Survey and Data Reduction of Blazars Using the ROVOR Telescope

Nicholas Van Alfen

A senior thesis submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of

Bachelor of Science

Joseph Moody, Advisor

Department of Physics and Astronomy
Brigham Young University

April 2019

Copyright © 2019 Nicholas Van Alfen

All Rights Reserved

ABSTRACT
Survey and Data Reduction of Blazars Using the ROVOR Telescope

Nicholas Van Alfen
Department of Physics and Astronomy, BYU
Bachelor of Science

Blazars are active galactic nuclei whose jets point directly at the Earth. By observing the vari-
ability in these objects, we can determine their morphology and better understand the distribution
of material around a blazar. However, only a handful of blazars are studied regularly. To iden-
tify potential candidates for a more in depth study in the future, we observed 192 of the brightest
blazars in the northern hemisphere for a year in optical wavelengths with our 16" ROVOR tele-
scope. From our observations, we found 13 blazars displaying a significant level of variability and
identified a clear bimodal distribution between smooth an stochastic variability.

Keywords: Blazar, Quasar, Active Galactic Nuclei

ACKNOWLEDGMENTS

I would like to acknowledge my advisor, Dr. Joseph Moody, for his help and guidance in all of
my undergraduate schooling. Dr. Moody helpedme with more than just my research, but he gave
me advice on any area of school and life I asked him about.

I would also like to acknowledge my high school physics teacher Mr. Newton for his enthusi-

asm and role in getting me interested in physics.

Contents

Table of Contents

List of Figures

1 Introduction
1.1 Blazars e e e e
1.2 MOtiVation v v e e e e e e e e e e s
1.3 Previous Work
1.4 Previous Work at BYU
1.5 OVerview

2 Data and Methodology

2.1 Choosing Targets 0 e e
2.2 Calibration Frames
2.3 All-Sky Solutions e
2.4 Blazar Data Calculation e
25 ErrorHandling
3 Results and Analysis
3.1 Findings e
32 Conclusion e e
33 Future Work e

Appendix A Results Table

Appendix B All Sky Solutions Code

Appendix C Blazar Analysis and Reduction Code (BARC)
Bibliography

Index

v

iv

37

51

88

89

List of Figures

1.1
1.2
1.3

2.1
22

3.1
3.2
33

AGN Structure oL o e e e 2
Direct Image of Black Hole 3
Inhomogeneous blazarjet e 5
ROVOR Telescope it 9
Finder Chart e 11
Variable blazars L 23
Significant blazar brightening Lo 24
Histogram of variability modes 27

Chapter 1

Introduction

1.1 Blazars

An Active Galactic Nucleus (AGN) is the area at the center of a galaxy containing a supermas-
sive black hole and light-emitting jet. The structure of an AGN, as seen in Fig. 1.1, includes a torus
of hot, ionized material in an accretion disk orbiting the black hole. This hot, spinning, ionized
material creates magnetic field lines along a jet that ejects any charged particles that may break
off from the accretion disk, producing light. Depending on the type of galaxy and the viewing
angle, astronomers have given different names to AGN. For example, a blazar is an AGN whose
jet is pointed directly at the Earth. From this jet, the brightness of a given AGN is determined;
Telescope measurements yield brightness measured in magnitudes, a logarithmic measurement of
how bright it appears to us on Earth.

Recently, the existence of an accretion disk has been imaged directly by NASA in the first ever
picture of a black hole taken on April 10, 2019. This image is shown in Figure 1.2.

Like most objects in the sky, an AGN varies in brightness over time. While discussing AGN,

this brightness variation is called flaring. Some possible causes of flaring are known, such as

1.1 Blazars 2

material from the accretion disk falling into the magnetic field lines, an instability in the AGN
causing the jet to "wobble." In addition, it has been suggested that relativistic Doppler boosting
could account for some of the smooth variability (D’Orazio et al. 2015). Among these several pos-
sible mechanisms for flaring, the specific mechanism at work for a single AGN is not necessarily
known. This flaring also differs for each blazar in terms of how much it flares, how long it takes to
flare, and how regularly this flaring occurs. Some AGN vary smoothly and others stochastically,
suggesting either two distinct variability classes or a spectrum of variability between the two ex-
tremes. A clear bimodality, as suspected, would confirm distinctly different flaring mechanisms

are at work as opposed to a uniform mechanism subject to a spectrum of flaring patterns.

Black hole

Accretion disk -

Torus of neutral”
gas and dust

Figure 1.1 The structure of an AGN. A torus of ionized material in an accretion disk
orbits the black hole. Relativistic jets account for the observed light. The exact distribu-
tion of dust around an AGN is not known, although the general distribution around the
accretion disk is accepted. Image courtesy of NASA!.

Thttps://imagine.gsfc.nasa.gov/science/objects/active_galaxies1.html

Zhttps://www.nasa.gov/mission_pages/chandra/news/black-hole-image-makes-history/

https://imagine.gsfc.nasa.gov/science/objects/active_galaxies1.html
https://www.nasa.gov/mission_pages/chandra/news/black-hole-image-makes-history/

1.2 Motivation 3

Figure 1.2 The first ever direct image of a black hole taken of M87. The accretion disk
of this AGN is clearly visible. Image taken April, 10, 2019. Image courtesy of NASAZ.

1.2 Motivation

Over the years, relatively few blazars have been studied regularly or in depth, leaving the astro-
nomical community data starved in regards to most of the observable AGN. While the community
has a good general idea of AGN, many specifics remain to be explained. To better understand the
physics and matter distribution around black holes, an expanded survey is needed, beyond those
well studied AGN, which are referred to as classics or classic blazars. This broader range of study
may allow identification of AGN behavior not previously observed in classic blazars and help iden-
tify a smaller subset that show interesting behavior. Such a study can then lead to a better model

for the structure of an AGN.

1.3 Previous Work 4

1.3 Previous Work

Many previous blazar surveys have used a range of high energy photometric filters. A pho-
tometric filter is a filter placed in front of the telescope camera, called a charged-coupled device
(CCD), that only allows a certain range of wavelengths of light to pass through, limiting astronom-
ical observations to only one range of wavelengths, known as a color band. This limiting of color
bands allows us to study the different regions of the electromagnetic spectrum and compare their
behaviors in different bands. Past observation have generally focused on high-energy observations,
using filters to allow in x-ray and other high-energy wavelengths of light. Thus, the flaring pat-
terns have only been measured in high-energy regions of the spectrum and not much in the visible
spectrum.

Previous work has been unable to identify the exact cause of flaring, though several papers
have proposed possibilities. Raiteri et al. (2017) describe an inhomogeneous jet as a cause for
observed flaring (Raiteri et al. 2017). Raiteri’s inhomogeneous jet model is illustrated in Figure
1.3 which is Figure 4 from Raiteri et al. (2017). This model shows how different regions of the
jet are responsible for emitting certain wavelengths. Depending on orientation and alignment with
the jet, stronger faring in certain wavelengths may be observed. In Figure 1.3, the two different
eyes represent two different alignments, and each observes a different wavelength to have more
prominent activity. The instability in the jet causes this orientation to periodically shift, resulting
in the time variability we observe.

While an inhomogeneous jet model may describe some of the activity, especially periodic
behavior, other activity may result from the distribution of material around the black hole. Figure
1.1 shows the general structure of an AGN, but the exact distribution of material is still unknown.
Irregular infall of material from the accretion disk likely causes the more stochastic flaring, and
may be affected by the distribution of matter around the black hole and accretion disk.

Plenty of questions about AGN remain: How quickly are they born? When did they come into

1.3 Previous Work 5

. iet
[D rr!ogﬂr“wugI il Q \ 7
\ 0 ~
\ "Ill i d——{__..--' -
\ \ o radio
black hole)\ A mm
\ o infrared
*1_‘ \ optical
X |
‘\'.L I1
\ .
accretion disc f”'g/, |
N |
\\Hrr

Figure 1.3 Inhomogeneous jet model from Figure 4 of Raiteri et al. (2017). This model
proposes that different frequencies of light come from different regions of the jet. Each
region has a different orientation relative to the observer as a result of the instability of the
jet causing it to curve. The two eyes shown in the figure represent to different alignments
with the jet, and each will see a different behavior based on the orientation from which
they view the jet.

being? What is the source of these supermassive black holes? etc. Currently, the only information
known about AGN comes from the flaring seen here on Earth. By better understanding the physics
behind the different types of flaring, we can better understand the structure of the different AGN.
By understanding the structure, we can learn about the matter distribution and start to answer some
of those fundamental questions. As stated earlier, we plan to approach this problem by gathering a

wide range of data in order to capture behavior missed by the more in depth, smaller-focus surveys.

1.4 Previous Work at BYU 6

1.4 Previous Work at BYU

The immediate precursor to this work was a thesis written by Lauren Hindman studying the
faring rates of these same blazars (Hindman 2018). Lauren’s work came from the same study and
some of the figures included in her thesis were produced by the code I developed for this study.
In her thesis, Lauren found a flaring rate of once every fifteen years on average. This she found
by taking the number of blazars found to flare in this survey over our one years of observation
and comparing it to the number of blazars surveyed over our one year observation. While this
frequency neglects the difference between smooth and stochastic variability, this survey follows up

and explores these two flaring modes.

1.5 Overview

The current knowledge about blazars, their flaring patterns, and their matter distribution comes
from observations on just a handful of AGN. In order to tackle this problem, we chose as large a list
of target AGN as possible. Chapter 2 outlines our surface level survey of a large sample to identify
interesting behavior, especially in less frequently studied blazars, to set up the ground work for a
later, more in depth observation. Our target list originally consisted of 192 blazars visible in the
Northern Hemisphere by our ROVOR telescope. Due to bad weather and insufficient observation
points on a few objects, our list of usable blazars contained only 161 blazars.

To define “interesting behavior,” we developed a criterion to determine whether a blazar was
variable or not during our observation. Based on this criterion, described in Chapter 2, we found
thirteen variable blazars (blazars marked as interesting following our criterion). Of those thirteen,
we saw two distinct modes of variability, smooth and stochastic, which will be defined later in
Chapter 3.

Our results generated a list of blazars for future, more in-depth observation. This will allow

1.5 Overview

a more focused study of promising targets while including blazars that have not been typically

studied as in depth. Future work will use these variable blazars as targets and delve deeper into the

causes behind the flaring in addition to the different flaring patterns.

Chapter 2

Data and Methodology

To better understand the structure of a blazar, the causes of flaring must first be studied. Be-
cause of the nature of the research, we collected large quantities of data concerning the magnitudes
of our objects at different times throughout the year. Reducing and calculating this data required
extensive use of programming to speed the calculations and allow the same process to be done for
multiple data sets without any mistakes. I used three programming languages for these programs:
Mathematica, VBA (Visual Basic for Applications), and Python. I chose Mathematica for it’s pow-
erful computational ability and for its fitting features for the all-sky solutions. I chose VBA for
many of the later programs because of its integration into Microsoft Excel, allowing new research
students to reduce the data in a familiar environment with plots that would update as they did so.
Eventually, I converted the VBA code into Python to allow for better, more complex processes. I
chose Python for its wide use in science, its compatibility with Linux, its strong computational and
graphing abilities, and its open source nature. My Python script, known as the Blazar Reduction
and Analysis Code (BARC), replaced all of the calculations done previously by VBA and added

new interactive abilities using the ipython terminal.

2.1 Choosing Targets 9

2.1 Choosing Targets

Before observations began, we had limit our target list to objects visible to our equipment. For our
observations, we used BYU’s 16" Remote Observatory for Variable Object Research (ROVOR)
telescope located near Delta, Utah. Because of ROVOR’s relatively small size, it is limited to
observing relatively bright objects (see Figure 2.1). ROVOR is a member of the Whole Earth
Blazar Telescope (WEBT) network of telescopes, observing blazars, especially those with high

energy emissions, around the world, making it a good tool to study blazars (M. Villata 2002).

Figure 2.1 BYU’s ROVOR telescope located near Delta, Utah. ROVOR was placed near
Delta because of the relatively low levels of light pollution and is controlled remotely.
ROVOR is a 16" (0.4 m) telescope, making it a good tool for observing bright objects.
ROVOR is a member of the Whole Earth Blazar Telescope (WEBT) contributing to gath-
ering data on blazars.

A year of observations began in the summer of 2015 with targets chosen from the American

2.1 Choosing Targets 10

Ephemeris, the Veron Cetty-Veron AGN catalogue (Veron-Cetty & Veron 2010), and the WEBT
list of high-energy blazars. We chose targets brighter than 16th magnitude (with a magnitude of
16 or lower, as lower number means brighter) as well as a declination of O or higher (meaning it is
in the Northern Hemisphere)(Van Alfen et al. 2018). These criteria generated a list of 192 blazars,
although we found during our observations that many of them were too dim to obtain reliable data.

Once targets were found, we set up a finder chart for observations (see Figure 2.2). A finder
chart is an image of the sky containing the target with comparison stars marked. When observing
an object in astronomy, comparison stars are needed in order to calibrate results. The same set
of comparison stars was observed every time we observed a blazar to differentiate between blazar
variability and changing observing conditions. The objects chosen as comparison stars are stable,
meaning they do not vary, and should maintain the same magnitude throughout the night. If several
of the comparison stars varied, it was likely due to weather or other factors that would affect our

blazar equally, allowing us to subtract out the noise.

2.2 Calibration Frames 11

Figure 2.2 An example finder chart. The red annulus marks our blazar while the green
annuli mark other bright objects in the field with which to compare. Finder charts ensure
that we always observe the same comparison stars each time to stay consistent.

2.2 Calibration Frames

Throughout the year, we observed our target list as often as weather permitted. We observed
using Johnson V and R filters, letting in only green and red light, respectively. This process of
measuring the brightness in different colors is called photometry. Data reduction was performed
to standardize our measurements.

In astronomy, several image types are taken during observations: zeros, darks, flats, and lights.
The process of applying these calibration frames to our light frames is known as data reduction.
Data reduction eliminates as many artefacts of the instrumentation as possible that may vary from
time to time, ensuring as consistent measurements as possible.

As mentioned earlier, a CCD camera takes the frames. A CCD is made of small wells that

hold charge. The amount of charge in each well determines how bright that pixel will be and

2.2 Calibration Frames 12

increases whenever a photon hits it. On an ideal CCD, these wells would only gain charge from
the photons emitted by the object and each well would be equally sensitive. Unfortunately, CCD’s
are imperfect and if not corrected for, these inconsistencies could ruin our data. To correct for this,
three types of calibration frames are taken, mentioned above, and applied to each light frame.

When turned on, the wells on a CCD fill to a certain level of charge, called a bias level, that has
nothing to do with the brightness of the object being observed. This bias level protects the CCD
wells from holding a negative potential and causing errors. Zeros, or bias frames, account for this
bias level by taking a picture with zero exposure time: no time for light to enter results in reading
only the charge level placed in the wells by default. We take 15 to 30 zero frames and average
them, subtracting the result from our final light frame to subtract the bias level.

Even after subtracting the bias level, charge is still introduced that is not related to the obser-
vations. When taking an astronomical photo, the camera is exposed for a certain amount of time,
collecting light, but while this happens, the camera’s electronics are also running. The mechani-
cal vibrations, heat, and electricity can all introduce what we call dark current. The dark current
excites the CCD wells and adds value to the pixels even though the object being observed is not
producing that light. To account for this, we take a dark frame. A dark frame is a frame where we
"expose," or run the electronics to take an image for the same length of time as the observations
but with the shutter closed. This process ensures that no light adds to the charge in the CCD and
the only pixel counts come from the electronics running (as well as the bias level). We take 15
to 30 dark frames, subtract off the average zero frame, average the dark frames, and subtract that
from the light frames as well. All of our targets were observed for 60 seconds, so all of our dark
frames were taken for 60 seconds as well.

Once the dark frames have been applied, we take flat fields, or flats. In an ideal CCD, each
pixel well would have the same response to light, but this is not the case. Some pixels respond

much more or less to light than other pixels, especially near the edge of the CCD where the pixels

2.3 All-Sky Solutions 13

tend to be much less sensitive. Flats account for this difference in sensitivity. To take a flat, we
point out telescope straight up and just east at an azimuth of 270 degrees and an altitude of 89
degrees, as the sun sets. This part of the sky is uniform in brightness, or flat. Unlike the previous
two observations, flat field frames use the same filters as the planned observations. We took 15
flats through Johnson V and R filters each night we observed. We average our flat frames, subtract
out the zeros and darks, and normalize the remaining frame. In an ideal CCD, after normalizing,
each pixel should have a value of one, but in our case, the less sensitive pixels have a value less
than one, and the more sensitive pixels have a value greater than one. The light frame in a specific
filter (with zeros and darks subtracted out) is then divided by our normalized flat frame of the same
filter. Each pixel of the light frame is divided by the corresponding normalized pixel in the average
flat field. The values of the less sensitive pixels are divided by a number smaller than one and will
increase, while the reverse happens to the more sensitive pixels.

These three calibrations eliminate false information due to the electronics, making observa-
tions taken from the same instrument consistent. However, each telescope still measures slightly

different values than every other telescope.

2.3 All-Sky Solutions

Even after calibrating observations using zeros, darks, and flats, each telescope still reads dif-
ferent values than others because of differences in lens size, location, etc. To correct for these
differences, an all-sky solution is applied to convert instrumental magnitudes (measurements spe-
cific to our telescope) to the standard system (a measurement of true magnitudes) (Cameron Pace
2013). In order to perform all-sky solutions, the observed magnitudes of various Landolt standard
stars were calibrated to fit their true value. The same calibration used each night to adjust the values

of the Landolt stars was then used on our comparison stars and blazars. Landolt stars are stars with

2.3 All-Sky Solutions 14

well-known magnitudes observed by Landolt (2009) that can be used to adjust our measurements.
To calibrate from ROVOR’s system to the standard system, instrumental magnitudes (the magni-
tudes specific to our telescope) were plotted against airmass (the amount of atmosphere between
our telescope and our object) for each Landolt standard star in each filter. This was performed for
each area observed each night it was observed. The instrumental magnitude was calculated from

the net counts using the equation:

5 5%1o Net Count
' 810 Exposure Time

Instrumental Magnitude = 2.1

with a 60 second exposure for each object. A linear fit is then calculated and the coefficient for the
x term of the fit is obtained. The coefficients are then averaged for each object in their respective
filters, yielding a single number for the V filter and a single number for the R filter.

We then calculated the extinction-corrected magnitudes ry and vo, which account for the ex-

tinction, or dimming in certain colors due to dust and gas, from the equations:

ro=ri+pBx
(2.2)
Vo=Vt oy
These equations are applied to each data point where the lower-case "sub-zero" terms are extinction-
corrected instrumental magnitudes, the subscript i indicates instrumental magnitudes, y is airmass,
and o and fB are the averages of the linear fit coefficients.

In astronomy, color is defined as the difference in magnitudes through a bluer filter and a redder
filter. In our case, we used the V — R color where V — R is referred to as the color index. Combining
Eq. 2.3 and Eq. 2.4 with the results of Eq. 2.2, W, Wy, &, and {, are calculated where the u terms
are color terms and the { values are zero points. These color terms correct for the unequal dimming

of the different wavelengths of light. The zero point is an offset to adjust the overall dimming of

light due to distance, weather conditions, atmospheric contributions, etc. Using Cameron Pace

2.3 All-Sky Solutions 15

(2013), the essential equations used for these calculations are

V= VO+HV(V_R)+CV (2.3)

V_R:uvr(v_r)O+Cvr (24)

where the capital letters are Absolute magnitudes (in this case, Landolt standard magnitudes) and
all other variables are as described above. At this point in the calculations, each Landolt standard
star has an average (v — r)g value and a known magnitude from the Landolt tables used (Landolt
2009). My Mathematica script made a plot of the Landolt values versus the average observed
values for each standard star and used Mathematica’s Fit function to generate a linear fit between
them. The fit was of the form y = mx+ b, where m is u,, and b is §,,, with (v —r)g as our x. The
code found the coefficient and constant term to give us our ,, and §,, values.

Using the u,, and - values found, the absolute V — R values can be found for each standard
star by evaluating Eq. 2.4. This gives each star’s absolute V — R which we then used to solve for
W, and &, in Eq. 2.3. To solve, Eq. 2.3 was first altered by subtracting vy from both sides to get
(V—v9) = uy(V—R) + &, where v is the average extinction adjusted instrumental magnitude
for the standard star. In a similar fashion to how u,, and §,- were obtained, our Mathematica script
could now perform a linear fit of (V —vg) vs (V—R). As with above, the , and §, values were
pulled from their coefficient and constant places in the fit, yielding the color and zero point terms
for the V filter of the Landolt stars.

After finding the color term and zero point by using our Landolt stars, the comparison stars’
absolute V magnitude can be obtained from Eq. 2.3. The absolute R magnitude is then R =
V —(V —R). My code repeated this process for every standard area observed. Results are shown
in Table 2.1. Outliers were eliminated that disagreed greatly with the known Landolt data that
were made unreliable by external factors such as frost on the mirror the night of observing. Having

standardized the measurements, the absolute magnitudes can be compared to any other object.

2.3 All-Sky Solutions

16

Table 2.1 All-Sky Solution Results

Date

.IJ“V}"

CV r

Iy

G

Area

Sep. 19, 2015
Sep. 19, 2015
Sep. 20, 2015
Sep. 20, 2015
Oct. 12, 2015
Oct. 12, 2015
Oct. 13, 2015
Oct. 13, 2015
Nov. 7, 2015
Nov. 7, 2015
Nov 15. 2015
Dec. 1, 2016
Mar. 18, 2016
Mar. 18, 2016
Mar. 19, 2016
Mar. 19, 2016
Apr. 2, 2016
Apr. 3, 2016
Apr. 6, 2016
Apr. 7, 2016
Jun. 1, 2016
Jun. 25, 2016

0.934
1.009
0.945
1.063
0.970
0.917
0.924
1.022
0.960
0.984
0.941
0.932
0.936
0.920
0.933
0.871
0.943
0.943
0.931
0911
1.029
1.027

-0.094
-0.091
-0.121
-0.081
-0.086
-0.095
-0.110
-0.110
-0.167
-0.132
-0.153
-0.303
-0.179
-0.152
-0.223
-0.298
-0.159
-0.132
-0.134
-0.143
-0.187
-0.194

-0.177
-0.099
-0.173
-0.121
-0.115
-0.143
-0.145
-0.129
-0.140
-0.100
-0.158
-0.165
-0.147
-0.071
-0.164
-0.050
-0.150
-0.142
-0.176
-0.173
0.053
0.053

20.024
19.961
20.013
19.947
19.957
19.959
19.960
19.954
19.954
19.966
19.946
19.668
19.800
19.664
19.767
19.559
19.814
19.975
19.824
19.799
20.188
20.278

SA110
SA114
SAT110
SA114
SA114
SA92
SA92
SAl114
SA92
SAl114
SA92
SA92
PG0918
SA98
PG0918
SA98
PG0918
PG0918
PG0918
PG0918
SA107
SA107

2.4 Blazar Data Calculation 17

2.4 Blazar Data Calculation

After each night of observing, the images obtained were reduced following the procedure de-
scribed in Sec. 2.2 using a program called Mira. After reduction, we performed photometry on
the image, also using Mira. In this case, photometry refers not only to observing the brightness
in different colors but also to using a computer to get the quantitative measurement. Photome-
try involves marking the blazar with an annulus as well as marking certain comparison stars. An
example of this can be seen in Figure 2.2. Mira measured the brightness of the blazar and the com-
parison stars in the field and saved the results to an Excel file along with information like airmass,
exposure time, etc.

The process of analyzing the blazars required lengthy calculations and decisions, creating the
need for a program to handle the computation in order to minimize time and maximize accuracy.
My program, known as the Blazar Analysis and Reduction Code (BARC), read through each file
of blazar data and performed the calculations we specified, marking the blazar if it matched the
flaring criterion we had decided meant it was worth taking a closer look at.

The procedure BARC carries out is as follows. See appendix C for details.

Read in raw data taken from telescope

Calculate the instrumental magnitudes using Eq. 2.1

Choose the best half of the comparison stars to use (AllStandardCompare)

Apply all-sky solutions to all of the comparison stars

Calibrate blazar to true magnitude using comparison stars

Determine volatility of blazar based on the flring criterion (Eq. 2.5)

Fit the standardized blazar magnitudes to a 3" order polynomial

2.4 Blazar Data Calculation 18

* Place the blazars that satisfied the flaring criterion in a separate dictionary

The flaring criterion was based on the ratio of the standard deviation in the blazar’s magnitude
over the standard deviation in the blazar’s V-R magnitude (see Eq. 2.5). This signaled that the
variation in the V and R magnitudes was due to actual flaring in the blazar and not uncertainty
in the observations. The blazar’s V and R magnitudes should track together, as both are optical
wavelengths and come from the same region of the jet (see Figure 1.3): as the magnitude in one
filter increases or decreases by some amount, the magnitude in the other filter should follow suit.
This ratio was intended to ignore variation in the blazar’s magnitude that resulted from any inherent
issues in the photometry from night to night. Issues that made one night appear dimmer or brighter
should affect both filters equally. This way, if there is no flaring, any variation due to the instrument
or weather should not result in a false positive. We created categories of how variable the blazar
appeared based on the ratio of standard deviations shown in Eq. 2.5. We called a ratio under two
not variable and two or above variable. While this may have cut some slightly variable blazars
from our final list, it also decreased the likelihood of a non-variable blazar satisfying our flaring
criterion. Those blazars that fell into the variable category were marked for more in depth study.

Oy

>2 and 2R >2 2.5)
OV —R OV _R

I created a blazar class in Python to store each individual blazar and to contain all of the
attributes and calculations we might perform on them. The data given to BARC were the output
from Mira in either .xIsx or .xls format. Before serious calculations were made, some checks
needed to be performed to ensure that the data were sound. The first check made ensured that
the number of objects was consistent. Occasionally, Mira would lose one of the marked objects
or one of the students performing the photometry would accidentally add or delete an aperture on
a frame, leaving us with either too many or too few objects. The Python script was capable of

inferring the desired number of objects based on what the most frequent object count was each

2.5 Error Handling 19

night and deleting any objects beyond that. If there were too few objects, BARC alerted the user
and precautions set in place later would handle the resulting issues in calculation.

Then BARC calculated the instrumental magnitude for each data point from Eq. 2.1 using a
60 second exposure for each point. If there was an issue in the data, such as zero or negative net
counts or exposure time, the calculated value would be flagged as invalid.

After these preliminary calculations, the data were stored in a special data structure, a 3-
dimensional array, for ease of access later, and a second error check was performed on the net

counts.

2.5 Error Handling

Sometimes, the number f photons hitting the CCD, referred to as net counts, were either zero
or negative due to poor viewing conditions. We defined an instance of a net count issue to mean
that a data point had a net count that was either zero or negative. When there were net count issues
with the blazar being observed, the night was either discarded or re-photometered, but net count
issues with comparison stars were potentially fixable.

Looking at these issues, we noted two levels of net count issues: minor and major. A minor
net count issue consisted of two or fewer points having an invalid count in one or each filter from
different comparison stars. In these cases, BARC was designed to go through and replace these
invalid net counts with the average net count of that object from other frames on that night in that

filter. A major net count issue occurs if the night in question had either
* 2 or more instances of a net count issue on a single object through one filter
* 3 or more instances overall of a net count issue through one filter

In the case of a major net count issue, BARC alerted the user and excluded these invalid results in

later calculations.

2.5 Error Handling 20

After all of the error checks had been performed, BARC compared the secondary standard stars
(another name for comparison stars) to see if any of the stars we chose as secondary standards
varied. If any of our comparison stars showed variation, it means they were not good and should
be ignored. To do this comparison, BARC chose the first comparison star as the base comparison
star, or in other words, the star against which the other secondary standards would be compared.
BARC would then cycle through all of the other stars and compares their net counts using an
altered version of equation used to calculate instrumental magnitude:

Nccompare
NC*

Instrumental Magnitude = —2.5 *xlog
, where NCcompare is the net count of the base comparison star, and NC* is the net count of the other
comparison star. The actual result of this equation is of little significance, but the standard deviation
in the comparison of a single star throughout the nights determines how stable that comparison
star is. If the standard deviation in the comparison of one of the stars exceeded 0.05, that star was
marked to be discarded. If more than five comparison stars were discarded, BARC recognized the
base comparison star as bad and performed the same process, using the next secondary standard
as the base comparison star. This process continued until a comparison star that resulted in five
or fewer discarded secondary standards was found. If no base comparison star was found that
discarded five or fewer, the user was alerted and if there were no remaining secondary standards,
the calculation was terminated.

This process eliminated issues due to inherent uncertainty in the chosen secondary comparison
stars, leaving us with only reliable comparison stars, which in turn increases confidence in the
calibrated magnitude of our blazars.

From the all-sky solutions calculated earlier, BARC adjusted the observed blazar magnitudes
to their absolute magnitudes using the adjusted comparison stars. our blazar could not be adjusted

directly, because the blazar’s magnitude is inherently variable whereas the comparison stars are

stable. The comparison stars stood in as an intermediary, adjusting to their true, stable values then

2.5 Error Handling 21

comparing the blazar’s magnitude to that value. After adjusting our comparison stars with the all-
sky solution, BARC would find the offset between the instrumental magnitudes, v and rg, and the
absolute magnitudes, V and R, for each frame and apply that adjustment to the blazar, calibrating
the target object’s magnitude to its true value.

With the true magnitudes now known, The variability could now be calculated. BARC simply
stored the results of Eq. 2.5 as the variability in V and R, so any blazar with a variability greater
than or equal to 2 (as is the criterion for being called variable) was marked as variable. This
narrowed down our initial list of 192 blazars to just 13 that satisfied the flaring criterion (EQ. 2.5).

After determining if the blazar was sufficiently variable, BARC calculated the correlation co-
efficient, 72, of each blazar’s V and R data to a third order polynomial fit. We chose a third order
polynomial because it allowed enough degrees of freedom to approximate a sinusoidal pattern over
small periods of time, but not so many that it would overfit. Initially, we arbitrarily decided that
an r? value greater than or equal to 0.8 would be classified as smooth and less as stochastic. This
initial classification had little basis, in terms of the strict numbers chosen to separate the variability
classes, but simply provided some classification until we could see what kind of pattern emerged.

This variability (found by the flaring criterion) and the level of smoothness (determined by 2)
are both key factors in our final analysis. Both may provide insight into the structure and matter

distribution of a blazar.

Chapter 3

Results and Analysis

Thus far, my research has been focused on gathering more data from lesser studied blazars to
analyze and look for different flaring patterns. Of the original 192 blazars, 13 satisfied our flaring
criterion in Eq. 2.5,marking them for for future study. We hope to either confirm previously seen
behavior or identify new patterns. Either way, this wider survey will provide information beyond

the plethora of data taken from classic blazars.

3.1 Findings

Of the 192 objects from our original list of blazars, 161 had sufficient data to be analyzed in the
manner described in Chapter 2. The results are presented in Table A.1 taken from Van Alfen et al.
(2018). Of the blazars marked as variable, the median Min - Max magnitude values were 0.60 and
0.55 for V and R filters, respectively.

We confirmed thirteen blazars as variable (see Figure 3.1). Four were stochastic and nine were
smooth. More detailed information concerning the smoothness of the thirteen variable blazars can
be seen in Table 3.1 and data on all of our blazars can be seen in Table A.1. It is important to note

that any blazars observed 4 time or fewer were automatically classified as non-variable and marked

22

Deviation From Average Magnitude

3.1 Findings 23

with ellipses in Table A.1 because any dataset with 4 points or fewer will automatically have an 7

value of 1, making their results useless.

Blazar Light Curves (R Band)

-154 — 0Q+530
—— PKS 14244240
—— MK 877
—— 4C 34.47
—— 1ZW 187
—— 1ES 1959+650
—1.09 BL Lac
—— PB 5250
AO 0235+164
—— 3C84
— MK1148
-0.5 MK 421
—— RXJ12302+42517
0.0

0.5 4

Figure 3.1 Blazars’ variance observed in the R band. The y-axis shows how much
brighter or dimmer each given point is from its blazar’s average magnitude in the R band.
The lines in yellow represent the blazars that did not fit the flaring criterion. Those lines
with their own unique color are those that the criterion marked as variable and will be
followed up on in future research. Note that, although some of the yellow lines deviate
significantly,implying potential flaring, they did not satisfy the flaring criterion due to a
large standard deviation in the V—R color.

As mentioned above, only 13 varied significantly enough to fulfill the flaring criterion (equa-
tion 2.5). The mass of yellow lines in the background of Figure 3.1 are those blazars that did not
satisfy the criterion during our period of observation while those with their own unique colored
lines are the 13 marked as variable. As previously mentioned, this criterion ensured that the vari-
ability we seen due to an actual variability in the blazar’s magnitude and not just uncertainty in our

observations. The V and R bands flare together, as they both come from the same region in the jet

3.1 Findings 24

(see Figure 1.3), so uncertainty in the V—R color warns of error in our instrumental observation,
rather than variability in the jet.

Looking at the non-varying blazars in Figure 3.1 (marked in yellow) some show some signifi-
cant deviation from their mean value. However, these blazars are marked as non-variable because
of their large standard deviation in their V—R color. Although they may have had large variability
in either V or R, the large V—R standard deviation means that our observations held significant
error and thus are unreliable. We don’t claim (by Figure 3.1) that the 13 blazars marked as vari-
able are the only blazars varying, but rather that they were the only objects that showed interesting
behavior during our observation period according to equation 2.5. By following up with these
objects, we hope to see more interesting behavior.

We are especially focused on the object named AO 0235+164 due to its significant flare. As
seen in Figure 3.1, AO 02354164 brightens by 1.5 magnitudes in a span of just 10 days (note that a
more negative magnitude is brighter and that magnitude is a logarithmic scale). This 1.5 magnitude
brightening far exceeds any other object’s flaring during our observation and may be indicative of
an irregular infall of material from the accretion disk into the jet’s magnetic field lines. While it
may be a coincidence that we observed when this happened, if another flare is seen on a similar
scale, it could shed light on the structure and physics that would cause such an infall of material to

happen multiple times.

Figure 3.2 The blazar AO 0235+164 shown on January 2, 2017 (left) and ten days later
on January 12, 2017 (right). In just 10 days, this blazar brightened by 1.5 magnitudes.
Enough to be noticeable by the naked eye in our pictures.

3.1 Findings 25

Object AO 02354164 had a particularly noteworthy flare, brightening by about 1.5 magnitudes
between the 2nd and 12th of January 2016, as seen in Figure 3.1. This is shown in Figure 3.2.
The brightening is visible even to the naked eye. The blazar in question has brightened noticeably,
and to make sure that this was a real result, we went back to the data that night and photed the
data again. We verified that the blazar brightened by 1.5 magnitudes while the comparison stars
remained unchanged.

The brightening of AO 0235+164 is visible even to the naked eye, as shown in Figure 3.2.
To make sure that this brightening was real, we went back to the image obtained that night and
photed it again. We verified that the blazar brightened by 1.5 magnitudes while the comparison
stars remained unchanged.

As mentioned in Chapter 2, after classifying a blazar as variable, we fit a 3"¢ order polynomial
to the variable blazar’s data and found its 7> value. A smoothly varying blazar would vary sinu-
soidally, so the 72 to a 3" order polynomial would be very high. This is of interest to us because if
we see groupings of > values, as we expect to, this would imply distinctly different mechanisms
for flaring, suggesting a clear divide between different flaring modes. We arbitrarily set a cutoff of
r*> = 0.8 and said anything higher would be classified as smooth and anything lower as stochastic.
We did not intend this to be any sort of refined or final cutoff, but rather a preliminary marker for
classification.

After measuring these 1> values, we created a histogram, binned by 0.1 (see Figure 3.3) to
see if there was any pattern. A clear bimodality exists to the data, as seen in Figure 3.3. The
obvious bimodality indicates that the cutoff of r2 > 0.8 should be amended to r > 0.07, resulting
in Table 3.1, but there is such a clear divide that our 7> = 0.7 cutoff plays no real role. In the
distribution, there are no blazars with an 7> value between 0.5 to 0.6 with two groupings on either
side, suggesting two entirely separate flaring mechanisms.

More research is needed to discover what exactly these different flaring mechanisms are, but

3.1 Findings 26

Table 3.1 Names of the thirteen variable blazars and the 2 values to a 3" order polyno-
mial fit in both the V and R filters over one year. Listed in the last column is the blazar’s
final classification as either smooth or stochastic which can be verified by looking at the
r* values in V and R. A strong 7 suggests a strong 3" order polynomial trend. Originally
arbitrarily defined as > > 0.8 as the cutoff for smooth and anything lower as stochastic,
this was later amended to 0.7 after seeing Figure 3.3.

Name r»inV 2 inR Variability

MK 1148 0.33 0.43 Stochastic
AO 0235+164 0.24 0.45 Stochastic

IZw 187 0.41 0.35 Stochastic
BL Lac 0.21 0.22 Stochastic
3C 84 0.82 0.78 Smooth

Mrk 421 0.97 0.96 Smooth

RX J12302+2517 0.97 0.96 Smooth
0Q+530 0.86 0.85 Smooth
PKS 1424+240 0.96 0.97 Smooth
4C 34.47 0.91 0.85 Smooth
MK 877 0.70 0.77 Smooth

IES 1959+650 0.89 0.91 Smooth
PB 5250 0.80 0.74 Smooth

3.2 Conclusion 27

understanding them could give insight into the physics behind blazar variability. Better under-
standing the causes of flaring can refine the current understanding of the structure around an AGN

and gain insight into the conditions of the early universe when these objects formed.

Variability Modes

4.0 4

3.5 1

3.0 1

2.54

2.0

Number

1.5 1

1.0 4

0.5

0.0 -
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 1.0
R™2

Figure 3.3 A histogram of the 72 values for R magnitude data fit to a 3rd order polyno-
mial. A clear bimodal distribution is shown in the histogram, with no blazars occupying
the space with 72 of 0.5 or 0.6.

3.2 Conclusion

To better understand the strugture of AGN, we surveyed 192 blazars in search of a smaller
subset on which to perform more in depth observations in the future. Of our original 192 blazars,
161 had sufficient data to analyze. Of those 161, only 13 satisfied our flaring criterion: four were
classified as stochastic and nine as smooth. Because of the bimodality shown in Figure 3.3, we
conclude that there truly exists a bimodal variability distribution rather than a continuous spectrum
of variability. Two distinct classes of variability imply two distinct classes of physics behind each
type of flaring.

More research needs to be done to determine the exact cause of this bimodal distribution and

determine what that means for the distribution of material around an AGN.

3.3 Future Work 28

3.3 Future Work

Now that a smaller survey of blazars including both some classics and lesser studied blazars
has been identified, a more in depth series of observations and analyses can be performed. Future
students will be able to focus on these 13 blazars and gather significantly more data points than
were gathered for each object in this survey. A similar analysis to this project should be done to
verify variability, especially for the less regular, stochastic blazars, before determining the cause

of flaring.

Appendix A

Results Table

Table A.1 Photometry of the 161 objects with reliable data. The “...” values in the vari-
ability column were given to those blazars that did not satisfy the flaring criterion Equa-
tion 2.5.If the blazar was variable during our observation, according to that criterion, the
variability column will label it as either smooth or stochastic, depending on the r? fit of
its observed data to a third order polynomial. Any blazars with 4 or fewer nights of ob-
servation were given a variability classification of ... (not variable) due to the fact that 4
or fewer points will always receive an r> of 1 for a third order polynomial, making their
results meaningless. It is also important to note that the standard deviation in the V and R
filters is not a measure of the uncertainty in each magnitude, but rather a measure of how
much its magnitude varied.

Name AvgV StdDev Min-Max AvgR stddev Min-Max Variability Nights
4C 25.01 16.05 0.07 0.27 15.75 0.05 0.19 13
A 0021+25 15.71 0.05 0.19 15.04 0.04 0.17 18
PG 0026+129 15.43 0.07 0.25 15.14 0.04 0.15 16
PB 6151 16.19 0.10 0.35 15.82 0.06 0.22 14
MK 1148 15.52 0.22 1.04 15.13 0.19 0.92 Stochastic 16
1ZW 1 14.16 0.05 0.24 13.71 0.04 0.16 16
PG 0052+251 15.31 0.10 0.45 15.09 0.08 0.31 18

29

30

Name AvgV StdDev Min-Max AvgR StdDev Min-Max Variability Nights
PHL 909 16.24 0.08 0.30 15.87 0.03 0.12 14
IRAS 01072-0348 15.80 0.07 0.24 15.47 0.06 0.26 10
GC 0109+224 15.14 0.15 0.49 14.70 0.14 0.45 14
MK 357 15.34 0.07 0.26 15.16 0.04 0.15 12
1ES 0120+340 17.47 0.16 0.54 16.61 0.07 0.21 10
IRAS 01475+3554 16.50 0.12 0.49 15.96 0.09 0.31 14
MK 1014 15.74 0.11 0.44 15.40 0.06 0.23 10
MK 586 15.60 0.09 0.37 15.39 0.05 0.14 10
3C 59 16.79 0.12 0.49 16.24 0.06 0.21 12
PKS 0215+015 18.30 0.32 0.78 19.32 1.46 3.37 3
B3 0225+389 18.83 0.54 1.66 17.86 0.41 1.48 13
1ES 0229+200 16.88 0.13 0.46 16.14 0.12 0.43 12
AO 0235+164 18.41 0.60 222 17.50 0.59 2.12 Stochastic 9
S2 0241+62 16.75 0.11 0.44 15.66 0.09 0.31 10
4U 0241+61 16.86 0.12 0.53 15.69 0.07 0.24 13
3C 84 13.12 0.05 0.17 12.52 0.05 0.20 Smooth 12
3C 110 17.39 0.11 0.22 17.27 0.35 0.70 2
MG 0509+0541 15.62 0.28 0.96 15.18 0.25 0.94 12
HS 0624+6907 14.43 0.03 0.12 14.09 0.03 0.11 9
1ES 0647+250 15.84 0.16 0.48 15.45 0.16 0.44 9
MS 07007+6338 15.58 0.03 0.12 15.33 0.03 0.08 10
TZW 118 15.37 0.09 0.35 14.92 0.05 0.16 11

B2 0709+370 15.70 0.06 0.16 15.48 0.05 0.14 10

31

Name AvgV StdDev Min-Max AvgR StdDev Min-Max Variability Nights
4C 41.30 15.68 0.05 0.13 15.54 0.04 0.13 10
OI+90.4 17.21 0.18 0.58 16.57 0.10 0.33 9
1E0754+39.4 14.65 0.07 0.27 14.37 0.05 0.20 10
IRAS 07598+6508 14.67 0.02 0.06 14.45 0.02 0.06 9
1ES 0806+524 15.35 0.07 0.19 14.90 0.07 0.20 8
PG 0804+761 14.69 0.12 0.46 14.46 0.10 0.38 11
US 1329 15.58 0.13 0.49 15.30 0.05 0.18 10
CSO 199 16.81 0.09 0.27 16.51 0.08 0.26 7
TZW 244 16.26 0.09 0.33 15.94 0.03 0.10 7
SBS 0909+532 16.52 0.07 0.22 15.90 0.04 0.12 6
TON 1057 15.39 0.10 0.32 15.06 0.11 0.38 7
TON 1078 16.37 0.06 0.17 16.13 0.03 0.09 6
4C 12.35 18.69 0.47 1.23 18.53 0.10 0.24 4
3C 232 15.82 0.09 0.25 15.52 0.04 0.11 5
MK 132 16.23 0.07 0.19 15.93 0.07 0.21 5
4C 13.41 15.61 0.03 0.06 15.25 0.02 0.05 2
TON 488 17.01 0.12 0.40 16.63 0.15 0.47 7
TON 1187 15.98 0.17 0.46 15.55 0.06 0.17 5
SBS 1010+535 16.44 0.16 0.50 16.15 0.09 0.31 8
TON 34 16.39 0.06 0.16 16.01 0.09 0.24 4
B3 10194397 17.11 0.19 0.67 16.79 0.10 0.31 8
MK 142 15.70 0.18 0.50 15.22 0.06 0.16 4

SBS 1047+550 16.93 0.18 0.57 16.85 0.10 0.31 6

32

Name AvgV StdDev Min-Max AvgR StdDev Min-Max Variability Nights
RXJ10547+4831 16.12 0.11 0.30 15.79 0.09 0.35 8
TON 52 16.63 0.17 0.47 16.39 0.05 0.13 4
3C 249.1 15.52 0.04 0.13 15.21 0.03 0.09 6
MK 421 13.14 0.22 0.68 12.71 0.19 0.55 Smooth 13
HS 1103+6416 15.87 0.10 0.28 15.43 0.08 0.24 5
4C 16.30 16.75 0.02 0.05 17.00 0.32 0.64 2
TON 1388 15.01 0.03 0.06 14.76 0.02 0.06 3
SBSG1116+518 17.36 0.23 0.66 17.08 0.16 0.52 6
TON 580 16.67 0.09 0.25 16.36 0.03 0.08 4
MK 180 14.68 0.09 0.26 14.14 0.07 0.23 6
RX J11479+2715 16.42 0.08 0.22 16.11 0.09 0.23 4
CBS 147 17.93 0.23 0.69 17.51 0.11 0.32 6
OM+280 16.70 0.10 0.23 16.18 0.18 0.44 3
PG 1151+118 16.30 0.03 0.08 16.01 0.02 0.05 3
TON 599 17.03 0.15 0.44 16.63 0.18 0.53 6
GQ Com 16.66 0.13 0.29 16.25 0.07 0.17 3
PG 1206+459 15.58 0.12 0.30 15.35 0.03 0.09 4
PG 1211+143 14.78 0.10 0.30 14.56 0.05 0.15 5
1ES 1212+078 16.85 0.12 0.24 16.12 0.08 0.16 2
ON+325 14.90 0.05 0.14 14.48 0.06 0.15 4
RS 4 16.49 0.00 0.01 16.03 0.05 0.12 3
MK 205 15.53 0.38 1.10 14.86 0.04 0.13 6

TON 618 15.99 0.02 0.06 15.68 0.04 0.09 3

33

Name AvgV StdDev Min-Max AvgR StdDev Min-Max Variability Nights
3C273.0 13.12 0.03 0.06 12.91 0.01 0.02 3
RX J12302+2517 16.00 0.23 0.65 15.64 0.28 0.81 Smooth 5
TON 1542 15.07 0.05 0.13 14.60 0.03 0.08 4
TON 83 16.77 0.03 0.08 16.48 0.03 0.08 4
CSO 151 17.13 0.26 0.78 16.63 0.07 0.22 6
SBS 1234+607 18.37 0.43 0.96 17.86 0.09 0.23 3
PG 1241+176 16.33 0.02 0.06 15.94 0.01 0.03 4
PG 1246+586 16.33 0.09 0.27 15.92 0.07 0.20 6
LB 19 15.71 0.04 0.10 15.37 0.03 0.06 3
KUV 1249142932 16.23 0.07 0.16 15.96 0.02 0.04 3
Q 1252+0200 16.29 0.11 0.35 16.03 0.09 0.25 6
1ES 1255+244 17.29 0.18 0.44 16.73 0.12 0.29 3
LB 2522 15.72 0.09 0.21 15.28 0.07 0.19 4
PG 1307+086 16.09 0.12 0.38 15.76 0.08 0.26 6
TON 1565 15.53 0.05 0.13 15.24 0.04 0.10 4
TON 153 15.97 0.10 0.30 15.77 0.08 0.23 6
PG 1322+659 15.66 0.03 0.08 15.42 0.02 0.05 3
4C 55.27 18.20 0.39 1.04 18.02 0.30 0.78 4
TON 730 15.95 0.09 0.29 15.59 0.08 0.25 6
MK 662 15.51 0.09 0.28 15.08 0.10 0.32 6
PB 4142 16.36 0.13 0.28 15.99 0.09 0.22 3
TON 182 16.10 0.13 0.34 15.81 0.12 0.35 5

PG 14044226 15.98 0.04 0.10 15.67 0.05 0.15 4

34

Name AvgV StdDev Min-Max AvgR StdDev Min-Max Variability Nights
PG 1407+265 15.88 0.10 0.32 15.81 0.09 0.28 6
PG 14114442 14.94 0.08 0.22 14.63 0.07 0.21 4
PG 1415+451 15.90 0.08 0.20 15.51 0.06 0.15 4
1E 14154259 17.08 0.18 0.47 16.53 0.04 0.10 4
0Q+530 15.67 0.22 0.61 15.13 0.22 0.59 Smooth 5
KUV 14207+2308 16.01 0.06 0.16 15.65 0.06 0.16 4
2E 142342008 16.84 0.20 0.51 16.39 0.07 0.16 4
PKS 1424+240 14.76 0.12 0.37 14.36 0.19 0.56 Smooth 6
MK 813 14.98 0.04 0.12 14.70 0.06 0.14 4
TON 202 16.83 0.15 0.38 16.56 0.11 0.34 5
MK 1383 14.54 0.05 0.15 14.21 0.06 0.15 4
PG 14374398 16.94 0.07 0.20 16.42 0.05 0.15 6
MARK 478 14.71 0.08 0.22 14.36 0.04 0.11 4
PG 1444+407 16.07 0.07 0.21 15.75 0.05 0.13 5
MK 830 17.31 0.08 0.23 16.78 0.09 0.27 6
MK 840 16.51 0.27 0.71 15.90 0.10 0.27 5
1H 1515+660 17.09 0.28 0.86 16.82 0.26 0.87 7
MCG+11-19-005 15.73 0.03 0.08 15.09 0.03 0.09 5
RX J15291+5616 16.59 0.54 1.60 16.35 0.51 1.40 6
PG 1538+478 16.05 0.06 0.17 15.82 0.04 0.11 5
1ES 1544+820 17.30 0.06 0.18 16.75 0.07 0.19 5
SBS 1542+541 17.28 0.03 0.08 17.03 0.05 0.15 4

MK 876 14.85 0.05 0.12 14.49 0.03 0.07 5

35

Name AvgV StdDev Min-Max AvgR StdDev Min-Max Variability Nights
TON 256 15.99 0.05 0.15 15.61 0.08 0.25 8
3C 332.0 15.88 0.11 0.36 15.38 0.05 0.15 8
MK 877 15.33 0.14 0.49 15.09 0.12 0.36 Smooth 9
KP 77 17.33 0.07 0.19 17.13 0.09 0.27 6
HS 1626+6433 16.66 0.06 0.25 16.34 0.07 0.32 13
KUV 16313+3931 16.69 0.12 0.47 16.39 0.07 0.30 11
RX J17025+3247 16.20 0.24 0.82 15.90 0.15 0.50 12
3C351.0 15.67 0.11 0.34 15.23 0.05 0.14 7
RX J17159+3112 15.81 0.06 0.19 15.46 0.04 0.14 15
PG 1718+481 15.10 0.05 0.22 14.66 0.02 0.08 14
4C 34.47 16.32 0.10 0.31 15.91 0.08 0.25 Smooth 10
H 1722+119 15.52 0.22 0.70 14.95 0.17 0.63 15
1ZW 187 15.90 0.06 0.23 15.37 0.04 0.15 Stochastic 15
IRAS 17500+5046 15.24 0.02 0.08 14.83 0.02 0.07 14
KAZ 102 16.57 0.07 0.20 16.24 0.05 0.15 12
KUV 18217+6419 14.23 0.02 0.08 13.87 0.02 0.07 13
PGC 61965 15.09 0.04 0.13 14.69 0.05 0.20 13
IRAS 18299+4113 16.22 0.03 0.08 15.73 0.13 0.56 14
HS 1946+7658 16.42 0.08 0.37 16.05 0.04 0.17 15
1ES 1959+650 14.95 0.13 0.46 14.39 0.11 0.39 Smooth 19
4C 74.26 14.69 0.02 0.06 14.14 0.02 0.07 20
MK 509 13.79 0.04 0.15 13.25 0.03 0.08 13

PG 21124059 15.62 0.04 0.11 15.31 0.03 0.10 8

36

Name AvgV StdDev Min-Max AvgR StdDev Min-Max Variability Nights
27ZW 136 14.77 0.06 0.18 14.41 0.03 0.12 12
0X+169 16.18 0.04 0.17 15.82 0.04 0.12 21
IRAS 21431-0432 16.54 0.08 0.29 16.05 0.06 0.19 16
BL Lac 14.12 0.25 1.16 13.39 0.24 1.10 Stochastic 22
4c 31.63 15.61 0.04 0.13 15.21 0.04 0.18 21
ZWII 171 s 15.84 0.08 0.30 15.26 0.05 0.20 21
KUV 22497+1439 16.11 0.07 0.21 15.75 0.06 0.25 20
4C11.72 15.86 0.05 0.27 15.41 0.04 0.14 19
MK 926 14.66 0.04 0.13 14.07 0.03 0.08 10
PB 5235 15.95 0.04 0.13 15.69 0.04 0.16 13
PB 5250 15.40 0.15 0.60 14.71 0.12 0.51 Smooth 14
4C 09.72 16.15 0.07 0.26 16.00 0.07 0.24 13
3C465.0 13.67 0.05 0.22 12.96 0.03 0.12 15
4C 09.74 16.28 0.11 0.47 16.07 0.05 0.20 19
1ES 23444514 15.38 0.05 0.21 14.62 0.04 0.14 18

PKS 2349-014 16.37 0.05 0.16 15.80 0.11 0.48 14

Appendix B

All SKky Solutions Code

In addition to surveying the blazars and their comparison stars, we observed several well known
stars whose magnitudes are listed in Landolt (2009). By observing these, we can adjust the mag-
nitudes observe by ROVOR and convert them to a true magnitude scale. To do this, we follow the
procedures outlined in Section 2.3. I wrote a code in Mathematica to handle the computation to
ensure our results were accurate and consistent before applying them to our final calculations. The

following pages include this program.

37

(*UPDATE LOG
5/2/17
- Fixed createlandolt function so that it threw out individual

elements of each sub-list instead of some of the sub-lists.

- Added date features to allow the file writing process to automatically
add the right date to the folder name. Added functions subtractDay and
dateConvert as well as variables dateTaken (the MM/DD/YYYY format of the date)

and timeTag (the converted Year_ Month_Day format).

- Added a choice to delete the old data file after writing to
a new location instead of automatically deleting in case somehting

went wrong and you need the file or don't want to delete it yet.

- Added an override option for safeDirectory create that allows an add-
on to be passed in as well. Also,
the call to safeDirectoryCreate in the file write portion of the code was
changed to call to overridden function and all directory create code

concatenated timeTag onto the origwritelLocation. See function for details.

- Changed length of Do[] loop to Length[red] in ErrorLog
writing sction of code. Originally the last object was being

left our of the writing process. Fix includes the last object.

5/3/17
- HUGE. SWITCHED INDICES USED IN adjustLandolt
FUNCTION (2 TO 3 IN THE If["R"] CASE AND 3 TO 2 IN ELSE CASE).

*)

location = InputString["Name of File With Star Data: "];
landoltLocation = InputString["Name of File With Landolt Data: "];

SetDirectory[NotebookDirectory[]]’
(xdata = Import["test.csv"] ;%)
data = Import[location<>".csv"];

dataT = Transpose[data];

netcountcol = 17;

exptimecol = 23;

datecol = 19;

dateTaken = data[[2, datecol]];

Printed by Wolfram Mathematica Student Edition

2 | Calculations.nb

(*For when Counts/s and Inst. Mag. haven't already been calculatedx)

If [Length[Transpose [data]] == 25,
countssec = Drop[Transpose[data][[netcountcol]], 1] /
Drop[Transpose[data] [[exptimecol]], 1] // N;
instmag = -2.5 % LoglO[countssec];

PrependTo[countssec, "Counts/s"];
PrependTo[instmag, "Inst. Mag."];
data = Transpose[data];
AppendTo[data, countssec];
AppendTo[data, instmag];

data = Transpose[data];

dataT = Transpose[data]] ;

(*Handles boundary cases where the day is the first of the

month. The files are labled as the day after they were taken,

so the true date is one earlier. Boundary cases handled include first

of the month as well as first month of the year, cycling to the

previous month and even the previous year if the month was Januaryx)

subtractDay[day_, month_, year] :=

Module[{shiftedMonth = 0, shiftedYear = 0, maxJan = 31, maxFeb = 28,
maxMar = 31, maxApr = 30, maxMay = 31, maxJun = 30, maxJul = 31,
maxAug = 31, maxSep = 30, maxOct = 31, maxNov = 30, maxDec = 31, max = 0},
shiftedMonth = month;

shiftedYear = year;

If[shiftedMonth # 1, shiftedMonth--, shiftedMonth = 12;
shiftedYear--];
If[shiftedMonth == 1, max = maxJan] ;
If[shiftedMonth == 2, max = maxFeb] ;
If[shiftedMonth == 3, max = maxMar] ;
If[shiftedMonth == 4, max = maxApr];
If[shiftedMonth == 5, max = maxMay] ;
If[shiftedMonth == 6, max = maxJun];
If[shiftedMonth == 7, max = maxJul];
If[shiftedMonth == 8, max = maxAug];
If[shiftedMonth == 9, max = maxSep];

If[shiftedMonth == 10, max = maxOct] ;
If[shiftedMonth == 11, max = maxNov] ;
If[shiftedMonth == 12, max = maxDec] ;
{shiftedYear, shiftedMonth, max}]

(*Converts from a MM/DD/YYYY format to Year_Month_Day format for file writingx)
dateConvert[date_String] :=

Printed by Wolfram Mathematica Student Edition

objcol

Module[{newDates = {}, i = 1, altered = "", year="",
While[StringTake[date, {i}] # "/",

i++];

i++;

While[StringTake[date, {i}] # "/", day = day <> StringTake[date, {i}];

i++];

i++;

Do[year = year <> StringTake[date, {j}], {Jj, i, StringLength[date]}];

day = ToExpression[day]:;
If[day # 1, day--,

Calculations.nb

month = mnu , day = " ll} ,
month = month <> StringTake[date, {i}];

newDates = subtractDay[day, ToExpression[month], ToExpression[year]]:;

year = ToString[newDates[[1]]]; month = ToString[newDates[[2]]]"

day = ToString[newDates[[3]]]];

day = ToString[day]:

month = ToString[month] ;

year = ToString[year] ;

If[month == "1", month = "Jan"];
If[month == "2", month = "Feb"];
If[month == "3", month = "Mar"];

If[month == "4", month = "Apr"];

If[month == "5", month = "May"];

If[month = "6", month = "Jun"];

If[month == "7", month = "Jul"];

If[month == "8", month = "Aug"];

If[month == "9", month = "Sep"];

If[month = "10", month = "Oct"];

If[month == "11", month = "Nov"];

If[month == "12", month = "Dec"];
If[StringLength[day] == 1, day = "0" <>day];

altered = "_"<>year<>"_"<>month<>"_" <>day;
altered]
(#*landoltData = Import["landolt.csv"];=*)
landoltData = Import[landoltLocation<> ".csv"];
landoltDataT Transpose[landoltData];

dataT[[3]];
objcol = Drop[objcol, 1];
objects = {objcol[[1]]};
titles = data[[1]]-

(*Adds new labels to titles for when they are re-

Printed by Wolfram Mathematica Student Edition

| 3

4 | Calculations.nb

merged to output to csv formatx)
AppendTo[titles, "r0 or vO0"];
AppendTo[titles, "Adjusted R or V"];

Vresults = {};
Rresults = {};
objectindex = 3;
filterindex = 18;
22;
27;

airmassindex

instmagindex

(*Checks to see if a list has a valuex)

contains[val_, set_List] := Module[{has = False},
Do[If[val == set[[i]], has = True], {i, 0, Length[set]}]:
has]

(*Creates a list of how many objects there arex)
Module[{},
Do[If[! contains[objcol[[j]], objects], AppendTo[objects, objcol[[j]]1]1],
{j, 0, Length[objcol]}]]

(*Splits data into two lists, one for each filter R and V,
and each of those lists conatins a list for each object,
each of which has a list of the data for that object in that filter
Object number corresponds to the first index in each of Vdata and Rdatax)
dataSplit[filter_String] := Module[{tempdata = {}, tempindex = 1},
Do [AppendTo[tempdata, {}], {i, 1, objects[[Length[objects]]]1}]:
Do[tempindex = data[[i, objectindex]];
If[data[[i, filterindex]] == filter,
AppendTo[tempdata[[tempindex]], data[[i]]]], {i, 2, Length[data]}];
tempdata]

(*Gets a list of {airmass, intrumental magnitude} pairs for each object
in a given filter in order to plot and extract coefficient fromx)
xyPairUp[selected_List] := Module[{templist = {}},
If[selected[[1, 1, filterindex]] = "R",
Do[If[Rdata[[i]] # {}, AppendTo[templist, Transpose|[{Transpose[Rdata[[i]]][[
airmassindex]], Transpose[Rdata[[i]]] [[instmagindex]]}]],
AppendTo[templist, {}]], {i, 1, Length[selected]}],
Do[If[Vdata[[i]] # {}, AppendTo[templist, Transpose[{Transpose[Vdata[[i]]][[
airmassindex]], Transpose[Vdata[[i]]] [[instmagindex]]}]],
AppendTo[templist, {}]], {i, 1, Length[selected]}]]’
templist]

Printed by Wolfram Mathematica Student Edition

Calculations.nb | 5

(*Gets a list of the coefficients from the linear fits of each object'’

s xy plot. If an object has been thrown out, it will not be added

to the coefficient list. the format is {obj #, Rcoeff, Vcoeff}x)

coeffList[xyR_List, xyV_List, filterdata_List] := Module[{templist = {}},

Do[If[Length[xyR[[i]]] > 1 &&Length[xyV[[i]]] > 1, AppendTo[templist,
{filterdata[[i, 1, objectindex]], Coefficient[Fit[xyR[[i]], {x, 1}, x], %],
Coefficient[Fit[xyV[[i]], {x, 1}, x], x]}1]1, {i, 1, Length[xyR]}];

templist]

(*Gets a list of r0 or v0 values from Rdata or Vdata

and the corresponding average of their linear fit coefficients

If the data object isn't an empty set, i.e. there is data for that object,

it will transpose the data list for that object and select the data

for instrumental magnitude and airmass, and perform the calculationw)

naughtList[filterdata_List, Avg_] :=
Module|[{templist = {}, airmass, instmag, naught},

Do[If[filterdata[[i]] # {},
airmass = Transpose[filterdata[[i]]][[airmassindex]];

instmag = Transpose[filterdata[[i]]][[instmagindex]];
naught = instmag - (Avg * airmass) ;
AppendTo[templist, naught], AppendTo[templist, {}]],
{i, 1, Length[filterdata]}]:;

templist]

(*Takes Landolt values and creates a list of{object #, V mag, R mag}x*)

createLandolt[inputlist_List] := Module[{templist = {}},

(*Eliminates label rowx)

templist = Drop[inputlist, 1];

(*Extracts just the objct, v mag, and r mag from each elementx)

Do[templist[[i]] = templist[[i]] /. {obj_, iden_, v_, both_, r_} -» {obj, v, r},
{i, 1, Length[templist]}];;

templist]

(*Adjusts the values using the r0 or vO0 and their
corresponding Landolt values by using the equation R-rOx)

adjustLandolt[lValues_List, naught_List, filter_String]

Module|[{templist = {}, obj},

Do[obj = 1lValues[[i, 1]1]:
If[filter == "R", AppendTo[templist, 1Values[[i, 3]] - naught[[ob]j]]],

AppendTo[templist, 1Values[[i, 2]] - naught[[obj]]]], {i, 1, Length[1lValues]}];
Do[PrependTo[templist[[i]], 1Values[[i, 1]]], {i, 1, Length[1lValues]}]:;

templist]

Printed by Wolfram Mathematica Student Edition

6 | Calculations.nb

(*Appends new information onto original
Vdata and Rdata lists by transposing each object,
appending the new data, and returning it to its original formatx)
addNew[filterData_List, naughtData_List, adjustedData_List] :=
Module|[{templistT = {}, tempAdjusted = {}, tempNaught = {}},
tempAdjusted = adjustedData;
(*Transposes each object and
places that in the templist to be appended to laterx)
Do[If[Length[filterData[[i]]] > 1, AppendTo[templistT,
Transpose[filterData[[i]]]]], {i, 1, Length[filterData]}];

(*Adds naught data to tempNaught if it has useful datax)
Do[If[Length[naughtData[[i]]] > 1, AppendTo[tempNaught, naughtData[[i]]]],
{i, 1, Length[naughtDatal]}];

(*Drops the object number from tempAdjusted listx)
Do[tempAdjusted[[i]] = Drop[tempAdjusted[[i]], 1],
{i, 1, Length[tempAdjusted]}];
(*Appends new info (naught and adjusted) to the data list and returns itx)
Do[AppendTo[templistT[[i]], tempNaught[[i]]]~

AppendTo[templistT[[i]], tempAdjusted[[i]]], {i, 1, Length[templistT]}];

(*Re-Transposes each section of templistT to give usuful formatx)

Do[templistT[[i]] = Transpose[templistT[[i]]], {i, 1, Length[templistT]}];

templistT

(#Joins Rdata and Vdata listsx)

datadJoin[Rlist_List, Vlist_List] := Module[{templist = {}},
Do[templist = Join[templist, Rlist[[i]]], {i, 1, Length[Rlist]}];
Do[templist = Join[templist, V1ist[[i]]], {i, 1, Length[V1list]}];

PrependTo[templist, titles];
templist]

(*Extracts Ravg and Vavg from the adjusted values
input lists are lists of lists. Each sublist is one object's data and
the first element is the object number and the rest are data values
create lists of the form {object,Ravg,Vavg} where

each avg is average of Drop[list,1]x)

extract[rAdjusted_List, vAdjusted_List] :=

Printed by Wolfram Mathematica Student Edition

Calculations.nb | 7

Module[{templist = {}, newR = 0, newV =0},
Do[newR = Mean[Drop[rAdjusted[[i]], 111~
newV = Mean [Drop[vAdjusted[[i]], 1]];
AppendTo[templist, {rAdjusted[[i, 1]], newR, newV}], {i, 1, Length[rAdjusted]}]’
PrependTo[templist, {"Object", "Adj. R Avg", "Adj. V Avg"}];
templist]

(*Takes each objects r0 and v0 data,
Takes average v0 - r0 for each star and returns a
list with {} for objects without more than one data pointx)
rvSub[rMags_List, vMags_List] := Module[{minusList = {}},
Do[If[Length[rMags[[i]]] > 1 && Length[vMags[[i]]] > 1,
AppendTo[minusList, Mean[vMags[[i]]] -Mean[rMags[[i]]]],
AppendTo[minusList, 0]], {i, 1, Length[rMags]}]:

minusList]

(*Gets p and £ for our field,
just one of each for the whole spreadsheet. Using equation V-R =
u(vO—rO) + £ we make a plot using {x,y} pairs, one for each star where x is vO0-
r0 (averagevO - averager0 found in rvSub) and y is Landolt V-R,
then get a linear fit and p is the Coefficient term and £ is the intercept
Returns a list with {u,8}*)
finalPairs[myLandolt_List, minData_List] :=
Module [{myPlotList = {}, currentIndex = 0, finalFit, u, &},
Do[currentIndex = myLandolt[[i, 1]];
AppendTo[myPlotList, {minData[[currentIndex]], myLandolt[[i, 4]]1}],
{i, 2, Length[myLandolt]}];
finalFit = Fit[myPlotList, {x, 1}, x];
U = Coefficient[finalFit, x];
€ = Coefficient[finalFit, x, 0];
{u, 8}1]

(xGets u and £ for the v filter data from equation V =
v0 + u(V-R) + £ rearanded so V-v0 is on the leftx)

vPairs[myLandolt_List, naughts_list] :
Module[{myPlotList = {}, currentIndex =0, vFit, u=0, £ =0},
Do[currentIndex = myLandolt[[i, 1]];
Print[i];
AppendTo[myPlotList,
{myLandolt[[i, 4]], myLandolt[[i, 3]] - Mean[naughts[[currentIndex]]]}],
{i, 2, Length[myLandolt]}];
Print["Fitting"];
vFit = Fit[myPlotList, {x, 1}, x];

Printed by Wolfram Mathematica Student Edition

8 | Calculations.nb

Print["Suceeded Fitting. Pulling coeffs."];
u = Coefficient[vFit, x];

g
{u, 811

Coefficient[vFit, x, 0];

(*Prevents you from overwriting an existing directoryx)
safeCreateDirectory[dirName_] := Module[{newName, cutLoop},

newName = dirName;

cutlLoop = False;

(#*If and While loops either get a valid directory name,

or accept the overwritex)

SetDirectory[NotebookDirectory[]]:

If[DirectoryQ[newName] , While[DirectoryQ[newName] && ! cutLoop, If[
ChoiceDialog[StringForm["Directory °~° Already Exists. Overwrite?", newName]],
DeleteDirectory[NotebookDirectory[] <> newName, DeleteContents -» True];
cutLoop = True, newName = InputString["New File Directory Name: "]]]11]1;

CreateDirectory[NotebookDirectory[] <> "\\" <> newName] ;

newName]

(*Prevents you from overwriting an existing directory. allows for an add-
on to be passed in. The directory given by the user concatenated with the add-
on will be checked. NOTE: only the original name, without the add-on,
is returned, allowing for files inside the folder to have simpler namesx*)
safeCreateDirectory[dirName_, addOn_] := Module[{newName, cutLoop},
newName = dirName;
cutLoop = False;
(*If and While loops either get a valid directory name,
or accept the overwritex)
SetDirectory[NotebookDirectory[]]:
If[DirectoryQ[newName <> addOn],
While[DirectoryQ[newName <> addOn] && ! cutLoop, If[ChoiceDialog]|[
StringForm["Directory °~° Already Exists. Overwrite?", newName <>addOn]],
DeleteDirectory[NotebookDirectory[] <> newName <> addOn,
DeleteContents -» True] ;
cutLoop = True, newName = InputString["New File Directory Name: "]]]];
CreateDirectory[NotebookDirectory[] <> "\\" <> newName <> addOn] ;

newName]
(*END OF FUNCTION DECLARATIONS, BEGIN COMPUTATIONAL CODEx)

(*Split two lists, all objects in R filter, all objects in V filterx)
Rdata = dataSplit["R"];
Vdata dataSplit["V"];

Printed by Wolfram Mathematica Student Edition

Calculations.nb | 9

(#Creates two lists. xy pairs for all objects

in R filter and xy pairs for all objects in V filterx)
Rxypairs = xyPairUp[Rdata];
Vxypairs = xyPairUp[Vdata];

(*Creates a list of coefficient lists of
the form: {object #, R coefficient, V coefficient}x*)

linearCoeff = coefflist[Rxypairs, Vxypairs, Rdata];

(*Gets the averages for each filter's linear fit coefficientx)
RCoeffAvg = Mean[Transpose[linearCoeff][[2]]];
VCoeffAvg = Mean[Transpose[linearCoeff][[3]]];

(#Calculates r0 and v0 values from the equation

r0 = (Instrument magnitude) - (linear coefficient average) * (airmass) *)
r0 = naughtList[Rdata, RCoeffAvg] ;
v0 = naughtList[Vdata, VCoeffAvg];

(*Creates a list of the Landolt values we
need in the form {obj #, Landolt R, Landolt V}=x)
landoltValues = createlandolt[landoltData];

(#Adjusts the r0 and v0 values by taking R-rOx)
adjustedR = adjustLandolt[landoltValues, r0, "R"];
adjustedV = adjustLandolt[landoltValues, v0, "V"];

(*Creates list of Adjusted v -
Adjusted r values for each object using lists above,
number is 0 if there was no (good) data for that stars)

vminr = rvSub[r0, vO];

(*Gets u and £ for the Standard Areax)

ufset = finalPairs[landoltData, vminr];

(¥Gets u and £ for v filter valuesx)
vSet = Module[{myPlotList = {}, currentIndex =0, vFit, u=0, £ =0},
Do[currentIndex = landoltData[[i, 1]];
AppendTo[myPlotList, {landoltData[[i, 4]], landoltData[[i, 3]] -
Mean[vO[[currentIndex]]]}], {i, 2, Length[landoltData]}]:
vFit = Fit[myPlotList, {x, 1}, x];
u = Coefficient[vFit, x];
€ = Coefficient[vFit, x, 0];

Printed by Wolfram Mathematica Student Edition

10 | Calculations.nb

{u, 8}1;

(*Combines all of the calculated datax)
fullR = addNew[Rdata, r0, adjustedR];
fullV = addNew[Vdata, v0, adjustedV];
combinedData = datadoin[fullR, fullV];

(*Creates a data list for linear coefficients with averagex)
coeffData = Prepend[linearCoeff, {"Object", "R", "V"}];
AppendTo[coeffData, {"Avg", RCoeffAvg, VCoeffAvg}],

(#Creates a data list for Adjusted R and Adjusted V valuesx)
summaryData = extract[adjustedR, adjustedV];

(*FILE WRITE FUNCTIONALITY BELOW%*)

(*Combines all of the data into a list formatted solely for ease of readingx)
uInfo = {};

AppendTo[uInfo, Join[{"Mu_vr", "Zeta_vr"}, {, ,}, {"Mu_v", "Zeta_v"}]]:;
AppendTo[uInfo, Join[ufset, {, ,}, vSet]];

lastCombined = combinedData;

lastCombined[[1]] =

Join[lastCombined[[1]], {, ,}, {"Coefficients"}, {, , ,}, {"Averages"}];
Do[lastCombined[[i +1]] = Join[lastCombined[[i+1]], {, ,}, coeffData[[i]]],
{i, 1, Length[coeffData]}];
Do[lastCombined[[i +1]] = Join[lastCombined[[i+1]], {, }, summaryData[[i]]],

{i, 1, Length[summaryData]}];
combineIndex = 5;
If[Length[coeffData] > Length[summaryData],
combineIndex += Length[coeffData], combineIndex += Length[summaryData]];
Do[lastCombined][[i + combineIndex]] = Join[lastCombined[[i + combineIndex]],
{, ,}, uInfo[[i]]], {i, 1, Length[uInfo]}];

(*Creates a time-tag add-on for the file name to
distinguish between different nights of the same objectx)

timeTag = dateConvert[dateTaken];

(*Creates a separate directory for each Standard areax)
writelLocation = InputString["Location to Write to: "];
writeLocation = safeCreateDirectory[writeLocation, timeTag] ;
origwritelLocation = writeLocation;

SetDirectory[NotebookDirectory[] <> "\\" <> origwriteLocation <> timeTag] ;

Printed by Wolfram Mathematica Student Edition

Calculations.nb | 11

rawDataLocation = writeLocation<>"_Raw.csv";
landoltDataLocation = writelLocation <> "_Landolt.csv";

writeLocation = writeLocation<> ".csv";

(*Add feature to delete old filewx)
Export[rawDatalLocation, data];
Export[landoltDatalocation, landoltData];

Export[writelLocation, lastCombined] ;

SetDirectory[NotebookDirectory[]]:
If[ChoiceDialog["Delete Original Data File?"], DeleteFile[location<>".csv"]];
(*xDeleteFile[location<>".csv"] ;*)

(#DeleteFile[landoltLocation<>".csv"] ;*)

(*Error Report Codex)
(*Check to see how close calculated values of u and § get us to Landolt valuesx)
myVminR = {};
myV = {};
Do [AppendTo [myVminR, ufset[[1]] * vminr[[i]] + uset[[2]]], {i, 1, Length[vminr]}];
Do [AppendTo [myV, Mean[vO[[i]]] +vSet[[1]] *myVminR[[i]] +vSet[[2]]],
{i, 1, Length[vminr]}];
lanV = Transpose[Drop[landoltData, 1]][[3]]-
lanR = Transpose[Drop[landoltData, 1]1][[5]1]"
lanVminR = Transpose[Drop[landoltData, 1]][[4]];
vrDiff = myVminR - lanVminR;
vdiff = myV - lanV;
vrPercDiff = (Abs[myVminR - lanVminR] / lanVminR) * 100;
vPercDiff = (Abs[myV - lanV] /lanV) %100;

differ = Transpose[
{Join[{"Lan V-R"}, Transpose[Drop[landoltData, 1]][[4]]], Join[{"My V-R"},
myVminR], Join[{"My-Lan V-R"}, vrDiff], Join[{"% off"}, vrPercDiff]}];

visual = Transpose[{Join[{"Lan V"}, Transpose[Drop[landoltData, 1]1][[3]11].,
Join[{"My V"}, myV], Join[{"My-Lan V"}, vdiff], Join[{"% off"}, vPercDiff]}];

myR = myV - myVminR;

rPercDiff = (Abs[myR - lanR] / lanR) % 100;

rdiff = myR - lanR;

red = Transpose[{Join[{"Lan R"}, Transpose[Drop[landoltData, 1]1][[5]1],
Join[{"My R"}, myR], Join[{"My-Lan R"}, rdiff], Join[{"% off"}, rPercDiff]}];

Printed by Wolfram Mathematica Student Edition

12 | Calculations.nb

(¥Output error results to Error Log filex)

multi = {};

Do[AppendTo[multi, Join[differ[[i]], {""}, visual[[i]], {""}, red[[i]]11]1],
{i, 1, Length[red]}]

output = {{"V-R difference avg = ", Mean[vrDiff]},
{"V difference avg = ", Mean[vdiff]}, {"R difference avg = ", Mean[rdiff]},
{"V-R difference std dev = ", StandardDeviation[vrDiff]},
{"V difference std dev = ", StandardDeviation[vdiff]},
{"R difference std dev = ", StandardDeviation[rdiff]},
{"V-R avg % difference = ", Mean[vrPercDiff]}, {"V avg % difference = ",
Mean [vPercDiff]}, {"R avg % difference = ", Mean[rPercDiff]}};

AppendTo[multi, {}];
Do[AppendTo[multi, output[[i]]], {i, 1, Length[output]}];

CreateDirectory|[

NotebookDirectory[] <> "\\" <> origwriteLocation <> timeTag <> "\\" <> "Error_Log"] ;
SetDirectory[NotebookDirectory[] <> "\\" <>

origwritelocation <> timeTag <> "\\" <> "Error_Log"];

Export["Error_ Report.csv", multi];
Export["VminusR_Difference.jpg", ListPlot[vrDiff, PlotRange -» All]];
Export["V_Difference.jpg", ListPlot[vdiff, PlotRange -» All]];
Export["R_Difference.]jpg", ListPlot[rdiff, PlotRange -» All]];
(*END OF NORMAL CODEx)
Quit[]

(*OLD BASIC FILE WRITE IN CASE NEW FAILS
(*Creates a separate directory for each Standard areax)
writelocation = InputString["Location to Write to: "];
CreateDirectory[writeLocation];
SetDirectory[NotebookDirectory[]<>"\\"<>writeLocation];
rawDatalocation = writelLocation<>"_Raw.csv";
landoltDataLocation = writeLocation<>"_Landolt.csv";

writeLocation = writelocation<>".csv";

(*Add feature to delete old filewx)
Export[rawDatalocation,data];
Export[landoltDatalocation,landoltData];
Export[writeLocation,lastCombined];

*)

Printed by Wolfram Mathematica Student Edition

Calculations.nb | 13

(¥View Error Report Right Nowx)
differ // TableForm

visual // TableForm

red // TableForm

Print["V-R difference avg = ", Mean[vrDiff]]

Print["V difference avg = ", Mean[vdiff]]

Print["R difference avg = ", Mean[rdiff]]

Print["V-R difference std dev = ", StandardDeviation[vrDiff]]
Print["V difference std dev = ", StandardDeviation[vdiff]]
Print["R difference std dev = ", StandardDeviation[rdiff]]
Print["V-R avg % difference = ", Mean[vrPercDiff]]

Print["V avg % difference = ", Mean[vPercDiff]]

Print["R avg % difference

", Mean[rPercDiff]]

ListPlot[vrDiff, PlotRange —» All]
ListPlot[vdiff, PlotRange -» All]
ListPlot[rdiff, PlotRange -» All]

SetDirectory[NotebookDirectory[]]’

Printed by Wolfram Mathematica Student Edition

Appendix C

Blazar Analysis and Reduction Code

(BARC)

The code included is the Blazar class created in Python. An instance of this class holds all of the
information gathered from a single blazar for all of its nights of observing.
The following function was included in the main.py file which read in all of the data. This

function shows the process for reading in a single blazar.

#Loads a single blazar

def loadBlazar(sols, f_name=""):

if "Data" not in f_name:
path = "Data/"

else:
path =""

if f_name == ""
#Accepts .xls and .xlsx file types. If none specified, assume .xlsx

f_name = input("File_Name:_ ")

temp = Blazar ()

status = temp.LoadData(path+f_name) #Load in the data and do the error checks

51

52

temp.LoadSolutions (sols)
if status == O:
temp . NCCheck ()
ss_comp = temp.AllStandardCompare (stop=True)
if ss_comp == —1:
print (" All_Stndard_Stars_Discarded")
print ("Skipping_further_calculations")
else :

if ss_comp == 1:

#Add the solutions

#Check any net count

#Check our comparison

issues

stars

and mark any bad ones

print ("More_standard_stars _than_allowed _have_been_discarded._Proceed_with_caution")

temp . NetCountCompare ()

if len(temp.solutions) ==

print ("No_Solutions_Nights_for_this_Blazar, Ending_Calculations")

else:
warning = temp.LoopAllSky ()

if warning ==

print (" All_programmed_portions_incoorperated")

else:

print (" Standard_Deviation_Within_All_Sky _Solutions_Exceeds _%.2f, _\

Proceed _With_Caution" %(.05))

T T T AT T TR T TR R TS PR T

temp . Standardize ()

temp . Fit ()

print("\n")

return temp

Shown below is the blazar class in which the calculations were performed.

—x— coding: utf—-8 —u—

m

Created on Mon Jun 5 16:44:54 2017

@author: nvana

"

from xlIrd import open_workbook
import DataBase as db

import numpy as np

import os.path

from matplotlib import pyplot as plt

Excel file Columns:
(0) Number
(1) Image File
(2) Object
(3) Name
(4) Magnitude
(5) Standard?
(6) Error
(7) Error(T)
(8) X

#

#

#

#

#

#

#

#

#

#

(9) Y
(10) Column

(11) Row

(12) Background
(13) S/N

(14) Mag Std
(15) Resid.

(16) Net Count
(17) Filter

(18) Date

(19) Time

#

(20) JD

54

(21) Airmass
(22) ExpTime
(23) Weight
(24) Notes

TR R OB R

(25) Instrumental Magnitude (added in code below)

#index variables for info

#maybe a bit overkill , but it makes it easier to access and alter
#if I change the size or indices here, it changes it in the code
info_size = 17 #size of the 3rd dimension of info
Solution_index = 0

Vn_index = Solution_index + 1

Vnet_index = Vn_index + 1

Vstd_index = Vnet_index + 1

Vresult_index = Vstd_index + 1

Vupper_index = Vresult_index + 1

Vlower_index = Vupper_index + 1

Vinstr_index = Vlower_index + 1

Vcal_index = Vinstr_index + 1

Rn_index = Vcal_index + 1

Rnet_index = Rn_index + 1

Rstd_index = Rnet_index + 1

Rresult_index = Rstd_index + 1

Rupper_index = Rresult_index + 1
Rlower_index = Rupper_index + 1
Rinstr_index = Rlower_index + 1
Rcal_index = Rinstr_index + 1

daa

#Column indices for the information in data

#Because python data structures are zero—indexed, these are the column—I

img_col = 1
obj_col = 2
mag_col = 4

count_col 16

filter_col = 17
date_col = 18

exposure_col = 22

instr_col = 24

#Column indices for the information in solutions

sol_num_col = 0 #Column for the solution number
sol_date_col = sol_num_col + 1 #Column for the solution date
mu_vr_col = sol_date_col + 1 #Column for Mu_vr

zeta_vr_col = mu_vr_col + 1 #Column for Zeta_vr

mu_v_col = zeta_vr_col + 1 #Column for Mu_v

zeta_v_col = mu_v_col + 1 #Column for Zeta_v

class Blazar(object):

"

Blazar

Provides :

~

An object to hold the data

2. Functions to calculate the important summaries

3. Error checks to signal the user to any potential problems in calculations
4

Graphical representation of the calculated data

The data loaded into the blazar is photometry in the format given by Mira.

Any other format may not function as expected and may cause errors.

Sources of Error:

1. Negative or zero net counts

2. No All Sky Solutions

3. Poor All Sky Solutions resulting in high standard deviation
4. Too few objects (a missing aperature in Mira)
5

Poor comparison stars resulting in too many being thrown out

Format of solution list to be passed in

Solution Number || Date || Mu_vr || Zeta_vr || Mu_v || Zeta_v

There are several functions built in for the user (type Blazar. function?

for more help):

56

— Summarize () — Gives summary info for the blazar

— ErrorSummary () — Gives a list of the errors encountered in calculation

— ShowNetCount() — Displays a graph of the net count comparison

— ShowStandardCompare () — Displays a graoh of each standard star compared to one
— ShowRaw () — Displays the raw, uncalibrated data

— ShowCalibrated () — Displays the final, standardized magnitudes of the blazar

i

def __init__(self):

self.file_loc = "" #Name of file it was read from

self.data = [] #Raw data read from the file

self .ID = 0 #Our given blazar number

self .name = "" #True name of blazar

self.volatility = 0 #Volatility of blazar. 3 — widely varying, 0 — almost no variance
self.Vpoly = None #V polynomial equation

self .Rpoly = None #R polynomial equation

self.Vpoly_r_sqr = 0 #R"2 value of the 3rd order polynomial fit in V
self.Rpoly_r_sqr = 0 #R"2 value of the 3rd order polynomial fit in R
self.dates = [] #List of dates in data

self .comparison_index = 1 #Index to compare standards to (index 1 = star 2)
self.objects = 0 #Number of objects

#First dimension is object (off by one, i.e., 0 is object 1, but object 1 will be left empty)
#Second dimension is as follows

(0) — V magnitude

(1) — V std dev

(2) — R magnitude

(3) — R std dev

self.standard_magnitudes = [] #Magnitudes of the secondary standard stars

self.discarded = [] #Discarded standard stars

First dimension is the night (NightList)

Second dimension is the object (off by one, i.e., 0 is object 1)

Third dimension is this:

(0) Solutions — Number of All Sky Solutions for that night (only place on object 1/index 0)
(1) Vn — Number of data points

(2) Vnet — Sum of counts

57

(3) Vstd — Standard deviation of data points (Poisson)

(4) Vresult — Result of —2.5%loglO(net_count_1I1/net_count_2)

for blazar: top object 1 & bottom = total of all others

(5) Vupper — difference between (3) and (3) with the Vstd added to net_count_I

(6) Viower — same as (4) but with Vstd subtracted

(7) Vinstr — Instrumental V magnitude average (—2.5%xlogl0(Net Count/Exposure Time))
(8) Vcal — Calibrated V magnitude average for blazar and objects, average offset for
objects on a night without an all sky solution

(9) Rn — Number of data points

(10) Rnet — Sum of counts

(11) Rstd — Standard deviation of data points (Poisson)

(12) Rresult — Same as Vresult but in R filter

(13) Rupper — Difference between Rresult and the upper bound based on poisson std dev
(14) Rlower — Difference between Rresult and the lower bound based on poisson std dev
(15) Rinstr — Instrumental R magnitude average

(16) Rcal — Calibrated R magnitude average for blazar and objects, average offset for
objects on a night without an all sky solution

self.info = [] #Data following format above

#First dimension is each solution

#Second dimension is as follows:

(0) — Solution Number

(1) — Date

(2) — Mu_vr

(3) — Zeta_vr

(4) — Mu_v

(5) — Zeta_v

(6) — Area Name

self.solutions = [] #Solutions for this blazar

#Error Variables

#e_list (error list) is as follows: (0 — no issue, I — issue)

(0) — Too few objects on some nights

(1) — Faint Blazar, too few net counts on blazar

(2) — General net count issue, at least one night has issues.

value of 2 = issue resolved (all bad net count stars were thrown out)
(3) — No remaining stars = —1, too many stars flagged = 1, fine = 0

(4) — Too many solutions flagged as bad

58

(5) — Column or element issues

self.e_list = np.zeros ((6)) #Array of the types of errors

self.deficient_obj = [] #Nights with too few objects

self .ncError = [] #List of nights with errors

self .blError = [] #List of nights with net count errors for the blazar
self.nc_obj = [] #List of objects with bad net counts

#Gives summary information of the blazar
def Summarize(self):

o

Summarize

Displays some basic summary information for the blazar

o

print ("Blazar_%d" %self .ID)

print("Identifier:_" + self.name)

print (" Volatility: %d" %self.volatility)

print ("Observed_Nights: %d" %len(self.dates))

print ("3rd_Order_Polynomial R"2_(V):_%.4f" %(self.Vpoly_r_sqr))
print("3rd_Order_Polynomial R"2_(R): _%.4f" %(self.Rpoly_r_sqr))

#Gets the name of the blazar from the file name using the convention of naming it bl##
def PullID (self, f_block):
i =0
temp_id = ""
while f_block[i] != '.':
if f_block[i].isdigit():

temp_id += f_block[i]

self .ID = int(temp_id)

#loads data from the file name

def LoadData(self, f_name):

59

#If there's no dot, there's no file extension
if not "." in f_name:
#Assume a .xlsx file

print ("No_Explicit_File_Type_Given._Assuming_.xlsx_Format")

'

f_name += ".xlsx"

if (os.path.isfile (f_name)):
self.file_loc = f_name
print ("Reading_from_" + f_name)
wb = open_workbook (f_name)
count = 0
#For each sheet in the Excel file
for s in wb.sheets ():

#For each row on that sheet

for row in range(s.nrows):

#This avoids adding extra title rows. Only add the title row the first time
if not (count != 0 and s.cell(row,0).value == "#"):
col_value = []
#For each column in that row
for col in range(s.ncols):
#Grab the value on that sheet at that specific cell
value = (s.cell(row,col).value)
col_value .append(value)
self.data.append(col_value)

count += 1

self . PulllD(self.data[1][img_col]) #Find the Blazar number from the image name

#populate dates list
for row in self.data:

if row[date_col] not in self.dates and not isinstance (row[date_col], str):

self.dates.append(row[date_col])

self.ObjectMismatch () #First error function, also set self.objects
self . CalcInstrumentalMagnitude () #Calculate instrumental magnitude from the data
self .LoadInfo () #Split the data into useful elements
return 0 #I1t succeeded

else:

print (f_name + "_does_not_exist")

60

return —1 #No File, do not continue

#Takes the information from data and breaks it into a useful organization

def LoadInfo(self):

#Make info into a 3D array of data

#First dimension as large as dates

#Second dimension as large as largest object number

#Third dimension as large as number of criteria indicated in __init__

self.info = np.zeros((len(self.dates),self.objects ,info_size))

#project and select to pull the data values I need
for i in range(len(self.dates)):

for j in range(self.objects):

#V filter
#Gather Vn
self.info[i][j][Vn_index] = \
len(db. project(db.select(self.data ,[(date_col,self.dates[i]),\
(obj_col ,j+1),(filter_col ,"V")]),[obj_col]))
#Gather net counts
self.info[i][j][Vnet_index] =\
np.nansum(db. project(db.select(self.data ,[(date_col,self.dates[i]), \
(obj_col ,j+1),(filter_col ,"V")]),[count_col]))
if self.info[i][j][Vnet_index] > O:
#sqrt of net counts or poisson standard deviation
self.info[i][j][Vstd_index] = np.sqrt(self.info[i][j][Vnet_index])
#Gather V instrumental magnitude average
self.info[i][j][Vinstr_index] = \
np.nanmean (db. project(db.select(db.select(self.data, \
[(date_col ,self.dates[i]),(obj_col,j+1),(filter_col ,"V")]), \

[(instr_col ,"INV!")], mirror=True) ,[instr_col]))

#R filter
#Gather Rn
self.info[i][j][Rn_index] = \
len(db. project(db.select(self.data ,[(date_col,self.dates[i]),\
(obj_col ,j+1),(filter_col ,"R")]),[obj_col]))

61

#Gather net counts
self.info[i][j][Rnet_index] =\
np.nansum(db. project (db.select(self.data ,[(date_col,self.dates[i]),(obj_col,j+1),
(filter_col ,"R")]),[count_col]))
if self.info[i][j][Rnet_index] > O:
self.info[i][j][Rstd_index] = np.sqrt(self.info[i][j][Rnet_index])
#Gather R instrumental magnitdue average
self.info[i][j][Rinstr_index] = \

np.nanmean(db. project(db.select(db.select(self.data, \

[(date_col ,self.dates[i]),(obj_col,j+1),(filter_col ,"R")]),[(instr_col ,"INV!")],

mirror=True) ,[instr_col]))

def LoadSolutions(self, values = []):

if values != []:

self.solutions = []

for

#Calculates

row in values:
#Check to see if the date for the solutions was a night we observed this blazar
if row[1l] in self.dates:

self.solutions .append (row)

the instrumental magnitude for each point and appends it to the row in data

def CalcInstrumentalMagnitude (self):

i=0

for row in self.data:

if

i ==

#Append the title

if len(row) < 25:
row.append("Instrumental _Magnitude")

else:

row[instr_col] = "Instrumental_Magnitude"

elif isinstance(row[count_col], str) or isinstance(row[exposure_col], str):

self.e_list[5] =1

elif row[count_col] > 0 and row[exposure_col] > O:

#Append the instrumental magnitude onto the row
if len(row) < 25:

row . append(—2.5+«np.logl0(row[count_col]/row[exposure_col]))
else:

row[instr_col] = —2.5%np.logl0(row[count_col]/row[exposure_col])

\

\

62

else :

#Append a warning label to tell the user the number cannot be calculated

if len(row) < 25:

row.append ("INV!") #Could be cause by net count <= 0 or exposure time = 0

else:
row[instr_col] = "INV!"
i +=1
if self.e_list[5] == 1:
#Two possible fixes:
#Delete empy rows after last row of data on each worksheet (for some reason that works)
#Shift columns over (They may have been shifted in copying)
print ("Data_has_balnk_rows_and/or_shifted_columns")
return —I
else:

return 0

#Compares each standard star to one of the others to see if any of our chosen objects is bad

def SingleStandardCompare (self):
#for each night observed
for night in self.info:
#for every object observed that night from 2 on (index 1 and on)

for obj in range(len(night))[1:]:

#net counts for the current and comparison objects
Vnet_compare = night[self.comparison_index][Vnet_index]
Vnet_obj = night[obj][Vnet_index]

Rnet_compare = night[self.comparison_index][Rnet_index]

Rnet_obj = night[obj][Rnet_index]

#if the Vnet on both the comparison star and the current standard are positive

if Vnet_compare > 0 and Vnet_obj > 0:

#pull and calculate values from elements already in array
Vresult = —2.5%np.logl0(Vnet_compare/ Vnet_obj)

Vstd = night[self.comparison_index][Vstd_index]

#place results in array

night[obj][Vresult_index] = Vresult

63

night[obj][Vupper_index] = \

abs(Vresult — —2.5%np.logl0 ((Vnet_compare + Vstd)/Vnet_obj))
night[obj][Vlower_index] =\

abs(Vresult — —2.5%np.logl0 ((Vnet_compare — Vstd)/ Vnet_obj))

if Rnet_compare > 0 and Rnet_obj > O:

#pull and calculate values from elements already in array in R filter now
Rresult = —2.5%np.logl0(Rnet_compare/Rnet_obj)

Rstd = night[self.comparison_index][Rstd_index]

#place R results in array
night[obj][Rresult_index] = Rresult
night[obj][Rupper_index] = \
abs(Rresult — —2.5%np.logl0 ((Rnet_compare + Rstd)/Rnet_obj))
night[obj][Rlower_index] = \
abs(Rresult — —2.5#np.logl0 ((Rnet_compare — Rstd)/Rnet_obj))

#Helper function.

#Creates the list of thrown stars giving absolute precedence to stars with a value of nan

#Takes most of its variables from AllStandardCompare ()

def _Discard(self, threshold, max_toss, stop):

hard_toss

soft_toss

#Make list
for obj in
#These
vstd =

rstd =

#Appen

d

[1] #List of nan stars, absolutely MUST be discarded

[1 #List of bad stars other than nan, should be discarded

of tossed stars

range (len(self.info[0]))[1:]:

are the criteria I'm looking at
np.nanstd(self.info[:,obj, Vresult_index])

np.nanstd(self.info[:,obj,Rresult_index])

if either has a nan value

if np.isnan(vstd) or np.isnan(rstd):

hard_toss.append(obj)

#Appen

d

if the standard deviation in either filter breaks the threshold

elif vstd > threshold or rstd > threshold:

soft_toss .append(obj)

64

#Regardless of the following cases, hard_toss stars WILL be discarded

self.discarded = hard_toss

#Possibilities from here on:

hard_toss and soft_toss could either be <, >, or == to max_toss, or all of the stars
(4 cases each)
stop = true or false, doubling the cases
regardless , discarded is hard, in >= max or == all cases, nothing will change for stop
for last stop case and all non—stop cases, soft_toss will be added to hard_toss as permitted
from there, if self.discarded contains every star, set flag to —I1, meaning stop calculations
otherwise , if more stars than max_toss were flagged as bad, falg 1 to say watch out
otherwise , it's fine, flag 0, then return the flag, whatever it is
if stop:
for obj in soft_toss:
if len(self.discarded) < max_toss:
self.discarded.append(obj)
else:

#Place all of the soft_toss stars into discarded

self.discarded [:0] = soft_toss

#Now set flags
if len(self.discarded) == self.objects:
self.e_list[3] = —1 #No remaining stars
elif len(hard_toss) + len(soft_toss) > max_toss:
self.e_list[3] =1 #Remaining stars , but errors exceed limits

#Otherwise , flag is 0 by default

return self.e_list[3] #Return whatever value was in the flag

#Perform singleStandardCompare until fewer than the threshold number of objects have been thrown out,
#or until all objects have been used as the comparison index and the best one chosen

#threshold is the standard deviation above which I will decide to toss the stars

#Setting stop to true will stop throwing out stars once it has hit the max_toss limit

#(really it just limits the final list)

def AllStandardCompare(self , threshold=.05, stop=False):

#Reset discarded list to empty

65

self.discarded = []

#Greater than 1 because standard deviation calculation needs minimun 2 points

if (len(self.info) > 0):
#Don 't throw away more than this many stars , varies depending on number of objects
max_toss = int((len(self.info[0]) — 1)/2)

best = {} #Dictionary from number of tossed stars to comparison_index

#For each object on the first night observed
#(assume this will be the same every night) excluding object 1 (blazar)
for i in range(len(self.info[O0]))[1:]:

tossed = 0 #Number of stars tossed for current comparison_index

#Perform the standard comparison on the current comparison_index

self.SingleStandardCompare ()

#Check to see how many stars are tossed given this criteria
for j in range(len(self.info[O0]))[1:]:
#For ease of read, these are the criteria I'm looking at
vstd = np.nanstd(self.info[:,j, Vresult_index])
rstd = np.nanstd(self.info[:,j,Rresult_index])
#if either the V or R filter breaks the threshold standard deviation
#or if either is np.nan
if vstd > threshold or rstd > threshold or np.isnan(vstd) or np.isnan(rstd):

tossed += 1

#if the current number tossed has not already been encountered
if not tossed in best:
#The number of stars tossed will be attributed to the current comparison index

best[tossed] = self.comparison_index

#if the current number tossed is below the max allowed, exit the first for loop
if tossed <= max_toss:

break
else:

#increment the comparison_index

if self.comparison_index < len(self.info[0]) — 1:

self.comparison_index += 1

66

#if the index is already on the last object, return to star 2 (index 1)
else :

self.comparison_index = 1

#After exiting for loop, redo singleStandardCompare () with the best comparison_index
#comparison_index is whichever had fewest thrown stars
self.comparison_index = best[min(best)]

self . SingleStandardCompare ()

return self._Discard(threshold , max_toss, stop) #Return the result

#Compare the net counts of the blazar to the net counts of the remaining stars combined
#O0nce compared, calculate volatility
#Very similar to SingleStandardCompare except it always compares index 1 to combination of all
def NetCountCompare(self):
#Go through each night
for night in self.info:
Vconglomerate = 0 #The "pile" of net counts from the other standards in V filter

Rconglomerate = 0 #Same as Vcongolmeratebut in the R filter

#Gather the net counts that are not tossed
for obj in range(len(night))[1:]:
#Add if not included in discard list
if obj not in self.discarded:
Vconglomerate += night[obj][Vnet_index]

Rconglomerate += night[obj][Rnet_index]

#Calculate the results and upper/lower limits

Vnet_bl

night [O][Vnet_index] #Net counts for the blazar in V
Rnet_bl

night [O][Rnet_index] #Net counts for the blazar in R

#0nly calculate if the numbers are above 0

if Vnet_bl > 0 and Vconglomerate > 0:

#Pull and calculate values to place later
Vresult = —2.5%np.logl0(Vnet_bl/Vconglomerate)
Vstd = night[0][Vstd_index]

67

#Place values in array

night[0O][Vresult_index] = Vresult

night[0][Vupper_index] = abs(Vresult — 2.5%np.logl0((Vnet_bl + Vstd)/ Vconglomerate))
night [0][Vlower_index] = abs(Vresult — 2.5%np.loglO((Vnet_bl — Vstd)/ Vconglomerate))

if Rnet_bl > 0 and Rconglomerate > 0:

#Pull and calculate values to place later
Rresult = —2.5#np.logl0(Rnet_bl/Rconglomerate)
Rstd = night[0][Rstd_index]

#Place values in array

night [0][Rresult_index] = Rresult

night[0][Rupper_index] = abs(Rresult — 2.5%np.logl0 ((Rnet_bl + Rstd)/Rconglomerate))
night[0][Rlower_index] = abs(Rresult — 2.5xnp.logl0 ((Rnet_bl — Rstd)/Rconglomerate))

#Now, calculate how volatile the blazar is/how much it varies

#Assign a number based on the following:

#std dev in Vresult/Rresult / std dev in (Vresult — Rresult)

#3 —> [3,infinity), 2 —> [2,3), 1 — [1,2), O —> (—infinity ,1)

#A higher number means that it is less likely that the change is due to uncertainty
#in the difference between the filters

#We assume that flaring will occure roughly equally in R as in V

#std dev of Vresult for object 1/index 0 (blazar)
Vres_std = np.nanstd(self.info[:,0, Vresult_index])
#std dev of Rresult for object 1/index 0 (blazar)
Rres_std = np.nanstd(self.info[:,0,Rresult_index])
#std dev for Vresult — Rresult

VminR_std = np.nanstd(self.info[:,0, Vresult_index] — self.info[:,0,Rresult_index])

Vvol = 0

Rvol

Il
o

if VminR_std > O:
Vvol = Vres_std/VminR_std #V volatility

Rvol = Rres_std/VminR_std #R volatility

68

if Vvol >= 3 or Rvol >= 3:

self.volatility = 3

elif Vvol >= 2 or Rvol >= 2:

self.volatility = 2

elif Vvol >= 1 or Rvol >= 1:

else

#Calibrates

#A single run through assuming the

#until t

self . volatility = 1

self.volatility = 0

he values have stabilized

def AllSkySolution(self):

#Reset pre—existing values

self
self
self

self

#Sec
#Thi
#
#
#

valu

solutions are good,

the magnitudes based on the All Sky Solutions

.standard_magnitudes = np.zeros ((self.objects ,4))
.info[:,:,Solution_index] = 0
.info [:,:, Vcal_index] = 0

.info[:,:,Rcal_index] = 0

#Values will hold the solution results for each object
#First dimension is the object
ond dimension is the solution
rd Dimension is as follows:
(0) — Solution Number
(1) — Calibrated V
(2) — Calibrated R
es = np.zeros ((self.objects ,len(self.solutions),3))
=0 #Loop counter for current solution

loop

#Do

for

each solution

sol in self.solutions:

index = 0

mu_vr = sol[mu_vr_col]

zeta_vr = sol[zeta_vr_col]

#The index in self.dates corresponding

#also the access
#Mu_vr

#Zeta_vr

index for

self.info

to

this

solution

a later function will repeatedly call this

69

mu_v = sol[mu_v_col] #Mu_v

zeta_v = sol[zeta_v_col] #Zeta_v

#Find the index for the corresponding date
for i in range(len(self.dates)):

#Found the corresponding date

if self.dates[i] == sol[sol_date_col]:
index = i
break

#Loop through info at the night of the solution
for obj in range(len(self.info[index])):
#Equations are as follows:
#(Capital V and R are true values, lowercase are instrumental magnitudes)
#V—R = Mu_vr=(v—r) + Zeta_vr
#V = v + Mu_v«(V—R) + Zeta_v
#R

V — (V=-R)
VminR = mu_vr=(self.info[index][obj][Vinstr_index] — \
self.info[index][obj][Rinstr_index]) + zeta_vr

V = self.info[index][obj][Vinstr_index] + (mu_v#VminR) + zeta_v

V — VminR

#Place at appropriate spot in values array

values[obj][loop][0] = sol[O0] #Place the solution number
values[obj][loop][l] =V #Place V magnitude
values[obj][loop][2] =R #Place R magnitude

#Place in self.info as well
#Because there can be multiple solutions per night, use the following formula to
#keep the average:
#Vcal = (V + (VcalxSolutions))/(Solutions + 1)
#This will weight the current average to how many points contributed
self.info[index][obj][Vcal_index] = \
(V + (self.info[index][obj][Vcal_index] = \
self.info[index][obj][Solution_index]))/(self.info[index][obj][Solution_index] \
+ 1)
self.info[index][obj][Rcal_index] = \
(R + (self.info[index][obj][Rcal_index] = \

70

self.info[index][obj][Solution_index]))/(self

+ 1) #Follow formula above

self.info[index][obj][Solution_index] += 1

loop += 1

#Now values is populated, populate standard_magnitudes

for obj in range(len(self.standard_magnitudes))[1:]:
#V magnitude is
self.standard_magnitudes[obj][0] =
#V standard deviation is using V on all
self.standard_magnitudes[obj][1] =
#R magnitude is the average R through all
self.standard_magnitudes[obj][2] =
#R standard deviation is using R on all

self.standard_magnitudes[obj][3] =

return values

solutions for

solutions for

.info[index][obj][Solution_index] \

#Increment Solution count

the average V through all solutions on that object

np.nanmean(values[obj,:,1])

that object

np.nanstd (values[obj,:,1])
solutions on that object

np.nanmean(values[obj,:,2])

that object

np.nanstd (values[obj,:,2])

#Support function for finding standard deviation of all elements except one

#Create a copy of the list except the excluded item, return

def stdex(self, table, index):

copy = []

for i in range(len(table)):

if i != index:

copy.append(table[i])

return np.nanstd (copy)

#Support function for finding the outlier solution to toss

#Pass in a 3D array

def FindWorst(self, table, threshold=.05):

std dev

worst = {0:0} #Dictionary from the solution number to its frequency of being the outlier
#lterate through each object and find which solution is the worst for it
for obj in table:

worst_sol = 0 #Solution number of the worst solution for current object

std_total = 0

#Combination of the R and V std dev for

the worst solution

71

#Iterate through solutions and find which one is the worst and above threshold
for i in range(len(obj)):
if not i in range(self.objects):
Vtemp = self.stdex(obj[:,1],1) #Std dev of V without solution at i

Rtemp = self.stdex(obj[:,2],1) #Std dev of R without solution at i

#1f either is above the threshold and worst than the current worst
if (Vtemp > threshold or Rtemp > threshold) and (Vtemp + Rtemp) > std_total:
worst_sol = obj[i,0]

std_total = Vtemp + Rtemp

#Add to map or increment the worst count if it already exists
if worst_sol in worst:

worst[worst_sol] += 1
else :

worst[worst_sol] = 1

#Finds the key that maps to the largest number in the dictionary
worst_key = max(worst, key=lambda key:worst[key]) #The key with the most counts of "worst"

return worst_key #Returns 0 if all are below threshold

#Do AllSkySolution() repeatedly and throw away the worst solution each time until
#There are too few nights to throw, or the standard deviations fall within the threshold
#Threshold is the standard deviation in the V and R magnitudes above which we say there's a
#bad solution
def LoopAllSky(self, threshold =.05, manual_min=0):

#First, call AllSkySolution and pull the values list from it

values = self.AllSkySolution ()

min_sols = int(len(self.solutions)/2) #Leave at least half of the solutions
if min_sols < 3:
#No fewer than 3 solutions

min_sols = 3

#I1f there are only 3 solutions, allow a single one to be thrown out
if len(self.solutions) == 3:

min_sols = 2

72

#The user can manually decide how many solutions to allow
if manual_min > O:

min_sols = manual_min

worst_sol = —1 #Dummy value , allows entering while loop

#Loop through and throw away bad solutions until the standard deviations fall
#within the threshold
#Or there are too few to throw out

while len(self.solutions) > min_sols and worst_sol != O0:

#Finds the worst solution. If all are within the threshold, worst_sol ==

worst_sol = self.FindWorst(values)

#If there is a worst solution, throw it out and re—run AllSkySolution

if worst_sol != 0:
index = —1 #Dummy value , will become the index in solutions to delete
#Run through the solutions

for i in range(len(self.solutions)):

#Once you find the solution ...

if self.solutions[i][0] == worst_sol:
index = i #Assign the index
break #Exit the for loop

#Eliminate the solution at the found index. Check that it is a valid index
if index in range(len(self.solutions)):
del self.solutions[index]

values = self.AllSkySolution () #Run AllSkySolution with new solutions

#while loop ended, either we have too few solutions to continue, or they are fine

if worst_sol != 0:

self.e_list[4] =1 #Place the flag for too many solutions tossed

return —1 #Warning, the data may not be as accurate as possible
else :

return 0 #ldeal situation

73

#Now that we have the secondary standard stars ' magnitudes, standardize
def Standardize(self):
#The same number for most stars allowed to be discarded

max_toss = int ((self.objects — 1)/2)

the blazar

#1f there are fewer stars in self.discarded than max_toss, throw out the faintest

#improve data
while len(self.discarded) < max_toss:
dimmest = —1000 #Magnitude of the current faintest

star = 0 #Star index

#Loop through objects in self.standard_magnitudes
for obj in range(len(self.standard_magnitudes))[1:]:
#0nly consider if it is not in self.dicarded
if not obj in self.discarded:
#Combine its V and R magnitudes and compare to current

#Combined magnitude

to

star , more positive

dimmest

mag = self.standard_magnitudes[obj,1] + self.standard_magnitudes|[obj,2]

#If it is dimmer, change the current dimmest
if mag > dimmest:
star = obj

dimmest = mag

#Now we have the dimmest star

#Add if it's a real star that isn't already in the list

if star != 0 and not star in self.discarded:
self.discarded.append(star)

#Otherwise , something went wrong, so break to avoid an infinite

else:

break

#Find out if throwing away stars threw away all our bad net count issues
#If we find an object in self.nc_obj that has not been thrown out,
fixed = True

for obj in self.nc_obj:

if obj not in self.discarded:

loop

set to false

#We found one that did not get thrown. Likely due to too many bad standard

fixed = False

stars

is dimmer

74

#I1f we fixed the issue, set the new error flag to tell the user there are net count issues,

#But that they have been ignored
if fixed:

self.e_list[2] = 2 #Set the unique error flag

#Loop through all nights in self.info
for night in self.info:
#0nly calculate if it was not an All Sky Solution night

if night[0,Solution_index] == O0:

total_Voffset = 0 #The total offset in V (true magnitude — instrumental magnitude)
Vcount = 0 #How many stars were factored in (were not discarded)
total_Roffset = 0 #Total offset in R

Rcount = 0 #Count in R

#Loop through all of the objects other than the blazar and those that have been discarded

for obj in range(len(night))[1:]:
#O0nly if it was not thrown away
if not obj in self.discarded:
#find the offset and add it to the total to average later
if night[obj, Vinstr_index] != O:
Voffset = self.standard_magnitudes[obj,0] — night[obj, Vinstr_index]
Vcount += 1
total_Voffset += Voffset
if night[obj,Rinstr_index] != 0:
Roffset = self.standard_magnitudes[obj,2] — night[obj,Rinstr_index]
Rcount += 1

total_Roffset += Roffset

#Calculate the averages
Vavg_offset = total_Voffset/Vcount

Ravg_offset = total_Roffset/Rcount

#Add the average offsets to the blazar instrumental magnitudes and store
night[0, Vcal_index] = Vavg_offset + night[0, Vinstr_index]

night[0,Rcal_index] = Ravg_offset + night[0,Rinstr_index]

75

#Finds the 3rd order polynomial fit
def Fit(self):

#Get ordered lists

to

the net count data and calculates the

to use for equations

R"2 value

#Make an array of the reordering

#Order the dates
#Order the V results

#Order the R results

to get the 3rd order polynomial fit

I — (sum((actual — predicted)"2)/sum((actual — mean)™2))

#Average V values

#Average R values

order = np.argsort(self.dates)

dates_s = np.array(self.dates)[order]

v_s = np.array(self.info[:,0, Vresult_index])[order]
r_s = np.array(self.info[:,0,Rresult_index])[order]
#Use the V and R results

self.Vpoly = np.polyld(np.polyfit(dates_s, v_s, 3))
self .Rpoly = np.polyld(np.polyfit(dates_s, r_s, 3))
#RN2 s

Vavg = np.nanmean(v_s)

Ravg = np.nanmean(r_s)

#Get the upper portion of the equation: sum((actual — predicted)2)

#Residual sum of squares
Vlist = []

Rlist = []

#List for

for index in range(len(dates_s)):

storing the (actual—predicted)"2

Vlist.append ((v_s[index] — self.Vpoly(dates_s[index]))==2)

Rlist.append ((r_s[index] — self.Rpoly(dates_s[index]))==2)

#Get the sum

Vres = np.nansum(VIist)

Rres = np.nansum(Rlist)

#Get

Vtot = np.nansum ([(x — Vavg)**2 for x in v_s])
Rtot = np.nansum ([(x — Ravg)*%2 for x in r_s])

#If Vtot or Rtot are 0,
if Vtot != 0:

self. Vpoly_r_sqr =
if Rtot != O:

self .Rpoly_r_sqr =

there was an

1 — (Vres/Vtot)

1 — (Rres/Rtot)

#V residual
#R residual

the lower portion of the equation: sum((actual — mean)"2)

#V total sum of squares

#R total sum of squares
issue
the R"2 value

#Finally ,

#Finally , the R"2 value

for V

for R

76

HARARARAHHAARRRRA A AARR ARG A AAARRRR A A AR R AAAATRR R AR RRGAAATAR ARG AARTRRR A AAATRRRRA G AAARRRAAAAARRAH
#GRAPH FUNCTIONS #####H### # ## TR # # A AT AATTRR A A AR AATRRG A HAATRRRAH ARG A AR A AR
HARARARAAHAARRRRAAAARRRRGAAAARRRR G AAATRRR R A AR RR G AAATARRGAAATAR ARG AAATARR G AAATRRRRA G AAARARAAAAARRAH

#Shows a plot of the V and R Net Count comparison for the blazar object

#save being set to true will save a copy of the plot and px is the dpi size of the plot
#If you set show to false, it will not show the plot, useful for saving only

def ShowNetCount(self, show=True, save=False, px=150):

"won

ShowNetCount

Shows the net counts of the blazar compared to the combined net counts of the comparison

stars (those not discarded) using the equation: —2.5xloglO(bl_net_count/star_net_count)

Optional Variables:

show :
Default = True

Set to False to suppress displaying the graph

save:
Default = False

Set to True to save a copy of the graph

px:
Default = 150
Alter to adjust the size of the graph
Used for the dpi optional variable on pyplot
fig = plt.figure (dpi=px) #figure to add axes to
ax = fig.add_subplot(111) #the axes/plot to lay on to
ax.set_title ("Bl%d_Net_Counts" %(self.ID)) #Set the title

#Sort the dates and assign an order to the rearranging

order = np.argsort(self.dates)

dates_s = np.array(self.dates)[order] #Create a sorted date list

77

vs = np.array(self.info[:,0, Vresult_index])[order] #Create a sorted array of Vresult
rs = np.array(self.info[:,0,Rresult_index])[order] #Create a sorted array of Rresult
ax.plot(dates_s, vs, "—go", label = "Delta_V") #Plot the v data — color = green
ax.plot(dates_s, rs, "—ro", label = "Delta_R") #Plot the r data — color = red
plt.gca().invert_yaxis () #Invert the y axis

plt.legend (loc="upper_right")
if show:

plt.show ()

#Save a copy of the plot
if save:

fig.savefig ("Plots/Bl%d_NetCount.png" %(self.ID))

#Shows a plot of standard star comparisons

#saveV or saveR being set to true will save a copy of the plots and px is the dpi size of the plot
#If you set show to false, it will not show the plot, useful for saving only

def ShowStandardCompare(self , show=True, saveV=False, saveR=False, px=150):

non

ShowStandardCompare ()

Shows the comparison of all of our secondary standard stars. Each star will be compared
to one other. You can see the result of —2.5«xloglO(comparison_net_count/other_net_count)

for each star. Each filter gets its own graph with all comparison stars plotted on each.
Optional Variables:
show :
Default = True

Set to False to suppress displaying the graph

saveV:
Default = False

Set to True to save a copy of the V filter graph

saveR :

Default = False

Set to Trueto save a copy of the R filter graph

px:
Default = 150
Alter to adjust the size of the graph
Used for the dpi optional variable on pyplot
figV = plt.figure (1, dpi=px) #figure to add V to
figR = plt.figure (2, dpi=px) #figure to add R to
v_ax = figV.add_subplot(111) #the axis to lay V values on to
r_ax = figR.add_subplot(111) #the axis to lay R values on to
order = np.argsort(self.dates) #Create an order to sort the dates
dates_s = np.array(self.dates)[order] #Sorted list of dates
vs = [] #V Comparisons sorted
rs = [] #R Comparisons sorted

#Assume the number of objects on the first night is the same throughout (should be)
for obj in range(len(self.info[0]))[1:]:

#Append sorted arrays of the comparison values

vs.append(np.array (self.info[:,o0obj, Vresult_index])[order])

s.append(np.array (self.info[:,obj,Rresult_index])[order])

#Plot the results. Index is offset from object number by 2, i.e. object 2 is index 0
for i in range(len(vs)):

#Plot the comparisons in V and R on separate plots

v_ax.plot(dates_s, vs[i], label = "Obj_%d" %(i+2))

r_ax.plot(dates_s, rs[i], label = "Obj _%d" %(i+2))

#Set titles and legends
v_ax.set_title ("V_Compared_to_Obj _%d" %(self.comparison_index + 1))

"

r_ax.set_title ("R_Compared_to_Obj % %(self.comparison_index + 1))
v_ax.legend (loc="upper_right")

r_ax.legend (loc="upper_right")

79

#Show the
if show:
figV
figR

if saveV:
figV.
if saveR:

figR .

#Shows a plot

#save being s

plots to the user

.show ()
.show ()

savefig ("Plots/Bl%d_StandardsV .png" %self.ID)

savefig ("Plots/Bl%d_StandardsR .png" %self.ID)

of the raw instrumental magnitude of the blazar

et to true will save a copy of the plot and px is the dpi size of the plot

#I1f you set show to false, it will not show the plot, useful for saving only

def ShowRaw(self , show=True, save=False, px=150):

o

ShowRaw ()

Shows the

ShowRaw ()

Optional

show :

raw, uncalibrated data. Good for a basic idea of the shape of the graph.

should look like ShowCalibrated () for nights with good stars.

Variables :

Default = True

Set to False to suppress displaying the graph

save:

Default = False

Set to True to save a copy of the graph

px:

Default = 150

A

Iter to adjust the size of the graph

Used for the dpi optional variable on pyplot

"won

80

fig = plt.figure (dpi=px)
ax = fig.add_subplot(111)

ax.set_title ("Bl%d_Instrumental_Magnitude" %(self.ID))

order = np.argsort(self.dates)

dates_s = np.array(self.dates)[order]

vs = np.array(self.info[:,0, Vinstr_index])[order]

rs = np.array(self.info[:,0,Rinstr_index])[order]
ax.plot(dates_s, vs, "—go", label="V")
ax.plot(dates_s, rs, "—ro", label="R")

plt.gca().invert_yaxis ()
plt.legend (loc="upper_right")
if show:

plt.show ()

#Save the file to be used later

if save:

#the axis to

to add data to

lay values on to

#Set the title

#Create an ordering list
#Create an ordered dates array
#Ordered instrumental V magnitude

#Ordered instrumental R magnitude

#Plot V instrumental magnitude

#Plot R instrumental magnitude

#Ilnvert the y axis

#Add the legend

#Shot the user

fig.savefig("Plots/Bl%d_InstrumentalMagnitude .png" %(self.ID))

#Shows a plot of standardized blazar magnitudes
#Save being set to true will save a copy of the

#If you set show to false, it will not show the

def ShowCalibrated (self , show=True,

"won

ShowCalibrated ()

plot and px is the dpi size of the plot

plot,

useful for saving only

save=False , px=150):

Displays a graph of the calibrated blazar magnitude in V and in R. This is the final,

polished result.

Optional Variables:

show :

Default = True

Set to False to suppress displaying the graph

array

array

81

save:
Default = False

Set to True to save a copy of the graph

px:
Default = 150
Alter to adjust the size of the graph
Used for the dpi optional variable on pyplot
fig = plt.figure (dpi=px) #figure to add data to
ax = fig.add_subplot(111) #the axis to lay values on to
ax.set_title ("Bl%d_True_Magnitude" %(self.ID)) #Set the title
order = np.argsort(self.dates) #Create an ordering list
dates_s = np.array(self.dates)[order] #Create an ordered dates array
vs = np.array(self.info[:,0,Vcal_index])[order] #Ordered instrumental V magnitude array
rs = np.array(self.info[:,0,Rcal_index])[order] #Ordered instrumental R magnitude array

#Get the std dev for magnitudes each night for the error bars
vstd = []
rstd = []

#Gather the standard deviations among the observations within each night
#Use std dev in instrumental magnitude
for night in dates_s:
#Use the std dev in instrumental magnitudes
vmag = db.project(db.select(db.select(self.data ,[(date_col ,night),(obj_col, 1), \
(filter_col ,"V")]),[(mag_col,"Flux<0")], mirror=True),[instr_col])
#Use the std dev in instrumental magnitudes
rmag = db.project(db.select(db.select(self.data,[(date_col,night),(obj_col, 1), \
(filter_col ,"R")]) ,[(mag_col,"Flux<0")], mirror=True),[instr_col])
vstd . append (np.nanstd (vmag)) #Append to the list for the error bars

rstd .append(np.nanstd (rmag))

ax.plot(dates_s, vs, "go", label="V") #Plot V instrumental magnitude

ax.plot(dates_s, rs "ro", label="R") #Plot R instrumental magnitude

5 B

82

ax.errorbar (dates_s, vs, yerr=vstd, capsize=3, fmt="none") #Add error bars to points

ax.errorbar (dates_s, rs, yerr=rstd, capsize=3, fmt="none")

plt.gca().invert_yaxis () #Invert the y axis
plt.legend (loc="upper_right") #Add the legend
if show:

plt.show () #Show the user

#Save the file to be used later

if save:

fig.savefig("Plots/Bl%d_Calibrated .png" %(self.ID))

HARGARHHARGARRARRAARR ARG AR AARGARRARRRARRGARRARRGARRARRGARRARRA ARG ARG ARG ARG ARRAARRARRYARR ARG AR
#ERROR FUNCTIONS########## AR RA U H AR RRA U AARTRRRAAAARRRRA G AARRRRAABAARRRRA A AAARRRRA G AAHRRRAAAAARRAH
HARHARRHARAARRARRAARR ARG ARRAARGARRARRRARRGARRARRGARRARRAARRARRAARR ARG AARGARRARRAARRARRGARR ARG AR

#Prints out the different types of errors the Blazar has

def ErrorSummary(self):
print("Errors:")
#If there are no errors
if not 1 in self.e_list:
print ("No_Errors_For_Bl%d" %(self.ID))
else:
if self.e_list[0] == 1:
print ("—_Object_Mismatch:_Too_Few_Objects_On:")
print(str(self.deficient_obj))
if self.e_list[1] == 1:
print ("—_Faint_Blazar_Warning:_Net_Counts_Zero_or_Below_on_Blazar_on:")
print(str(self.blError))
if self.e_list[2] == 1:
temp_nc = [] #Display list to show self.nc_obj object (add 1 to all)
for el in self.nc_obj:
temp_nc.append(el+1)
print ("—_Net_Count_Warning: _Net_Counts_for_Stars_Zero_or,_Below_on:")
print(str(self.ncError))
print ("For_Objects_" + str(temp_nc))
elif self.e_list[2] ==

print ("—_Net_Count_Warning_Resolved:_Bad_Net_Count_Stars_Discarded")

83

if self.e_list[3] == 1:

print ("—_Poor_Standard_Warning:_More_Than_Threshold_Number_of_Stars_Flagged_to_\
oo be Discarded ")
if self.e_list[4] == 1:

print ("—_Poor_Solution_Warning:_More_Than_Threshold_Number_of_Solutions_Flagged_to_\

be_Discarded")

#Finds a mismatched number of objects

#Assumed the most common object count is the number of objects chosen
#deletes objects over that number, warns about any under

def ObjectMismatch(self):

obj_count = {} #Dictionary of object number to how many nights have that many objects

#Go through each night and find the max number of objects that night

for night in self.dates:
#Max number of objects that night

count = int(max(db.project(db.select(self.data ,[(date_col,night)]),[obj_col]))[0])

#Increment max object counts
if count in obj_count:

obj_count[count] += 1
else :

obj_count[count] = 1

#Find the key mapped to the highest number, i.e. the most frequent max object

self.objects = max(obj_count, key=lambda key:obj_count[key])

#1f there are nights with more objects than this, go through and delete them
if max(obj_count) > self.objects:

print ("Object_Mismatch:_Excess_Object_Count")

print ("Assumed_Object_Count: _%d" %(self.objects))

print ("Deleting,_Excess_Objects")

toss_indices = [] #List of indices to delete

#Loop through data and prepend the indices so they can be deleted without altering the

84

#next index to delete
for i in range(len(self.data))[1:]:
if self.data[i][obj_col] > self.objects:

toss_indices [:0] = [i]

for index inm toss_indices:

del self.data[index]

#1f there are nights with too few objects, there isn't an automatic way to handle it
#Store the nights of issue, alert the user
if min(obj_count) < self.objects:

print (" Object_Mismatch:_Too_Few_Object_Counts")

print ("Flagging_Deficient_Nights")

fewer_nights = [] #Holds the nights with too few objects

#Go through each night and find those with fewer objects
for night in self.dates:

nightly_min = \

int (max(db. project(db.select(self.data,[(date_col ,night)]),[obj_col]))[0])

#If the maximun on a certain night is smaller than average object count...

if nightly_min < self.objects:
#Note it and alert the user

fewer_nights .append(night)

#Alert the user

print ("Too_few_objects_on_the_following_nights: " + str(fewer_nights))

self . deficient_obj = fewer_nights #The Blazar will hold this list

self.e_list[0] =1 #Place the signal

return —1 #Signal to the program

else :

return 0

#Small helper function.

#Takes in a list of lists of one element, and adds their objects to self.nc_obj

85

def AddBadObj(self, table):
for el in table:
if el[0] not in self.nc_obj:

self.nc_obj.append(el[0])

#Finds negative or zero net counts
def NCCheck(self):
#Go through all nights to see if there are any issues with the blazar net counts
for night in self.dates:
#Get any object 1 with bad net counts
hold = db.select(self.data,[(obj_col,1),(mag_col,"Flux<0")])
if len(hold) > 0:
#There are bad nights
self.blError.append(night) #Add the night to the list of bad blazar net counts
self.e_list[1] =1 #Add the warning flag about a bad blazar

#Now check for other bad net counts
#The warning flag in self.e_list will be set if ANY night meets the bad criteria
#Criteria for bad is as follows:
#There are 2 or more bad points for the same object in the same filter OR there are three or
#more bad points in one filter
#Any less than that and the bad net count will be replaced by the average of the other objects
#of its kind and "Flux<0" replaced with "Altered"
for night in self.dates:
#Each element in Vnets and Rnets will be a list with only the object number inside
#AIll 'V filter net count objects that night
Vnets = db.project(db.select(self.data,[(date_col,night),(mag_col,"Flux<0"), \
(filter_col ,"V")]),[obj_col])
#All R filter net count objects that night
Rnets = db.project(db.select(self.data,[(date_col,night),(mag_col,"Flux<0"), \
(filter_col ,"R")]),[obj_col])

#If either one has at least 3 elements, it cannot be automatically handled
if len(Vnets) >= 3 or len(Rnets) >= 3:

self .ncError.append(night)

self . AddBadObj(Vnets) #Add any new bad objects

86

self . AddBadObj(Rnets) #Add any new bad objects
elif len(Vnets) == 2 or len(Rnets) == 2:
#If one or both has a length of two, it is good unless both are the same object
if len(Vnets) == 2:
if Vnets[0] == Vnets[1]:
self .ncError.append(night)
elif len(Rnets) ==
#We only need one or the other, otherwise we will double append the same night
if Rnets[0] == Rnets[1]:
self.ncError.append(night)
self . AddBadObj(Vnets) #Add any new bad objects
self . AddBadObj(Rnets) #Add any new bad objects
elif len(Vnets) > 0 and len(Rnets) > O:
#If neither criteria was hit, it means the issue can be handled automatically
print ("Fixing_Minor_Net_Count_Issues_on_Bl%d" %(self .ID))
for el in Vnets:
#Find the average based on the good points
Vavg = np.nanmean(db. project(db.select(db.select(self.data ,[(obj_col,el[0]), \
(filter_col ,"V") ,(date_col ,night)]),[(mag_col,"Flux<0")], mirror=True),
[count_col]))
#To know which to alter, find the row on that night
row = db.project(db.select(self.data,[(date_col,night),(obj_col,el[0]), \
(filter_col ,"V") ,(mag_col,"Flux<0")]),[0])[0]
#lterate through self.data until you find it
for i in range(len(self.data)):
#Find the row on that date
if self.data[i][0] == row and self.data[i][date_col] == night:
#Change from "Flux<0" to avoid selecting on it again
self.data[i][mag_col] = "Altered"
#Replace the bad counts with the average
self.data[i][count_col] = Vavg
for el in Rnets:
#Repeat all of above for R filter
Ravg = np.nanmean(db. project(db.select(db.select(self.data,[(obj_col,el[0]), \
(filter_col ,"R"),(date_col ,night)]),[(mag_col,"Flux<0")], mirror=True),
[count_col]))
#To know which to alter, find the row on that night

row = db.project(db.select(self.data,[(date_col,night),(obj_col,el[0]), \

\

\

87

(filter_col ,"R"),(mag_col,"Flux<0")]),[0])[0]
#lterate through self.data until you find it
for i in range(len(self.data)):
#Find the row on that date
if self.data[i][0] == row and self.data[i][date_col] == night:
#Change from "Flux<0" to avoid selecting on it again
self.data[i][mag_col] = "Altered"
#Replace the bad counts with the average

self.data[i][count_col] = Ravg

#All bad nights should be noted now

if len(self.ncError) == 0 and len(self.blError) == 0:
return 0 #No issues

else:
self.e_list[2] =1 #Set the error flag

return —1 #Rephoting might be necessary

Bibliography

Cameron Pace, Richard L. Pearson, e. a. 2013, Publications of the Astronomical Society of the

Pacific, 125
D’Orazio, D. J., Haiman, Z., & Schiminovich, D. 2015, Nature Journal, 525
Hindman, L. 2018, Bachelor’s thesis
Landolt. 2009, Astron.J., 137
M. Villata, e. a. 2002, Memorie della Societa Astronomica Italiana, 73
Raiteri, et al. 2017, Nature, 552
Van Alfen, N., et al. 2018, Research Notes of the AAS, 2, 47

Veron-Cetty, M. P., & Veron, P. 2010, Astron. Astrophys., 518

88

Index

Active Galactic Nucleus, see AGN
AGN
Accretion disk, 1, 4
definition, 1
Structure, 4, 26
structure, 1

Bimodal variability, 2, 24
Blazar
definition, 1

CCD, 4, 10-12, 18

Flaring, 1
Smooth, 2, 21
Stochastic, 2, 21

Inhomogeneous jet, 4

Photometric filter, 4
Photometry, 10, 16, 17

Smooth

definition, see Flaring
Stochastic

definition, see Flaring

89

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Blazars
	1.2 Motivation
	1.3 Previous Work
	1.4 Previous Work at BYU
	1.5 Overview

	2 Data and Methodology
	2.1 Choosing Targets
	2.2 Calibration Frames
	2.3 All-Sky Solutions
	2.4 Blazar Data Calculation
	2.5 Error Handling

	3 Results and Analysis
	3.1 Findings
	3.2 Conclusion
	3.3 Future Work

	Appendix A Results Table
	Appendix B All Sky Solutions Code
	Appendix C Blazar Analysis and Reduction Code (BARC)
	Bibliography
	Index

