
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Theses and Dissertations

2019-04-01

Using Symmetry to Accelerate Materials Discovery Using Symmetry to Accelerate Materials Discovery

Wiley Spencer Morgan
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Morgan, Wiley Spencer, "Using Symmetry to Accelerate Materials Discovery" (2019). Theses and
Dissertations. 8132.
https://scholarsarchive.byu.edu/etd/8132

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8132?utm_source=scholarsarchive.byu.edu%2Fetd%2F8132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Using Symmetry to Accelerate Materials Discovery

Wiley Spencer Morgan

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Gus L. W. Hart, Chair
Rodney W. Forcade
Branton J. Campbell

John S. Colton
David W. Neilsen

Department of Physics and Astronomy

Brigham Young University

Copyright © 2019 Wiley Spencer Morgan

All Rights Reserved

ABSTRACT

Using Symmetry to Accelerate Materials Discovery

Wiley Spencer Morgan
Department of Physics and Astronomy, BYU

Doctor of Philosophy

Computational methods are commonly used by materials scientists to make predictions about
materials. These methods can achieve in hours what would take days or weeks to accomplish
in a lab. However, there are limits to what computational methods can do and how accurate the
predictions are.

A limiting factor for computational materials science is the size of the search space. The space
of potential materials is infinite. Selecting specific systems of elements on a fixed lattice to study
reduces the number of possible arrangements of atoms in the lattice to a finite number. However,
this number can still be very large. Additionally this list of arrangements will contain duplicates,
i.e., two different atomic arrangements could be equivalent by a rotation or translation of the lattice.
Using symmetry to eliminate the duplicates saves time and resources. In order to ensure that the
final list of unique structures will fit into computer memory it is also useful to know how many
unique arrangements there are before actually finding them. For this reason the Pòlya enumeration
algorithm was created to determine the number of unique arrangements before enumerating them.
A new atomic enumeration algorithm has also been implemented in the enumlib package. This
new algorithm has been optimized to find the symmetrically unique arrangements for systems
with large amounts of configurational freedom, such as high-entropy alloys, which have been too
computationally expensive for other algorithms.

A popular computational method in materials science is Density Functional Theory (DFT).
DFT codes perform first principles calculations by calculating the electron energy using numerical
integrals. It is well known that the accuracy of the integrals depends heavily on the number of
sample points, k-points, used. We have conducted a detailed study of how k-point sampling methods
effect the accuracy of DFT calculations. This study shows that the most efficient k-point grids are
those that have the fewest symmetrically distinct k-points, we call these general regular (GR) grids.
GR grids are, however, difficult to generate, requiring a search across many possible grids. In order
to make GR grids more accessible to the DFT community we have implemented an algorithm that
can search k-point grids for the grid that has the fewest symmetry reduction in a matter of seconds.

Keywords: materials discovery, symmetry, numerical integration, sampling, Niggli, k-point folding

ACKNOWLEDGMENTS

It has been said that no man is an island. This document would not exist if it had not been for

expert help and guidance along the way. Dr. Gus Hart has been an extraordinary advisor during

my time here at BYU. He has introduced me to top rate researchers around the world and always

helped me work toward my goals for post-graduate life.

Additionally many others here at BYU have made significant contributions to my work. There

are a few I would like to make special note of; first, Dr. Rod Forcade’s experience with algorithms,

group theory, and math in general has been invaluable. Second, Dr. Branton Campbell has provided

critical information and guidance on crystal lattice classification and manipulation. Finally I would

like to acknowledge my peers in the “Materials Simulation Group” who have contributed code and

ideas to the projects I have been a part of.

Finally I would like to thank my family, Sarah, Cora and River for being willing to be a part of

this journey with me. I will always be grateful for the love and encouragement they have shown me.

USING SYMMETRY TO ACCELERATE

MATERIALS DISCOVERY
Wiley Spencer Morgan

Department of Physics and Astronomy
Brigham Young University

March 2019

Contents

Table of Contents v

List of Figures vii

1 Symmetry in Materials Discovery 1
1.1 Quantum Mechanical Calculations for Materials Discovery 1
1.2 Reducing an Infinite Search Space . 2
1.3 Errors from Integration Sampling . 2
1.4 Conclusion . 2

2 Sizing up the Search Space 4

3 Enumerating Derivative Superstructures 22

4 Determining the Best Integration Grids 29

5 Generating k-point Grids 39
5.1 Folding k-points . 40

5.1.1 Generating Grids . 40
5.1.2 Symmetry Reduction of the Grid . 42
5.1.3 Moving Points Into the First Brillouin Zone 45

5.2 Generating k-point Grids on the Fly . 45
5.2.1 Algorithm Details . 45
5.2.2 Testing the Algorithm . 50

6 Conclusion 55

Appendix A Proof of Brillouin Zone Location 57
A.1 Formal Proof . 57
A.2 2D Argument . 57
A.3 3D Argument . 59

Appendix B Groups, Matrices, and Lattices in Smith Normal Form. 61
B.1 Groups in Smith Normal Form . 61
B.2 Matrices in Smith Normal Form . 62

Appendix C Integer Relations for all Niggli Cells 65
C.1 Simple Cubic . 65
C.2 Body Centered Cubic . 65
C.3 Face Centered Cubic . 66
C.4 Hexagonal . 66
C.5 Rhombohedral . 67
C.6 Simple Tetragonal . 68

v

CONTENTS vi

C.7 Body Centered Tetragonal . 69
C.8 Simple Orthorhombic . 70
C.9 Base Centered Orthorhombic . 70
C.10 Body Centered Orthorhombic . 72
C.11 Face Centered Orthorhombic . 73
C.12 Simple Monoclinic . 73
C.13 Base Centered Monoclinic . 74

Appendix D Symmetry-Preserving Offsets 77

Appendix E Paper Copyright Licences 79

Bibliography 84

List of Figures

2.1 2D example of duplicate colorings. 6
2.2 The symmetry group operations of the square 9
2.3 A recursive tree search for some of the possible matrices S for the problem of

Section 2.2. 13
2.4 Normalized Póly algorithm scaling with the number of relevant matrices to enumerate.

. 17
2.5 Log plot of the algorithm scaling as the number of colors increases. 17
2.6 Algorithm scaling as the number of elements in the finite set increases (for 2 colors). 18
2.7 Normalized algorithm scaling with group size for an enumeration problem from

solid state physics [1]. 19
2.8 Comparison of the CPU time and memory usage between the FORTRAN imple-

mentation of our algorithm and MATHEMATICA as the number of colors increases. 20

3.1 The empty lattice and 8 of the 36 configurations with only red atoms are shown
for the example discussed in Section 3.3. 24

3.2 Two branches of the tree from Fig. 3.1. 25
3.3 An example of a configuration being acted upon by a symmetry operation. 25
3.4 An example of replacing colors with arrows. 27
3.5 The scaling of the new and previous algorithm for fcc ternary and quaternary

systems in which the atomic species were of equal concentration 27

4.1 Total energy error vs. total number of k-points for Si and Al. 30
4.2 Examples of equivalent crystal cells. 33
4.3 An example of simultaneously commensurate grids. 33
4.4 Total energy convergence by grid type. 34
4.5 Total energy convergence with respect to the irreducible k-point density. 34
4.6 Relative Grid Efficiency. 34
4.7 Convergence for silicon by Bravais lattice type of the k-point grid. 35
4.8 Convergence of aluminum by Bravais lattice type of the k-point grid. 35
4.9 An example of a SC grid that is commensurate. 36
4.10 An example of a SC grid that is not commensurate. 37

5.1 Example of the integer relationship between reciprocal lattice vectors R and the
grid generating vectors K . 40

5.2 An example of generating the points of K that lie within one unit cell of the lattice
R. 41

5.3 An example of symmetry reducing a grid. 42
5.4 The first Brillion zone in 2D. 45
5.5 The number of supercells that preserve the symmetry of the parent cell at various

volume factors. 48
5.6 A 2D example of symmetry-preserving supercells and the k-point grids that they

would generate for a rectangular lattice. 49

vii

LIST OF FIGURES viii

5.7 A comparison of the GRauto and GRserver k-point grids 51
5.8 The total energy convergence with respect to total k-point density for MP, GRauto

and GRserver grids. 53
5.9 The total energy convergence with respect to irreducible k-point density for MP,

GRauto and GRserver grids with loess regression applied. 53
5.10 Efficiency of MP and GRauto grids relative to GRserver grids. 54

A.1 2D brillouin zone location example . 58
A.2 3D brillouin zone location example . 58

CHAPTER 1

Symmetry in Materials Discovery

Materials have played a defining role in human achievement throughout history. The discovery
of new materials in ages past has spurred the creation of the tools and technologies that created
modern life. We are reaching the limits of what we can achieve with currently available materials.
In order to continue to build new and exciting technologies new materials must be discovered.

1.1 QUANTUM MECHANICAL
CALCULATIONS FOR MATERIALS

DISCOVERY

Historically materials discovery has been a
slow process that consists mainly of trial and
error. Modern computational methods allow us
to accelerate this process. What would take
days or weeks to study in a lab can now be
determined on supercomputers in hours. The
accuracy of the computation depends on the
modeling method used. More accurate models
require more computational time and resources.

A popular computational method is Density
Functional Theory [4, 5] (DFT) because it
offers an excellent trade off between compu-
tation time and accuracy. DFT approximates
solutions to the Schrödinger equation for a
system of atoms at zero Kelvin. DFT’s main
drawback is that it can only compute the
properties of one atomic configuration at a time.
The number of possible binary materials, on
a fixed lattice, is equivalent to the number
of binary atomic combinations multiplied by
the number of ways to place the atoms on
the lattice. If the cell size of the binary
systems is limited to 10 atoms then there are
roughly 4 million possible materials to explore.
Computing the properties of each set of binary
materials using DFT would take a prohibitively
long time even with today’s supercomputers.

To overcome the difficulty presented by
the size of the search space many materials
scientists have started using high throughput
[6–25] methods to construct large databases

that can be searched for materials with desired
properties. For example, as of January 2019 the
AFLOW database contains data for 2.1 million
crystal structures. Despite the many successes
[26–36, 36–55] that have occurred using these
databases they still represent a small portion of
the possible materials space.

DFT calculations are also used to train
machine learning models [56–58]. Machine
learning models are statistical models that use
sets of known data to make predictions about
the properties of data outside of the training set.
It is well known, however, that the accuracy of
the learned model depends on the accuracy of
the data used to train the model. Care must
be taken when constructing the training data
for these models. The advantage that machine
learning offers is that once the model is trained
it can make predictions that have close to DFT
accuracy in a fraction of a second rather than
hours. Using these methods researchers can
quickly search over large sections of materials
space for good material candidates.

Even with the aid of machine learning,
materials scientists are still trying to search
an infinite space using models that may have
unreliable training data. These difficulties
encourage the development of tools to 1)
limit the materials search space, 2) ensure the
accuracy of the training data being used, and 3)
optimize the efficiency of individual computa-
tions.

1

1.2 Reducing an Infinite Search Space 2

1.2 REDUCING AN INFINITE SEARCH
SPACE

There are a number of ways that the search
space of materials can be limited. First,
limiting the number of atoms in a crystal
structure reduces the space to a countable, if
large, number. Additional reductions can be
achieved by: 1) selecting specific elements
and lattices, 2) limiting the concentrations of
each element, and 3) eliminating symmetri-
cally equivalent crystals. Of these options, the
first and second are easily accomplished, while
the third, identifying symmetrically equivalent
crystals, continues to give researchers diffi-
culties, even today.

All crystal structures can be either trans-
lated or rotated by a symmetry of the lattice
without changing the crystal’s properties.
Using symmetry to reduce a list of crystal struc-
tures to those that are unique then reduces the
number of computations that need to be done to
explore a materials system. Chapter 3 presents
an algorithm that can efficiently list only the
symmetrically distinct atomic arrangements for
a crystal system.

It is also useful to know how many unique
structures actually exist in order to ensure
that the number of arrangements will fit into
machine memory. This problem becomes
increasingly important as the number of atoms
and species in the cell increase. For example,
a high-entropy alloy [59–62] (HEA) consisting
of 5 atomic species of equal concentration
within a 20 atom cell on a face-centered
cubic (fcc) lattice will have around 109 unique
arrangements of atoms, enough that the list
alone becomes unwieldy. Chapter 2 presents
a solution to this problem in the form of an
algorithm that can determine the number of
unique arrangements of atoms within a crystal
structure without having to find or list them.

1.3 ERRORS FROM INTEGRATION
SAMPLING

Data accuracy becomes increasingly important
as databases of DFT calculations grow and
are used in high throughput studies and to
train machine learning models. In order to
ensure that datasets are of a sufficient quality
for these applications, the sources of errors
must be understood and minimized to the extent
possible. There are several known sources of
error [63, 64] which can affect DFT calcula-
tions. k-point integration is one of these error
sources that impacts all DFT calculations.

DFT calculations sample points in k-space
to calculate electronic energy. It is well known
that the calculation will be inaccurate if an
insufficient number of k-points is used. Most
studies start by performing convergence tests
of the error with respect to the number of k-
points to minimize errors. However, compre-
hensive studies of how k-point sampling affects
the accuracy of calculations had never been
studied until this work. Chapter 4 contains this
detailed study of convergence rates of different
types of k-point grids. This study also shows
how difficult it is to be sure of the accuracy of
a DFT calculation if insufficient sample points
were used in a convergence test.

Chapter 4 also shows that the type of k-
point grid used can make a profound difference
on the accuracy and computational cost of
a DFT calculation. Chapter 5 contains new
algorithms that can quickly generate the most
efficient grid.

1.4 CONCLUSION

The chapters in this dissertation contain tools
and methods that can be used to accel-
erate materials discovery. The goals are
to eliminate redundant calculations by only

1.4 Conclusion 3

performing calculations for unique structures
and by increasing the accuracy and efficiency
of DFT calculations using algorithms that will
generate optimal k-point grids.

While most of the algorithms that are
described here have been implemented and are
freely available to the scientific community,
the algorithms in Chapter 5 have not yet been
published. In implementing those algorithms,
we have discovered that great care must be
taken when handling finite precision or else
roundoff error will cause failure. We are
currently working on additional code that will

prevent these failures. The main algorithms
will not be released until the new code has
been implemented so that the software package
works reliably for the users.

The content of Chapters 2, 3, and 4 are
centered around peer-reviewed articles, typeset
in the style of the journal in which they were
published. Each includes a description of the
paper’s context and future usage. The content
of Chapter 5 contains the contents of another
two papers each of which have been submitted
for publication but not accepted yet.

CHAPTER 2

Sizing up the Search Space

As discussed in Section 1.2, the ability
to enumerate every unique arrangement of
atoms within a given crystal structure is an
important aspect of computational materials
discovery. This problem has been well studied
and solved in general [1, 65–70]. For systems
such as high entropy alloys (HEAs) however,
the list of unique arrangements often exceeds
the available computer memory. In such cases it
is useful to know the number of unique arrange-
ments before enumerating them.

The Pólya enumeration algorithm, found
below, solves this problem. The algorithm is
useful for the following reasons:

1. It allows researchers to determine if a
system is too large or complex to be
enumerated completely.

2. It allows alloy enumeration algorithms to
check that enough memory exists to store
the enumerated lists of atomic arrange-
ments. The algorithm may then warn a user
that the problem is too large and shut down

rather than failing after hours or days of
running.

3. It allows verification that alloy enumeration
algorithms have found the correct number of
unique structures.

The Pólya enumeration algorithm
has been implemented in the enumlib
package and is also available open
source for both FORTRAN and Python at
https://github.com/rosenbrockc/polya.

For this article, Conrad Rosenbrock wrote
the original Python algorithm and the majority
of the paper’s text. I wrote the FORTRAN
algorithm, implemented tests for both code
implementations, and extended the algorithms
to be able to handle an additional degree of
freedom (displacement directions). The other
authors helped edit the text and figures to make
the algorithm easier to understand.

The following article is reproduced with
permission. A license can be found in
Appendix E.

4

https://github.com/msg-byu/enumlib
https://github.com/rosenbrockc/polya

Numerical Algorithm for Pólya Enumeration Theorem

CONRAD W. ROSENBROCK, WILEY S. MORGAN, and GUS L. W. HART,
Brigham Young University
STEFANO CURTAROLO, Duke University
RODNEY W. FORCADE, Brigham Young University

Although the Pólya enumeration theorem has been used extensively for decades, an optimized, purely
numerical algorithm for calculating its coefficients is not readily available. We present such an algorithm
for finding the number of unique colorings of a finite set under the action of a finite group.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics

General Terms: Combinatorial Algorithms, Counting Problems

Additional Key Words and Phrases: Pólya enumeration theorem, expansion coefficient, product of
polynomials

ACM Reference Format:
Conrad W. Rosenbrock, Wiley S. Morgan, Gus L. W. Hart, Stefano Curtarolo, and Rodney W. Forcade. 2016.
Numerical algorithm for pólya enumeration theorem. J. Exp. Algorithmics 21, 1, Article 1.11 (August 2016),
17 pages.
DOI: http://dx.doi.org/10.1145/2955094

1. INTRODUCTION

A circle partitioned into 4 equal sectors can be colored 16 different ways using two
colors, 24 = 16, as shown in Figure 1. But only 6 of these colorings are symmetrically
distinct, several others being equivalent (under rotations and reflections) as shown by
the arrows in the figure. The Pólya enumeration theorem provides a way to determine
how many symmetrically distinct colorings there are with, for example, all sectors red
(only one, as shown in the figure), one red sector and three green (again, only one), or
the number with two red sectors and two green sectors (two, as shown in the figure).
Borrowing a word from physics and chemistry, we refer to the partition of red and
green sectors as the stoichiometry. For example, a coloring with 1 red sector and 3
green sectors has a stoichiometry of 1:3.

The Pólya theorem [Pólya 1937; Pólya and Read 1987] produces a polynomial (gen-
erating function), shown in the figure, whose coefficients answer the question of how
many distinct colorings there are for each stoichiometry (each partition of the colors).
For example, the 2r2g2 term in the polynomial indicates that there are two distinct
ways to color the circle with 2:2 stoichiometry (). For all other stoichiometries (4:0,

This work was supported under Grant No. ONR (MURI N00014-13-1-0635).
Authors’ addresses: C. W. Rosenbrock, W. S. Morgan, and G. L. W. Hart, Department of Physics and As-
tronomy, 84602, Brigham Young University; S. Curtarolo, Materials Science, Electrical Engineering, Physics
and Chemistry, 27708, Duke University; R. W. Forcade, Department of Mathematics, 84602, Brigham Young
University.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1084-6654/2016/08-ART1.11 $15.00
DOI: http://dx.doi.org/10.1145/2955094

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:2 C. W. Rosenbrock et al.

Fig. 1. Top row: All possible two-color colorings of a circle divided into four equal sectors (left side of figure).
Bottom row: All symmetrically distinct binary colorings of the circle. Arrows indicate combinatorically
distinct colorings that are equivalent by symmetry.

0:4, 1:3, and 3:1), the polynomial coefficients are all 1, indicating that for each of these
cases there is only one distinct coloring, as is obvious from the figure.

A common problem in many fields involves enumerating1 the symmetrically distinct
colorings of a finite set, similar to the toy problem of Figure 1. The Pólya theorem
has shown its wide range of applications in a variety of contexts. Classically, it was
applied to counting chemical isomers [Robinson et al. 1976; Kennedy et al. 1964; Pólya
1937] and graphs [Harary 1955]. Recent examples include confirming enumerations
of molecules in bioinformatics and chemoinformatics [Deng and Qian 2014; Ghorbani
and Songhori 2014]; unlabeled, uniform hypergraphs in discrete mathematics [Qian
2014]; analysis of tone rows in musical composition [Lackner et al. 2015]; commuta-
tive binary models of Boolean functions in computer science [Genitrini et al. 2015];
generating functions for single-trace-operators in high-energy physics [McGrane et al.
2015]; investigating the role of nonlocality in quantum many-body systems [Tura et al.
2015]; and photosensitizers in photosynthesis research [Taniguchi et al. 2014].

In computational materials science, chemistry, and related subfields such as compu-
tational drug discovery, combinatorial searches are becoming increasingly important,
especially in high-throughput studies [Curtarolo et al. 2013]. As computational meth-
ods gain a larger market share in materials and drug discovery, algorithms such as
the one presented in this article are important as they provide validation support to
complex enumeration codes. Pólya’s theorem is the only way to independently confirm
that an enumeration algorithm has performed correctly. The present algorithm has
been useful in checking a new algorithm extending the work in Hart and Forcade
[2008, 2009] and Hart et al. [2012], and Pólya’s theorem was recently used in a similar
crystal enumeration algorithm [Mustapha et al. 2013] that has been incorporated into
the CRYSTAL14 software package [Dovesi et al. 2014].

Despite the widespread use of Pólya’s theorem in different science and mathematics
contexts, a low-level, numerical implementation is not available. Typical approaches
use Computer Algebra Systems (CASs) to symbolically generate the Pólya polynomial.
This strategy is ineffective for two reasons. First, CASs are too slow for large problems
that arise in a research setting, and, second, generating the entire Pólya polynomial
(which can have billions or trillions of terms) is unnecessary when one is interested in
only a single stoichiometry.

1The Pólya theorem does not generate the list of unique colorings (which is generally a much harder problem),
but it does determine the number of unique colorings.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:3

Here we demonstrate a low-level algorithm for finding the polynomial coefficient
corresponding to a single stoichiometry. It exploits the properties of polynomials and a
priori knowledge of the relevant term. We briefly describe the Pólya enumeration the-
orem in Section 2, followed by the algorithm for calculating the polynomial coefficients
in Section 3. In the final section, we investigate the scaling and performance of the
algorithm.

2. PÓLYA ENUMERATION THEOREM

2.1. Introduction the Pólya Enumeration Theorem

Pólya’s theorem provides a simple way to construct a generating polynomial whose
coefficients count the numbers of symmetrically distinct colorings for each possible
stoichiometry. The polynomial in Figure 1 above was easy to verify because we were
able to hand count the symmetrically distinct colorings. But suppose there were dozens
of colors and dozens of sites to be colored and hundreds of symmetries to apply. In that
case, it is easier to use Pólya’s theorem to construct the polynomial directly from the
symmetry group.

To describe this very useful theorem, we refer once more to Figure 1. There are four
symmetries—the identity, two 90◦ rotations (clockwise and counterclockwise), and a
180◦ rotation. If we label the colorable sectors 1, 2, 3, and 4, and write the permutations
in disjoint-cycle notation, we have (1)(2)(3)(4) for the identity, the two 90◦ rotations are
represented by (1234) and (1432), while the 180◦ rotation is (13)(24) in cycle notation.

Now Pólya’s theorem simply tells us to replace each cycle of length λ with a sum of
λ-th powers of variables corresponding to the colors available. For example, letting r
and g stand for red and green, the identity is represented by (r + g)(r + g)(r + g)(r + g),
the two 90◦ rotations are each replaced by (r4 +g4), and the 180◦ rotation is replaced by
(r2 +g2)(r2 +g2). When we average these four polynomials, we get the Pólya polynomial
predicted above:

P(r, g) = 1
4

(
(r + g)(r + g)(r + g)(r + g) + (r4 + g4) + (r4 + g4) + (r2 + g2)(r2 + g2)

)
= r4 + r3g + 2r2g2 + rg3 + g4.

(1)

In other words, Pólya’s theorem relies on a structural representation of the sym-
metries as permutations written in disjoint-cycle notation to construct the generating
polynomial we need.

The problem with Pólya, however, is that it requires us to compute the entire poly-
nomial when we may need only one of its coefficients. For example, if we have 50 sites
to color, and 20 colors available, the number of terms in our polynomial (regardless of
symmetries) would be about 4.6 × 1016. That is a lot of work (and memory) to compute
the entire polynomial (and all of those very large terms) if we needed only to know the
number of symmetrically distinct colorings for a single stoichiometry. That information
is contained in just 1 term of the 46 quadrillion terms of the Pólya polynomial. Can we
spare ourselves the work of computing all the others?

Suppose we have a target stoichiometry [c1 : c2 : · · · : cξ], where ξ is the number
of colors and

∑ξ

j=1 c j = n is the number of sites to be colored. To find the number of
symmetrically distinct colorings with those frequencies, we must determine the coef-
ficient of the single term in the Pólya polynomial containing the product xc1

1 xc2
2 . . . xcξ

ξ .
The Pólya polynomial is the average,

P(x1, x2, . . . , xξ) = 1
|G|

(∑
π∈G

Pπ (x1, x2, . . . , xξ)

)
, (2)

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:4 C. W. Rosenbrock et al.

of the polynomials Pπ (x1, x2, . . . , xξ) computed for each permutation π in the symmetry
group G, each Pπ being formed by multiplying the representations of each disjoint cycle
in π (as illustrated in Equation (1)).

Clearly, if we are only interested in the coefficient of xc1
1 xc2

2 . . . xcξ

ξ in P, we may simply
find the coefficient of that product in each Pπ and add those partial coefficients together.
Thus, given a permutation π with k1 cycles of length r1, k2 cycles of length r2, and so
on, up to kt cycles of length rt, with

∑t
i=1 riki = n (the number of sites, t is the number

of cycle types), we must compute the coefficient of xc1
1 xc2

2 . . . xcξ

ξ in Pπ .
It is well known that a product of sums is equal to the sum of all products one

can obtain by taking one summand from each factor (generalizing the familiar First
Outer Inner Last (FOIL) rule used by undergrads to multiply two binomials). Thus
the polynomial Pπ is the sum of all products of the form

∏
s xλ(s)

is (where the product
runs over all cycles s, λ(s) is the length of the cycle s, and xis is one of the colors chosen
from the sum for that cycle). Thus the product we want, xc1

1 xc2
2 . . . xcξ

ξ , has a coefficient
that simply counts the number of products of the form

∏
s xλ(s)

is where the sum of the
exponents for each xi is equal to the target ci.

Each cycle, of length ri (i = 1 . . . t), gets assigned to one of the colors. Let sij be the
number of cycles of length ri assigned to color j (j = 1 . . . ξ). This defines a t × ξ matrix
S = (sij) of non-negative integers, where (1) the sum of row i equals the number of
cycles of length ri:

ξ∑
j=1

sij = ki (row sum condition), (3)

and (2) weighted sum of column j must equal the target frequency of the j-th color:
t∑

i=1

risij = c j (column sum condition), (4)

in order to achieve our target stoichiometry.
For each such matrix, there are a number of possible ways to assign colors to the

cycles, with multiplicities prescribed by S. The number is

F(S) =
t∏

i=1

(
ki

si1, si2, . . . , siξ

)
, (5)

the product of the number of ways to do it for each cycle. Thus we are obliged to sum
the function F(S), so computed, over all matrices S meeting the given row and column
sum conditions (3) and (4).

If we do this computation for each permutation π , and average them (add them
and divide by |G|), we then get the coefficient of the Pólya polynomial P(x1, x2, . . . , xi)
corresponding to our target stoichiometry [c1 : c2 : · · · : cξ]. This calculation depends
only on the cycle type of the permutation, the number of disjoint cycles of different
lengths comprising the disjoint-cycle representation. Thus we only need to make an
inventory of the cycle types for our permutations and do the calculation once for each
distinct cycle type. There will not be more such cycle types than the number of conjugacy
classes in the symmetry group. Also, note, the utility of multinomial coefficients in this
context stems from the likelihood that our permutations will have many cycles of the
same length.

Algorithmically, the process is straight forward. First, we must find all matrices S
which meet the row and sum conditions (3) and (4) above. For each successful matrix,

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:5

Fig. 2. The symmetry group operations of the square. This group is known as the dihedral group of degree
4 or D4. The dashed lines are guides to the eye for the horizontal, vertical, and diagonal reflections (M1,M2
and D1, D2).

we then compute the product of row-multinomial-coefficients. We add those up and
multiply by the number of permutations in the conjugacy class, sum those results for
the conjugacy classes, and divide by the group order. That gives us the Pólya coefficient
for the given stoichiometry.

For example, suppose our permutation is made up of two 1-cycles, three 2-cycles, and
one 4-cycle (so the number of sites is 12), and we have three colors with frequencies
(red:green:blue → 4:6:2) respectively. Then we are looking for 3 × 3 matrices S whose

rows sum to
(

2
3
1

)
and whose columns (when dotted with the cycle lengths

(
1
2
4

)
) sum

to 4, 6, and 2 respectively. There are exactly five such matrices (see Figure 3 and
discussion in Section 3):

(0 0 2
0 3 0
1 0 0

)
,

(0 0 2
2 1 0
0 1 0

)
,

(0 2 0
0 2 1
1 0 0

)
,

(0 2 0
2 0 1
0 1 0

)
,

(2 0 0
1 1 1
0 1 0

)
. (6)

The multinomial coefficient for the top and bottom row in each case is
(2

2,0,0

) = (2
2

) =
1 = (1

1,0,0

)
, so the F(S) in each case is equal to the multinomial coefficient of the middle

row; thus
(3

3

) = 1 in the first case,
(3

2,1

) = 3 for the middle three matrices, and
(3

1,1,1

) = 6
for the right-hand matrix. So our count for this problem is 1 + 3 + 3 + 3 + 6 = 16. We
may check this by computing (r + g + b)2(r2 + g2 + b2)3(r4 + g4 + b4) (a la Pólya) and
noting that the coefficient of r4g6b2 is indeed 16.

Clearly, we can do that for each permutation in the group and sum the results. That
is equivalent to determining in how many ways we may assign a single color to each
cycle in the permutation—in such a way that the total number of occurrences of each
color achieves its target frequency.

2.2. Example: Applying Pólyas Theorem

Here we present a simple example showing how Pólya’s theorem is applied to a small,
finite group. The square has the set of symmetries displayed in Figure 2. These sym-
metries include four rotations (by 0◦, 90◦, 180◦, and 270◦; labeled 1, R1, R2, and R3)
and four reflections (one horizontal, one vertical, and two for the diagonals; labeled

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:6 C. W. Rosenbrock et al.

Table I. Disjoint-Cyclic Form for Each Group Operation in D4 and the Corresponding
Polynomials, Expanded Polynomials and the Coefficient of the x2y2 Term for Each

Op. Disjoint-Cyclic Polynomial Expanded Coeff.

1 (1)(2)(3)(4) (x + y)4 x4 + 4x3 y + 6x2 y2 + 4xy3 + y4 6

D1 (1, 3)(2)(4) (x2 + y2)(x + y)2 x4 + 2x3 y + 2x2 y2 + 2xy3 + y4 2

D2 (1)(2, 4)(3) (x2 + y2)(x + y)2 x4 + 2x3 y + 2x2 y2 + 2xy3 + y4 2

M1 (1, 2)(3, 4) (x2 + y2)2 x4 + 2x2 y2 + y4 2

M2 (1, 4)(2, 3) (x2 + y2)2 x4 + 2x2 y2 + y4 2

R1 (1, 4, 3, 2) (x4 + y4) x4 + +y4 0

R2 (1, 3)(2, 4) (x2 + y2)2 x4 + 2x2 y2 + y4 2

R3 (1, 2, 3, 4) (x4 + y4) x4 + +y4 0

M1, M2 and D1, D2). This group is commonly known as the dihedral group of degree
four, or D4 for short.2

The group operations of the D4 group can be written in disjoint-cyclic form as in
Table I. For each r-cycle in the group, we can write a polynomial in variables xr

i for
i = 1 . . . ξ , where ξ is the number of colors used. For this example, we will consider the
situation where we want to color the four corners of the square with only two colors. In
that case we end up with just two variables x1, x2, which are represented as x, y in the
table.

The Pólya representation for a single group operation in disjoint-cyclic form results
in a product of polynomials that we can expand. For example, the group operation D1
has disjoint-cyclic form (1, 3)(2)(4) that can be represented by the polynomial (x2 +
y2)(x + y)(x + y), where the exponent on each variable corresponds to the length of the
r-cycle of which it is a part. For a general r-cycle, the polynomial takes the form(

xr
1 + xr

2 + · · · + xr
ξ

)
, (7)

for an enumeration with ξ colors. As described in Section 2.1, we exchange the group
operations acting on the set for polynomial representations that obey the familiar rules
for polynomials.

We will now pursue our example of the possible colorings on the four corners of the
square involving two of each color. Excluding the symmetry operations, we could come
up with

(4
2

) = 6 possibilities, but some of these are equivalent by symmetry. The Pólya
theorem counts how many unique colorings we should recover. To find that number, we
look at the coefficient of the term corresponding to the overall color selection (in this
example, two of each color); thus we look for coefficients of the x2y2 term for each group
operation. These coefficient values are listed in Table I. The sum of these coefficients,
divided by the number of operations in the group, gives the total number of unique
colorings under the entire group action, in this case (6 + 2 + 2 + 2 + 2 + 0 + 2 + 0)/8 =
16/8 = 2.

Next, we apply the procedure discussed in connection with Equation (6) to construct
the matrix S for one of the permutations of the square. It illustrates the idea behind
the general algorithm presented in the next section.

In the symmetries of the square, there is a cycle type consisting of two 1-cycles and
one 2-cycle. The two permutations with that type are (1)(3)(24) and (2)(4)(13). The
cycle lengths are 1 (with multiplicity 2) and 2 (with multiplicity 1). So each of those

2The dihedral groups have multiple, equivalent names. D4 is also called Dih4 or the dihedral group of order
8 (D8).

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:7

permutations requires a matrix S =
(

s11
s21

s12
s22

)
satisfying s11 + s12 = 2 and s21 + s22 = 1

(row sum condition (3)) and s11 + 2s21 = 2 and s12 + 2s22 = 2 (column sum condition
(4)). There are only two matrices of non-negative integers satisfying those conditions
simultaneously: (

2 0
0 1

)
and

(
0 2
1 0

)
. (8)

For each of these matrices, the row-multinomial coefficients are
(2

0,2

) = 1 and
(1

0,1

) = 1
so each matrix yields a product 1. Thus each permutation of this cycle type contributes
2 to the sum. This corresponds to the fact that the coefficient of x2y2 in (x + y)2(x2 + y2)
is 2.

Since there are two permutations of this cycle type, the total contribution of the cycle
type to the overall Pólya polynomial is 4 (which must then be divided by the number
of symmetries in the group).

Thus, in general, the only problem is to find an efficient way of generating these ma-
trix solutions. Since the problem is equivalent to enumerating all lattice points within
a high-dimensional polytope, we presume that a tree search (implemented recursively
or via a backtracking algorithm) may be the most efficient way to achieve this.

3. COEFFICIENT-FINDING ALGORITHM

Our implementation of the tree search is fundamentally identical to the method of the
last section; however, the details may not be immediately recognizable as such.3 In
this section we rephrase the row and column sum conditions (3) and (4) to highlight
the logical connections between our specific implementation and the general ideas
from Section 2. We adopt this approach because (1) for pedagogical value, the matrix
approach is much easier to visualize and (2) the algorithms presented here mirror the
accompanying code closely, which we consider valuable.

First, for a generic polynomial

(
xr

1 + xr
2 + · · · + xr

ξ

)d
, (9)

the exponents of each xi in the expanded polynomial are constrained to the set

V = {0, r, 2r, 3r, . . . , dr}. (10)

Next, we consider the terms in the expansion of the polynomial:

(
xr

1 + xr
2 + · · · + xr

ξ

)d =
∑

k1,k2,...,kξ

μk

ξ∏
i=1

xrki
i , (11)

where the sum is over all possibles sequences k1, k2, . . . , kξ such that the sum of the
exponents (represented by the sequence in ki) is equal to d,

k1 + k2 + · · · + kξ = d. (12)

3If all you are looking for is a working code, you now know enough to use it. Download it at https://
github.com/rosenbrockc/polya.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:8 C. W. Rosenbrock et al.

As described in the introduction, the coefficients μk in the polynomial expansion
Equation (11) are found using the multinomial coefficients

μk =
(

n
k1, k2, . . . , kξ

)
= n!

k1!k2! · · · kξ !

=
(

k1

k1

)(
k1 + k2

k2

)
· · ·

(
k1 + k2 + · · · + kξ

kξ

)

=
ξ∏

i=1

(∑i
j=1 kj

ki

)
. (13)

Finally, we define the polynomial (7) for an arbitrary group operation π ∈ G as4

Pπ (x1, x2, . . . , xξ) =
m∏

α=1

Mrα

α (x1, x2, . . . , xξ), (14)

where each Mrα
α is a polynomial of the form (9) for the αth distinct r-cycle and dα is the

multiplicity of that r-cycle; m is the number of cycle types in Pπ . Linking back to the
matrix formulation, each Mrα

α is equivalent to a row Si in matrix S.
Since we know the fixed stoichiometry term T = ∏ξ

i=1 Ti = ∏ξ

i=1 xci
i in advance, we

can limit the possible sequences of ki for which multinomial coefficients are calculated.
This is the key idea of the algorithm and the reason for its high performance.

For each group operation π , we have a product of polynomials Mrα
α . We begin filtering

the sequences by choosing only those combinations of values viα ∈ Vα = {viα}dα+1
i=1 for

which the sum
m∑

α=1

viα = Ti, (15)

where Vα is the set from Eq. (10) for multinomial Mrα
α . At this point it is useful to refer

to Figure 3 to make the connection to the recursive tree search for possible matrices.
The Vα are equivalent to all the possible values that any of the elements in a row of the
matrix may take. If we take Mr1

1 as an example, then V1 is the collection of all values
that show up in row 1 of any matrix in the figure, multiplied by the number of cycles
with length r1. Constraint (15) is equivalent to the column sum requirement (4).

We first apply constraint (15) to the x1 term across the product of polynomials to find
a set of values {k1α}m

α=1 that could give exponent T1 once all the polynomials’ terms have
been expanded. This is equivalent to finding the set of first columns in each matrix
that match the target frequency for the first color. Once a value k1α has been fixed for
each Mrα

α , the remaining exponents in the sequence {k1α} ∪ {kiα}ξi=2 are constrained via
(12). We can recursively examine each variable xi in turn using these constraints to
build a set of sequences

Sl = {Slα}m
α=1 = {(k1α, k2α, . . . , kξα)}m

α=1, (16)

where each Slα defines the exponent sequence for its polynomial Mrα
α that will produce

the target term T after the product is expanded. Each Slα ∈ Sl represents the trans-
posed matrix S that survives both the row and column sum conditions (highlighted in
green in the figure). Thus, Sl is the set of these matrices for the group operation π . The

4We will use Greek subscripts to label the polynomials in the product and Latin subscripts to label the
variables within any of the polynomials.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:9

Fig. 3. A recursive tree search for some of the possible matrices S for the problem of Section 2: two 1-cycles,
three 2-cycles, and one 4-cycle. We have restricted the figure to include only the zero pendants of the tree,
which produce four of the five relevant matrices in Equation (6). Matrix elements in red (blue) represent the
only possible values that would satisfy the row (column) sum conditions. A red (blue) cross over a matrix
shows that it fails the row (column) sum condition, and its descendants need not be examined. Matrices with
green borders are solutions to the tree search problem. The purple squares show the current row and column
on which the recursive search is operating.

maximum value of l depends on the target term T and how many possible viα values
are filtered out using constraints (15) and (12) at each step in the recursion.

Once the set S = {Sl} has been constructed, we use Equation (13) on each polynomial’s
{kiα}ξi=1 in Slα to find the contributing coefficients. The final coefficient value for term
T resulting from group operation π is

tπ =
∑

l

τl =
∑

l

m∏
α=1

(
dα

Slα

)
. (17)

To find the total number of unique colorings under the group action, this process is
applied to each element π ∈ G and the results are summed and then divided by |G|.

We can further optimize the search for contributing terms by ordering the exponents
in the target term T in descending order. All the {k1α}m

α=1 need to sum to T1 (15); larger
values for T1 are more likely to result in smaller sets of {kiα}m

α=1 across the polynomials.
This happens because if T1 has smaller values (like 1 or 2), then we end up with
lots of possible ways to arrange them to sum to T1 (which is not the the case for the
larger values). Since the final set of sequences Sl is formed using a Cartesian product,
including a few extra sequences from any Ti prunings multiplies the total number of

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:10 C. W. Rosenbrock et al.

sequences significantly. In the figure, this optimization is equivalent to completing a
row with red entries because all the remaining, unfilled entries are constrained by the
row sum condition.

Additionally, constraint (12) applied within each polynomial will also reduce the
total number of sequences to consider if the first variables x1, x2, and so on, are larger
integers compared to the target values T1, T2, and so on. This speed-up comes from
the recursive implementation: If x1 is already too large (compared to T1), then possible
values for x2, x3, . . . are never considered. This optimization is equivalent to completing
matrix columns with blue entries because of the column sum constraint.

3.1. Pseudocode Implementation

Note: Implementations in PYTHON and FORTRAN are available in the supplementary
material.

For both algorithms presented below, the operator (⇐) pushes the value to its right
onto the list to its left.

For algorithm (1) in the EXPAND procedure, the ∪ operator horizontally concatenates
the integer root to an existing sequence of integers.

For BUILD_Sl, we use the exponent k1α on the first variable in each polynomial to
construct a full set of possible sequences for that polynomial. Those sets of sequences
are then combined in SUM_SEQUENCES (alg. 2) using a Cartesian product over the sets in
each multinomial.

When calculating multinomial coefficients, we use the form in Eq. (13) in terms of
binomial coefficients with a fast, stable algorithm from Manolopoulos [2002].

In practice, many of the group operations π produce identical products
Mr1

1 Mr2
2 . . . Mrm

m . Thus before computing any of the coefficients from the polynomials,
we first form the polynomial products for each group operation and then add identical
products together.

4. COMPUTATIONAL ORDER AND PERFORMANCE

The algorithm is structured around the a priori knowledge of the target stoichiometry.
At the earliest possibility, we prune terms from individual polynomials that would
not contribute to the final Pólya coefficient in the expanded product of polynomials
(see Figure 3). Because the Pólya polynomial for each group operation is based on its
disjoint-cyclic form, the complexity of the search can vary drastically from one group
operation to the next. That said, it is common for groups to have several classes whose
group operations (within each class) will have similar disjoint-cyclic forms and thus also
scale similarly. However, from group to group, the set of classes and disjoint-cyclic forms
may differ considerably; this makes it difficult to make a statement about the scaling
of the algorithm in general. As such, we instead provide a formal, worst-case analysis
for the algorithm’s performance and supplement it with experimental examples. For
these experiments, we crafted special groups with specific properties to demonstrate
the various scaling behaviors as group properties change.

4.1. Worst-Case Scaling

Heuristically, the behavior of our algorithm should depend roughly on the size of the
group: the number of permutations we have to analyze. That seems consistent with
our experiments. But that can also be mitigated by noting that some groups of the
same size have many more distinct cycle types than others. For example, if our group
is generated by a single cycle of prime integer length p, then there are only two cycle
types, despite the group having order p.

The majority of computation time should be spent in enumerating those matrices
S and be proportional to the number of same (see Figure 4). Numerical experiments

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:11

ALGORITHM 1: Recursive Sequence Constructor
Procedure initialize(i, kiα, Mrα

α , Vα,T)
Constructs a Sequence Object tree recursively for a single Mrα

α by filtering possible exponents
on each xi in the polynomial. The object has the following properties:

root: kiα, proposed exponent of xi in Mrα
α .

parent: proposed Sequence for ki−1,α of xi−1.
used: the sum of the proposed exponents to left of and including this variable

∑i
j=1 kiα.

i: index of variable in Mrα
α (column index).

kiα: proposed exponent of xi in Mrα
α (matrix entry at iα).

Mrα
α : Pólya polynomial in Pπ (14).

Vα: possible exponents for Mrα
α (10).

T: {Ti}ξ

i=1 target stoichiometry.
. .

if i = 1 then
self.used ← self.root + self.parent.used

else
self.used ← self.root

end

self.kids ← empty
if i ≤ ξ then

for p ∈ Vα do
rem ← p − self.root
if 0 ≤ rem ≤ Ti and |rem| ≤ dαrα − self.used and |p − self.used| mod rα = 0 then

self.kids ⇐ initialize(i + 1, rem, Mrα
α , Vα, T)

end
end

end
Function expand(sequence)

Generates a set of Slα from a single Sequence object.
sequence: the object created using initialize().
. .

sequences ← empty
for kid ∈ sequence.kids do

for seq ∈ expand(kid) do
sequences ⇐ kid.root ∪ seq

end
end

if len(sequence.kids) = 0 then
sequences ← {kid.root}

end

return sequences
Function build Sl(k, V, Pπ , T)

Constructs Sl from {k1α}m
α=1 for a Pπ (14).

k: {k1α}m
α=1 set of possible exponent values on the first variable in each Mrα

α ∈ Pπ .
V: {Vα}m

α=1 possible exponents for each Mrα
α (10).

Pπ : Pólya polynomial representation for a single operation π in the group G (14).
T: {Ti}ξ

i=1 target stoichiometry.
. .

sequences ← empty
for α ∈ {1 . . . m} do

seq ← initialize(1, k1α, Mrα
α , Vα, T)

sequences ⇐ expand(seq)
end

return sequences

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:12 C. W. Rosenbrock et al.

ALGORITHM 2: Coefficient Calculator
Function sum sequences(Sl)

Finds τl (17) for Sl = {Slα}m
α=1 (16)

Sl: a set of lists (of exponent sequences {kiα}ξ

i=1) for each polynomial Mrα
α in Pπ (14).

. .
Kl ← Sl1 × Sl2 × · · · × Slm = 〈{(kiα)ξi=1}m

α=1〉l
coeff ← 0
for each {(kiα)ξi=1}m

α=1 ∈ Kl do
if

∑m
α=1 kiα = Ti ∀ i ∈ {1 . . . ξ} then

coeff ← coeff + ∏m
α=1

(dα

{kiα }ξi=1

)
end

end

return coeff
Function coefficient(T, Pπ , V)

Constructs S = {Sl} and calculates tπ (17)
T: {Ti}ξ

i=1 target stoichiometry.
Pπ : Pólya polynomial representation for a single operation π in the group G (14).
V: {Vα}m

α=1 possible exponents for each Mrα
α (10).

. .
if m = 1 then

if r1 > Ti ∀ i = 1..ξ then
return 0

else
return

(d1
T1T2 ...Tξ

)
end

else
T ← sorted(T)
possible ← V1 × V2 × · · · × Vm
coeffs ← 0

for {k1α}m
α=1 ∈ possible do

if
∑m

α=1 k1α = T1 then
Sl ← build Sl({k1α}m

α=1, V, Pπ , T)
coeffs ← coeffs+ sum sequences(Sl)

end
end

return coeffs
end

confirm5 that the number of matrices scales exponentially with the number of colors
(fixed group and number of elements in the set), linearly with the number of elements
in the set (fixed number of colors and group), and is linear with the group size (fixed
number of colors and elements in the set). The number of entries in the matrix S is
tξ (see the discussion above Equation (3)) and the height of the entries is (roughly)
bounded by the number of cycles and (very roughly) by the color frequencies divided
by cycle lengths. This makes computing a time estimate based on these factors very
difficult, but in the worst case, it could grow like the tξ -th power of the average size of the
entries, which will depend on the size of the target frequencies, and so on. This would
be a very complex function to estimate, but we may expect it to grow exponentially for

5Figures are included in the code repository. See supplementary material.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:13

Fig. 4. Normalized algorithm scaling with the number of relevant matrices to enumerate. For large matrix
counts, the behavior appears linear, supporting the hypothesis that the algorithm scales roughly with the
number of matrices. The scatter is appreciable only for small matrix counts (less than 106).

Fig. 5. Log plot of the algorithm scaling as the number of colors increases. Since the number of variables
xi in each polynomial increases with the number of colors, the combinatoric complexity of the expanded
polynomial increases drastically with each additional color; this leads to an exponential scaling. The linear
fit to the logarithmic data has a slope of 0.403.

very large input. We did not find that to be an impediment for the sizes of problems we
needed to solve.

4.2. Experiments Demonstrating Algorithm Scaling

In Figure 5, we plot the algorithm’s scaling as the number of colors in the enumer-
ation increases (for a fixed group and number of elements). For each r-cycle in the
disjoint-cyclic form of a group operation, we construct a polynomial with ξ variables,
where ξ is the number of colors used in the enumeration. Because the group opera-
tion results in a product of these polynomials, increasing the number of colors by 1
increases the combinatoric complexity of the polynomial expansion exponentially. For

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:14 C. W. Rosenbrock et al.

Fig. 6. Algorithm scaling as the number of elements in the finite set increases (for two colors). The Pólya
polynomial arises from the group operations’ disjoint-cyclic form, so more elements in the set results in a
richer spectrum of possible polynomials multiplied together. Because of the algorithms aggressive pruning
of terms, the exact disjoint-cyclic form of individual group operations has a large bearing on the algorithm’s
scaling. As such, it is not surprising that there is some scatter in the timings as the number of elements in
the set increases.

this scaling experiment, we used the same transitive group acting on a finite set with
20 elements for each data point but increased the number of colors in the fixed color
term T . We chose T by dividing the number of elements in the group as equally as
possible; thus for two colors, we used [10, 10]; for three colors we used [8, 6, 6], then
[5, 5, 5, 5], [4, 4, 4, 4, 4], and so on. Figure 5 plots the log10 of the execution time (in
ms) as the number of colors increases. As expected, the scaling is linear (on the log
plot).

As the number of elements in the finite set increases, the possible Pólya polynomial
representations for each group operation’s disjoint-cyclic form increases exponentially.
In the worst case, a group acting on a set with k elements may have an operation with
k 1-cycles; on the other hand, that same group may have an operation with a single
k-cycle, with lots of possibilities in between. Because of the richness of possibilities, it
is almost impossible to make general statements about the algorithm’s scaling without
knowing the structure of the group and its classes. In Figure 6, we plot the scaling for
a set of related groups (all are isomorphic to the direct product of S3 × S4) applied to
finite sets of varying sizes. Every data point was generated using a transitive group
with 144 elements. Thus, this plot shows the algorithm’s scaling when the group is
the same and the number of elements in the finite set changes. Although the scaling
appears almost linear, there is a lot of scatter in the data. Given the rich spectrum of
possible Pólya polynomials that we can form as the set size increases, the scatter is not
surprising.

Finally, we consider the scaling as the group size increases (Figure 7). For this test, we
selected the set of unique groups arising from the enumeration of all derivative super
structures of a simple cubic lattice for a given number of sites in the unit cell [Hart
and Forcade 2008]. Since the groups are formed from the symmetries of real crystals,
they arise from the semidirect product of operations related to physical rotations and
translations of the crystal. In this respect, they have similar structure for comparison.
In most cases, the scaling is obviously linear; however, the slope of each trend varies
from group to group. This once again highlights the scaling’s heavy dependence on

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:15

Fig. 7. Normalized algorithm scaling with group size for an enumeration problem from solid state physics
[Hart and Forcade 2008]. We used the unique permutation groups arising from all derivative super structures
of a simple cubic lattice for a given number of sites in the unit cell. The behavior is generally linear with
increasing group size.

the specific disjoint-cyclic forms of the group operations. Even for groups with obvious
similarity, the scaling may differ.

4.3. Comparison with Computer Algebra Systems

In addition to the explicit timing analysis and experiments presented above, we also
ran a group of representative problems with our algorithm and MATHEMATICA (a common
CAS). We also attempted the tests with MAPLE but were unable to obtain consistent
results between multiple runs of the same problems.6 So, we have opted to exclude the
MAPLE timing results. For the comparison with MATHEMATICA, we used MATHEMATICA’s
Expand and Coefficient functions to return the relevant coefficient from the Pólya
polynomial (see Figure 8).

5. SUMMARY

Until now, no low-level, numerical implementation of Pólya’s enumeration theorem has
been readily available; instead, a CAS was used to symbolically solve the polynomial
expansion problem posed by Pólya. While CAS’s are effective for smaller, simpler cal-
culations, as the difficulty of the problem increases, they become impractical solutions.
Additionally, codes that perform the actual enumeration of the colorings are often im-
plemented in low-level codes, and interoperability with a CAS is not necessarily easy
to automate.

We presented a low-level, purely numerical algorithm and code that exploits the
properties of polynomials to restrict the combinatoric complexity of the expansion.
By considering only those coefficients in the unexpanded polynomials that might con-
tribute to the final answer, the algorithm reduces the number of terms that must be
included to find the significant term in the expansion.

6The inconsistency manifests in MAPLE sometimes returning 0 instead of the correct result and sometimes
running the same problem unpredictably in hours or seconds.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

1.11:16 C. W. Rosenbrock et al.

Fig. 8. Comparison of the CPU time (a) and memory usage (b) between the FORTRAN implementation of our
algorithm and MATHEMATICA as the number of colors increases. These are the times needed to generate the
data in Figure 5.

Because of the algorithm scaling’s reliance on the exact structure of the group and
the disjoint-cyclic form of its operations, a rigorous analysis of the scaling is not possible
without knowledge of the group. Instead, we presented some numerical timing results
from representative, real-life problems that show the general scaling behavior.

In contrast to the CAS solutions whose execution times range from milliseconds to
hours, our algorithm consistently performs in the millisecond to second regime, even
for complex problems. Additionally, it is already implemented in both high- and low-
level languages, making it useful for confirming enumeration results. This makes it an
effective substitute for alternative CAS implementations.

REFERENCES

Stefano Curtarolo, Gus L. W. Hart, Marco Buongiorno Nardelli, Natalio Mingo, Stefano Sanvito, and Ohad
Levy. 2013. The high-throughput highway to computational materials design. Nat. Mater. 12, 3 (MAR
2013), 191–201. DOI:http://dx.doi.org/10.1038/NMAT3568

Kecai Deng and Jianguo Qian. 2014. Enumerating stereo-isomers of tree-like polyinositols. J. Math. Chem.
52, 6 (2014), 1581–1598.

Roberto Dovesi, Roberto Orlando, Alessandro Erba, Claudio M. Zicovich-Wilson, Bartolomeo Civalleri,
Silvia Casassa, Lorenzo Maschio, Matteo Ferrabone, Marco De La Pierre, Philippe D’Arco, Yves Nol,
Mauro Caus, Michel Rrat, and Bernard Kirtman. 2014. CRYSTAL14: A program for the ab initio in-
vestigation of crystalline solids. Int. J. Quant. Chem. 114, 19 (2014), 1287–1317. DOI:http://dx.doi.org/
10.1002/qua.24658

Antoine Genitrini, Bernhard Gittenberger, Veronika Kraus, and Cécile Mailler. 2015. Associative and com-
mutative tree representations for Boolean functions. Theor. Comput. Sci. 570 (2015), 70–101.

Modjtaba Ghorbani and Mahin Songhori. 2014. The enumeration of Chiral isomers of tetraammine plat-
inum (II). Match-Communications in Mathematical and in Computer Chemistry 71, 2 (2014), 333–340.

Frank Harary. 1955. The number of linear, directed, rooted, and connected graphs. Trans. Am. Math. Soc.
78, 2 (1955), 445–463.

Gus L. W. Hart and Rodney W. Forcade. 2008. Algorithm for generating derivative structures. Phys. Rev. B
77 (Jun 2008), 224115. Issue 22. DOI:http://dx.doi.org/10.1103/PhysRevB.77.224115

Gus L. W. Hart and Rodney W. Forcade. 2009. Generating derivative structures from multilattices: Applica-
tion to HCP alloys. Phys. Rev. B 80 (July 2009), 014120.

Gus L. W. Hart, Lance J. Nelson, and Rodney W. Forcade. 2012. Generating derivative struc-
tures for a fixed concentration. Comp. Mat. Sci. 59 (2012), 101–107. DOI:http://dx.doi.org/10.1016/
j.commatsci.2012.02.015

B. A. Kennedy, D. A. McQuarrie, and C. H. Brubaker Jr. 1964. Group theory and isomerism. Inorg. Chem. 3,
2 (1964), 265–268.

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

Numerical Algorithm for Pólya Enumeration Theorem 1.11:17

Peter Lackner, Harald Fripertinger, and Gerhard Nierhaus. 2015. Peter Lackner/tropical investigations. In
Patterns of Intuition. Springer, Berlin, 279–313.

Yannis Manolopoulos. 2002. Binomial coefficient computation: Recursion or iteration? ACM SIGCSE Bulletin
InRoads 34 (Dec 2002). Issue 4. DOI:http://dx.doi.org/10.1145/820127.820168

James McGrane, Sanjaye Ramgoolam, and Brian Wecht. 2015. Chiral ring generating functions & branches
of moduli space. arXiv preprint arXiv:1507.08488 (2015).

Sami Mustapha, Philippe DArco, Marco De La Pierre, Yves Nol, Matteo Ferrabone, and Roberto Dovesi.
2013. On the use of symmetry in configurational analysis for the simulation of disordered solids. J.
Phys.: Condens. Matter 25, 10 (2013), 105401. http://stacks.iop.org/0953-8984/25/i=10/a=105401.

George Pólya. 1937. Kombinatorische anzahlbestimmungen fr gruppen, graphen und chemische verbindun-
gen. Acta Math. 68, 1 (1937), 145–254.

George Pólya and Ronald C. Read. 1987. Combinatorial Enumeration of Groups, Graphs, and Chemical
Compounds (1987).

Jianguo Qian. 2014. Enumeration of unlabeled uniform hypergraphs. Discr. Math. 326, 1 (2014), 66–74.
R. W. Robinson, F. Harry, and A. T. Balaban. 1976. The numbers of chiral and achiral alkanes and monosub-

stituted alkanes. Tetrahedron 32, 3 (1976), 355–361.
Masahiko Taniguchi, Sarah Henry, Richard J. Cogdell, and Jonathan S. Lindsey. 2014. Statistical consider-

ations on the formation of circular photosynthetic light-harvesting complexes from rhodopseudomonas
palustris. Photosynth. Res. 121, 1 (2014), 49–60.

J. Tura, R. Augusiak, A. B. Sainz, B. Lücke, C. Klempt, M. Lewenstein, and A. Acı́n. 2015. Nonlocality
in many-body quantum systems detected with two-body correlators. arXiv preprint arXiv:1505.06740
(2015).

Received December 2015; revised May 2016; accepted June 2016

ACM Journal of Experimental Algorithmics, Vol. 21, No. 1, Article 1.11, Publication date: August 2016.

CHAPTER 3

Enumerating Derivative Superstructures

Derivative superstructures [71] are struc-
tures whose lattice vectors are multiples of
a “parent lattice” and whose atomic basis
vectors are constructed from the the lattice
points of the parent lattice. As mentioned
in Chapter 2 numerous algorithms exist for
enumerating unique arrangements of atoms
within a derivative superstructure. However,
these algorithms often run out of memory
when the number of possible arrangements of
atoms is large, such as with high-entropy alloys
(HEAs).

The following paper contains an algorithm
that overcomes this problem by:

1. Using the Pólya enumeration algorithm
from Chapter 2 to determine the number
of unique arrangements before enumerating
and then checks if they will fit into memory.

2. Using a tree search algorithm to only
construct the list of unique arrangements
without constructing any duplicates (most
algorithms construct a complete list of all
the possible arrangements then “cross out”
the duplicates).

This offers advantages over other imple-
mented algorithms as it avoids the combinatoric
explosion of possible arrangements that is often
much larger than the number of unique arrange-
ments. For example, the HEA considered in
Section 1.2 that consists of 5 atomic species
with equal concentration within a 20 atom
cell of an fcc lattice has 3 × 1012 possible
atomic arrangements, however, it has only 109

unique arrangements. For this system the new
algorithm will only require the memory needed
to store the unique list of 109 arrangements

while other algorithms will need three orders
of magnitude more memory to store the list of
possible arrangements.

This efficient enumeration also allows for
displacement directions to be included in the
enumeration. The addition of displacement
directions increases the number of possible
arrangements of atoms on the lattice by 6n!
where n is the number of atoms that can be
displaced off the lattice. A complete list of
possible arrangements, including displacement
directions, would exceed computer memory for
all but the smallest of systems. This makes the
new enumeration algorithm the only algorithm
that can handle the additional complexity of
displacement directions.

Being able to include displacement direc-
tions in the enumerated list of unique arrange-
ments allows for the enumeration of systems
that can be used to study site-disordered
solids [72] or any system for which atoms
are displaced from ideal lattice sites. This
algorithm has been implemented in the
enumlib package and in the Python package
“phenum” available on pypi or as source
code at https://github.com/wsmorgan/phonon-
enumeration/.

For this article, I wrote the algorithm in
Python and FORTRAN and implemented tests
for the algorithm in both languages and wrote
the bulk of the text for the article. Dr. Rodney
Forcade designed the algorithm with input from
me and my advisor. All the authors contributed
to the text.

The following article is reproduced with
permission. A license can be found in
Appendix E.

22

https://github.com/msg-byu/enumlib
https://pypi.org/project/phenum/
https://github.com/wsmorgan/phonon-enumeration/
https://github.com/wsmorgan/phonon-enumeration/

Generating derivative superstructures for systems with high
configurational freedom

Wiley S. Morgan a,⇑, Gus L.W. Hart a, Rodney W. Forcade b

aDepartment of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
bDepartment of Mathematics, Brigham Young University, Provo, UT 84602, USA

a r t i c l e i n f o

Article history:
Received 5 January 2017
Received in revised form 11 April 2017
Accepted 16 April 2017
Available online 29 May 2017

Keywords:
Enumeration
Derivative superstructures
Displacement patterns

a b s t r a c t

Modeling alloys requires the exploration of all possible configurations of atoms. Additionally, modeling
the thermal properties of materials requires knowledge of the possible ways of displacing the atoms.
One solution to finding all symmetrically unique configurations and displacements is to generate the
complete list of possible configurations and remove those that are symmetrically equivalent. This
approach, however, suffers from a combinatorial explosion when the supercell size is large, when there
are more than two atom types, or when there are many displaced atoms. This problem persists even
when there are only a relatively small number of unique arrangements that survive the elimination pro-
cess. Here, we extend an existing algorithm to include the extra configurational degrees of freedom from
the inclusion of displacement directions. The algorithm uses group theory and a tree-like data structure
to eliminate large classes of configurations, avoiding the typical combinatoric explosion. With this
approach we can now enumerate previously inaccessible cases, including atomic displacements.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

In computational material science, one frequently needs to list
the ‘‘derivative superstructures” [1] of a given lattice. A derivative
superstructure is a structure with lattice vectors that are multiples
of a ‘‘parent lattice” and have atomic basis vectors constructed
from the lattice points of the parent lattice. For example, many
phases in metal alloys are merely ‘‘superstructures” of fcc, bcc, or
hcp lattices (L10, L12, B2, D019, etc.). When modeling alloys, it is
necessary to explore all possible configurations and concentrations
of atoms within these superstructures. When determining if a
material is thermodynamically stable, the energies of the unique
arrangements are compared to determine which has the lowest
energy.

Derivative superstructures are found using combinatoric
searches [2–8], comparing every possible combination of atoms
to determine which are unique. However, these searches can be
computationally expensive for systems with high configurational
freedom and are sometimes impractical due to the combinatoric
explosion of possible arrangements.

Other problems impaired by the inefficiency of current enumer-
ation methods include modeling materials that have disorder in

their structures, such as site-disordered solids [9] or that include
atomic displacements as a degree of freedom [10–12]. There are
numerous techniques available for modeling these systems includ-
ing cluster expansion (CE) [13] and a recently developed ‘‘small set
of ordered structures” (SSOS) method [14]. However, the accuracy
of these methods is still linked to the number of unique configura-
tions being modeled. In other words, if the model is trained on a
small set of configurations then it will not be able to make accurate
predictions. Increasing the number of configurations used to train
the models can improve their predictive power. Increasing the
number of structures being used requires a more efficient enumer-
ation technique than those currently available.

Leveraging the basic concepts of the algorithm presented in Ref.
[6], we altered the algorithm to have more favorable scaling in
multinary cases. The basic idea is to imagine the enumeration as
a tree search and employ two new ideas: (1) ‘‘partial colorings”
and (2) stabilizer subgroups. Section 3 illustrates the algorithm
with a concrete example.

The concept of partial colorings is to skip entire branches of the
tree that are symmetrically equivalent to previously visited
branches. A partial coloring is an intermediate level in the tree
(see Fig. 1) where configurations are not yet completely specified.
It frequently happens that symmetric redundancy can be identified
at an early, ‘‘partially colored” stage, avoiding the need to descend
further down the tree.

http://dx.doi.org/10.1016/j.commatsci.2017.04.015
0927-0256/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: wiley.s.morgan@gmail.com (W.S. Morgan).

Computational Materials Science 136 (2017) 144–149

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier .com/locate /commatsci

Stabilizer subgroups [15] further increase the efficiency of the
new algorithm. The stabilizer subgroup at each stage is the set of
symmetries which leave the current partial coloring unchanged.
As we add more colors, and eliminate symmetrically equivalent
colorings, we need not consider colorings which would be equiva-
lent by non-stabilizer symmetries, since those colorings have
already been implicitly eliminated. Note that the stabilizer sub-
group will get smaller as we proceed down the search tree, thus
simplifying and speeding our search.

2. Supercell selection and the symmetry group

The first step in enumerating derivative superstructures is the
enumeration of unique supercells. This step was solved in Ref.
[8], but due to its importance to the algorithm we provide a brief
overview.

The supercells, of size n, are found by constructing all Hermite
Normal Form (HNF) matrices whose determinant is n. An HNF
matrix is an integer matrix with the following form and relations:

a 0 0
b c 0
d e f

0
B@

1
CA; 0 6 b < c; 0 6 d < f ; e < f ð1Þ

where acf ¼ n. The HNFs determine all possible the supercells for
the system. For example, consider a 9-atom cell, then n ¼ 9 and a,
c; f are limited to permutations of (1,3,3) and (1,1,9). Then follow-
ing the rules for the values of b; d, and e, every HNF for this system
can be constructed. These HNFs represent all the possible supercells
of size n of the selected lattice. Some of these are equivalent by
symmetry, so the symmetry group of the parent lattice is used to
eliminate any duplicates.

Next, we convert the symmetries of the lattice to a list of per-
mutations of atomic sites. There is a one-to-one mapping between
the symmetries of the lattice and atomic site permutations, i.e., the
groups are isomorphic. The mapping from the symmetry opera-
tions to the permutation group is accomplished using the quotient
group G ¼ L=L0, where L is the lattice, constructed from the unit
cell, and L0 is the superlattice, constructed from the supercell. The

quotient group G is found directly from the Smith Normal Form
(SNF) matrices, which can be constructed from the HNFs via a stan-
dard algorithm using integer row and column operations. Thus
S ¼ UHV where U and V are integer matrices with determinant
�1 and S is the diagonal SNF matrix, where each positive integer
diagonal entry divides the next one down. The group, G, is then
G ¼ Zs1 � Zs2 � Zs3 , where si is ith diagonal of the SNF and Zsi repre-
sents the cyclic group of order n.

Once the supercells have been found and their symmetry
groups have been converted to the isomorphic permutation group,
the algorithm can begin finding the unique arrangements of atoms
within each supercell in a tree search framework. This is accom-
plished by treating each supercell with its symmetry group as a
separate enumeration problem. The results of the enumeration
across all supercells are then combined to produce the full
enumeration.

3. Tree search

Once a supercell has been selected, the remainder of the enu-
meration algorithm resembles a tree search. It is often possible
to skip the descendents of a node because we know all its ‘‘leaves”
will represent duplicate structures. These nodes represent incom-
plete configurations, or partial colorings (see Figs. 1 and 2). The par-
tial colorings are identified using a ‘‘location vector” — a list of
indices that specify the node in the tree. Once a partial coloring
is constructed, the stabilizer subgroup for that partial coloring is
found. The stabilizer subgroup allows for the comparison of
branches within the tree in a manner that minimizes the number
of group operations used. These tools (partial colorings and the sta-
bilizer subgroup) are used to ‘‘prune” branches of the tree as they
are being constructed, eliminating large classes of arrangements at
once (Fig. 3).

We will use a 2D example of a 9-atom cell to illustrate the algo-
rithm. The lattice will be populated with the following atomic spe-
cies; 2 red atoms, 3 yellow atoms, and 4 purple atoms. A subset of
the possible arrangements of this system is shown in Fig. 2. The
concepts illustrated with this 2D example are equally applicable
in 3D.

(, ,)

A

(0, ,)

(0, ,)

(1, ,)

(0, ,)

(2, ,)

B

(3, ,)

(3, ,)

(11, ,)

(3, ,)

(16, ,)

(3, ,)

(24, ,)

(0, ,)

(35, ,)

Fig. 1. The empty lattice and 8 of the 36 configurations with only red atoms are shown for the example discussed in Section 3. Above each partial coloring is a vector that
indicates its location in the tree, i.e. ðxr ; xy; xpÞ, where the xis are integers that indicate which arrangement of that color is on the lattice and a � means that no atoms of that
color have been placed yet. Below each configuration is either the label of a symmetrically equivalent configuration, along with the group operation that makes them
equivalent, or the letters A and B. A and B are the branches that are built from the 1-partial colorings that are unique and are displayed in Fig. 2. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

W.S. Morgan et al. / Computational Materials Science 136 (2017) 144–149 145

3.1. Partial colorings

When searching for all unique configurations, it is useful to
know, a priori, how many configurations are expected. A recently
developed numerical algorithm for the Pólya enumeration theorem
[16–18] allows one to quickly determine the memory require-
ments of storing the unique arrangements. For the 9 atom system
considered here, the Pólya algorithm finds 24 unique configura-
tions (from the 1260 combinatorially distinct configurations).

The algorithm places atomic species on the lattice from smallest
concentration to the largest. In this case, the red atoms have the
lowest concentration and are placed in the first two sites of the cell
creating the first 1-partial coloring (a partial coloring is a configu-
ration with only a subset of the atoms decorating the lattice). This
is shown in the leftmost configuration, labeled ð0; �; �Þ, in the sec-
ond row of Fig. 1. The general procedure is to apply the symmetry
group to each partial coloring in order to make comparisons
between partial colorings and determine if they are symmetrically
equivalent. For example, in Fig. 1, the configuration labeled ð1; �; �Þ
is equivalent to configuration ð0; �; �Þ by a translation. At the
ð0; �; �Þ stage we only have one partial coloring so it is unique
and no comparisons need to be made, however the symmetry
group is still applied to find the stabilizer subgroup described in
Section 3.2.

Comparisons between configurations are made by using a hash
function. The hash function is a one-to-one mapping between the
atomic configurations and the location vector. In our case, the con-
figurations are listed within the hash table in the order they are
created. The hash function then maps the configuration to a vector
of integers with an entry for each species (color) in the system.

The hash function uses the principles of combinatorics to
uniquely identify each partial coloring using an integer vector.
Its construction starts by determining the number of possible
ways to arrange the colors on the lattice. The number of possible

(0, ,)

(0,0,)

(0,0,0)

(0,1,)

(0,1,0)

(0,2,)

(0,2,0)

(0,3,)

(0,3,0)

(0,4,)

(0,4,0)

(0,11,)

(0,11,0)

(0,5,) (0,34,)(0,15,)

(0,15,0)

(0,16,)

(0,16,0)

(0,18,)

(0,18,0)

(0,19,)

(0,19,0)

(0,20,)

(0,20,0)

(0,21,)

(0,21,0)

(0,22,)(0,17,)

A

(0,1,) (0,16,) (0,16,) (0,15,)

(3, ,)

(3,0,)

(3,0,0)

(3,1,)

(3,1,0)

(3,2,)

(3,2,0)

(3,3,)

(3,3,0)

(3,4,)

(3,4,0)

(3,8,)

(3,8,0)

(3,9,)

(3,9,0)

(3,11,)

(3,11,0)

(3,21,)

(3,21,0)

(3,23,)

(3,23,0)

(3,24,)

(3,24,0)

(3,6,) (3,34,)(3,26,)(3,19,)

(3,19,0)

(3,20,)

B

(3,0,) (3,19,) (3,21,)(3,2,)

Fig. 2. Here the A and B branches of the tree from Fig. 1 are shown. Each branch starts with the initial 1-partial coloring the branch is built from (ð0; �; �Þ and ð3; �; �Þ
respectively). The branches then show a selection of the 2-partial colorings for that branch, and the unique full colorings that are found. As in Fig. 1 the vectors that indicate
the configurations location in the tree are displayed above the configurations and the symmetrically equivalent labels appears beneath them. In this figure the actions that
make the configurations have been excluded due to their complexity. For example, The configuration labeled ð0;5; �Þ is equivalent to the ð0;1; �Þ configuration by a rotation
about the vertical followed by a translation to the left. In the B branch configuration ð3;19;0Þ is outlined for reference because it is used as an example later in the text. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. The configuration ð3;0; �Þ, shown on the left, is acted on by a reflection about
the diagonal resulting in configuration ð3;6; �Þ, shown on the right. Because the
symmetry group operation is a stabilizer for the configuration ð3; �; �Þ the red atoms
were not affected. A stabilizer is a group element that leaves the set invariant. The
yellow atoms, however, were mapped to a different configuration. This means we
can use just the stabilizer subgroup for the ð3; �; �Þ configuration to compare all the
2-partial colorings of the form ð3; xy; �Þ, where (0 6 xy 6 Cy � 1), because any other
group operation would map us to a different branch of the tree. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

146 W.S. Morgan et al. / Computational Materials Science 136 (2017) 144–149

configurations can be found using the multinomial coefficient,
which is equivalent to the product of binomial coefficients for each
individual color:

C ¼ n

a1; a2; . . . ; ak

� �
¼ C1C2 . . .Ck ¼

n

a1

� �
n� a1
a2

� �

. . .
n� a1 � a2 � . . .� ak

ak

� �
;

ð2Þ

where n is the number of sites in the unit cell and a1; a2; . . . ; ak are
the number of atoms of species i such that

P
iai ¼ n. The binomials

determine the number of ways to place the atoms of each color
within the lattice once the previous colors have been placed. By
assigning each partial coloring an integer, xi, from 0 to Ci � 1, where
i is the color, we can build a vector that identifies the location,
ðx1; x2; . . . ; xkÞ, of the configuration within the tree. For example,

there are Cr ¼ 9
2

� �
¼ 36 ways to place the red atoms (r) on the

empty lattice. After the red atoms are placed then there remain

Cy ¼ 7
3

� �
¼ 35 ways to place the yellow atoms (y) on the remain-

ing lattice sites. This leaves Cp ¼ 4
4

� �
¼ 1 way to place the purple

atoms (p) on the lattice. Within Figs. 1 and 2, the vector locations
have the form ðxr ; xy; xpÞ and if the color has not been assigned yet
then the as-yet-unspecified xis are indicated by dots.

The hash function maps a configuration to a location vector as
follows: the xi’s are constructed by considering each color sepa-
rately and building a binary string of the color and the remaining
empty lattice sites, where the color is a 1 and the empty site is a
0 within the string. From the binary string, we can then use a series
of binomial coefficients to find the xi’s. The binomial coefficients
are found by taking each 0 in the string that has 1’s to the right

of it and computing p
q� 1

� �
, where p is the number of digits to

the right and q is the number of 1’s to the right of the 0. Summing
the binomials for qualifying zeros produces a number that tells us
how many configurations came before the current one.

As an example, consider configuration (3,19,0) of Fig. 2B. The
construction begins with the red atoms represented as the follow-
ing binary string (1,0,0,0,1,0,0,0,0), where every atom that is not
red has been represented by a 0 and the red atoms by a 1. This
string has 3 zeros that have a single 1 to their right, the first zero
has 7 digits to its right, the second has 6 atoms to its right and
the third has 5 atoms to its right. The resultant sum of binomials

is xr ¼ 7
0

� �
þ 6

0

� �
þ 5

0

� �
¼ 1þ 1þ 1 ¼ 3. This result is the first

entry in our location vector.
The second entry in the location vector is constructed for the

yellow atoms. The bit string representation of the yellow atoms
is (0,1,0,1,1,0,0), there are only 7 digits because the 2 red atoms

have already been placed, so xy ¼ 6
2

� �
þ 4

1

� �
¼ 15þ 4 ¼ 19.

The last entry in the location vector is built for the purple atoms
which have the bit string (1,1,1,1), so xp ¼ 0. The location vector
is complete once all colors have been included.

The location vectors allow us to determine if a configuration is
unique by checking if an element of the symmetry group maps the
configuration to another configuration with a smaller location vec-
tor. A symmetry operation maps a configuration’s location to a sec-
ond, equivalent location. Uniqueness is determined by comparing
the original and mapped locations for the configuration; if the
mapped configuration has already been enumerated, that is, if
xoriginal > xmapped, then the configuration is not unique because it is
equivalent to one we have already visited. For example, configura-
tion ð2; �; �Þ shown in Fig. 1 can be turned into configuration

ð0; �; �Þ by a 180 degree rotation about the diagonal. Since ð2; �; �Þ
and ð0; �; �Þ are equivalent we conclude that ð2; �; �Þ is not unique
because 2 > 0. In summary, if any element of the symmetry group
makes the location vector ‘‘smaller”, then the corresponding con-
figuration has already been visited.

3.2. The stabilizer subgroup

The entire symmetry group does not need to be applied to a
partial coloring; all that is needed is the stabilizer subgroup of
the parent partial coloring (one level up the tree). The stabilizer
subgroup is found when the symmetry group is applied to the par-
tial coloring one level higher up the tree, so finding the stabilizer
subgroup costs nothing computationally. As an example of an ele-
ment of the stabilizer subgroup, consider the cell ð3; �; �Þ, displayed
in Fig. 1, and reflect it about the diagonal; the red atoms are unaf-
fected. This means that a reflection about the diagonal is a member
of the stabilizer subgroup for the 1-partial coloring ð3; �; �Þ. In gen-
eral, only a small subset of the symmetry group will be in the sta-
bilizer subgroup for any partial coloring.

The stabilizer subgroup leaves the desired n-partial coloring
unchanged, where n is the depth in the tree. When another color
is added (making an ðnþ 1Þ-partial coloring), the stabilizer sub-
group for the n-partial coloring becomes the only group operations
that can be applied without affecting the n-partial coloring. In
other words, if we were to use any other group elements we would
be comparing configurations that we already know are equivalent
on the n-partial coloring level.

Once a unique n-partial coloring and its stabilizer subgroup
have been found, the algorithm proceeds down the branch to the
ðnþ 1Þ-partial colorings (see Fig. 2). To check the uniqueness of
the ðnþ 1Þ-partial colorings, the stabilizer subgroup from the n-
partial colorings are used. (At this point, the stabilizer subgroup
for the ðnþ 1Þ-partial colorings are stored.) When a unique config-
uration is found on the ðnþ 1Þ level, another color is added, making
the ðnþ 2Þ-partial colorings, and the process is repeated until the
final level of the tree is reached.

The algorithm proceeds down a branch of the tree until a unique
full configuration is found, such as (0,0,0) of Fig. 2. When the full
configuration is found, the algorithm backs up one level and consid-
ers the next partial coloring.When no partial colorings are available
on a level, the algorithm backs up until it finds a level with untested
partial colorings. In this manner, the entire tree is explored but only
sections with unique configurations are explored in detail.

For an example of the complete algorithm, consider Figs. 1 and
2. The algorithm starts at ð�; �; �Þ then builds the 1-partial coloring
at ð0; �; �Þ, which is unique by virtue of being the first partial color-
ing considered on this level, and records its stabilizer subgroup.
The yellow atoms are then added to the configuration to build
the 2-partial coloring at ð0;0; �Þ, of Fig. 2 A, which is also unique,
and records its stabilizer subgroup. Next, it places the purple atoms
to get the configuration at (0,0,0); this configuration is saved, then
the algorithm backs up to the 2-partial coloring level to consider
the configuration ð0;1; �Þ and find its stabilizer subgroup.

Once this process has been repeated for all 34 partial colorings
in the vector ð0; xy; �Þ (0 6 xy 6 34 ¼ Cy), the algorithm retreats to
the 1-partial coloring level shown in the second row of Fig. 1 and
finds that ð1; �; �Þ and ð2; �; �Þ are equivalent to ð0; �; �Þ. It then
begins to build the ð3; �; �Þ branch (Fig. 2 B) in the same manner
as the ð0; �; �Þ branch. In this example, only 106 nodes of the
1296 are visited.

Since there are only two unique 1-partial colorings for this
system the algorithm is complete once both branches that origi-
nate from these 1-partial colorings have been explored. In the
end, 24 unique configurations are found (shown in Fig. 2A and

W.S. Morgan et al. / Computational Materials Science 136 (2017) 144–149 147

B), in agreement with the number determined by the Pòlya enu-
meration algorithm.

3.3. Extension to displacement degrees of freedom

Having established the algorithm, we will now address its
extension to include displacement directions. These enumerations
are more difficult because including displacement directions
changes the action of the group. Displacement directions simply
indicate the direction that an atom could be displaced off the lat-
tice. The enumeration of structures that include displacement
directions can be used to build databases [19] of possible struc-
tures with displacements included.

Our algorithm changes only slightly if displacement directions
are included in the enumeration. First, the atoms that will be dis-
placed are treated as a different atomic species so that each dis-
placed atom’s unique locations can be determined. (See Fig. 4 for
an example where yellow displaced atoms are replaced with the
red atoms from the example system used above.) Once the arrows
have been replaced by atomic species, the algorithm proceeds as
normal until a full configuration is found. The algorithm then
restores the arrows and uses the stabilizer subgroup of the full con-
figuration to check for equivalent arrow configurations.

In order to determine if the combined arrow and color configu-
ration is unique, each group element has to be paired with a second
set of permutations that determine how the symmetry operation
affects the arrows. The effect on the arrows is represented as a per-
mutation of the numbers 0 to d� 1, where each number represents
a different displacement direction up to the d directions being con-
sidered. For example, if we consider the system in Fig. 4, we have
two atoms being displaced along one of the 6 cardinal directions,
then any arrow could have values of between 0 and 5 where each
integer has an associated direction; up = 0, right = 1, down = 2,
left = 3, into the page = 4, and out of the page = 5. The initial arrow
vector, shown in the figure, is (up,up) and is represented as (0,0).

The comparison of the rotated and unrotated arrows is achieved
using a hash function different from the one used to hash the color
configurations. This hash function takes a vector of arrow direc-
tions ða0; a1; a2; . . . ; akÞ and converts it to a unique integer label
(where ai is an integer from 0 to d� 1 indicating the direction of
the ith arrow and kþ 1 is the number of arrows). The integer label
is simply the mixed radix number:

x ¼
Xk

i¼0

aid
i
: ð3Þ

With the unique integer labels for each arrow arrangement, we can
make comparisons between symmetry operations. As was the case
for the configurations, if the effect of a symmetry operation results

in a relationship of xold > xnew, then the arrow configuration is not
unique and can be skipped.

The stabilizer subgroup for the unique color configuration are
used to map the arrows to new directions and the hash function
is used to compare the original and mapped arrows. After an arrow
arrangement is checked, the algorithm then increases the magni-
tude of the last ak in the vector by 1 and checks it for uniqueness
with the stabilizer subgroup. If increasing the magnitude of ak
would cause it to be greater than the value of d� 1 then ak
becomes 0 again and ak�1 is increased by 1. This process is repeated
until all the entries in the arrow vector are equal to d� 1.

For example, the initial arrow vector for the system shown in
Fig. 4 is (up,up) and is represented as (0,0). It is found to be unique
since it is the first arrangement. For the next arrangement the
arrow on the right is rotated to point to the right creating the
arrangement represented as (0,1). This arrangement is also
checked to see if it is unique. The right most arrow continues to
be rotated every time a new arrangement is constructed until it
is pointing out of the page and the arrangement represented as
(0,5) has been considered. At this point all possible arrangements
that have the first arrow pointing up have been considered, so
the second arrow is set to point up and first arrow is rotated to
make the arrangement (1,0). We then go back to increasing the last
entry in the vector to create new arrangements in order to deter-
mine if any of them are unique until (1,5) is reached. The process
is repeated until all possible the arrangements, i.e., all 2-tuples of
0; 1; . . . ; d� 1, have been considered. Once all the vectors have
been considered, the algorithm goes back up the tree to find the
next unique configuration of colors.

In this manner, discrete displacement directions can be added to
the configurations. In this example, adding twoarrows to the system
increases the number of possible arrangements to 45,360 (the num-
ber of possible arrangements for the atoms alone is 1260). However,
the resultant number of unique arrangements is only 663.

4. Algorithm scaling

Our new algorithm is much more efficient because it does not
compare all possible configurations of atoms to determine which
are unique. To demonstrate this improvement, we explored a typ-
ical use case for the algorithm by finding all unique configurations
of atoms on an fcc lattice. We considered ternary and quaternary

Fig. 4. To include displacement directions to the algorithm we represent the atoms
to be displaced by a unique color and then convert them back once a unique
configuration is found. In this figure two displaced yellow atoms are represented by
red atoms until the previous portion of the algorithm is complete, then they are
replaced by arrows again for the arrow enumeration. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 5. The scaling of the new and previous algorithm for fcc ternary and quaternary
systems in which the atomic species were of equal concentration. The ternary
system was enumerated for cell sizes of 3–21 atoms and the quaternary system for
cell sizes of 4–16 atoms.

148 W.S. Morgan et al. / Computational Materials Science 136 (2017) 144–149

systems in which all atoms were of equal concentrations. For the
ternary system we explored cell sizes from 3 to 21 and for the qua-
ternary system we considered cell sizes from 4 to 16. As can be
seen in Fig. 5, the new algorithm is significantly faster (it scales
better); for systems with approximately 20 atoms, the new algo-
rithm is two orders of magnitude faster.

5. Conclusion

Our previous algorithms [6–8] explored configuration space by
comparing all possible configurations of the atoms to eliminate
those that were symmetrically equivalent. Our new algorithm uses
a tree search and skips entire branches in the tree by employing
partial colorings. Additionally, the stabilizer subgroups of the par-
tial colorings increases the efficiency of comparing different config-
urations to determine which are unique. The new algorithm can be
applied to cases where the previous algorithms failed because it
handles cases with high configurational freedom more efficiently.
This allowed us to extend it to include displacement directions.

With this new algorithm, it is now possible to find the unique
arrangements of systems with higher configurational freedom.
The systems now accessible include k-nary alloys, k P 3, and
structures with displacement directions. This is accomplished by
using an approach which closely resembles a tree search, but in
which large classes of configurations are eliminated all at once.
In this manner, we are able to partially avoid the combinatoric
explosion which impedes the performance of the previous
algorithms.

This algorithm has been implemented in the enumlib package
and is available for public use at https://github.com/msg-byu/
enumlib under the MIT License.

Acknowledgements

This research was funded by ONR grant MURI N00014-13-1-
0635.

References

[1] M.J. Buerger, Derivative crystal structures, J. Chem. Phys. 15 (1) (1947) 1.
[2] P. D’Arco, S. Mustapha, M. Ferrabone, Y. Noël, M. De La Pierre, R. Dovesi,

Symmetry and random sampling of symmetry independent configurations for
the simulation of disordered solids, J. Phys. Condens. Matt. 25 (35) (2013)
355401.

[3] A. Van De Walle, G. Ceder, Automating first-principles phase diagram
calculations, J. Phase Equilib. 23 (4) (2002) 348.

[4] A. Van De Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: a
user guide, Calphad 26 (4) (2002) 539–553.

[5] N.A. Zarkevich, T.L. Tan, D.D. Johnson, First-principles prediction of phase-
segregating alloy phase diagrams and a rapid design estimate of their
transition temperatures, Phys. Rev. B 75 (10) (2007) 104203.

[6] G.L.W. Hart, L.J. Nelson, R.W. Forcade, Generating derivative structures at a
fixed concentration, Comput. Mater Sci. 59 (2012) 101–107.

[7] G.L.W. Hart, R.W. Forcade, Generating derivative structures from multilattices:
algorithm and application to hcp alloys, Phys. Rev. B 80 (2009) 014120.

[8] G.L.W. Hart, R.W. Forcade, Algorithm for generating derivative structures,
Phys. Rev. B 77 (2008) 224115.

[9] R. Grau-Crespo, S. Hamad, The symmetry-adapted configurational ensemble
approach to the computer simulation of site-disordered solids, in: MOL2NET,
International Conference on Multidisciplinary Sciences, page c002, Basel,
Switzerland, December 2015. MDPI.

[10] S. Kadkhodaei, Q. Hong, A. van de Walle, Free energy calculation of
mechanically unstable but dynamically stabilized bcc titanium, Phys. Rev. B
95 (2017) 064101.

[11] Z. Fei, W. Nielson, Y. Xia, V. Ozolins, Lattice anharmonicity and thermal
conductivity from compressive sensing of first-principles calculations, Phys.
Rev. Lett. 113 (18) (2014) 185501.

[12] K. Parlinski, Z.Q. Li, Y. Kawazoe, First-principles determination of the soft mode
in cubic ZrO2, Phys. Rev. Lett. 78 (1997) 4063–4066.

[13] J.M. Sanchez, F. Ducastelle, D. Gratias, Generalized cluster description of
multicomponent systems, Phys. A 128 (1–2) (1984) 334–350.

[14] C. Jiang, B.P. Uberuaga, Efficient ab initio modeling of randommulticomponent
alloys, Phys. Rev. Lett. 116 (10) (2016) 105501.

[15] G.E. Edward, Transformation groups and C⁄-algebras, Ann. Math. 81 (1) (1965)
38–55.

[16] G. Pólya, R.C. Read, Combinatorial enumeration of groups, graphs, and
chemical compounds, Springer Science & Business Media, 2012.

[17] G. Pólya, Kombinatorische anzahlbestimmungen für gruppen, graphen und
chemische verbindungen, Acta Math. 68 (1) (1937) 145–254.

[18] C.W. Rosenbrock, W.S. Morgan, G.L.W. Hart, S. Curtarolo, R.W. Forcade,
Numerical algorithm for pólya enumeration theorem, J. Exp. Algorithm. 21
(1) (2016) 1–11.

[19] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D.
Gunter, D. Skinner, G. Ceder, K.A. Persson, The Materials Project: a materials
genome approach to accelerating materials innovation, APL Mater. 1 (1) (2013)
011002.

W.S. Morgan et al. / Computational Materials Science 136 (2017) 144–149 149

CHAPTER 4

Determining the Best Integration Grids

As mentioned in Section 1.3, a signif-
icant source of error in DFT calculations is
from the k-point sampling for the electronic
energy calculations. Errors in these calcula-
tions can affect every material property calcu-
lated using DFT and can be serious. Despite
this, there have been no comprehensive studies
on the behavior of the errors caused by k-
points. Initial studies on semiconductors, such
as Si, showed that increasing the number of
k-points rapidly increases the accuracy of the
calculation. The integral is less tame, however,
for metals which have a discontinuity in the
Fermi surface, see Fig 4.1. The discontinu-
ities in the Fermi surface cause unpredictable
jumps in the convergence of the energy calcu-
lations that can, at times, make choosing a
denser sampling grid generate a less accurate
answer. This means that to ensure accuracy k-
point grids may need to be far denser than most
researchers use.

DFT codes generally use regular grids,
proposed by Monkhorst and Pack (MP) [3]. k-
points of a regular grid are defined by:

k = (b1,b2,b3)D−1

n1
n2
n3

=
n1

d1
b1 +

n2

d2
b2 +

n3

d3
b3

(4.1)

where bi are the reciprocal lattice vectors, D
is any diagonal integer matrix whose diagonal
elements are di, and ni runs from 1 to di. These
grids have become widely used because they
are easy to implement.

An alternative, more general method was
proposed by Moreno and Soler, [73] which
involves searching through grids at a desired
k-point density for those that have the fewest

symmetrically distinct k-points. The grids
are then sorted by the length of the shortest
grid generating vector and the grid with the
longest vector is chosen, thus selecting the
most uniform grid. The Moreno-Soler method
involves the construction of superlattices from
the real-space parent lattice (primitive lattice)

(s1,s2,s3) = (a1,a2,a3)N (4.2)

where si are the supercell vectors, ai are the
parent lattice vectors, and N is an integer
matrix. The dual lattice of the supercell lattice
then defines a set of k-point grid generating
vectors κκκ i.

(κκκ1,κκκ2,κκκ3) = 2π((s1,s2,s3)
−1)T

= 2π(((a1,a2,a3)N)−1)T

= 2π(N−1)T ((a1,a2,a3)
−1)T

= (N−1)T (b1,b2,b3)

(4.3)

Note that the determinant of N is the number of
k-points that lie within the Brillouin zone.

Grids generated by the Moreno-Soler
method are Generalized Regular (GR) grids.
GR grids have never been widely adopted
because they require a search over many super-
cells to select the cell that 1) maximizes the
distance between points and 2) has the fewest
irreducible k-points. These searches tend to
be time-consuming due to the combinatoric
explosion in the total number of possible super-
cells as shown in Fig. 5.5.

The following study compares MP, GR,
and simultaneously commensurate (SC) (a set
of grids often used by the Cluster Expansion
community) to determine how the type of k-
point grid affects the errors. The data also

29

30

10
1

10
2

10
3

10
4

10
5

Total k-points

10
6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

To
ta

l e
ne

rg
y

er
ro

r (
eV

)

Convergence: Si vs Al
Si
Al

Figure 4.1 Total energy error vs. total number of k-points for the cases of silicon and
aluminum. Silicon does not have a Fermi surface so there is no discontinuity in the
occupied bands; convergence is super-exponential or O(en) where n is the number of
k-points. (See the discussion of example 1 in Ref. [2].) In contrast, the total energy of
aluminum converges very slowly, and the convergence is quite erratic. For typical target
accuracies in the total energy, around 10−3 eV/atom, metals require 10–50 times more
k-points than semiconductors.

31

provides a more detailed study of how k-point
convergence behaves within DFT for metals.
This information allows DFT users to know
which type of k-point grid will work best and
how dense the k-point sampling should be to
achieve a target accuracy.

For this article, I performed all the calcu-
lations and analysis found in the paper as well

as wrote several portions of the paper. Jeremy
Jorgensen wrote the majority of the paper. All
the authors contributed ideas regarding the data
analysis and helped make the subject under-
standable to the reader.

The following article is reproduced with
permission. A license can be found in
Appendix E.

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Efficiency of Generalized Regular k-point grids
Wiley S. Morgan⁎, Jeremy J. Jorgensen, Bret C. Hess, Gus L.W. Hart
Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA

A B S T R A C T

Most DFT practitioners use regular grids (Monkhorst-Pack, MP) for integrations in the Brillouin zone. Although regular grids are the natural choice and easy to
generate, more general grids whose generating vectors are not merely integer divisions of the reciprocal lattice vectors, are usually more efficient (Wisesa et al.,
2016). We demonstrate the efficiency of generalized regular (GR) grids compared to Monkhorst-Pack (MP) and simultaneously commensurate (SC) grids. In the case of
metals, for total energy accuracies of one meV/atom, GR grids are 60% faster on average than MP grids and 20% faster than SC grids. GR grids also have greater
freedom in choosing the k-point density, enabling the practitioner to achieve a target accuracy with the minimum computational cost.

1. Introduction

High throughput materials design has become an effective route to
material discovery with many successes already documented [2–31].
The creation of large material databases is the first step in high
throughput approaches [32–51]. Computationally expensive electronic
structure calculations generate the data for the databases and limit the
extent to which data analysis tools, such as machine learning, can be
applied. Increasing the speed of these calculations has the potential to
significantly increase the size of these databases and the impact of
material predictions.

Most electronic structure codes perform numerical integrals over
the first Brillouin zone, which converge extremely slowly in the case of
metals. Dense sampling of the Brillouin zone, required for high accu-
racy, is computationally expensive, especially when implementing hy-
brid functionals or perturbative expansions in density functional theory
(DFT) [52]. High accuracy is important because the energies of com-
peting phases are often similar and even small errors can affect the
prediction of stable materials.

Methods for k-point selection have not changed much since
Monkhorst and Pack published their influential paper over 40 years ago
[53]. Their method was quickly accepted by the community due to its
simplicity and ability to generalize previous methods [54,55]. Sampling
methods that improve upon Monkhorst-Pack (MP) grids have been far
less prevalent [1,56–58].

In this paper, we compare the k-point selection method promoted
by Wisesa, McGill, and Mueller [1] (WMM) to the standard MP grids
and to another common method in the alloy community, which we

refer to as simultaneously commensurate (SC) grids. This paper serves to
reinforce and quantify the claims made by WMM, as applied to calcu-
lations typically used for alloys and for some high-throughput studies.

2. Background

Over the past 40 years, only a few k-point selection methods have
been proposed in the literature [1,53–57]. Many of these so-called
special point methods have focused on selecting points that accurately
determined the mean value of a periodic function defined over the
Brillouin zone because the integral of a periodic function over one
period is simply its mean value. Other factors that have been considered
in developing special point methods are selection of grids with a con-
sistent density in each direction and full exploitation of symmetry.

Baldereschi introduced the mean-value point of the Brillouin zone
[54], the first special point method. In this approach, the periodic
function to be integrated is written as a Fourier expansion:

f c ek() ,
n

n
ik R

0

· n∑=
=

∞

(1)

where k is the wavevector, cn is the n-th expansion coefficient, and the
sum is over over all lattice points Rn. Baldereschi noted that the integral
of f k() within the first Brillouin zone (i.e., over one period of f (k)), is
proportional to the leading coefficient, c0, in the Fourier expansion,

f d π ck k() (2)
Ω

,
BZ

3
0∫ = (2)

where Ω is the volume of the reciprocal cell. He replaced the analytic

https://doi.org/10.1016/j.commatsci.2018.06.031
Received 18 April 2018; Received in revised form 21 June 2018; Accepted 22 June 2018

⁎ Corresponding author.
E-mail address: wiley.s.morgan@gmail.com (W.S. Morgan).

Computational Materials Science 153 (2018) 424–430

Available online 20 July 2018
0927-0256/ © 2018 Elsevier B.V. All rights reserved.

T

integral of the periodic function with a numeric integral (sum over j in
Eq. (3))—equivalent in the limit of infinite sampling points—and re-
placed the periodic function with its infinite Fourier expansion (sum
over n in Eq. (3)):

f w f

w c e

w c c e

w c w c e

k k() ()

()

,

j
j j

j
j

n
n

i

j
j

i

j
j

j
j

i

k R

k R

k R

BZ
0

0 0

·

0
0 1

·

0
0

0
1

·

j n

j

j

1

1

∑

∑ ∑

∑

∑ ∑

∫ =

=

= + + …

= + +…

=

∞

=

∞

=

∞

=

∞

=

∞

=

∞

(3)

where wj is the integration weight of the j-th k-point. In the final step of
Eq. (3), each term (sum over j) is a numeric integral of the n-th basis
function in the Fourier expansion of f k() (denoted as In in what fol-
lows). Baldereschi’s method selected k-points so that the leading terms
after c0 integrate to zero:

This is an accurate approximation when the Fourier coefficients
converge rapidly to zero, as is the case with insulators and semi-
conductors. Baldereschi’s approximation is ineffective for metals be-
cause the integral over the occupied parts of the band structure has
discontinuities, and the Fourier series converges very slowly.

Chadi and Cohen extended the mean-value point by introducing sets
of k-points whose weighted sum eliminated the contribution of a
greater number of leading basis functions [55]. Their sets of k-points
could be made as dense as desired.

The most popular k-point selection method was created by
Monkhorst and Pack [53] (MP). They established a grid of points that
generalized both the mean-value point of Baldereschi and its extension
by Chadi and Cohen and which was equivalent to points used by Janak
et al. [59] MP grids are given by the relation

u u uk b b bprs p r s1 2 3= + + (4)

where b b,1 2, and b3 are the reciprocal lattice vectors, u p q q(2 1)/2p = − −

for p q1, 2, ,= … , and q an integer that determines the grid density. The
same relation holds for ur and us. In other words, the generating vectors
of MP grids are simply integer divisions of the reciprocal lattice vectors.

Froyen generalized the MP points, which he called Fourier quad-
rature points, by eliminating the restriction that the vectors that defined
the grid be parallel to the reciprocal lattice vectors [56]. However, he
did require the grid to be commensurate with the reciprocal lattice and
to have the full point-group symmetry of the crystal.

Moreno and Soler [57] introduced the idea of searching for k-point
grids with the fewest points for a given length cutoff—a parameter that
characterized the quality of the grid and was closely related to the
k-point density. Their method constructs superlattices of the real-space
primitive lattice. The dual of the superlattice vectors form the k-point
grid generating vectors. By selecting superlattices that maximize the
minimum distance between lattice points (i.e., by choosing fcc-like
superlattices), they obtain k-point grids that are bcc-like. Grids that are
bcc-like have the smallest integration errors at a given k-point density.
(This is evident in Fig. 6.) Moreno and Soler further improved Brillouin

zone sampling by finding the offset of the origin that maximized the
symmetry reduction of the grid.

In their recent paper, WMM point out that the lack of popularity of
Moreno and Soler’s approach is due to the computational expense of
calculating many Froyen grids and searching for the ones with the
highest symmetry reduction. They used the term Generalized Monkhorst-
Pack (GMP) grids to refer to Froyen grids with the highest symmetry
reduction for a given k-point density. We refer to these grids as
Generalized Regular (GR) grids since they are simply generalizations of
the regular grids used in finite element, finite difference, and related
methods. WMM precalculated the grids, and stored the ones with the

Fig. 1. In order to isolate the effect of the Brillouin zone shape and size on total
energy error when comparing crystal structures of different shapes and sizes
(top row), the energy of supercells (bottom row) crystallographically equivalent
to single element, primitive cells were compared. The total energy per atom
should be the same for all equivalent cells.

Fig. 2. An example of simultaneously commensurate grids. The cells for each
crystal are shown in both real and reciprocal space. In reciprocal space, we
include two k-point grids of different density. Simultaneously commensurate
grids eliminate systematic k-point error (between two commensurate struc-
tures) by using the same grid for both the parent cell (red cell) and the su-
percells (yellow and blue). However, some grids may not be allowed (crossed
out) for a given supercell because they are incommensurate with the reciprocal
cell. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

W.S. Morgan et al. Computational Materials Science 153 (2018) 424–430

425

highest symmetry reduction in a database that can be accessed via an
internet request.

3. Methods

We compare the total energy errors of MP, SC, and GR grids for
different k-point densities over calculations of nine different elements
(all of which are metallic), many cell shapes, and cell sizes from 1 to 14
atoms. In total we compare errors across more than 7000 total energy
calculations. One k-point grid is considered superior to another if it
requires a smaller irreducible k-point density to reach a specific accu-
racy target (for example 10 3− eV/atom). The method that requires the
smallest irreducible k-point density is the one we regard as best suited
for high throughput and machine learning applications.

To isolate error arising from k-point integration, the different cells
were crystallographically equivalent to single element, primitive cells,
as illustrated in Fig. 1. We did this to study how k-point error depends
on the Brillouin zone shape and size; this is an important consideration
in high-throughput studies where total energy differences between
competing phases are critical.

The grid types we compared were MP grids (generated by AFLOW’s
algorithm [32]), SC grids [56] (examples of SC grids can be found in
Fig. 2, details of SC grid generation can be found in the appendix), and
GR grids (generated by querying WMM’s k-point server) [60]. We ran
DFT calculations using the Vienna Ab-initio Simulation Package (VASP)
[61–64] on nine monoatomic systems—Al, Pd, Cu, W, V, K, Ti, Y, and
Re—using PAW PBE pseudopotentials [65,66]. The supercells of cubic
systems varied between 1 and 11 atoms per cell, while the hexagonal
close packed (HCP) systems had 2–14 atoms per cell. We used VASP 4.6
for all calculations1. For MP and SC grids the target number of k-points
extended from 10 to 10,000 unreduced k-points The range of k-points
for GR grids was 4–150,000 k-points2.

The converged total energy, the energy taken as the error-free
“solution” in our energy convergence comparisons, was the calculation
with the highest k-point density for each system. Because MP and SC
grids are difficult to generate at comparable densities, GR grids were
used to generate the converged total energy.

4. Results

In Fig. 3, we show the convergence for the MP, SC, and GR grids with
respect to the k-point density, i.e., k-points/Å−3. The first thing to note is
the large spread in the convergence. This spread reduces the reliability of
high-throughput databases and is perhaps higher than one might expect.
Note that the size of the total energy convergence envelope (variance) gets
bigger with increasing k-point densities. Additionally it can be seen that
each method has the same variance at all k-point densities.

In order to quantify the efficiency of GR grids relative to SC and MP
grids, we studied the rate of energy convergence with respect to the
irreducible k-point density, i.e., the number of irreducible k-points di-
vided by the volume of the reciprocal cell in Å−3 (shown in Fig. 4).
Given the amount of scatter in the plot, we performed loess regression
to create trend lines for each grid type.

The efficiency of a k-point grid is proportional to the irreducible
k-point density required to reach a given accuracy. Comparisons of effi-
ciencies were made by taking the ratio of the GR trend line to the SC and
MP trend lines of Fig. 5. At accuracies higher than 5meV/atom, GR grids
are more efficient (averaged over many structures) than MP and SC grids.
As an example, at a target accuracy of 1meV/atom, the GR grids are 20%

Fig. 3. Total energy convergence by grid type. Note that the size of the con-
vergence envelope gets bigger with higher k-point densities.

Fig. 4. Total energy convergence with respect to the irreducible k-point den-
sity. By looking at the irreducible k-point density the efficiency of the different
grids can be distinguished. Loess smoothing was also employed to determine
the average efficiency of the grids.

Fig. 5. Relative grid efficiency. Along the y-axis are the ratios of the MP and SC
efficiencies compared to the GR grid efficiency (black horizontal line at 100).
Total energy error (per atom) is plotted along the x-axis and decreases to the
left. MP and SC grids are generally less efficient than GR grids: at a target
accuracy of 1meV/atom, MP grids are 60%, and SC grids are 20%, less efficient.

1 For SC grids an independent k-point folding algorithm was used due to an
occasional bug in VASP 4.6’s folding algorithm. This bug has been fixed in
version 6 of VASP.
2 Calculations with MP grids with more than about 10,000 unreduced points

were not used. These calculations were problematic due to a number of pro-
blems, including memory constraints and errors during the k-point folding.

W.S. Morgan et al. Computational Materials Science 153 (2018) 424–430

426

more efficient than SC grids and 60% more efficient than MP grids.
It should be noted that in both Figs. 4 and 5 that MP grids appear to

perform worse at higher densities than at lower densities. Our statistical
analysis has indicated that this behavior is not statistically significant
and likely results from data scarcity for MP grids at high densities. We
believe that with sufficient data for MP grids at these densities the trend
line would continue to run roughly parallel to the GR line across all
densities. However, due to the computational expense of generating MP
grids at such densities we have been unable to demonstrate this.

5. Discussion

The erratic convergence of total energy for metals is attributed princi-
pally to the Fermi surface. Integrating over the occupied portions of the band
structure is equivalent to integrating a discontinuous band structure over the
Brillouin zone; the rapid, monotonic convergence observed for insulators
and semiconductors is lost because of the surface of discontinuities.

It is perhaps surprising how much the error varies at a given k-point
density. The implication is that, when generating databases of total energies,
relatively high k-point densities will be required for accurate comparisons.
For example, in Fig. 4, k-point densities as low as 10s of k-points/Å−3

achieve 10 3− eV/atom error for some structures, but to be certain that all
structures are converged to the same accuracy densities as high as 5000
k-points/Å−3 are necessary. Given the spread in the data we recommend
that a target density of 5000 k-points/Å−3 be used to reliably achieve ac-
curacies of 10 3− eV/atom for metals. However, should another accuracy be
desired, one can simply follow the top edge of the distribution of points in
Fig. 3 to the desired accuracy and read off the corresponding density.

For reference: a k-point density of 5000 k-points/Å−3 corresponds
to a linear k-point density of 0.058Å−1 (common input scheme for
CASTEP or newer versions of VASP, KSPACING in the INCAR file). This
is equivalent to the following Monkhorst-Pack grids or “k-point per
reciprocal atom” (KPPRA) settings for a few pure elements:

Element Cell divisions KPPRA

W 43 43 43× × 80,000
Cu 48 48 48× × 110,500
Al 43 43 43× × 80,000
K 26 26 26× × 17,500

Ti (2 atoms, hcp) 41 41 21× × 18,000

Likely these high numbers will be surprising to most DFT practi-
tioners—indeed, the current authors found them so—but this is the
message of Fig. 4 if one wants to be fully converged in all cases, and not
just on average. The large scatter in the errors for a given density im-
poses this large penalty on the practitioner who wishes to have fully
converged calculations. The need for high densities when using a reg-
ular grid for DFT calculations of metallic systems highlights the need for
development of adaptive techniques that can mitigate the deleterious
effects of a discontinuous integrand (i.e., the existence of a Fermi sur-
face.)

In our tests of GR grids, we also observed large spread in the energy
convergence of insulators, rather than the typical monotonic con-
vergence observed for MP grids. This happens because GR grids are not
restricted to a single Bravais lattice type. Grids of different lattice types
will have different packing fractions and thus converge at different
rates. Fig. 6 shows the energy convergence rate of primitive silicon for
three Bravais lattice types; the convergence is monotonic for each type.
As expected, body-centered cubic grids have the fastest convergence.
This is because bcc lattices have the highest packing fraction when
Fourier transformed (becoming fcc). If grids of multiple Bravais lattice
types are used, as happens for GR grids obtained by querying WMM’s
k-point server, spread in the energy convergence is introduced. To
demonstrate that erratic convergence for metals is not merely due to
mixing grids of multiple Bravais lattice types, we include Fig. 7. The
figure also demonstrates that the grid type, i.e., bcc, fcc, or sc, has no
effect on the convergence.

6. Conclusion

GR grids are not intrinsically better than SC or MP grids—that is,
they do not converge more rapidly as a function of k-point density.
They are more efficient because they typically have better symmetry
reduction than MP or SC grids, reducing the computational effort re-
quired for GR grids. Also, with GR grids one may increase the k-point
density in smaller increments because the set of possible grids (and thus
k-point densities) is larger than the sets of possible grids for SC and MP.

Our tests over more than 7000 structures of varying cell sizes,
shapes, and k-point densities demonstrate how erratic k-point con-
vergence is for metals, and how wide the variance can be at a given
k-point density, and how this variance grows with increasing k-point
densities. These facts should be considered when generating computa-
tional materials databases since greater errors may result from not

Fig. 6. Convergence for silicon by Bravais lattice type of the k-point grid. The
energy convergence remains smooth for GR grids as long as the grid is of a
single Bravais lattice type. Otherwise, some spread in the energy convergence,
similar to that observed for metals, is introduced.

Fig. 7. (Color online) Convergence of aluminum by Bravais lattice type of the
k-point grid. Jaggedness and spread in the energy convergence remains for GR
grids even after separating the grids by Bravais lattice type.

W.S. Morgan et al. Computational Materials Science 153 (2018) 424–430

427

using enough k-points for a target accuracy. Using GR grids for non-
metals may result in unexpected scatter; when smooth convergence is
desired, we advise that GR grids of a single Bravais lattice type be
utilized.

Acknowledgments

The authors are grateful to Shane Reese who helped with the loess

regression and statistical analysis of the data shown Fig. 4. The authors
are grateful to Tim Mueller and Georg Kresse for helpful discussions.
This work was supported under: ONR (MURI N00014-13-1-0635).

The raw and processed data required to reproduce these findings are
available to download from https://github.com/wsmorgan/GR_Grid_
Comparisons.

Appendix A. Simultaneously commensurate grid construction

A simultaneously commensurate (SC) grid is useful for calculating formation enthalpies when the target structure is a derivative superstructure of a
parent structure. (Obviously this is a convenient method when computing enthalpies for cluster expansion studies because the training structures are
superstructures of the parent.) When SC grids are used, the absolute convergence with respect to k-point density is not faster than for other grids but
the relative convergence can be faster because of error cancellation—both the parent structure and the derivative superstructure have exactly the same
grid. The idea is illustrated in Fig. 8. In panel (a) we divide up the reciprocal unit cell of the parent lattice (red3 parallelogram) into a uniform grid of
k-points (blue points). We then place the same grid from the parent cell on the supercell, as in panel (b). If we have chosen a SC grid, it is clearly
periodic for the supercell as well as the parent. Only those grids that are commensurate with both the parent cell and supercell can be used to
integrate both cells. Fig. 9 shows an example of an incommensurate grid. When the grid of the parent cell is placed over the reciprocal cell of the
supercell, the grid is not periodic—translations of the supercell (dotted lines) are sampled differently by the grid.

For our crystals that have cubic parent cells, an initial set of commensurate bcc, fcc, and sc grids were generated. A subset of those grids that were
commensurate with each supercell were used to do calculations of the various crystal structures. For hexagonal crystals, a similar procedure was
followed except only hexagonal grids were used.

Fig. 8. (Color online) An example of a SC grid. Panel a): the selected grid (blue points) is commensurate with the reciprocal cell (red parallelogram) of the parent cell.
Panel b): it can be seen that the grid is also commensurate with the reciprocal unit cell of the supercell (smaller parallelogram). (Dotted lines indicate translations of
the supercell.) The k-point grid is the same in each translation of the supercell.

3 For interpretation of color in Fig. 8, the reader is referred to the web version of this article.

W.S. Morgan et al. Computational Materials Science 153 (2018) 424–430

428

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.commatsci.2018.06.031.

References

[1] P. Wisesa, K.A. McGill, T. Mueller, Phys. Rev. B 93 (2016) 155109.
[2] J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nat. Mater. 5

(2006) 909.
[3] R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T.O. Sunde, D. Chon, K.R. Poeppelmeier,

A. Zunger, Nat. Chem. 7 (2015) 308.
[4] A.O. Oliynyk, A. Mar, Acc. Chem. Res. (2017).
[5] H. Chen, G. Hautier, A. Jain, C. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, Y. Tang,

G. Ceder, Chem. Mater. 24 (2012) 2009.
[6] G. Hautier, A. Jain, S.P. Ong, B. Kang, C. Moore, R. Doe, G. Ceder, Chem. Mater. 23

(2011) 3495.
[7] C. Jahne, C. Neef, C. Koo, H.-P. Meyer, R. Klingeler, J. Mater. Chem. A 1 (2013)

2856.
[8] T. Moot, O. Isayev, R.W. Call, S.M. McCullough, M. Ze-maitis, R. Lopez,

J.F. Cahoon, A. Tropsha, Mater. Discov. 6 (2016) 9.
[9] U. Aydemir, J.-H. Pohls, H. Zhu, G. Hautier, S. Bajaj, Z.M. Gibbs, W. Chen, G. Li,

S. Ohno, D. Broberg, et al., J. Mater. Chem. A 4 (2016) 2461.
[10] H. Zhu, G. Hautier, U. Aydemir, Z.M. Gibbs, G. Li, S. Bajaj, J.-H. Pohls, D. Broberg,

W. Chen, A. Jain, et al., J. Mater. Chem. C 3 (2015) 10554.
[11] W. Chen, J.-H. Pohls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z.M. Gibbs,

H. Zhu, M. Asta, G.J. Snyder, et al., J. Mater. Chem. C 4 (2016) 4414.
[12] G. Ceder, Y.-M. Chiang, D. Sadoway, M. Aydinol, Y.-I. Jang, B. Huang, Nature 392

(1998) 694.
[13] F. Yan, X. Zhang, G.Y. Yonggang, L. Yu, A. Nagaraja, T.O. Mason, A. Zunger, Nat.

Commun. 6 (2015).
[14] D. Bende, F.R. Wagner, O. Sichevych, Y. Grin, Angew. Chem. 129 (2017) 1333.
[15] A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania,

V. Botu, R. Ramprasad, Mater. Today (2017).
[16] S. Sanvito, C. Oses, J. Xue, A. Tiwari, M. Zic, T. Archer, P. Tozman, M. Venkatesan,

M. Coey, S. Curtarolo, Sci. Adv. 3 (2017) e1602241.
[17] H. Yaghoobnejad Asl, A. Choudhury, Chem. Mater. 28 (2016) 5029.
[18] G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Nat. Commun. 4 (2013)

2292.
[19] A. Bhatia, G. Hautier, T. Nilgianskul, A. Miglio, J. Sun, H.J. Kim, K.H. Kim, S. Chen,

G.-M. Rignanese, X. Gonze, et al., Chem. Mater. 28 (2015) 30.
[20] G.H. Johannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen,

J.K. Nørskov, Phys. Rev. Lett. 88 (2002) 255506.

[21] D.P. Stucke, V.H. Crespi, Nano Lett. 3 (2003) 1183.
[22] S. Curtarolo, D. Morgan, G. Ceder, Calphad 29 (2005) 163.
[23] S.F. Matar, I. Baraille, M. Subramanian, Chem. Phys. 355 (2009) 43.
[24] G. Ceder, G. Hautier, A. Jain, S.P. Ong, MRS Bull. 36 (2011) 185.
[25] A.N. Sokolov, S. Atahan-Evrenk, R. Mondal, H.B. Akker-man, R.S. Sanchez-Carrera,

S. Granados-Focil, J. Schrier, S.C. Mannsfeld, A.P. Zoombelt, Z. Bao, et al., Nat.
Commun. 2 (2011) 437.

[26] Z.W. Ulissi, M.T. Tang, J. Xiao, X. Liu, D.A. Torelli, M. Karamad, K. Cummins,
C. Hahn, N.S. Lewis, T.F. Jaramillo, et al., ACS Catal. 7 (2017) 6600.

[27] O. Levy, R.V. Chepulskii, G.L. Hart, S. Curtarolo, JACS 132 (2009) 833.
[28] X. Ma, G. Hautier, A. Jain, R. Doe, G. Ceder, J. Electrochem. Soc. 160 (2013) A279.
[29] K. Yang, W. Setyawan, S. Wang, M.B. Nardelli, S. Curtarolo, Nat. Mater. 11 (2012)

614.
[30] H. Chen, G. Hautier, G. Ceder, JACS 134 (2012) 19619.
[31] S. Kirklin, B. Meredig, C. Wolverton, Adv. Energy Mater. 3 (2013) 252.
[32] S. Curtarolo, W. Setyawan, G.L. Hart, M. Jahnatek, R.V. Chepulskii, R.H. Taylor,

S. Wang, J. Xue, K. Yang, O. Levy, et al., Comput. Mater. Sci. 58 (2012) 218.
[33] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65 (2013) 1501.
[34] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia,

D. Gunter, D. Skinner, G. Ceder, et al., APL Mater. 1 (2013) 011002.
[35] S.L. Digabel, C. Tribes, C. Audet, NOMAD User Guide. Tech. Rep. G-2009-37, Les

cahiers du GERAD, Quebec, Canada, 2009.
[36] D.D. Landis, J.S. Hummelshøj, S. Nestorov, J. Greeley, M. Dulak, T. Bligaard,

J.K. N0rskov, K.W. Jacobsen, Comput. Sci. Eng. 14 (2012) 51.
[37] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla,

R.S. Sanchez-Carrera, A. GoldParker, L. Vogt, A.M. Brockway, A. Aspuru-Guzik, J.
Phys. Chem. Lett. 2 (2011) 2241.

[38] J.S. Hummelshøj, F. Abild-Pedersen, F. Studt, T. Bligaard, J.K. Nørskov, Angew.
Chem. 124 (2012) 278.

[39] M. De Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, Sci. Data 2 (2015).
[40] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter,

C.K. Ande, S. Van Der Zwaag, J.J. Plata, et al., Sci. Data 2 (2015) 150009.
[41] L. Cheng, R.S. Assary, X. Qu, A. Jain, S.P. Ong, N.N. Rajput, K. Persson, L.A. Curtiss,

J. Phys. Chem. Lett. 6 (2015) 283.
[42] R. Gomez-Bombarelli, J. Aguilera-Iparraguirre, T.D. Hirzel, D. Duvenaud,

D. Maclaurin, M.A. Blood-Forsythe, H.S. Chae, M. Einzinger, D.-G. Ha, T. Wu, et al.,
Nat. Mater. 15 (2016) 1120.

[43] E.M. Chan, Chem. Soc. Rev. 44 (2015) 1653.
[44] T. Tada, S. Takemoto, S. Matsuishi, H. Hosono, Inorg. Chem. 53 (2014) 10347.

Fig. 9. (Color online) An example of a SC grid (blue dots) that is not commensurate with both the reciprocal unit cell of the parent cell and the reciprocal unit cell of
the supercell. Panel a): the chosen grid is commensurate with the parent cell (red parallelogram). Panel b): the k-point grid is not commensurate with the super-
cell—it is not periodic; the grid is not the same in each translational copy (dotted lines) of the supercell.

W.S. Morgan et al. Computational Materials Science 153 (2018) 424–430

429

[45] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Sci. Rep. 3 (2013).
[46] J. Yan, P. Gorai, B. Ortiz, S. Miller, S.A. Barnett, T. Mason, V. Stevanovic,

E.S. Toberer, Energy Environ. Sci. 8 (2015) 983.
[47] R. Ramakrishnan, P.O. Dral, M. Rupp, O.A. Von Lilienfeld, Sci. Data 1 (2014)

140022.
[48] J. Hachmann, R. Olivares-Amaya, A. Jinich, A.L. Ap-pleton, M.A. Blood-Forsythe,

L.R. Seress, C. Roman-Salgado, K. Trepte, S. Atahan-Evrenk, S. Er, et al., Energy
Environ. Sci. 7 (2014) 698.

[49] L.-C. Lin, A.H. Berger, R.L. Martin, J. Kim, J.A. Swisher, K. Jariwala, C.H. Rycroft,
A.S. Bhown, M.W. Deem, M. Haranczyk, et al., Nat. Mater. 11 (2012) 633.

[50] R. Armiento, B. Kozinsky, G. Hautier, M. Fornari, G. Ceder, Phys. Rev. B 89 (2014)
134103.

[51] O. Senkov, J. Miller, D. Miracle, C. Woodward, Nat. Commun. 6 (2015).
[52] K. Berland, C. Persson, Comput. Mater. Sci. 134 (2017) 17.
[53] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.

[54] A. Baldereschi, Phys. Rev. B 7 (1973) 5212.
[55] D.J. Chadi, M.L. Cohen, Phys. Rev. B 8 (1973) 5747.
[56] S. Froyen, Phys. Rev. B 39 (1989) 3168.
[57] J. Moreno, J.M. Soler, Phys. Rev. B 45 (1992) 13891.
[58] E. Cances, V. Ehrlacher, D. Gontier, A. Levitt, D. Lombardi, Available from:<

arXiv:1805.07144> .
[59] J. Janak, Computational Methods in Band Theory, Springer, 1971, pp. 323–339.
[60] http://muellergroup.jhu.edu/K-Points.html.
[61] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558.
[62] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15.
[63] G. Kresse, J. Hafner, Phys. Rev. B 49 (1994) 14251.
[64] G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
[65] P.E. Blochl, Phys. Rev. B 50 (1994) 17953.
[66] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.

W.S. Morgan et al. Computational Materials Science 153 (2018) 424–430

430

CHAPTER 5

Generating k-point Grids

As discussed in Chapter 4, general regular
(GR) k-point grids offer many advantages
over traditional Monkhorst-Pack (MP) grids.
However, GR grids have yet to be widely
adopted by the DFT community.

Recently Wisesa, McGill, and Mueller [74]
rectified this by creating a k-point server
containing precalculated grids that have high
symmetry reduction. These grids can be
retrieved via an Internet request. However,
the requirement of an Internet query, which
cannot be performed in typical supercomputer
environments, makes them difficult to use in
some cases. For GR grids to be used widely
throughout the DFT community they will need
to be generated at runtime. This section details
just such an algorithm which can generate GR
grids on the fly.

Section 5.1 details an efficient k-point
folding algorithm that allows for many grids
to be folded and compared in seconds. The
algorithm relies heavily on concepts used in
the enumeration algorithm of the enumlib code
[1]. The algorithm has been implemented in
an open-source code available at https://github.
com/msg-byu/kgridGen. The algorithm has
also been incorporated in version 6 of the VASP
code [75]. This algorithm has been submitted
for publication.

Section 5.2 contains an algorithm that
generates GR grids and selects the optimal grid
for a crystal structure. This algorithm has been

implemented in the package GRkgridgen ,
implemented at https://github.com/msg-byu/
GRkgridgen, and has also been submitted for
publication. This algorithm has not, as of this
writing, been incorporated into VASP.

Both of these algorithms will have signif-
icant impact on the DFT community and will
likely be used for many years.

In the first half of this chapter, Section
5.1, Dr. Gus Hart designed and implemented
most of the algorithm and wrote the majority
of the paper from which the text of Section
5.1 was taken. Jeremy Jorgensen helped write
the algorithm and implemented tests. Dr.
Rodney Forcade helped with the proof of the
algorithm which can be found in Appendix A.
I helped test the code and implemented code
that corrects the space group of the crystals and
improved the code’s numerical stability.

In Section 5.2, I was responsible for
the algorithm’s design, its implementation,
the initial testing, and writing the paper
from which the text of Section 5.2 was
taken. Parker Hamilton and John Christensen
helped improve the algorithm’s efficiency and
contributed more tests. Dr. Rodney Forcade
contributed general formulas that were used
in the algorithms described in 5.2.1. Dr.
Branton Campbell contributed invaluable ideas
regarding canonical bases for crystal systems
and symmetry-preserving offsets.

39

https://github.com/msg-byu/kgridGen
https://github.com/msg-byu/kgridGen
https://github.com/msg-byu/GRkgridgen
https://github.com/msg-byu/GRkgridgen

5.1 Folding k-points 40

5.1 FOLDING K-POINTS

In most DFT codes the setup and symmetry
reduction of the k-point grid only takes a few
seconds. The motivation for an improved
algorithm, is two-fold: 1) eliminate the proba-
bility of incorrect symmetry reduction due to
finite precision errors (the danger of these
increases as the density of the integration grid
increases), and 2) enable the automatic grid-
generation algorithm described in 5.2.

5.1.1 Generating Grids

Every uniform sampling of a Brillouin zone
can be expressed through the simple integer
relationship

R=KN. (5.1)

In Eq. (5.1), R, K, and N are 3× 3 matrices;
the columns of R are the reciprocal lattice
vectors, the columns of K are the k-point
grid generating vectors. N is a transformation
matrix from the vectors of K to the vectors
of R. Monkhorst-Pack grids (regular grids)
occur when N is an integer, diagonal matrix.
More generally, when N is an invertible, integer
matrix, one obtains generalized regular grids.
A two dimensional example of the concept is
illustrated in Fig. 5.1. Throughout the rest of
this dissertation let the infinite lattice of points
defined by integer linear combinations of R
be represented by R, and the lattice of points
defined by K as K.

With no loss of generality, a new basis for
the grid K can be chosen (a different, but equiv-
alent, K) so that N is in the canonical Hermite
normal form (HNF), H (H is the canonical HNF

of N), subject to the constraints:

H=

(
a 0 0
b c 0
d e f

)

a, c, f > 0

b≥ 0, b < c

d,e≥ 0, d,e < f

(5.2)

~r1

~r2 ~k1 ~k2

R K N(
−3 6
2 4

)
=

(
0 3
2 0

) (
1 2
−1 2

)

Figure 5.1 Example of the integer
relationship between reciprocal lattice
vectors R and the grid generating
vectors K. In the picture, the grid
generating vectors, ~κ1 and ~κ2, the
columns of K, define a lattice of
points, four of which are inside the
unit cell of R. Note that in the
most general case, the relationship
between the two lattices, N need not
be diagonal (as it is for Monkhorst-
Pack [3] k-point grids.)

The integration grid is the set of points of
the lattice K that lie inside one unit cell of
the reciprocal lattice R. We refer to this finite
subset of K as Kα (See Fig. 5.1; black dots are
K, dots inside the blue parallelogram comprise

1If two points are translationally distinct, their difference cannot be an integer linear combination of the recip-
rocal cell vectors; that is,~ki−~k j 6= n~r1 +m~r2 + ~̀r3, for all integer values n,m, `. (~ri are the columns of R.)

5.1 Folding k-points 41

Kα .) The number of points that lie within one
unit cell of R is given by |det(N)|= n = a×c×
f . The grid can then be constructed by gener-
ating a set of n translationally distinct1 points of
the lattice K. These points can be generated by
taking integer linear combinations of the basis
of K:

~k = p~κ1 +q~κ2 + r~κ3, (5.3)

where p, q, and r are nonnegative integers such
that

0≤ p < a

0≤ q < c

0≤ r < f ,

and ~κ1, ~κ2, and ~κ3 are the columns of K. The n
points generated this way will not generally lie
inside the same unit cell, but they can be trans-
lated into the same cell by expressing them in
“lattice coordinates” (fractions of the columns
of R, instead of Cartesian coordinates) and then
taking the coordinates modulo 1 so that they all
lie within the range [0,1). This is illustrated by
the dashed arrow in Fig. 5.2.

The points shown in Fig 5.2 expressed as
fractions of the lattice vectors of R are:

~k1 = (0,0)
~k2 =

(1
2 ,0
)

~k3 =
(
−1

4 ,
1
2

) mod 1
−→

(3
4 ,

1
2

)

~k4 =
(1

4 ,
1
2

)
.

Initially, k3 is not in the same unit cell as
the other three points; its first coordinate is not
between 0 and 1. Taking the first coordinate
modulo 1, moves k3 to an equivalent position in
the same unit cell as the other three points.

This first part of the algorithm generates
n translationally distinct points within the first
unit cell of R. (In practice it is not necessary
to translate all the points into the first unit

cell. It is, however, good practice to translate
all the points into the first Brillouin zone,
and a method for doing this is discussed in
Sec. 5.1.3.)

~r2

~r1

~k2

~k1

~κ1 = (1,0)
~κ2 =

(
1
2,
√

3
2

) K= (~κ1,~κ2)

R=
(2 2

0
√

3

)
N=

(
2 1
0 2

)

Figure 5.2 An example of generating
the points of K (black lattice) that
lie within one unit cell (blue parallel-
ogram) of the lattice R (blue lattice).
The lattice K is generated by the basis
{~κ1,~κ2} (columns of K). The four
points of Kα are generated by ~k =
m1~κ1 +m2~κ2, where 0≤ m1 < 2, 0≤
m2 < 2. Note that the upper limits of
m1 and m2 are the diagonals of N when
it is expressed in HNF.

5.1 Folding k-points 42

5.1.2 Symmetry Reduction of the Grid

~r1

~r2

Figure 5.3 An example of symmetry
reducing a grid. The reciprocal unit
cell is a square. This example assumes
that the wavefunctions have square
symmetry as well (the D4 group, 8
operations). The example grid is
a 3 × 3 sampling of the reciprocal
unit cell. The point at (0,0) is not
equivalent to any of the other eight
points. There are two sets of equiv-
alent points, each set with 4 points
in the orbit, connected by red and
green arrows, respectively. The points
marked by red arrows are equiv-
alent under horizontal, diagonal, and
vertical reflections about the center
of the square. The green-marked
points are equivalent by 90◦ rotations.
Thus the nine points are reduced
(or “folded”) into three symmetrically
distinct points.

At this point the point group symmetries
of the crystal can be exploited to reduce the
number of k-points where the energy eigen-
values need to be evaluated. The grid is reduced

by applying the symmetry operations of the
crystal2 to each point in the grid. For example,
in Fig. 5.3, the points connected by green
arrows will be mapped onto one another by
successive 90◦ rotations. These four symmet-
rically equivalent points lie on a 4-fold “orbit”
(as do the points marked by the red arrows).
The point at the origin maps onto itself under all
symmetry operations and has an orbit of length
1 (the length of an orbit is equivalent to the
number of points in the orbit).

For a grid containing Nk points and a group
(of rotation and reflection symmetries) with
NG operations, a naive algorithm for identi-
fying the symmetrically equivalent points and
counting the length of each orbit would be as
follows: For each point (O(Nk) loop), compare
all rotations of that point (a loop of O(|G|)) to
all other points (another O(Nk) loop) to find a
match; for a total computational complexity of
O(N2

k NG) (where NG is the number of rotation
and reflection symmetries). In pseudocode, this
algorithm would be the following:

2In our implementation of the algorithm time reversal symmetry, which implies that E(k) = E(-k), is enforced
even for crystals which lack inversion symmetry.

5.1 Folding k-points 43

Algorithm 1

uniqueCount ←− 0
for each ki ∈ Kα

orbitLength; ←− 0
unique ←− true
for each k j ∈ Kα

for each g ∈ G
if k j = g · ki

orbitLength; ++
unique ←− false

end
end
if (unique)

uniqueCount ++
add ki to list of unique points

NG will never be larger than 48, but Nk may
be in the hundreds of thousands for extremely
dense grids, so the N2

k complexity of this
approach is undesirable. But using group
theory concepts (see Appendix B for details),
we can construct a hash table for the points
that reduces the complexity from O(N2

k NG) to
O(NkNG) by eliminating the k j loop in the
above algorithm. The hash table makes a one-
to-one association between the ordinal counter
(i.e., the index) for each point and its coordi-
nates.

The three coefficients p,q,r in Eq. (5.3) can
be conceptualized as the three “digits” of a 3-
digit mixed-radix number pqr or as the three
numerals shown on an odometer with three
wheels. The ranges of the values are 0 ≤ p <
d1, 0≤ q < d2, and 0≤ r < d3, where d1,d2,d3
are the “sizes” of the wheels, or in other words,
the base of each digit. Then the mixed-radix
number is converted to base 10 as

x = p ·d2 ·d1 +q ·d1 + r. (5.4)

The total number of possible readings of
the odometer is d3 · d2 · d1. So it must be the
case that the number of k-points in the cell is
n = d3 · d2 · d1 (the di are not necessarily equal
to the diagonals of the HNF). Each reading
on the odometer is a distinct point of the n
points that are contained in the reciprocal cell.
Via Eq. (5.4) it is simple to convert a point
given in “lattice coordinates” as (p,q,r) to a
base-10 number x. The concept of the hash
table is to use this base-10 representation as
the index in the hash table. Without the hash
table, comparing two points is an O(Nk) search
because one point must be compared to every
other point in the list to check for equivalency.
But with the hash function, mapping (p,q,r) to
x only requires a single comparison.

It is not generally the case that the coeffi-
cients p,q,r for every interior point of the unit
cell obey conditions:

0≤ p < d1, 0≤ q < d2, 0≤ r < d3 (5.5)

5.1 Folding k-points 44

(Fig. 5.2 shows an example where the interior
points do not meet these conditions.) These
conditions hold only for a certain choice of
basis. That basis is found by transforming the
matrix N in Eq. (5.1) into its Smith Normal
Form (SNF), D = ANB. By elementary
row and column operations, represented by
unimodular matrices A and B, it is possible to
transform N into a diagonal matrix D, where
each diagonal element divides the ones below
it: d11|d22|d33, and d11 · d22 · d33 = n = |N|

(the notation i| j means that j is divisible by
i). As explained in Appendix B, when N is
expressed in SNF and the interior points of the
reciprocal cell are expressed as linear combina-
tions of the grid generating vectors K, then the
coordinates (coefficients) of the interior points
will obey Eq. 5.5. When these conditions are
met, the hashing algorithm discussed above (in
particular, Eq. 5.4) becomes possible. This
enables the O(Nk) algorithm, given here as
Algorithm 2:

Algorithm 2

uniqueCount ←− 0
hashTable[:] ←− 0
First[:] ←− 0
Wt[:] ←− 0

for each ki ∈ K
indx ←−K−1AD · ki
if hashTable[indx] 6= 0 cycle #this
#point and all its symmetry
#equivalent points has already been
#indexed
uniqueCount++
hashtable[indx] ←− uniqueCount
First[uniqueCount] ←− i
Wt[uniqueCount] ←− 1
Now mark all equivalent points
for each g ∈ G

krot←− g · ki
indx ←−K−1AD · krot
if hashtable[indx] == 0

hashtable[indx] ←− uniqueCount
Wt[uniqueCount]++

At the end of Algorithm 2, the array Wt
will be a list of the weights for each symmetri-
cally unique point, and the index of each unique

point in K will be stored in the array First.

5.2 Generating k-point Grids on the Fly 45

5.1.3 Moving Points Into the First Brillouin
Zone

For accurate DFT calculations, it is best if
the energy eigenvalues (electronic bands) are
evaluated at k-points inside the first Brillouin
zone; translating grid points into the Brillouin
zone is the final step in the k-point folding
algorithm. (In principle, the electronic structure
should be the same in every unit cell, but
numerically the periodicity of the electronic
bands is only approximate, becoming less
accurate for k-points in unit cells farther from
the origin.)

The first Brillouin zone of the reciprocal
lattice is a Voronoi cell centered at the origin—
all k-points in the first Brillouin zone are closer
to the origin than to any other lattice point.
Conceptually, an algorithm for translating a k-
point of the integration grid into the first zone
merely requires one to look at all translationally
equivalent “cousins” of the k-point and select
the one closest to the origin. The number of
translationally equivalent cousins is, of course,
countably infinite so in practice, the set of
cousins must be limited to those near the origin.

The key idea to selecting a set of cousins
that contains the closest cousin to the origin is
illustrated in two-dimensions in Fig. 5.4. In
three-dimensions, if the basis vectors of the
reciprocal unit cell are as short as possible
(the Minkowski-reduced basis), then the eight
unit cells that all share a vertex at the origin
must contain every point that is closer to the
origin than any other point. In other words,
the boundary of this union of eight cells is
guaranteed to circumscribe the first Brillouin
zone (i.e., the Voronoi cell containing the
origin). A proof of this “8 cells” conjecture is
given in Appendix A. The steps for moving k-
points into the Brillouin zone are as follows:

1. Minkowski-reduce the reciprocal unit cell
[76] (i.e., find the basis with the shortest
basis vectors.)

2. For each k-point in the reduced grid, find
the translation-equivalent cousin in each of
the eight unit cells that have a vertex at the
origin.

3. From these eight cousins, select the one
closest to the origin.

Figure 5.4 In 2D, the first Brillion
zone, shown in blue, is a subset of
the union of 4 basis cells around the
origin, shown in red, when the basis
vectors are chosen to be as short
as possible (the so-called Minkowski
basis). If the basis is not Minkowski
reduced, regions of the Brillouin zone
may lie outside the union of the 4 basis
cells, which is depicted by the cell in
green.

5.2 GENERATING K-POINT GRIDS ON THE
FLY

5.2.1 Algorithm Details

The main difficulty in generating GR grids is
that the number of distinct supercells grows
rapidly with the volume factor (the determinant
of H3). To optimize the k-point folding

3H is the canonical HNF of N and has the same determinant.

5.2 Generating k-point Grids on the Fly 46

efficiency, the k-point grid should have the
same symmetry as the parent cell. The number
of supercells that preserve the symmetry of the
parent is always significantly smaller than the
number of possible supercells (except in the
case of triclinic lattices) as can be seen in Fig.
5.5. If one can generate only those supercells
that preserve the symmetry of the parent the
computational burden is drastically reduced.
The steps required to identify a crystal, find the
symmetry-preserving grids and filter them for
the ideal grid are described in detail below.

Generating Symmetry-Preserving Super-
cells

To generate only the symmetry-preserving
supercells, the integer matrices in Eq. 4.2 are
restricted to be Hermite Normal Form (HNF)
H, as defined in Section 5.1.1. Throughout
this Section of the dissertation the following
notation will be used: A = (a1,a2,a3) for the
parent lattice and C= (c1,c2,c3) for a supercell
such that C=AH. When the lattice symmetries
are applied to A, another set of basis vectors A′
is generated

A′ = gA (5.6)

(where g is an element of the point group).
Because A and A′ are related by a symmetry
operation of the lattice, they both represent the
same lattice and are related by an integer matrix

A′ = AX
AX= gA

X= A−1gA
(5.7)

where X is an integer matrix with determinant
±1. Similarly, if a supercell C has the same
symmetry as A then all the symmetries of A
will map C to another basis C′ that will be

related to C by a unimodular transformation

C′ = gC ∀ g ∈G
CM= gC
M= C−1gC

(5.8)

where G is the set of generators of the point
group of A and M is an integer matrix. Using
Eqs. (5.7) and (5.8), it is possible to define
restrictions on the entries of H:

M=H−1XH (5.9)

In other words H must transform X such
that M retains integer entries. Equation (5.9)
yields the following system of linear equations

α1 =
bx12 +dx13

a

α2 =
cx12 + ex13

a

α3 =
f x13

a

β1 =
−bx11 +ax21−bα1 +bx22 +dx23

c

β2 =
−bα2 + ex23

c

β3 =
−bα3 + cx23

c

f =
α4

c

γ1 =
ax31 +bx32 +dx33− eβ1−dα1−dx11

f

γ2 =
−ex22 + cx32 + ex33− eβ2−dα2

f
n = a · c · f

(5.10)

where xi are the entries of X, n is the deter-
minant of H and αi, βi, and γi are arbitrary
names for the expressions used for conve-
nience. H will generate a supercell that
preserves the symmetries of A when α1, α2, α3,
α4, β1, β2, β3, γ1, and γ2 are all integers for
each generator in G. Even though the solutions

5.2 Generating k-point Grids on the Fly 47

to (5.10) have no closed form, we may use them
to build an algorithm that generates H matrices
that preserve the lattice symmetries.

The specific form of X depends on the
basis chosen for the parent lattice, the solutions
to (5.10), and resulting algorithms, will differ
depending on the basis. For example, if a base-
centered orthorhombic lattice is constructed
with the basis

A1 = (a1,a2,a3) =

1
2
1
0

1
2
−1
0

0
0
3

 (5.11)

then (5.10) would reduce to (each equation
has three outputs because the base centered
orthorhombic point-group has three gener-
ators):

α1 =
(
0, 0, −b

a

)

α2 =
(
0, 0, − c

a

)

α3 = β3 =
(
0, 0, 0

)

β1 =
(
0, 0, −a−bα1

c

)

β2 =
(
0, 0, b

a

)

γ1 =
(

0, 2d
f ,
−d−dα1−eβ1

f

)

γ2 =
(

0, 2e
f ,
−e−dα2−eβ2

f

)

(5.12)

All the equations in (5.12) must be simultane-
ously satisfied for the generated H’s to preserve
the symmetries of A1. Alternatively the basis

A2 = (a1,a2,a3) =

1
2
1
0

0
−2
0

0
0
3

 (5.13)

could be used to construct the same lattice.
When basis A2 is chosen, the relations in (5.10)
become:

α1 = α2 = α3 = β2 = β3 =
(
0, 0, 0

)

β1 =
(
0, 0, a+2b

c

)

γ1 =
(

0, 2d
f ,
−eβ1

f

)

γ2 =
(

0, 2e
f , −2e

f

)
(5.14)

Note the stark difference between the
relationships derived from A1 and A2. A2
results in fewer equations to check, however,
A1 gives relationships between a and b, and
a and c separately resulting in a faster search
since many combinations can be skipped early
in the search. By taking care in selecting a basis
for each lattice, one can find an efficient set of
conditions for generating the supercells of that
basis. For a complete list of all bases used in the
GRkgridgen , and the resulting relationships
from Eqs. 5.10 can be found in Appendix C.

Niggli Reduction

Choosing a basis for each type of lattice
presents a problem; there are an infinite number
of lattice basis choices. The number of bases
is substantially reduced by recognizing that
any given symmetry-preserving HNF, Hsp, will
work for every lattice of the same symmetry.
The sensitivity of the representation of the point
group X on the chosen basis requires a set of
representative bases that goes beyond the 14
Bravais lattices. Such a set was constructed
by Niggli [77, 78, 78–80], who identified 44
distinct bases. Any given basis of a crystal
can be classified as one of these 44 cases by
reducing it to the Niggli canonical form and
then comparing the lengths of the basis vectors
and the angles between them. If two nominally
different lattices reduce to the same Niggli case,
then the two lattices are “equivalent” and have
the same symmetries and the same set of Hsps.

Niggli reduction allows for the user’s basis
to be mapped to a basis which has conve-
nient solutions to Eqs. (5.10). The strategy is
to define the Hsps in the selected basis, then
generate the supercells for the selected basis
and transform them to the H’s for the Niggli
reduced basis, Hsp

R . Once the Hsp
R ’s have been

determined, they can be applied directly to
the user’s reduced basis to create a symmetry-

5.2 Generating k-point Grids on the Fly 48

100 101 102 103 104

Volume Factor

101

103

105

107

109

Nu
m

be
r o

f S
up

er
ce

lls
All
monoclinic
orthorhombic
tetragonal
rhombohedral
hexagonal

Figure 5.5 The number of supercells that preserve the symmetry of the parent cell at
various volume factors. The total number of supercells that exist is also displayed for
comparison. Cubic cells were omitted since they have at most one symmetry-preserving
supercell at a given volume factor.

preserving supercell of the user’s parent cell
and thus define an efficient k-point grid at the
specified density.

Grid Selection

At a given volume factor (i.e., number of k-
points), the integer relations in Eq. (5.10)
will yield multiple supercells for most lattices,
a 2D example of these supercells is provided
in Fig. 5.6(a). It is then necessary to
select one which defines the best k-point grid.
This is done by transforming each symmetry-
preserving supercell to its corresponding k-

point grid generating vectors as in Eq. 4.3; see
Fig. 5.6(b). This set of grids is then searched
for one that has optimal properties—a uniform
distribution of points and the best symmetry
reduction. To ensure the grid generating vectors
are as short as possible we perform Minkowski
reduction [76], then sort the grids by the length
of their shortest vector.

The most uniform grids will have the
longest shortest vector. The grids are filtered
so that none with a packing fraction of less
then 0.3 are considered. Each of the uniform
grids is then symmetry reduced [81] in order
to determine which has the fewest irreducible

5.2 Generating k-point Grids on the Fly 49

Figure 5.6 A 2D example of symmetry-preserving supercells and the k-point grids that
they would generate for a rectangular lattice. a) contains four symmetry-preserving
supercells of the primitive cell, shown in blue, with a volume factor of 12. In b) the
primitive cell, blue cells, and the supercells have been mapped to reciprocal space and
the grids generated from each supercell have been placed in separate cells. The color of
the grid points matches the color of the generating supercell. The circled points are the
irreducible k-points of each grid.

k-points. Table 5.1 shows the length of the
shortest vector and number of irreducible k-
points for the grids in Fig. 5.6(b). The grids are
sorted first by the length of their shortest vector
(eliminating the green and red grids) then by
the number of irreducible k-points such that the
ideal grid appears at the top of the table, i.e.,
the grid generated by the brown supercell in
Fig. 5.6(a).

It is also possible to offset the k-point grid
from the origin to improve the grid’s efficiency.
The origin is not symmetrically equivalent
to any other point in the grid. Including
an offset moves the point off the origin
making it possible for the point to be mapped
to other points in the grid, decreasing the
number of irreducible k-points. Different grids

have different symmetry-preserving offsets that
should be tested. For example, both simple
cubic and face-centered cubic (fcc) grids have
one possible offset that preserves the full
symmetry of the cell, (1

2 ,
1
2 ,

1
2) (expressed as

fractions of the grid generating vectors), while
a body-centered-cubic lattice has no symmetry-
preserving offsets4, and simple tetragonal has
three symmetry-preserving offsets. (For a
full list of the symmetry-preserving offsets by
lattice type see Appendix D.) The grid that
has the fewest k-points with a given offset is
selected.

Not every volume factor will have a
symmetry-preserving grid that is uniform. To
ensure that a symmetry-preserving grid is
found, it is necessary to include multiple

4For some lattices no symmetry-preserving offsets exist. In these cases using an offset that does not preserve the
full symmetry can be beneficial. For example, a body centered cubic system with an offset of (0,0, 1

2) can sometimes
offer better folding than the same grid with no offset.

5.2 Generating k-point Grids on the Fly 50

grid shortest vector length number of irreducible k-points
brown 0.16667 6
purple 0.166667 8
green 0.125 6
red 0.08333 8

Table 5.1 Properties (length of shortest vector and number of irreducible k-points) of
the grids in Fig 5.6

volume factors in the search. The number of
additional volume factors to search depends on
the lattice type; in general, the search should
continue until multiple candidate grids have
been found. The best grid is then selected from
these candidates.

Method Summary

The algorithm can be summarized in the
following steps:

1. Identify the Niggli reduced cell of the user’s
structure.

2. Generate the symmetry-preserving HNFs
for the canonical form of the Niggli cell.

3. Map the resulting supercells to the original
lattice using the Niggli-reduced basis as an
intermediary.

4. Convert the supercells into k-point grid
generating vectors.

5. Perform Minkowski reduction on the grid
generating vectors.

6. Sort the grid generating vectors by the
length of their shortest vector.

7. Select the grids whose shortest vectors have
the longest lengths.

8. Use the symmetry group to reduce the
selected grids to find the one with the fewest
irreducible k-points.

5.2.2 Testing the Algorithm

To test the above algorithm, the k-point grids
it generates, GRauto, were compared to those
generated by the k-point sever [74], GRserver in
two ways. First, k-point grids were generated
by GRserver and GRauto over a range of k-point
densities for over 100 crystal lattices. These
lattices were constructed for nine monoatomic
systems—Al, Pd, Cu, W, V, K, Ti, Y, and Re—
with supercells for the cubic systems having
between 1–11 atoms per cell and supercells
for the hexagonal close packed systems having
between 2–14 atoms per cell, the same set
used in Chapter 4. Additional structures were
selected from AFLOW [6]. All tests were
conducted without offsetting the grids from Γ,
the origin. The resulting ratio of irreducible
k-points to total k-points was then plotted for
each grid. Six representative examples of the
results are shown in Fig. 5.7. These tests show
that GRauto grids should be very close in perfor-
mance to GRserver grids. Additionally, the tests
show that convergence toward the ideal folding
ratio is rapid for all lattice types.

The second test compared the total energy
errors of MP (generated by AFLOW), GRauto
and GRserver grids in the same manner, and
using the same methods, as done in the study
of GR grids found in Chapter 4. A brief review
of that method is provided here.

DFT calculations were performed using
the Vienna Ab-initio Simulation Package

5.2 Generating k-point Grids on the Fly 51

0 200 400 600 800 1000
Total Kpoints

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ld

in
g

Ra
tio

body centered tetragonal
GRserver

GRauto

0 200 400 600 800 1000
Total Kpoints

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ld

in
g

Ra
tio

body centered orthorhombic
GRserver

GRauto

0 200 400 600 800 1000
Total Kpoints

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ld

in
g

Ra
tio

base centered monoclinic
GRserver

GRauto

0 200 400 600 800 1000
Total Kpoints

0.0

0.2

0.4

0.6

0.8

1.0
Fo

ld
in

g
Ra

tio
hexagonal

GRserver

GRauto

0 200 400 600 800 1000
Total Kpoints

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ld

in
g

Ra
tio

face centered cubic
GRserver

GRauto

0 200 400 600 800 1000
Total Kpoints

0.0

0.2

0.4

0.6

0.8

1.0

Fo
ld

in
g

Ra
tio

rhombohedral
GRserver

GRauto

Figure 5.7 A comparison of the GRauto and GRserver k-point grids. For each grid th
number of irreducible k-points was divided by the total number of k-points. This shows
that both sets of grids offer similar folding at a given k-point density and will have
similar efficiencies.

5.2 Generating k-point Grids on the Fly 52

4.6 (VASP 4.6) [75, 82–84] on the nine
monoatomic systems mentioned above using
PAW PBE pseudopotentials. [85,86] In order to
isolate the errors from k-point integration, the
different cells were crystallographically equiv-
alent to single element cells. For MP grids,
the target number of k-points ranged from 10-
10,000 unreduced k-points, for GRserver grids
the range was 4–240,000 unreduced k-points,
and for GRauto the range was 8 to 415,000
unreduced k-points. In total, we compared
errors across more than 7000 total energy
calculations. The energy taken as the error-
free “solution” in our comparisons was the
calculation with the highest k-point density
for each system. The total error convergence

with respect to the k-point density is shown
in Fig. 5.8. The total error convergence with
respect to the number of irreducible k-points
were compared using loess regression, see
Fig. 5.9. Ratios of these trend lines were then
taken to determine the efficiency of each grid
relative to the GRserver grids (see Fig. 5.10).

From Figs. 5.9 and 5.10, it can be seen
that GRauto grids are up to∼10% more efficient
and at worst ∼5% less efficient than GRserver
grids. Both sets of grids outperform MP grids
by ∼60% at an accuracy target of 1 meV/atom.
The runtime for the algorithm to generate
GRauto grids at a k-point density of 5000 (dense
enough to acheive 1 meV/atom accuracy) was
∼4 seconds on average.

5.2 Generating k-point Grids on the Fly 53

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Number of k-points / Å 3

10
6

10
5

10
4

10
3

10
2

10
1

10
0

To
ta

l e
ne

rg
y

er
ro

r (
eV

)
Generalized Regular Server (GRserver)
Generalized Regular Automatic (GRauto)
Monkhorst-Pack (MP)

2.154 1 0.464 0.215 0.1 0.046 0.021
(2)Å 1 / (Number of k-points)1/3

Figure 5.8 The total energy convergence with respect to total k-point density for MP,
GRauto and GRserver grids. The top axis shows the linear k-point spacing with a factor
of 2π included as part of the transformation to reciprocal space. This differs from the
linear k-point spacing usually used as input in DFT codes by a factor of 2π , i.e., to get
the spacing used as input in codes divide the values here by 2π .

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Number of irreducible k-points / Å 3

10
6

10
5

10
4

10
3

10
2

10
1

10
0

To
ta

l e
ne

rg
y

er
ro

r (
eV

/a
to

m
) Generalized Regular Server (GRserver)

Generalized Regular Automatic (GRauto)
Monkhorst-Pack (MP)
GRserver Loess
MP Loess
GRauto Loess

Figure 5.9 The total energy convergence with respect to irreducible k-point density for
MP, GRauto and GRserver grids with loess regression applied.

5.2 Generating k-point Grids on the Fly 54

10
4

10
3

10
2

Total Energy Error (eV/atom)

10
1

10
0

R
el

at
iv

e
E

ffi
ci

en
cy

Monkhorst-Pack (MP)
Automatic GR (GRauto)

Figure 5.10 Along the y-axis are the ratios of the MP and GRauto efficiencies compared
to the GRserver grid efficiency (black horizontal line at 100). Total energy error (per
atom) is plotted along the x-axis and decreases to the left. MP grids are ∼60% less
efficient than both GRauto and GRserver grids at a target accuracy of 1meV/atom. The
GRauto grids closely agree with GRauto grids.

CHAPTER 6

Conclusion

In computational materials science Density
Functional Theory (DFT) calculations are
performed to determine a material’s properties.
The main drawback of DFT is that it can
only determine the properties of a single
candidate material at a time. The search
space for materials is infinite; however, for any
given material the number of possible atomic
arrangements can be reduced to a reasonable
number by selecting a lattice and the number
of atoms to include in the simulations. For
systems that have large amounts of configu-
rational freedom, such as high-entropy alloys,
the list of possible atomic arrangements can be
too large to store in a computer. This list can
be reduced by eliminating structures that are
the same when a translation or rotation of the
lattice is applied (these operations will change
the material’s properties). Enumerating the
symmetrically unique configurations of atoms
is a common first step in many computational
studies.

When enumerating the symmetrically
distinct atomic arrangements it is helpful to
know how many arrangements exist. The Pòlya
enumeration algorithm, found in Chapter 2, can
determine this number. The algorithm allows
researchers to determine if a system has too
many unique arrangements before performing
computations. The algorithm also allows alloy
enumeration algorithms to 1) verify that they
found the correct number of unique arrange-
ments and 2) check that the list of unique
arrangements will fit in memory before finding
them all.

The standard approach to the alloy enumer-
ation problem is to build a list of possible
arrangements and then remove the duplicates.
For systems with large amounts of configu-

rational freedom this initial list is often too
large to fit in memory even though the list of
unique arrangements can be much smaller. The
algorithm described in Chapter 3 overcomes
this problem by using a tree search algorithm
that constructs only the unique arrangements
while skipping the duplicates completely. This
more efficient approach also allows for new
types of configurational freedom to be included
in the enumeration, such as displacement direc-
tions.

The creation of the Pòlya enumeration
algorithm and the new alloy enumeration
algorithm allows researchers to explore more
complex and larger systems than have previ-
ously been accessible to materials scientists.
Both of these codes have been implemented in
the enumlib package.

To determine material properties DFT
codes perform a numerical integral of the
electronic energy. The accuracy of this
integral, and the resulting material properties,
is directly related to the number of sample
points, k-points, used. While this is well
known in the community there have never been
any detailed studies of how k-point sampling
affects the calculations accuracy prior to this
work. Chapter 4 contains a study that shows
how k-point sampling impacts the accuracy
of DFT calculations. The study also shows
that the type of k-point grid used can impact
the calculations efficiency by up to ∼60%.
The most efficient grids, called general regular
(GR) grids, are those that have the fewest
symmetrically distinct k-points.

GR grids have not been widely adopted by
the DFT community because they are difficult
to generate, requiring a search over a large
number of candidate grids. The algorithms

55

https://github.com/msg-byu/enumlib

56

described in Chapter 5 overcome this problem
by only searching over k-point grids that have
the same symmetry as the system being studied.
The search over this much smaller number
of candidate grids typically only takes a few
seconds and generates grids that have the same
efficiency as those used in the study found in
Chapter 4.

In conclusion this dissertation details

algorithms that use symmetry 1) to reduce
the search space of materials in an efficient
manner and 2) to find the optimal k-point grid
for use in DFT calculations. These codes
will allow researchers to study systems with
large amounts of configurational freedom in
greater detail than previously possible while
optimizing the performance of the DFT calcu-
lations being performed.

APPENDIX A

Proof of Brillouin Zone Location

A.1 FORMAL PROOF

Given a point x in the space, the term cousin will be used for a point x′ which differs from x by
an element of the lattice—i.e., a coset representative or a lattice-translation equivalent point.

Let R be a basis. Let UR denote the union of 2d basis cells around the origin—the set of points
which are expressible in terms of the basis R with all coefficients having absolute value < 1. Let
V denote the Voronoi cell (Brillouin zone)—the set of all points in the space which are closer to
the origin than any other lattice point. Note that UR depends on the basis R, but V depends only
on the lattice. Note also that both UR and V are convex sets.

The claim (in two and three dimensions) is that if R is a Minkowski basis, then V ⊆ UR.
Arguing by contrapositive— if V 6⊆UR, then the basis is not Minkowski reduced.

If V 6⊆UR then V must intersect the boundary of UR, so there exist points on the boundary of
UR which are closer to the origin than to any other lattice points. Equivalently, those points are
closer to the origin than any of their cousins.

Note that among the cousins of any point on the boundary of UR, there is always a closest
to the origin. But usually points on the boundary will have closer cousins in the interior. But if
V 6⊆UR there must be points on the boundary which have no closer cousins in the interior of UR.
In other words, there are points (at least one) on the boundary such that all of its cousins in the
interior of UR are farther from the origin.

A.2 2D ARGUMENT

Let ~r1 and ~r2 be basis elements of R. Assuming that V 6⊆ UR there must be a point x on the
boundary of UR whose cousins are all farther from the origin than x.

Without loss of generality (re-label the basis if necessary), we may express one of the bounding
edges of UR as x =~r1 +λ~r2 where λ ∈ [−1,1]. One of its interior cousins is x′ = λ~r2, which is
illustrated in Fig. A.1, then (since x′ must be farther from the origin)

x2 < x′2

(~r1 +λ~r2)
2 < (λ~r2)

2

~r2
1 +2λ~r1 ·~r2 +λ

2~r2
2 < λ

2~r2
2

~r2
1 <−2λ~r1 ·~r2

Since the expression on the left-hand side is greater than zero, the expression on the right-hand
side must be also and taking the absolute value of both sides does not change the inequality:

|~r2
1|< |−2λ~r1 ·~r2| =⇒ |~r1|2 < 2|λ ||~r1 ·~r2|.

57

A.2 2D Argument 58

Figure A.1 Each point along the boundary of UR has at least one interior cousin closer
to the origin when R is Minkowski reduced. For the points along the edge in red, these
interior cousins are the points along the dashed red line.

Figure A.2 Each point along the boundary of UR, the edges of which are shown in black,
has at least one interior cousin closer to the origin when R is Minkowski reduced. For
the points on the bounding plane in red, the interior cousins are the points on the plane
in blue. (The origin is contained in the blue plane.)

A.3 3D Argument 59

Considering the worst case scenario of λ = 1 gives

|~r1|
2

<
|~r1 ·~r2|
|~r1|

, (A.1)

which violates the condition of a Minkowski basis |~r1 ·~r2|/|~r1| < |~r1|/2. The remaining three
boundaries are similar to the one just considered, the only differences being permutations of the
basis elements ~r1 and ~r2 and possibly changes of sign. When applying the same reasoning to
the other edges we arrive at the same contradiction. Hence, the points on the boundary of UR
are closer to the origin than interior cousins, V 6⊆UR, only when the basis R is not Minkowski
reduced. If R is Minkowski reduced, all points on the boundary of UR have interior cousins that
lie closer to the origin and V ⊆UR.

A.3 3D ARGUMENT

Let~r1,~r2, and~r3 be the basis elements of R, and suppose (relabeling the basis vectors if necessary)
that x =~r1 +λ~r2 +δ~r3 (where λ and δ are elements of [−1,1]) is a point on the boundary of UR
which is closer to the origin than its interior cousins.

One of those cousins is a plane through the origin x′ = λ~r2 +δ~r3. The boundary and cousin
planes are shown in Fig. A.2. Thus

x2 < x′2

(~r1 +λ~r2 +δ~r3)
2 < (λ~r2 +δ~r3)

2.

Simplifying this expression gives

~r2
1 <−2λ~r1 ·~r2−2δ~r1· (A.2)

Since the expression on the left-hand side is greater than zero, the expression on the right-hand
side must be also and taking the absolute value of both sides does not change the inequality:

|~r2
1|< |−2λ~r1 ·~r2−2δ~r1 ·~r3| =⇒ |~r1|2 < |2λ~r1 ·~r2 +2δ~r1 ·~r3| (A.3)

Using the triangle inequality to simplify the right hand side of Eq. A.3 makes it more likely
that the inequality is satisfied:

|~r1|2 < |2λ~r1 ·~r2 +2δ~r1 ·~r3|
|~r1|2 < 2|λ ||~r1 ·~r2|+2|δ ||~r1 ·~r3| (A.4)

Since the expression in Eq. A.4 does not depend on the sign of λ or δ , λ and δ can be
restricted to positive values within [0,1] without loss of generality. Consider now another cousin
that lies within UR and on the same plane as x′: x′′ = (λ −1)~r2 +(δ −1)~r3. Repeating the same
process for x′ with x′′ gives

|~r1|2 < 2|λ −1||~r1 ·~r2|+2|δ −1||~r1 ·~r3| (A.5)

A.3 3D Argument 60

Combining Eqs. A.4 and A.5 gives

|~r1|2 < (|λ |+ |λ −1|)|~r1 ·~r2|+(|δ |+ |δ −1|)|~r1 ·~r3|

|~r1|<
|~r1 ·~r2|
|~r1|

+
|~r1 ·~r3|
|~r1|

(A.6)

Assuming {~r1,~r2,~r3} forms a Minkowski basis, and plugging in the largest possible values for
all quantities under this assumption on the right-hand side of Eq. A.6 gives the contradiction
|~r1|< |~r1|. The remaining seven bounding planes are similar to the one just considered, the only
differences being permutations of the basis elements~r1,~r2, and~r3 and changes of sign. The same
contradiction arises when applying the same reasoning to the other planes. Hence, the points on
the boundary of UR are closer to the origin than interior cousins, V 6⊆UR, only when the basis
R is not Minkowski reduced. If R is Minkowski reduced, all points on the boundary of UR have
interior cousins that lie closer to the origin and V ⊆UR.

APPENDIX B

Groups, Matrices, and Lattices in Smith Normal Form.

The discussion below is limited to three-dimensions though the arguments easily generalize to
higher dimensions. The purpose of the discussion below is to help the reader make the connection
between groups and integer matrices. The Smith Normal Form is a key concept to make this
connection.

This discussion shows that an association can be made between a single, finite group and the
lattice sites within one tile (i.e., one unit cell) of a superlattice. For application, this tile is the
unit cell of the grid generating vectors and the superlattice is the reciprocal cell. The association
between the group and the lattice sites is a homomorphism that maps each lattice site to an
element of the group. If two points are translationally equivalent (same site but in two different
tiles) they will map to the same element of the group. This homomorphism is the key ingredient
to constructing the hash function (see Eq. 5.4) that enables a perfect hash table where points are
listed consecutively, from 1 to N. The following details how to find the homomorphism between
the group and the lattice sites.

B.1 GROUPS IN SMITH NORMAL FORM

Begin with the simplest case. Let N be a non-singular 3× 3 matrix of integers. Its columns
represent the basis for a subgroup LN of the group Z3 (where Z is the set of all integers, and
the group operation is addition). The two lattices whose symmetries are represented by these two
groups are the “simple cubic” lattice of all points with all integer coordinates and its superlattice1

whose basis is given by the columns of N. Since Z3 and its subgroups are Abelian, all the
subgroups are normal so there exists a quotient group G = Z3/LN , and that group is finite.

Note that the cosets which form the elements of that quotient group are simply the distinct
translates of the lattice LN within Z3. In fact, each coset has exactly one representative in each
unit cell, so the order of G is equal to the volume of a unit cell (the absolute value of the deter-
minant of N). Since the quotient group G is finite, and Abelian, it must be a direct sum of cyclic
groups (by the Fundamental Theorem of Finite Abelian Groups).

One canonical form for direct sums of groups is called Smith Normal Form, where the direct
summands are ordered so that each summand divides the next. In other words, G∼= Zm1⊕Zm2⊕
·· · ⊕Zmk where m1|m2| . . .mk−1|mk and (of course) ∏mi = |G|. Any finite Abelian group can
be uniquely written in this form. (Isomorphic groups will yield the same “invariant factors” m1,
m2,. . . ,mk when written in this form.)

Note that, since G = Z3/LN , there must be a homomorphism from Z3 onto G, having LN
as its kernel. In other words, LN = {p ∈ Z3 : ψ(p) = 0}. Our task is to find the direct-sum

1In the mathematical literature, and in some of the crystallography literature, these “superlattices” are referred
to as sublattices. The group associated with a “superlattice” is a subgroup of the group associated with the parent
lattice. Although this nomenclature (subgroups, sublattices) is more correct from a mathematical or group theory
point of view, the nomenclature typically seen in the physics literature is used where a lattice or a structure whose
volume is larger than that of the parent is referred as a superlattice.

61

B.2 Matrices in Smith Normal Form 62

representation of the quotient group Z3/LN , and also to find the homomorphism ψ which maps
the points of Z3 onto the group (in such a way that ψ(p) = 0 iff p ∈LN). The elements of the
group can then be worked with as proxies for the k-points inside the reciprocal cell.

B.2 MATRICES IN SMITH NORMAL FORM

There is a useful connection between the SNF for Abelian groups and the SNF for integer
matrices. As the reader may infer, the SNF form of the basis matrix N effectively tells one
how to represent the quotient group Z3/LN as a direct sum of cyclic groups in Smith Normal
Form, and, as shown in the following section, the row operations used to create the SNF of N
give the homomorphism ψ suggested above.

The Connection Between SNF Groups and SNF Matrices

In the matrix case, since the operations are elementary row and column operations, D = ANB
where A and B are integer matrices with determinant ±1 representing the accumulated row
operations and column operations respectively. The matrix D is completely determined by N,
but the matrices A and B depend on the algorithm used to arrive at the Smith Normal Form of N.
A different implementation might yield D=A′NB′ (same N and same D, but different A and B).

Note that, since B represents elementary column operations, the product NB simply repre-
sents a change of basis from N to a new basis N′=NB. In other words, the columns of N′ are still
a basis for LN . But the new basis has the property that AN′ = D. That means that every element

~w = N′~z of LN (where~z is some element of Z3) will satisfy the equation A~w = D~z =

D11z1
D22z2
D33z3

.

In other words, A~w will be a vector whose entries are multiples of the corresponding diagonal
entries in D.

To put it another way, define ∗ to be the operation that maps

~x =

x1
x2
x3

 (B.1)

in Z3 to

~x∗ =

x1 (modD11)
x2 (modD22)
x3 (modD33)

T

(B.2)

Then it is clear that ~w ∈LN iff (Aw)∗ = (0,0,0) (the zero-element in the group G0 = ZD11⊕
ZD22⊕ZD33).

That suggests letting ψ(~w) = (A~w)∗, a homomorphism from Z3 onto the direct-sum G0.
Then, since that homomorphism is easily shown to be onto, and its kernel is LN , it can be seen
(by the First Isomorphism Theorem of group theory) that G0 ∼= Z3/LN , and ψ is precisely the
desired homomorphism.

B.2 Matrices in Smith Normal Form 63

Thus the two versions of SNF have been connected. The matrix algorithm provides the SNF
description of the quotient group by the diagonal entries in D, and the transition matrix A provides
the homomorphism which maps the parent lattice onto the group.

An example. Let N=

1 2 −1
1 4 −3
0 2 4

. This describes a lattice LN which contains the points ~p1 =

1
1
0

, ~p2 =

2
4
2

, and ~p3 =

−1
−3
4

, and all the points which are integer linear combinations of

those three points. The matrix N has determinant 12, which must be the volume of each lattice
tile—and it is also the order of the quotient group Z3/LN .

Using the SNF algorithm to diagonalize this basis matrix yields D = ANB where

D=

1 0 0
0 2 0
0 0 6

, with A=

0 1 0
0 0 1
1 −1 −2

 and B=

1 7 11
0 −1 −2
0 1 1

.

Thus the quotient group is G = Z3/LN ∼= Z1⊕Z2⊕Z6 ∼= Z2⊕Z6.

Further, from the matrix A, the homomorphism projecting Z3 onto the quotient group can be

obtained, with kernel LN . If ~w =

x
y
z

 then A~w =

y
z

x− y−2z

 and thus

ψ(~w) = (A~w)∗

=

y (mod 1)
z (mod 2)

x− y−2z (mod 6)

T

=
(
z (mod 2),x+5y+4z (mod 6)

)

(noting that anything mod 1 is zero).

Note that this homomorphism provides a different, but convenient, way to describe the super-
lattice. Since LN is the kernel of ψ , it is comprised of the points (x,y,z) ∈ Z3 which satisfy
the simultaneous congruences z ≡ 0 (mod 2) and x+ 5y+ 4z ≡ 0 (mod 6). Noting that all three
basis points p1, p2 and p3 satisfy these congruences, and thus so will all their integer linear
combinations (all points in LN).

Algorithmic variation. In the example computed above, a different application of the SNF

matrix algorithm, with the same N, might have yielded the same diagonal matrix D=

1 0 0
0 2 0
0 0 6

,

but different A =

1 0 0
−5 3 1
−2 2 1

 and B =

0 −1 2
0 0 1
−1 −1 4

, which would change the homomor-

phism to (x,y,z) 7→
(
−5x+ 3y+ z (mod 2), −2x+ 2y+ z (mod 6)

)
=
(
x+ y+ z (mod 2), 4x+

B.2 Matrices in Smith Normal Form 64

2y+ z (mod 6)
)
.The new homomorphism is different, since (1,0,1) 7→ (0,5) now, where previ-

ously (1,2,3) 7→ (1,5) (for example), but the kernel is the same. In fact the two homomorphisms
are related via an automorphism of the group G.

APPENDIX C

Integer Relations for all Niggli Cells

The following are the Niggli basis and the resulting integer relationships used in the final imple-
mentation of the GR on the fly algorithm. The relationships are grouped by crystal class and
Niggli case number. Each subsection starts with the associated Niggli case numbers, followed
by the chosen basis, then the resulting integer relations from 5.10. Some sections have multiple
Niggli cases that have the same representations of the symmetry group Xs even though they have
different lattice basis. For those cases multiple bases are provided, one for each Niggli case that
has the equivalent representation. Please note that there is nothing special about the atomic basis
displayed here, they are simply basis that produced a convenient form of the symmetry group Xs.

C.1 SIMPLE CUBIC

Niggli Case 3

A=

1
0
0

0
1
0

0
0
1

 (C.1)

α1 =
(
0, d

a

)

α2 =
(
0, e

a

)

α3 =
(

0, f
a

)

β1 =
(

b−d
c , −a−bα1

c

)

β2 =
(−e

c , −bα2
c

)

β3 =
(
− f
c , −bα3

c

)

γ1 =
(
−b+d−eβ1

f , b−dα2−eβ2
f

)

γ2 =
(
−c−eβ1

f , c−dα2−eβ2
f

)

(C.2)

C.2 BODY CENTERED CUBIC

Niggli Case 5

A=

−1
1
1

1
−1
1

1
1
−1

 (C.3)

65

C.3 Face Centered Cubic 66

α1 =
(−d

a , 0
)

α2 =
(e

a , 0
)

α3 =
(

f
a , 0

)

β1 =
(−a+b+bα1

c , b−d
c

)

β2 =
(−bα2

c , −e
c

)

β3 =
(
−b f
ac , − f

c

)

γ1 =
(

b+d−dα1−eβ1
f , −a−b+d−eβ1

f

)

γ2 =
(
−c−dα1−eβ2

f , −e−eβ2
f

)

(C.4)

C.3 FACE CENTERED CUBIC

Niggli Case 1

A=

0
1
1

1
0
1

1
1
0

 (C.5)

α1 =
(−b−d

a , 0
)

α2 =
(−c−e

a , 0
)

α3 =
(
− f
a , 0

)

β1 =
(2b−bα1

c , b−d
c

)

β2 =
(−bα2

c , −e
c

)

β3 =
(

b f
ac ,

− f
c

)

γ1 =
(

2d−dα1−eβ1
f , a+b+2d−eβ2

f

)

γ2 =
(
−dα2+eβ2

f ,
c+e+ e2

c
f

)

(C.6)

C.4 HEXAGONAL

Niggli Case 12

A=

1
0
0

1
2
−
√

3
2

0

0
0
2

 (C.7)

C.5 Rhombohedral 67

α1 =
(−b

a , −b
a , 0

)

α2 =
(−c

a , −c
a , 0

)

α3 = β3 =
(
0, 0, 0

)

β1 =
(2b−bα1

c , 2b−bα1
c , a+2b

c

)

β2 =
(
−α1, −α1, 0

)

γ1 =
(

dβ2−eβ1
f , 2d+dβ2−eβ1

f , −eβ1
f

)

γ2 =
(
−dα2−2e−eβ2

f , −dα2−eβ2
f , −2e

f

)

(C.8)

Niggli Case 22

A=

0
0
−1

2

1
0
0

−1
2√
3

2
0

 (C.9)

α1 = α2 = α3 =
(
0, 0, 0

)

β1 =
(
0, d

c , 0
)

β2 =
(
0, e

c , 0
)

β3 =
(

0, f
c , 0

)

γ1 =
(
−b+2d

f , −b+d−dβ2
f , 0

)

γ2 =
(
−c+2e

f , −c+e−eβ2
f , 0

)

(C.10)

C.5 RHOMBOHEDRAL

Niggli Cases 2 and 4

A2 =

−1.11652
−0.610985
0.616515

0
−1.32288
−1

2

1
1.32288

3
2

 (C.11)

A4 =

−0.548584
0.774292
1.04858

0
−1.32288

1
2

1
1.32288

1
2

 (C.12)

C.6 Simple Tetragonal 68

α1 =
(
0, −d

a

)

α2 =
(
0, −e

a

)

α3 =
(

0, − f
a

)

β1 =
(

2b
c ,
−a+b−d−bα1

c

)

β2 =
(
0, −e−bα2

c

)

β3 =
(

0, − f−bα3
c

)

γ1 =
(

b−eβ1
f , −a−dα1−eβ1

f

)

γ2 =
(

c−2e
f , −e−dα2−eβ2

f

)

(C.13)

Niggli Cases 9 and 24

A9 =

1
2
2

2
1
2

4
3
3

 (C.14)

A24 =

−0.255922
−1.44338
0.92259

1.51184
0

−0.845178

1.255922
1.44338
0.07741

 (C.15)

α1 =
(
0, −d

a

)

α2 =
(
0, −e

a

)

α3 =
(

0, − f
a

)

β1 =
(

2b
c ,
−a+b+d−bα1

c

)

β2 =
(
0, e−bα2

c

)

β3 =
(

0, f−bα3
c

)

γ1 =
(
−b−eβ1

f , −b−d−dα1−eβ1
f

)

γ2 =
(
−c−2e

f , −c−2e−dα2−eβ2
f

)

(C.16)

C.6 SIMPLE TETRAGONAL

Niggli Case 11

A=

1
0
0

0
1
0

0
0
2

 (C.17)

C.7 Body Centered Tetragonal 69

α1 =
(
0, 0, −b

a

)

α2 =
(
0, 0, −c

a

)

α3 = β3 =
(
0, 0, 0

)

β1 =
(
0, 2b

c ,
−e−bα1

c

)

β2 =
(
0, 0, −α1

)

γ1 =
(

0, −eβ1
f , −d−dα1−eβ1

f

)

γ2 =
(

0, −2e
f , −dα2−e+−eβ2

f

)

(C.18)

Niggli Case 21

A=

0
0
1
2

1
0
0

0
1
0

 (C.19)

α1 = α2 = α3 =
(
0, 0, 0

)

β1 =
(
0, 2b

c ,
b−d

c

)

β2 =
(
0, 0, −e

c

)

β2 =
(

0, 0, − f
c

)

γ1 =
(

0, 2d−eβ1
f , −b+d−eβ1

f

)

γ2 =
(

0, 0, −c−eβ2
f

)

(C.20)

C.7 BODY CENTERED TETRAGONAL

Niggli Cases 6, 7, 15, and 18

A6 =

1.80278
−1.47253
0.762655

2.80278
0.13535
−0.791285

0.80278
−0.47253
2.762655

 (C.21)

A7 =

1.95095
1.19163
0.879663

0
2.60788
0.44606

0.95095
−0.41625
2.433603

 (C.22)

A15 =

−1
−1
2

2
−2
0

−2
0
0

 (C.23)

A18 =

−2
−1
1

−3
1
0

−1
−3
0

 (C.24)

C.8 Simple Orthorhombic 70

α1 = α2 = α3 =
(
0, 0, 0

)

β1 =
(
0, b−d

c , 0
)

β2 =
(
0, −e

c , 0
)

β3 =
(

0, − f
c , 0

)

γ1 =
(

0, −b+d−eβ1
f , a+2d

f

)

γ2 =
(

0, −c−eβ2
f , 2e

f

)

(C.25)

C.8 SIMPLE ORTHORHOMBIC

Niggli Case 32

A=

1
0
0

0
2
0

0
0
3

 (C.26)

α1 = α2 = α3 = β2 = β3 =
(
0, 0, 0

)

β1 =
(
0, 0, 2b

c

)

γ1 =
(

0, 2d
f ,
−eβ1

f

)

γ2 =
(

0, 2e
f ,
−2e

f

)
(C.27)

C.9 BASE CENTERED ORTHORHOMBIC

Niggli Cases 13 and 38

A13 =

1
1
1

1
−1
−1

0
−1.73205
1.73205

 (C.28)

A38 =

1
2
1
1

1
2
−1
0

0
0
3

 (C.29)

C.9 Base Centered Orthorhombic 71

α1 =
(
0, 0, −b

a

)

α2 =
(
0, 0, −c

a

)

α3 = β3 =
(
0, 0, 0

)

β1 =
(
0, 0, −a−bα1

c

)

β2 =
(
0, 0, −α1

)

γ1 =
(

0, 2d
f ,
−b−dα1−eβ1

f

)

γ2 =
(

0, 2e
f ,
−dα2−e−eβ2

f

)

(C.30)

Niggli Case 23

A=

−1
3

−1.54116
1.87449

1
1
1

2
−1
1

 (C.31)

α1 =
(
0, d

a , 0
)

α2 =
(
0, e

a , 0
)

α3 =
(

0, f
a , 0

)

β1 =
(
0, −bα1

c , 2b
c

)

β2 =
(
0, −bα2

c , 0
)

β3 =
(

0, − f
c , f

c

)

γ1 =
(

0, −b+d−eβ1
f , b+d−eβ1

f

)

γ2 =
(

0, −c−eβ2
f , c−eβ2

f

)

(C.32)

Niggli Case 36

A=

1
1
1

1.41421
−1.41421

0

−1.43541
−1.43541
1.37083

 (C.33)

α1 = α2 = α3 =
(
0, 0, 0

)

β1 =
(
0, b−d

c , b+d
c

)

β2 =
(
0, −e

c , e
c

)

β3 =
(

0, − f
c , f

c

)

γ1 =
(

0, 2d−dα1−eβ1
f , −eβ1

f

)

γ2 =
(

0, 2e−dα2−eβ2
f , −2e

f

)

(C.34)

C.10 Body Centered Orthorhombic 72

Niggli Case 40

A=

1
1
1

1.61803
−0.618034
−1

−1.05557
1.99895
−0.943376

 (C.35)

α1 = α2 = α3 =
(
0, 0, 0

)

β1 =
(
0, d

c ,
2b−d

c

)

β2 =
(
0, e

c ,
−e
c

)

β3 =
(

0, f
c ,
− f
c

)

γ1 =
(

0, 2d−eβ1
f , −eβ1

f

)

γ2 =
(

0, 2e−eβ2
f , −2e−eβ2

f

)

(C.36)

C.10 BODY CENTERED ORTHORHOMBIC

Niggli Case 8

A=

1.41144
0.0885622
−2

−0.99868
2.21232
1.268178

3.41012
−1.1237578
−1.268178

 (C.37)

α1 = α2 = α3 =
(
0, 0, 0

)

β1 =
(−a+2b−2d

c , 0, 2b
c

)

β2 =
(−2e

c , 0, 0
)

β3 =
(
−2 f

c , 0, 0
)

γ1 =
(
−eβ1

f , 2d
f ,

a+2d−eβ1
f

)

γ2 =
(
−2e−eβ2

f , 2e
f , 0

)

(C.38)

Niggli Case 19

A=

1
2
1
3
2

0
2
0

0
0
3

 (C.39)

α1 = α2 = α3 = β2 = β3 =
(
0, 0, 0

)

β1 =
(
0, 0, a+2b

c

)

γ1 =
(

0, a+2d
f , −eβ1

f

)

γ2 =
(

0, 2e
f ,
−2e

f

)
(C.40)

C.11 Face Centered Orthorhombic 73

Niggli Case 42

A=

−1.53633
1.36706
−1.33073

1
1
1

1.61803
−0.61803
−1

 (C.41)

α1 = α2 = α3 = β2 = β3 =
(
0, 0, 0

)

β1 =
(−a+2b

c , −a+2b
c , 0

)

γ1 =
(
−a+2d−eβ1

f , −eβ1
f , −a+2d

f

)

γ2 =
(

0, −2e
f , 2e

f

)
(C.42)

C.11 FACE CENTERED ORTHORHOMBIC

Niggli Cases 16 and 26

A16 =

1.04442
1.43973
1.68415

0.779796
−1.1789

1

1.779796
−0.1789

0

 (C.43)

A26 =

0
1
3
2

1
2
0
3
2

0
0
3

 (C.44)

α1 = α2 = α3 = β2 = β3 =
(
0, 0, 0

)

β1 =
(
0, 2b

c , 0
)

γ1 =
(

0, −b−eβ1
f , a+b+2d

f

)

γ2 =
(

0, −c−2e
f , c+2e

f

)
(C.45)

C.12 SIMPLE MONOCLINIC

Niggli Case 33

A=

2
0
0

0
2
0

1
2
0
2

 (C.46)

α1 = α2 = α3 = β2 = β3 =
(
0, 0

)

β1 =
(
0, 2b

c

)

γ1 =
(

0, −eβ1
f

)

γ2 =
(

0, −2e
f

)
(C.47)

C.13 Base Centered Monoclinic 74

Niggli Cases 34 and 35

A34 =

1
1
1

1.22474487
−1.22474487

−1

−0.16598509
−1.64308297
1.80906806

 (C.48)

A35 =

−0.668912

1.96676
−1.29785

1.61803
−0.618034
−1

1
1
1

 (C.49)

α1 = α2 = α3 = β1 = β2 = β3 =
(
0, 0

)

γ1 =
(

0, 2d
f

)

γ2 =
(

0, 2e
f

) (C.50)

C.13 BASE CENTERED MONOCLINIC

Niggli Cases 10, 14, 17, 27, 37, 39, and 41

A10 =

1
−1
1

−1.46391
0

1.96391

0
2
0

 (C.51)

A14 =

−1
1
0

1
2
0
2

0
−2
0

 (C.52)

A17 =

−1.05387
−1.61088
1.51474

−0.244302
−2.77045
0.51474

1.809568
−0.15957

0

 (C.53)

A27 =

−1.464824
0.464824
1.907413

−0.153209
0.153209
−2.907413

1
1
0

 (C.54)

A37 =

−1.79092
−1.47209
0.790922

1
−1.41421
−1

1
0
1

 (C.55)

A39 =

0
−1.73205
−1

−1.66542
−0.672857

1.66542

1
0
1

 (C.56)

A41 =

−1.85397
−0.854143

1.35397

1
0
1

1
−1.41421
−1

 (C.57)

C.13 Base Centered Monoclinic 75

α1 = α2 = α3 = β1 = β2 = β3 =
(
0, 0

)

γ1 =
(
−a+2d

f , 0
)

γ2 =
(

2e
f , 0

) (C.58)

Niggli Cases 20 and 25

A20 =

1
1
1

1.70119
−1.45119

1

0.69779
−1.4322505

3.23446

 (C.59)

A25 =

1
1
1

1.45119
−1.70119
−1

0.28878
−3.26895
0.48018

 (C.60)

α1 = α2 = α3 = β2 = β3 =
(
0, 0

)

β1 =
(
0, 2b

c

)

γ1 =
(

0, −b−eβ1
f

)

γ2 =
(

0, −c−2e
f

)
(C.61)

Niggli Case 28

A=

−1.44896
0.948958
−1

1
−1
0

0.342424
−1.342424
−2.02006

 (C.62)

α1 = α2 = α3 =
(
0, 0

)

β1 =
(−d

c , 0
)

β2 =
(−e

c , 0
)

β3 =
(
− f
c , 0

)

γ1 =
(

2d−dβ1
f , 0

)

γ2 =
(

2e−eβ2
f , 0

)

(C.63)

Niggli Cases 29 and 30

A29 =

−0.666125

1.16613
2.04852

1
1
0

1.61803
−0.618034

1

 (C.64)

C.13 Base Centered Monoclinic 76

A30 =

1
1
0

1.61803
−0.618034

1

−0.0361373
0.536137
2.38982

 (C.65)

α1 = α2 = α3 =
(
0, 0

)

β1 =
(−d

c , 0
)

β2 =
(−e

c , 0
)

β3 =
(
− f
c , 0

)

γ1 =
(

2d−eβ1
f , 0

)

γ2 =
(

2e−eβ2
f , 0

)

(C.66)

Niggli Case 43

A43 =

−0.39716
−0.34718
2.49434

2.64194
−0.14194

0

−1.39716
−1.34718
1.49434

 (C.67)

α1 = α2 = α3 =
(
0, 0

)

β1 =
(
0, a+d

c

)

β2 =
(
0, e

c

)

β3 =
(

0, f
c

)

γ1 =
(

0, 2a+2d−eβ1
f

)

γ2 =
(

0, 2e−eβ2
f

)

(C.68)

APPENDIX D

Symmetry-Preserving Offsets

The following is a table of the symmetry-preserving offsets for each Bravais lattice expressed in
terms of fractions of the lattice vectors.

Simple Cubic
(

1
2 ,

1
2 ,

1
2

)

Face Centered Cubic
(

1
2 ,

1
2 ,

1
2

)

Body Centered Cubic None

Hexagonal
(

0, 0, 1
2

)

Rhombohedral
(

0, 0, 1
2

)

Simple Tetragonal

0, 0, 1
2

1
2 ,

1
2 , 0

1
2 ,

1
2 ,

1
2

Body Centered Tetragonal
(

0, 0, 1
2

)

Simple Orthorhombic

0, 0, 1
2

0, 1
2 , 0

1
2 , 0, 0

0, 1
2 ,

1
2

1
2 , 0, 1

2
1
2 ,

1
2 , 0

1
2 ,

1
2 ,

1
2

Base Centered Orthorhombic

0, 0, 1
2

0, 1
2 , 0

0, 1
2 ,

1
2

Face Centered Orthorhombic
(

1
2 ,

1
2 ,

1
2

)

Body Centered Orthorhombic

0, 0, 1
2

0, 1
2 , 0

1
2 , 0, 0

77

78

Simple Monoclinic

0, 0, 1
2

0, 1
2 , 0

1
2 , 0, 0

0, 1
2 ,

1
2 ,

1
2 0, 1

2 ,
1
2 ,

1
2 , 0

1
2 ,

1
2 ,

1
2

Base Centered Monoclinic

0, 0, 1
2

0, 1
2 , 0

−1
4 ,

1
2 , 0

−1
4 ,

1
4 ,

1
2

1
4 ,

1
4 , 0

1
4 ,

1
4 ,

1
2

0, 1
2 ,

1
2

Triclinic None

APPENDIX E

Paper Copyright Licences

The following are licences or permissions to redistribute the publications inluded in this thesis.
They appear in the following order:

1. Numerical Algorithm for Pòlya Enumeration Theorem

2. Generating derivative superstructures for systems with high configurational freedom

3. Efficiency of Generalized Regular k-point grids

79

Confirmation Number: 11788824
 Order Date: 02/05/2019

Customer: Wiley Morgan
 Account Number: 3001395849

 Organization: Wiley Morgan
 Email: wiley.s.morgan@gmail.com

 Phone: +1 (385) 3250073
 Payment Method: Invoice

Customer Information

This is not an invoice

Order Details

Permission type: Republish or display content
Type of use: Republish in a thesis/dissertation

4522730757010Order License Id:

Requestor type Academic institution

Format Print, Electronic

Portion chapter/article

The requesting
person/organization Wiley S Morgan

Title or numeric
reference of the
portion(s)

The entire article.

Title of the article or
chapter the portion is
from

Numerical Algorithm for
Pólya Enumeration
Theorem

Editor of portion(s) N/A

Author of portion(s) Forcade, Rodney W. ; et al

Volume of serial or
monograph 21

Issue, if republishing
an article from a serial 1

Page range of portion

Publication date of
portion Aug 17, 2016

Rights for Main product

Duration of use Life of current and all
future editions

Creation of copies for
the disabled no

With minor editing
privileges no

For distribution to Worldwide

In the following
language(s)

Original language of
publication

Order detail ID: 71797756

ISSN: 10846654
Publication Type: eJournal
Volume:
Issue:
Start page:
Publisher: Association for computing Machinery,

Inc.
Author/Editor: Association for Computing Machinery

ACM journal of experimental algorithmics

Permission Status: Granted

Billing Status:
 N/A

Total order items: 1 Order Total: $0.00

About Us | Privacy Policy | Terms & Conditions | Pay an Invoice

Copyright 2019 Copyright Clearance Center

With incidental
promotional use

no

Lifetime unit quantity of
new product Up to 499

Title
Using Symmetry to
Accelerate Materials
Discovery

Institution name Brigham Young University

Expected presentation
date Feb 2019

Note: This item was invoiced separately through our RightsLink service. More info $ 0.00

Title: Generating derivative

superstructures for systems with
high configurational freedom

Author: Wiley S. Morgan,Gus L.W.
Hart,Rodney W. Forcade

Publication: Computational Materials Science
Publisher: Elsevier
Date: August 2017
© 2017 Elsevier B.V. All rights reserved.

 Logged in as:
 Wiley Morgan
 Account #:
 3001395849

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or
dissertation, provided it is not published commercially. Permission is not required, but please ensure
that you reference the journal as the original source. For more information on this and on your other
retained rights, please visit: https://www.elsevier.com/about/our
business/policies/copyright#Authorrights

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. Email us at customercare@copyright.com

Title: Efficiency of Generalized Regular

k point grids
Author: Wiley S. Morgan,Jeremy J.

Jorgensen,Bret C. Hess,Gus
L.W. Hart

Publication: Computational Materials Science
Publisher: Elsevier
Date: October 2018
© 2018 Elsevier B.V. All rights reserved.

 Logged in as:
 Wiley Morgan
 Account #:
 3001395849

Please note that, as the author of this Elsevier article, you retain the right to include it in a thesis or
dissertation, provided it is not published commercially. Permission is not required, but please ensure
that you reference the journal as the original source. For more information on this and on your other
retained rights, please visit: https://www.elsevier.com/about/our
business/policies/copyright#Authorrights

Copyright © 2019 Copyright Clearance Center, Inc. All Rights Reserved. Privacy statement. Terms and Conditions.
Comments? We would like to hear from you. Email us at customercare@copyright.com

Bibliography

[1] G. L. W. Hart and R. W. Forcade, “Algorithm for
generating derivative structures,” Phys. Rev. B 77,
224115 (2008).

[2] J. A. C. Weideman, “Numerical integration of
periodic functions: A few examples,” The
American mathematical monthly 109, 21–36
(2002).

[3] H. J. Monkhorst and J. D. Pack, “Special points
for Brillouin-zone integrations,” Phys. Rev. B 13,
5188–5192 (1976).

[4] P. Hohenberg and W. Kohn, “Inhomogeneous
Electron Gas,” Phys. Rev. 136, B864–B871 (1964).

[5] W. Kohn and L. J. Sham, “Self-Consistent
Equations Including Exchange and Correlation
Effects,” Phys. Rev. 140, A1133–A1138 (1965).

[6] S. Curtarolo et al., “AFLOW: an automatic
framework for high-throughput materials
discovery,” Comput. Mat. Sci. 58, 218–226
(2012).

[7] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig,
and C. Wolverton, “Materials design and discovery
with high-throughput density functional theory: the
open quantum materials database (OQMD),” JOM
65, 1501–1509 (2013).

[8] A. Jain et al., “Commentary: The Materials
Project: A materials genome approach to acceler-
ating materials innovation,” APL Mat. 1, 011002
(2013).

[9] S. L. Digabel, C. Tribes, and C. Audet, “NOMAD
user guide,” Technical Report No. G-2009-37, Les
cahiers du GERAD, Quebec, Canada (2009) .

[10] D. D. Landis, J. S. Hummelshøj, S. Nestorov, J.
Greeley, M. Dułak, T. Bligaard, J. K. Nørskov,
and K. W. Jacobsen, “The computational materials
repository,” Comput. Sci. Eng. 14, 51–57 (2012).

[11] J. Hachmann, R. Olivares-Amaya, S. Atahan-
Evrenk, C. Amador-Bedolla, R. S. Sánchez-
Carrera, A. Gold-Parker, L. Vogt, A. M. Brockway,
and A. Aspuru-Guzik, “The Harvard clean energy
project: large-scale computational screening and
design of organic photovoltaics on the world
community grid,” J. Phys. Chem. Lett. 2, 2241–
2251 (2011).

[12] J. S. Hummelshøj, F. Abild-Pedersen, F. Studt,
T. Bligaard, and J. K. Nørskov, “CatApp: a web
application for surface chemistry and heteroge-
neous catalysis,” Angewandte Chemie 124, 278–
280 (2012).

[13] M. De Jong, W. Chen, H. Geerlings, M. Asta, and
K. A. Persson, “A database to enable discovery
and design of piezoelectric materials,” Sci. Data 2
(2015).

[14] M. De Jong et al., “Charting the complete elastic
properties of inorganic crystalline compounds,”
Sci. Data 2, 150009 (2015).

[15] L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong,
N. N. Rajput, K. Persson, and L. A. Curtiss, “Accel-
erating electrolyte discovery for energy storage
with high-throughput screening,” J. Phys. Chem.
Lett. 6, 283–291 (2015).

[16] R. Gómez-Bombarelli et al., “Design of efficient
molecular organic light-emitting diodes by a high-
throughput virtual screening and experimental
approach,” Nat. Mater. 15, 1120–1127 (2016).

[17] E. M. Chan, “Combinatorial approaches for
developing upconverting nanomaterials: high-
throughput screening, modeling, and applications,”
Chem. Soc. Rev. 44, 1653–1679 (2015).

[18] T. Tada, S. Takemoto, S. Matsuishi, and H. Hosono,
“High-throughput ab initio screening for two-
dimensional electride materials,” Inorg. Chem. 53,
10347–10358 (2014).

[19] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and
R. Ramprasad, “Accelerating materials property
predictions using machine learning,” Sci. Rep. 3
(2013).

[20] J. Yan, P. Gorai, B. Ortiz, S. Miller, S. A. Barnett, T.
Mason, V. Stevanović, and E. S. Toberer, “Material
descriptors for predicting thermoelectric perfor-
mance,” Energy Environ. Sci. 8, 983–994 (2015).

[21] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A.
Von Lilienfeld, “Quantum chemistry structures and
properties of 134 kilo molecules,” Sci. Data 1,
140022 (2014).

[22] J. Hachmann et al., “Lead candidates for high-
performance organic photovoltaics from high-
throughput quantum chemistry–the Harvard Clean
Energy Project,” Energy Environ. Sci. 7, 698–704
(2014).

84

BIBLIOGRAPHY 85

[23] L.-C. Lin et al., “In silico screening of carbon-
capture materials,” Nat. Mater. 11, 633–641 (2012).

[24] R. Armiento, B. Kozinsky, G. Hautier, M. Fornari,
and G. Ceder, “High-throughput screening of
perovskite alloys for piezoelectric performance and
thermodynamic stability,” Phys. Rev. B 89, 134103
(2014).

[25] O. Senkov, J. Miller, D. Miracle, and C.
Woodward, “Accelerated exploration of multi-
principal element alloys with solid solution
phases,” Nat. Commun. 6 (2015).

[26] J. Greeley, T. F. Jaramillo, J. Bonde, I. Chork-
endorff, and J. K. Nørskov, “Computational high-
throughput screening of electrocatalytic materials
for hydrogen evolution,” Nat. Mater. 5, 909 (2006).

[27] R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin,
T. O. Sunde, D. Chon, K. R. Poeppelmeier, and
A. Zunger, “Prediction and accelerated laboratory
discovery of previously unknown 18-electron ABX
compounds,” Nat. Chem. 7, 308–316 (2015).

[28] A. O. Oliynyk and A. Mar, “Discovery of Inter-
metallic Compounds from Traditional to Machine-
Learning Approaches,” Accounts of chemical
research (2017).

[29] H. Chen, G. Hautier, A. Jain, C. Moore, B. Kang,
R. Doe, L. Wu, Y. Zhu, Y. Tang, and G. Ceder,
“Carbonophosphates: a new family of cathode
materials for Li-ion batteries identified computa-
tionally,” Chem. Mat. 24, 2009–2016 (2012).

[30] G. Hautier, A. Jain, S. P. Ong, B. Kang, C. Moore,
R. Doe, and G. Ceder, “Phosphates as lithium-
ion battery cathodes: an evaluation based on high-
throughput ab initio calculations,” Chem. Mater.
23, 3495–3508 (2011).

[31] C. Jähne, C. Neef, C. Koo, H.-P. Meyer, and R.
Klingeler, “A new LiCoPO 4 polymorph via low
temperature synthesis,” J. Mater. Chem. A 1, 2856–
2862 (2013).

[32] T. Moot, O. Isayev, R. W. Call, S. M. McCul-
lough, M. Zemaitis, R. Lopez, J. F. Cahoon, and
A. Tropsha, “Material informatics driven design
and experimental validation of lead titanate as an
aqueous solar photocathode,” Materials Discovery
6, 9–16 (2016).

[33] U. Aydemir et al., “YCuTe 2: a member of a
new class of thermoelectric materials with CuTe 4-
based layered structure,” J. Mat. Chem. A 4, 2461–
2472 (2016).

[34] H. Zhu et al., “Computational and experimental
investigation of TmAgTe 2 and XYZ 2 compounds,
a new group of thermoelectric materials identified
by first-principles high-throughput screening,” J.
Mat. Chem. C 3, 10554–10565 (2015).

[35] W. Chen et al., “Understanding thermoelectric
properties from high-throughput calculations:
trends, insights, and comparisons with exper-
iment,” J. Mat. Chem. C 4, 4414–4426 (2016).

[36] G. Ceder, Y.-M. Chiang, D. Sadoway, M. Aydinol,
Y.-I. Jang, and B. Huang, “Identification of cathode
materials for lithium batteries guided by first-
principles calculations,” Nature 392, 694–696
(1998).

[37] F. Yan, X. Zhang, G. Y. Yonggang, L. Yu, A.
Nagaraja, T. O. Mason, and A. Zunger, “Design
and discovery of a novel half-Heusler trans-
parent hole conductor made of all-metallic heavy
elements,” Nat. Commun. 6 (2015).

[38] D. Bende, F. R. Wagner, O. Sichevych, and Y.
Grin, “Chemical Bonding Analysis as a Guide for
the Preparation of New Compounds: The Case
of VIrGe and HfPtGe,” Angewandte Chemie 129,
1333–1338 (2017).

[39] A. Mannodi-Kanakkithodi, A. Chandrasekaran, C.
Kim, T. D. Huan, G. Pilania, V. Botu, and R.
Ramprasad, “Scoping the polymer genome: A
roadmap for rational polymer dielectrics design and
beyond,” Mater. Today (2017).

[40] S. Sanvito, C. Oses, J. Xue, A. Tiwari, M. Zic, T.
Archer, P. Tozman, M. Venkatesan, M. Coey, and S.
Curtarolo, “Accelerated discovery of new magnets
in the Heusler alloy family,” Sci. Adv. 3, e1602241
(2017).

[41] H. Yaghoobnejad Asl and A. Choudhury,
“Combined theoretical and experimental approach
to the discovery of electrochemically active mixed
polyanionic phosphatonitrates, AFePO4NO3 (A=
NH4/Li, K),” Chem. Mater. 28, 5029–5036 (2016).

[42] G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese,
and X. Gonze, “Identification and design principles
of low hole effective mass p-type transparent
conducting oxides,” Nat. Commun. 4, 2292 (2013).

[43] A. Bhatia et al., “High-mobility bismuth-based
transparent p-type oxide from high-throughput
material screening,” Chem. Mater. 28, 30–34
(2015).

BIBLIOGRAPHY 86

[44] G. H. Johannesson, T. Bligaard, A. V. Ruban,
H. L. Skriver, K. W. Jacobsen, and J. K. Nørskov,
“Combined electronic structure and evolutionary
search approach to materials design,” Phys. Rev.
Lett. 88, 255506 (2002).

[45] D. P. Stucke and V. H. Crespi, “Predictions of
new crystalline states for assemblies of nanopar-
ticles: perovskite analogues and 3-D arrays of self-
assembled nanowires,” Nano Lett. 3, 1183–1186
(2003).

[46] S. Curtarolo, D. Morgan, and G. Ceder, “Accuracy
of ab initio methods in predicting the crystal struc-
tures of metals: A review of 80 binary alloys,”
Calphad 29, 163–211 (2005).

[47] S. F. Matar, I. Baraille, and M. Subramanian,
“First principles studies of SnTiO 3 perovskite
as potential environmentally benign ferroelectric
material,” Chem. Phys. 355, 43–49 (2009).

[48] G. Ceder, G. Hautier, A. Jain, and S. P. Ong,
“Recharging lithium battery research with first-
principles methods,” MRS Bulletin 36, 185–191
(2011).

[49] A. N. Sokolov et al., “From computational
discovery to experimental characterization of a
high hole mobility organic crystal,” Nat. Commun.
2, 437 (2011).

[50] Z. W. Ulissi et al., “Machine-Learning Methods
Enable Exhaustive Searches for Active Bimetallic
Facets and Reveal Active Site Motifs for CO2
Reduction,” ACS Catal. 7, 6600–6608 (2017).

[51] O. Levy, R. V. Chepulskii, G. L. Hart, and
S. Curtarolo, “The new face of rhodium alloys:
revealing ordered structures from first principles,”
JACS 132, 833–837 (2009).

[52] X. Ma, G. Hautier, A. Jain, R. Doe, and G.
Ceder, “Improved capacity retention for LiVO2 by
Cr substitution,” J. Electrochem. Soc. 160, A279–
A284 (2013).

[53] K. Yang, W. Setyawan, S. Wang, M. B.
Nardelli, and S. Curtarolo, “A search model
for topological insulators with high-throughput
robustness descriptors,” Nat. Mater. 11, 614–619
(2012).

[54] H. Chen, G. Hautier, and G. Ceder, “Synthesis,
computed stability, and crystal structure of a new
family of inorganic compounds: carbonophos-
phates,” JACS 134, 19619–19627 (2012).

[55] S. Kirklin, B. Meredig, and C. Wolverton, “High-
Throughput Computational Screening of New Li-
Ion Battery Anode Materials,” Advanced Energy
Materials 3, 252–262 (2013).

[56] V. L. Deringer and G. Csányi, “Machine learning
based interatomic potential for amorphous carbon,”
Physical Review B 95, 094203 (2017).

[57] D. Dragoni, T. D. Daff, G. Csányi, and
N. Marzari, “Achieving DFT accuracy with a
machine-learning interatomic potential: Thermo-
mechanics and defects in bcc ferromagnetic iron,”
Physical Review Materials 2, 013808 (2018).

[58] A. Shapeev, “Accurate representation of formation
energies of crystalline alloys with many compo-
nents,” Computational Materials Science 139, 26–
30 (2017).

[59] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan,
T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y.
Chang, “Nanostructured High-Entropy Alloys with
Multiple Principal Elements: Novel Alloy Design
Concepts and Outcomes,” Advanced Engineering
Materials 6, 299–303 (2004).

[60] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A.
Dahmen, P. K. Liaw, and Z. P. Lu, “Microstructures
and properties of high-entropy alloys,” Progress in
Materials Science 61, 1–93 (2014).

[61] M. C. Troparevsky, J. R. Morris, P. R. C. Kent,
A. R. Lupini, and G. M. Stocks, “Criteria for
Predicting the Formation of Single-Phase High-
Entropy Alloys,” Physical Review X 5, 011041
(2015).

[62] D. Miracle and O. Senkov, “A critical review of
high entropy alloys and related concepts,” Acta
Materialia 122, 448 – 511 (2017).

[63] K. Lejaeghere, V. Van Speybroeck, G. Van Oost,
and S. Cottenier, “Error estimates for solid-state
density-functional theory predictions: an overview
by means of the ground-state elemental crystals,”
Critical Reviews in Solid State and Materials
Sciences 39, 1–24 (2014).

[64] M.-C. Kim, E. Sim, and K. Burke, “Understanding
and reducing errors in density functional calcula-
tions,” Physical review letters 111, 073003 (2013).

[65] P. D’Arco, S. Mustapha, M. Ferrabone, Y. Noël,
M. De La Pierre, and R. Dovesi, “Symmetry and
random sampling of symmetry independent config-
urations for the simulation of disordered solids,” J.
Phys. Condens. Matt. 25, 355401 (2013).

BIBLIOGRAPHY 87

[66] A. Van De Walle and G. Ceder, “Automating first-
principles phase diagram calculations,” J Phase
Equilib. 23, 348 (2002).

[67] A. Van De Walle, M. Asta, and G. Ceder, “The
alloy theoretic automated toolkit: A user guide,”
Calphad 26, 539–553 (2002).

[68] N. A. Zarkevich, T. L. Tan, and D. D. Johnson,
“First-principles prediction of phase-segregating
alloy phase diagrams and a rapid design estimate
of their transition temperatures,” Phys. Rev. B 75,
104203 (2007).

[69] G. L. Hart, L. J. Nelson, and R. W. Forcade,
“Generating derivative structures at a fixed concen-
tration,” Comput. Mater Sci. 59, 101 – 107 (2012).

[70] G. L. W. Hart and R. W. Forcade, “Generating
derivative structures from multilattices: Algorithm
and application to hcp alloys,” Phys. Rev. B 80,
014120 (2009).

[71] M. J. Buerger, “Derivative Crystal Structures,” J.
Chem. Phys. 15, 1 (1947).

[72] R. Grau-Crespo and S. Hamad, “The symmetry-
adapted configurational ensemble approach to the
computer simulation of site-disordered solids,” In
MOL2NET, International Conference on Multi-
disciplinary Sciences, p. c002 (MDPI, Basel,
Switzerland, 2015).

[73] J. Moreno and J. M. Soler, “Optimal meshes for
integrals in real- and reciprocal-space unit cells,”
Phys. Rev. B 45, 13891–13898 (1992).

[74] P. Wisesa, K. A. McGill, and T. Mueller, “Efficient
generation of generalized Monkhorst-Pack grids
through the use of informatics,” Phys. Rev. B 93,
155109 (2016).

[75] G. Kresse and J. Hafner, “Ab initio molecular
dynamics for liquid metals,” Phys. Rev. B 47, 558
(1993).

[76] P. Q. Nguyen and D. Stehlé, “Low-Dimensional
Lattice Basis Reduction Revisited,” In Algorithmic

Number Theory, pp. 338–357 (Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004).

[77] I. Kr̆ivý and B. Gruber, “A Unified Algorithm
for Determining the Reduced (Niggli) Cell,” Acta
Crystallogr. A 32 (1976).

[78] A. Santoro and A. D. Mighell, “Determination of
reduced cells,” Acta Crystallogr. A 26, 124–127 .

[79] R. W. Grosse-Kunstleve, N. K. Sauter, and
P. D. Adams, “Numerically stable algorithms for
the computation of reduced unit cells,” Acta
Crystallogr. A 60, 1–6 (2004).

[80] edited by Theo Hahn, International tables for
crystallography. Volume A, Space-group symmetry
(Fifth, revised edition. Dordrecht ; London :
Published for the International Union of Crystal-
lography by Kluwer Academic Publishers, 2002.,
2002).

[81] G. L. W. Hart, J. Jorgensen, W. M. Morgan, and
R. W. Forcade, “A robust algorithm for k-point grid
generation and symmetry reduction,” .

[82] G. Kresse and J. Furthmüller, “Efficiency of ab-
initio total energy calculations for metals and
semiconductors using a plane-wave basis set,”
Comput. Mat. Sci. 6, 15–50 (1996).

[83] G. Kresse and J. Hafner, “Ab initio molecular-
dynamics simulation of the liquid-metal–
amorphous-semiconductor transition in
germanium,” Phys. Rev. B 49, 14251 (1994).

[84] G. Kresse and J. Furthmüller, “Efficient iterative
schemes for ab initio total-energy calculations
using a plane-wave basis set,” Phys. Rev. B 54,
11169 (1996).

[85] P. E. Blöchl, “Projector augmented-wave method,”
Phys. Rev. B 50, 17953 (1994).

[86] G. Kresse and D. Joubert, “From ultrasoft
pseudopotentials to the projector augmented-wave
method,” Phys. Rev. B 59, 1758 (1999).

	Using Symmetry to Accelerate Materials Discovery
	BYU ScholarsArchive Citation

	Table of Contents
	List of Figures
	1 Symmetry in Materials Discovery
	1.1 Quantum Mechanical Calculations for Materials Discovery
	1.2 Reducing an Infinite Search Space
	1.3 Errors from Integration Sampling
	1.4 Conclusion

	2 Sizing up the Search Space
	3 Enumerating Derivative Superstructures
	4 Determining the Best Integration Grids
	5 Generating k-point Grids
	5.1 Folding k-points
	5.1.1 Generating Grids
	5.1.2 Symmetry Reduction of the Grid
	5.1.3 Moving Points Into the First Brillouin Zone

	5.2 Generating k-point Grids on the Fly
	5.2.1 Algorithm Details
	5.2.2 Testing the Algorithm

	6 Conclusion
	Appendix A Proof of Brillouin Zone Location
	A.1 Formal Proof
	A.2 2D Argument
	A.3 3D Argument

	Appendix B Groups, Matrices, and Lattices in Smith Normal Form.
	B.1 Groups in Smith Normal Form
	B.2 Matrices in Smith Normal Form

	Appendix C Integer Relations for all Niggli Cells
	C.1 Simple Cubic
	C.2 Body Centered Cubic
	C.3 Face Centered Cubic
	C.4 Hexagonal
	C.5 Rhombohedral
	C.6 Simple Tetragonal
	C.7 Body Centered Tetragonal
	C.8 Simple Orthorhombic
	C.9 Base Centered Orthorhombic
	C.10 Body Centered Orthorhombic
	C.11 Face Centered Orthorhombic
	C.12 Simple Monoclinic
	C.13 Base Centered Monoclinic

	Appendix D Symmetry-Preserving Offsets
	Appendix E Paper Copyright Licences
	Bibliography

