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ABSTRACT 

Using Coherence to Improve the Calculation of Active Acoustic Intensity with the               
Phase and Amplitude Gradient Estimator Method 

 
Mylan Ray Cook 

Department of Physics and Astronomy, BYU 
Master of Science 

 
Coherence, which gives the similarity of signals received at two microphone locations, can 

be a powerful tool for calculating acoustic quantities, particularly active acoustic intensity. To 
calculate active acoustic intensity, a multi-microphone probe is often used, and therefore 
coherence between all microphone pairs on the probe can be obtained. The phase and amplitude 
gradient estimator (PAGE) method can be used to calculate intensity, and is well suited for many 
situations. There are limitations to this method—such as multiple sources or contaminating noise 
in the sound field—which can cause significant error. When there are multiple sources or 
contaminating noise present, the coherence between microphone pairs will be reduced. A 
coherence-based approach to the PAGE method, called the CPAGE method, is advantageous. 

  Coherence is useful in phase unwrapping. For the PAGE method to be used at frequencies 
where the probe microphone spacing is larger than half a wavelength (above the spatial Nyquist 
frequency), the phase of transfer functions between microphone pairs must be unwrapped. Phase 
differences are limited to a 2𝜋𝜋 radian interval, so unwrapping—adding integer multiples of 2𝜋𝜋 
radians to create a continuous phase relation across frequency—is necessary to allow computation 
of phase gradients. Using coherence in phase unwrapping can improve phase gradient calculation, 
which in turn leads to improved intensity calculation. 

Because phase unwrapping is necessary above the spatial Nyquist frequency, the PAGE 
method is best suited to dealing with broadband signals. For narrowband signals, which lack 
coherent phase information at many frequencies, the PAGE method can give erroneous intensity 
results. One way to improve calculation is with low-level additive broadband noise, which 
provides coherent phase information that can improve phase unwrapping, and thereby improve 
intensity calculation. There are limitations to this approach, as additive noise can have a negative 
impact on intensity calculation with the PAGE method.  

The CPAGE method, fortunately, can account for contaminating noise in some situations. 
A magnitude adjustment—which arises naturally from investigation of the bias errors of the PAGE 
method—can account for the additional pressure amplitude caused by the contaminating noise, 
improving pressure magnitude calculations. A phase gradient adjustment—using a coherence-
weighted least squares algorithm—can likewise improve phase gradient calculations. Both 
adjustments depend upon probe microphone coherence values. Though not immune to 
contaminating noise, this method can better account for contaminating noise. Further experimental 
work can verify the effectiveness of the CPAGE method.  

  

Keywords: coherence, active acoustic intensity, phase gradient, bias errors, broadband  
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1 

 

Introduction 

1.1 Motivation 

In many signal processing applications, at least a certain amount of coherence is necessary, 

and ideally perfect coherence.1,2  For many experimental situations, where some contaminating 

noise is present, however, coherence cannot be assumed.  This noise affects accurate 

measurements, which leads to inaccurate results for signal properties.3  The reduced coherence 

does contain information about the contaminating noise, however, and so it is possible to use 

coherence values to account for some of the inaccuracy caused by the noise.  This idea is utilized 

to improve the calculation of active acoustic intensity using the Phase and Amplitude Gradient 

Estimator (PAGE) method. 

Active acoustic intensity is a measure of the propagating energy in a sound field.  This 

measure is often used for source characterization—to explain how it radiates sound—and 

localization—to find sources from which sound emanates.   It is a frequency-domain vector 

quantity, and as such consists of a magnitude and direction, which points in the direction of sound 

propagation.4  It is obtained from either measuring or calculating the pressure and particle velocity 

at a specific spatial location.  Particle velocity measurements are difficult, especially when any net 

flow exists in the sound field.  Some methods measure the pressure using a compact probe with 

multiple microphones, then use Euler’s equation to obtain the particle velocity from the calculated 

pressure gradient.5 
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Both the traditional (or finite difference or p-p) method and the PAGE method use this 

approach.  The traditional method uses real and imaginary parts of the complex pressure to obtain 

the pressure gradient, and is largely unaffected by contaminating noise, but is limited in its 

frequency range.6  The PAGE method was developed in part to increase the frequency range over 

which this calculation is considered valid, and uses the pressure magnitude and phase.7- 9  This 

method is extremely useful for many situations; however, it is particularly susceptible to errors 

caused by contaminating noise.  The PAGE method is also better suited to dealing with broadband 

signals, and at higher frequencies narrowband results can be unreliable. 

Applications of using the PAGE method to calculate intensity for narrowband signals are 

investigated.  It is found that additive low-level broadband noise—where the additive noise source 

and signal source have a small angular separation as seen at the probe location—can improve 

intensity calculations above the spatial Nyquist frequency (the limit of the traditional method, the 

frequency at which microphone probe spacing is equal to half of a wavelength), as the broadband 

noise provides needed phase information across frequency.  This can increase the number of 

situations in which the PAGE method can be employed. 

To further improve applications for the PAGE method, a coherence-based method known 

as the CPAGE method is developed herein.  The CPAGE method makes a few adjustments in how 

the intensity is calculated with the PAGE method, based on probe coherence values.  One 

adjustment is improving transfer function phase unwrapping by using coherence.  This is useful at 

frequencies above which the traditional method is used.  Another adjustment is using the coherence 

to remove pressure amplitude caused by uncorrelated noise.  A phase gradient adjustment is also 

implemented, by using the coherence in a weighted least-squares algorithm instead of the least-
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squares algorithm employed by the PAGE method.  These adjustments make the CPAGE method 

more robust for dealing with contaminating noise than the PAGE method. 

 

1.2 Thesis outline 

This thesis is composed of four separate papers—each comprising a single chapter of this 

thesis—which have been published, or are being adapted and submitted for publication.  As such, 

each has its own introduction and conclusion, and relevant definitions and equations are given in 

each chapter.  Each addresses a specific property of or difficulty encountered with the PAGE 

method, and explains how coherence can be used to improve calculations. 

Chapter 2, accepted for publication in the Journal of the Acoustical Society of America 

(JASA),10 discusses the bias errors of the traditional and PAGE methods, and shows how large an 

impact contaminating noise can have on calculations.  These errors become extremely large for 

the PAGE method when the contaminating noise is significant, but a correction to account for the 

pressure amplitude caused by the contaminating noise is found.  The implementation of this 

correction is discussed in Chapter 5, where the CPAGE method itself is described. 

Chapter 3, which is currently being submitted for publication in JASA,11 deals with a 

different challenge, namely that of using the PAGE method with narrowband signals.  The PAGE 

method relies on broadband noise to increase the effective frequency range, and can often be 

erroneous for higher frequencies.  Though contaminating noise negatively impacts calculation of 

intensity for broadband sources, for a narrowband source additive low-level broadband noise can 

be advantageous.  It can provide phase information necessary to correctly unwrap phase values, 

and hence improve calculation of intensity.  The benefits and limitations of this approach are 

discussed in further detail in this chapter. 
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Chapter 4, which has been published in Proceedings of Meetings on Acoustics,12 discusses 

a coherence-based phase unwrapping algorithm.  Phase unwrapping is crucial to the effectiveness 

of the PAGE method at higher frequencies, and the coherence can be used to drastically improve 

unwrapping.  Improved unwrapping can then yield more accurate pressure phase gradient 

calculations, which improves the calculation of intensity. 

Chapter 5, which is being adapted for submission as an Express Letter in the Journal of the 

Acoustical Society of America, is where the adjustments implemented in the CPAGE method are 

explained in detail.  These adjustments include a magnitude correction (as found in Chapter 2) and 

a phase gradient correction.  The improvements make for a more robust method for calculating 

active acoustic intensity, which then increases applications for the phase and amplitude gradient 

version of calculating intensity.  The effectiveness of the CPAGE method is examined, along with 

some limitations and failings. 

Chapter 6 contains the final conclusions for this thesis.  The CPAGE method serves to 

increase the number of situations in which the PAGE method can be used.  Similarly, though 

usually reliant upon broadband signals to obtain accurate results at high frequencies, additive low-

level broadband noise can increase the effectiveness of the PAGE method for dealing with 

narrowband signals.  The adjustments to the PAGE method, while not making for a perfect solution 

to every situation, can make the CPAGE method better able to deal with real-world applications 

where contaminating noise is present.  Future applications for this method are also explained in 

this concluding chapter. 
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The effects of contaminating noise on the calculation of active 

acoustic intensity for pressure gradient methods 

Bias errors for two-dimensional active acoustic intensity using multi-microphone probes 

have been previously calculated for both the traditional cross-spectral and the Phase and Amplitude 

Gradient Estimator (PAGE) methods.8  Here, these calculations are expanded to include errors due 

to contaminating noise, as well as probe orientation.  The noise can either be uncorrelated at each 

microphone location or self-correlated; the self-correlated noise is modeled as a plane wave with 

a varying angle of incidence.  The intensity errors in both magnitude and direction are dependent 

on the signal-to-noise ratio (SNR), frequency, source properties, incidence angles, probe 

configuration, and processing method.  The PAGE method is generally found to give more 

accurate results, especially in direction; however, uncorrelated noise with a low SNR (below 10-

15 dB) and low frequency (wavelengths more than ¼ the microphone spacing) can yield larger 

errors in magnitude than the traditional method—though a correction for this is possible.  

Additionally, contaminating noise does not necessarily impact the possibility of using the PAGE 

method for broadband signals beyond a probe’s spatial Nyquist frequency. 

 

2.1 Introduction 

Intensity is an important acoustic measure, and is useful for applications such as source 

characterization and localization.  Acoustic source characterization in real-world environments can 
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be subject to inaccuracies caused by contaminating noise, whether acoustic, fluid mechanical (e.g. 

wind) or electrical.  These inaccuracies extend to vector acoustic intensity calculations made from 

pressure measurements obtained with multiple-microphone probes.  Intensity, or more specifically 

active acoustic intensity, is the time-averaged energy flux density.  For a given frequency and 

location, it is a vector-valued quantity that describes the magnitude and direction of the 

propagating acoustic energy.  Accurate estimates of both complex pressure and particle velocity 

are necessary because intensity is calculated with their product.13  

Traditionally, acoustic intensity has been calculated using a multi-microphone processing 

method developed in the 1970s known as the p-p method or finite difference method.13-15  This 

method—which here is referred to as the traditional method—estimates the pressure gradient by 

taking finite sums and differences of the real and imaginary components of the frequency domain 

complex pressures.  The intensity is therefore calculated by using cross-spectral values from the 

microphones on the intensity probe.  Another processing method available is the phase and 

amplitude gradient estimator (PAGE) method.9  Instead of using the real and imaginary 

components of the complex pressures, it uses the magnitude and phase components.  The intensity 

in this case is calculated using auto-spectral values and the arguments of cross-spectral 

values.7,13,16,17  Because of differences between the traditional and PAGE methods, the calculated 

intensity can vary depending on which method is used. 

In order to compare the effectiveness of these two methods, calculated intensity can be 

compared to the known analytical intensity to find the bias errors.  A bias error gives a measure of 

the difference between analytical solutions and the values obtained by using a specific processing 

method.  These errors can depend on many different factors.  Previous work has shown how 



7 

different bias errors are obtained for various probe geometries for both methods using either a 

plane-wave source or a monopole source.17-19 

These previous studies are now expanded to investigate the effects contaminating noise 

and probe rotation have on the bias errors.  The effects of both correlated and uncorrelated 

contaminating noise are investigated for a single probe geometry, followed by a summary of the 

effects of using different probe geometries.  In general, the PAGE method has lower bias errors in 

the calculated intensity direction than the traditional method, and in most cases the intensity 

magnitude bias errors are lower as well.  However, for low-level signals at low frequencies, the 

traditional method may yield a better intensity calculation.  In general, the traditional method has 

larger bias errors than the PAGE method at higher frequencies (wavelengths less than ¼ the 

microphone spacing), and also when self-correlated noise is present. 

 

2.2 Methodology 

The active acoustic intensity 𝑰𝑰 at a point is calculated in the frequency domain as  

 𝑰𝑰 =
1
2

Re{𝑝𝑝𝒖𝒖∗}, (1) 

where 𝑝𝑝 is the complex pressure, 𝒖𝒖 is the vector complex particle velocity, and Re indicates the 

real part.  (Bold letters indicate vector quantities, and * indicates complex conjugation.)  By using 

Euler’s equation, the complex particle velocity can be obtained from the gradient of the complex 

pressure as 

 𝒖𝒖 =
𝑗𝑗

𝜔𝜔𝜌𝜌0
𝛻𝛻𝑝𝑝, (2) 

where 𝑗𝑗 is the imaginary unit, 𝜔𝜔 is the angular frequency, and 𝜌𝜌0 is the fluid density.  Accurate 

calculation of the intensity therefore depends upon an accurate calculation of the pressure gradient, 
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as well as the pressure.  The two processing methods calculate the pressure gradient differently, 

which leads to different bias errors. 

For probe configurations where the intensity is calculated in two dimensions, the bias 

errors—the difference between the analytical intensity 𝑰𝑰 and the calculated intensity 𝑰𝑰calc—consist 

of a magnitude error and an angular error, defined respectively as  

 𝐿𝐿𝜖𝜖,𝑰𝑰 = 10 log10 �
|𝑰𝑰calc|

|𝑰𝑰| �  dB, (3) 

 𝜃𝜃𝜖𝜖,𝑰𝑰 = 𝜃𝜃calc − 𝜃𝜃, (4) 

where 𝜃𝜃 and 𝜃𝜃calc are the directions of 𝑰𝑰 and 𝑰𝑰calc as polar angle in the plane of the probe, 

respectively.  Perfect calculation would yield 𝐿𝐿𝜖𝜖,𝑰𝑰 = 0 dB and 𝜃𝜃𝜖𝜖,𝑰𝑰 = 0°.  Previous studies have 

shown how these bias errors differ in an ideal, noiseless field where the source is located at a 

specific angular location relative to the probes investigated.8  Expanding upon this work, the 

effects of both probe orientation and contaminating noise present in the sound field are taken into 

consideration. 

When trying to localize or characterize acoustic sources of interest, the presence of 

contaminating noise introduces several additional variables to bias error calculations.  Though 

independent of the source of interest, the contaminating noise can either be uncorrelated or self-

correlated at the microphone probe location, e.g., an extraneous acoustic signal that arrives at a 

specified angle relative to the probe, yielding a specific phase relationship for the noise itself.  In 

practice, it is possible for the contaminating noise to fall between these two extremes, being 

partially self-correlated.  Both the degree of correlation and the relative amplitude of the signal to 

the contaminating noise amplitude, or the signal-to-noise ratio (SNR), will further affect the bias 

errors. 
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The bias errors vary with frequency.  The traditional method has an upper frequency 

limit—known as the spatial Nyquist frequency 𝑓𝑓𝑁𝑁, which is the frequency at which the microphone 

spacing is equal to ½ of a wavelength—above which intensity results are not considered valid.18  

The PAGE method can be used above 𝑓𝑓𝑁𝑁 for broadband signals with the use of phase 

unwrapping.12  Though frequencies above 𝑓𝑓𝑁𝑁 are not discussed in this paper, the equations for the 

bias errors for the PAGE method—with a broadband source and broadband noise—remain valid 

up to frequencies at which probe scattering effects must be taken into account, so long as phase 

unwrapping can be performed correctly.  When phase values do not exhibit jumps of more than 𝜋𝜋 

radians between frequency bins, phase unwrapping is trivial.  For narrowband sources, low-level 

additive broadband noise can actually improve estimation of intensity above 𝑓𝑓𝑁𝑁 with the PAGE 

method, so long as certain conditions are met; these results will be presented in a forthcoming 

paper, as only frequencies below 𝑓𝑓𝑁𝑁 are investigated herein. 

The remainder of this paper addresses the effects of extraneous noise on the bias errors 

from the calculation of active intensity using the traditional and PAGE methods.  Section 2.3 of 

this paper deals with uncorrelated noise using a five-microphone orthogonal probe, pictured in Fig. 

2.1.  This probe was chosen as it has a center microphone to directly measure the pressure, as well 

as two pairs of orthogonally positioned microphones, which can be used to test for symmetry.  For 

this probe, 𝑓𝑓𝑁𝑁 is reached when 𝑘𝑘𝑘𝑘 = 𝜋𝜋, where 𝑘𝑘 is the wavenumber and 𝑘𝑘 is the microphone probe 

radius.  Section 2.4 deals with self-correlated or plane-wave-like (directional constant-amplitude) 

noise with the same probe geometry.  Different probe geometries are discussed in Section 2.5 in 

regards to both correlated and uncorrelated noise.  The reason for using 𝑘𝑘 as the probe radius rather 

than simply the microphone spacing is for comparison of different probe geometries with the same 
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overall probe dimensions.  Equations for all of the cases described can be found in the tables in 

Section 2.7. 

 

Figure 2.1: A five-microphone orthogonal probe.  The microphones are numbered 1 to 5, and in 
the x-y plane of the probe—where 𝑥𝑥� goes from 1 to 3 and 𝑦𝑦� goes from 1 to 4—have positions (0,0), 
(-a,0), (a,0), (0,a), and (0,-a), respectively. 

  

2.3 Bias errors caused by uncorrelated contaminating noise 

In the frequency domain, the total complex pressure at microphone 𝜇𝜇 is obtained by 

summing the pressure due to the source and the pressure due to the contaminating noise, 

 𝑝𝑝𝜇𝜇 = 𝑝𝑝𝑠𝑠𝜇𝜇 + 𝑝𝑝𝑛𝑛𝜇𝜇 = 𝐴𝐴𝑠𝑠𝜇𝜇𝑒𝑒
−𝑗𝑗𝑗𝑗𝜙𝜙𝑠𝑠𝜇𝜇 + 𝐴𝐴𝑛𝑛𝜇𝜇𝑒𝑒

−𝑗𝑗𝑗𝑗𝜙𝜙𝑛𝑛𝜇𝜇 , (5) 

where 𝐴𝐴 is the pressure amplitude, 𝜙𝜙 is the phase, and the subscripts 𝜃𝜃 and 𝜃𝜃 indicate source and 

contaminating noise, respectively.  If the complex pressure due to the contaminating noise exhibits 

a position-dependent relationship in phase and magnitude—e.g. equal amplitude at each position 

and phase differences proportional to the distance between microphones—the noise is said to be 

correlated.  When no such relationship exists, the noise is uncorrelated.20  Some examples of 

uncorrelated noise are electrical noise in the microphone and data acquisition system or pressures 

at the level of the noise floor. 
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Using the pressure measurements from the microphones, the auto-spectral and cross-

spectral values—needed to calculate the intensity—can be obtained using the procedure laid out 

in Section 6.1.3 of Bendat and Piersol20 as, respectively, 

 𝐺𝐺𝜇𝜇𝜇𝜇 = 𝐺𝐺𝑠𝑠𝜇𝜇𝑠𝑠𝜇𝜇 + 𝐺𝐺𝑠𝑠𝜇𝜇𝑛𝑛𝜇𝜇 + 𝐺𝐺𝑛𝑛𝜇𝜇𝑠𝑠𝜇𝜇 + 𝐺𝐺𝑛𝑛𝜇𝜇𝑛𝑛𝜇𝜇 , (6) 

 𝐺𝐺𝜇𝜇𝜇𝜇 = 𝐺𝐺𝑠𝑠𝜇𝜇𝑠𝑠𝜈𝜈 + 𝐺𝐺𝑠𝑠𝜇𝜇𝑛𝑛𝜈𝜈 + 𝐺𝐺𝑛𝑛𝜇𝜇𝑠𝑠𝜈𝜈 + 𝐺𝐺𝑛𝑛𝜇𝜇𝑛𝑛𝜈𝜈 . (7) 

Using the ensemble average, the individual terms are given by 

 𝐺𝐺𝜇𝜇𝜇𝜇 = �
𝑝𝑝𝜇𝜇𝑝𝑝𝜇𝜇∗ if the signals of 𝜇𝜇 and 𝜈𝜈 are correlated

0 if the signals of 𝜇𝜇 and 𝜈𝜈 are uncorrelated�. (8) 

Because the contaminating noise is uncorrelated with the source, all cross terms between 

the source and contaminating noise are zero.  For the cross-spectrum, because the noise is itself 

uncorrelated at different locations, 𝐺𝐺𝑛𝑛𝜇𝜇𝑛𝑛𝜈𝜈  is also zero using ensemble averaging.  Though 

uncorrelated noise does not necessarily exhibit any specific amplitude relationship, it is reasonable 

to assume—especially for relatively compact probes and well-matched microphones—that the 

SNR is equal at each microphone position, so 𝐴𝐴𝑛𝑛𝜇𝜇 = 𝐴𝐴𝑛𝑛𝜈𝜈 ≡ 𝐴𝐴𝑛𝑛.  The auto-spectral and cross-

spectral values can then be simplified to give 

 𝐺𝐺𝜇𝜇𝜇𝜇 = 𝐴𝐴𝑠𝑠𝜇𝜇
2 + 𝐴𝐴𝑛𝑛2 , (9) 

 𝐺𝐺𝜇𝜇𝜇𝜇 = 𝐴𝐴𝑠𝑠𝜇𝜇𝐴𝐴𝑠𝑠𝜈𝜈𝑒𝑒
−𝑗𝑗𝑗𝑗�𝜙𝜙𝑠𝑠𝜇𝜇−𝜙𝜙𝑠𝑠𝜈𝜈�. (10) 

 

2.3.1 Plane-wave source 

The first source considered is a plane wave, for which the amplitude at each microphone 

location is the same, so 𝐴𝐴𝑠𝑠𝜇𝜇 = 𝐴𝐴𝑠𝑠𝜈𝜈 ≡ 𝐴𝐴𝑠𝑠.  The plane wave propagates with an angle 𝜃𝜃𝑠𝑠 with respect 

to the positive x axis or 𝑥𝑥�, as the probe coordinates in Fig. 2.1 have been defined.  This results in 

auto and cross-spectral values such as 

 𝐺𝐺11 = ⋯ = 𝐺𝐺55 = 𝐴𝐴𝑠𝑠2 + 𝐴𝐴𝑛𝑛2 , (11) 
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 𝐺𝐺12 = 𝐴𝐴𝑠𝑠2𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠 . (12) 

The analytical result for the intensity caused by a plane wave of amplitude 𝐴𝐴𝑠𝑠 in the absence of 

contaminating noise is 

 𝑰𝑰 =
𝐴𝐴𝑠𝑠2

2𝜌𝜌0𝑐𝑐
cos 𝜃𝜃𝑠𝑠 𝑥𝑥� +

𝐴𝐴𝑠𝑠2

2𝜌𝜌0𝑐𝑐
sin𝜃𝜃𝑠𝑠 𝑦𝑦� =

𝐴𝐴𝑠𝑠2

2𝜌𝜌0𝑐𝑐
𝜃𝜃𝑠𝑠� , (13) 

where 𝑐𝑐 = 𝜔𝜔/𝑘𝑘 is the sound speed. 

Using Eq. (13), the formulae for calculating the orthogonal components of the intensity 

bias, 𝐼𝐼𝑥𝑥� and 𝐼𝐼𝑦𝑦� , can be found in Table 2.5 in Section 2.7 (which also includes other probe 

configurations, discussed further on).  The total bias errors are then given by 

 𝐿𝐿𝜖𝜖,𝑰𝑰 = 10 log10 ��𝐼𝐼𝑥𝑥�2 + 𝐼𝐼𝑦𝑦�2� = 5 log10�𝐼𝐼𝑥𝑥�2 + 𝐼𝐼𝑦𝑦�2�, (14) 

 
𝜃𝜃𝜖𝜖,𝑰𝑰 = tan−1 �

𝐼𝐼𝑦𝑦�
𝐼𝐼𝑥𝑥�
� − 𝜃𝜃𝑠𝑠. 

(15) 

All equations given are complete, but are dependent upon several independent variables.  

Therefore, in order to present and interpret the results in a concise manner, the absolute value of 

the bias errors is averaged across all angles of incidence 𝜃𝜃𝑠𝑠, and this average bias error is used for 

the following figures.  This averaging allows results to be presented as only a function of 𝑘𝑘𝑘𝑘 and 

SNR, where SNR = 10 log10 �
𝐴𝐴𝑠𝑠2

𝐴𝐴𝑛𝑛2
�.  In many cases this averaging does not have a large effect, 

though for complete results the equations in the tables in the appendix should be used, rather than 

just looking at the figures—most notably this averaging can obscure the effect of probe rotation 

very near a monopole source.  It should be noted that for the traditional method, as 𝑘𝑘𝑘𝑘 

approaches 𝑓𝑓𝑁𝑁 the intensity magnitude is usually underestimated rather than overestimated,16 so—

since the absolute value is used—the bias errors give how much the traditional method under-

calculates the intensity.  Conversely, contaminating noise usually causes the PAGE method to 



13 

calculate a larger value for the intensity than the analytic solution, so the bias errors give this over-

calculated value. 

Table 2.1: Orthogonal intensity bias components and bias errors for a plane-wave source and 
uncorrelated noise.  Similar equations for other probe geometries are given in Table 2.6. 

Plane-wave source 
uncorrelated noise Traditional PAGE 

𝐼𝐼𝑥𝑥� 
sin(𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠)

𝑗𝑗𝑗𝑗
  �1 + 10

−SNR
10 � cos𝜃𝜃𝑠𝑠  

𝐼𝐼𝑦𝑦�  
sin(𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠)

𝑗𝑗𝑗𝑗
  �1 + 10

−SNR
10 � sin𝜃𝜃𝑠𝑠  

𝐿𝐿𝜖𝜖,𝑰𝑰 5 log10 ��
sin(𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠)

𝑗𝑗𝑗𝑗
�
2

+ �sin(𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑠𝑠)
𝑗𝑗𝑗𝑗

�
2
�  10 log10 �1 + 10

−SNR
10 �  

𝜃𝜃𝜖𝜖,𝑰𝑰 tan−1 �sin(𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠)
sin(𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠)

� − 𝜃𝜃𝑠𝑠  0  

 

Since the traditional method calculates the intensity using weighted cross-spectra, and 

since uncorrelated noise terms cancel out in cross-spectral values, the bias errors for the traditional 

method here are independent of SNR (see Table 2.1).  As such—and due to the averaging across 

all angles of incidence—the magnitude and bias errors are plotted as only a function of 𝑘𝑘𝑘𝑘 in Fig. 

2.2.  Though uncorrelated noise does not affect the bias errors for the traditional method, larger 

errors are seen for large values of 𝑘𝑘𝑘𝑘 (above 0.5), which illustrate the bandwidth limitation of the 

traditional method. 

 

Figure 2.2: Traditional method bias errors in (a) the magnitude and (b) the direction of the active 
intensity calculated for a plane-wave source with uncorrelated contaminating noise using a five-
microphone orthogonal probe.  The bias errors are plotted as a function of only 𝑘𝑘𝑘𝑘 because the 
results are independent of SNR and are averaged across all possible angles of incidence. 
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Unlike the traditional method, the PAGE method calculates intensity using weighted auto-

spectra and the arguments of cross-spectra.  Because of this, the bias errors depend heavily on the 

SNR, but are independent of 𝑘𝑘𝑘𝑘 when the phase can be unwrapped correctly (see Table 2.1).  Note 

also that the magnitude and angular portions of the bias errors are entirely separable—the 

magnitude bias depends on the auto-spectral values, while the angular bias depends on cross-

spectral values, and the total bias is the product of the two.  Additionally, for this case the bias 

errors are independent of the angle of incidence, so the averaging is redundant.  The results are 

seen in Fig. 2.3, and are plotted as a function of SNR. 

 

Figure 2.3: PAGE method bias errors in (a) the magnitude and (b) the direction of the active 
intensity calculated for a plane-wave source with uncorrelated contaminating noise.  This method 
is dependent on SNR but independent of 𝑘𝑘𝑘𝑘. Note the horizontal axis is different than that in Fig. 
2.2. 

 

Interestingly, for an incident plane wave and uncorrelated contaminating noise there is no 

angular bias incurred by using the PAGE method, as seen in Fig. 2.3(b).  This accuracy is because 

the intensity is computed by using the arguments of cross-spectra, for which uncorrelated noise 

cancels out, and due to the separable nature of the magnitude and angle errors.  For a plane-wave 

source with uncorrelated contaminating noise, the PAGE method computes the direction perfectly 

regardless of frequency, microphone spacing, SNR, or angle of incidence. 



15 

The magnitude bias errors for the PAGE method are very predictable, and depend solely 

upon SNR, as seen in Fig. 2.3(a).  The increase in sound pressure level, and therefore the bias, is 

singularly dependent on the additional squared pressure due to the contaminating noise.  Because 

of this, there is a doubling of pressure from the noiseless case, or a rise of 3 dB, when the SNR 

approaches zero.21  For large SNR values, the magnitude error asymptotically approaches zero as 

expected. 

Because the magnitude bias is so predictable and independent of (the zero-valued) angular 

bias, a simple correction can be used to scale the PAGE intensity magnitude appropriately using 

the SNR or the coherence.  The coherence between microphone pairs can be calculated using the 

auto-spectral and cross-spectral values; for the plane-wave source, it is identical for each 

microphone pair and is 

 𝛾𝛾𝜇𝜇𝜇𝜇2 =
�𝐺𝐺𝜇𝜇𝜇𝜇�

2

𝐺𝐺𝜇𝜇𝜇𝜇𝐺𝐺𝜇𝜇𝜇𝜇
=

1

�1 + 𝐴𝐴𝑛𝑛2
𝐴𝐴𝑠𝑠2
�
2 =

1

�1 + 10−
SNR
10 �

2. (16) 

The square root of the coherence is the correction factor needed to account for the presence 

of the uncorrelated noise: 

 �𝛾𝛾𝜇𝜇𝜇𝜇2 =
1

1 + 10−
SNR
10

. (17) 

If this scaling factor is multiplied by the computed intensity before it is converted to a 

decibel value—or equivalently a corresponding dB value can be subtracted from the computed 

intensity level—then 𝐿𝐿𝜖𝜖,𝑰𝑰 for the PAGE method would be zero for any SNR.  Since the magnitude 

and angular parts are separable, this scaling factor would have no adverse effects on the calculation 

of the angle.  This correction works perfectly for a plane-wave source with contaminating 

uncorrelated noise, and may be useful for other source and contaminating noise situations;22- 26 this 

correction is further explored in Section 5.4.1. 
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With or without correction, the PAGE method computes the correct intensity angle for a 

plane-wave source with uncorrelated noise, regardless of the values for 𝑘𝑘𝑘𝑘, SNR, or angle of 

incidence.  For low SNR values and very low 𝑘𝑘𝑘𝑘 values, the traditional method can better estimate 

the intensity level; however, the magnitude obtained by the PAGE method can be corrected to 

obtain zero magnitude error.  It is also useful to note that for broadband sources, the results for the 

PAGE method are the same for frequencies above 𝑓𝑓𝑁𝑁, with phase unwrapping of the transfer 

function applied.12  

 

2.3.2 Monopole source 

For a monopole sound source, the pressure amplitude is inversely proportional to the 

distance 𝑟𝑟 between the source and the position of interest.  By representing the monopole amplitude 

with the complex magnitude �̃�𝐴, and letting 𝐴𝐴𝑠𝑠2 = |𝐴𝐴�|2

𝑟𝑟2
, the analytical solution is 

 𝑰𝑰 =
��̃�𝐴�

2

2𝜌𝜌0𝑐𝑐𝑟𝑟2
𝜃𝜃𝑠𝑠� =

𝐴𝐴𝑠𝑠2

2𝜌𝜌0𝑐𝑐
𝜃𝜃𝑠𝑠� . (18) 

The auto-spectral value for microphone 1 and the cross-spectral value between microphone 

1 and microphone 2 due to the monopole source with uncorrelated contaminating noise are then 

 𝐺𝐺11 =
��̃�𝐴�

2

𝑟𝑟2
+ 𝐴𝐴𝑛𝑛2 = 𝐴𝐴𝑠𝑠2 + 𝐴𝐴𝑛𝑛2 , (19) 

 
𝐺𝐺12 =

��̃�𝐴�
2
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠

𝑟𝑟2 − 𝑟𝑟𝑘𝑘 cos 𝜃𝜃𝑠𝑠
=
𝐴𝐴𝑠𝑠2𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠

1 − 𝑘𝑘
𝑟𝑟 cos 𝜃𝜃𝑠𝑠

≡
𝐴𝐴𝑠𝑠2𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠
1 − 𝛽𝛽 cos 𝜃𝜃𝑠𝑠

. 
(20) 

Similar auto-spectral and cross-spectral expressions can be given for the other microphone 

pairs.  To simplify the results, the variable 𝛽𝛽 is defined such that 𝛽𝛽 ≡ 𝑗𝑗
𝑟𝑟

= 𝑗𝑗𝑗𝑗
𝑗𝑗𝑟𝑟

, which can take on 

any value between zero and one.  In the near field of the monopole, as 𝛽𝛽 → 1, the bias errors are 
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very different from the far field, where 𝛽𝛽 → 0 and the solutions converge to those of a plane-wave 

source.  The resulting intensity components are found in Table 2.2. 

Table 2.2: Intensity bias error components for a monopole source with uncorrelated noise.  The 
bias errors 𝐿𝐿𝜖𝜖,𝑰𝑰 = 5 𝑓𝑓𝑙𝑙𝑙𝑙10�𝐼𝐼𝑥𝑥�2 + 𝐼𝐼𝑦𝑦�2� and 𝜃𝜃𝜖𝜖,𝑰𝑰 = 𝑡𝑡𝑘𝑘𝜃𝜃−1 �

𝐼𝐼𝑦𝑦�
𝐼𝐼𝑥𝑥�
� − 𝜃𝜃𝑠𝑠 are not given explicitly here since 

they do not easily simplify.  Equations for other probe geometries are given in Table 2.7. 

Monopole 
source 

uncorrelated 
noise 

Traditional PAGE 

𝐼𝐼𝑥𝑥� 

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2
−

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2
  

�1 + 10
−SNR
10 � � 1

2𝛽𝛽
�1 + 2𝛽𝛽 cos 𝜃𝜃𝑠𝑠 + 𝛽𝛽2 −

1
2𝛽𝛽
�1 − 2𝛽𝛽 cos𝜃𝜃𝑠𝑠 + 𝛽𝛽2�  

𝐼𝐼𝑦𝑦�  

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2
−

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2
  

�1 + 10
−SNR
10 � � 1

2𝛽𝛽
�1 + 2𝛽𝛽 sin 𝜃𝜃𝑠𝑠 + 𝛽𝛽2 −

1
2𝛽𝛽
�1 − 2𝛽𝛽 sin𝜃𝜃𝑠𝑠 + 𝛽𝛽2�  

 

The meaning of the SNR for a monopole source is slightly different than that for a plane-

wave source, since the SNR depends on the distance between a monopole source and the probe.  

This means that the SNR for the monopole source is the SNR at the probe location.  For the 

monopole source, SNR = 10 log10 �
𝐴𝐴𝑠𝑠2

𝐴𝐴𝑛𝑛2
� = 10 log10 �

|𝐴𝐴�|2

𝑟𝑟2𝐴𝐴𝑛𝑛2
�, which is dependent on 𝑟𝑟.  This means 

that if the probe were to physically be moved away from the source, the source amplitude would 

have to be increased—or the noise amplitude would need to be decreased—to maintain the same 

signal-to-noise ratio.  In practice since the source amplitude is rarely known, the SNR is usually 

defined at a given location. 

For the monopole source with uncorrelated noise, the traditional method is still independent 

of SNR, and therefore identical to the noiseless case presented previously by Whiting et al. (2017).8  

As the value of 𝛽𝛽 decreases, the bias errors no longer increase monotonically, which can be seen 

in Fig. 2.4.  The magnitude bias is greater for small values of 𝑘𝑘𝑘𝑘 (below about 0.5), beyond even 
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3 dB when 𝛽𝛽 → 1.  Interestingly, the increase caused by larger 𝑘𝑘𝑘𝑘 values appear later than for the 

plane-wave source; for some intermediate values of 𝑘𝑘𝑘𝑘 the total bias actually decreases.  The trends 

for the angular bias are the same, with an angular bias of nearly 10° for small 𝑘𝑘𝑘𝑘 values (below 

0.5) as 𝛽𝛽 → 1; see Fig. 2.4(b). 

 

Figure 2.4: Traditional method bias errors in (a) the magnitude and (b) the direction of the active 
intensity calculated for a monopole source with uncorrelated contaminating noise using a five-
microphone orthogonal probe.  Results are averaged across angle of incidence.  In (a) the bias 
errors for 𝛽𝛽 = 1 are greater than 3 dB for all values of ka. 

 

For the PAGE method, the bias errors for the monopole source are still independent of 𝑘𝑘𝑘𝑘 

but must be averaged across the angle of incidence as is done with the traditional method.  The 

angular error is constant over SNR as in the plane-wave case, though non-zero; as 𝛽𝛽 → 1 the 

angular error approaches approximately 2°, as seen in Fig. 2.5(b).  For small SNR values (less than 

about 10 dB), the PAGE method intensity magnitude errors are actually decreased slightly as 𝛽𝛽 

increases, seen in Fig. 2.5(a).  For higher SNR values (above 10 dB), however, these errors are 

increased slightly—this is a product of averaging across all angle of incidence.  As 𝛽𝛽 → 1, the 

actual bias errors can show a large variance across angle of incidence.  For a more complete 

representation, the equations in Table 2.7 should be used.  Generally, biases are larger for 𝜃𝜃𝑠𝑠 ≈ 0° 

than for 𝜃𝜃𝑠𝑠 ≈ 45°. 
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Moving close to a monopole source has a greater effect on the traditional method than it 

does on the PAGE method.  The PAGE method is again better for computing the intensity angle, 

though is not perfect and can be offset by about 2°.   The magnitude offset from the plane-wave 

case is within about 0.7 dB for all SNR values.  For the traditional method at low 𝑘𝑘𝑘𝑘 values, the 

magnitude can be offset by more than 3 dB, and the angular offset can be near 10°. 

 

Figure 2.5: PAGE method bias errors in (a) the magnitude and (b) the direction of the active 
intensity calculated for a monopole source with uncorrelated contaminating noise using a five-
microphone orthogonal probe, averaged across angle of incidence. 

 

2.4 Bias errors caused by self-correlated noise 

Turning now to self-correlated noise, which is still assumed to be uncorrelated with the 

source, the problem becomes more complicated.  Assuming the contaminating noise source is not 

close to the probe (within a few wavelengths), the noise can be assumed to be plane-wave-like 

(directional, amplitude-constant) in nature.  However, this plane-wave noise comes from a specific 

direction 𝜃𝜃𝑛𝑛 and can have a very large impact on bias errors.  This additional variable is not a 

problem when dealing with equations, though it does create additional difficulties when trying to 

illustrate results.  Objectively averaging across possible noise directions is not possible.  Instead, 

an angular separation 𝜃𝜃sep between the source and noise directions can be defined such that 𝜃𝜃sep =
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|𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑛𝑛| ≤ 180°.  Results can then be averaged across the angle of incidence to obtain the bias 

errors as a function of 𝑘𝑘𝑘𝑘, SNR, and angular separation. 

As now shown for both plane-wave and monopole sources, the traditional method is most 

sensitive to the value of 𝑘𝑘𝑘𝑘 and the PAGE method is most dependent on the SNR.  However, 

neither is completely independent of the other variable, and both depend heavily on the separation 

angle. 

 

2.4.1 Plane-wave source 

For an incident plane-wave source of interest and contaminating plane-wave noise—

uncorrelated with the source—the more complicated impact of correlated noise is immediately 

apparent from the equations in Table 2.3.  There are more independent variables, and the angular 

and magnitude portions are now entangled for both methods.  Figures for the bias errors are 

presented, but can only capture a portion of the big picture. 

Table 2.3: Intensity components for a plane-wave source with correlated noise.  The total bias 
errors for magnitude and direction are 𝐿𝐿𝜖𝜖,𝑰𝑰 = 5 𝑓𝑓𝑙𝑙𝑙𝑙10�𝐼𝐼𝑥𝑥�2 + 𝐼𝐼𝑦𝑦�2� and 𝜃𝜃𝜖𝜖,𝑰𝑰 = 𝑡𝑡𝑘𝑘𝜃𝜃−1 �

𝐼𝐼𝑦𝑦�
𝐼𝐼𝑥𝑥�
� − 𝜃𝜃𝑠𝑠.  

Equations for other probe geometries are given in Table 2.9. 

Plane-wave source 
correlated noise Traditional PAGE 

𝐼𝐼𝑥𝑥� 
sin(𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠)

𝑗𝑗𝑗𝑗
+

10
−SNR
10

sin(𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  
�1 + 10

−SNR
10 � 1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠 + 10

−SNR
10 𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛�  

𝐼𝐼𝑦𝑦�  
sin(𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠)

𝑗𝑗𝑗𝑗
+

10
−SNR
10

sin(𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  
�1 + 10

−SNR
10 � 1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠 + 10

−SNR
10 𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�  

 

The traditional method is not very adept at dealing with correlated noise.  Fig. 2.6(a) shows 

the bias errors as a function of separation angle 𝜃𝜃sep and 𝑘𝑘𝑘𝑘 value for a few representative SNR 

values.  With a large SNR, the expected errors for large 𝑘𝑘𝑘𝑘 values are easily seen.  With lower 

SNR values, there is a tradeoff between magnitude and angular accuracy as the separation angle 
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changes.  For 𝜃𝜃sep ≈ 0° there is no angular error—again for small 𝑘𝑘𝑘𝑘 values (less than 0.5) only—

but a large magnitude error.  For larger separation angles, the magnitude is more accurately 

calculated, while the angular error is larger.  For large values of 𝑘𝑘𝑘𝑘 both the magnitude and angular 

errors are extreme. 

 

Figure 2.6: Bias errors for a plane-wave source with contaminating correlated noise using (a) the 
traditional method and (b) the PAGE method. 

 

The PAGE method does not cause any bias error whenever the SNR exceeds about 20 dB, 

as shown in Fig. 2.6(b).  For lower SNR values the direction can still be computed fairly accurately, 

most especially when there is enough phase information to obtain the correct phase gradient, i.e. 

for larger values of 𝑘𝑘𝑘𝑘.  The magnitude errors are a bit more complicated.  For low values of 𝑘𝑘𝑘𝑘 
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there is more dependence on the separation angle than there is for larger values of 𝑘𝑘𝑘𝑘.  For any 

given separation angle, the magnitude and angular calculation is better for a larger SNR value, as 

seen in Fig. 2.6(b). 

The PAGE method is less dependent on separation angle than the traditional method.  For 

low 𝑘𝑘𝑘𝑘 values and low SNR values (SNR near zero), both methods show similar errors.  However, 

for the plane-wave source with plane-wave noise, the PAGE method outperforms the traditional 

method as either 𝑘𝑘𝑘𝑘 increases or, most especially, as the SNR increases. 

 

2.4.2 Monopole source 

Results are again separated for the monopole source based upon the value of 𝛽𝛽, as done in 

Section 2.3.  For the sake of brevity, results for only two values of 𝛽𝛽 are portrayed—one near the 

source and the other as close to the monopole source as possible—in Fig. 2.7 and Fig. 2.8, while 

the intensity values are given in Table 2.4.  As 𝛽𝛽 → 0, the monopole source errors approach those 

of the plane-wave source. 

Table 2.4: Intensity components for a monopole source with uncorrelated noise.  The total bias 

errors are 𝐿𝐿𝜖𝜖,𝑰𝑰 = 10 𝑓𝑓𝑙𝑙𝑙𝑙10 ��𝐼𝐼𝑥𝑥�2 + 𝐼𝐼𝑦𝑦�2� and 𝜃𝜃𝜖𝜖,𝑰𝑰 = 𝑡𝑡𝑘𝑘𝜃𝜃−1 �
𝐼𝐼𝑦𝑦�
𝐼𝐼𝑥𝑥�
� − 𝜃𝜃𝑠𝑠.  Equations for other probe 

geometries are given in Table 2.9. 

Monopole source 
correlated noise Traditional PAGE 

𝐼𝐼𝑥𝑥� 

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2
−

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2
+

10
−SNR
10

sin(𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  

�1 + 10
−SNR
10 � 1

2𝑗𝑗𝑗𝑗
∗ arg �𝑒𝑒𝑗𝑗𝑗𝑗𝑟𝑟��1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽

2−�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2� +

10
−SNR
10 �1 − 2𝛽𝛽2 cos 2𝜃𝜃𝑠𝑠 + 𝛽𝛽4𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛�  

𝐼𝐼𝑦𝑦�  

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2
−

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2
+

10
−SNR
10

sin(𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  

�1 + 10
−SNR
10 � 1

2𝑗𝑗𝑗𝑗
∗ arg �𝑒𝑒𝑗𝑗𝑗𝑗𝑟𝑟��1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽

2−�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2� +

10
−SNR
10 �1 + 2𝛽𝛽2 cos 2𝜃𝜃𝑠𝑠 + 𝛽𝛽4𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑛𝑛�  
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Figure 2.7: Bias errors for a monopole source located a distance 𝑟𝑟 = 2𝑘𝑘 �𝛽𝛽 = 𝑗𝑗𝑗𝑗
𝑗𝑗𝑟𝑟

= 0.5� from 
the probe center with contaminating correlated noise using (a) the traditional method and (b) the 
PAGE method. 

 

Both methods are seen to exhibit significant errors in the near field (as 𝛽𝛽 → 1) of a 

monopole with plane-wave noise.  The PAGE method is better at computing the magnitude for all 

but the lowest SNR values, below a value of around 10 dB, depending on the separation angle.  

As 𝛽𝛽 → 1, the PAGE method clearly outperforms the traditional method for positive SNR values. 
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Figure 2.8: Bias errors for a monopole source located a distance 𝑟𝑟 = 𝑘𝑘 �𝛽𝛽 = 𝑗𝑗𝑗𝑗
𝑗𝑗𝑟𝑟

= 1� from the 
probe center with contaminating correlated noise using (a) the traditional method and (b) the 
PAGE method. 

   

In terms of angular error, both methods behave similarly for small values of 𝑘𝑘𝑘𝑘 (below 0.5) 

and small SNR values.  For an SNR above about 10 dB the bias errors for the PAGE method are 

much smaller than those for the traditional method, regardless of the value of 𝑘𝑘𝑘𝑘.  The PAGE 

method can perform better at higher 𝑘𝑘𝑘𝑘 values because the phase gradient can be calculated more 

accurately—even with noise present.  For small values of 𝑘𝑘𝑘𝑘, even small amounts of noise can 

lead to an inaccurate phase gradient calculation. 
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2.5 The effects of probe geometry 

Previous results were given for a specific five-microphone orthogonal probe geometry, 

since the probe symmetry with orthogonal pairs made the equations for the bias errors relatively 

simple.  However, different probes can be used to calculate intensity, and each probe can estimate 

the pressure gradient—or the central pressure when there is no microphone in the center—

differently, leading to different bias errors.  Two other two-dimensional probe geometries, for 

which noiseless bias errors were previously investigated,8 are considered herein. 

By removing the center microphone from the probe seen in Fig. 2.1, the four-microphone 

orthogonal probe seen in Fig. 2.9(a) can be obtained.  The bias errors obtained can differ largely 

from the results seen in the previous sections, while in other cases are exactly the same.  The main 

reason for the differences is that instead of obtaining the pressure at the center microphone directly, 

an average must be computed to obtain the approximate pressure at the probe center.  When the 

pressure does not vary rapidly, this averaging does not cause significant adverse effects, but near 

a monopole source the differences can be drastic.  Additionally, when using the traditional method, 

the effective microphone spacing is now twice what it was for the five microphone probe, so 𝑓𝑓𝑁𝑁 is 

now reached at 𝑘𝑘𝑘𝑘 = 𝜋𝜋
2
 instead of 𝑘𝑘𝑘𝑘 = 𝜋𝜋.  Note that the effective doubling in microphone spacing 

for this probe is simply a result of not having a center microphone—the probe radius is still the 

same. 
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Figure 2.9: Two alternate probe geometries that can be used to calculate intensity.  The four-
microphone orthogonal probe (a) is referred to as 4O and the four-microphone triangular probe 
(b) is referred to as 4T.  The five-microphone orthogonal probe in Fig. 2.1 is referred to as 5O.  
Note there is no microphone 1 for 4O, and are numbered 2 through 5 to match the numbering for 
5O. 

 

The third probe of interest consists of a center microphone surrounded by three 

microphones in an equilateral triangle configuration, each separated from the center microphone 

by a distance 𝑘𝑘.  Since there is a center microphone, this probe generally works better than the four 

microphone orthogonal probe.  For the sake of brevity, only the most significant differences caused 

by probe geometry are presented.  The five microphone probe will hereafter be referred to as 5O, 

the four microphone orthogonal probe as 4O, and the four microphone triangular probe as 4T. 

 

2.5.1 Uncorrelated noise 

For the traditional method, 4O and 5O perform similarly with two noted differences (which 

can be seen in Fig. 2.10).  First, since 4O has effectively double the microphone spacing of 5O, the 

bias errors are reached at ½ the value of 𝑘𝑘𝑘𝑘.  Second, very near a monopole source, 4O must 

estimate the center pressure, yielding larger errors. 

Using the traditional method with a plane-wave source, 4T is identical to 5O in calculating 

the magnitude, but can better calculate the intensity direction, seen in Fig. 2.10(a).  Near a 
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monopole source, 4T is worse at calculating both the direction and magnitude of the intensity, seen 

in Fig. 2.10(b) and Fig. 2.10(c).  This is due to the effective microphone spacing in orthogonal 

directions being 3𝑘𝑘/2 and √3𝑘𝑘/2, so the random incidence average shows great variability.  

As 𝛽𝛽 → 1, when the probe is as close to the source as possible, the bias errors all exceed 3 dB with 

large angular errors. 

 

Figure 2.10: Bias errors for different probe geometries with contaminating uncorrelated noise 
using the traditional method.  Only cases where the different probe geometries exhibit marked 
differences are pictured.  The angular error for a plane wave source with uncorrelated noise is 
given in (a), while (b) shows the magnitude error and (c) shows the angular error for a monopole 
source. 

 

For the PAGE method, the results for each probe configuration are exactly the same for a 

plane-wave source with uncorrelated noise, and so are not shown.  In the near field of a monopole 

(𝛽𝛽 ≈ 1), however, the probes give noticeably different results.  Probe 5O is much better at 

estimating the angle.  This improvement results from having four microphones to calculate the 

angle with another mic at the center, while 4T has only three for the angle.  Probe 4O has to estimate 
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the center pressure, making it the least effective of the three probe geometries at calculating the 

intensity direction.  In regards to magnitude, 4O is very inaccurate, again due to the lack of a direct 

center pressure measurement.  Whether the bias errors for 4T are less than or greater than those for 

5O depends on the value of 𝛽𝛽 and the SNR.   These results can be seen in Fig. 2.11.  Again note 

that for 𝛽𝛽 ≈ 1, averaging across angle of incidence provides an incomplete representation. Biases 

are larger for 𝜃𝜃𝑠𝑠 ≈ 0° than for 𝜃𝜃𝑠𝑠 ≈ 45°. 

 

Figure 2.11: Probe comparison of bias errors for a monopole source at two distances (𝛽𝛽 = 0.5 
and 𝛽𝛽 = 1) with contaminating uncorrelated noise using the PAGE method.  Both magnitude and 
direction errors are shown for both cases.  In (c) the bias errors for 4O are greater than 3 dB for 
all SNR values below 30 dB. 

 

2.5.2 Correlated noise 

To avoid using a large number of two-dimensional plots to compare probe geometries, 

figures are not presented in this section; rather, simple conclusions are stated.  See the tables in the 

appendix for further comparison of bias errors for the different probe geometries. 
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With the traditional method, 4O and 5O have essentially identical bias errors except for very 

near the monopole source, when the difference in microphone spacing is accounted for.  4T is 

worse at calculating the angle for large values of 𝜃𝜃sep, though the errors caused by high values of 

𝑘𝑘𝑘𝑘 appear later than for the other probes, and the magnitude estimation can be slightly better.  Near 

a monopole source, all probes exhibit large magnitude errors, while the angular error varies rapidly 

with SNR and 𝑘𝑘𝑘𝑘 for each probe configuration. 

For the PAGE method, the same general trends hold for correlated noise as for uncorrelated 

noise.  For a plane-wave source, each probe performs the same.  Near a monopole source, 4O 

exhibits greater errors than those for 5O, which again is a result of estimating the center pressure.  

In regards to the effects of separation angle, larger values of  𝑘𝑘𝑘𝑘 are again less affected while lower 

values can show marked differences.  For SNR values greater than 20 dB the bias errors are 

extremely low, though some errors are obtained in the extreme monopole near field, most notably 

for 4O, in which case either 4T or 5O performs better, depending on 𝛽𝛽 and the SNR. 

 

2.6 Conclusions 

Contaminating noise can have a great impact on the calculation of active acoustic intensity.  

The differences in how the traditional method and the PAGE method calculate the intensity lead 

to different intensity results.  The PAGE method is nearly always better at computing the intensity 

direction, regardless of the source properties or noise type.  This is because it uses the phase values 

of cross-spectra, and the magnitude and phase portions are separable for plane wave signals, while 

for monopole sources the magnitude and phase portions are somewhat loosely intertwined.  Any 

time the SNR exceeds about 20 dB, the bias errors using the PAGE method are small in comparison 

to the traditional method.  In regards to magnitude, it is possible to correct for the extra measured 
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pressure caused by uncorrelated contaminating noise; this is further investigated in Chapter 5.  

Near a monopole source, 5O is the probe with the least bias in most cases, though for some 

situations 4T can work better, depending on the exact values of 𝛽𝛽 and the SNR.  For plane-wave 

sources, each probe configuration is essentially the same.  

The main problem with the traditional method is its bandwidth limitation.  For any large 

values of 𝑘𝑘𝑘𝑘 (above 0.5) the bias errors are never insignificant.  The magnitude and angular biases 

are invariably intertwined.  In some cases, the magnitude and angular inaccuracies can cancel to 

cause smaller biases, though this is a complicated interaction.  For small values of 𝑘𝑘𝑘𝑘 (less than 

0.5) with small SNR values (below 10-15 dB), the traditional method can sometimes better 

calculate the intensity magnitude.  The probe that performs most consistently is 5O, though 

depending on the situation either of the other probes can be more efficient. 

Small SNR values (below 10 dB) can have adverse effects on the calculation of the PAGE 

method, though it is possible to correct for this, especially when the contaminating noise is 

uncorrelated (see Chapter 5).  Angularly separated signals do not impact the PAGE method as 

much as the traditional method, especially for higher 𝑘𝑘𝑘𝑘 values.  Whenever large values of 𝑘𝑘𝑘𝑘 are 

of interest (above 0.5), or when the SNR exceeds about 20 dB, the PAGE method gives more 

reliable results than the traditional method. 

 

2.7 Chapter 2 Appendix 

Equation tables are included herein.  Table 2.5 gives the equations for how the orthogonal 

components of the intensity bias errors, 𝐼𝐼𝑥𝑥� and 𝐼𝐼𝑦𝑦� , are calculated for the different probe 

configurations, using the auto-spectral and cross-spectral values.  The following tables give the 

simplified intensity bias components for plane-wave and monopole sources with uncorrelated and 
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self-correlated contaminating noise.  In each case, perfect calculation would yield 𝐼𝐼𝑥𝑥� = cos 𝜃𝜃𝑠𝑠 

and 𝐼𝐼𝑦𝑦� = sin 𝜃𝜃𝑠𝑠.  The magnitude and angular biases are given by 𝐿𝐿𝜖𝜖,𝑰𝑰 = 10 log10 ��𝐼𝐼𝑥𝑥�2 + 𝐼𝐼𝑦𝑦�2� =

5 log10�𝐼𝐼𝑥𝑥�2 + 𝐼𝐼𝑦𝑦�2� and 𝜃𝜃𝜖𝜖,𝑰𝑰 = tan−1 �
𝐼𝐼𝑦𝑦�
𝐼𝐼𝑥𝑥�
� − 𝜃𝜃𝑠𝑠. 

Table 2.5: The analytical expressions for intensity bias given in orthogonal directions.  Note the 
arguments of cross-spectra are used, though the arguments of the transfer functions are 
equivalent (since they differ by a factor of auto-spectra, which are always real and so do not alter 
the argument). 
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Table 2.6: Intensity bias error components for a plane-wave source with contaminating 
uncorrelated noise. 
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Plane-wave source, uncorrelated noise 

PAGE �1 + 10
−SNR
10 � sin𝜃𝜃𝑠𝑠  

4 
m

ic
 tr

ia
ng

ul
ar

 

𝐼𝐼𝑥𝑥� 
Trad 

sin�12𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠� cos�
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�+sin(𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠)
3
2𝑗𝑗𝑗𝑗

  

PAGE �1 + 10
−SNR
10 � cos𝜃𝜃𝑠𝑠  

𝐼𝐼𝑦𝑦�  
Trad 

cos�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠� sin�
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

√3
2 𝑗𝑗𝑗𝑗

  

PAGE �1 + 10
−SNR
10 � sin𝜃𝜃𝑠𝑠  

 

Table 2.7: Intensity bias error components for a monopole source with contaminating 
uncorrelated noise. 
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Table 2.8: Intensity bias error components for a plane-wave source with contaminating plane-
wave noise. 

Plane-wave source, plane-wave noise 

4 
m

ic
 o

rth
og

on
al

 

𝐼𝐼𝑥𝑥� 
Trad sin(2𝑗𝑗𝑗𝑗 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃𝑠𝑠)

2𝑗𝑗𝑗𝑗
+ 10

−SNR
10

sin(2𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑛𝑛)
2𝑗𝑗𝑗𝑗

  

PAGE �1 + 10
−SNR
10 �  1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠 + 10

−SNR
10 𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛�  

𝐼𝐼𝑦𝑦�  
Trad sin(2𝑗𝑗𝑗𝑗 𝑠𝑠in𝜃𝜃𝑠𝑠)

2𝑗𝑗𝑗𝑗
+ 10

−SNR
10

sin(2𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛)
2𝑗𝑗𝑗𝑗

  

PAGE �1 + 10
−SNR
10 �  1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠 + 10

−SNR
10 𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�  

5 
m

ic
 o

rth
og

on
al

 

𝐼𝐼𝑥𝑥� 
Trad sin(𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠)

𝑗𝑗𝑗𝑗
+ 10

−SNR
10

sin(𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  

PAGE �1 + 10
−SNR
10 �  1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠 + 10

−SNR
10 𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛�  

𝐼𝐼𝑦𝑦�  
Trad sin(𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠)

𝑗𝑗𝑗𝑗
+ 10

−SNR
10

sin(𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  

PAGE �1 + 10
−SNR
10 �  1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠 + 10

−SNR
10 𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�  

4 
m

ic
 tr

ia
ng

ul
ar

 

𝐼𝐼𝑥𝑥� 

Trad 
sin�12𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠� cos�

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�+sin(𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠)
3
2𝑗𝑗𝑗𝑗

+ 10
−SNR
10

sin�12𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑛𝑛� cos�
√3
2 𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑛𝑛�+sin(𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑛𝑛)
3
2𝑗𝑗𝑗𝑗

  

PAGE 
�1 + 10

−SNR
10 � � 1

3𝑗𝑗𝑗𝑗
arg �𝑒𝑒𝑗𝑗�

3
2𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠−

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠� + 10

−SNR
10 𝑒𝑒𝑗𝑗�

3
2𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛−

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�� +

1
3𝑗𝑗𝑗𝑗

arg �𝑒𝑒𝑗𝑗�
3
2𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠+

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠� + 10

−SNR
10 𝑒𝑒𝑗𝑗�

3
2𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑛𝑛+

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛���  

𝐼𝐼𝑦𝑦�  
Trad 

cos�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠� sin�
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

√3
2 𝑗𝑗𝑗𝑗

+ 10
−SNR
10

cos�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛� sin�
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�

√3
2 𝑗𝑗𝑗𝑗

  

PAGE �1 + 10
−SNR
10 � 1

√3𝑗𝑗𝑗𝑗
arg �𝑒𝑒√3𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠 + 10

−SNR
10 𝑒𝑒√3𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�  

 

Table 2.9: Intensity bias error components for a monopole source with contaminating plane-wave 
noise. 

Monopole source, plane-wave noise 

4 
m

ic
 o

rth
og

on
al

 

𝐼𝐼𝑥𝑥� 

Trad sin�𝑗𝑗𝑟𝑟�1+2𝛽𝛽 cos 𝜃𝜃𝑠𝑠+𝛽𝛽2−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1−2𝛽𝛽2 cos2𝜃𝜃𝑠𝑠+𝛽𝛽4
+ 10

−SNR
10

sin(2𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛)
2𝑗𝑗𝑗𝑗

  

PAGE 

�1
2
� 1
1−2𝛽𝛽 cos 𝜃𝜃𝑠𝑠+𝛽𝛽2

+ 10
−SNR
10 +

1
2
� 1
1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2

+ 10
−SNR
10 �

2

� 1
2𝑗𝑗𝑗𝑗

arg �𝑒𝑒𝑗𝑗𝑗𝑗𝑟𝑟��1+2𝛽𝛽 cos 𝜃𝜃𝑠𝑠+𝛽𝛽
2−�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2� +

10
−SNR
10 �1 − 2𝛽𝛽2 cos 2𝜃𝜃𝑠𝑠 + 𝛽𝛽4𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛��  

𝐼𝐼𝑦𝑦�  Trad sin�𝑗𝑗𝑟𝑟�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2−𝑗𝑗𝑟𝑟�1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1+2𝛽𝛽2 cos2𝜃𝜃𝑠𝑠+𝛽𝛽4
+ 10

−SNR
10

sin(2𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛)
2𝑗𝑗𝑗𝑗
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Monopole source, plane-wave noise 

PAGE 

�1
2
� 1
1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2

+ 10
−SNR
10 +

1
2
� 1
1+2𝛽𝛽 sin𝜃𝜃𝑠𝑠+𝛽𝛽2

+ 10
−SNR
10 �

2

� 1
2𝑗𝑗𝑗𝑗

arg �𝑒𝑒𝑗𝑗𝑗𝑗𝑟𝑟��1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽
2−�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2� +

10
−SNR
10 �1 + 2𝛽𝛽2 cos 2𝜃𝜃𝑠𝑠 + 𝛽𝛽4𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑛𝑛��  

5 
m

ic
 o

rth
og

on
al

 𝐼𝐼𝑥𝑥� 

Trad sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2
−

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2
+ 10

−SNR
10

sin(𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  

PAGE 
�1 + 10

−SNR
10 � � 1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒𝑗𝑗𝑗𝑗𝑟𝑟��1+2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽

2−�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2� +

10
−SNR
10 �1 − 2𝛽𝛽2 cos 2𝜃𝜃𝑠𝑠 + 𝛽𝛽4𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛��  

𝐼𝐼𝑦𝑦�  

Trad sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2
−

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2�

2𝑗𝑗𝑗𝑗�1+2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2
+ 10

−SNR
10

sin(𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛)
𝑗𝑗𝑗𝑗

  

PAGE 
�1 + 10

−SNR
10 � � 1

2𝑗𝑗𝑗𝑗
arg �𝑒𝑒𝑗𝑗𝑗𝑗𝑟𝑟��1+2𝛽𝛽 sin𝜃𝜃𝑠𝑠+𝛽𝛽

2−�1−2𝛽𝛽 sin 𝜃𝜃𝑠𝑠+𝛽𝛽2� +

10
−SNR
10 �1 + 2𝛽𝛽2 cos 2𝜃𝜃𝑠𝑠 + 𝛽𝛽4𝑒𝑒2𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑛𝑛��  

4 
m

ic
 tr

ia
ng

ul
ar

 

𝐼𝐼𝑥𝑥� 

Trad 

sin�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽2�
3
2𝑗𝑗𝑗𝑗�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽

2 +
sin�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠+

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

3𝑗𝑗𝑗𝑗+3𝛽𝛽�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠+
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

−

sin�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠−
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

3𝑗𝑗𝑗𝑗+3𝛽𝛽�12𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠−
√3
2 𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑠𝑠�

+ 10
−SNR
10

sin�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛� cos�
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�+sin(𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛)
3
2𝑗𝑗𝑗𝑗

  

PAGE 

�1 + 10
−SNR
10 � � 1

3𝑗𝑗𝑗𝑗
arg �𝑒𝑒𝑗𝑗�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽

2+12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠−
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠� +

10
−SNR
10 �1 − 2𝛽𝛽 cos 𝜃𝜃𝑠𝑠 + 𝛽𝛽2 �1 + 1

2
𝛽𝛽 cos 𝜃𝜃𝑠𝑠 −

√3
2
𝛽𝛽 sin𝜃𝜃𝑠𝑠� 𝑒𝑒

𝑗𝑗�32𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑛𝑛−
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�� +

1
3𝑗𝑗𝑗𝑗

arg �𝑒𝑒𝑗𝑗�𝑗𝑗𝑟𝑟−𝑗𝑗𝑟𝑟�1−2𝛽𝛽 cos𝜃𝜃𝑠𝑠+𝛽𝛽
2+12𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠+

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠� +

10
−SNR
10 �1 − 2𝛽𝛽 cos 𝜃𝜃𝑠𝑠 + 𝛽𝛽2 �1 + 1

2
𝛽𝛽 cos 𝜃𝜃𝑠𝑠 + √3

2
𝛽𝛽 sin𝜃𝜃𝑠𝑠� 𝑒𝑒

𝑗𝑗�32𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑛𝑛−
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛���  

𝐼𝐼𝑦𝑦�  

Trad 

sin�12𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠+
√3
2 𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑠𝑠�

√3𝑗𝑗𝑗𝑗+√3𝛽𝛽�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠+
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

−
sin�12𝑗𝑗𝑗𝑗 cos 𝜃𝜃𝑠𝑠−

√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

√3𝑗𝑗𝑗𝑗+√3𝛽𝛽�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠−
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑠𝑠�

+

10
−SNR
10

cos�12𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛� sin�
√3
2 𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛�

√3
2 𝑗𝑗𝑗𝑗

  

PAGE 
�1 + 10

−SNR
10 � � 1

√3𝑗𝑗𝑗𝑗
arg �𝑒𝑒√3𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑠𝑠 + 10

−SNR
10 �1 + 𝛽𝛽 cos 𝜃𝜃𝑠𝑠 + 1

2
𝛽𝛽2 cos 2𝜃𝜃𝑠𝑠 −

1
4
𝛽𝛽2� 𝑒𝑒√3𝑗𝑗𝑗𝑗𝑗𝑗 sin 𝜃𝜃𝑛𝑛��  
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Bandwidth extension of narrowband intensity calculations 

using additive, low-level broadband noise 

Calculation of acoustic intensity using the phase and amplitude gradient estimator (PAGE) 

method has been shown to increase the effective upper frequency limit beyond the traditional p-p 

method when the source of interest is broadband in frequency.7  For narrowband sources, it has 

been shown that intensity can still be calculated without bias error up to the spatial Nyquist 

frequency.27  Herein it is shown that when frequencies above the spatial Nyquist frequency are of 

interest for narrowband sources, additive low-level broadband noise can improve intensity 

calculations.  To be effective, the angular separation between the source and the additive noise 

source should be less than 30°, with improved results for smaller angular separation.  The upper 

frequency limit for the bandwidth extension depends on the angular separation, the sound speed, 

and the probe microphone spacing.  Assuming the signal-to-additive-noise ratio (SNRa) is larger 

than 10 dB, the maximum level and angular bias errors incurred by the additive broadband noise 

are less than 0.5 dB and 2.5°, respectively. 

 

3.1 Introduction 

Active acoustic intensity, hereafter referred to as simply intensity, is an energy-based 

acoustic measure obtained by the product of acoustic pressure and particle velocity.  As a vector 

quantity, it gives the magnitude and direction of the propagating acoustic energy.  Intensity is often 
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used for source characterization, since the direction of propagation can identify which regions of 

a source are radiating more dominantly.  Many additional applications of intensity have been 

explored.28,29  

Acoustic intensity can be computed in several ways; one of the most prevalent methods is 

referred to as the p-p method, in which a probe with multiple microphones is used to estimate the 

gradient of pressure by using the change in the real and imaginary pressure components divided 

by the microphone spacing.15,30  The p-p method is hereafter referred to as the traditional method.  

One significant limitation of the traditional method is that the microphone spacing must be small 

relative to the acoustic wavelength.  The particle velocity is underestimated when the microphone 

spacing begins to be sufficiently large relative to a wavelength, which leads to errors at high 

frequencies. At much lower frequencies, inherent or residual microphone phase mismatch can 

cause significant errors.  Between these two frequency limitations, there is only a fairly limited 

bandwidth over which the traditional method can be adequately used. These and other errors have 

been discussed at length,31- 38 and many have tried to overcome the errors using varying 

experimental sensor placement or processing.39,40  

To overcome some of the problems of the traditional method, especially for high-amplitude 

jet and rocket noise, the Phase and Amplitude Gradient Estimator (PAGE) method was developed. 

9,41  Instead of using formulations which split the complex pressure into real and imaginary parts, 

as is done in the traditional method, the formulations for the PAGE method represent the complex 

pressure with a magnitude and phase, based on expressions from Mann et. al.42 and Mann and 

Tichy.43  The expression for intensity with the PAGE method is 

 𝑰𝑰 =
1
𝜌𝜌0𝜔𝜔

𝑃𝑃2∇𝜙𝜙, (21) 
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where 𝑃𝑃 represents the pressure magnitude and ∇𝜙𝜙 represents the pressure phase gradient, 

where 𝜌𝜌0 is the air density and 𝜔𝜔 is the angular frequency. These expressions are advantageous—

particularly in propagating fields—because the pressure magnitude and phase manifest less spatial 

variation than the real and imaginary components of pressure, which allows for a more accurate 

estimation of the particle velocity across a wider range of frequencies. 

Using the PAGE method allows for calculation of intensity at much higher frequencies 

than does the traditional method.  The bias errors for both methods have been investigated,41 and 

in general the bias errors for the PAGE method are less than or equal to those of the traditional 

method.  The effects of contaminating noise have likewise been investigated.10   

The PAGE method generally relies upon phase information in broadband signals to obtain 

valid intensity results at frequencies above the probe spatial Nyquist frequency, denoted 𝑓𝑓𝑁𝑁.  With 

narrowband signals, phase information can be sparse enough that the phase gradient may not be 

calculated reliably above 𝑓𝑓𝑁𝑁.  For distinct tones, the sparsity of phase information in frequency 

space can make calculation of intensity at these higher frequencies especially erroneous.  

Fortunately, there is a simple solution.  When more phase information is lacking, additive low-

level broadband noise with similar directionality can often provide phase information so that the 

PAGE method can be used effectively with narrowband signals—whether tonal or band-limited—

above 𝑓𝑓𝑁𝑁. 27 

In this chapter, the theoretical and experimental effects of additive broadband noise on 

obtaining intensity estimates for narrowband signals—specifically tonal frequencies—are 

discussed.  In Section 3.2, the theory for the intensity from a plane-wave source and contaminating 

broadband noise is developed.  The analytical bias errors are presented in Section 3.3.  In Section 
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3.4, experimental results are presented and compared to the analytical results, with conclusions 

following in the final section. 

 

3.2 Methodology 

In this section, the mathematical theory for how additive broadband noise can improve 

intensity calculation for narrowband signals is developed.  Necessary parameters are discussed, 

followed by the mathematical derivations and bias errors.  Practical simplifications are then made, 

and a guide to when additive broadband noise is helpful is provided. 

 

3.2.1 Preliminary parameters 

3.2.1.1 Spatial Nyquist frequency 

With the traditional method, the effective upper frequency limit for reliable intensity 

calculation is the spatial Nyquist frequency, 𝑓𝑓𝑁𝑁:  the frequency at which the microphone spacing 

is equal to half of an acoustic wavelength, 𝑓𝑓𝑁𝑁 = 𝑐𝑐
2𝑗𝑗

.  This spatial sampling requirement means that 

microphones in an intensity probe must be placed closer together to calculate intensity for higher 

frequencies, which can not only increase the effects of scattering, but also increase phase mismatch 

errors at lower frequencies.  Probe configuration and orientation can change the effective 

microphone spacing and yields an effective spatial Nyquist frequency, 𝑓𝑓𝑁𝑁,eff.  As 𝑓𝑓𝑁𝑁,eff is 

approached—even at frequencies below 1
2
𝑓𝑓𝑁𝑁,eff—the particle velocity is underestimated, so 

inaccurate intensities are calculated well below 𝑓𝑓𝑁𝑁,eff.  In general, angular estimates are valid up to 

frequencies near 𝑓𝑓𝑁𝑁,eff, while magnitude estimates are only valid up to around one-half of 𝑓𝑓𝑁𝑁,eff.10  

However, the PAGE method yields accurate magnitude and phase estimates up to 𝑓𝑓𝑁𝑁,eff and also 



39 

at higher frequencies if the phase gradient can be accurately calculated.  Accurate calculation 

requires the use of phase unwrapping. 

3.2.1.2 Phase unwrapping 

To calculate the phase gradient, the phases of the transfer functions between microphone 

pairs are used.  Because the phase differences obtained from transfer functions are restricted to 

a 2𝜋𝜋 radian interval, a linear phase difference in frequency space wraps or jumps between 𝜋𝜋 

radians and −𝜋𝜋 radians at odd integer multiples of 𝑓𝑓𝑁𝑁,eff, as illustrated by the solid line in Fig. 3.1.  

The phase is unwrapped by adding multiples of 2𝜋𝜋 radians to create a continuous phase 

relationship (dashed line in Fig. 3.1).  In this manner the correct overall phase gradient can be 

obtained.12,44 

 

Figure 3.1: An example of ideal wrapped and unwrapped phase values (red) for a broadband 
signal coming from the same angular direction as a narrowband signal.  The sparsity of phase 
information—none between peak frequencies (black)—for the narrowband signal leads to 
unreliable unwrapped phase values (blue), and can therefore lead to flawed phase gradient 
estimates for narrowband signals. 

 

Phase unwrapping works well for broadband signals with sufficient coherence between 

microphones, most especially for signals with a linear phase relationship.12  For narrowband 

signals, or signals composed of discrete frequencies, however, the sparsity of frequency-dependent 

phase information can cause problems with phase unwrapping.  Incorrectly unwrapped phase 
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values lead to inaccurate phase gradient estimates, and therefore incorrect intensity vectors for 

frequencies above 𝑓𝑓𝑁𝑁,eff.  As seen in Fig. 3.1, the phase gradient obtained for peak frequencies 

from inaccurately unwrapped phase values can be extremely flawed, and can even trend in the 

opposite direction.  Wrapped phase values at frequencies where there is a signal, hereafter referred 

to as peak frequencies, are measured for the source, but can be sparse.  In contrast, for frequencies 

without a signal—called noise frequencies—the phase values come from the ambient noise rather 

than from the source.  These phase values have no relation to the phase that would be caused by 

the source at that frequency, and so are not valid for source properties.  Phase unwrapping for 

narrowband signals is therefore prone to error without additional phase information, which is 

where additive low-level broadband noise can be helpful. 

3.2.1.3 Signal-to-noise ratios 

The effects of—and bias errors caused by—contaminating noise in the sound field have 

been previously investigated.10  When the signal-to-noise ratio (SNR) is sufficiently large, the 

contaminating noise does not significantly affect the calculation of intensity.  For narrowband 

sources where frequencies of interest are above 𝑓𝑓𝑁𝑁, additive broadband noise can actually be 

helpful.  Additive broadband noise provides coherent phase information across the probe at noise 

frequencies, which can improve unwrapping and, therefore, lead to better intensity calculations.  

The additive noise must necessarily be higher in level than the ambient noise, which is quantified 

by comparing two signal-to-noise ratios: The signal-to-additive-noise ratio is denoted by SNRa, 

while the signal-to-ambient-noise ratio is simply the usual SNR.  When SNRa < SNR, the additive 

noise can provide coherent phase information, which can allow for meaningful phase unwrapping, 

which results in more accurate phase gradient estimates at peak frequencies. 



41 

 

Figure 3.2: A five-microphone orthogonal probe.  The microphones are numbered 1 to 5, and 
have positions (x,y) = (0,0), (-a,0), (a,0), (0,a), and (0,-a), respectively. 

 

3.2.2 Mathematical foundation 

3.2.2.1 Derivations 

The benefit of additive noise can be illustrated using the five-microphone orthogonal probe 

pictured in Fig. 3.2.  This probe is chosen because symmetry can be employed and calculations 

are simplified by using pairs of orthogonal microphones.27  The intensity for this probe using the 

PAGE method calculation is 

 𝑰𝑰calc =
−𝐺𝐺11 arg{𝐻𝐻23}

4𝑘𝑘𝑘𝑘𝜌𝜌0𝑐𝑐
𝑥𝑥� +

𝐺𝐺11 arg{𝐻𝐻45}
4𝑘𝑘𝑘𝑘𝜌𝜌0𝑐𝑐

𝑦𝑦�, (22) 

where 𝐺𝐺11 is the auto-spectrum of the central microphone, 𝐻𝐻𝜇𝜇𝜇𝜇 is the transfer function between 

microphones 𝜇𝜇 and 𝜈𝜈, 𝑐𝑐 is the sound speed, 𝜌𝜌0 is the air density, and 𝑘𝑘 is the wavenumber.  For a 

plane wave signal of pressure amplitude 𝐴𝐴𝑠𝑠 coming from an angle 𝜃𝜃𝑠𝑠, and additive plane wave 

noise—which is self-correlated, though uncorrelated with the source10—of amplitude 𝐴𝐴𝑛𝑛 coming 

from an angle 𝜃𝜃𝑛𝑛, 

 𝐺𝐺11 = 𝐴𝐴𝑠𝑠2 + 𝐴𝐴𝑛𝑛2 , (23) 
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 arg{𝐻𝐻23} = arg�𝐴𝐴𝑠𝑠2𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑠𝑠 + 𝐴𝐴𝑛𝑛2𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗 cos𝜃𝜃𝑛𝑛�, (24) 

 arg{𝐻𝐻45} = arg�𝐴𝐴𝑠𝑠2𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑠𝑠 + 𝐴𝐴𝑛𝑛2𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗 sin𝜃𝜃𝑛𝑛�. (25) 

For the peak frequencies of a narrowband signal with low-level additive noise, 𝐴𝐴𝑠𝑠2 ≫ 𝐴𝐴𝑛𝑛2 , 

so the additive noise causes a negligibly small change in transfer function arguments.  At noise 

frequencies, 𝐴𝐴𝑠𝑠 ≈ 0, and the transfer function phase values obtained from the additive noise are 

used for unwrapping.  The signal-only values at peak frequencies are 𝐺𝐺11 = 𝐴𝐴𝑠𝑠2, arg{𝐻𝐻23} =

−2𝑘𝑘𝑘𝑘 cos 𝜃𝜃𝑠𝑠, and arg{𝐻𝐻45} = −2𝑘𝑘𝑘𝑘 sin𝜃𝜃𝑠𝑠.  As long as the angular separation |𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑛𝑛| is not too 

large, these values can be obtained, as is further outlined below.  When there is any angular 

separation, some error is unavoidably introduced. 

When angular separation becomes too large, phase unwrapping can fail, which causes 

inaccurate intensity calculation.  The frequency resolution used in processing ∆𝑓𝑓 also has an 

impact on the unwrapping—too few points between peak frequencies results in poor unwrapping.  

The phase can be unwrapped correctly if the phase difference of the transfer functions at the peak 

frequency, 𝑓𝑓𝑝𝑝, and the adjacent noise frequency, 𝑓𝑓𝑛𝑛 = 𝑓𝑓𝑝𝑝 ± ∆𝑓𝑓, is less than 𝜋𝜋 radians, i.e., 

 �arg�𝐻𝐻23�𝑓𝑓𝑝𝑝�� − arg�𝐻𝐻23�𝑓𝑓𝑝𝑝 ± ∆𝑓𝑓��� ≤ 𝜋𝜋, (26) 

 �arg�𝐻𝐻45�𝑓𝑓𝑝𝑝�� − arg�𝐻𝐻45�𝑓𝑓𝑝𝑝 ± ∆𝑓𝑓��� ≤ 𝜋𝜋. (27) 

Note that for band-limited signals rather than for discrete tones 𝑓𝑓𝑝𝑝 ± ∆𝑓𝑓 is not necessarily 

a noise frequency.  Equations (26) and (27) do not need to be checked for validity in this case, only 

when 𝑓𝑓𝑝𝑝 ± ∆𝑓𝑓 is a noise frequency; the latter case is where the phase values exhibit the greatest 

change.  The frequency when these inequalities are no longer satisfied defines an upper frequency 

limit, 𝑓𝑓lim, above which the bias errors sharply increase since unwrapping fails.  By 

assuming 𝐴𝐴𝑠𝑠2�𝑓𝑓𝑝𝑝� ≫ 𝐴𝐴𝑛𝑛2�𝑓𝑓𝑝𝑝� and 𝐴𝐴𝑠𝑠2(𝑓𝑓𝑛𝑛) ≈ 0 [a relatively large signal-to-additive-noise ratio 

(SNRa) and a negligible signal amplitude at noise frequencies] and solving for the maximum value 

of 𝑓𝑓 where Eqs. (26) and (27) hold, the maximum frequency value is found to be 
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 𝑓𝑓lim = min �
𝑐𝑐 − 4𝑘𝑘∆𝑓𝑓|cos𝜃𝜃𝑛𝑛|

4𝑘𝑘|cos𝜃𝜃𝑛𝑛 − cos 𝜃𝜃𝑠𝑠| ,
𝑐𝑐 − 4𝑘𝑘∆𝑓𝑓|sin𝜃𝜃𝑛𝑛|

4𝑘𝑘|sin𝜃𝜃𝑛𝑛 − sin 𝜃𝜃𝑠𝑠|�. (28) 

This value gives the upper frequency limit for when additive low-level broadband noise will help 

improve intensity calculation above 𝑓𝑓𝑁𝑁. 

 

3.2.2.2 Bias errors 

When only frequencies below 𝑓𝑓lim are considered, the bias errors for the calculated 

intensity due to additive noise are small.  An example of the bias error is shown by considering a 

plane-wave signal consisting of a series of discrete peak frequencies.  The analytical intensity for 

the plane wave signal of pressure amplitude 𝐴𝐴𝑠𝑠 travelling in the 𝜃𝜃�𝑠𝑠 direction is 

 𝑰𝑰(𝜔𝜔) =
𝐴𝐴𝑠𝑠2(𝜔𝜔)
2𝜌𝜌0𝑐𝑐

 𝜃𝜃�𝑠𝑠. (29) 

The magnitude and direction bias errors are calculated, respectively, as 

 𝐿𝐿𝜖𝜖,𝑰𝑰 = 10 log10 �
𝑰𝑰calc
𝑰𝑰
�  dB, (30) 

 𝜃𝜃𝜖𝜖,𝑰𝑰 = 𝜃𝜃calc − 𝜃𝜃𝑠𝑠. (31) 

Using the PAGE method for acoustic vector intensity, the magnitude bias error in decibels at peak 

frequencies for the five-microphone probe in Fig. 3.2 is given by 

𝐿𝐿𝜖𝜖,𝑰𝑰 
= 10 log10 ���

−𝐺𝐺11 arg{𝐻𝐻23}
2𝑗𝑗𝑗𝑗𝐴𝐴𝑠𝑠2

�
2

+ �−𝐺𝐺11 arg{𝐻𝐻45}
2𝑗𝑗𝑗𝑗𝐴𝐴𝑠𝑠2

�
2
�  

= 10 log10 �1 + 𝐴𝐴𝑛𝑛2

𝐴𝐴𝑠𝑠2
�2𝑗𝑗𝑗𝑗+sin�2𝑗𝑗𝑗𝑗(cos𝜃𝜃𝑛𝑛−cos 𝜃𝜃𝑠𝑠)� cos𝜃𝜃𝑠𝑠+sin�2𝑗𝑗𝑗𝑗(sin 𝜃𝜃𝑛𝑛−sin 𝜃𝜃𝑠𝑠)� sin 𝜃𝜃𝑠𝑠

2𝑗𝑗𝑗𝑗
� + 𝑂𝑂 �𝐴𝐴𝑛𝑛

4

𝐴𝐴𝑠𝑠4
��  

= 101−
 SNRa
10 �2𝑗𝑗𝑗𝑗+sin�2𝑗𝑗𝑗𝑗(cos 𝜃𝜃𝑛𝑛−cos𝜃𝜃𝑠𝑠)� cos 𝜃𝜃𝑠𝑠+sin�2𝑗𝑗𝑗𝑗(sin 𝜃𝜃𝑛𝑛−sin 𝜃𝜃𝑠𝑠)� sin 𝜃𝜃𝑠𝑠

2𝑗𝑗𝑗𝑗
�+ 𝑂𝑂 �10−2∗

 SNRa
10 �  

(32) 

while the angular bias in radians is given by 

𝜃𝜃𝜖𝜖,𝑰𝑰 = tan−1 −arg�𝐻𝐻45�
−arg�𝐻𝐻23�

− 𝜃𝜃𝜃𝜃 = tan−1 −arg�𝐴𝐴𝜃𝜃2𝑒𝑒−2𝑗𝑗𝑘𝑘𝑘𝑘 sin𝜃𝜃𝜃𝜃+𝐴𝐴𝜃𝜃2𝑒𝑒−2𝑗𝑗𝑘𝑘𝑘𝑘 sin𝜃𝜃𝜃𝜃�

−arg�𝐴𝐴𝜃𝜃2𝑒𝑒−2𝑗𝑗𝑘𝑘𝑘𝑘 cos𝜃𝜃𝜃𝜃+𝐴𝐴𝜃𝜃2𝑒𝑒−2𝑗𝑗𝑘𝑘𝑘𝑘 cos𝜃𝜃𝜃𝜃�
− 𝜃𝜃𝜃𝜃  

= 𝐴𝐴𝜃𝜃2

𝐴𝐴𝜃𝜃2
sin�2𝑘𝑘𝑘𝑘(sin𝜃𝜃𝜃𝜃−sin𝜃𝜃𝜃𝜃)� cos𝜃𝜃𝜃𝜃−sin�2𝑘𝑘𝑘𝑘(cos𝜃𝜃𝜃𝜃−cos𝜃𝜃𝜃𝜃)� sin𝜃𝜃𝜃𝜃

2𝑘𝑘𝑘𝑘 +𝑂𝑂�𝐴𝐴𝜃𝜃
4

𝐴𝐴𝜃𝜃4
�  

(33) 
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= 10−
 SNRa

10
sin�2𝑘𝑘𝑘𝑘(sin𝜃𝜃𝜃𝜃−sin𝜃𝜃𝜃𝜃)� cos𝜃𝜃𝜃𝜃−sin�2𝑘𝑘𝑘𝑘(cos𝜃𝜃𝜃𝜃−cos𝜃𝜃𝜃𝜃)� sin𝜃𝜃𝜃𝜃

2𝑘𝑘𝑘𝑘 +𝑂𝑂�10−2∗ SNRa
10 �  

The maximum errors across 𝜃𝜃𝑠𝑠 and 𝜃𝜃𝑛𝑛 for frequencies below 𝑓𝑓lim can be obtained from (the exact 

solutions of) Eqs. (32) and (33) to give the maximum error as a function of only SNRa: 

 �𝐿𝐿𝜖𝜖,𝑰𝑰� < 101−
 SNRa
10 ∗ 0.5 dB, (34) 

 �𝜃𝜃𝜖𝜖,𝑰𝑰� = 101−
 SNRa
10 ∗ 6°. (35) 

The maximum bias errors were found by assuming 𝐴𝐴𝑠𝑠�𝑓𝑓𝑝𝑝� ≫ 𝐴𝐴𝑛𝑛�𝑓𝑓𝑝𝑝�.  Equations (34) and 

(35) are only valid, therefore, if the SNRa is larger than about 10 dB.  For SNRa ≥ 10 dB the 

magnitude error is always less than 0.5 dB and the angular error is always less than 6°.  If instead 

the value of the SNRa is 20 dB, the maximum angular error is less than 1° while the magnitude 

error is imperceptible.  Note also that these maximum errors decrease with a smaller separation 

angle between signal and broadband noise sources, which also serves to increase 𝑓𝑓lim. 

3.2.2.3 Practical simplifications 

For cases with a significantly large angular separation between the signal and additive noise 

sources, 𝑓𝑓lim can actually be reached before the effective spatial Nyquist frequency for the probe, 

 𝑓𝑓𝑁𝑁,eff = min ��
𝑐𝑐

2𝑘𝑘 cos𝜃𝜃𝑠𝑠
� , �

𝑐𝑐
2𝑘𝑘 sin𝜃𝜃𝑠𝑠

��. (36) 

When 𝑓𝑓lim < 𝑓𝑓𝑁𝑁,eff, the additive noise negatively affects the PAGE method calculation of intensity 

below 𝑓𝑓𝑁𝑁,eff.  In practice, to avoid negatively impacting the intensity calculation the angular 

separation should be limited to 

 |𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑛𝑛| ≤ 0.5 rad ≈ 28.6°. (37) 

If Eq. (37) holds and 4𝑘𝑘∆𝑓𝑓|sin𝜃𝜃𝑛𝑛| ≪ 𝑐𝑐, then 𝑓𝑓lim can be simplified as 

 𝑓𝑓lim ≈
𝑐𝑐

4𝑘𝑘|𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑛𝑛|rad
. (38) 

The maximum errors as a function of SNRa then become 
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 �𝐿𝐿𝜖𝜖,𝑰𝑰� < 101−
 SNRa
10 ∗ 0.5 dB, (39) 

 �𝜃𝜃𝜖𝜖,𝑰𝑰� = 101−
 SNRa
10 ∗ 2.5°. (40) 

In summary, certain conditions must be met for the additive noise to be useful.  First, the 

additive noise needs to be low-level relative to the signal, while still greater than the ambient noise 

level.  Second, the angular separation between the signal and additive noise sources must not be 

too large.  The frequency limit above which the additive noise is no longer particularly useful 

depends on this angular separation.  Decreasing the angular separation increases the frequency 

limit.  The bias errors caused by the additive noise depend on the angular separation and the SNRa, 

though a maximum error bound for frequencies below the frequency limit can be obtained by using 

the SNRa value alone. 

3.2.2.4 Guide to effective additive noise 

Consolidating all of these approximations, guidelines emerge for when additive noise is 

useful and the accuracy of the resulting intensity calculation.  For a plane-wave like signal, additive 

plane-wave noise is useful when 

• Signal and noise sources are separated by less than ~28°, and 

• SNRa ≥ 10 dB. 

When these conditions are met, 

• The upper frequency limit is 𝑓𝑓lim as given in Eq. (38), and depends on the microphone 

spacing, sound speed, and angular separation of sources, and 

• The calculated intensity magnitude and direction for frequencies below 𝑓𝑓lim is always 

accurate to within 0.5 dB and 2.5°, respectively, of the analytical intensity.  The 

accuracy increases with a decreasing angular separation and/or a larger SNRa. 
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3.3 Analytical results 

Bias errors depend on how the data are processed.  If ∆𝑓𝑓 is negligibly small, and the SNRa 

is large (greater than 20 dB), then the magnitude and direction intensity bias errors—shown in Fig. 

3.3 and Fig. 3.4 as a function of 𝑘𝑘𝑘𝑘 and 𝜃𝜃𝑛𝑛, assuming 𝜃𝜃𝑠𝑠 = 0°—for a plane wave source can be 

obtained.  The black line representing 𝑓𝑓lim is shown: it outlines regions of high error, and delineates 

the frequency division above which additive noise is no longer helpful.  There are two distinct 

overlapping error lobes seen—symmetric about ±90° and ±180°—whose lower bounds for 𝑘𝑘𝑘𝑘 

coincide with the two different values for 𝑓𝑓lim given in Eq. (28) (and multiples of these values), 

and give the limits for when the phase cannot be unwrapped in either one of or both of the two 

orthogonal directions. 

 

Figure 3.3: Analytical bias errors for PAGE-calculated intensity level for a plane wave source 
using the probe in Fig. 3.2, given as a function of 𝑘𝑘𝑘𝑘 and noise angle 𝜃𝜃𝑛𝑛, assuming 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 ≥
20 𝑑𝑑𝑑𝑑 and 𝜃𝜃𝑠𝑠 = 0. 
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Figure 3.4: Analytical bias errors for PAGE-calculated intensity direction for a plane wave 
source using the probe in Fig. 3.2, given as a function of 𝑘𝑘𝑘𝑘 and noise angle 𝜃𝜃𝑛𝑛, 
assuming 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 ≥ 20 𝑑𝑑𝑑𝑑 and 𝜃𝜃𝑠𝑠 = 0. 

 

These analytical results are extremely promising: the errors below 𝑓𝑓lim are small and are 

easily quantified.  To allow for experimental verification, analytical results are shown for a specific 

example.  The signal is a sawtooth source with additive broadband brown noise.  The sawtooth has 

a peak frequency of 250 Hz, with overtones which decrease in amplitude.  The brown noise 

likewise rolls off, such that the SNRa at each peak frequency is the same.  Values of 𝜃𝜃𝑠𝑠 = 0°,∆𝑓𝑓 =

1 Hz, 𝑐𝑐 = 343 m
s

,𝑘𝑘 = 5.08 cm, and SNR = 34 dB are used.   

The analytical magnitude bias errors for this particular setup are show in Fig. 3.5, while 

the analytical angular bias errors are shown in Fig. 3.6.  The figures show the bias errors at the 

peak frequencies, plotted with an angular resolution of 2.5° and angular limits of 𝜃𝜃𝑛𝑛 = ±90°.  The 

analytical bias errors below 𝑓𝑓lim are the same as when no discrete processing resolution is assumed, 

but the error lobes seen above 𝑓𝑓lim are fundamentally different because of the discrete frequency 

bin width used in this example. 
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Figure 3.5: Analytical bias errors for PAGE-calculated intensity magnitude using the probe in 
Fig. 3.2 for a 250 Hz sawtooth source and additive noise with 𝜃𝜃𝑠𝑠 = 0°,∆𝑓𝑓 = 1 𝐻𝐻𝐻𝐻, 𝑐𝑐 =
343 𝐼𝐼

𝑠𝑠
, 𝑘𝑘 = 5.08 𝑐𝑐𝑚𝑚, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = 34 𝑑𝑑𝑑𝑑.  The black lines give the value of 𝑓𝑓𝑙𝑙𝑙𝑙𝐼𝐼. 

 

Figure 3.6: Analytical bias errors for PAGE-calculated intensity direction using the probe in Fig. 
3.2 for a 250 Hz sawtooth source and additive noise with 𝜃𝜃𝑠𝑠 = 0°,∆𝑓𝑓 = 1 𝐻𝐻𝐻𝐻, 𝑐𝑐 = 343 𝐼𝐼

𝑠𝑠
, 𝑘𝑘 =

5.08 𝑐𝑐𝑚𝑚, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = 34 𝑑𝑑𝑑𝑑.  The black lines give the value of 𝑓𝑓𝑙𝑙𝑙𝑙𝐼𝐼. 

 

Many horizontal lines appear in the bias error plots when using discrete values.  They are 

caused by unwrapping errors, which as previously noted depend on the frequency bin width used 

in processing.  At 𝑓𝑓lim, or at the frequencies where one error lobe crosses another, the unwrapping 

errors propagate up to higher frequency bins.  Despite the analytical differences when using a 

specific value of ∆𝑓𝑓, there is no discernable difference below 𝑓𝑓lim, meaning bias errors in both 

magnitude and direction are still minimal. 
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3.4 Experimental verification 

3.4.1 Experimental setup 

The analytical bias errors in Fig. 3.5 and Fig. 3.6 are now compared to those obtained 

experimentally.  Measurements were taken in the BYU fully anechoic chamber, which has a lower 

cutoff frequency of approximately 80 Hz.  The microphone probe pictured in Fig. 3.2 was used, 

where the probe radius was 𝑘𝑘 = 5.08 cm.  A loudspeaker generated a 250 Hz sawtooth wave 

signal, and was placed on a stand such that 𝜃𝜃𝑠𝑠 = 0°.  The loudspeaker used for the additive noise 

was placed on the arm of a turntable which was rotated in angular increments of 2.5°.  This second 

loudspeaker was raised slightly higher than the first, so that the loudspeakers could be located the 

same distance—approximately 2 meters—from the probe, but so that the rotating arm didn’t hit 

the first loudspeaker.  The second loudspeaker on the arm broadcasted brown noise such that 

the SNRa at peak frequencies was approximately 34 dB.  Using this experimental setup, which is 

pictured in Fig. 3.7, and processing with a frequency bin width of ∆𝑓𝑓 = 1 Hz where the sound 

speed was 𝑐𝑐 = 343 𝐼𝐼
𝑠𝑠

, the results shown in Fig. 3.8 and Fig. 3.9 should ideally match the analytical 

results seen in Fig. 3.5 and Fig. 3.6, respectively. 

 

Figure 3.7: Experimental setup.  The source loudspeaker location is fixed, while the additive noise 
loudspeaker is on a rotating arm to have variable angular separation. 
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3.4.2 Experimental results 

Bias errors are found by comparing experimentally-obtained vector intensity to the 

analytical intensity for a 250 Hz sawtooth wave using Eqs. (30) and (31).  The analytical angle for 

the intensity is 0°, so the direction bias errors, shown in Fig. 3.9, are simply 

 𝜃𝜃𝜖𝜖,𝑰𝑰 = 𝜃𝜃calc. (41) 

The analytical intensity magnitude is obtained by using the sound pressure level measured by the 

center microphone, and hence is 𝐺𝐺11/𝜌𝜌0𝑐𝑐.  The level bias errors, shown in Fig. 3.8, are then 

 𝐿𝐿𝜖𝜖,𝑰𝑰 = 10 log10 �
𝐿𝐿calc

𝐺𝐺11/𝜌𝜌0𝑐𝑐
�. (42) 

 

 

Figure 3.8: Experimental bias errors for PAGE-calculated intensity magnitude using the probe in 
Fig. 3.2 for a 250 Hz sawtooth signal and additive noise with 𝜃𝜃𝑠𝑠 = 0°,∆𝑓𝑓 = 1 𝐻𝐻𝐻𝐻, 𝑐𝑐 = 343 𝐼𝐼

𝑠𝑠
, 𝑘𝑘 =

5.08 𝑐𝑐𝑚𝑚, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = 34 𝑑𝑑𝑑𝑑.  The corresponding analytical level bias errors are seen in Fig. 3.5. 
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Figure 3.9: Experimental bias errors for PAGE-calculated intensity direction using the probe in 
Fig. 3.2 for a 250 Hz sawtooth signal and additive noise with 𝜃𝜃𝑠𝑠 = 0°,∆𝑓𝑓 = 1 𝐻𝐻𝐻𝐻, 𝑐𝑐 = 343 𝐼𝐼

𝑠𝑠
, 𝑘𝑘 =

5.08 𝑐𝑐𝑚𝑚, and 𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 = 34 𝑑𝑑𝑑𝑑.  The corresponding analytical direction bias errors are seen in Fig. 
3.6. 

 

The experimental results exhibit remarkable agreement with the analytical results.  The 

frequency limit 𝑓𝑓lim matches the analytical result.  Above 𝑓𝑓lim, the error lobe edges can be clearly 

seen, as can the horizontal lines caused by unwrapping with discrete frequency bins.  Interestingly, 

the error lobes—though clearly present—are somewhat different than the analytical results.  This 

is possibly caused by the inherent three-dimensional nature of the experimental setup. 

Below 𝑓𝑓lim, the errors are extremely small, with one noted exception; for 𝜃𝜃𝑛𝑛 = 0° the non-

trivial error above around 15 kHz is caused by probe scattering.45  The level bias is especially 

noticeable, because scattering off the front microphone shields the center microphone, the auto-

spectrum of which is used to give the analytical intensity level.  For this reason, other small, non-

zero angular separation angles do not exhibit these increased bias errors.  Below 𝑓𝑓lim, the benefits 

of additive broadband noise are clearly manifest. 
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3.5 Conclusions 

When certain conditions are met, adding broadband noise to narrowband signals can 

greatly improve the calculation of active acoustic intensity using the PAGE method.  Below the 

spatial Nyquist frequency the PAGE method can obtain accurate intensity vectors with or without 

additive noise.  Above the spatial Nyquist frequency, the additive broadband noise provides phase 

information to improve unwrapping, which yields more accurate intensity vectors.  The conditions 

for when additive noise is beneficial are (1) The SNRa should exceed 10 dB at peak signal 

frequencies, and (2) the signal and additive noise sources should be separated by less than ~28°.  

An upper frequency limit 𝑓𝑓lim can be computed from the angular separation, sound speed, and 

microphone spacing, given in Eq. (38), above which additive noise is no longer beneficial.   

For certain probe configurations, scattering can occur before 𝑓𝑓lim is reached.  To reduce 

scattering, a greater microphone separation distance is beneficial.45  Probe rotation such that 

microphones no longer shield one another is also a viable option.  Increasing the microphone 

separation also decreases the spatial Nyquist frequency, which reduces the useable bandwidth 

when using the traditional method for calculating intensity; for the PAGE method, a greater 

microphone separation distance decreases 𝑓𝑓lim, though as the angular separation between the signal 

and additive noise sources goes to zero, 𝑓𝑓lim becomes infinite.  The experimental upper frequency 

limit necessarily depends on probe scattering, microphone spacing, and angular separation of the 

sources.  

As a general guideline, a smaller angular separation between the signal and the additive 

broadband noise source can yield a higher upper frequency limit for PAGE-based intensity 

calculation of narrowband noise.  As long as the SNRa exceeds 10 dB at peak frequencies, the 

intensity bias errors are minimal—within 0.5 dB and 2.5° of the magnitude and direction of the 
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analytical intensity.  These errors decrease with increasing SNRa and decreasing angular 

separation.  
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Coherence-based phase unwrapping for broadband acoustic 

signals 

4.1 Introduction 

Complex-valued functions are often separated into real and imaginary values.  For 

functions that demonstrate periodicity, a separation into magnitude and phase values is often more 

useful.  As a simple example, consider a unit phasor rotating in the complex plane as a function of 

frequency, 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗.  The real part is represented by a cosine wave, and the imaginary part by a sine 

wave.  The magnitude is constant, and the phase is piecewise linear, an example of which can be 

seen in the upper left plot of Fig. 4.1.  These phase values are known as the wrapped phase, because 

they are limited to an interval of 2π radians.  The values are aliased or wrapped, giving only the 

relative phase angle.  The absolute phase gives the total angle—including complete cycles of the 

phasor as a function of frequency—instead of the current angle, which in some situations is 

necessary.  The wrapped phase values can be shifted by 2π radian intervals, a process known as 

unwrapping, to obtain a continuous absolute phase relation, as seen in the lower left plot of Fig. 

4.1. 
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Figure 4.1: Examples of numerical wrapped phase values (top) and the resulting unwrapped 
phase using MATLAB’s function50 “unwrap” (bottom).  The noiseless case (left) is unwrapped 
perfectly, while the noisy case (right) contains obvious unwrapping errors. 

 

Phase unwrapping is not always so straightforward, most especially when dealing with 

noisy data.  Unwrapping is a common problem in such fields as signal processing, image 

processing, and optics.46- 48   Many acoustic variables are complex valued in frequency space—

obtainable by using a Fourier transform with time domain data.  Phase values at high frequencies 

are often aliased, making unwrapping useful for applications in areas such as beamforming, 

holography, and sound source localization.16,18  

Phase unwrapping uses a transfer function which, as the name indicates, gives the 

transformation of the complex-valued pressure recorded at one microphone location relative to 

that of a second microphone.  The complex-valued pressure quantity 𝑝𝑝� can instead be split into a 

magnitude 𝑃𝑃 and a phase 𝜙𝜙,7 
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 𝑝𝑝�(𝜔𝜔) = 𝑃𝑃(𝜔𝜔)𝑒𝑒𝑗𝑗𝜙𝜙(𝑗𝑗), (43) 

where 𝜙𝜙 gives the relative shift in waveforms of the same frequency between –π and π radians as 

measured by the two microphones.  For a plane wave propagating in line with both microphones, 

the phase changes linearly with increasing frequency.  When the frequency is such that the 

microphones are separated by half of a wavelength, known as the spatial Nyquist frequency, the 

phase can thereafter wrap and become aliased.  

Unwrapped phase values can be useful in a variety of situations.  In particular, the Phase 

and Amplitude Gradient Estimator (PAGE) method18 uses microphone pressure differences and 

the gradient of the transfer function’s phase to obtain active acoustic intensity estimates, 𝑰𝑰�𝑗𝑗: 

 𝑰𝑰�𝑗𝑗(𝜔𝜔) =
1
𝜔𝜔𝜌𝜌0

𝑃𝑃2∇𝜙𝜙. (44) 

In order to properly obtain the gradient of the phase, represented by ∇𝜙𝜙 in Eq. (21), phase values 

must be unwrapped properly.  Using the traditional method, the microphone spacing limits the 

usable bandwidth of results.  By using phase unwrapping, the PAGE method can find accurate 

acoustic intensity values well beyond the spatial Nyquist frequency.9  Results of this process are 

in Section 4.4. 

 

4.2 Background 

Phase unwrapping can be a difficult challenge in signal processing.  There is not necessarily 

a clearly correct answer in every situation.  Even when the trend can be seen visually, unwrapping 

algorithms often struggle.  Even the most appropriate unwrapping can result in erratic jumps, such 

as when the phase exhibits multiple shifts of approximately π radians in a narrow frequency range.  

Phase values that are linear in nature, such as plane waves, are simpler to unwrap than rapidly-

varying phase values. Li and Levinson49 show that for linear phase, a high signal-to-noise ratio in 
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the low frequencies—where the phase is not aliased—leads to the greatest chance of success.  At 

0 Hz the phase value is necessarily zero.  Each frequency bin with its phase value is a data 

point (𝑓𝑓𝑗𝑗,𝜙𝜙𝑗𝑗).  The goal for unwrapping is to join these points in such a manner as to produce a 

continuous phase trend.  The points are unwrapped by shifting points by any integer multiple of 

2π radians: 

 𝜙𝜙�𝑗𝑗 = 𝜙𝜙𝑗𝑗 + 2𝜋𝜋𝜃𝜃, 𝜃𝜃 = {0, ±1, ±2, … }. (45) 

In Eq. (45), 𝜙𝜙𝑗𝑗 is the wrapped phase (between –π and π radians) and 𝜙𝜙�𝑗𝑗 is the unwrapped phase, 

which is not restricted to a certain range.  There are a number of different methods for performing 

unwrapping, each with its own benefits and limitations. 

 

4.2.1 Simple unwrapping method 

Common unwrapping methods, such as MATLAB’s unwrap function, are conceptually 

very simple.50  The unwrapping is performed point-by-point in order of increasing frequency, and 

relies only upon the single previous data point.  The difference between data points is what triggers 

unwrapping.  A cutoff value 𝛾𝛾cut is chosen—typically π radians since the wrapped phase is 

contained in a 2π radian interval.  Whenever the difference exceeds the cutoff value, all the 

following data points are shifted by 2π radians: 

 𝜙𝜙�𝑗𝑗+1 = 𝜙𝜙𝑗𝑗+1 + 2𝜋𝜋𝜃𝜃𝑗𝑗+1,𝜃𝜃𝑗𝑗+1 = �
𝜃𝜃𝑗𝑗 + 1 if 𝜙𝜙𝑗𝑗+1 − 𝜙𝜙𝑗𝑗 < −𝛾𝛾cut
𝜃𝜃𝑗𝑗 − 1 if 𝜙𝜙𝑗𝑗+1 − 𝜙𝜙𝑗𝑗 > −𝛾𝛾cut
𝜃𝜃𝑗𝑗 otherwise

� ,𝜃𝜃1 = 0. (46) 

This ensures that the largest possible phase jump between adjacent points is π radians.  This works 

very well in many circumstances, such as for linearly varying phase values and data with high 

signal-to-noise ratios; however, many problems can arise.  Erroneous phase jumps are often a 

result of uncorrelated noise between the microphone pair.  The algorithm shifts values incorrectly, 
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even when the phase trend is clearly visible to the human eye.  An example of this is visible in the 

right plots of Fig. 4.1. 

 

4.2.2 Least-squares method 

Unfortunately, phase values do not always vary linearly, and signal-to-noise ratios are not 

always high.  Cusack et al.51 showed that for two-dimensional phase unwrapping, a modified 

nearest-neighbor algorithm can mitigate problems caused by noise.  Huntley52 also showed that 

smoothing improves unwrapping.  For one-dimensional phase unwrapping, it is therefore 

reasonable to use a smoothing technique such as the least-squares method. 

A least-squares method can prevent many of the unwrapping errors to which the simple 

unwrapping method is susceptible.  Single points with erratic phase values do not trigger an 

erroneous unwrapping.  An additional parameter is necessary in this case: the number of data 

points 𝑆𝑆 to use for the least-squares fit.  To unwrap the point (𝑓𝑓𝑗𝑗,𝜙𝜙𝑗𝑗), the least-squares method 

uses the 𝑆𝑆 previously unwrapped frequency data points {(𝑓𝑓𝑙𝑙,𝜙𝜙�𝑙𝑙)}𝑙𝑙=𝑗𝑗−𝑁𝑁𝑗𝑗−1  to obtain the slope 𝑚𝑚𝑗𝑗 and 

offset 𝑏𝑏𝑗𝑗 of the fitted line by way of the least-squares equation: 

 𝑨𝑨𝑗𝑗𝑇𝑇𝑨𝑨𝑗𝑗𝒙𝒙𝑗𝑗 = 𝑨𝑨𝑗𝑗𝑇𝑇𝜱𝜱𝑗𝑗, where 𝑨𝑨𝑗𝑗 =

⎣
⎢
⎢
⎢
⎡
𝑓𝑓𝑗𝑗−𝑁𝑁 1
𝑓𝑓𝑗𝑗−𝑁𝑁+1 1
𝑓𝑓𝑗𝑗−𝑁𝑁+2

⋮
𝑓𝑓𝑗𝑗−1

1
⋮
1⎦
⎥
⎥
⎥
⎤

,𝜱𝜱𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜙𝜙
�𝑗𝑗−𝑁𝑁

𝜙𝜙�𝑗𝑗−𝑁𝑁+1
𝜙𝜙�𝑗𝑗−𝑁𝑁+2

⋮
𝜙𝜙�𝑗𝑗−1 ⎦

⎥
⎥
⎥
⎥
⎤

,𝒙𝒙𝑗𝑗 = �
𝑚𝑚𝑗𝑗
𝑏𝑏𝑗𝑗 �. 

(47) 

The predicted unwrapped phase value 𝜙𝜙�𝑗𝑗 for frequency 𝑓𝑓𝑗𝑗 is then 𝜙𝜙�𝑗𝑗  = 𝑚𝑚𝑗𝑗𝑓𝑓𝑗𝑗 + 𝑏𝑏𝑗𝑗.  The 

unwrapped phase value 𝜙𝜙�𝑗𝑗 is found by shifting 𝜙𝜙𝑗𝑗 by 2π intervals to be as close to 𝜙𝜙�𝑗𝑗 as possible, 

i.e. 𝜃𝜃 is chosen such that �𝜙𝜙�𝑗𝑗 − 𝜙𝜙�𝑗𝑗� = |(𝑚𝑚𝑗𝑗𝑓𝑓𝑗𝑗 + 𝑏𝑏𝑗𝑗) − (𝜙𝜙𝑗𝑗 + 2𝜋𝜋𝜃𝜃)| < 𝜋𝜋.  This is likewise 

performed for each point in order of increasing frequency, where 𝜙𝜙 = 0 at 𝑓𝑓 = 0. 
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The least-squares method can prevent erroneous jumps in certain situations.  In frequency ranges 

of excessive noise, where many phase values are erratic, this method can still give a poorly 

unwrapped phase.  Though the phase itself is expected to be inaccurate in these ranges, unwrapping 

errors can also shift the phase values for all higher frequencies, hence the need for a better phase 

unwrapping algorithm. 

 

4.3 Coherence-based approach 

Using a coherence-based approach, many unwrapping errors can be avoided, because 

inaccurate unwrapping usually occurs in frequencies of poor coherence.  The algorithm described 

here shares many similarities with the least-squares approach.  The main difference is, naturally, 

the use of the coherence in order to accomplish unwrapping.  Coherence 𝛾𝛾𝑙𝑙𝑗𝑗2 (𝑓𝑓𝑗𝑗) is a frequency-

domain measure of the similarity of the signals received by microphones 𝑓𝑓 and 𝑗𝑗, with values 

between zero and one defined as: 

 𝛾𝛾𝑗𝑗2 = 𝛾𝛾𝑙𝑙𝑗𝑗2 (𝑓𝑓𝑗𝑗) =
�𝐺𝐺𝑙𝑙𝑗𝑗(𝑓𝑓𝑗𝑗)�

2

𝐺𝐺𝑙𝑙𝑙𝑙(𝑓𝑓𝑗𝑗)𝐺𝐺𝑗𝑗𝑗𝑗(𝑓𝑓𝑗𝑗). (48) 

The auto-spectrum of  microphone 𝑓𝑓 is represented as 𝐺𝐺𝑙𝑙𝑙𝑙, while 𝐺𝐺𝑙𝑙𝑗𝑗 gives the crosspectrum of 

microphones 𝑓𝑓 and 𝑗𝑗.  Coherence is often shown on a logarithmic scale and is more useful than 

linear coherence when applied in this unwrapping algorithm due to the fitting explained below. 

 

4.3.1 Coherence classification 

In order to use coherence to prevent erroneous unwrapping, which often occurs in ranges 

of poor coherence, frequency data points must be given a coherence classification or measure.  A 

basic classification is a division into two groups, one of usable coherence and the other of poor 



60 

coherence.  There are many possible ways to make this distinction, for example by picking a 

coherence threshold value.  This is useful in some situations, though the method used here takes a 

different approach.  It is done in the following manner: 

• The average logarithmic coherence is computed as a threshold value 〈𝛾𝛾𝑙𝑙𝑐𝑐𝑙𝑙2 〉 =
1
𝑠𝑠
∑ log10 𝛾𝛾𝑗𝑗2𝑠𝑠
𝑗𝑗=1 , and all points above this threshold are classified as having usable 

coherence.  Other threshold values can be useful depending on the application. 
• A curve is fit to the points below the threshold, using a double exponential model 𝑐𝑐1𝑒𝑒𝑐𝑐2𝑓𝑓𝑘𝑘 +

𝑐𝑐3𝑒𝑒𝑐𝑐4𝑓𝑓𝑘𝑘 where 𝑐𝑐𝑙𝑙 is some constant.  Other fitting models may be used, though the double 
exponential is versatile enough to fit many different coherence trends. 

• Points above the fitted line are classified as having usable coherence, and those below the 
line as having poor coherence. 

This classification ensures that not too many points are marked as poorly coherent.  It also ensures 

that there will not be long frequency ranges with only points of poor coherence.  The dips in 

coherence are found relatively well using this method.  For a visual example of fitting to data, see 

Fig. 4.2. 
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Figure 4.2: Classification of usable coherence and poor coherence for four different microphone 
pairs.  The data for these coherence values come from the jet noise data described in section 4.3.2.  
The unwrapped phases for these data are seen in Fig. 4.4, with corresponding coloring. 

 

4.3.2 Unwrapping method 

After the data points have been classified by their coherence values, the unwrapping is 

performed using the least-squares approach.  The points with usable coherence are first unwrapped 

independently of those of poor coherence, using the 𝑆𝑆 usable points lower in frequency.  Phase 

values are shifted in 2π intervals so as to be placed as close as possible to the least-squares 

prediction.  The points with poor coherence are not used for unwrapping these points.  This ensures 

that the ranges of poor coherence do not affect the overall phase trend.  An example is pictured in 

the left plot of Fig. 4.3. 
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In order to unwrap the points of poor coherence, the 𝑆𝑆 closest points, including both points 

of lower and higher frequencies, with useable coherence are used in the least-squares approach.  

An example is pictured in the right plot of Fig. 4.3.  

 

Figure 4.3: The points of usable coherence are unwrapped first using least-squares (left), with 
N=30 for this case.  Then the points of poor coherence are unwrapped to fit the trend (right).  As 
could be expected, the points with poor coherence do not fit as well as the points with usable 
coherence, just as those above the threshold fit better than those below.  These data correspond to 
the red coherence values seen in Fig. 4.2, and the red line in Fig. 4.4. 

 

The main disadvantage of this approach can be seen when phase values are approximately 

π radians away from the predicted values.  The closest match may be above or below, and this can 

lead to a jagged-looking unwrapped phase, such as the 38 kHz range in Fig. 4.4.  However, an 

erroneous phase value at 𝑓𝑓 = 𝑓𝑓𝑗𝑗 does not cause erroneous unwrapping that shifts the phase for 𝑓𝑓 >

𝑓𝑓𝑗𝑗 as it does using the simple unwrapping method.  The phase can be unwrapped across the ranges 

of poor frequency, not necessarily in the ranges of poor frequency.  This is what is necessary to 

find the proper phase gradient.  The results using this unwrapping method are seen in the right plot 

of Fig. 4.4. 
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Figure 4.4: The results of basic unwrapping (left) compared to coherence-based unwrapping 
(right) for four different microphone pairs using jet noise data.  The coherence for each set of data 
is seen in Fig. 4.2 with corresponding colors.  The obviously erroneous phase jumps seen using 
basic unwrapping have been removed by using coherence unwrapping. 

 

4.3.3 Alternative weighting method 

A variation can be made to this method by using weighted least-squares in place of regular 

least-squares.  Each point (𝑓𝑓𝑗𝑗,𝜙𝜙𝑗𝑗) is given a weighting 𝑤𝑤𝑗𝑗. A simple weighting takes a scaled 

logarithmic coherence value as the weight.  Additionally, points nearer in frequency may be given 

a larger weighting. 

Many different weightings are possible.  The weighted least-squares equation is given in 

Eq. (49), using the same definitions as in Eq. (47): 

 𝑨𝑨𝑗𝑗𝑇𝑇𝑾𝑾𝑗𝑗𝑨𝑨𝑗𝑗𝒙𝒙𝑗𝑗 = 𝑨𝑨𝑗𝑗𝑇𝑇𝑾𝑾𝑗𝑗𝜱𝜱𝑗𝑗, where  𝑾𝑾𝑗𝑗 =

⎣
⎢
⎢
⎢
⎡
𝑤𝑤𝑗𝑗−𝑁𝑁 0    0 ⋯ 0
0 𝑤𝑤𝑗𝑗−𝑁𝑁+1 0 ⋯ 0
0  0 𝑤𝑤𝑗𝑗−𝑁𝑁+2 ⋱ ⋮
⋮    ⋮ ⋱      ⋱      0
0  0  ⋯ 0 𝑤𝑤𝑗𝑗−1 ⎦

⎥
⎥
⎥
⎤

. (49) 

The same unwrapping procedure described in the previous section is followed in this 

variation.  The points with poor coherence are not used to unwrap the points of usable coherence.  

Results are very similar in most cases, but not necessarily identical, especially within frequency 

ranges of poor coherence. 
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4.4 Experimental results 

In addition to numerical data, two different data sets have been investigated in great detail 

with this phase unwrapping algorithm, namely anechoic chamber measurements of a dipole-like 

radiation field and jet noise.  Active acoustic intensity results for each using the coherence-based 

phase unwrapping algorithm are compared to that using the MATLAB unwrap function,50 using 

the Phase and Amplitude Gradient Estimator (PAGE) Method.18  As explained previously, this 

method uses the gradient of the phase and therefore needs accurately unwrapped phase values to 

produce accurate active acoustic intensity vectors above the spatial Nyquist frequency.  The 

acoustic intensity direction can be greatly impacted by incorrectly unwrapped phase values. 

 

4.4.1 Anechoic experiment 

4.4.1.1 Experimental setup 

Measurements were made in the anechoic chamber at BYU by D. K. Torrie7 in order to 

test the efficacy of the PAGE method.  A two-dimensional probe consisting of three microphones 

in an equilateral triangle arrangement around a center microphone was used for the receiver.  The 

microphone radius is 2 inches.  The source consisted of the middle two elements (or one of the 

middle elements for the monopole case) of a loudspeaker array consisting of four 6.3 cm 

loudspeakers spaced 17.78 cm apart.7  For most frequencies, the coherence is very high, exceeding 

0.99.  However, due to the lobe patterns of a dipole at low frequencies and more complex 

interference patterns at higher frequencies, the coherence drops markedly at specific frequencies 

and locations for which one microphone is located in an interference null. Coherence and phase 

values for microphone pairs with the probe at a single location are shown in Fig. 4.5. 
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Figure 4.5: For comparison, the results of the unwrapping algorithm for the dipole case are 
shown.  The red lines in each are the same microphone pair.  The magenta line (bottom left) gives 
predicted phase values.  The dashed lines (bottom right) show the simple unwrapping results, and 
the solid lines the coherence-based results.  See previous figures for detailed explanations. 

 

4.4.1.2 Results 

The coherence-based approach can deal with unwrapping errors in frequency ranges that 

exhibit poor coherence.  Fig. 4.6 shows a spatial map of acoustic intensity vectors for the given 

frequency.  The unwrapping is done across frequency for each position individually.  When 

unwrapping errors have occurred at lower frequencies the vectors appear incorrect. 
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Figure 4.6: A comparison of using simple unwrapping (left) and coherence-based unwrapping 
(right) to calculate active acoustic intensity using the PAGE method.  Many of the erroneous 
vectors have been markedly improved.  The blue dots represent the probe microphones for the 
selected location. 

 

Something important to note is that the intensity vectors within frequency nulls are not 

necessarily improved.  This, however, is not the goal; instead, the vectors should be valid for 

frequencies above which a frequency null has swept across the probe location.  We are concerned 

with unwrapping across frequencies that exhibit poor coherence (when the vector is in a null), 

rather than unwrapping in the frequency ranges of poor coherence.  For the spatial map, the 

erroneous vectors in the areas with high intensity are the result of unwrapping errors at lower 

frequencies, when this position was in a null.  By using coherence unwrapping, many of these 

errors are avoided. 

 

4.4.2 Jet noise experiment 

4.4.2.1 Experimental setup 

Acoustical measurements were made at a jet facility at the Hypersonic High-enthalpy Wind 

Tunnel at Kashiwa Campus of the University of Tokyo.  An unheated jet was ideally expanded 
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through a 20-mm diameter converging-diverging nozzle for a design Mach number of 1.8.  

Although the facility is not anechoic, nearby reflecting surfaces were wrapped in fiberglass to limit 

reflections.53  The same microphone probe configuration described in the dipole experiment was 

used to obtain measurements.  The data used to describe the unwrapping method come from this 

experiment. 

4.4.2.2 Results 

Whereas the dipole experiment measurements exhibit excellent coherence, the jet noise 

experiment measurements exhibits poor coherence between probe microphone pairs, with typical 

values of less than 0.01.  In spite of this extremely low coherence, the phase values still vary rather 

linearly with frequency.  There are relative peaks and dips in coherence across the frequency range 

of interest.  The coherence-fitting algorithm described above works well with this, catching the 

dips and appropriately classifying frequency ranges of poor coherence.  The large phase jumps in 

these ranges result in a very poorly unwrapped phase when using the simple approach.  The 

coherence-based approach, on the other hand, is not thrown off by these false jumps, and recovers 

remarkably well. 

Figure 4.7 contains spatial maps for the acoustic intensity in the jet noise experiment.  The 

upper figures show the results using regular (left) and coherence-based unwrapping (right).  To 

compare the two, the plots have been superimposed (bottom) and the vectors have been colored.  

The results using the coherence-based approach vary more smoothly in space, as we would expect 

to happen physically. 
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Figure 4.7: Active acoustic intensity vector plots resulting from using simple unwrapping (top left) 
and coherence-based unwrapping (top right).  To aid with visual comparison, these plots have 
been superimposed (bottom) with differently-colored vectors. 

 

4.5 Future Work 

This phase unwrapping algorithm has been applied to situations other than active acoustic 

intensity, such as for beamforming, and has shown marked improvements.54  Investigations into 

higher-order PAGE calculations for finding active acoustic intensity are currently ongoing.55  

Preliminary results of this method combined with coherence unwrapping using the anechoic 

chamber data show further improvements, and can be seen in Fig. 4.8. 
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Figure 4.8: Active acoustic intensity vector plots using coherence unwrapping with the PAGE 
calculation (left) and coherence unwrapping with a higher-order PAGE calculation (right). 

 

4.6 Conclusion 

A coherence-based phase unwrapping algorithm can better determine absolute phase 

values than can simple unwrapping methods.  Phase unwrapping is a problem that may not always 

have a viable solution.  Some frequency ranges contain so many jumps that one cannot be sure 

what the phase is supposed to be.  In other situations, a phase trend can be picked out visually, but 

algorithms can produce results with many false jumps.  There is not a one-case-fits-all solution. 

In spite of these difficulties, it is possible to improve results by using a coherence-based 

approach.  Phase unwrapping errors are often the result of trying to unwrap in ranges of relatively 

poor coherence.  By giving ranges of poor coherence no weight (or less weight) in unwrapping, a 

more viable phase trend can be obtained.  This in turn leads to less error in active acoustic intensity 

vectors using the PAGE method, which can increase the bandwidth to well beyond the spatial 

Nyquist frequency. 
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A coherence-based phase and amplitude gradient estimator 

method for calculating active acoustic intensity 

The Phase and Amplitude Gradient Estimator (PAGE) method9 has been developed as an 

alternative to the traditional p-p method for calculating energy-based acoustic measures such as 

active acoustic intensity. While this method shows many marked improvements over the 

traditional method, such as a wider valid frequency bandwidth for broadband sources, 

contaminating noise can lead to inaccurate results.  Contaminating noise degrades performance for 

both the traditional and PAGE methods and causes probe microphone pairs to exhibit low 

coherence.  When coherence is low, better estimates of the pressure magnitude and gradient can 

be obtained by using a coherence-based approach, which yields a more accurate intensity estimate.  

This coherence-based approach to the PAGE method, known as the CPAGE method, employs two 

main coherence-based adjustments.  The pressure magnitude adjustment mitigates the negative 

impact of uncorrelated contaminating noise and improves intensity magnitude calculation.  The 

phase gradient adjustment uses coherence as a weighting to calculate the phase gradient for the 

probe, and improves primarily the calculation of intensity direction.  Though requiring a greater 

computation time than the PAGE method, the CPAGE method is shown to improve intensity 

calculations, both in magnitude and direction, in the presence of noise. 
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5.1 Introduction 

Coherence is an important measure in many signal processing applications, including 

beamforming,56 underwater acoustics,57 and intensity calculations.58  It is a frequency-space 

measure that gives the similarity of signals received by a microphone pair, and ranges between 

values of zero and one.  Low coherence is often indicative of extraneous noise and can also be 

caused by multiple sources or nonlinear effects.20  As such, it can give insight into the nature of a 

sound field. 

Coherence is defined by using the auto and cross-spectra for two microphones 𝜇𝜇 and 𝜈𝜈 as 

 𝛾𝛾𝜇𝜇𝜇𝜇2 (𝜔𝜔) =
�𝐺𝐺𝜇𝜇𝜇𝜇(𝜔𝜔)�

2

𝐺𝐺𝜇𝜇𝜇𝜇(𝜔𝜔)𝐺𝐺𝜇𝜇𝜇𝜇(𝜔𝜔), (50) 

where 𝜔𝜔 is the angular frequency, 𝐺𝐺𝜇𝜇𝜇𝜇 and 𝐺𝐺𝜇𝜇𝜇𝜇 are auto-spectra, and 𝐺𝐺𝜇𝜇𝜇𝜇 is the cross-spectrum.  

Although 𝐺𝐺𝜇𝜇𝜇𝜇 can be imaginary, the auto-spectra are purely real, and so the coherence will always 

be real-valued and between zero and one.13  For a probe consisting of 𝜃𝜃 microphones, there will 

be 𝜃𝜃𝑝𝑝 = 𝑛𝑛(𝑛𝑛−1)
2

 microphone pairs, and hence 𝜃𝜃𝑝𝑝 coherence spectra.  These coherence spectra are 

useful because, as the coherence is a measure of the similarity of signals as measured by the 

microphones, it can be used to account for the effects of contaminating noise, and improve 

intensity calculations. 

Active acoustic intensity, which is a frequency and spatially-dependent vector measuring 

the propagation of sound energy, is useful for a number of applications, including source 

characterization and localization.15  To calculate the intensity, both the pressure and particle 

velocity are necessary.  Some methods exist to measure particle velocity, though many methods 

instead use a multi-microphone probe to measure pressure at different spatial locations and then 

obtain a value for the particle velocity using the calculated pressure gradient.  Different methods 
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have different ways to obtain the pressure gradient, which can result in different calculated 

intensity vectors.14   

A commonly-used method for acoustic intensity, known as the p-p or traditional method, 

calculates the pressure gradient by using real and imaginary parts of the complex pressure.  Using 

the five-microphone orthogonal probe pictured in Fig. 5.1, where the coordinate system is defined 

in the caption, the two-dimensional intensity is given by 

 𝑰𝑰(𝜔𝜔) =
Im{𝐺𝐺12(𝜔𝜔)} − Im{𝐺𝐺13(𝜔𝜔)}

4𝑘𝑘𝜌𝜌0𝜔𝜔
𝑥𝑥� +

Im{𝐺𝐺15(𝜔𝜔)} − Im{𝐺𝐺14(𝜔𝜔)}
4𝑘𝑘𝜌𝜌0𝜔𝜔

𝑦𝑦�, (51) 

where 𝜌𝜌0 is the air density and 𝑘𝑘 is the microphone spacing.  The traditional method is fairly robust 

to uncorrelated contaminating noise, as it uses cross-spectral values to calculate the intensity, and 

cross-spectral values are not impacted by uncorrelated noise.  For correlated contaminating 

noise—such as noise emitted by additional sources—results are more complicated.  However, this 

method can only be used for frequencies below the spatial Nyquist frequency, defined as when the 

microphone spacing is equal to one-half of an acoustic wavelength, i.e. the sound speed divided 

by 2𝑘𝑘.  Even below this frequency, the intensity magnitude estimate rolls off,9 and so the 

traditional method is only used for frequencies well below the spatial Nyquist frequency8—level 

bias errors due to processing are about 1 dB at half the spatial Nyquist frequency.10   
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Figure 5.1: A five-microphone orthogonal probe used for 2-dimensional intensity experiments.  
For the coordinate system defined, microphone 1 is in the center, while 𝑥𝑥� points in the direction 
from microphone 1 to microphone 3, and 𝑦𝑦� points in the direction from microphone 1 to 
microphone 4.  The microphones in numerical order are then positioned at 
locations (0,0), (−𝑘𝑘, 0), (𝑘𝑘, 0), (0, 𝑘𝑘), (0,−𝑘𝑘). 

 

Another method known as the Phase and Amplitude Gradient Estimator (PAGE) method9 

uses the magnitude and phase of the complex pressure, instead of real and imaginary parts.  By 

using phase unwrapping,12 this method can yield reliable intensity estimates well above the spatial 

Nyquist frequency for radiating sources.27 The general equation for the PAGE method intensity 

estimate is 

 𝑰𝑰(𝜔𝜔) =
1
𝜌𝜌0𝜔𝜔

𝑃𝑃2(ω)∇𝜙𝜙(𝜔𝜔), (52) 

where 𝑃𝑃 is the pressure magnitude, and ∇𝜙𝜙 is the phase gradient.  Using the five-microphone 

orthogonal probe in Fig. 5.1, the PAGE intensity is calculated as 

 𝑰𝑰(𝜔𝜔) =
−𝐺𝐺11(𝜔𝜔) arg{𝐺𝐺23(𝜔𝜔)}

4𝑘𝑘𝜌𝜌0𝜔𝜔
𝑥𝑥� +

−𝐺𝐺11(𝜔𝜔) arg{𝐺𝐺54(𝜔𝜔)}
4𝑘𝑘𝜌𝜌0𝜔𝜔

𝑦𝑦�, (53) 

where 𝐺𝐺11 is the auto-spectrum of the middle microphone.  Note that the argument of the transfer 

function is equivalent to the argument of the cross-spectrum, since the transfer function is simply 

a complex cross-spectrum divided by the product of real-valued auto-spectra.  The auto-spectra 
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are affected by noise, and because of this, though the PAGE method can be used for higher 

frequencies, contaminating noise can reduce the usefulness of the PAGE method.10  

The calculation bias errors for both pressure-gradient based intensity methods have been 

studied, 7 including the effects of different probe configurations and rotation, as well as with 

contaminating noise.10  Bias errors for the PAGE method are essentially caused by a combination 

of two separate mechanisms: errors due to pressure magnitude and errors due to phase gradient 

calculation.  Because errors are the result of two mechanisms, two main adjustments can be made.  

Both adjustments make use of the coherence measured by the microphone probe.  These 

adjustments can be implemented into the PAGE method calculation; the resulting approach is 

called the CPAGE method, for the Coherence-based Phase and Amplitude Gradient Estimator 

method.  The pressure magnitude adjustment is discussed in Section 5.2, and the phase gradient 

adjustment is discussed in Section 5.3.  Experimental validation for these corrections is given in 

Section 5.4. 

 

5.2 Pressure magnitude adjustment 

Using the PAGE method, one type of error in intensity calculations caused by 

contaminating noise is encountered when obtaining the pressure magnitude estimate.  Because 

auto-spectral values are used, as seen in Eq. (52), the pressure of any contaminating noise is 

included in the pressure measurements and therefore in the intensity calculation.  The pressure 

magnitude is squared to obtain the auto-spectrum, and so even small errors have a large impact on 

intensity calculations.  In Chapter 2, a magnitude adjustment was found that can reduce the 

pressure magnitude bias errors of the PAGE method.10  This correction relies upon the estimate of 

the pressure magnitude. 
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Probe geometry determines how the pressure value is obtained.  There are two qualitatively 

different types of probes: those with a microphone located at the geometric center of the probe, 

and those without.  When there is a microphone at the probe center, the magnitude of the pressure 

measured by this microphone is taken to be pressure magnitude, and no calculation is needed: 

 𝑃𝑃2(𝜔𝜔) = |𝑝𝑝�𝑐𝑐(𝜔𝜔)|2, (54) 

where the subscript c indicates that this is the probe’s center microphone.  For probes without a 

center microphone, the pressure magnitude is calculated by averaging the pressure magnitude 

values obtained at all of the microphones: 

 𝑃𝑃2(𝜔𝜔) = �
1
𝜃𝜃
�|𝑝𝑝�𝑙𝑙(𝜔𝜔)|
𝑛𝑛

𝑙𝑙=1

�
2

. (55) 

The PAGE method uses the pressure magnitude from Eqs. (54) and (55) directly, while the CPAGE 

method makes an adjustment to the pressure magnitude. 

The bias errors of both the PAGE and traditional methods in the presence of contaminating 

noise are investigated in Chapter 2.10  Because the traditional method incorporates cross spectra, 

it is unaffected by uncorrelated noise in some cases, such as when the contaminating noise is plane-

wave like.10  For the PAGE method, however, uncorrelated noise simply adds to the overall 

pressure magnitude, increasing the magnitude of the auto-spectrum and therefore the intensity 

magnitude.  However, by using the coherence values of the probe microphones, the pressure 

magnitude of the uncorrelated noise relative to that of the signal can be calculated.  The coherence 

can therefore be used to account for the additional pressure magnitude caused by the contaminating 

noise.  The resulting pressure estimate will therefore more accurately estimate the pressure 

magnitude of the sound source of interest, rather than the combined pressure of the source and 

contaminating noise (this approach can be used to reduce errors in signals that contain wind noise, 

for example). 
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As a basic example, consider a case where all microphones in a probe measure the 

combined pressure from uncorrelated plane-wave-like noise and a plane wave signal that are of 

equal amplitude, i.e., the signal-to-noise ratio, SNR, is zero.  The PAGE-calculated pressure is 

double what would be calculated without the contaminating noise, resulting in a +3 dB bias caused 

by the contaminating noise (see Fig. 2.3).  The coherence gives the amount of contamination 

measured between each microphone pair, so if the coherence values are the same for each 

microphone pair, the exact amount of contamination caused by uncorrelated noise—and hence the 

SNR—can be found.  Removing the pressure caused by the contaminating noise would make the 

calculation bias error go to zero. 

Unfortunately, in practice coherence values are not identical for all probe microphone 

pairs, and so obtaining the “effective” SNR for the probe is nontrivial.  When microphone pairs 

have different coherence values, an estimated SNR—or an effective coherence for the probe—

must be calculated.  This is not as simple as averaging all coherence values, however.  As an 

example, consider the five-microphone orthogonal probe in Fig. 5.1, for a case where all 

microphones record the desired the signal, while a single microphone also measures additional 

pressure from uncorrelated noise (e.g. electrical noise).  For this probe, there are ten separate 

microphone pairs, and with only one microphone picking up a contaminated signal, the coherence 

of four of these microphone pairs is reduced.  Averaging the coherence across all microphone pairs 

gives a skewed result of the effective probe coherence or overall SNR. 

There are many possible solutions to the problem of estimating the SNR; the CPAGE 

method uses one that is easy to implement, and gives a conservative pressure magnitude 

adjustment.  The maximum coherence value across all microphone pairs at a particular frequency 

is used as the effective probe coherence.  Using the maximum coherence value ensures that only 
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noise measured by all microphones is removed and therefore will not cause an over-correction.  

Using the pressure magnitude 𝑃𝑃—which is obtained from the composite signal of the source and 

noise together, as given in Eqs. (54) and (55)—the adjusted pressure magnitude utilized by the 

CPAGE method is calculated as 

 𝑃𝑃CPAGE2 (𝜔𝜔) = �max
μ,ν

��𝛾𝛾𝜇𝜇𝜇𝜇2 (𝜔𝜔)� 𝑃𝑃(𝜔𝜔)�
2

= max
μ,ν

�𝛾𝛾𝜇𝜇𝜇𝜇2 (𝜔𝜔)� 𝑃𝑃2(𝜔𝜔). (56) 

Note that any pressure adjustment leads to a reduction of the central pressure value, since the 

coherence can never exceed a value of one.  This adjustment is reasonable because contaminating 

noise always serves to increase, rather than decrease, the total pressure magnitude.  The 

multiplicative factor �𝛾𝛾𝜇𝜇𝜇𝜇2  is explained in Section 2.3.1, and causes the calculation bias errors of 

the CPAGE method for a plane wave source and uncorrelated noise to go to zero, while causing a 

reduction in bias errors for other source and noise combinations. 

The adjustment in Eq. (56) is most effective when all microphones record uncorrelated 

contaminating noise.  All microphone pairs must exhibit a decrease in coherence at the same 

frequency in order for any correction to be made.  When microphone pairs demonstrate vastly 

different coherence values—whether due to correlated contaminating noise or different levels of 

uncorrelated contaminating noise—an adjustment to the phase gradient is more useful. 

 

5.3 Phase gradient adjustment 

The first adjustment utilized by the CPAGE method improves the intensity magnitude 

calculation; the phase gradient adjustment can have some impact on intensity magnitude, though 

primarily is of use in improving the intensity direction.  Using the PAGE method, the intensity 

calculation is given in Eq. (52), and calculating the intensity direction relies upon estimating the 
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phase gradient, ∇𝜙𝜙.  This frequency-dependent phase gradient is calculated by using the phase of 

the transfer function between probe microphone pairs, then performing a least-squares fit to obtain 

a phase gradient for the probe:  

 ∇𝜙𝜙 = (XTX)−1XT∆𝜙𝜙, (57) 

where X and ∆𝜙𝜙 are defined below. 

 The matrix or vector X is of size 𝜃𝜃𝑝𝑝 × 𝑑𝑑 where 𝜃𝜃𝑝𝑝 is the number of probe microphone pairs 

(𝜃𝜃𝑝𝑝 = 𝑛𝑛(𝑛𝑛−1)
2

 for a probe consisting of 𝜃𝜃 microphones) and 𝑑𝑑 is probe intensity-measurement 

dimensionality.  The matrix X is composed of the physical distance between probe microphone 

positions: 

 X = �
𝑥𝑥2 − 𝑥𝑥1 ⋯ 𝑥𝑥𝑛𝑛 − 𝑥𝑥1
𝑦𝑦2 − 𝑦𝑦1 ⋯ 𝑦𝑦𝑛𝑛 − 𝑦𝑦1
𝐻𝐻2 − 𝐻𝐻1 ⋯ 𝐻𝐻𝑛𝑛 − 𝐻𝐻1

𝑥𝑥3 − 𝑥𝑥2 ⋯ 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1
𝑦𝑦3 − 𝑦𝑦2 ⋯ 𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛−1
𝐻𝐻3 − 𝐻𝐻2 ⋯ 𝐻𝐻𝑛𝑛 − 𝐻𝐻𝑛𝑛−1

�
T

. (58) 

where 𝑥𝑥,𝑦𝑦, and 𝐻𝐻 are orthogonal coordinates in three-dimensional space, and the subscripts give 

the probe microphone numbers.  For one- or two-dimensional intensity probes, only the first or 

second columns, respectively, of X are used.  Because the physical positions of the probe are not 

frequency dependent, the pseudoinverse (XTX)−1XT utilized by the PAGE method is the same for 

all frequencies, and must only be computed once. 

 The vector ∆𝜙𝜙—not to be confused with ∇𝜙𝜙, the phase gradient—is of length 𝜃𝜃𝑝𝑝, and gives 

the measured phase differences between microphone pairs.  Phase differences are given by the 

argument of the transfer function (or cross-spectrum here), and are frequency-dependent:   

 ∆𝜙𝜙 = �arg{𝐺𝐺12} ⋯ arg{𝐺𝐺1𝑛𝑛} arg{𝐺𝐺23} ⋯ arg�𝐺𝐺𝑛𝑛−1,𝑛𝑛��
𝑇𝑇

. (59) 

Because measured phase differences lie in a 2𝜋𝜋 radian interval, this requires the use of phase 

unwrapping to get accurate phase differences above the spatial Nyquist frequency.12  The 
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vector ∆𝜙𝜙, therefore, must contain unwrapped transfer-function phase differences to be useful 

above the spatial Nyquist frequency. 

The phase gradient adjustment implemented by the CPAGE method is conceptually simple: 

instead of using a least-squares method, a weighted least-squares method is used.  The weighted 

least-squares method is similar to the least-squares method, though—as the name implies—it 

allows for data points (phase differences) to be given different weights or importance in the fitting 

algorithm.  The weights used for the CPAGE method are the square roots of the coherence values 

between microphone pairs, �𝛾𝛾𝜇𝜇𝜇𝜇2 , the same values used in the pressure magnitude adjustment.  

Note that the weights used are frequency-dependent.  These weights are combined into a diagonal 

matrix of size 𝜃𝜃𝑝𝑝 × 𝜃𝜃𝑝𝑝, 

 W = diag ��𝛾𝛾122 ⋯ �𝛾𝛾1𝑛𝑛2 �𝛾𝛾232 ⋯ �𝛾𝛾𝑛𝑛,𝑛𝑛−1
2 �, (60) 

where W is frequency-dependent.  The frequency-dependent phase gradient obtained by the 

CPAGE method using a weighted least-squares algorithm is then 

 ∇𝜙𝜙 = (XTWX)−1XTW∆𝜙𝜙. (61) 

Equation (61) uses the weighted pseudoinverse (XTWX)−1XTW.  Unlike the unweighted 

pseudoinverse, the weighted pseudoinverse varies with frequency, since the weighting matrix itself 

is frequency dependent.  The main disadvantage to this is that a pseudoinverse must be computed 

for each frequency, which increases overall computation time.  However, the phase gradient 

adjustment allows the CPAGE method to improve intensity calculation (most especially intensity 

direction) when contaminating noise is present. 
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5.4 Experimental verification 

The two coherence-based adjustments to the PAGE method explained are uniquely suited 

for different situations.  The magnitude adjustment—Eq.  (56)—is most applicable when all probe 

microphone measurements include uncorrelated noise, while the phase gradient adjustment—Eq. 

(61)—is most applicable when only some of the microphones are contaminated by noise, or when 

the contaminating noise is self-correlated.  The CPAGE method uses both the pressure magnitude 

and phase gradient adjustments simultaneously, though, depending on the situation, one 

adjustment can have a much larger impact than the other.  Two different experiments are used to 

show the effects of each adjustment individually.  Experimental results show how the CPAGE 

method calculation differs from the PAGE method calculation when microphone signals contain 

contaminating noise.  

Measurements were taken in BYU’s large anechoic chamber, described in related 

publications.11,27  The five-microphone orthogonal probe for two-dimensional intensity 

calculation—pictured in Fig. 5.1—was used, where the probe radius 𝑘𝑘 = 0.25 m (see Fig. 5.2).  

This relatively large probe radius was used so that individual microphones could be more easily 

subjected to contaminating noise.  The source used for all experiments was a loudspeaker emitting 

broadband noise.  The calculation bias errors for the CPAGE and PAGE method are compared.  

Rather than using an analytical intensity for comparison, the results of the PAGE method in the 

absence of noise are used as the benchmark value.  This choice allows bias errors to show the 

differences in how both methods handle contaminating noise.  A bias error of zero means that the 

contaminating noise has no effect on intensity calculation.  The magnitude and direction bias errors 

are explicitly defined, respectively, as 
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 𝐿𝐿𝜖𝜖,𝑰𝑰 = 10 log10 �
|𝑰𝑰noise|

|𝑰𝑰| �  dB, (62) 

 𝜃𝜃𝜖𝜖,𝑰𝑰 = 𝜃𝜃noise − 𝜃𝜃, (63) 

where |𝑰𝑰| and 𝜃𝜃 are the magnitude and direction, respectively, of the intensity as calculated by the 

PAGE method in the absence of contaminating noise, and |𝑰𝑰noise| and 𝜃𝜃noise are the calculated 

intensity magnitude and direction of either method when contaminating noise is present.  Bias 

errors for the traditional method are not shown as the spatial Nyquist frequency for this probe is 

686 Hz, and so for most frequencies of interest (beyond about 200 Hz) the traditional method 

intensity calculations are unreliable.8 

 

Figure 5.2: Experimental setup.  The five-microphone orthogonal probe has a radius of 𝑘𝑘 =
0.25 𝑚𝑚.  The loudspeaker was used as the source for both experiments, while the parametric 
speaker array was used as the noise source for the phase gradient adjustment experiment. 

 

5.4.1 Pressure magnitude adjustment experiment 

To show the effectiveness of the coherence-based pressure magnitude adjustment, all 

microphone signals were contaminated.  Measurements were first taken of the source alone—the 

results of the PAGE method for these measurements give the benchmark values.  The signals 

acquired were then contaminated with computer-generated broadband white noise, with an 

independent contamination signal for each microphone.  Because the contaminating signals were 

of approximately equal amplitude for each microphone, the resulting coherence values for all 
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microphone pairs were also of similar amplitude.  The contaminated signals had much larger 

pressure magnitudes than the uncontaminated signals (SNR ≈ −6 dB).  This meant that the PAGE 

method calculated a much larger intensity magnitude for the contaminated case, resulting in a large 

level bias error due to noise. 

The CPAGE method can account for the uncorrelated contaminating noise, resulting in 

much smaller level bias errors than the PAGE method.  Because intensity direction calculation 

uses arguments of cross-spectra, which are largely unaffected by uncorrelated contaminating noise, 

the calculated intensity direction for both methods should match the noiseless case, resulting in 

only small angular bias errors. 

The results for this experiment are seen in Fig. 5.3.  Sound pressure levels obtained from 

auto-spectral values for two of the probe microphones (numbered 1 and 2 in Fig. 5.1) are shown 

in Fig. 5.3(a).  The solid lines give the sound pressure levels of the source alone, while the dashed 

lines are the results obtained from the contaminated signals.  The coherence of the contaminated 

signals for the four microphone pairs which include the center microphone (number 1) are shown 

in Fig. 5.3(b). 

The level bias errors for the PAGE and CPAGE method due to the contaminating noise are 

shown in Fig. 5.3(c).  Because the contaminating noise is much louder than the source, the PAGE 

method shows consistently large bias errors at all frequencies: calculated levels are a result of the 

noise, rather than of the source.  As expected, the CPAGE method can correctly account—at least 

in part—for the contaminating uncorrelated noise.  At all frequencies, this results in a smaller 

magnitude bias for the CPAGE method.  The PAGE method calculates a larger magnitude because 

of the contaminating noise, while variation in the CPAGE method magnitude follows the same 
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trend across frequency but with lower bias errors.  As expected, the angular bias errors for both 

methods are nearly zero, as shown in Fig. 5.3(d). 

 

Figure 5.3: Bias errors for the PAGE and CPAGE methods—in comparison to the noiseless 
PAGE intensity results—caused by adding uncorrelated broadband white noise to the signals 
recorded by all probe microphones independently.  Sound pressure levels obtained from 
microphone auto-spectral values are shown in (a), where the solid lines are for the source alone, 
and the dashed lines are for the contaminated signal.  The coherence of the contaminated signals 
for various microphone pairs is shown in (b).  The CPAGE method is seen to have reduced 
magnitude bias errors (c), while the angular bias is mostly unchanged from that of the PAGE 
method (d). 

 

5.4.2 Phase gradient adjustment experiment 

To test the effectiveness of the coherence-based phase gradient adjustment, the same 

experimental setup was used, but with a different noise source.  An American Technology 

Corporation HSS 450 parametric speaker array, which is designed to have a spatially-narrow 
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intensity lobe, was pointed at microphone 2 (as numbered in Fig. 5.1).  A minor amount of 

contaminating noise could be picked up by the other microphones, but for most frequencies the 

contamination was minimal.  The level of the contaminating noise at microphone 2 was much 

larger than the signal amplitude (SNR 10 − 20 dB), effectively rendering this microphone’s signal 

useless for measuring the source, while having a very small impact on the signals measured by the 

other microphones.   

Because the coherence values for the microphone pairs that do not include microphone 2 

are largely unaffected by the contaminating noise, the center pressure correction is minimal for 

most frequencies.  The cross-spectral values obtained using the signal of microphone 2 are 

erroneous, however, which gives an incorrect phase gradient.  The coherence for all pairs including 

microphone 2 are poor, however.  Therefore, a weighted pressure gradient can be used to more 

accurately calculate the intensity direction.  Experimental results are seen in Fig. 5.4. 

Figure 5.4(a) shows the sound pressure levels obtained from the auto-spectral values for 

microphones 1 and 2, where again the solid line is the uncontaminated signal and the dashed line 

includes the contaminating noise.  The noise has a very small impact on the signal of microphone 

1, while the signal of microphone 2 is vastly different, and essentially gives the sound pressure 

level of the noise rather than the source.  The coherence of the contaminated signals for the four 

probe microphone pairs which include the center microphone (number 1) are shown in Fig. 5.3(b).  

Two of the coherence spectra are always near unity, and one exhibits a few dips at certain 

frequencies.  The other coherence spectrum is much lower than all the others and corresponds to 

the coherence between microphones 1 and 2.  Figure 5.3(c) shows the intensity level bias errors 

for both methods are similar, though there are some differences. 
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The intensity direction bias errors are shown in Fig. 5.3(d).  The PAGE method shows large 

errors at nearly all frequencies.  For some frequencies, the CPAGE method corrects the intensity 

direction nearly perfectly; interestingly, at other frequencies the correction is still an improvement 

over the PAGE method, but is not entirely effective.  This resulting intensity direction bias errors 

appear jagged across frequency, much as the coherence values do.  Indeed, the jagged nature of 

the coherence (of all microphone pairs, though only one pair containing microphone 2 is pictured) 

across frequency causes the somewhat jagged nature of the calculated intensity direction.  The bias 

errors for the CPAGE method are certainly reduced, though the inconsistency across frequency 

suggests that a different phase gradient weighting or regularization may be more useful. 

 

Figure 5.4: Similar to Fig. 5.3, where instead of uncorrelated contaminating noise the parametric 
speaker array was used to contaminate the signal of microphone 2.  In (a) the level of 
contamination of the signal of microphone 2 is apparent, while the signal of microphone 1 is 
largely unaffected.  In (b) the coherence between microphones 1 and 2 is very low, while other 
pairs including microphone 1 are much larger. 
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5.5 Conclusions 

By using coherence in its calculations, the CPAGE method reduces the intensity calculation 

bias errors of the PAGE method.  Two main adjustments are made.  A coherence-based magnitude 

adjustment can account for uncorrelated noise measured by all microphones, and improves 

intensity magnitude calculation.  A coherence-weighted pressure gradient calculation can account 

for different levels of noise measured by microphones, and improves intensity direction 

calculation.  These corrections together make the CPAGE method better able to calculate intensity 

vectors in the presence of contaminating noise. 

Though only active acoustic intensity results are investigated herein, the calculation of 

other energy-based acoustic measures—such as reactive intensity, potential energy density, kinetic 

energy density, and specific acoustic impedance, as well as directional pressure59—could also be 

improved with the CPAGE method.  Coherence can effectively measure the signal contamination, 

and as such can account for contaminating noise recorded while measuring source properties. 

The CPAGE method is limited in many of the same ways as the PAGE method.  It relies 

upon correct phase unwrapping and broadband signals to be accurate above the spatial Nyquist 

frequency, and is effected by scattering.  As shown in Section 5.4.2, without regularization the 

CPAGE method can show more accuracy at some frequencies than others, resulting in a jagged 

intensity direction across frequency.  Though the CPAGE method is not ideal for every situation, 

it broadens the applications of the PAGE method because it is more robust to contaminating noise.  

The effectiveness of the CPAGE method is best seen in sound fields that contain a large 

amount of contaminating noise.  One application which is currently being investigated deals with 

contaminating wind noise at low frequencies.  This sound field can exhibit very low coherence, 
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and requires the use of large microphone probes.  The CPAGE method is thought to be doubly 

useful in this situation, as it can deal with low coherence and can be used for high frequencies even 

with large microphone spacing.  This application, as well as other future work, may help to further 

validate the effectiveness of the CPAGE method in calculating active acoustic intensity. 

 

5.6 Chapter 5 Appendix 

The CPAGE method uses two main adjustments to calculate intensity.  However, there is 

another possible adjustment which is useful in very special cases.  The adjustment proposed here 

should, in practice, rarely be necessary, though is worth considering for completeness.  This 

correction is useful when the pressure measured by a probe’s center microphone at a particular 

frequency is considered to be of dubious validity.  This can result from poor experimental setup, 

where—for whatever reason—the center microphone records mostly noise instead of actual signal 

at a particular frequency.  If this is known in practice then the experimental setup should clearly 

be changed, but if further data acquisition is unfeasible, this additional adjustment can prove 

useful. 

The CPAGE method only uses this correction at frequencies where the coherence of the 

center microphone with all other microphones is less than the coherence of all outer microphone 

pairs, 

 max
μ
�𝛾𝛾𝑐𝑐𝜇𝜇2 (𝜔𝜔)� < min

μ,ν≠c
�𝛾𝛾𝜇𝜇𝜇𝜇2 (𝜔𝜔)�, (64) 

where the subscript c signifies the center microphone, and 𝜇𝜇 and 𝜈𝜈 label the probe microphones.  

When the condition in Eq. (64) is true, then instead of using the pressure measured at the center 

microphone, the weighted average pressure of the other microphones should be used.  In other 

words, at these frequencies, the CPAGE method treats the probe as if there is no center 
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microphone, since the measured center pressure is considered to be more erroneous than the 

measured pressure of all other probe microphones.  Intensity probes are generally more accurate 

when a probe has a center microphone,45 so this correction is very rarely necessary.  Because the 

CPAGE method calculates a pseudoinverse at every frequency to obtain the pressure gradient, the 

condition in Eq. (64) can be checked without having a large impact on computation time. 
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Conclusion 

Coherence can be used to improve the calculation of active acoustic intensity.  Coherence 

can be used at many places in intensity calculation, including phase unwrapping, dealing with 

narrowband signals, adjusting pressure magnitude to account for contaminating noise, and 

improved phase gradient calculation.  Pressure gradient methods like the traditional and PAGE 

methods require the use of a multi-microphone probe to calculate intensity, and so coherence—

which is a pairwise microphone measure—can be easily calculated and included in processing to 

yield a more stable method, known as the CPAGE method. 

Coherence can be used to improve transfer function phase unwrapping.  Below the spatial 

Nyquist frequency, phase values do not need to be unwrapped, but above this frequency the PAGE 

method needs to have correctly unwrapped phase values to estimate intensity.  By using the 

coherence in phase unwrapping, phase values can be more properly unwrapped.  This leads to 

better phase gradient and hence intensity value calculations.   

With better unwrapped phase values, more accurate phase gradients can be obtained.  The 

CPAGE method further improves phase gradient calculations by using a coherence-weighted least-

squares algorithm, where the coherence of each microphone pairs gives the relative weight for the 

phase difference measured.  In cases of near-zero coherence, this may cause larger adjustments 

than wanted, though regularization could be used to account for this possibility. 

The bias errors for the PAGE method illustrate rather clearly how contaminating noise can 

negatively impact intensity calculation.  From these bias errors, a pressure magnitude correction 
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term is found.  This correction term works best for uncorrelated contaminating noise, though is 

also useful for other situations.  The pressure magnitude adjustment utilized by the CPAGE method 

is very conservative, and further investigations may lead to a more useful way to apply this 

adjustment. 

The CPAGE method is a useful tool, which in many cases can better calculate the intensity 

of a source in the presence of contaminating noise.  This method is not a perfect solution for every 

situation, however, but rather an improvement in many situations.  There are problems and 

limitations with this method just as there are with any other method.  Below the spatial Nyquist 

frequency, unwrapping is not a problem, but above the spatial Nyquist frequency erroneous phase 

unwrapping can occur for both the PAGE and CPAGE methods: transfer function phases may not 

be locally linear or even continuous—room modes and scattering can cause physical phase jumps.  

The CPAGE method can adjust for problems the PAGE method has when dealing with noise, but 

does not deal with other possible problems.  The CPAGE method is better at handling uncorrelated 

noise for a plane wave source, but is also useful in other source and noise situations, and can make 

adjustments without needing any knowledge of the source or noise type. 

Though active acoustic intensity is the focus of this thesis, the CPAGE method can be used 

to obtain other energy-based acoustic measures, which include reactive intensity, potential energy 

density, kinetic energy density, and specific acoustic impedance.  Just as the PAGE method is 

better suited to some of these calculations than the traditional method, the CPAGE method can 

implement further adjustments to improve calculations.   
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6.1 Contributions 

The PAGE method is still relatively new, and has proven to be remarkably effective in 

certain situations.  Contributions from this research serve to augment the usability of the PAGE 

method, and include (1) better phase unwrapping techniques, (2) a better understanding of 

calculation bias errors, (3) applications of the PAGE method to narrowband source investigation, 

and (4) the CPAGE method—that utilizes improved coherence-based calculation techniques to 

give more reliable pressure magnitude and phase gradient values—which can better deal with 

contaminating noise in a sound field. 

The real benefit of the PAGE method is its ability to be used up to and even above the 

spatial Nyquist frequency.  Above the spatial Nyquist frequency, phase unwrapping must be 

performed correctly to give accurate results: improved phase unwrapping is therefore key to 

application of the PAGE method at higher frequencies.  By using coherence, phase unwrapping 

can be performed more reliably—though the unwrapped phase values can still be erroneous, such 

as when physical phase jumps occur in highly reactive fields.18,59 

Previous investigations of the bias errors for the traditional and PAGE methods ignored 

the effects of both probe rotation and contaminating noise.8  Including both of these effects leads 

to a better understanding of the situations in which each method is most effective.  The traditional 

method is useful for low frequencies, and is fairly robust to uncorrelated contaminating noise.  The 

PAGE method is an improvement in many ways, including extending the useable bandwidth, 

though contaminating noise can cause errors in calculating intensity magnitude and direction.  

Using the CPAGE method, these bias errors can be reduced.  The CPAGE method can be useful 

in areas of research including beamforming, underwater acoustics, and especially aeroacoustics.  
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Because it relies upon phase unwrapping at higher frequencies, the PAGE method is most 

useful when measuring a broadband noise source.  For measuring narrowband sources above the 

spatial Nyquist frequency, additive low-level broadband noise can improve PAGE method 

calculations.  Limitations of this method yield specific guidelines for when additive noise is useful. 

Finally, the CPAGE method incorporates improved processing techniques.  This resultant 

method is more robust to contaminating noise, and incorporates both a pressure magnitude and 

phase gradient correction.  Since all sound fields contain some level of contaminating noise, the 

CPAGE method takes the benefits of the PAGE method calculations and improves them to better 

handle a wider variety of situations. 

 

6.2 Future work 

Many uses of coherence have been found to be useful, but phase unwrapping, a pressure 

magnitude adjustment, and a phase gradient adjustment are simply a few places in intensity 

calculation where coherence can be utilized.  As mentioned, calculation of other energy-based 

acoustic measures can likely benefit from utilizing coherence and the CPAGE method.  Future 

investigations are necessary to validate this claim. 

Initial applications of the PAGE method to study the infrasound frequency range are 

currently being conducted.  Since contaminating noise can occur in this frequency range (caused 

by wind noise, for example), the more robust CPAGE calculations may give more accurate results.  

Different types of noise could further portray possible weaknesses of this method. 

As before mentioned, different types of regularization—especially in the weighted least-

squares pressure gradient calculation—may increase the effectiveness of the CPAGE method 
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calculations across frequency.  Different magnitude corrections are also possible.  Further 

investigation may yield better adjustments than those which are currently employed.  

Contaminating noise is always going to be a challenge.  Though not always bad—and if 

used in the right way potentially even useful—noise has an undeniable impact on acoustic 

measurements.  A better understanding of the effects of noise can lead to improved calculation 

techniques.  Methods which are better able to handle contaminating noise are more useful in a 

greater number of situations, and key to dealing with noise is using coherence.   
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