [29]. Six

sources of uncertainty in computer models have been identified by Kennedy et. al: parameter



1.2 Background 19

uncertainty, model inadequacy, residual variability, parametric variability, observation error, and

code uncertainty [30].

Parameter uncertainty refers to uncertainty in parameter values that a user gives as inputs to a

model [30]. In machine learning, this may be the number of hidden layers or learning rate of a NN.

Model inadequacy, or structural uncertainty, originates from uncertainty in the form of the

model due to limited knowledge of the true underlying mechanisms that generate the data [30].

This form of uncertainty is also common in machine learning because each machine learning model

class has a different structure. Often, the "best" models for a given problem are identified by

which models produce the lowest errors, even though their structure may not match that of the true

generating function.

Residual variability is comprised of two types of uncertainty [30]. The first type of uncertainty

comes from the fact that the process being modeled may be inherently stochastic [30]. The second

type of residual variability occurs when a model lacks the detail necessary to differentiate between

two different processes [30]. Both of these sources of uncertainty can appear in machine learning

when one is either trying to make predictions that are stochastic, or when more features are needed

to distinguish between different model behaviors. If we want to model some variable Y with

observations y1,y2, ...,yN and corresponding model predictions ŷ1, ŷ2, ..., ŷN , the residual variance

is given by,
1
N

N

∑
n=1

(yn− ŷn)
2.

Parametric variability originates from uncertainty of inputs to the model [30]. For example, if

I wanted to make a prediction from an instance that was missing some feature data, I would have

to impute values for the missing fields based on feature distributions. Although no values were

imputed in this thesis, this can still be a cause of uncertainty in machine learning.

Observation error, or experimental uncertainty, originates from variability of empirical mea-

surements [30]. There will always be some amount of noise in a data set since empirical



1.3 Previous Research 20

measurements cannot be completely precise. As long as enough training data are provided with

minimal observation error, the signal to noise ratio will be high enough that the general behavior

of the model may still be learned.

The last type of uncertainty identified by Kennedy et al. [30], code uncertainty or interpolation

uncertainty, originates from the inability to test all input configurations. Hence, it is possible

to miss important model behavior because all parameter combinations were not tested. Many

machine learning models can take days or weeks or longer to run if a data set is significantly large

and complex. So, it would be impossible to test all parameter combinations. When possible, time

should be taken to test a range of parameter combinations and identify those that are appropriate

for a given data set.

1.3 Previous Research

1.3.1 Literature Review

Machine learning methods are well suited to model complex behavior when the underlying physics

principles are either unknown or too complex to be modeled. In the case of predicting ambient

sound levels, many physics-based principles are unknown. For example, no standard acoustic

model of rivers or water sources exists currently. Mennitt et al. [31–33] used machine learning

to create models designed to take geospatial features as inputs and predict various acoustic

metrics. In addition, linear and nonlinear land-use regression models have been used to map urban

environmental noise in northwest China [34].

Land-use models are most commonly used to model air pollution and health effects in urban

areas [35]. They typically use independent variables, such as road type, traffic levels, elevation,

and land cover, to create a multivariate regression model capable of predicting pollutant levels in

other locations [35]. Xie et al. used acoustic data from 101 sites to train a nonlinear and linear



1.3 Previous Research 21

regression function, and used acoustic data from an additional 101 sites for validation [34]. All

monitoring sites were within Dalian Municipality, Liaoning Province, China, and 36 geospatial

variables were used in the training process [34]. Model predictions were mapped for the region of

Dalian Municipality [34].

Mennitt, Sherill, and Fristrup used random forest models to predict ambient sound levels in

2014 [32]. A data set consisting of acoustic measurements from 190 training sites from 41

different national parks within the contiguous United States (CONUS) was used. Roughly 50

geospatial features were used as inputs to the model, and models were trained to predict seasonal

one-third octave and n-percent exceeded levels. Predictions for smaller time scales, such as hourly

or daytime metrics, were not explored for this data set. All seasonal measurements were utilized

in the training process by using an input variable to specify the season corresponding to each

instance. Leave-one-out cross validation was performed to estimate model error by leaving out all

seasonal data for a given site before measuring the error for a given season at that site. The leave-

one-out cross validation root-mean-square error (RMSE) and median absolute deviation (MAD)

for the seasonal A-weighted L50 were 4.8 and 2.8 dBA respectively. The discrepancy between

these two error metrics was attributed to outliers in the training data set. It was found that single-

output models performed better than multiple-output models designed to predict multiple metrics

simultaneously. Hence, all models used to create maps of a given acoustic metric were trained for

that single metric.

Following the above study, Mennitt and Fristrup used random forests again to predict acoustic

levels using a larger database in 2016 [33]. In contrast to their previous data set, acoustic

measurements from 492 unique sites were used. Of those sites, 333 were located in quiet

uninhabited areas within national parks and 159 sites came from urban areas. Additionally, 115

geospatial variables were used as model inputs, which can be found in Table 1 of their 2016 paper.

To limit the scope of research, the daytime A-weighted L50 was the only predicted acoustic metric.



1.4 Objectives 22

As in their previous report, all measured seasonal daytime A-weighted L50 were included in the

full model. Leave-one-out cross validation was performed in the same manner as before to yield

a RMSE and MAD of 4.5 dBA and 2.29 dBA respectively. Again, the discrepancy between these

error metrics was attributed to outliers in the training data set.

1.4 Objectives

Mennitt et al. successfully created random forest models to make acoustic predictions [31–33].

However, there are many other types of machine learning models that may match or surpass the

performance of random forests. As mentioned previously, there is no standard error metric for

machine learning with limited data sets. In particular, leave-one-out cross validation may not be the

most appropriate error metric for this data set due to the statistical differences between the training

data and novel data on which predictions are performed. Leave-one-out cross validation can aid in

identifying instances in the training data set that the model struggles to predict due to overfitting,

lack of necessary distinguishing features (residual variability), or observational error (experimental

uncertainty). However, it is often difficult to connect leave-one-out errors to a specific sources of

error. Even if leave-one-out cross validation is used to identify areas a model struggles to make

predictions, it does not yield any insight into the uncertainty of model predictions on statistically

novel data.

Motivated by these limitations, this thesis extends previous results in several ways. Given

acoustic and geospatial data for a wide range of locations, I generated a model using machine

learning to predict ambient sound levels in environments with complex natural, biological, and

anthropogenic sources. Additionally, I identified areas where model uncertainty is high. I used

an ensemble of machine learning models to quantify the structural uncertainty and estimate model

performance on instances that are statistically different from data represented in the training set. I



1.4 Objectives 23

also used the ensemble of models to make predictions of acoustic metrics that vary in frequency,

time, and space. Results were generated using a computational pipeline, which preprocesses and

loads data, trains the ensemble model, and makes predictions for various acoustic metrics. To

visualize results, maps of ensemble model predictions and uncertainties for regions in CONUS

were produced.



Chapter 2

Methodology

2.1 Data Sets

Acoustic and geospatial data was obtained and organized by Blue Ridge Research and Consulting

(BRRC) for sites in CONUS. Acoustic data sources include the NPS [33], BRRC, the Environ-

mental Protection Agency (EPA) [36], and a trusted third-party consulting firm. BRRC checked

the quality of all measurements and removed any that were found to be unsatisfactory due to

excess wind noise, instrumentation error, etc. BRRC then consolidated this into a database that

contains acoustic data for 607 training sites. The acoustic data contain several statistical noise

levels for each season, such as the L50 and L90, and the equivalent level Leq. The database also

contains these statistical noise levels in three specific frequency bands (12.5-125 Hz, 160-1,250

Hz, 1,600-12,500 Hz) and one-third octave bands. For each season, acoustic metrics are provided

for hourly, daytime, and nighttime temporal domains. Data are not generally available at all sites

for all seasons and metrics. However, most sites have summer acoustic metrics, so I focused my

research on summer data. Summertime L50 measurements are available for 502 of the 607 training

sites.

24



2.1 Data Sets 25

This data set is different from those that Mennitt et al. used [32,33]. It does not include acoustic

measurements from the 145 airport noise monitoring system locations [37]. However, our data set

contains an additional 84 training sites from the NPS, 54 from BRRC, 100 from the EPA, and 22

from a trusted third-party consulting firm. Of all 431 training sites from the NPS, only 326 contain

summer acoustic metrics. A summary of summertime acoustic metrics is provided in Appendix B.

In addition to acoustic data, 117 geospatial feature measurements were available for almost the

entire CONUS region from a NPS inventory. These include features such as the distance to the

nearest road and airport, the distance to the nearest body of water, and the average temperature. A

table of all geospatial features is provided in Appendix A. Figure 2.1 and Figure 2.2 show maps of

two geospatial inputs: mean upward radiance at night (270 m resolution) and proportion of forest

landcover (200 m resolution). These are just two of the 117 geospatial features that serve as inputs

to the machine learning models.

The geospatial database is very similar to that used by Mennitt and Fristrup in their 2016

paper [33]. Because they included all seasonal predictions in the training process, they had input

variables to distinguish between different seasons. I limited my research to summertime acoustic

metrics and did not utilize other seasonal acoustic data, so it was not necessary for me to include a

feature to specify the season. Mennitt and Fristrup also included the following features: day length,

road density, proportion of snow landcover, annual mean wind speed at 50 m above ground, and

a categorical topographic position index. I anticipate that most of these features are unlikely to

significantly affect any machine learning model. For example, snow landcover is minimal within

CONUS during the summer, and it is also unlikely that training points exist in areas where there is

snow landcover. Hence, the feature would provide little, if any, new information during the training

process.



2.1 Data Sets 26

Figure 2.1 Mean upward radiance at night with a 270 m resolution. This is one of the geospatial
inputs used in machine learning. Units are nW/cm2/sr.



2.1 Data Sets 27

Figure 2.2 Proportion of forest landcover with a 200 m resolution. This is one of the geospatial
inputs used in machine learning.



2.2 Computational Pipeline 28

2.2 Computational Pipeline

A computational pipeline was created to increase efficiency and organization. Code for the

pipeline, which was implemented in Python, is included in Appendix C. Figure 2.3 shows a

flowchart of the pipeline. First, the training data for all acoustic metrics and geospatial features

is loaded. The user must specify which acoustic metrics they would like to make predictions for.

Additionally, the user must specify a scaler, or transform, to use on the acoustic and geospatial

data, such as the identity scaler or standard scaler, which normalizes all features to have zero mean

and a standard deviation of 1. The user may also choose a specific set of features with which to

train and make predictions if they do not want to use the complete geospatial data set. After the

data has been preprocessed to meet the specifications of the user, all members of the ensemble

model are trained. Then, predictions are made and saved for all members of the ensemble. If any

model runs into undefined geospatial inputs while making predictions, it will leave the prediction

undefined.

The process of making model predictions has been parallelized to speed up run time. However,

the ensemble training and predicting process for a single acoustic metric and all of CONUS still

takes roughly five and a half hours using 50 cores and approximately 250 GB RAM.

In addition to the acoustic metric(s), scaling method, and geospatial features, the user may also

specify the number of cores to be used when making predictions, the specific models to be trained,

and the regions of CONUS (northwest, northeast, southwest, and southeast) over which to make

predictions. The pipeline is also capable of conducting various feature importance and validation

measures. This is not meant to be an exhaustive description of all pipeline functionalities. For

more detail, refer to Appendix C.



2.3 Model Selection and Parameter Tuning 29

Figure 2.3 Flowchart showing the general process used by the computational pipeline to make
predictions.

2.3 Model Selection and Parameter Tuning

The computational pipeline made it easy to measure various validation metrics for a wide variety

of machine learning models. To select models for the ensemble and also identify appropriate

parameter values for these models, I explored six machine learning algorithms, GBR, NNs, KNN,

SVMs, KR, and GPR (see Sec. 1.2.2). I used the scikit-learn library in Python to implement these

algorithms [38]. A variety of parameter combinations were tested for each model. To compare

initial model performance, the leave-one-out cross validation was used to calculate the RMSE and

MAD for each model. Parameters were tuned for each model to minimize the leave-one-out MAD.

2.4 Feature Reduction

I made a first attempt at feature reduction to combat the curse of dimensionality when using a

limited training data set. I used four different metrics of feature importance to systematically



2.4 Feature Reduction 30

reduce the number of dimensions of the data set.

The first metric used is the Gini importance or mean decrease impurity [27]. This is a common

way to measure feature importance in a random forest or GBR. The basics of the calculation of the

Gini importance metric for classification are given here, but the reader is encouraged to reference

Breiman’s article [27] or Marsland’s text [24] for further information. If we let Ni be the fraction

of data points belonging to class i, then a pure leaf or node of class j should have N j = 1 and

Ni,i 6= j = 0. The Gini impurity for some feature k and c classes is defined by,

Gk =
c

∑
i=1

∑
j 6=i

N(i)N( j).

Since ∑ j 6=i N( j) = 1−N(i),

Gk = 1−
c

∑
i=1

N(i)2.

In other words, the Gini impurity is the expected error rate if classification was selected according

to the distribution of classes. Hence, features with low Gini impurity have the highest Gini

importance.

The second metric used for feature importance used the Gini importance metric with a

correlation penalty. Note that if two features are identical, they will have the same Gini importance

measures, but the model does not need both features. A correlation penalty was applied to the

Gini importance to help avoid high levels of correlation among the top ranked features. The Gini

importance was first calculated for all features. Then, for any given feature, I found the feature

from the remainder of the data that was most highly correlated with that feature. From those two

features, I selected the one with the lowest Gini importance and subtracted the correlation times

its Gini importance. If two features were perfectly correlated, one would have an importance of 0

and the other would have the same importance given by the original Gini metric.

The third metric used for feature importance is only applicable to NNs. There is no standard

way to measure feature importance in a NN, but many methods have been suggested [39]. I chose



2.4 Feature Reduction 31

to use the weights to measure feature importance. First, I identified all paths from an input feature

to the output, and calculated the product of all weights along each path. Then, for each feature,

I summed the absolute value of all paths originating at that feature. Finally, these sums were

normalized and the results were used as a feature importance measure. For the case of zero hidden

layers, the feature importance was determined by the magnitude of the weights from the input

features to the output.

My last metric required someone to look at each geospatial input feature and remove them one

at a time, based on their human intuition for what information the model would require. Features

that were removed early generally had lower spatial resolutions or contained minimal information.

Additionally, features that were highly correlated with other features were removed early because

they provided no new information.

All feature importance lists presented in the results section were created by iteratively

measuring the feature importance values and removing the feature with the lowest importance.

Features were ranked according to the order in which they were removed. Note that these results

are not identical to measuring the feature importance values once with all features as model inputs.

The act of removing features will often shift the order of importance of other features.



Chapter 3

Results

3.1 Ensemble of Models

3.1.1 Model Selection

After tuning all hyperparameters and parameters for a variety of machine learning models to

minimize the leave-one-out MAD, the leave-one-out MAD and RMSE were examined. Figure 3.1

shows a histogram of the residuals created from leave-one-out cross validation for the KNN model.

Looking at these residuals (of the measured value and leave-one-out predicted value), we see that

the distribution is generally not Gaussian. The outliers explain why the MAD is normally half

the value of the RMSE (see Table 3.1). Similar behavior is seen in the literature by Mennitt et.

al [32, 33].

As seen in Table 3.1, all leave-one-out MAD and RMSE values are within 1 dBA of each

other and 1 dBA is typically the smallest change in SPL that is perceptible to a human. So, it

is reasonable to conclude that all six models performed similarly, and should all be included in

the ensemble model. To reduce sensitivity to any one model predicting extremely small or large

results, the median value of the ensemble was used rather than the mean. Using the median,

32



3.1 Ensemble of Models 33

Figure 3.1 Histogram of the residuals from performing leave-one-out cross validation using a
KNN model.

rather than the mean, helps stabilize ensemble predictions when predictions are made for novel

and unique instances. Note that it would not have been unreasonable to use the mean ensemble

prediction rather than the median. When the standard deviation of ensemble model predictions is

low, I expect the median and mean to have similar values.

Model
Class

Leave-One-Out
MAD (dBA)

Leave-One-Out
RMSE (dBA)

Fit MAD (dBA) Fit RMSE (dBA)

GBR 3.5 6.0 0.08 1.2
NN 3.7 6.3 3.4 5.7
KR 3.6 6.3 0.3 1.4
KNN 3.7 6.6 0.0 1.2
GPR 3.6 6.2 2.1 4.0
SVM 3.4 6.2 1.3 4.2

Table 3.1 Fit and leave-one-out cross validation errors for six different machine learning models.

Table 3.1 shows that all models have similar leave-one-out cross validation errors, even though



3.1 Ensemble of Models 34

some of their fit errors are fairly different. Fit errors help tell us which models are overfitting, such

as the GBR model, and which are not, such as the NN. A very shallow NN (with no hidden layers)

was chosen to avoid overfitting, so it is not surprising that the full model performs poorly on the

training data.

3.1.2 Ensemble Advantages

One advantage of using an ensemble model is that it provides some measure of uncertainty in

model predictions in locations that are statistically different to the training set. Figures 3.2, 3.3,

and 3.4 show maps of CONUS predictions for the summer daytime L50 sound levels using the

GBR model, NN model, and ensemble model respectively. The small circles on the maps denote

the locations of all training sites. Figure 3.5 shows the standard deviation of ensemble model

predictions.

GBR model predictions look reasonable, but I have no method of assigning confidence intervals

to model predictions. The NN model predictions look unphysical in several places, suggesting

large model uncertainties in such areas. NN model predictions suggest that much of Iowa, Illinois,

and the surrounding states are quite loud. Additionally, there are some circular areas, such as in

eastern Montana and western Texas, that show low SPLs surrounding large SPLs. It is possible,

though unlikely, that these model predictions are correct, but there is no way to know without

traveling there and measuring the SPLs. GBR, NNs, and several other machine learning models

do not have confidence intervals or error bars on their predictions. However, the ensemble model

predictions when combined with the standard deviation of model predictions gives us a means of

quantifying the uncertainty of each prediction. The confidence intervals provided by the standard

deviation of ensemble predictions are similar to those generated by a GPR model, which also uses

an ensemble of models, or functions.

The additional information provided by the standard deviation of ensemble models can help



3.1 Ensemble of Models 35

Figure 3.2 GBR model predictions for the A-weighted summer daytime L50 for CONUS. Training
sites are marked by small circles.

identify regions of large uncertainty. Note that the ensemble standard deviation is a measure of

structural uncertainty since all models that are members of the ensemble have a different inherent

structure. The availability of standard deviation values can direct some efforts to improve the

current training data set because I can focus data collection in areas of higher uncertainty. Areas

of higher uncertainty presumably correspond to underrepresented areas of the training data set.

The area around Iowa and Illinois, and the unusual circular regions where NN predictions look

suspicious are all places of higher standard deviation. This information is useful for improving the

current ensemble model.



3.1 Ensemble of Models 36

Figure 3.3 NN model predictions for the A-weighted summer daytime L50 for CONUS. Training
sites are marked by small circles.



3.1 Ensemble of Models 37

Figure 3.4 Ensemble model predictions for the A-weighted summer daytime L50 for CONUS.
Training sites are marked by small circles.



3.1 Ensemble of Models 38

Figure 3.5 Standard deviation of ensemble model predictions for the A-weighted summer daytime
L50 for CONUS. Training sites are marked by small circles.



3.2 Maps 39

3.2 Maps

3.2.1 Summer L10, L50, and L90 Day and Nighttime Maps

Ensemble model predictions were made for the A-weighted L10, L50, and L90 metrics for both day

and nighttime. The results are shown in Figure 3.6. Levels are on average higher during the day,

as one would expect since there is a greater contribution of anthropogenic noise in the daytime.

Additionally, the L10 is typically higher than the L50, which is typically higher than the L90, as

expected.

It is curious that the eastern half of CONUS is significantly louder than the western half on

average. Although I am not ruling out the possibility that this is physical, I believe this to be an

artifact of the distribution of our limited training set. Most of the urban (and hence louder) sites are

in the eastern CONUS area, while most NPS (or quieter) sites are in the western CONUS area. The

ensemble model has likely learned this and therefore expects all parts of the eastern CONUS area

to be louder. Further investigation and data are needed to determine if the eastern CONUS area is

actually louder, but the standard deviation maps do provide some information as to the uncertainty

in those predictions.

In Figure 3.7, I have mapped the standard deviation of the ensemble predictions. It is clear that

there is a lot more variation and disagreement among the models during the night primarily in the

area from eastern Texas north to Iowa. The scale on the standard deviation maps ranges from 0 to

20 dBA, which is extremely large. These maps help identify areas of large uncertainty, which are

good candidates for additional data collection.

3.2.2 Frequency Group Maps

I also predicted sound levels for three frequency groups (12.5-125 Hz, 160-1,250 Hz, and 1,600-

12,500 Hz). Engine and surf noises are in the low frequency group, aviation and wind noise are



3.2 Maps 40

Figure 3.6 Ensemble model predictions for the A-weighted L10, L50, and L90 for day and
nighttime.



3.2 Maps 41

Figure 3.7 Standard deviations of the ensemble model predictions for the A-weighted L10, L50,
and L90 for day and nighttime.



3.2 Maps 42

in the middle frequency group, and insect and bird noise are in the high frequency group. Maps

of the ensemble-predicted daytime flat-weighted L50 sound levels for western North Carolina and

Asheville are shown in Figure 3.8. The training points and their measured sound levels are shown

as small circles on the map. Although not all training points are in agreement with the ensemble

model predictions, most are in very close agreement.

3.2.3 Hourly Summer L50 Frequency Group Maps

Ensemble model predictions were made for the flat-weighted summer L50 for all frequency groups

and hours in the Asheville, North Carolina area. Looking at all hourly frequency group ensemble

predictions, I observed that daytime levels are usually higher and more variable than nighttime

levels. Additionally, road noise is most prominent during the day, starting during the morning

commute around 7 a.m., and persisting until roughly 6 p.m. I also found that high frequency noise

tends to be localized around highways during the day, but become less restricted around 10 p.m. I

suspect that this non-local increase in high frequency noise is due to insect noise.

To help illustrate some of these conclusions, figures of the Asheville area are shown for the

summer L50 low (12.5-125 Hz) and high (1,600-12,500 Hz) frequency groups at 4 a.m., 8 a.m.,

and 10 p.m. (see Figures 3.9, 3.10, and 3.11). Low and high frequency group ensemble predictions

are shown on the left and right respectively. The circles on the maps again correspond to training

sites and their measured values. Predictions are provided at 4 a.m. as a representation of average

levels throughout the night. Levels are higher during the 8 a.m. hour, particularly around roads for

both the low and high frequency groups. This is likely due to rush hour traffic from the morning

commute. Nighttime levels in general are less pronounced along major roads, representing a

decrease in anthropogenic noise. Levels at 10 p.m. are relatively large in the high frequency group,

but are more widespread than during the morning commute. This spatial dependence suggests

that the increase in high frequency noise near 10 p.m. is possibly due to insect noise. Note that



3.2 Maps 43

Figure 3.8 Ensemble model predictions for the flat-weighted L50 summer daytime frequency
groups. The maps on the left show the western North Carolina area and the maps on the right
are zoomed in on Asheville. The lowest frequency group maps are on the top and the highest
frequency group maps are on the bottom.



3.3 Leave-Four-Out Validation Study 44

Figure 3.9 Ensemble model flat-weighted L50 summer predictions for the Asheville, North
Carolina area at 4 a.m. for the low (12.5-125 Hz) and high (1,600-12,500 Hz) frequency groups
shown on the left and right respectively.

ensemble predictions do a decent job predicting levels at the training sites in all maps. This is

promising and suggests that the model will perform well if enough statistically similar training

data (when compared to new input sites) are obtained.

3.3 Leave-Four-Out Validation Study

Four sites were selected to simultaneously remove from the training data set as part of a validation

study. The four sites were chosen to be unique from one another and illustrate some strengths

and weaknesses of the ensemble model. In no particular order, the removed sites were from (1)



3.3 Leave-Four-Out Validation Study 45

Figure 3.10 Ensemble model flat-weighted L50 summer predictions for the Asheville, North
Carolina area at 8 a.m. for the low (12.5-125 Hz) and high (1,600-12,500 Hz) frequency groups
shown on the left and right respectively.



3.3 Leave-Four-Out Validation Study 46

Figure 3.11 Ensemble model flat-weighted L50 summer predictions for the Asheville, North
Carolina area at 10 p.m. for the low (12.5-125 Hz) and high (1,600-12,500 Hz) frequency groups
shown on the left and right respectively.



3.3 Leave-Four-Out Validation Study 47

Figure 3.12 Predictions and measured levels at the first two of four chosen validation sites as
a function of frequency. Plots on the left show daytime model predictions when the complete
training data set is used. Plots on the right are similar, but were created from predictions using
a leave-one-out training data set. In other words, all models were trained using the complete
training data set, excluding the site of interest.

Gilmore Meadow in Acadia National Park, (2) a private home in a residential area in Asheville,

NC, (3) the Fairfax Circle Shopping Center in Virginia, and (4) about one mile northeast of the

National Mall near a railroad in Washington, D.C. A large portion of the training data set is from

national parks, so the first site was chosen from national park data. Notes in the training data set

indicated that the second site has significant insect noise at night. There was interest in comparing

high frequency predictions and measurements there. The third site has a significant amount of road

traffic noise, and the fourth site should have noise contributions due to railroad trains and nearby

MetroRail trains.

Figures 3.12–3.15 show the day and nighttime model predictions for all machine learning



3.3 Leave-Four-Out Validation Study 48

Figure 3.13 Predictions and measured levels at the last two chosen validation sites as a function
of frequency. Plots on the left show daytime model predictions when the complete training data
set is used. Plots on the right are similar, but were created from predictions using a leave-one-out
training data set. In other words, all models were trained using the complete training data set,
excluding the site of interest.



3.3 Leave-Four-Out Validation Study 49

Figure 3.14 Predictions and measured levels at the first two of four chosen validation sites as
a function of frequency. Plots on the left show nighttime model predictions when the complete
training data set is used. Plots on the right are similar, but were created from predictions using
a leave-one-out training data set. In other words, all models were trained using the complete
training data set, excluding the site of interest.



3.3 Leave-Four-Out Validation Study 50

Figure 3.15 Predictions and measured levels at the last two chosen validation sites as a function
of frequency. Plots on the left show nighttime model predictions when the complete training data
set is used. Plots on the right are similar, but were created from predictions using a leave-one-out
training data set. In other words, all models were trained using the complete training data set,
excluding the site of interest.



3.3 Leave-Four-Out Validation Study 51

models and the ensemble median, as well as the measured values at the four selected validation

sites. These figures show the predicted values when all machine learning models are trained using

the full training set (plots on the left) and when all machine learning models are trained using

the full training set except for the site for which predictions were made (on the right). Note that

leave-one-out predictions are not as close to the true measured values as full model predictions.

For all four sites, NNs are the only model that struggles to fit the measured data when the full

training data set is used. This is likely because the NNs are very shallow to prevent overfitting of the

training data. However, when we look at the leave-one-out predictions, the median tends to match

the measured value fairly well. There are some exceptions to this. For example, none of the models

were able to accurately predict the high frequency daytime levels in Acadia National Park or high

frequency nighttime levels at the site in Asheville, NC. It is possible that the discrepancy in leave-

one-out model predictions and measured values in Asheville and Acadia is due to the inability of

the data to correctly characterize the amount of insect noise in a given location. Additionally, it is

possible that the training data measurements do not reflect the large amounts of insect noise due

to anomalies in insect activity during the time period when training data was collected. For all

leave-one-out predictions, the median ensemble predictions are fairly stable and resilient to abrupt

or drastic changes in a couple of the model predictions. For example, the KNN algorithm tends

to predict values too low, but the NN tends to overpredict at Acadia National Park. The ensemble

however does a fairly good job of matching the measured values.

Figures 3.16 and 3.17 show model predictions and measured values when all four validation

sites are simultaneously removed from the training data set. Note that the leave-four-out and

leave-one-out predictions are very similar. In both the leave-one-out and leave-four-out plots, the

GBR model has a tendency to predict values which jump up and down as a function of frequency.

This is more pronounced in the leave-four-out analysis, and could be due to the propensity of

decision tree-type models to overfit the training data. The ensemble however does not have this



3.3 Leave-Four-Out Validation Study 52

Figure 3.16 Plots on the left and right show daytime and nighttime model predictions respectively
for the first two validation sites when the four validation sites were removed from the training data
set. The plots show the predictions and measured levels at the four chosen validation sites as a
function of frequency.



3.3 Leave-Four-Out Validation Study 53

Figure 3.17 Plots on the left and right show daytime and nighttime model predictions respectively
for the last two validation sites when the four validation sites were removed from the training data
set. The plots show the predictions and measured levels at the four chosen validation sites as a
function of frequency.



3.4 Feature Reduction 54

characteristic.

3.4 Feature Reduction

3.4.1 Initial Feature Importance Rankings

Gini Importance Gini with Corr.
Penalty

NN Weights Human
Intuition

1 VIIRSMean270m VIIRSMean1080m Developed200m VIIRSMean270m
2 Longitude Elevation Shrubland5000m DistStreamO4
3 Elevation PPTWinter RddMajor Forest200m
4 RddAll DistAirpHeli Elevation DistRailroads
5 VIIRSMean69120m Longitude Transportation200m DistAirpHeli
6 VIIRSMaximum270m DistMilitary FlightFreq25km RddAll
7 VIIRSMean1080m PhysicalAccess Institutional5000m TMaxSummer
8 DistAirpHeli Latitude WaterNat200m Cropland200m
9 PPTWinter DistStreamO1 UrbanHigh200m TdewAvgSummer
10 VIIRSMaximum1080m Slope Commercial5000m DistStreamO3
11 DistMilitary Extractive5000m VIIRSMaximum270m FlightFreq25km
12 TMaxAnnual DistRoadsMaj Longitude Cultivated200m
13 DistRoadsMaj Shrubland5000m Extractive200m DistMilitary
14 Slope Suburban5000m VIIRSMean4320m DistRoadsAll
15 Forest5000m DistRailroads Commercial200m PhysicalAccess

Table 3.2 The top 15 features found using the four metrics described in Sec. 2.4 for the summer
daytime L50. From left to right, these metrics are the Gini importance, Gini importance with a
correlation penalty, a NN importance determined by weights, and human intuition. The features
are ordered from most important at the top to less important at the bottom.

Table 3.2 shows the top 15 features as ranked by the four feature importance metrics discussed

in Sec. 2.4 with lower numbered rankings corresponding to higher importance values. Note that

these importance measures were made specifically for the summer daytime L50. Also, to avoid

overfitting the data, the NN model had no hidden layers. Hence, the importance calculated using

NN weights only relies on the magnitude of the weight directly from a given feature to the output

node. For an explanation of the features, refer to Appendix A.



3.4 Feature Reduction 55

It is interesting that three of the four metrics identified mean upward radiance at night as the

most important feature. This suggests that anthropogenic noise is important to daytime L50 sound

levels, as expected. The NN importance metric does not rank any upward radiance at night features

higher than eleventh. However, it ranks the proportion of developed landcover as most important.

This geospatial feature provides much of the same information as the upward radiance at night

layers because they are both correlated with higher population densities and anthropogenic activity.

So, all four metrics agree that anthropogenic sources are likely most important to determining the

summer daytime L50 sound level.

All metrics, except for human intuition, rank longitude in the top 15 important features.

Longitude provides no physical insight into what sound levels may be, but it does correlate with

sound levels in our training data set. More specifically, most of the urban data are from the eastern

CONUS area and most of the NPS data are from the western CONUS area. So, longitude affects

sound level predictions, even though it has no physical significance. There are likely other features

in these lists that happen to correlate with sound levels in the training data set, although they are

not physically related to sound levels. It would be unwise to use these metrics to identify a reduced

order model without first recognizing that these features are not necessarily the best choices for

accurate model predictions.

The Gini importance was the only metric that did not identify any sources of water in the top

15 ranked features. Running water is a source of noise and water can also correlate with animal

life and human habitation. The fact that the Gini importance did not identify sources of water as

being very important is possibly due to sparsity of the data. Although some sites in the training

data set are near water, there may not be enough for the GBR to recognize any connection between

sound levels and water sources. Additionally, it is interesting to note that the Gini importance with

a correlation penalty did conclude that the distance to streams is important.

Although these lists do not necessarily identify the top 15 features that affect the summer



3.4 Feature Reduction 56

daytime L50, they do provide insight into possible issues with or characteristics of the training data

and trained models. They allow us to get a general sense of whether or not the NN or GBR model

is recognizing features that are physically important to sound propagation and absorption.

3.4.2 Error of Reduced Feature Model

Table 3.2 only shows the top 15 features because the leave-one-out MAD for the summer daytime

L50 begins increasing when the number of features is reduced below about 15. Figures 3.18 and

3.19 show the leave-one-out MAD as a function of the number of features. Initially, I found the

leave-one-out MAD using the original 117 features. Then, the feature with the lowest importance

calculated using the Gini importance (Figure 3.18) or NN weights (Figure 3.19) was removed

and the leave-one-out MAD was recalculated. This process was repeated until only one feature

remained. The model hyperparameters of the individual models were not tuned during this process,

but the model parameters were adjusted each iteration.

Both figures show the error is fairly constant when the number of features is greater than

about 15. The NN model does perform worse than most models for a smaller number of features,

particularly when using the Gini importance. However, tuning the model hyperparameters would

likely prevent the NN models from struggling as much. Even though the NN models have higher

errors when fewer features are used, the median error is fairly constant down to about 15 features.

Although not shown here, the leave-one-out RMSE shows similar behavior with feature reduction.

3.4.3 Changes in Predictions from Reduced Feature Models

Four reduced feature models were trained using the 15 features in each column of Table 3.2. Maps

were created to show the difference in model predictions between the new model predictions

from the reduced feature data sets and predictions made with the full data set of 117 features.

Figures 3.20 and 3.21 show the change in sound level predictions for the summer daytime L50



3.4 Feature Reduction 57

Figure 3.18 Plot of the leave-one-out (LOO) MAD for the summer daytime L50 for all models
in the ensemble as the number of features is reduced from the original 117. The feature
corresponding to the smallest Gini importance was removed each iteration.



3.4 Feature Reduction 58

Figure 3.19 Plot of the leave-one-out (LOO) MAD for the summer daytime L50 for all models
in the ensemble as the number of features is reduced from the original 117. The feature
corresponding to the smallest importance as measured using NN weights was removed each
iteration.



3.4 Feature Reduction 59

Figure 3.20 Map of the difference between summer daytime L50 ensemble predictions using the
top 15 features identified by the Gini importance with a correlation penalty and the full model
with 117 features. Blue areas correspond to a drop in sound level predictions from the reduced
feature model when compared to the full model. Similarly, red areas correspond to an increase in
sound level predictions from the reduced feature model.

using the top 15 features identified by the Gini importance with a correlation penalty and human

intuition respectively. Blue (red) areas represent locations where the levels decreased (increased)

using the reduced model instead of the full model. Figure 3.20 shows greater differences, especially

where levels have increased (red areas), than Figure 3.21. The scale on these maps is from −20

to +20 dBA, so the differences shown here, especially in Figure 3.20, are significant. Although

differences shown in Figure 3.21 are not as large, they are still large in several areas, particularly

in the western CONUS area.

The fact that the leave-one-out MAD is approximately the same for the reduced models, and yet



3.4 Feature Reduction 60

Figure 3.21 Map of the difference between summer daytime L50 ensemble predictions using the
top 15 features identified by human intuition and the full model with 117 features. Blue areas
correspond to a drop in sound level predictions from the reduced feature model when compared
to the full model. Similarly, red areas correspond to an increase in sound level predictions from
the reduced feature model.



3.4 Feature Reduction 61

the predictions are very different, shows how limited the data set is. Additionally, it is important to

select features that are physically meaningful and hold explanatory power, rather than just selecting

the features that are identified by various measures of feature importance.



Chapter 4

Conclusions and Future Work

4.1 Conclusion

I have successfully created a computational pipeline that predicts ambient sound levels using

an ensemble determined by the median prediction of six machine learning algorithms, GBR,

NNs, KNN, SVMs, KR, and GPR. Predictions can be made for a variety of acoustic metrics,

geographic areas, frequency bands, and timeframes. I performed preliminary validation studies on

the ensemble by finding the standard deviation of the ensemble predictions, which is representative

of the structural uncertainty. Standard deviation values identified locations of greater uncertainty,

which are good candidates for data collection. Best practices for improving machine learning

models in the limited data regime, and measuring the performance of such models have still not

been determined. However, this research has made steps towards identifying such methods.

4.2 Future Work

Although unsupervised learning was not used, several unsupervised techniques are adept at

identifying patterns or structures in a data set. In particular, unsupervised learning methods may

62



4.2 Future Work 63

help identify regions that are void from or underrepresented in the training data set. Sites in these

regions would be good candidates for data collection, particularly if ensemble standard deviation

values are also high.

In addition to collecting more acoustic training data, I could search for additional geospatial

databases, which may provide novel information to the model. For example, if I could find a

geospatial feature correlated with insect activity or populations, I could potentially improve our

predictions of high frequency noise. There may be other geospatial features that are more useful

than the ones in the data set currently. It is also worth considering incorporating known physics-

based models, such as road noise models, into the data set.

All maps shown here, except those in Sec. 3.4.3, were generated using all available geospatial

features as inputs. Further work could be done in identifying reduced models that utilize geospatial

features with high explanatory power. Reduced parameter models would be less computationally

expensive and possibly aid in preventing overfitting.



Appendix A

Geospatial Features

Table A.1 CONUS geospatial features, their area of analysis, description, and units.

Variable Area of Analysis Description Units
Elevation Point Digital elevation, height above

sea level
m

Slope Point Rate of change of elevation Degrees
PPTSummer Point 10-year average summer precip-

itation
mm

PPTWinter Point 10-year average winter precipi-
tation

mm

PPTAnnual Point 10-year average yearly precipi-
tation

mm

TMaxSummer Point 10-year average summer maxi-
mum temperature

◦C

TMaxWinter Point 10-year average winter maxi-
mum temperature

◦C

TMaxAnnual Point 10-year average yearly maxi-
mum temperature

◦C

TMinSummer Point 10-year average summer mini-
mum temperature

◦C

TMinWinter Point 10-year average winter mini-
mum temperature

◦C

TMinAnnual Point 10-year average yearly mini-
mum temperature

◦C

TdewAvgSummer Point 10-year average summer mini-
mum dew point

◦C

Continued on next page

64



65

Table A.1 – Continued from previous page
Variable Area of Analysis Description Units
TdewAvgWinter Point 10-year average winter maxi-

mum dew point

◦C

TdewAvgAnnual Point 10-year average yearly mini-
mum dew point

◦C

Barren 200 m, 5 km Proportion of barren landcover %
Cultivated 200 m, 5 km Proportion of cultivated land-

cover
%

Deciduous 200 m, 5 km Proportion of deciduous forest
landcover (level 2)

%

Developed 200 m, 5 km Proportion of developed land-
cover

%

Evergreen 200 m, 5 km Proportion of evergreen forest
landcover (level 2)

%

Forest 200 m, 5 km Proportion of forest landcover %
Herbaceous 200 m, 5 km Proportion of herbaceous land-

cover
%

MixedForest 200 m, 5 km Proportion of mixed forest land-
cover (level 2)

%

Shrub 200 m, 5 km Proportion of shrubland land-
cover

%

Water 200 m, 5 km Proportion of water (only) land-
cover

%

Wetland 200 m, 5 km Proportion of wetlands land-
cover

%

DistCoast Point Distance to nearest coastline m
DistStreamO Point Distance to nearest stream with

Strahler order greater than 1, 3,
or 4

m

DistWaterBody Point Distance to nearest body of wa-
ter

m

Built 200 m, 5 km Degree of human modification
from built land use

Ratio

Commercial 200 m, 5 km Degree of human modification
from commercial land use

Ratio

Cropland 200 m, 5 km Degree of human modification
from cropland land use

Ratio

DistAirpHeli Point Distance to nearest heliport m
DistAirpHigh Point Distance to nearest high-volume

airport
m

DistAirpLow Point Distance to nearest low-volume
airport

m

DistAirpMod Point Distance to nearest moderate-
volume airport

m

Continued on next page



66

Table A.1 – Continued from previous page
Variable Area of Analysis Description Units
DistAirpMoto Point Distance to nearest motorized

airport
m

DistAirpSea Point Distance to nearest seaplane air-
port

m

DistMilitary Point Distance to nearest military
flight path

m

DistRailroads Point Distance to nearest rail line m
DistRoadsAll Point Distance to nearest road (all

roads)
m

DistRoadsMaj Point Distance to nearest road (major
roads)

m

Extractive 200 m, 5 km Degree of human modification
from extractive land use

Ratio

ExurbanHigh 200 m, 5 km Degree of human modification
from high exurban land use

Ratio

ExurbanLow 200 m, 5 km Degree of human modification
from low exurban land use

Ratio

FlightFreq 25 km Total weekly flight observations Count
Grazing 200 m, 5 km Degree of human modification

from grazing land use
Ratio

Industrial 200 m, 5 km Degree of human modification
from industrial land use

Ratio

Institutional 200 m, 5 km Degree of human modification
from institutional land use

Ratio

MilitarySum 40 km Sum of designated military
flight paths

Count

Mining 200 m, 5 km Degree of human modification
from mining land use

Ratio

Park 200 m, 5 km Degree of human modification
from park land use

Ratio

Pasture 200 m, 5 km Degree of human modification
from pasture land use

Ratio

PhysicalAccess Point Travel time given transportation
infrastructure and off-trail per-
meability

Ratio

RddAll Point, 5 km Road density, sum of road
lengths (all roads) divided by
area of interest

km/km2

RddMajor Point, 5 km Road density, sum of road
lengths (major roads only) di-
vided by area of interest

km/km2

Continued on next page



67

Table A.1 – Continued from previous page
Variable Area of Analysis Description Units
RecCon 200 m, 5 km Degree of human modification

from recreation-conservation
land use

Ratio

Suburban 200 m, 5 km Degree of human modification
from suburban land use

Ratio

Timber 200 m, 5 km Degree of human modification
from timber land use

Ratio

Transportation 200 m, 5 km Degree of human modification
from transportation land use

Ratio

UrbanHigh 200 m, 5 km Degree of human modification
from high urban land use

Ratio

UrbanLow 200 m, 5 km Degree of human modification
from low urban land use

Ratio

VIIRS 270 m, 1080 m,
4320 m, 17280 m,
69120 m

Maximum, mean, and minimum
upward radiance at night

nW/cm2/sr

WaterHum 200 m, 5 km Degree of human modification
from water land use

Ratio

WaterNat 200 m, 5 km Degree of human modification
from natural water land use

Ratio

Wet 200 m, 5 km Degree of human modification
from wet land use

Ratio

Latitude Point Latitude value of raster cell in
decimal degrees

Degrees

Longitude Point Longitude value of raster cell in
decimal degrees

Degrees



Appendix B

Acoustic Data

Table B.1 All A and flat-weighted summertime acoustic metrics and the number of measurements
for each metric from the NPS, BRRC, the EPA, and a trusted third-party consulting firm.

Summer Acoustic Metric NPS BRRC EPA Consulting Firm
L1 dBA day 326 54 0 22
L1 dBA hour 326 54 0 22
L1 dBA night 326 54 0 22

L1 dBZ day 1/3 octave bands 0 54 0 22
L1 dBZ day frequency groups 0 54 0 22
L1 dBZ hour 1/3 octave bands 0 54 0 22
L1 dBZ hour frequency groups 0 54 0 22
L1 dBZ night 1/3 octave bands 0 54 0 22
L1 dBZ night frequency groups 0 54 0 22
L5 dBZ hour 1/3 octave groups 326 0 0 0
L5 dBZ hour frequency groups 326 0 0 0

L10 dBA day 326 54 100 22
L10 dBA hour 326 54 100 22
L10 dBA night 326 54 100 22

L10 dBZ day 1/3 octave bands 309 54 0 22
L10 dBZ day frequency groups 309 54 0 22
L10 dBZ hour 1/3 octave bands 0 54 0 22
L10 dBZ hour frequency groups 0 54 0 22
L10 dBZ night 1/3 octave bands 308 54 0 22
L10 dBZ night frequency groups 308 54 0 22

L50 dBA day 326 54 100 22
L50 dBA hour 326 54 100 22
L50 dBA night 326 54 100 22

Continued on next page

68



69

Table B.1 – Continued from previous page
Summer Acoustic Metric NPS BRRC EPA Consulting Firm

L50 dBZ day 1/3 octave bands 309 54 0 22
L50 dBZ day frequency groups 309 54 0 22
L50 dBZ hour 1/3 octave bands 326 54 0 22
L50 dBZ hour frequency groups 326 54 0 22
L50 dBZ night 1/3 octave bands 308 54 0 22
L50 dBZ night frequency groups 308 54 0 22

L90 dBA day 326 54 100 22
L90 dBA hour 326 54 100 22
L90 dBA night 326 54 100 22

L90 dBZ day 1/3 octave bands 309 54 0 22
L90 dBZ day frequency groups 309 54 0 22
L90 dBZ hour 1/3 octave bands 326 54 0 22
L90 dBZ hour frequency groups 326 54 0 22
L90 dBZ night 1/3 octave bands 308 54 0 22
L90 dBZ night frequency groups 308 54 0 22

L99 dBA day 326 54 0 22
L99 dBA hour 326 54 0 22
L99 dBA night 326 54 0 22

L99 dBZ day 1/3 octave bands 0 54 0 22
L99 dBZ day frequency groups 0 54 0 22
L99 dBZ hour 1/3 octave bands 0 54 0 22
L99 dBZ hour frequency groups 0 54 0 22
L99 dBZ night 1/3 octave bands 0 54 0 22
L99 dBZ night frequency groups 0 54 0 22

Leq dBA day 326 0 0 0
Leq dBA hour 326 0 0 0
Leq dBA night 326 0 0 0
Lmax dBA day 326 0 0 0
Lmax dBA hour 326 0 0 0
Lmax dBA night 326 0 0 0
Lmin dBA day 326 0 0 0
Lmin dBA hour 326 0 0 0
Lmin dBA night 326 0 0 0



Appendix C

Pipeline Code

C.1 README
Instructions for making maps:

Part 1:
1. ParseData: Select the correct training data name and input data name to control which data

versions are used for training and making predictions. Change the output name to match these.
(The most recent data version was 20180315, and the one before was 20170925.)

2. Main.py: This is the actual script you will run. Set the regions, modelNames, and
corresponding models you want to run. Also select the Data files you want to run.

3. When ParseData and Main are ready, type:
nohup /home/mark/data/anaconda/envs/python3/bin/python3 Main.py &. This will start the
program running in the background, and it will continue running even if you close your current
terminal. All output is written to a file called nohup.out. The long file path is required to use the
correct version of Python. The program will typically take 5.5 hours for all of CONUS and a single
acoustic metric.

4. Wait for it to run. The output will be sent to nohup.out, so you can check on the program
output there.

Part 2:
1. You now have NW (northwest), NE (northeast), SW (southwest), and SE (southeast) files,

but want them to be combined into one CONUS file. Edit createFullConus to have the correct
folderPath, data, and metric.

2. Run: /home/mark/data/anaconda/envs/python3/bin/python3 createFullConus.py
3. Now, you want to create the ensemble (median) and standard deviation files. Edit findMedian

to have the correct folderPath, data, and metric again.

70



C.2 Main.py 71

4. Run: /home/mark/data/anaconda/envs/python3/bin/python3 findMedian.py
5. Delete the region prediction files that you created, since you now have the complete CONUS

map and they are no longer needed.

C.2 Main.py

# Main
import time
from PipelinesPool import *
from ParseData import *
from PrunedModels import *
import numpy as np

import sys
sys.path.append('../')
sys.path.append('DataFiles/')

# Models I want to run:
# All 6 pruned models: GPR_pruned, KN_pruned, KR_pruned, NN_pruned, GBR_pruned,

SV_pruned
# Maps to create (data files, all of these have Std Scaler):
# Data1005-Data1010: L10, 50, 90 D/N
# Data1017-Data1040: L50 hourly
# Data1065-Data1100: L50 frequency bands
# Data1193-Data1198: L50 fgroups D/N

regions=['NW','SW','NE','SE']

modelNames=[GPR_pruned,KN_pruned,KR_pruned,GBR_pruned,NN_pruned,SV_pruned]

modNames=["GPR_pruned","KN_pruned","KR_pruned","GBR_pruned","NN_pruned","SV_pruned"
]

import Data1005
import Data1006
import Data1007
import Data1008
import Data1009
import Data1010

dataset=[Data1005,Data1006,Data1007,Data1008,Data1009,Data1010]
numCores=45



C.3 ParseData.py 72

for data in dataset:
for region in regions:

start=time.time()
MapMasterFunction(data.data_name+'_'+region+'_', modNames,

modelNames, data.X, data.Xscaled, data.Xscaler, data.Y, data.
Yscaled, data.Yscaler, data.features,

data.layers, data.soundFormats, region, numCores, ParseData.
output_folder, True, False, False, False, 20)

end=time.time()
print('Total␣time␣for␣'+data.data_name+'␣and␣%s:␣%s' % (region,end-

start))

C.3 ParseData.py

import numpy as np
import scipy.io
from os import listdir
import os
import shutil
import math

data_version = "20180315"

#data_name = "20180315_CONUS_TRAINING"
data_name = "20170925_CONUS_TRAINING"

#input_name = data_version+'_NC_INPUT'
input_name = data_version + '_CONUS_INPUT'

output_name = '20170925_CONUS_OUTPUT'

output_folder = "../results/%s/" % output_name

os.chdir('../results/')
if not os.path.exists(output_name):

try:
os.mkdir(output_name)

except OSError as exc: # Guard against race condition
print("Error␣creating␣output␣folder.")

os.chdir('../src/')

# Load matlab training data
data = scipy.io.loadmat("../data/%s/%s.mat" % (data_name, data_name))



C.3 ParseData.py 73

sound = data["SOUND"][0]
acoustic_variable_index = [descr[0] for descr in sound.dtype.descr].index(

"Variable") # Different data sets put the description index in different
columns

N = len(sound)

# Load Geospatial layers
geospatial = data["GEOSPATIAL"]

M = len(geospatial[0]["v"])
numSites = len(geospatial[0, 0]["v"])

# Extracting all geospatial feature values and feature names:
geo_data = np.zeros([numSites, M])
for i in range(M):

geo_data[:, i] = geospatial[0, i]["v"][:, 0]

geo_names = []
for i in range(M):

geo_names.append(geospatial[0, i]['Variable'][0])

def LoadInputData(input_name,features,region, numpy_Bool=False):
# load matlab/numpy input data
geoData=0
rows=0
cols=0

if numpy_Bool==True:
dataIn=np.load('../data/%s/GEOSPATIAL_ALL_FEATURES_%s.npy' % (input_name,

region))
featIn=open('../data/%s/GEOSPATIAL_ALL_FEATURES_%s.txt' % (input_name,

region))
featList=featIn.read().split('\n')
featList.remove('')
rows, cols=np.shape(dataIn[0])
geoData=np.zeros((rows*cols,len(features)))
for j in range(len(features)):

geoData[:,j]=dataIn[featList.index(features[j]),:,:].flatten()
else:

dataIn=scipy.io.loadmat('../data/%s/GEOSPATIAL_ALL_FEATURES_%s.mat' % (
input_name, region))

#print(dataIn.keys())



C.3 ParseData.py 74

rows,cols=np.shape(dataIn[features[0]])
geoData=np.zeros((rows*cols,len(features)))
for j in range(len(features)):

geoData[:,j]=dataIn[features[j]].flatten()

mapDim=[rows,cols]
print(mapDim)
return geoData, mapDim

def get_GeospatialNames():
"""
Returns a list of geospatial names in the current data set
"""
return geo_names

def LoadData(layers=["Summer_L50_dBA_day", "Summer_L10_dBA_day", "
Summer_L90_dBA_day", "Summer_L50_dBA_ngt",

"Summer_L10_dBA_ngt", "Summer_L90_dBA_ngt", ]):
"""
Load the acoustical data corresponding to the names in layers
"""
acoustic_data = np.zeros((numSites,len(layers)))
allMetrics = [sound[i][1][0] for i in range(N)]
soundFormats=[]
for i in range(len(layers)):

if ('fgroups' in layers[i] and 'hr' not in layers[i]):
name, col = layers[i].split('fgroups',1)
name = name +'fgroups'
col=int(col)-1
index=allMetrics.index(name)

copyFormat=sound[index].copy()
copyFormat['freq']=copyFormat['freq'][:,col].reshape(2,1)
soundFormats.append(copyFormat)

acoustic_data[:,i]=sound[index][0][:,col]

elif ('fgroups' in layers[i] and 'hr' in layers[i]):
split1,split2=layers[i].split('_hr',1)
hr,group=split2.split('_fgroups')
hrNum=int(hr)-1
groupNum=int(group)-1
name=split1+'_hr_fgroups'
index=allMetrics.index(name)



C.3 ParseData.py 75

copyFormat=sound[index].copy()
copyFormat['freq']=copyFormat['freq'][:,groupNum].reshape(2,1)
copyFormat['hrs']=np.array([[hrNum]],dtype=np.uint8)
soundFormats.append(copyFormat)

acoustic_data[:,i]=sound[index][0][:,hrNum,groupNum]

elif ('day_f' in layers[i] or 'ngt_f' in layers[i]):
split1,split2=layers[i].split('_f',1)
fNum=int(split2)-1
name=split1+'_f'
index=allMetrics.index(name)

copyFormat=sound[index].copy()
copyFormat['freq']=np.array([[copyFormat['freq'][0,fNum]]])
soundFormats.append(copyFormat)

acoustic_data[:,i]=sound[index][0][:,fNum]

elif('dBZ_hr' in layers[i]):
split1,split2=layers[i].split('_hr')
hr,f=split2.split('_f')
hrNum=int(hr)-1
fNum=int(f)-1
name=split1+'_hr_f'
index=allMetrics.index(name)

copyFormat=sound[index].copy()
copyFormat['freq']=np.array([[copyFormat['freq'][0,fNum]]])
copyFormat['hrs']=np.array([[hrNum]],dtype=np.uint8)
soundFormats.append(copyFormat)

acoustic_data[:,i]=sound[index][0][:,hrNum,fNum]

elif('dBA_hr' in layers[i]):
split1,hr=layers[i].split('_hr')
hrNum=int(hr)-1
name=split1+'_hr'
index=allMetrics.index(name)

copyFormat=sound[index].copy()
copyFormat['hrs']=np.array([[hrNum]],dtype=np.uint8)
soundFormats.append(copyFormat)



C.3 ParseData.py 76

acoustic_data[:,i]=sound[index][0][:,hrNum]

else:
index=allMetrics.index(layers[i])

copyFormat=sound[index].copy()
soundFormats.append(copyFormat)

acoustic_data[:,i]=sound[index][0].flatten()

if len(layers) == 1:
return geo_data, acoustic_data.flatten(), soundFormats

else:
return geo_data, acoustic_data, soundFormats

def RemoveAllNans(geo_data, acoustic_data):
"""
Remove any sites that have only nan values in their acoustical data
"""
geoNanMatrix=np.isnan(geo_data)
for i in range(np.shape(geoNanMatrix)[1]):

if True in geoNanMatrix[:,i]:
print("There␣are␣NaN␣values␣in␣the␣geo_data␣in␣column␣" + str(i+1))

m = acoustic_data.shape[0]
dim = acoustic_data.ndim
# remove training sites with no acoustic data
ind_to_keep=[]
nanMatrix=np.isnan(acoustic_data)
for i in range(m):

if dim==1:
if True == nanMatrix[i]:

continue
else:

ind_to_keep.append(i)
else:

if False in nanMatrix[i,:]:
ind_to_keep.append(i)

else:
continue

return geo_data[ind_to_keep], acoustic_data[ind_to_keep]



C.3 ParseData.py 77

def RemoveAnyNans(geo_data, acoustic_data):
"""
Remove any sites that have any nan values in their acoustical data
"""
geoNanMatrix=np.isnan(geo_data)
for i in range(np.shape(geoNanMatrix)[1]):

if True in geoNanMatrix[:,i]:
print("There␣are␣NaN␣values␣in␣the␣geo_data␣in␣column␣" + str(i+1))

m = acoustic_data.shape[0]
dim = acoustic_data.ndim
# remove training sites with no acoustic data
ind_to_keep=[]
nanMatrix=np.isnan(acoustic_data)
for i in range(m):

if dim==1:
if True == nanMatrix[i]:

continue
else:

ind_to_keep.append(i)
else:

if True in nanMatrix[i,:]:
continue

else:
ind_to_keep.append(i)

return geo_data[ind_to_keep], acoustic_data[ind_to_keep]

def RemoveCOData(geo_data, acoustic_data, feature_names):
"""
Removing the Colorado sites along the river that are really loud.
"""
latIndex = feature_names.index('Latitude')
lonIndex = feature_names.index('Longitude')
distToStreamIndex = feature_names.index('DistStreamO1')

numSites = geo_data.shape[0]

pruned_inds = []
for i in range(numSites):

if (36 < geo_data[i, latIndex] < 36.37 and -113.4 < geo_data[i, lonIndex] <
-112.2 and geo_data[
i, distToStreamIndex] < 200):



C.4 PipelinesPool.py 78

continue
else:

pruned_inds.append(i)

return geo_data[pruned_inds], acoustic_data[pruned_inds]

def RemoveListOfFeatures(geo_data, geo_names, geo_names_to_remove):
"""
Removing the features provideed in the geo_names_to_remove list.
"""
ind_to_keep = []
for name in geo_names:

if name in geo_names_to_remove:
continue

else:
ind_to_keep.append(geo_names.index(name))

for name in geo_names_to_remove:
if name not in geo_names:

print(name+"␣is␣not␣a␣feature␣name.")

geo_names = [i for i in geo_names if i not in geo_names_to_remove]

return geo_data[:, ind_to_keep], geo_names

def KeepListOfFeatures(geo_data, geo_names, geo_names_to_keep):
"""
Keeping the features provideed in the geo_names_to_keep list.
"""
ind_to_keep = []
for name in geo_names:

if name in geo_names_to_keep:
ind_to_keep.append(geo_names.index(name))

for name in geo_names_to_keep:
if name not in geo_names:

print(name+ "␣is␣not␣a␣feature␣name.")
return geo_data[:, ind_to_keep], geo_names_to_keep

C.4 PipelinesPool.py

import Validation



C.4 PipelinesPool.py 79

from sklearn.multioutput import MultiOutputRegressor
import Plotting
import pylab
import scipy.io as sio
import numpy as np
import logging
import time
import math
from AnalysisTools import *
from Scalers import *
import ParseData
from multiprocessing import Pool
import multiprocessing

def GetModel(single_output_model, Y, n_jobs=1):
if len(Y.shape) == 2:

return MultiOutputRegressor(single_output_model, n_jobs=n_jobs)
else:

return single_output_model

def Fit(name, single_output_model, X, Xscaled, Xscaler, Y, Yscaled, Yscaler,
features, layers, n_jobs=1, results_path=ParseData.output_folder, rfe=False,
num_features=20):
# Recursive feature elimination can be used.
model = GetModel(single_output_model, Yscaled, n_jobs)

logging.info("Performing␣Fit␣for␣model␣%s" % name)

if rfe==True:
rfe, model, features = TryRFE(model, Xscaled, Yscaled, features,

num_features)
else:

model.fit(Xscaled, Yscaled)

fit_predicted_scaled = model.predict(Xscaled)
fit_predicted = Yscaler.inverse_transform(fit_predicted_scaled)

# If possible, create a global variable importance list:
GlobalVariableImportanceMeasures(name, model, features, layers, results_path,

rfe, num_features)

logging.info("Fitting␣Results:␣RMSE␣=␣%02f,␣MAD␣=␣%02f" % (Validation.RMSE(Y,
fit_predicted), Validation.MAD(Y, fit_predicted)))



C.4 PipelinesPool.py 80

Plotting.PlotErrors(Y.flatten(), fit_predicted.flatten(), "%s␣Fitting␣Error" %
name)

pylab.savefig("%s%s_fit_error.png" % (results_path, name), dpi=300)
pylab.close()
return model, fit_predicted, fit_predicted_scaled

def LOOCV(name, single_output_model, X, Xscaled, Xscaler, Y, Yscaled, Yscaler,
n_jobs=1, results_path=ParseData.output_folder, rfe=False, num_features=20):
# If recursive feature elimination is used, if will only be performed once in

Validation.LOOCV.
model = GetModel(single_output_model, Yscaled, n_jobs)

# Cross Validate
logging.info("Performing␣LOOCV␣on␣model␣%s" % name)

loocv_predicted_scaled = Validation.LOOCV(model, Xscaled, Yscaled, rfe,
num_features)

loocv_predicted = Yscaler.inverse_transform(loocv_predicted_scaled)

# Print some results
logging.info("LOOCV␣Results:␣RMSE␣=␣%02f,␣MAD␣=␣%02f" % (Validation.RMSE(Y,

loocv_predicted), Validation.MAD(Y, loocv_predicted)))

Plotting.PlotErrors(Y.flatten(), loocv_predicted.flatten(), "%s␣LOOCV␣Error" %
name)

pylab.savefig("%s%s_loocv_error.png" % (results_path, name), dpi=300)
pylab.close()
return loocv_predicted, loocv_predicted_scaled

def MapMasterFunction(name, modelNames, models, X, Xscaled, Xscaler, Y, Yscaled,
Yscaler, features, layers, soundFormats, region, num_jobs_creating_map,
results_path, createMap, anthropogenicMap, naturalMap, rfe, num_features):
#pool=Pool(processes=num_jobs_creating_map)
soundmap=np.array([])
natMap=np.array([])
anthMap=np.array([])
numOutputs=len(layers)

loadStart=time.time()
mapinput,mapDim=ParseData.LoadInputData(ParseData.input_name,features,region)
loadEnd=time.time()



C.4 PipelinesPool.py 81

print('Load␣time:␣',loadEnd-loadStart)

for j in range(len(modelNames)):
if num_jobs_creating_map!=1:

pool=Pool(processes=num_jobs_creating_map)
fullName=name+modelNames[j]
model=models[j]

logging.info("Creating␣Maps␣for␣model␣%s" % name)
model = GetModel(model, Yscaled, num_jobs_creating_map)

# If RFE is True, perform it now. (Reduce the features in the model to
num_features before making predictions.)

originalFeatures=features.copy()
if rfe==True:

rfe, model, features = TryRFE(model, Xscaled, Yscaled, features,
num_features)

else:
model.fit(Xscaled, Yscaled)

numOutputs = len(layers)

# Finding which sites to make predictions for:
inputMap={}
numSites=np.shape(mapinput)[0]
argsList1=[]
results1=0

poolStart=time.time()
if num_jobs_creating_map==1:

results1=[ScaleAndPredict(model,Xscaler,Yscaler,originalFeatures,
mapinput,numOutputs,mapDim,naturalMap,anthropogenicMap)]

else:
for i in range(math.floor(num_jobs_creating_map)):

numInGroup=int(math.ceil(numSites/(num_jobs_creating_map)))
if i==num_jobs_creating_map-1:

inputMap[i]=mapinput[numInGroup*(i):numSites]
else:

inputMap[i]=mapinput[numInGroup*(i):numInGroup*(i+1)]
argsList1.append((model, Xscaler, Yscaler, originalFeatures,

inputMap[i], numOutputs, mapDim, naturalMap, anthropogenicMap))
results1=pool.starmap(ScaleAndPredict,(argsList1))
pool.close()
pool.join()



C.4 PipelinesPool.py 82

poolEnd=time.time()
print('Pooling␣time:␣', poolEnd-poolStart)

if num_jobs_creating_map==1:
soundmap=results1[0][1]
if naturalMap==True:

natMap=results1[0][2]
if anthropogenicMap==True:

anthMap=results1[0][3]
else:

for i in range(num_jobs_creating_map):
if i==0:

soundmap=results1[i][1]
if naturalMap==True:

natMap=results1[i][2]
if anthropogenicMap==True:

anthMap=results1[i][3]
else:

soundmap=np.r_[soundmap,results1[i][1]]
if naturalMap==True:

natMap=np.r_[natMap,results1[i][2]]
if anthropogenicMap==True:

anthMap=np.r_[anthMap,results1[i][3]]
saveStart=time.time()
if (type(Yscaler).__name__ is 'StandardScaler_Multiple' or type(Yscaler).

__name__ is 'StandardScaler_Single' or type(Yscaler).__name__ is '
StandardIntensityScaler_Multiple' or type(Yscaler).__name__ is '
StandardIntensityScaler_Single'):
soundmap=UseStandardScalersWithNan(soundmap,Yscaler.inverse_transform)
if naturalMap==True:

natMap=UseStandardScalersWithNan(natMap,Yscaler.inverse_transform)
if anthropogenicMap==True:

anthMap=UseStandardScalersWithNan(anthMap,Yscaler.inverse_transform)
else:

soundmap=Yscaler.inverse_transform(soundmap)
if naturalMap==True:

natMap=Yscaler.inverse_transform(natMap)
if anthropogenicMap==True:

anthMap=Yscaler.inverse_transform(anthMap)

if createMap==True:
SaveMapOutputs(fullName, layers, numOutputs, mapDim, soundmap,

soundFormats, results_path, rfe, num_features)
if naturalMap==True:



C.4 PipelinesPool.py 83

newName='Nat_'+fullName
SaveMapOutputs(newName, layers, numOutputs, mapDim, natMap, soundFormats

, results_path, rfe, num_features)
if anthropogenicMap==True:

newName='Anth_'+fullName
SaveMapOutputs(newName, layers, numOutputs, mapDim, anthMap,

soundFormats, results_path, rfe, num_features)
saveEnd=time.time()
print('Saving␣time:␣', saveEnd-saveStart)

def ScaleAndPredict(model, Xscaler, Yscaler, features, mapinput, numOutputs, mapDim
, naturalMap, anthropogenicMap):

natScaler=NaturalScaler(features)
natMap=np.array([])
anthMap=np.array([])
mapinputNat=np.copy(mapinput)
if naturalMap==True:

mapinputNat=natScaler.transform(mapinputNat)

# Scaling data. If there are nan's, it only matters for the standard scalers.
# Each feature needs to be scaled the same way as in Xscaler.

if (type(Xscaler).__name__ is 'StandardScaler_Multiple' or type(Xscaler).
__name__ is 'StandardScaler_Single' or type(Xscaler).__name__

is 'StandardIntensityScaler_Multiple' or type(Xscaler).__name__ is '
StandardIntensityScaler_Single' or type(Xscaler).__name__ is '
StandardLogScaler_Multiple'):

mapinput=UseStandardScalersWithNan(mapinput, Xscaler.transform)
if natMap==True:

mapinputNat=UseStandardScalersWithNan(mapinputNat, Xscaler.transform)
else:

mapinput=Xscaler.transform(mapinput)
if naturalMap==True:

mapinputNat=Xscaler.transform(mapinputNat)

# Creating predictions for the map sites
soundmap=CreatingMapPredictions(mapinput, numOutputs, model)

# Creating the predictions for the natural map and anthropogenic map if needed
if naturalMap==True or anthropogenicMap==True:

natMap=CreatingMapPredictions(mapinputNat, numOutputs, model)

if anthropogenicMap == True:



C.4 PipelinesPool.py 84

anthMap = soundmap-natMap

if naturalMap==False:
natMap=np.array([])

if anthropogenicMap==False:
anthMap=np.array([])

return [mapDim,soundmap,natMap,anthMap]

def ConvertOutputFormat(soundFormat, fgroups=False):
dictToReturn={}
dictToReturn['v']=soundFormat[0]
dictToReturn['Variable']=soundFormat[1][0]
dictToReturn['Description']=soundFormat[2][0]
dictToReturn['Units']=soundFormat[3][0]
if fgroups==False:

dictToReturn['hrs']=soundFormat[4][0]
dictToReturn['freq']=soundFormat[5][0]
dictToReturn['levels']=soundFormat[6][0]

else:
dictToReturn['hrs']=soundFormat[4]
dictToReturn['freq']=soundFormat[5]
dictToReturn['levels']=soundFormat[6]

return dictToReturn

def UseStandardScalersWithNan(inputMat, function):
if len(np.shape(inputMat))==1:

inputMat=inputMat.reshape(len(inputMat),1)
nanMat=np.isnan(inputMat)
numSites, numCol=np.shape(inputMat)
inputMatWithoutNan=inputMat[~nanMat.any(axis=1)]
scaledInputs=0
if np.shape(inputMatWithoutNan)[0]>0:

scaledInputs=function(inputMatWithoutNan)
else:

print("Only␣found␣Nan␣in␣this␣region.")
outputMat=np.zeros((numSites, numCol))
outputMat[nanMat.any(axis=1)]=np.nan
if numCol==1:

outputMat[~nanMat.any(axis=1),0]=scaledInputs
else:

outputMat[~nanMat.any(axis=1)]=scaledInputs
return outputMat



C.4 PipelinesPool.py 85

def GlobalVariableImportanceMeasures(name, model, features, layers, results_path,
rfe, num_features):
# Global variable importance measures:
# 1. Random forest models:
try:

importances=featureImportanceForest(model,features)
if rfe==False:

with open('%s_feat_import_RF_%s_%s.txt' % (results_path,name,layers[0]),
'w') as file:
file.write(json.dumps(importances, indent=2))

else:
with open('%s_feat_import_RF_rfe'+str(num_features)+'_%s_%s.txt' % (

results_path,name,layers[0]),'w') as file:
file.write(json.dumps(importances, indent=2))

except (TypeError,AttributeError):
# print("Found error in RF importances")
pass

# 2. Neural network models:
try:

importances=featureImportanceNN(model,features)
if rfe==False:

with open('%s_feat_import_NN_%s_%s.txt' % (results_path,name,layers[0]),
'w') as file:
file.write(json.dumps(importances, indent=2))

else:
with open('%s_feat_import_NN_rfe'+str(num_features)+'_%s_%s.txt' % (

results_path,name,layers[0]),'w') as file:
file.write(json.dumps(importances, indent=2))

except (TypeError,AttributeError):
# print("Found error in NN importances.")
pass

def TryRFE(model, Xscaled, Yscaled, features, num_features):
rfe=True
try:

modelRFE=model
modelRFE=featureSelectionRecursive(model,num_features)
modelRFE.fit(Xscaled,Yscaled)
newFeatures=[]
for i in range(len(modelRFE.support_)):

if modelRFE.support_[i]==True:
newFeatures.append(features[i])

features=newFeatures



C.4 PipelinesPool.py 86

model=modelRFE
except (ValueError,RuntimeError,AttributeError):

print("Cannot␣use␣RFE␣with␣this␣model␣and␣data.")
rfe=False
model.fit(Xscaled,Yscaled)
pass

return rfe, model, features

def CreatingMapPredictions(mapinput, numOutputs, model):
nanInput=np.isnan(mapinput)
numSites=np.shape(mapinput)[0]
soundmap=np.zeros((numSites, numOutputs))
for i in range(numSites):

#if i%1000000==0: # So I know how many sites have been done
#print(str(i))

if True in nanInput[i,:]:
soundmap[i,:]=np.nan

else:
soundmap[i,:]=model.predict(mapinput[i,:].reshape(1,-1))

return soundmap

def SaveMapOutputs(name, layers, numOutputs, mapDim, soundmap, soundFormats,
results_path, rfe, num_features):
#print(mapDim)
#print(soundmap.reshape(mapDim))
for i in range(numOutputs):

fgroups=False
if 'fgroups' in layers[i]:

fgroups=True
if 'Anth' in name:

logging.info("Saving␣anthropogenic␣map␣for␣model␣%s␣with␣layer␣%s" % (
name, layers[i]))

elif 'Nat' in name:
logging.info("Saving␣natural␣map␣for␣model␣%s␣with␣layer␣%s" % (name,

layers[i]))
else:

logging.info("Saving␣map␣for␣model␣%s␣with␣layer␣%s" % (name, layers[i])
)

if numOutputs==1:
soundFormats[0]['v'] = soundmap.reshape(mapDim)



C.5 PrunedModels.py 87

else:
soundFormats[i]['v']=soundmap[:,i].reshape(mapDim)

if rfe==True:
sio.savemat(results_path + 'SOUND_' + name + '_rfe' + str(num_features)

+ '_' + soundFormats[i]['Variable'][0] + '.mat', ConvertOutputFormat
(soundFormats[i], fgroups))

else:
sio.savemat(results_path + 'SOUND_' + name + '_' + soundFormats[i]['

Variable'][0] + '.mat', ConvertOutputFormat(soundFormats[i], fgroups
))

C.5 PrunedModels.py

# Pruned models from each class
# GPR_pruned, KN_pruned, KR_pruned, NN_pruned, GBR_pruned, SV_pruned

from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import *

GPR_pruned = GaussianProcessRegressor(kernel=Matern(), alpha=1e-1, optimizer='
fmin_l_bfgs_b',

n_restarts_optimizer=10, normalize_y=True,
copy_X_train=True, random_state=1)

GPR_Models = {
"GPR_pruned": GPR_pruned,

}

from sklearn.neighbors import KNeighborsRegressor

KN_pruned = KNeighborsRegressor(n_neighbors=5,
weights='distance',
algorithm='auto',
leaf_size=30,
p=2,
metric='minkowski',
metric_params=None,
n_jobs=1)

KN_Models = {
"KN_pruned": KN_pruned,

}

from sklearn.kernel_ridge import KernelRidge



C.5 PrunedModels.py 88

KR_pruned = KernelRidge(alpha=0.1,
kernel='laplacian',
gamma=None,
degree=3,
coef0=1,
kernel_params=None)

KR_Models = {
"KR_pruned": KR_pruned,

}

from sklearn.neural_network import MLPRegressor

NN_pruned = MLPRegressor(hidden_layer_sizes=(),
activation='tanh', # I think this doesn't matter if there are no

hidden layers
solver='lbfgs', # Works better on small models
alpha=50,
max_iter=5000,
random_state=1, # Should NEVER be None
tol=0.000001,
verbose=False,
warm_start=False,)

NN_Models = {
"NN_pruned": NN_pruned,

}

from sklearn.ensemble import GradientBoostingRegressor

GBR_pruned = GradientBoostingRegressor(loss='ls',
learning_rate=0.1,
n_estimators=100,
subsample=0.5,
criterion='friedman_mse',
min_samples_split=2,
min_samples_leaf=1,
min_weight_fraction_leaf=0.0,
max_depth=6,
min_impurity_split=1e-07,
init=None,
random_state=0, # Should NEVER be None
max_features='log2',



C.6 Scalers.py 89

alpha=0.9,
verbose=False,
max_leaf_nodes=None,
warm_start=False,
presort='auto')

RF_Models = {
"GBR_pruned": GBR_pruned,

}

from sklearn.svm import SVR

SV_pruned = SVR(C=2.0, epsilon=0.1, kernel='rbf',
degree=3, gamma='auto', coef0=0.0,
shrinking=False, tol=1e-3, verbose=False, max_iter=-1)

SV_Models = {
"SV_pruned": SV_pruned,

}

C.6 Scalers.py

import numpy as np
from sklearn.preprocessing import StandardScaler

# Scalers: StandardScaler_Single, StandardScaler_Multiple, IntensityScaler,
StandardIntensityScaler_Single,

# StandardIntensityScaler_Multiple, IdentityScaler, LogScaler, NaturalScaler,
NaturalScalerMaxLimits

class StandardScaler_Single:
def __init__(self,geo_names):

self.geo_names=geo_names
self.scaler = StandardScaler()
self.called = False

def transform(self,x):
if self.called == False:

self.scaler=self.scaler.fit(x.flatten().reshape(-1, 1))
self.called = True

x = self.scaler.transform(x.reshape(-1,1)).flatten()
return x

def inverse_transform(self,x):



C.6 Scalers.py 90

if self.called == False:
self.scaler=self.scaler.fit(x.flatten().reshape(-1, 1))
self.called = True

x = self.scaler.inverse_transform(x.reshape(-1,1)).flatten()
return x

class StandardScaler_Multiple:
def __init__(self,geo_names):

self.geo_names=geo_names
self.scaler = StandardScaler()
self.called = False

def transform(self,x):
if self.called == False:

self.scaler=self.scaler.fit(x)
self.called = True

x = self.scaler.transform(x)
return x

def inverse_transform(self,x):
if self.called == False:

self.scaler=self.scaler.fit(x)
self.called = True

x = self.scaler.inverse_transform(x)
return x

# Might not need this.
class IntensityScaler:

def __init__(self,geo_names):
self.geo_names=geo_names

def transform(self,x):
x=10**(-12)*10**(x/10)
return x

def inverse_transform(self,x):
x[x<=0]=10**(-12)
x=10*np.log10(x/(10**(-12)))
return x

# The following two scalers will scale the intensities with the standard scaler,
and then train on those values.

# At the end, the predicted intensities will be converted back to dB.
class StandardIntensityScaler_Single:



C.6 Scalers.py 91

def __init__(self,geo_names):
self.geo_names=geo_names
self.scaler = StandardScaler()
self.called = False

def transform(self,x):
x=10**(-12)*10**(x/10)
if self.called == False:

self.scaler=self.scaler.fit(x.flatten().reshape(-1, 1))
self.called = True

x = self.scaler.transform(x.reshape(-1,1)).flatten()
return x

def inverse_transform(self,x):
if self.called == False:

self.scaler=self.scaler.fit(x.flatten().reshape(-1, 1))
self.called = True

x = self.scaler.inverse_transform(x.reshape(-1,1)).flatten()
x[x<=0]=10**(-12)
x=10*np.log10(x/(10**(-12)))
return x

class StandardIntensityScaler_Multiple:
def __init__(self,geo_names):

self.geo_names=geo_names
self.scaler = StandardScaler()
self.called = False

def transform(self,x):
x=10**(-12)*10**(x/10)
if self.called == False:

self.scaler=self.scaler.fit(x)
self.called = True

x = self.scaler.transform(x)
return x

def inverse_transform(self,x):
if self.called == False:

self.scaler=self.scaler.fit(x)
self.called = True

x = self.scaler.inverse_transform(x)
x[x<=0]=10**(-12)
x=10*np.log10(x/(10**(-12)))
return x



C.6 Scalers.py 92

class IdentityScaler:
def __init__(self,geo_names):

self.geo_names=geo_names

def transform(self,x):
return x

def inverse_transform(self,x):
return x

class LogScaler:
def __init__(self, geo_names):

self.geo_names = geo_names

# Setting x0 in meters:
x0_Stream = 3200
x0_Rail = 13000
x0_Airport = 24000
x0_Other = 8000

stream_names = ['DistStreamO1','DistStreamO3','DistStreamO4']
rail_names = ['DistRailroads']
airport_names = ['DistAirpHeli','DistAirpHigh','DistAirpLow','

DistAirpMod','DistAirpMoto','DistAirpSea','DistMilitary']
other_names = ['DistRoadsAll','DistRoadsMaj','DistCoast', '

DistWaterbody']

allNames=[]
allNames.append(stream_names)
allNames.append(rail_names)
allNames.append(airport_names)
allNames.append(other_names)
'''
for name in allNames:

if name not in geo_names:
print(name+" in LogScaler is incorrectly spelled or

not a feature in this data set.")
'''
ind_streams=[]
ind_rails=[]
ind_airports=[]
ind_others=[]



C.6 Scalers.py 93

for name in stream_names:
if name in geo_names:

ind_streams.append(geo_names.index(name))
for name in rail_names:

if name in geo_names:
ind_rails.append(geo_names.index(name))

for name in airport_names:
if name in geo_names:

ind_airports.append(geo_names.index(name))
for name in other_names:

if name in geo_names:
ind_others.append(geo_names.index(name))

x0 = [False]*len(geo_names)
for index in ind_streams:

x0[index] = x0_Stream
for index in ind_rails:

x0[index] = x0_Rail
for index in ind_airports:

x0[index] = x0_Airport
for index in ind_others:

x0[index] = x0_Other

self.x0 = x0

def transform(self,x):
for i in range(len(self.x0)):

if self.x0[i] != False:
for j in range(len(x[:,i])):

if x[j,i] == 0:
x[j,i] = 0.1

x[:,i] = np.true_divide(x[:,i],self.x0[i])
x[:,i] = np.log(x[:,i])

return x

def inverse_transform(self,x):
for i in range(len(self.x0)):

if self.x0[i]==False:
continue

else:
x[:,i]=np.exp(x[:,i])
x[:,i]=np.multiply(x[:,i],self.x0[i])



C.6 Scalers.py 94

return x

class StandardLogScaler_Multiple:
def __init__(self, geo_names):

self.geo_names = geo_names
self.scaler = StandardScaler()
self.called = False

# Setting x0 in meters:
x0_Stream = 3200
x0_Rail = 13000
x0_Airport = 24000
x0_Other = 8000

stream_names = ['DistStreamO1','DistStreamO3','DistStreamO4']
rail_names = ['DistRailroads']
airport_names = ['DistAirpHeli','DistAirpHigh','DistAirpLow','

DistAirpMod','DistAirpMoto','DistAirpSea','DistMilitary']
other_names = ['DistRoadsAll','DistRoadsMaj','DistCoast', '

DistWaterbody']

allNames=[]
allNames.append(stream_names)
allNames.append(rail_names)
allNames.append(airport_names)
allNames.append(other_names)

ind_streams=[]
ind_rails=[]
ind_airports=[]
ind_others=[]

for name in stream_names:
if name in geo_names:

ind_streams.append(geo_names.index(name))
for name in rail_names:

if name in geo_names:
ind_rails.append(geo_names.index(name))

for name in airport_names:
if name in geo_names:

ind_airports.append(geo_names.index(name))
for name in other_names:



C.6 Scalers.py 95

if name in geo_names:
ind_others.append(geo_names.index(name))

x0 = [False]*len(geo_names)
for index in ind_streams:

x0[index] = x0_Stream
for index in ind_rails:

x0[index] = x0_Rail
for index in ind_airports:

x0[index] = x0_Airport
for index in ind_others:

x0[index] = x0_Other

self.x0 = x0

def transform(self,x):
for i in range(len(self.x0)):

if self.x0[i] != False:
for j in range(len(x[:,i])):

if x[j,i] == 0:
x[j,i] = 0.1

x[:,i] = np.true_divide(x[:,i],self.x0[i])
x[:,i] = np.log(x[:,i])

if self.called == False:
self.scaler=self.scaler.fit(x)
self.called = True

x = self.scaler.transform(x)

return x

def inverse_transform(self,x):
if self.called == False:

self.scaler=self.scaler.fit(x)
self.called = True

x=self.scaler.inverse_transform(x)
for i in range(len(self.x0)):

if self.x0[i]==False:
continue

else:
x[:,i]=np.exp(x[:,i])
x[:,i]=np.multiply(x[:,i],self.x0[i])

return x



C.6 Scalers.py 96

class NaturalScaler:
def __init__(self, geo_names):

self.geo_names = geo_names

# Setting limits (for no anthropogenic component):
self.limits={'Built_200m': 0, 'Built_5000m': 0, 'Commercial_200m':

0, 'Commercial_5000m': 0, 'Cropland_200m': 0, 'Cropland_5000m':
0,

'DistAirpHeli': 24000, 'DistAirpHigh': 24000, 'DistAirpLow':
24000, 'DistAirpMod': 24000, 'DistAirpMoto': 24000, '
DistAirpSea': 24000,

'DistMilitary': 24000, 'DistRailroads': 13000, 'DistRoadsAll'
: 8000, 'DistRoadsMaj': 8000, 'Extractive_200m': 0, '
Extractive_5000m': 0,

'ExurbanHigh_200m': 0, 'ExurbanHigh_5000m': 0, '
ExurbanLow_200m': 0, 'ExurbanLow_5000m': 0, '
FlightFreq_25km': 0, 'Grazing_200m': 0,

'Grazing_5000m': 0, 'Industrial_200m': 0, 'Industrial_5000m':
0, 'Institutional_200m': 0, 'Institutional_5000m': 0, '

MilitarySum_40km': 0,
'Mining_200m': 0, 'Mining_5000m': 0, 'Park_200m': 0, '

Park_5000m': 0, 'Pasture_200m': 0, 'Pasture_5000m': 0, '
PhysicalAccess': 0,

'RddAll': 0, 'RddAll_5000m': 0, 'RddMajor': 0, '
RddMajor_5000m': 0, 'RecCon_200m': 0, 'RecCon_5000m': 0,
'Suburban_200m': 0,

'Suburban_5000m': 0, 'Timber_200m': 0, 'Timber_5000m': 0, '
Transportation_200m': 0, 'Transportation_5000m': 0, '
UrbanHigh_200m': 0,

'UrbanHigh_5000m': 0, 'UrbanLow_200m':0, 'UrbanLow_5000m': 0,
'VIIRSMaximum_1080m': 0, 'VIIRSMaximum_17280m': 0, '

VIIRSMaximum_270m': 0,
'VIIRSMaximum_4320m': 0, 'VIIRSMaximum_69120m': 0, '

VIIRSMean_1080m': 0, 'VIIRSMean_17280m': 0, '
VIIRSMean_270m': 0, 'VIIRSMean_4320m': 0,

'VIIRSMean_69120m': 0, 'VIIRSMinimum_1080m': 0, '
VIIRSMinimum_17280m': 0, 'VIIRSMinimum_270m': 0, '
VIIRSMinimum_4320m': 0,

'VIIRSMinimum_69120m': 0, 'WaterHum_200m': 0, 'WaterHum_5000m
': 0, 'WaterNat_200m': 0, 'WaterNat_5000m': 0, 'Wet_200m'
: 0, 'Wet_5000m': 0,

'PopDensity': 0, 'RoadNoise': 0, 'AviationNoise': 0}



C.6 Scalers.py 97

'''
for key in self.limits.keys():

if key not in geo_names:
print(key+" in NaturalScaler is spelled incorrectly or

not a feature in this data set.")
'''

def transform(self,x):
keyNames=list(self.limits.keys())
for i in range(len(self.geo_names)):

if self.geo_names[i] in keyNames:
x[:,i]=self.limits[self.geo_names[i]]

return x

class NaturalScalerMaxLimits:
def __init__(self, geo_names):

self.geo_names = geo_names

# Setting limits (for no anthropogenic component):
self.limits={'Built_200m': 0, 'Built_5000m': 0, 'Commercial_200m':

0, 'Commercial_5000m': 0, 'Cropland_200m': 0, 'Cropland_5000m':
0,

'DistAirpHeli': 1.8335*10**5, 'DistAirpHigh': 8.4585*10**5, '
DistAirpLow': 2.0567*10**5, 'DistAirpMod': 4.0479*10**5,

'DistAirpMoto': 7.0615*10**4, 'DistAirpSea': 7.0615*10**4, '
DistMilitary': 2.4496*10**5, 'DistRailroads':
1.1998*10**5,

'DistRoadsAll': 33725, 'DistRoadsMaj': 65535, '
Extractive_200m': 0, 'Extractive_5000m': 0,

'ExurbanHigh_200m': 0, 'ExurbanHigh_5000m': 0, '
ExurbanLow_200m': 0, 'ExurbanLow_5000m': 0, '
FlightFreq_25km': 0, 'Grazing_200m': 0,

'Grazing_5000m': 0, 'Industrial_200m': 0, 'Industrial_5000m':
0, 'Institutional_200m': 0, 'Institutional_5000m': 0, '

MilitarySum_40km': 0,
'Mining_200m': 0, 'Mining_5000m': 0, 'Park_200m': 0, '

Park_5000m': 0, 'Pasture_200m': 0, 'Pasture_5000m': 0, '
PhysicalAccess': 0,

'RddAll': 0, 'RddAll_5000m': 0, 'RddMajor': 0, '
RddMajor_5000m': 0, 'RecCon_200m': 0, 'RecCon_5000m': 0,
'Suburban_200m': 0,

'Suburban_5000m': 0, 'Timber_200m': 0, 'Timber_5000m': 0, '
Transportation_200m': 0, 'Transportation_5000m': 0, '
UrbanHigh_200m': 0,



C.7 Validation.py 98

'UrbanHigh_5000m': 0, 'UrbanLow_200m':0, 'UrbanLow_5000m': 0,
'VIIRSMaximum_1080m': 0, 'VIIRSMaximum_17280m': 0, '

VIIRSMaximum_270m': 0,
'VIIRSMaximum_4320m': 0, 'VIIRSMaximum_69120m': 0, '

VIIRSMean_1080m': 0, 'VIIRSMean_17280m': 0, '
VIIRSMean_270m': 0, 'VIIRSMean_4320m': 0,

'VIIRSMean_69120m': 0, 'VIIRSMinimum_1080m': 0, '
VIIRSMinimum_17280m': 0, 'VIIRSMinimum_270m': 0, '
VIIRSMinimum_4320m': 0,

'VIIRSMinimum_69120m': 0, 'WaterHum_200m': 0, 'WaterHum_5000m
': 0, 'WaterNat_200m': 0, 'WaterNat_5000m': 0, 'Wet_200m'
: 0, 'Wet_5000m': 0,

'PopDensity': 0, 'RoadNoise': 0, 'AviationNoise': 0}
'''
for key in self.limits.keys():

if key not in geo_names:
print(key+" in NaturalScaler is spelled incorrectly or

not a feature in this data set.")
'''

def transform(self,x):
keyNames=list(self.limits.keys())
for i in range(len(self.geo_names)):

if self.geo_names[i] in keyNames:
x[:,i]=self.limits[self.geo_names[i]]

return x

C.7 Validation.py

import numpy as np
import time
import logging
from AnalysisTools import featureSelectionRecursive

def RMSE(observed, predicted):
"""
Calculate root mean square error
"""
r = observed - predicted
return np.sqrt(np.mean(r * r))

def MAD(observed, predicted):



C.7 Validation.py 99

"""
Calculate median absolute deviation
"""
r = observed - predicted
return np.median(np.abs(r))

def LOOCV(model, X, Y, rfe, num_features):
"""
Perform a leave-one-out cross validation
Returns the predictions of the fit model for each validation fit
"""
predictions = np.zeros(Y.shape)
if len(predictions.shape) == 1:

predictions = predictions.reshape(1, -1).T

featIndices=[]
if rfe==True:

try:
modelRFE=featureSelectionRecursive(model,num_features)
modelRFE.fit(X,Y)
featIndices=[]
for i in range(len(modelRFE.support_)):

if modelRFE.support_[i]==True:
featIndices.append(i)

X=X[:,featIndices]
except (ValueError,RuntimeError,AttributeError):

print("Cannot␣use␣RFE␣with␣this␣model␣and␣data.␣␣LOOCV␣will␣be␣
calculated␣without␣RFE.")

pass

m = Y.shape[0]
indices = np.ones(m, dtype=bool)
start = time.time()
for i in range(m):

indices[i] = False
model.fit(X[indices], Y[indices])
predictions[i, :] = model.predict(X[i].reshape(1, -1))
indices[i] = True
logging.info("Calculating␣LOOCV␣error␣%i/%i" % (i, m))

end = time.time()
logging.info("Time␣taken␣=␣%01f␣minutes" % ((end - start) / 60))
return predictions



C.8 AnalysisTools.py 100

C.8 AnalysisTools.py

# Analysis Tools

# Feature Importance/Selection Functions (note that some of these only work with
specific model types):

import numpy as np
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.feature_selection import *
import json
from scipy.stats import pearsonr
from sklearn.feature_selection import RFE
from collections import OrderedDict

def featureImportanceForest(forest_model, features):
'''
Find and print the feature importance of all features using the default

method for
random forests.
'''
importances=forest_model.feature_importances_

feature_import={}

for i in range(len(features)):
feature_import[features[i]]=importances[i]

feature_import=OrderedDict(sorted(feature_import.items(), key=lambda x:x
[1],reverse=True))

return feature_import

def featureImportanceNN(nn_model, features):
coefs=nn_model.coefs_
importances={}
#absCoefs=[abs(x) for x in coefs]
#print(absCoefs/np.sum(absCoefs))
#print(features)
allWeights=np.zeros((len(features),1))
numLayers=len(coefs)
numPaths=1
hiddenLayers=[]
for i in range(numLayers):



C.8 AnalysisTools.py 101

numPaths=numPaths*np.shape(coefs[i])[1]
hiddenLayers.append(np.shape(coefs[i])[1])

for featIndex in range(len(features)):
allPaths=np.ones((numPaths,1))
for i in range(numLayers-1):

index=0
numToRepeat=1
for j in range(numLayers):

if j>i:
numToRepeat=numToRepeat*hiddenLayers[j]

location=0
while index<numPaths:

if i==0:
allPaths[index:index+numToRepeat,0]=allPaths[

index:index+numToRepeat,0]*coefs[i][
featIndex,:].flatten()[location]

else:
allPaths[index:index+numToRepeat,0]=allPaths[

index:index+numToRepeat,0]*coefs[i].flatten
()[location]

location=location+1
if location==len(coefs[i].flatten()):

location=0
index=index+numToRepeat

sumPaths=np.zeros((hiddenLayers[0],1))
numSubPaths=int(numPaths/hiddenLayers[0])
for i in range(hiddenLayers[0]):

sumPaths[i]=np.sum(abs(allPaths[i*numSubPaths:(i+1)*
numSubPaths]))

featImport=np.sum(sumPaths[:].flatten()*coefs[0][featIndex,:].
flatten())

allWeights[featIndex]=abs(featImport)

if len(features)>1:
scaledWeights=allWeights/np.sum(allWeights)
i=0
for feature in features:

importances[feature]=scaledWeights[i][0]
i=i+1

else:
importances[features[0]]=1

importances=OrderedDict(sorted(importances.items(), key=lambda x:x[1],



C.8 AnalysisTools.py 102

reverse=True))
#print(importances)
return importances

def featureSelectionCorrelation(X, features, max_corr=0.9):
# Runtime warnings created from the 'Mining_200m' feature (all 0's in

training set)-
finished=False
while finished==False:

restart=False
for i in range(len(features)):

for j in range(len(features)):
if abs(pearsonr(X[:,i],X[:,j])[0])>=max_corr and i!=j:

totCorr1=-1
totCorr2=-1
for k in range(len(features)):

totCorr1=totCorr1+abs(pearsonr(X[:,i],X
[:,k])[0])

totCorr2=totCorr2+abs(pearsonr(X[:,j],X
[:,k])[0])

if totCorr2>totCorr1:
features.remove(features[j])
X=np.delete(X,j,1)

else:
features.remove(features[i])
X=np.delete(X,i,1)

restart=True
break

if restart==True:
break

if restart==False:
finished=True

return X,features

def featureSelectionStd(X, features, max_std):
numFeat=len(features)
indToKeep=[]
for i in range(numFeat):

if np.std(X[:,i])>max_std:
indToKeep.append(i)

return X[:,indToKeep], [features[i] for i in indToKeep]

def featureSelectionRecursive(model_name, num_features):



C.9 createFullConus.py 103

'''
Recursively selects smaller and smaller sets of features. Only works on

single
output models.
'''
selector=RFE(model_name, num_features)
return selector

C.9 createFullConus.py

import numpy as np
import scipy.io as sio

folderPath='../results/20180315_CONUS_OUTPUT/'
data='SOUND_data1454'
metric='Summer_L90_dBA_day_fgroups'

models=['GPR_pruned','GBR_pruned','KN_pruned','KR_pruned','NN_pruned','SV_pruned']
for model in models:

nw=sio.loadmat(folderPath+data+'_NW_'+model+'_'+metric+'.mat')
sw=sio.loadmat(folderPath+data+'_SW_'+model+'_'+metric+'.mat')
ne=sio.loadmat(folderPath+data+'_NE_'+model+'_'+metric+'.mat')
se=sio.loadmat(folderPath+data+'_SE_'+model+'_'+metric+'.mat')

conus=np.zeros((10725,17091))
conus[0:5362,0:8545]=nw['v']
conus[0:5362,8545:]=ne['v']
conus[5362:,0:8545]=sw['v']
conus[5362:,8545:]=se['v']
nw['v']=conus

sio.savemat(folderPath+data+'_'+model+'_'+metric+'.mat',nw)

C.10 findMedian.py

import numpy as np
import scipy.io as sio

folderPath='../results/20180315_CONUS_OUTPUT/'
data='SOUND_data1447'
metric='Summer_L50_dBA_day'

gbr=sio.loadmat(folderPath+data+'_GBR_pruned_'+metric+'.mat')



C.11 Sample Data File: Data1008.py 104

gpr=sio.loadmat(folderPath+data+'_GPR_pruned_'+metric+'.mat')
kr=sio.loadmat(folderPath+data+'_KR_pruned_'+metric+'.mat')
kn=sio.loadmat(folderPath+data+'_KN_pruned_'+metric+'.mat')
nn=sio.loadmat(folderPath+data+'_NN_pruned_'+metric+'.mat')
sv=sio.loadmat(folderPath+data+'_SV_pruned_'+metric+'.mat')

r,c=np.shape(gbr['v'])
allRegion=np.zeros((r,c,6))
allRegion[:,:,0]=gbr['v']
allRegion[:,:,1]=gpr['v']
allRegion[:,:,2]=kr['v']
allRegion[:,:,3]=kn['v']
allRegion[:,:,4]=nn['v']
allRegion[:,:,5]=sv['v']

regMed=np.nanmedian(allRegion,axis=2)
regStd=np.nanstd(allRegion,axis=2)
gbr['v']=regMed
gpr['v']=regStd
sio.savemat(folderPath+data+'_Ensemble_'+metric+'.mat',gbr)
sio.savemat(folderPath+data+'_Std_'+metric+'.mat',gpr)

C.11 Sample Data File: Data1008.py

# PreProcessing, Load Data
import ParseData
from Scalers import *

layers = ["Summer_L50_dBA_day"]
features_to_remove = []
X, Y, soundFormats = ParseData.LoadData(layers)
X, Y = ParseData.RemoveAnyNans(X, Y)
X, features = ParseData.RemoveListOfFeatures(X, ParseData.geo_names,

features_to_remove)

Xscaler = StandardScaler_Multiple(features)
Yscaler = StandardScaler_Single(features)
Xscaled = Xscaler.transform(X)
Yscaled = Yscaler.transform(Y)
data_name = "data1008"
data_description = ParseData.data_name + "_Single␣output␣model␣for␣L50␣daytime␣

levels_all␣features_Standard."



Bibliography

[1] NPS, “NPS Director's Order ] 47: Soundscape Preservation and Noise Management,” (2000).

[2] N. A. of Engineering, “Protecting National Park Soundscapes,” Washington, DC: The

National Academic Press (2013).

[3] D. Weinzimmer, P. Newman, D. Taff, J. Benfield, E. Lynch, and P. Bell, “Human Responses

to Simulated Motorized Noise in National Parks,” Leis. Sci. 36, 251–267 (2014).

[4] C. D. Francis et al., “Acoustic Environments Matter: Synergistic Benefits fo Humans and

Ecological Communities,” Environ. Manage. 203, 245–254 (2017).

[5] C. I. Merchan, L. Diaz-Balteiro, and M. Soliño, “Noise Pollution in National Parks:

Soundscape and Economic Valuation,” Landsc. Urban Plan. 123, 1–9 (2014).

[6] M. E. Beutel et al., “Noise Annoyance is Associated with Depression and Anxiety in the

General Population - the Contribution of Aircraft Noise,” PLoS ONE 11 (2016).

[7] T. Bodin, M. Albin, J. Ardö, E. Stroh, P. Östergren, and J. Björk, “Road Traffic Noise and

Hypertension: Results from a Cross-Sectional Public Health Survey in Southern Sweden,”

Environmental Health 8, 38 (2009).

[8] L. Jarup et al., “Hypertension and Exposure to Noise Near Airports: the HYENA Study,”

Environmental Health Perspectives 116, 329 (2008).

105



BIBLIOGRAPHY 106

[9] T. Münzel, F. P. Schmidt, S. Steven, J. Herzog, A. Daiber, and M. Sørensen, “Environmental

Noise and the Cardiovascular System,” J. Am. Coll. Cardiol. 71, 688–697 (2018).

[10] S. A. Stansfeld et al., “Aircraft and Road Traffic Noise and Children's Cognition and Health:

a Cross-National Study,” Lancet 365, 1942–1949 (2005).

[11] S. P. Banbury, W. J. Macken, S. Tremblay, and D. M. Jones, “Auditory Distraction and Short-

Term Memory: Phenomena and Practical Implications,” Human Factors 43, 12–29 (2001).

[12] C. D. Francis, C. P. Ortega, and A. Cruz, “Noise Pollution Changes Avian Communities and

Species Interactions,” Current Biology 19, 1415–1419 (2009).

[13] H. Slabbekorn and W. Halfwerk, “Behavioural Ecology: Noise Annoys at Community

Level,” Current Biology 19, R693–R695 (2009).

[14] B. C. Pijanowski, L. T. Villanueva-Rivera, S. L. Dumyahn, A. Farina, B. L. Krause, B. M.

Napoletano, S. H. Gage, and N. Pieretti, “Soundscape Ecology: The Science of Sound in the

Landscape,” BioScience 61, 203–216 (2011).

[15] E. P. Derryberry, R. M. Danner, J. E. Danner, G. E. Derryberry, J. N. Phillips, S. E.

Lipshutz, K. Gentry, and D. A. Luther, “Patterns of Song across Natural and Anthropogenic

Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and

Maximize Signal Content,” PLoS ONE 11 (2016).

[16] G. Buscaino et al., “Temporal Patterns in the Soundscape of the Shallow Waters of a

Mediterranean Marine Protected Area,” Scientific Reports 6 (2016).

[17] P. A. Hastings and A. S̆irović, “Soundscapes Offer Unique Opportunities for Studies of Fish

Communities,” In Proceedings of the National Academy of Sciences of the United States of

America, 112, 5866–5867 (2015).



BIBLIOGRAPHY 107

[18] L. Ruppé, G. Clément, A. Herrel, L. Ballesta, T. Décamps, L. Kéver, and E. Parmentier,

“Environmental Constraints Drive the Partitioning of the Soundscape in Fishes,” In

Proceedings of the National Academy of Sciences of the United States of America, 112, 6092–

6097 (2015).

[19] F. Bertucci, E. Parmentier, G. Lecellier, A. D. Hawkins, and D. Lecchini, “Acoustic Indices

Provide Information on the Status of Coral Reefs: An Example from Moorea Island in the

South Pacific,” Scientific Reports 6 (2016).

[20] S. M. Haver, H. Klinck, S. L. Nieukirk, H. Matsumoto, R. P. Dziak, and J. L. Miksis-Olds,

“The Not-So-Silent World: Measuring Arctic, Equitorial, and Antarctic soundscapes in the

Atlantic Ocean,” Deep Sea Research Part I: Oceanographic Research Papers (2017).

[21] S. Goutte, A. Dubois, and F. Legendre, “The Importance of Ambient Sound Level to

Characterise Anuran Habitat,” PLoS ONE 8 (2013).

[22] M. Tennesen, “Gauging Biodiversity by Listening to Forest Sounds,” Scientific American

(2008).

[23] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on Knowledge

and Data Engineering 22, 1345–1359 (2010).

[24] S. Marsland, Machine Learning: An Algorithmic Perspective, 2nd ed. (CRC Press, Boca

Raton, FL, 2015).

[25] C. M. Bishop, in Pattern Recognition and Machine Learning, M. Jordan, J. Kleinberg, and

B. Schölkopf, eds., (Springer Science+Business Media, LLC, 2006).

[26] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning pp. 81–106 (1986).

[27] L. Breiman, “Random Forests,” Machine Learning 45, 5–32 (October 2001).



BIBLIOGRAPHY 108

[28] Cdipaolo96, “File: Gaussian Process Regression.png,” retrieved from

https://commons.wikimedia.org/w/index.php?curid=47589433 (accessed March, 2016).

[29] R. C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications (SIAM

Computational Science & Engineering Series, Philadelphia, PA, USA, 2014).

[30] M. C. Kennedy and A. O’Hagan, “Bayesian Calibration of Computer Models,” J. R. Statist.

Soc. 63, 425–464 (2001).

[31] D. J. Mennitt, K. Fristrup, K. Sherrill, and L. Nelson, “Mapping Sound Pressure Levels on

Continental Scales Using a Geospatial Sound Model,” InterNoise13 (2013).

[32] D. Mennitt, K. Sherrill, and K. Fristrup, “A Geospatial Model of Ambient Sound Pressure

Levels in the Contiguous United States,” J. Acoust. Soc. Am. 135, 2746–2764 (May 2014).

[33] D. Mennitt and K. Fristrup, “Influential Factors and Spatiotemporal Patterns of Environ-

mental Sound Levels in the Contiguous United States,” Noise Control Engr. J. 64, 342–353

(2016).

[34] D. Xie, Y. Liu, and J. Chen, “Mapping Urban Environmental Noise: A Land Use Regression

Method,” Environ. Sci. Technol. 45, 7358–7364 (2011).

[35] P. H. Ryan and G. K. LeMasters, “A Review of Land-use Regression Models for

Characterizing Intraurban Air Pollution Exposure,” Inhalation Toxicology 19, 127–133

(2007).

[36] W. J. Galloway, K. M. Eldred, and M. A. Simpson, “Population Distribution of the United

States as a Function of Outdoor Noise Level, Volume 2,” U.S. Environmental Protection

Agency (Washington, D.C.) (1974).



BIBLIOGRAPHY 109

[37] Boeing, “Airports with Noise and Emissions Restrictions,” retrieved from

https://www.boeing.com/commercial/noise/list.page (accessed February, 2018).

[38] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” JMLR 12, 2825–2830

(2011).

[39] M. Gevrey, I. Dimopoulos, and S. Lek, “Review and Comparison of Methods to Study the

Contribution of Variables in Artificial Neural Network Models,” Ecological Modelling 160

(2003).


	Using Machine Learning to Accurately Predict Ambient Soundscapes from Limited Data Sets
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.1.1 Geospatial Acoustics
	1.1.2 Limited Data Sets in Machine Learning

	1.2 Background
	1.2.1 Acoustics and Sound Level Metrics
	1.2.2 Principles of Machine Learning
	1.2.3 Uncertainty Quantification

	1.3 Previous Research
	1.3.1 Literature Review

	1.4 Objectives

	2 Methodology
	2.1 Data Sets
	2.2 Computational Pipeline
	2.3 Model Selection and Parameter Tuning
	2.4 Feature Reduction

	3 Results
	3.1 Ensemble of Models
	3.1.1 Model Selection
	3.1.2 Ensemble Advantages

	3.2 Maps
	3.2.1 Summer L10, L50, and L90 Day and Nighttime Maps
	3.2.2 Frequency Group Maps
	3.2.3 Hourly Summer L50 Frequency Group Maps

	3.3 Leave-Four-Out Validation Study
	3.4 Feature Reduction
	3.4.1 Initial Feature Importance Rankings
	3.4.2 Error of Reduced Feature Model
	3.4.3 Changes in Predictions from Reduced Feature Models


	4 Conclusions and Future Work
	4.1 Conclusion
	4.2 Future Work

	Appendix A Geospatial Features
	Appendix B Acoustic Data
	Appendix C Pipeline Code
	C.1 README
	C.2 Main.py
	C.3 ParseData.py
	C.4 PipelinesPool.py
	C.5 PrunedModels.py
	C.6 Scalers.py
	C.7 Validation.py
	C.8 AnalysisTools.py
	C.9 createFullConus.py
	C.10 findMedian.py
	C.11 Sample Data File: Data1008.py

	Bibliography

