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ABSTRACT

Mechanically Scanned Interference Pattern Structured Illumination Imaging

Jarom Silver Jackson
Department of Physics and Astronomy, BYU

Doctor of Philosophy

A method of lensless, single pixel imaging is presented. This method, referred to as MAS-IPSII,
is theoretically capable of resolutions as small as one quarter of the wavelength of the imaging
light. The resolution is not limited by the aperture of any optic, making high resolutions (including
subwavelength) feasible even at very large (greater than a meter) distances. Imaging requires only
flat optics and a coherent source, making it a good candidate for imaging with extreme wavelengths
in the UV and x-ray regimes. The method is demonstrated by the imaging of various test targets.
Both real and complex imaging (i.e. holography) is demonstrated.

Keywords: synthetic aperture, structured illumination, SAM, SIM, IPSII, microscopy, complex
imaging
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Chapter 1

Introduction

Imaging developments are linked hand in hand with scientific progress in many fields. The develop-

ment of the telescope in the 17th century led to a revolution in astronomy and was followed closely

by the invention of the compound microscope. This brought into being the field of microbiology

and all the medical advances that came soon thereafter. Developments in medical and scientific

imaging through the 20th century were often followed by a slew of scientific breakthroughs, many

of which have practical real world applications and improve quality of life for people around the

world. All of these developments have led to a vast landscape of imaging modalities which work

on a variety of base physical principles and have different sets of strengths and weaknesses. This

gives researchers a large tool bag to draw from when attempting to understand the world and solve

new problems. My intention in this dissertation is to make a contribution to this list of imaging

possibilities and to add some new insight to the subset of imaging methods related to my work. The

method I propose, develop theory for and demonstrate is related to a type of imaging which I will

refer to throughout this document as interference pattern structured illumination imaging (IPSII for

short). My contribution to this subfield is a type of mechanical angle scan IPSII, or MAS-IPSII for

short, that allows for fully lensless single pixel IPSII imaging.

MAS-IPSII combines some of the advantages of existing IPSII techniques with the advantages

1



1.1 Analog Imaging 2

of imaging without the need of a lens. This leads to a variety of potential use cases discussed later,

and gives MAS-IPSII a unique position within the field of imaging techniques. The development

of this method, and the proof of concept experimentation I have done have made for an extensive

project in its own right. Further development and work are still required to realized the full potential

of the method, or even establish the practicality of many of the use cases I propose.

My purpose here is to introduce the method, the theory, the potential applications, demonstrate

proof-of-concept experiments, and lay down a course for continued exploration and development.

In order to understand the motivation for my work, I would like to break optical imaging into a few

categories to illustrate how IPSII fits in. I will also give a brief overview some methods in each

category, with emphasis on IPSII related techniques, their use cases and drawbacks.

There are many ways to categorize imaging methods. I’d like to start by dividing them into

two categories: analog image formation, and computational imaging. The first category contains

methods that rely on actual image formation—these are analog methods which could work with

photo sensitive film, and are often compatible with manual viewing with the eye. The second

category contains techniques which require acquired data to be processed and displayed digitally

before a meaningful object space image is obtained.

1.1 Analog Imaging

There are a few ways to create real, viewable images. The simplest, in concept, is what I will refer

to as ‘shadow imaging’, where the light passes through or around an object and onto a detector (e.g.

photographic film, CCD detector array, etc). With an opaque object, this only gives the outline of

an object. If the object is transparent, the light transmitted through the object also gives information

about the inside of the object. Examples of shadow imaging in practice include medical x-ray

radiography and CT imaging, as well as some forms of on-chip microscopy [1–6]. This type of
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imaging uses the ray approximation—the assumption that light acts like a particle, traveling in a

straight line. This assumption is approximately correct if the features being imaged are sufficiently

large relative to the wavelength of the light and the working distance (the distance between the

detector and the object). This works well for x-rays because the wavelength is extremely small

compared to what is being imaged (bones, organs, etc.). For imaging of smaller things with larger

wavelengths (such as optical microscopy), the detector has to be placed extremely close to the

object because small features in the wavefronts of light diffract at wide angles, causing the ray

approximation to break down even over small distances.

The limitations imposed by the diffraction of light are most easily overcome by focal plane

imaging, which is by far the most common category of imaging. This type of imaging uses precisely

curved surfaces to refract or reflect light in such a way that light from a given point on one plane

converges, or focuses, on a single point on another plane. In the ray optics approximation this

means all rays emitted from any single point on one plane (the ‘object’ plane) come back together

at a single corresponding point (the ‘conjugate’ point) on another plane (the ‘conjugate’ plane), thus

recreating the intensity pattern of the light at the object on another plane, usually with some amount

of magnification.

Another explanation for focal imaging is that the optic is shaped such that the sum of light rays

traveling along every available path from a given point on the object plane interferes destructively

at every point on the conjugate plane except the conjugate point. In this view, even focal plane

imaging could be seen as a type of ‘interference pattern’ imaging, but I will reserve that language

for other approaches. In either view, the important concept is that the focal optic creates a kind of

copy of the light-field at the object on another plane. A sensor or piece of film placed at that plane

records information as if it were directly on top of the object, thus avoiding the blurring caused by

diffraction effects that are an inherent problem in shadow imaging.

The properties of images created by focal plane imaging are dependent on the focusing optic.
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Resolution of an ideal focusing optic depends on the angle 2θ subtended by the optic from the point

of view of the object, which causes an unavoidable trade-off between working distance (WD), optic

size d, and resolution dx, which can not be independently optimized:

dx≈ λ

2nsinθ
=

λ

2NA
(1.1)

tanθ =
d

2WD
, (1.2)

where NA = nsinθ is the numerical aperture of the lens, and n is the index of refraction of the

medium surrounding the object. Resolution can be defined in various ways, leading to slightly

different results (e.g. the Raleigh criterion, which instead gives dx≈ .61λ/NA).

A second key property is the depth-of-field (DOF), the region in front of and behind the object

plane from which light will still be focused to a sufficiently small point on the conjugate plane to

not cause significant blurring. The DOF limits the depth of an object that can be clearly imaged, and

is also directly related to the numerical aperture such that there is an inverse relationship between

depth-of-field and resolution. This is one of the core limitations in the field of optical microscopy.

Finally, the quality of an image is also affected by deviations of the focusing optic from

ideal behaviour. There are several types of image aberrations (distortions) which are caused by

deviations of an optic from the ideal shape, wavelength dependent properties, and off-axis effects.

These included spherical aberrations, chromatic aberrations, coma, and other distortions caused by

imperfect lenses.

Another method of real image formation is ‘pinhole’ imaging. Light from the object is passed

through a tiny hole. From a ray optics perspective, you can think of the hole as blocking all rays but

one from each point, so that on any later image plane, each point is only illuminated by a single

ray from a corresponding point on the object. The result is similar to that of imaging with a lens,

but with essentially unlimited DOF. However, almost all of the light has to be thrown away, so this

method requires very bright illumination and a sensitive detector. Furthermore, the amount of light

scales inversely with the square of the pinhole radius, which in turn scales with resolution, so higher



1.2 Computational Imaging 5

resolutions require even more illumination. If the hole is very small, then diffraction effects also

limit resolution, making pinhole cameras incapable of resolutions close to the wavelength of light.

These limitations make pinhole imaging useful in only niche cases.

The last type of analog imaging I will mention is holography. While this does not quite fit

in the same category as the other mentioned ‘real’ image formation methods, I include it here

because traditional holography does not require any computation. Holography uses (in its simplest

form) monochromatic light. Light from the object is interfered with light from a reference. This

interference pattern is recorded on film. The object wave is then recreated by passing a copy of the

original reference wave through the film, which modifies the light wavefronts back to something

similar to the original wavefronts coming off the object, so that when viewing through the film, it

appears as if the object is where it originally was. Holography is a very powerful technique because

holograms contain some amount of 3D information about an object. However, it is very difficult to

do outside of carefully controlled imaging setups.

1.2 Computational Imaging

The category of computational imaging is very broad, with many methods under current develop-

ment, and includes any method where the measured information must be processed in some way

before a useful image is obtained. In principle, any image produced by any analog imaging method

could be reproduced computationally with a direct measurement of the object wave—no optics

necessary—but this would require full phase information. Unfortunately optical photodetectors

cannot measure phase directly, so a variety of other methods must be used. The following is a

brief survey of these methods, focusing mainly on those that are relevant to understanding the

development and utility of IPSII.
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Digital Holography

Digital holography is a field that attempts to find missing phase information with a variety of

methods. Similar to analog holography, for example, a reference wave may be used to create

interference fringes which are modulated in time or space. Demodulating these fringes gives the

spatial phase of the object wave. Another approach is to measure the object wave at multiple image

planes, then use iterative methods and fill in the missing phase information that is consistent with

the changes in intensity. Once phase is determined, the object wave is then processed to give an

in-focus image at any plane, or a stack of focused images of the object.

Another recent form of computational imaging that is making its way into practical devices

is plenoptic, or ‘light-field’ imaging. It is so termed because it measures not only the intensity of

light at a given point, but also vector directions for the light rays passing though each pixel. This

allows light from different places to be separated. In practical terms this allows the taking of digital

pictures whose focus and DOF can be computationally altered at will—similarly to what is possible

with digital holograms.

Structured Illumination

A very different type of computational imaging is structured illumination imaging (SI), which

abandons the basic goal of measuring the object wave that is common to most imaging methods.

SI instead attempts to use knowledge about the structure of the illuminating light, which can

be controlled. In SI a known pattern of light is used to illuminate an object. A detector then

uniformly samples the light passing through or reflecting off the object. The signal on this detector

is proportional to the overlap between the illumination pattern and the object. As such, it contains

information about the amount of the given pattern ‘contained’ in the object. By repeating this

measurement with many different patterns, enough information is gleaned to reconstruct an image

of the object.
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Technically, even raster scan methods, such as LIDAR, are a simple form of SI where the

illumination ‘patterns’ are just a dot of illumination that is scanned over the object. However, use

of the term usually refers to a method that uses a non-trivial basis set for the illumination, and

requires some computation to transform from the SI basis to an object space image. The most

convenient basis sets to use in SI are 2D orthonormal basis functions sets such as sine/cosine [7]

waves or Hadamard functions [8]. When such an orthonormal set is used, each measurement gives

one component of the object image in the basis set. When all such components are measured a

corresponding inverse transform (such as an inverse Fourier transform) may be used to reconstruct

the image.

Among other benefits, SI also introduces the possibility of compressive sensing. This is a

technique that reproduces an image with fewer measurements than the effective pixel count of

the resulting image. The additional information is generated by using very high level abstract

assumptions about the nature of the image—typically the fact that meaningful (to humans) images

usually have a high degree of sparsity in various alternate domains such as the Fourier domain.

1.3 Lensless Imaging

Lenses (or other equivalent focusing optics) are typically employed in most forms of imaging,

and are responsible for many of the fundamental and technical limitations that constrain how well

anything can be imaged. Fundamental constraints include the trade-off between resolution and depth

of field, and the trade-off between working distance and optic size (for a given resolution and DOF).

Technical challenges include spherical and chromatic aberrations, coma and lens imperfections, and

absorption.

The alternative to refractive lenses are reflective focusing devices (e.g. spherical or parabolic

mirrors), but these place the same fundamental constraints on imaging as equivalent lenses. They
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also face many of the same technical challenges (with the exception of chromatic aberrations).

Unlike lenses, however they are also difficult to stack in an imaging system, making aberration

minimizing multi-element objectives much more difficult to design and manufacture. For this

reason, microscope objective and commercial camera lenses are almost always built from refractive

lenses.

The technical problems with lenses increase quickly with size, which in practice limits the

diameter of high quality lenses to a few cm. This means that high NA diffraction limited resolutions

(i.e. on the scale of a wavelength of light) are only feasible at very short working distances, typically

less than a cm. Larger apertures are possible for mirrors, which are typically used in long working-

distance imaging (e.g. telescopes). However, they are not very practical for high-NA applications,

such as microscopy.

Another limitation imposed by lenses (and other focusing devices) is the availability of appro-

priate materials for the desired wavelengths. In the optical region we have a wide range of highly

transparent or reflective materials available for refractive or reflective focusing, respectively. This

is not the case at shorter wavelengths where refractive optics are generally out of the question,

and even reflective focusing optics are difficult to make. Deep UV (DUV) and soft X-ray (SXR)

optics have been an active area of of research and development for decades, and still face many

challenges [9, 10]. Even for applications at longer than visible wavelengths, such as far infrared

(FIR) and terahertz (THZ) imaging, where refractive optics are more readily available, lenses are

still often a limiting necessity and are an ongoing area of research [11, 12].

Lensless imaging is a holy grail in many fields of optics because of these constraints. Un-

fortunately, methods compatible with lensless imaging are often limited in even more restrictive

ways than the limitations imposed by a lens. Typically a lens is still used in methods capable of

lensless imaging because it greatly simplifies and enhances most methods. Methods that can be

implemented without use of a lens or focusing optic include shadow imaging, pinhole imaging,
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structured illumination and holography.

Pinhole imaging has its use cases, as discussed previously, but is not a general solution to the

lens problem. Holography also has its niche applications, but also is not a general solution. Analog

holograms could potentially record information without lenses, but would require the same optics

to view the hologram as would be needed to view the object (e.g. if the object were microscopic).

Digital holography is much more promising, but recording a digital hologram is no small technical

feat, and remains an active area of research due to the detector resolution needed to record a

hologram.

Lensless shadow imaging and structured illumination, on the other hand, are in common practical

usage. They generally have the same limitations on resolution due to diffraction effects, however.

In the case of shadow imaging , the detector needs to be close to the object. Equivalently, in the

case of shadow SI [13], the mask forming the shadow needs to be close to the object. In both cases

this means the ratio of the working distance to the desired resolution must be much smaller than

the ratio of the desired resolution to the wavelength of light used. If anything close to wavelength

scale resolution is desired, then the working distance is going to be on that same scale. This

makes it difficult to achieve ultra high resolutions (e.g. smaller than a wavelength) with lensless

shadow imaging or most types of structured illumination imaging, though methods such as on chip

microscopy [3] and optofluidic devices [2, 4] attempt to do so by minimizing the distance between

sensor and sample.

1.4 Single Pixel Imaging

Another limitation of traditional digital imaging is the need for a detector array. In practice, there

are usually a number of constraints involved with this. While detectors are available for wavelengths

ranging from gamma rays into the THz region, only a few of these detector technologies have been
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used to realize small detectors that can be packed into a detector array. Even for the wavelength

regions where such technologies do exist (e.g. CCD and CMOS in the optical and near infrared),

they often have a lower sensitivity and quantum efficiency than is available in the best single pixel

detectors. Furthermore, all detector arrays have an effective fill ratio which is less than ideal—there

are gaps and dead-zones between individual pixel detectors where signal is lost. This typically

results in a loss of 0 to 70% of the useable signal, depending on the type of detector used [14, p.11].

Because of the limitations imposed by detector arrays, imaging techniques that require only a

single detector (i.e. single pixel) can be useful in a variety of situations. THz imaging, for example,

typically uses single pixel methods [12]. Many optical microscopy techniques also use single pixel

methods, such as confocal laser scanning microscopy.

In principle, any method using an array detector could be converted into a single pixel method

by raster scanning an aperture or detector where the array detector would have been. However, such

a method would throw out most of the light with each measurement, resulting in a photon efficiency

inversely proportional to the pixel number. Either the noise in the image or the time to take the

image would increase drastically compared to using an array detector. Because of this, single pixel

imaging in practice is typically confined to SI based techniques (which are inherently single-pixel

detector methods) where there is no fundamental drop in photon efficiency.

1.5 Interference Pattern Structured Illumination Imaging

The motivation behind our method (MAS-IPSII) is that it has the potential to resolve many of the

problems discussed in previous sections. It can be done without lenses (and all the limitations they

impose), at arbitrary working distances (unlike other lensless methods), and with a single pixel

detector. The key idea that makes this all possible is that interference patterns can be generated with

fine features without the use of focusing optics, and at large distances.
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Figure 1.1 Two beams with flat wavefronts interfere to create sinusoidal fringes. Left:
beams crossing at a small angle create large fringes. Right: beams crossing at a large angle
create small fringes.

Consider two plane waves interfering at an angle of 2θ from each other. A pattern of constructive

(bright) and destructive (dark) planar fringes is created (see Fig. 1.1). The intensity of the fringes

varies sinusoidally, with a fringe spacing proportional to the wavelength and inversely proportional

to the sine of θ . The smallest fringes that can be created are just half a wavelength apart. The width

of one of those fringes (full width half maximum - FWHM) is about one quarter a wavelength of

light.

Since SI is ultimately limited (in resolution) to the scale of features that can be created in the

illumination, SI using interference fringes should, in principle, be capable of resolutions as fine as a

quarter the wavelength of light. In fact, this possibility is the key motivation for the development of

a set of IPSII related techniques over the past couple of decades (and one of the motivations of our

own method).

One of the earliest IPSII implementations was a hybrid SI and traditional imaging technique

referred to as structured illumination microscopy, or SIM. This technique was developed as a way

of enhancing the resolution of traditional microscopes by using finely spaced interference fringes.
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Figure 1.2 Microscope k-space bands. (a) The information that can be measured by a
traditional microscope is limited to the area inside a circle in k-space centered on the origin.
(b) If the object is spatially modulated by illuminating with a sinusoidal pattern (e.g. with
an interference pattern) the band of the microscope is shifted by an amount corresponding
to the k-value of the modulating fringes, though the area remains the same. (c) By taking
multiple images with different pattern orientations, a new effective k-space band (dashed
circle) is established with double the radius, effectively doubling the resolution.

SIM is often describe in terms of spatial modulation.

If we consider a microscope in k-space, the resolution limit of the microscope is equivalent to

a low-pass cutoff. In other words, there is a circle, centered on the origin, in the Fourier domain

beyond which the microscope cannot measure any information. This circle, or ‘band’ depends on

the numerical aperture of the microscope objective and, ultimately, on the wavelength of light.

By illuminating an object with spatially modulated light (such as the fringes in a sinusoidal

interference pattern), the band of a microscope is translated away from the origin of k-space in the

direction of the k-vector of the fringes (see Fig. 1.2). The fringes are engineered to translate the

band of the microscope by its radius, so that the edge of the band crosses the origin of k-space. The

point furthest away from the origin is then twice as far as what was originally accessible, so the

resolution of the microscope is effectively doubled. Multiple images are required, of course, with

patterns at different orientations to fill in sufficient information to reconstruct the object at this new

doubled resolution.
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Reconstruction of SIM images is slightly complicated because the intensity modulation causes

the microscope to simultaneously measures two bands translated in opposite directions from the

origin in k-space. However, this information is separable if the phase of the fringes is carefully

controlled, and images at multiple phases are acquired.

One of the limitations on SIM is the fact that the interfering light passes through the imaging

lens, and therefore SIM is still subject to all the same fundamental imaging constraints imposed

by the lens on working distance, resolution and DOF, except for the (not-insignificant) factor of 2

improvement in resolution. It also makes SIM subject to lens aberrations and imperfections.

Since the fringes in SIM are the primary source of high resolution information, there is no

inherent reason why many of the imaging properties need to be tied to the imaging lens at all.

This was the motivation for the work done by Mermelstein et al. with their multibeam IPSII

technique [15–18]. By illuminating the sample with beams that do not pass through the microscope

objective, their method was able to partially decouple resolution from the imaging objective.

The Mermelstein multi-beam method uses 31 fixed beams arranged to form a cone. Each pair of

beams generates a slightly different pattern spacing and orientation, such that over 900 patterns may

be formed. This effectively allows each pixel from the low resolution traditional microscope to be

further divided into as many sub-pixels, thus extending the resolution of the microscope far beyond

the capability of the low NA imaging objective. Because the imaging objective has a low NA, this

also allows for a much greater DOF than would normally be possible. Basically, the resolution is set

by the effective NA of the cone of the illumination beams, whereas the DOF is set by the traditional

imaging objective. However, the cone and the imaging objective also need to be properly matched

to avoid aliasing within individual pixels, such that there is still a minimum requirement on the

pixel count and resolution of the traditional imaging elements, or the IPSII elements would fail.

Because IPSII allows, in principle, arbitrary points in k-space to be measured there is no inherent

need for a traditional imaging setup at all. This has been amply demonstrated by Feldkhun et al.



1.6 MAS-IPSII 14

with their IPSII based methods, DEEP and F -basis [19–21]. These use an acousto-optic modulator

to quickly scan the angle of a laser. This setup can generate a diverging beam pair, but to bring the

beams back together a lens is, unfortunately, necessary. DEEP appears to be the first example of

single pixel IPSII, or what could be viewed as a form of single pixel SIM. It does not require an

imaging objective, and is also the first to demonstrate IPSII without the need for any traditional

imaging optics. However, the need for a lens in the projection system still ties DEEP and F -basis

to many of the familiar lens based constraints. Their work is important, however, as it shows the

potential of IPSII to be of practical use. By multiplexing the signals from multiple beam pairs into

the detector frequency spectrum (similar to the multi-beam approach described above), F -basis is

capable of measuring up to 105 measurements in a single spectrum measurement from the detector,

meaning that high voxel count 3D volumes can be measured in seconds (faster than conventional

3D volumetric microscopy techniques).

Various other methods related to IPSII have been demonstrated as well, such as SPIFI [22, 23]

which uses custom spinning patterns to form spatially modulated illumination patterns, which

then multiplex spatial information onto the frequency spectrum of the detector (similar to how

F -basis effectively multiplexes spatial frequency information onto the temporal signal spectrum).

More recent work in this line (CHIRPT [24, 25]) has demonstrated how some coherent imaging

techniques can be used if coherent illumination is used, even if the detected light is not coherent

(e.g. Fluorescent based imaging). Other related work includes axial IPSII [26], and various modern

lines of inquiry into advanced SIM techniques, such as SIM with non-sinusoidal patterns [27], etc.

1.6 MAS-IPSII

I have so far described the development and motivation for various imaging techniques utilizing

interference patterns as a resolution enhancing source. IPSII has been demonstrated with a lens only



1.6 MAS-IPSII 15

in the imaging optics, or a lens only in the projection optics, but has not been demonstrated without

a lens (or other focusing device) anywhere in the system. I have also discussed the limitation that

such a focusing device places on imaging systems, as well as the limitations on what few truly

lensless imaging modalities do exist.

To completely remove the need for a lens from IPSII we have developed a mechanical angle scan

IPSII (MAS-IPSII) method. This uses only flat optics—no lens is required in structured illumination

pattern formation, imaging, or light collection. The method is in principle capable of arbitrary FOV,

and resolution down to a quarter wavelength. The FOV is limited only by the size of the beams used

and the precision of the mechanical angle scan, while the resolution is limited by the wavelength

and the range of the mechanical angle scan (i.e. the effective NA).

MAS-IPSII uses a set of motorized mirrors and beams splitters to interfere two laser beams on

an object at arbitrary computer controlled angles. Light from the interference pattern scatters off

or through the object and is measured by an optical detector. This detector effectively measures a

single spatial frequency of the object in k-space. The angle is scanned and data is taken to fill in a

grid of k-space values. When this process is complete a simple, quick, inverse Fourier transform

algorithm is applied to the data resulting in an image of the object.

MAS-IPSII is unique among imaging methods, even compared to other IPSII methods. It is the

first demonstration of IPSII without any lenses. Compared to other IPSII methods, it also uses a

greatly simplified set of optics (e.g. no acousto optics or scanning grating patterns are needed). It is

the only imaging method we are aware of that has the potential for sub-wavelength imaging without

a lens, while maintaining a reasonable working distance (i.e. much greater than a wavelength).

The fact that MAS-IPSII requires only flat mirrors and beam splitters makes it a promising

candidate for difficult wavelength regimes such as DUV or X-ray. An X-ray MAS-IPSII device

using a fairly small angle scan (eg. 15◦), such as what we have demonstrated optically, would be

capable of resolutions much higher than state of the art X-ray microscopy.
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Another use of MAS-IPSII is to explore IPSII related issues that can be of benefit to other

IPSII implementations. These issues include wavefront distortions, the effect of shadows in the

interference pattern on resulting reconstructions, large FOV imaging and related constraints such as

aliasing, k-space position error, and dynamic range. MAS-IPSII is well suited for this because in

many ways it is more simple and controlled than other IPSII methods. For example, the multibeam

method, DEEP, and other methods using acousto-optics are affected by how the acousto-optics

distort the wavefronts, on top of any other distortions introduced by optics etc. With MAS-IPSII,

however, the two beams are well defined and separated so we can manipulate them in more controlled

manners.

1.7 My Research at BYU

The main topic of this dissertation is my work on imaging, which has resulted in one patent pending

and three peer reviewed publications (two conference proceedings and an article published in Optics

Express—see Appendix A.1). However, in addition to the work presented in this dissertation, I also

worked on several other research projects as well, some of which have also resulted in publications

(see Appendix A.1 for a summary). I would like to take some space here to summarize my graduate

research activities.

My original research was focused on building a matterwave ion interferometer experiment.

This project led to work we did on the Hanle effect, though the interferometer concept it self was

eventually abandoned in favor of more productive lines of research.

The directional Hanle effect is a phenomena we encountered while working on the interferometer

project and needed a way to ‘see’ magnetic fields. We felt this phenomena was interesting enough

in its own right to pursue, and ultimately I wrote my masters thesis on it. After my masters degree

was complete, however, we made important improvements to our theory and understanding of this
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effect, as well as our understanding of the background literature. As a result we spent a significant

amount of time reworking the theory, calculations, and taking new data. All of this resulted in a

paper which is currently under review.

Another side project was a method of using pairs of imperfect waveplates together to achieve

the same result as a single waveplate for some use cases. These results were published (see

Appendix A.2) in a paper which described the use of pairs of waveplates with a polarizing beam

splitter to achieve near ideal variable light splitting (i.e. 0-100%), even with waveplates made for

very different wavelengths.

I have also spent a significant amount of time mentoring undergraduate and summer REU

students. These students were working on various projects, including early versions of IPSII, a

color sensor wavelength measurement device, and some laser stabilisation techniques. The IPSII

project eventually got to the point where Dr. Durfee and I felt it was worth pursuing in earnest, and

made it the focus of my own research as well. The color sensor project has produced a few senior

theses and one published paper, which I have included in Appendix A.3.

Our work with IPSII originated from a term project I did for a medical engineering class I

took with Dr. Neal Bangerter (then of the Electrical Engineering department at BYU). The class

allowed us to come up with our own idea for a project, and I chose to simulate the process used in

magnetic resonance imaging with an optical analog using front or back projection and a single pixel

detector (we have since learned that my project was nearly identical to work published in Nature

Communications a couple years previously [7]). After the class was over I talked to my advisor

about the possibility of doing the same thing with interference patterns, and we were able to come

up with a practical design to do so, leading to the work that is the main topic of this dissertation.

The IPSII project has required a significant amount of work to get up and running. I surveyed

the literature, went to a couple conferences and talked to researchers in similar fields, and worked

out the theory for what we conceptually wanted to do. I designed and built motorized mirrors with
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3D printed parts (Appendix B) to give us the numerical control we needed. I wrote all the software

and drivers necessary to control the experiment and take the data, as well as software to analyze

the data, including developing a digital lock-in method that could function with a non-linear phase

ramp (i.e. a frequency varying reference signal). I wrote and submitted our first paper on the subject

(which is currently under review), and am now mentoring several undergraduate students who are

working on related projects.

We have only recently gotten to the point in our IPSII related research where we are getting

publishable data, and our first paper is in review. We have outlined and are now writing a second

paper on phase distortions, and the potential use of distortions to reduce the required dynamic range

or enhance compressive sensing. We already have the theory, simulations and data to back this paper.

We have outlined a third paper on the effects of k-space position error for which we have theory and

preliminary data. We have outlined a fourth paper on alias unwrapping using multiwavelength data

for which we already have data, but are lacking the analysis and rigorous theory. We have plans for

a fifth paper we would like to do on the potential use of IPSII for complex imaging (transmission

holography), as well as some preliminary data demonstrating proof-of-concept.

1.8 Dissertation Overview

In Chapter 2 I will give a conceptual description and a signal equation describing IPSII in a general

way. I will then present various experimental designs we have used or proposed for taking advantage

of the possible forms of imaging apparent in the signal equation, as well as results from various

experiments we have performed with MAS-IPSII.

In Chapter 3 I will derive the signal equation, demonstrate its relationship with the Fourier

transform, and describe various possible imaging methods that result from it. I will also discuss

potential modifications and limitations of the signal equation for various measurement purposes,
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and derive some basic imaging properties.

In Chapter 4 I will discuss various practical issues facing IPSII implementations, and give full

or partial solutions where available.

In Chapter 5 I will give my concluding remarks.



Chapter 2

MAS-IPSII Implementation

Our implementation of lensless IPSII is simple in concept. When two coherent beams interfere at an

angle they form sinusoidal fringes, which are used to illuminate an object (see Fig. 2.1). A detector

then measures the light reflecting off, or transmitting though the object, effectively measuring a

single spatial frequency component of the object. This signal must be measured at multiple phases,

which can be done by making multiple discrete measurements (as is typical in SIM), or by recording

the signal while sweeping the phase (typical to other IPSII based methods). The resulting amplitude

and phase measurements effectively gives one complex pixel of the transformed object image in

k-space, the alternate basis of the structured illumination. One just needs to measure enough pixels

and do an inverse transform to get an object space image.

More formally, IPSII can be summarized by a simple equation in the form of a Fourier transform

that describes the signal s̃ from an optical detector,

s̃(kx,ky) =
∫

∞

−∞

∫
∞

−∞

MÃ1Ã∗2ei(kxx+kyy)dxdy. (2.1)

where M(x,y) describes the object (e.g. the transmission or reflection profile), kx,y are the spatial

frequencies of the interference pattern, and Ã1,2 describe the complex profiles of the beams. The

function s̃ is a time independent complex function whose modulus and phase represent the amplitude

20
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Figure 2.1 Illustration of IPSII. Two beams overlap to form a interference pattern on an
object.

and phase of a time dependent, oscillating, real valued signal s.

The important thing to note is that this equation is just a Fourier transform of the object

multiplied by the profile of the illumination, and evaluated at (kx,ky). To image an object we simply

need a way to scan the angle between two illuminating laser beams, scan the phase between the

two beams (causing the interference pattern to oscillate), and measure s̃ at each point on a grid in

k-space. The object image may then be obtained by transforming the k-space data back into object

space. A full derivation of the signal equation, and a discussion of its implications are given in

Chapter 3.

2.1 MAS-IPSII Design Requirements

While lensless IPSII is simple in concept, there are some challenges in implementation. Attempting

pure SI imaging with interference patterns—without augmenting with any traditional imaging

methods—means that we need to measure the signal from at least one pattern per pixel (barring the
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use of compressive sensing techniques). For reasonable, useful images this means making tens of

thousands of measurements, at least. For this we need some way to continuously vary the angle of

the two beams.

Past IPSII implementations have mostly used a fixed set of angles, due to the difficulty in

physically altering the interference angle. These methods, however, are capable of only a small

number of IPSII measurements, are not easily scalable to higher pixel counts, and thus require

augmentation with traditional imaging techniques. Standard SIM for example, could be viewed as

an IPSII technique limited to 4 pixel images. However, by combining it with a traditional imaging

objective and detector, each pixel of the traditional image is broken up into 4 new pixels, thus the

factor of two resolution improvement.

The multi-beam approach employed at MIT [18] took this further by having 31 fixed beams,

with 62 unique pairings. Such a setup could, in principle, perform lensless imaging—but would be

limited to a 62 pixel image, which is roughly 8 pixels square (not very useful by itself). Even if the

beam arrangement could be optimally designed so that every possible beam pair would produce a

unique and useable signal, at best 31 beams could produce about a 21x21 pixel image—which is

still not very useful. Generally, such a multi-beam approach is limited to, at best, N(N−1)/2 pixels,

where N is the number of beams (and proportional to the number of optics). As such, this method is

not scalable to higher pixel counts, which is why this approach (and SIM) must be augmented by

traditional imaging methods.

The obvious solution to the scaling problem with IPSII is to use a method that scans the angle

of the beams continuously, rather than using a fixed number of beams at different angles. This is

itself a challenge, because the angle between the beams must be scanned while keeping the beams

overlapping. For example, DEEP and F -basis [19–21] use an AOM to scan angles, and CHIRPT

accomplishes a similar feat using a custom spinning diffraction grating [24, 25], but all of these

produce diverging beams, which must be brought back together with a lens. However, as noted in
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(a) (b)

Figure 2.2 Renderings of Mach-Zehnder interferometers used to for imaging. Left: work-
ing setup with minimal set of optics—see Section 2.2. Right: a more complex optical
layout for an interferometer with better beam control and path-length tuning—see section
2.3.

the introduction, this use of a lens in the pattern formation imposes many of the same limits on this

form of IPSII as other lens based imaging methods.

Our work attempts to solve this problem without use of a lens, acousto-optics or fixed beams,

and in a way that can scale to arbitrary pixel counts. To do so we mechanically scan the angle

between interfering beams using motorized mirrors in optical layouts based on a Mach-Zehnder

interferometer (see Fig. 2.2).

Another necessary aspect of IPSII is the phase measurement. As mentioned, this may be

done discretely or continuously as the phase is scanned. Other IPSII methods (aside from SIM)

typically do this by offsetting the frequency of the two beams (equivalent to a phase sweep) with

acousto-optics. This makes sense because they typically already use the acousto-optics to split

the laser and scan beam angles. It also allows for large frequency offsets, which means individual

measurements can be made very quickly. On the other hand, acousto-optics are in many ways even

more restrictive than lenses. They are not available at extreme wavelengths, are very limited in size,

introduce distortions in the laser wavefronts and increase the cost of the imaging system.



2.1 MAS-IPSII Design Requirements 24

We sweep the phase using piezo mounted mirrors. The main downside of this approach is the

effective frequency shift is much smaller which slows down the data taking process. However, it

avoids the need to introduce any further optics in the path of the lasers, making it more widely

applicable since the only requirement is a reflective surface.

As the phase is swept, the signal from the object detector will oscillate. The phase of this

oscillation (relative to the phase ramp) is the most crucial piece of information measured. However,

in the optical layouts we use to scan the beams, the phase of the interferometer is effectively

randomized with each angle change due to large (relative to the wavelength) changes in the optical

path-length with the movement of mirrors. Phase drifts of the interference pattern resulting from

frequency drift of the laser, thermal expansion of the apparatus, mechanical drift, etc. over the

course of imaging would also be a problem unless an exceptionally stable laser, optical system

and environment were used. These problems combine to make the directly measured phase of the

oscillation signal meaningless without some sort of reference.

The easiest way to solve the problem of phase drift and randomization is to directly measure

the phase of the interference pattern relative to some fixed point in object space. One way to do so

would be to image the pattern and calculate its phase—but that would defeat the whole point of

lensless imaging. Our solution is to use a pinhole (or a slit for 1D imaging) placed in the interference

pattern of the second output of the interferometer (see Fig. 2.3). As the fringes are scanned across

the pinhole, a detector placed behind the pinhole measures an oscillating signal that can be used as

a phase reference. The pinhole just needs to be smaller than any fringes which are used during the

full scan. We have used 1-15 µm pinholes (or slits) in our imaging setups.
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Figure 2.3 Simple 1D MAS-IPSII implementation using a single motorized axis on a
mirror in a Mach-Zehnder interferometer to scan the angle between output beams.

2.2 Simple MAS-IPSII Interferometer

Our first experiments were done with a simple Mach-Zehnder interferometer (see schematic in

Fig. 2.3). While there are some obvious problems with this design (discussed below), it serves as

the basis for other designs we have implemented and considered, and as such is worth consideration

first. In this design only two flat mirrors and two beam splitters are required. The angle between

beams is swept a with a motorized adjuster on one mirror, and the phase is swept by ramping

the voltage on the piezo mounted mirror. In our first implementation only one mirror axis was

motorized, as we only used this setup to conduct proof of concept 1D tests. Extending to 2D would

be a simple matter of motorizing the second mirror axis.

Making a 1D ‘image’ follows the process in Fig. 2.4. First, a linear ramp is applied to the piezo

mounted mirror, causing a corresponding linear ramp of the phase of the interference pattern. The

result is fringes that appear to be sweeping across the object (when slowed down sufficiently to

see by eye). While the phase is swept the signal from photodetectors on the object and the slit are

recorded. The object signal is compared to the slit signal to extract the amplitude and phase relative

to the reference. The mirror is then moved to the next angle, and the process repeats. When finished,
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an inverse Fourier transform is applied to the data.
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Figure 2.4 IPSII Process

The pinhole reference signal must be combined with the object signal to produce a useful

k-space data point. This is done with a digital quadrature demodulation (also known as lock-in

detection) process.

This process could also be done with analog electronics, which would greatly reduce the post-

process computation required, though doing so would require a faster phase sweep than our current

equipment allows for. See Fig. 2.5 for examples of the raw data and the process of reconstructing a

1D image (the shadow of a pair of wires).

The problem with this simple setup is that only the angle of the beams can be controlled

independently. Even if both mirrors were motorized, changing the angle between beams also moves

the beams off the object and each other. For low resolution imaging this is not a problem, since

only small angle changes are required. However, if smaller beams, long working distances or higher

resolutions are desired, the simple setup is not a good design.
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Figure 2.5 Simple 1D demonstration of IPSII data taking and analysis. Top left: raw data
from slit detector, and detector behind object. Top right: power spectrum of resulting 1D
k-space data. Bottom: 1D object space reconstruction, showing the laser beam profile with
the shadow of two wires, one 2mm wide and the other .5 mm wide.

There are a couple ways the simple Mach-Zehnder layout could be modified to be more generally

useful. One of them is to add an extra motorized mirror in each arm of the interferometer, so that

the angle and position of each beam can be controlled. This is the route we took (see Section 2.3).

Another method would be to motorize the beam splitters in addition to the mirrors. Each beam

(considered at either output) is reflected off one beam splitter and one mirror, so there are enough

degrees of freedom to control the position and angle of each beam at one of the interferometer

outputs (which guarantees the beams in the other output will also be aligned). This method would

be a little more difficult to implement in practice, since the electronics used to motorize the beam

splitter would need to be kept out of the beam path. However, it would also require that each beam

interacts with only three flat optics, which might make it a more attractive option when working
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Figure 2.6 Two-stage interferometer. This implementation adds another pair of mirrors
to keep the beams centered during the angle scan, and adds a bowtie configuration, [only
shown in (a)] to help balance the path lengths. The arrows in the bowtie indicate translation
stages. The interferometer is shown with θ = φ = 0 in (a). The limits of its angle range are
shown in (b) and (c), and correspond to the positive and negative k-space measurements
for the maximum spatial frequency magnitude that can be measured.

with extreme wavelengths, or in compact devices.

2.3 Two-Stage Interferometer

Our second generation interferometer, the one we have used for most of our experiments, is the

Mach-Zehnder interferometer illustrated in Fig. 2.6. It has pair of mechanically scanned mirrors

in each beam to allow control of both the angle and position of the beams. This allows us to keep

the beams overlapping, even while scanning to larger angles. Having motorized mirrors in both

arms also allows us to do symmetric scans. All of this allows for larger angles and correspondingly
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higher resolution imaging compared to the first-generation interferometer.

Balancing the path-lengths of the interferometer arms is necessary if the temporal coherence

length of the laser is less than the optical path-length in the interferometer (e.g. due to multi-mode

operation, mode hopping or a large linewidth). We have included a ‘bowtie’ configuration in the

design to allow the interferometer to be more easily balanced (only shown in Fig. 2.6a). In the

bowtie, translation stages are placed under the beam splitter and the first mirror in the path of the

reflected beam. The path-length is tuned by adjusting both translation stages together such that the

output of the interferometer (overlap position and angle) is unaffected.

Balancing can be further simplified with proper orientation of the translation stages in the bowtie.

For example, if the interferometer is aligned so that the beams reflect at 45◦ angles from the beam

splitters and motorized mirrors, the translation stage on the beam splitter is placed at a 60◦ angle

from the vertical, and the translation stage on the mirror is oriented parallel to the beam splitter,

then an equal and simultaneous adjustment to both translation stages will adjust the path-length

difference without affecting output. More generally, for any given orientation of the input beam

into the interferometer, the orientation of the translation stages may be calculated, or calibrated by

adjusting the relative orientation of the translation stages until equal adjustments to both do not

affect the overlap of the output.

2.3.1 Geometry

The ideal geometry of the interferometer layout depends on the use case. Some key parameters, as

labeled in Fig. 2.7, are the angle θm between the mirror normals and output beams at the kx,y = 0

position, the distance L0 between mirrors, the distance L1 between the second mirror in each arm

and the second beam splitter, the effective working distance L2 from the beam splitter to the object

(and pinhole), the distance L3 = L1+L2 between the second mirror and the object, and the diameters

Dm of the mirrors and DBS of the beam splitter.



2.3 Two-Stage Interferometer 30

The effective aperture of the device is Dm sinθm, and the effective numerical aperture is

NAeff =
1√(

2L3
Dm sinθm

)2
+1

. (2.2)

This assumes the beamsplitter is sufficiently large (DBS >= DmL2/L3), so that the mirror is the

limiting aperture. To maximize the numerical aperture, it may be desirable to make θm as close to

normal incidence as possible, while avoiding clipping of the beams going to the object (or pinhole)

by the mirrors on the opposite side of the interferometer.

Calibration

Ideally, maintaining proper alignment during the angle scan is a simple matter of moving the first

mirror in each arm by some fraction of the movement of the second mirror. This fraction is half

the ratio of the distance between the second mirror and the object to the distance between the first

and the second mirror. The resulting change in angle of the beam is the sum of the two mirror

angle adjustments. In practice, it is useful to perform a calibration step to determine this ratio

experimentally, and also to correct for non-ideal kinematic coupling in the mirrors (for example,

L 0

θm

L
2

DBS

Dm

L
1

Figure 2.7 Key parameters of the geometry in the two-stage design.
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imperfect isolation of vertical and horizontal angle changes). In this case, given an angle of the first

mirror (θH1,θV 1) then the angle of the second is set toθH2

θV 2

= M ·

θH1

θV 1

 , (2.3)

where

M =

m11 m12

m21 m22

≈−2
L3

L0

1 0

0 1

 . (2.4)

Calibration is the process of determining the exact mi j coefficients of the matrix M.

A simple procedure to calibrate the interferometer to a particular working distance L3 (somewhat

analogous to adjusting a focus) is as follows. An iris placed before the interferometer is used to

make the beams as small as possible at the interferometer output. A marked piece of paper or

an aperture is placed at the desired working distance and beam position. Then the first mirror is

adjusted by some random amount, and the second mirror adjusted to bring the beam back to the

marked location. This is repeated for as many measurements as desired, but at least two such points

must be measured if assuming ideal mirrors mounts (i.e. mounts with no cross talk between the

horizontal and vertical axis), and at least 4 measurements must be made when correcting for non

ideal mirrors (i.e. allowing m12 and m21 to be non-zero). Then the m coefficients are determined

with a simple set of linear regressions on the resulting data (see Appendix C). This process is done

for both arms, so two matrices M1 and M2 are recorded.

Ultimately, the calibration needs to be used to set an arbitrary angle (θHB,θV B) of the beam

from the normal at the object plane. To do so, the mirrors in the interferometer are set according to

Mirror 1 adjustments:

θH1

θV 1

= (M+ I)−1 ·

θHB

θV B

 , (2.5)

Mirror 2 adjustments:

θH2

θV 2

= (M−1 + I)−1 ·

θHB

θV B

 . (2.6)
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Mirror
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Beam Splitter

Object
Diffuser (optional)
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Stepper Motors

Green Laser

Blue
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r
Dichroic Mirror

Figure 2.8 Multi-wavelength setup. Multiple wavelengths can be used simultaneously by
overlapping beams before the interferometer and separating out the phase reference signals
as shown (note the two PMTs after the pinhole).

This is done for the mirror pair in each arm using the M matrix for that arm and the desired angle

for that beam. The resulting net interference angle is then just the difference between the two beam

angles.

2.4 Dual Wavelength Setup

Another idea we have tested is dual-wavelength imaging. This principle could easily be extended

to full color RGB imaging (i.e. triple-wavelength imaging), or more generally, to multispectral

imaging with any number of wavelengths. Our layout for dual wavelength imaging, as shown in

Fig. 2.8, is mostly the same as the two-stage interferometer described in Section 2.3. As long as the

beam-splitters and mirrors have broadband coatings, any number of beams at different wavelengths

can be used simultaneously in the interferometer. However, you then need a way to separate out the

signals from the individual wavelengths.

The most straightforward way to do multi-spectral imaging would be to use dichroic mirrors to

separate out the signals after the pinhole and object, and have a separate detector for each. However,

doing so after the object is tricky because ideally we want to capture as much of the light passing
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though the object as possible. It turns out that having a separate object signal is not really necessary,

however, because during the phase ramp each wavelength will oscillate at a different frequency. We

can separate the signals during processing. However, we still need a phase reference for each signal.

We believe it may be possible to also do away with the separate phase reference for each signal,

since the different phase changes result from path-length differences, which are common to all

wavelengths used in the interferometer. If the interferometer is sufficiently well balanced and each

laser used is stable enough that phase drift resulting from frequency drifts can be ignored, then one

reference should be good enough to derive a phase reference for all other wavelengths. In this case,

only one reference detector would be used, with a narrow line filter used to filter out all but one of

the wavelengths in the interferometer. Another possibility would be to measure all reference signals

with one detector, and then digitally separate the different frequency components.

2.5 High NA Imaging

One of the main problems with the interferometer–based setups is that they limit the effective

numerical aperture. This limit is much less constraining than the limit on a traditional lens based

system at large working distances, since the NA is set by the size of a flat mirror or beam splitter

rather than the size of a lens (see Section 2.3.1). However, the aperture of MAS-IPSII need not be

limited at all by the size of any individual optics.

One potential method of decoupling effective NA from optic size is shown in Fig. 2.9, in which

motorized mirrors would move along tracks. The effective NA of such a system would depend on

the working distance and the track length, such that very high numerical apertures could easily be

obtained even at relatively large distances (compared to traditional microscopes or cameras). Either

the tracks or the object would also need to be rotated about the imaging axis to do 2D imaging.

The problem with such a system is that the angle cannot be continuously changed through zero,
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Figure 2.9 Proposed setup for high NA imaging. Two mirrors would move along tracks,
and rotate to keep beams centered on object. The effective NA depends only on the length
of the tracks and distance to the object.

but is instead limited to some minimum angle θmin. This means that some values in the center

of k-space cannot be reached, and ‘negative’ k-space values can not be measured. However, the

negative k-space values only add information when measuring a complex function (see sections 3.5

and 4.2). Also, it turns out that the kx,y = 0 (or ‘DC’ term), could also be measured in other ways

(e.g. it could be calculated from the DC offset in the signal of every other measurement), so if the

inaccessible k-space region is smaller than the discrete spacing, such that

sinθmin ≤
λ

2 n FOV
. (2.7)

then no information is lost. Even if some data is missing, the lack of data in the center effectively

would act as a high pass image filter (similar to that used in edge detection), so in many cases this

may not be a problem.

2.6 Implementation Details

Most of our work has been done with a particular experimental implementation based on the dual

wavlength two-stage interferometer design discussed above. We used standard, easily obtainable

optical components, lab electronics, 3D printed parts, and built our own motorized mirrors (see
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Appendix B) to get the range and precision we need, and to save on cost. A parts and price list is

given in table 2.1.

Part Number Price Item Sub Description

NewFocus U200-A 2 $141.00 $282.00 Mirror mounts without actuators
NewFocus U200-A-LH 2 $141.00 $282.00 Mirror mounts without actuators
NewFocus AJS254-0.5H-NL 8 $55.00 $440.00 Ultra-fine Hex Adjustment Screw, 254 TPI
Thorlabs BB2-EO2 4 $152.00 $608.00 2in mirrors
3D printed parts 4 ∼$10.00 $40.00 Printed pieces needed for one mirror
28BYJ-48 ULN2003 2 $13.00 $26.00 Stepper motor (5 pack) with driver kits
Mirror power supply 1 $12.00 $12.00 A variable switching supply works well
Wiring 1 $15.00 $15.00 4-pin motherboard header cables
Thorlabs KM200 2 $80.00 $160.00 Kinematic mounts for beamsplitters)
Thorlabs Piezo 1 $180.00 $180.00 Piezo for phase scan
Viking VP7210-00B150G 1 $550.00 $550.00 Piezo Driver
Laser 1 $20.00 $20.00 Inexpensive green hobby laser
BeagleBone Black rev c 1 $57.00 $57.00 Mini linux computer with lots of output pins
Labjack T7 1 $429.00 $429.00 Data aquisition unit
Thorlabs P2H 1 $129.00 $129.00 Pinhole
Thorlabs FDS1010 1 $54.00 $54.00 Detector for object signal
Pinhole detector 1 ∼$500.00 $500.00 931B PMT + HV Power supply
Total $3,784.00

Table 2.1 Price list for parts needed for single wavelength interferometer. Equivalent parts
are listed in some cases (where the part we used is unavailable), and estimates, where
exact prices were not available, are indicated with ∼. Common lab elements such as posts,
mounts, screws, etc. are not included. We used a more expensive lab laser that we had on
hand, but for our purposes an inexpensive green laser should work just as well.

2.7 Results

We have been able to successfully image with a working distance of about 10 cm, resolutions of up

to 2.5µm and a FOV of up to 3 mm. We have not imaged at maximum resolution and maximum

FOV simultaneously, however, due to current limitations on imaging speed, though there is nothing

(other than time constraints) that would prevent us from doing so. We have performed various

imaging tests with a USAF1951 resolution test target, for which the widths of the lines are shown in

Table 2.2. See Fig. 2.10 for various images of the resolution test target, and Fig. 2.11 for an image
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of another, custom made, test target. Also see Fig. 2.12 for an example of imaging of a biological

specimen. In these test images you can see various artifacts (ghosting, blurring in areas, etc.). Most

of these issues are understood, and result from various limitations in our current hardware that

will be corrected for in future iterations of our designs. These issues, and potential solutions and

workarounds for them are discussed further in Chapter 4.

Imaging artifacts aside, note that the observable resolution matches the expected resolution

(i.e. the pixel size, as determined by the discrete Fourier transform) in each image. All images

are included in lossless PNG format, so you can zoom in and see the individual pixels, as long as

your document viewer does not smooth (interpolate) images, and have an unedited version of this

document.

Group Number
Element 2 3 4 5 6 7 8 9

1 125.00 62.50 31.25 15.63 7.81 3.91 1.95 0.98
2 111.36 55.68 27.84 13.92 6.96 3.48 1.74 0.87
3 99.21 49.61 24.80 12.40 6.20 3.10 1.55 0.78
4 88.39 44.19 22.10 11.05 5.52 2.76 1.38 0.69
5 78.75 39.37 19.69 9.84 4.92 2.46 1.23 0.62
6 70.15 35.08 17.54 8.77 4.38 2.19 1.10 0.55

Line Widths (µm)

Table 2.2 Line widths for USAF 1951 Resolution test target. Resolution limit is determined
by finding the first element in an image where individual lines are no longer distinguishable,
and looking up that group on the chart.
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1 mm

(a)

200 µm

(b)

100 µm

(c)

50 µm

(d)

Figure 2.10 Object image reconstructions from various scans of a Negative USAF1951
Resolution Test Target.
(a) Groups 2 and 3. FOV: 6.5x6.5 mm — pixel size: 24 µm — 271x271 pixels
(b) Groups 4 and 5. FOV: 1.2x1.2 mm — pixel size: 6.3 µm — 191x191 pixels
(c) Groups 6 and 7. FOV: .6x.6 mm — pixel size: 4.2 µm — 151x151 pixels
(d) Groups 6 and 7. FOV: .43x.43 mm — pixel size: 2.0 µm — 161x161 pixels

1.0 mm

(a)

40 µm

(b) (c)

Figure 2.11 A scan of a custom target for testing resolution in 1D, containing 20µm lines.
The scan was done with a target resolution (pixel size) of 5.0x66.65 µm.
(a) FOV: 6x6 mm, 1201x91 pixels. The corner of the target is visible through an aperture
made by poking a hole in aluminum foil (necessary to prevent aliasing). Note that the
image has a much higher x-resolution than y-resolution (pixels are not square).
(b) Zoomed area (41x4 pixels) of the image at the tips of a few of the lines, showing
the pixel width of lines, and the difference in resolution in the x and y dimensions (the
rectangular pixels).
(c) Absolute value of k-space data.
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(a)

0.5 mm 0.5 mm

(b)

Figure 2.12 Dual–wavelength image of a grasshopper wing. The FOV and resolution are
different because they are both wavelength dependent, but both sets of data were taken
in the same mechanical scan. The inverse transform results in complex data, the absolute
value of which is displayed as the image.
Green FOV: 2.5x2.5 mm — pixel size: 8.3x8.3 µm — 301x301
Blue FOV: 1.9x1.9 mm — pixel size: 6.3x6.3 µm — res 301x301
(a) Left to right: image from green laser, image from blue laser, combined image. The
FOV and resolution are different because they are both wavelength dependent.
(b) Absolute value of the raw k-space data for the blue (left) and green (right) images.
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2.7.1 Working Distance

One of the motivations of this work (as indicated in the introduction) was to decouple working

distance, resolution and optic size, especially for the purpose of ultra long working distance

microscopy. The resolution of our current experimental design is still limited by optic size, though

this could be avoided with a setup such as the one shown in Fig. 2.9. However, the optics in question

are flat mirrors and beam splitters, making large apertures much easier to obtain than large aperture

high NA lenses.

While we hope to explore the use of MAS-IPSII for long working distance microscopy further

in future efforts, our current device is already close to the effective aperture limit of high resolution

commercial devices. This is shown in Fig. 2.13, where a set of commercial objectives are plotted

according to their resolution (assuming 532 nm illumination) and working distance, along with the

demonstrated and theoretical maximum working distance of our current device. Note that high NA

solutions are not generally available with effective apertures of more than 40 mm, though research

into methods of extending these limits is ongoing (including previously mentioned synthetic aperture

techniques, as well as large physical lens solutions [28]). Even with our current setup, effective

apertures of over 50 mm could easily be obtained using larger (but still readily available) optics.
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Figure 2.13 Working distance of MAS-IPSII compared to commercial long working dis-
tance objectives. Each objective in a list of microscope objectives advertised as ‘long
working distance’ (collected by hand) is plotted as a symbol (corresponding to the commer-
cial brand of the objective) at a location corresponding to its maximum working distance
and its resolution at that distance (assuming 532 nm illumination). Also plotted are various
curves corresponding to ideal lenses of a given diameter. These curves show the maximum
resolution for an ideal lens at a given working distance and aperture. The Abbe resolution
limit is indicated with a horizontal line (i.e. for NA=1). The current equivalent resolution
and working distance of our MAS-IPSII device is labeled ‘BYU’. Two points labeled
‘BYU-t’ indicate the maximum equivalent numerical aperture our current device could
obtain in theory. Even larger effective apertures could be obtained if larger mirrors were
used.



Chapter 3

Theory

In Chapter 2 I introduced a ‘signal equation’ in which the imaging potential of MAS-IPSII is

apparent. In this chapter I will derive that equation, discuss its implications, and derive some similar

equations for various experimental modifications to the basic approach described in chapter 2.

3.1 Signal Equation Derivation

In its most general form, IPSII could be done in a variety of ways. The core concept is that an

interference pattern is created from more than one wave source, with some controllable variable that

allows the interference to be modified. The main requirement is that the set of interference patterns

that can be generated span the space in which you want to image. They do not necessarily need

to be orthogonal, and in some cases do not even need to be completely known (see 3.5). Imaging

could be done, in principle, in 1, 2 or 3 dimensions.

When the interference patterns are used to illuminate an object, a detector placed directly behind

or at an angle in front of the object will detect a signal s, which depends on the position of the

detector, the object, the form of the interference pattern and the phase of the pattern (wich is scanned

in time). The goal of this section is to derive an analytical form for the signal s. To derive a useful

41
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signal equation, I need to narrow the scope to a less general version of IPSII, and make some

experimental assumptions, but I will keep the derivation as general as I believe practical to make it

easier to see potential high level modifications that can be done to the experiment (as discussed in

following sections).

For this derivation I will assume a 2D target and two monochromatic wave sources with the

controlling variables being wavelength and angle. I also assume a small frequency offset ∆ω

between the sources. The results may, with some restrictions, be extended to 3D and to multi-

spectral sources (see sections 3.1.1 and 4.6). Use of more than 2 sources simultaneously, as has

been done in some related cases [17,29] also could have several benefits, but I leave this as a subject

for future research.

I will assume the sources are laser beams, but the same derivation could apply to other forms of

waves as well. I also assume that the wavefront features of each source are sufficiently large, in the

object region, to not appreciably diffract within that region (i.e. we neglect changes in the beam

profile as it propagates). Experimentally, this means the laser only needs to be collimated on the

scale of the object. Depending on the desired FOV, this is a relatively non-restrictive condition and

allows for beam modes with non-Gaussian shapes and phase distortions. With these assumptions,

we describe the two beams as plane waves (e.g. exp(ik · r− iωt)) multiplied by transverse mode

functions. The mode functions take the form,

Ã1,2(x1,2,y1,2) = A1,2(x1,2,y1,2)eiϕ1,2(x1,2,y1,2), (3.1)

where x1,2 and y1,2 are the transverse beam coordinates (i.e. displacement from an axis in the beam

propagation direction), the real functions A1,2 are the transverse field amplitudes of the modes, and

the ϕ1,2 functions represent the position dependent phases of the modes.

I assume polarization vectors are all parallel and can be safely neglected, so only the electric field

amplitudes are needed. The resulting description of an arbitrary laser that satisfies the conditions
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Figure 3.1 Illustration of IPSII. Two beams overlap to form a interference pattern on an
object.

set above is,

E1(x1,y1, t) = Ã1(x1,y1)eik1·r+iωt (3.2)

E2(x2,y2, t) = Ã2(x2,y2)eik2·r+i(ω+∆ω)t , (3.3)

where k1,2 are the individual beam wave vectors,

||k1||= ||k2||= kl =
2π

λ
. (3.4)

The beams are assumed to come in at symmetric angles to the object (non-symmetric angles are

discussed in Section 3.5), such that both k1,2 vectors are at an angle θ from the object normal, and

oriented at an angle φ and φ +π around the object normal (see Fig. 3.1). I also assume that the two

waves always overlap on the object such that x = y = 0 at the same point in space where x1 = y1 = 0

and x2 = y2 = 0. For small beam angles, this is true for all coordinates (not just the origin), such

that x≈ x1 ≈ x2 and y≈ y1 ≈ y2 everywhere in the object plane. The intensity of the interference
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pattern created by the two overlapping waves can then be calculated on the plane of the object as

I(x,y;kx,ky) =
ε0c
2

(
A2

1 +A2
2 +2Re

{
Ã1Ã2ei(k1·r−k2·r−∆ω t)

})
=

ε0c
2

(
A2

1 +A2
2 +2Re

{
Ã1Ã2ei(kxx+kyy+∆ω t)

})
,

(3.5)

where kx = 2kl sinθ cosφ and ky = 2kl sinθ sinφ . Note that the ‘intensity’ of a field E, as I use it in

this document, is just defined as I = ε0cEE∗/2, which is proportional to the square of the amplitude

of the oscillating field, time averaged on time scales on the order of 1/ω or longer, but notably not

on time scales of 1/∆ω , which is assumed to be much greater. The fringe spacing of the interference

pattern (ignoring any contributions from Ã1,2) is given by

d =
λ

2nsinθ
=

2π√
k2

x + k2
y

, (3.6)

When this pattern is used to illuminate an object, some form of interaction modifying the field

amplitude or intensity will occur. This interaction is described by a complex amplitude function

m(x,y), which would describe either the transmission or reflection of the object in the direction

of the detector. For example, if a detector placed behind the object is sufficiently large, then m

is equivalent to the amplitude transmissivity of the target, and M(x,y) = m(x,y)m(x,y)∗ is the

intensity transmission of the object, such as what you would measure with a conventional back

illuminated microscope. In the case of interactions best described directly in terms of intensity, such

as a fluorescent target, or diffuse reflection, the object is better described directly as a real function

M(x,y) giving the proportional amount of intensity incident on a point that is sent in the direction

of the detector. For example, M(x,y) would be proportional to the image taken by a conventional

camera positioned at the same spot as the detector, if the object were uniformly illuminated.

The signal s on the detector is proportional sum of the intensity of light coming from different

points in the image plane. In the case of a complex object m, the object must be multiplied by the

electric field first, and then the intensity is calculated and summed,

s(kx,ky, t) ∝

∫
∞

−∞

∫
∞

−∞

|m(x,y)E1(x,y)+m(x,y)E2(x,y)|2dxdy (3.7)
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however, since m is common to both terms in this case we can calculate its absolute value inde-

pendently, and the result is just the product of M and I (see Sections 3.5 and 3.6 for modifications

where this is not the case). This is also what we get directly if we start with an intensity interaction

M. So, in either case, the signal is

s(kx,ky, t) ∝

∫
∞

−∞

∫
∞

−∞

M(x,y)I(x,y;kx,ky; t)dxdy

= 2Re
{

ei∆ω t
∫

∞

−∞

∫
∞

−∞

MÃ1Ã∗2ei(kxx+kyy)dxdy
}
+C(A1,A2).

(3.8)

where C is a constant in time. Note that for brevity I have stopped specifically calling out the spatial

dependence of M and Ã1,2.

The last step is to model quadrature demodulation (lock-in detection) of this time oscillating

signal—a process that extracts the quadrature components of a signal or, equivalently, its phase and

amplitude). The result is a complex signal function, using standard phasor notation to keep track of

the phase and amplitude of the signal. The demodulation is done at a frequency ∆ω , and the result

is,

s̃(kx,ky)≡
∫

∞

−∞

∫
∞

−∞

MÃ1Ã∗2ei(kxx+kyy)dxdy

=
∫

∞

−∞

∫
∞

−∞

M̃′(x,y)ei(kxx+kyy)dxdy
(3.9)

where M̃′(x,y) = MÃ1Ã∗2 represents a combination of the object and illumination profiles. For

example, M̃′(x,y) represents the actual image you would get when taking a picture of the object

under nonuniform lighting (Ã∗1,2) from the location of the detector, except that it is complex since it

includes the spatial phase of the modes. However, note that the phase of the object itself was lost

(Eq. 3.7-3.8).

The key thing to note in Eq. 3.9 is that it is simply the 2D Fourier transform of M̃′(x,y) evaluated

at kx and ky, with some qualifications (see Section 3.4). Keep in mind, however, that it also represents

the physical signal (e.g. voltage or current) measured on the detector, and that kx,y are determined

by controllable experimental variables. We thus have a way to directly experimentally measure

spatial frequency components (i.e. components of the Fourier transform) of the object in k-space.
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3.1.1 3D Imaging

With the assumption of a weakly interacting object, the signal equation can be easily extended to

3D imaging. The interference pattern between two beams have depth, and are constant along a

vector of symmetry that is the average of the two beam wave vectors. Given an angle θs between

the vector of symmetry and some fixed axis of the object, the description of the interference pattern

in 3D space could be modified to,

I(x,y,z;kx,ky,kz) =
ε0c
2

(
A2

1 +A2
2 +2Re

{
Ã1Ã2ei(kxx+kyy+kzz+∆ω t)

})
, (3.10)

where kx = 2kl sinθ cosφ cosθs, ky = 2kl sinθ sinφ cosθs and kz = 2kl sinθ sinθs. This, of course,

modifies the signal equation in the same way,

s̃(kx,ky,kz) =
∫

∞

−∞

∫
∞

−∞

M̃′(x,y)ei(kxx+kyy+kzz)dxdy. (3.11)

Obtaining a full 3D object image is then just a matter of filling in data with a 3D scan (i.e. scanning

kz along with kx and ky), and performing a 3D discrete inverse Fourier transform.

Of course, to obtain 3D information would require a way to scan θs, but this could be easily

be done in multiple ways. For example, the object could be rotated relative to the beam scanning

apparatus or vice versa. With a setup such as the interferometers described in Chapter 2, some 3D

information could be obtained simply moving the mirrors asymmetrically, to change the angle of

the interference patterns.

This 3D treatment depends on the assumption that the interference pattern interacting with any

one point in the object will be unaffected by any other point on the object. While this is true for 2D

objects, very thin or weakly interacting objects (i.e. having only a small effect on the amplitude or

phase of passing light), and very sparse objects, it is obviously not true for more general objects.

Shadows cast from one part of an object, for example, completely break this assumption. Even a

very transparent object, though, could still have a strong affect on phase, effectively casting ‘phase

shadows’ that also break down the assumption. It is left as a topic of future research to develop
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a more robust theory for 3D imaging, though some success with 3D imaging has already been

demonstrated with a similar IPSII related method [19].

3.2 Imaging Possibilities

There are several imaging possibilities apparent in Eq. 3.9. Since the signal equation is essentially

the Fourier transform of the product of three functions (M, Ã1, and Ã2), any one, or the product of

any two of those may be measured, if the others are known or set to a constant. There are three such

combinations that could be useful for imaging or measurement.

Object Imaging

The first and most obvious method is the direct measurement of an object [i.e. M(x,y)]. This may

be done by setting the beam modes Ã1,2 to a constant (over the desired FOV) by using high quality

beams with flat wavefronts. Then a 2D scan measures the Fourier transform of M, after which a

simple inverse transform reconstructs the actual image of M. This is the type of imaging we have

concentrated on testing.

Beam Profiling

The second option is a simple measurement of the intensity profile of the laser beams. This

method works if Ã1 = Ã2, as is the case in our interferometer based experiments. If m is set to

a constant (by using a blank screen or no object at all), then the function measured reduces to

Ã1Ã∗2 = A1(x,y)2 = A2(x,y)2. A k-space scan and inverse transform can give the intensity profile of

the laser, but phase information is lost. An example of this is method was used in Fig. 2.5 to show

the beam profile.
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Complex Imaging and Holography

The third, and possibly most exciting possibility, is to set m and one of the beam modes to a

constant, and measure the complex beam mode of the other beam. Since this measurement gives

full phase and intensity information about the beam, it can be used for imaging of complex objects,

or transmission holography. See Section 3.3 for a discussion of these possibilities.

3.3 Imaging Properties

Many of the properties and limitations of imaging with these techniques are readily apparent in

equations from the previous section, and from the basic properties of a discrete Fourier transform.

For example, resolution and FOV in object space are related to their opposites in k-space—i.e.

object space resolution is set by k-space FOV, and object space FOV is set by k-space resolution. I

will list below some of the inherent or practical limitations on imaging with MAS-IPSII.

Resolution

For a 2D scan in k-space having a maximum angle 2θmax between interfering beams, the resulting

maximum k-space value is obtained by plugging this value into the fringe spacing Eq. 3.6 and

taking the inverse. This sets the following limit on resolution:

dxmin =
1

2kmax
=

λ

4nsin(θmax)
(3.12)

It may be surprising that the maximum resolution (as θ → π/2) is λ/4, which is about a factor

of two better than conventional resolution limits (usually stated to be .47λ − .61λ as NA→ 1

depending on the resolution metric). Furthermore, this factor of two holds for any given angle

(i.e. IPSII with a given angle limit can achieve twice the resolution as conventional imaging with

an objective lens that subtends the same angle). This factor of two improvement was the primary

motivation for the development of SIM microscopy.
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Figure 3.2 Laser focus width compared to fringe width. The tightest possible focus of a
laser is shown superimposed on the smallest possible fringes of a standing wave from the
same laser. Note that the fringe spacing is about equal to the width of the Gaussian, such
that the fringe width is noticeably smaller.

One way to understand the resolution improvement is to compare the width of an interference

fringe to the width of a focused point of light. The smallest possible size of a focused laser beam

is set by the diameter of the lens, and determines the maximum resolution in confocal scanning

microscopy. The smallest laser focus possible is about λ/2 in width (FWHM), though with some

exotic polarization profiles can be as small as .4λ [30–32]. Compare this to the minimum fringe

width of a standing wave (see Fig. 3.2). At an interference angle of π the interference fringes will

have a spacing of λ/2, and the width (FWHM) of a single fringe will be λ/4. It is this difference

between the minimum fringe width and the minimum beam width that leads to the improvement in

resolution.

Field of View

The object space field-of-view FOVF resulting from a discrete inverse Fourier transform from a 2D

scan in k-space is similarly obtained by plugging the angle step size of dk into the fringe spacing
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Eq. 3.6 and taking the inverse. Of course dk is limited by the minimum angle step ∆θ possible.

While the relationship between dk and ∆θ is non-linear, the more confining limit on dk occurs in

the linear small angle region—at larger angles, the same dk step can be made with a larger ∆θ .

For most cases, though, the FOV will be limited by the smallest k-space step that can be obtained

consistently throughout k-space, which in turn is the step size obtained in the small angle limit. This

sets the following practical limit on FOVF:

FOVF,max =
2π

dkmin
=

λ

2nsin(∆θmin)
. (3.13)

Since there is no fundamental limit on ∆θ , there is no fundamental limit on FOVF. The precision

of a motorized mirror does, however, set a practical limit on FOVF. For example, typical commercial

motorized mirror mounts have repeatable angular precisions in the range of .1 - 10 arcsec (.5-50

µrad), which would set a practical FOVF,max limit of .5-50 cm (with a 532nm green laser).

Of course, the effective FOV is also limited by various other practical considerations, including

beam size and effective detector coverage. Either of these can be fairly easily controlled by using

an aperture before or after the object. The detector coverage also has a natural FOV based on the

area and directionality of the detector, and its distance from the object. It is important to use some

such method to limit the effective total area FOVdet contributing to the detector signal to be equal to

or smaller than FOVF, the limit imposed by the discrete Fourier transform, or aliasing will occur

(see Section 4.5).

Depth of Field

Since this form of IPSII uses collimated beams, the concept of a DOF is not really applicable. There

is no focusing of waves to measure the focus of. However, as DOF usually describes an effective

imaging depth, we can consider similar effects. The only such direct limitations with MAS-IPSII

are the depth of the interference pattern and the spatial coherence of the laser. The depth of an

interference pattern just depends on the diameter of the beams and the maximum beam angle (see
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Figure 3.3 Effective DOF. Imaging depth is only limited by the region in which the
interference fringes are high contrast, which in turn is limited to about the width of the
beams used.

Fig. 3.3). While this means effective DOF is less at higher resolutions (i.e. scans that need to

go to higher angles), the effective depth is never any smaller than the beam size, which has no

fundamental limit. This is radically different from traditional imaging techniques, which at high

resolutions (i.e. NA approaching 1) have DOFs on the order of the resolution—only a very thin

slice is in focus.

Speed

Possibly the biggest drawback to MAS-IPSII is the inherent difficulty in reaching high imaging

speeds due to the mechanical scan. Before I get into that, however, I would like to note that

fundamental limit on imaging speed due to photon efficiency is no different from other techniques

for 2D imaging. If local intensity is also a constraint (e.g. due to photo-bleaching, saturation effects,

etc.) it has the same limit as other 2D wide field techniques, and is better by a factor of the pixel
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count N than raster scanning techniques (such as lidar or confocal microscopy). For 3D imaging,

IPSII theoretically has an advantage over even other wide field techniques, since all the photons are

used in every measurement (as opposed to throwing away all the out of focus light). In theory this

should improve photon efficiency by a factor 3
√

N vs other widefield techniques (such as optical

slicing) for the same given illumination levels.

In the form we have described (measuring one k-space component at a time), the speed of a

scan is ultimately limited to the speed of the mechanical scan (assuming sufficient illumination such

that photon statistics are not a limiting factor). Given a pixel count of N and a step size of ∆θ , a

scan must cover approximately N∆θ radians, assuming an efficient scan pattern. Given a maximum

angular speed of v = ∆θ/dt, the minimum time to complete a scan is N∆θ/v.

For example, using a commercially available mirror mount (Thorlabs KS1-Z8) with a maximum

angular velocity of about .04 rad/s, and a 1mm FOV, a 100×100 image (i.e. 10 kPixel) could be

obtained in about 1 min. Keeping the same FOV, but moving to 1000×1000 (i.e. 1 MPixel - 1µm

resolution) would require about 2 hours. Our custom built mounts are much slower than even that,

so the scan for the images shown in this dissertation (generally about ∼ 100 kPixels) took a couple

of days complete. The next iteration of our experiment will replace the motors we have been using

to drastically speed up this imaging time. There are also various methods that could be used (at the

cost of increased engineering or data analysis complexity) to increase imaging by several orders of

magnitude. An overview of potential improvements to speed is given in Section 4.6.

3.4 Inconvenient Angle Dependencies

During the derivation of the signal equation, some approximations were made which I will reconsider

here. Depending on the nature of light interaction, m may also depend on the illumination angle (e.g.

consider how the glare on a shiny object would change as the illumination angle changes). Adding
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to this problem, the mode functions (Ã1,2) also change at large angles due to the transform from the

transverse beam coordinates to the object coordinates (i.e. x1,2 and y1,2 to x and y—consider how a

circular mode would appear elongated when shown on a flat object at an angle). In other words,

m, Ã1,2 and by extension M̃′(x,y) may also technically be functions of kx and ky—M̃′(x,y;kx,ky),

etc. Even if this dependence is known, this completely changes the nature of Eq. 3.9. I know of

no general way to invert such a transform, though for particular models of the kx,y dependency,

analytical or iterative solutions may be possible.

The good news is that kx,y dependencies in M̃′(x,y) can be experimentally eliminated under

the appropriate conditions. For example, most of these effects are second order in angle, whereas

the fringe spacing is first order, so they can be neglected at small angles. They can also be greatly

reduced or eliminated, even at large angles, with appropriate experimental design. Some of the

kx,y dependence in m comes about because of changes in the direction of scattered light (e.g. the

glare when looking at a shiny object, or refracted light coming out of a crystal or piece of glass at

odd angles). With transmission imaging this can be solved simply by placing a large detector close

behind the object to capture a solid angle close to 2π , making spatial dependence of the refracted

light no longer important. In the case of diffuse reflection, this should not be a problem either. If

an appreciable amount of specular reflection also occurs, however, averaging multiple detectors or

using an integrating sphere (with slots cut out to allow illumination in) could also be used to largely

negate the issue.

The kx,y dependence in Ã1,2 is easier (in concept) to remove. The illuminating beams just

need to be made uniform on the scale of the imaging FOV, such that they are constant over the

object. The ‘stretching’ that occurs as the beams are moved to larger angles will then only have

the effect of diminishing the overall illumination intensity (and therefore signal) by cosθ . This can

easily be compensated for experimentally or computationally. Keeping the wavefronts perfectly

flat such that the phase of the beam modes is also uniform across the object is a more significant
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challenge (though not beyond the capabilities of accessible technology). The problems introduced

by imperfect wavefronts are addressed in Section 4.2.

With these appropriate considerations, the kx,y dependence can be almost completely removed.

One remaining effect is that the transmissivity and reflectivity coefficients of a material generally

also depend on angle. This should mostly be a problem for smooth surfaces (i.e. specular reflection

and transmission), and at large angles. We have not yet explored this particular issue in any depth.

Many of these issues (glare, shadows, angle-dependent scattering, etc.) are also present in, and

affect the results of conventional imaging. However, they are more of a problem with IPSII because

they change when the illumination changes, resulting in a different glare, etc., being measured with

each wavenumber. The net effect on the reconstructed object space image can be difficult to predict,

but we are working on some numerical simulations and measurements to better understand these

effects. These efforts could benefit a variety of other structured illumination techniques as well.

3.5 Complex Imaging

One of the interesting results from Section 3.1 is that the signal equation depends on the complex

mode functions, not just their intensity distributions. This can be taken advantage of to measure the

mode functions themselves. To do so, we would just need to set m and one of the beam modes to

be a constant, while allowing the other to be arbitrary. This could be done by using a high quality

laser beam with very flat wavefronts, and removing the object from the beam path, or replacing it

with a blank screen. The other beam Ã2 may have an arbitrary complex profile. The resulting signal

equation is

s̃(kx,ky) =
∫ a

−a

∫ b

−b
Ã(x,y)ei(kxx+kyy)dxdy (3.14)

such that the components of the Fourier transform of the complex mode function are directly

measured.
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One possible use of this would be to profile a laser beam and perform wavefront measurements.

Doing so would require a second beam with a quality spatial mode (which could be obtained from

the same source via spatial filtering, or from a separate phase locked laser).

Other possible uses include transmission or reflection holography and imaging of complex

objects. If an object with complex profile is placed in just the second beam, before the overlap

region, then the beam mode is altered at the location of the object to

E2(x2,y2, t) = m(x,y)Ã2(x2,y2)eik2·r+i(ω+∆ω)t . (3.15)

If both beams initially have flat constant wavefronts, and overlap directly on a detector or blank

screen, then the signal equation becomes

s̃(kx,ky) =
∫ a

−a

∫ b

−b
m′(x,y)ei(kxx+kyy)dxdy (3.16)

where m′(x,y) is m(x,y) propagated to the detector location. Since full phase information would be

recorded, recovering m(x,y) should be a simple back propagation calculation. Furthermore, all the

advantages possible with digital holography should be applicable, such as computational refocusing,

optical sectioning (to obtain a 3D image), etc. See Fig. 3.4 for a low resolution proof-of-concept

hologram with back projections (note, though, that this work is in its early stages).

For this method of complex imaging to work, especially at larger angles, the beam being imaged

would need to not change in angle relative to the imaging plane so as to avoid distorting the

complex mode being imaged. In this case, the maximum angle between the two beams is cut in

half. Furthermore, since the fringes in 3D space are no longer perpendicular to the imaging plane,

their projection in the imaging plane is stretched out a little as a function of angle, so that the fringe

spacing (from Eq. 3.6) is modified to

d =
λ

2nsinθ cosθ
(3.17)

resulting in modified expressions for the pattern wavenumbers, kx = 2kl sinθ cosθ cosφ and ky =

2kl sinθ cosθ sinφ .
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Figure 3.4 Transmission holography and back projection. Images from a dual-wavelength
(407nm and 532nm) scan show the diffraction of a positive resolution test target placed
in one arm of the interferometer about 15cm away from the detector. Back projections to
various image planes are shown. Only the second, unobstructed, beam was scanned.

3.6 Filtered Imaging

One of the experimental constraints we face is a potentially very large DC offset C(A1,A2) (see

Eq. 3.8) of the signal detector. While this offset is removed in the demodulation step, it has

some negative effects before that point in the experiment, including reduced SNR and a much

greater dynamic range requirement from the detector and electronics than would otherwise be

necessary (dynamic range is already an inconvenient issue when measuring in a sparse domain

such as k-space—see Section 4.7). Because the analog signal coming from the detector is very

large, the trans-impedance gain is limited to prevent saturation and non-linear effects of the photo-

detector. This makes it difficult to separate the desired signal from electronic noise. Even with ideal

equipment, this effect inherently limits the SNR due to photon noise, since the useable signal comes

from a small component of the overall light incident on the object.
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Figure 3.5 Spatial modulation illustration. From left to right: an image of a chicken, the
Fourier transform of the chicken, a modulated chicken, and the Fourier transform of the
modulated chicken. Note that for the modulated chicken, the peaks in k-space occur away
from the center where the detector would be placed using the method described in this
section.

One possible method of removing the offset, somewhat analogous to darkfield microscopy,

would be to optically filter out the DC component of the signal. In theory this could be done in

transmission images simply by placing the detector so as to measure only diffracted light, and not

the light coming straight through parallel to one of the beams. This could be done by placing the

detector on the imaging axis far away from the detector, by using a small detector, or by placing the

detector behind a pinhole—the important parameter being the solid angle subtended by the detector.

This would, of course, result in significant changes to the theoretical signal equation.

Conceptually, the idea is similar to Fourier imaging, but only the center of the diffraction pattern

is measured with each measurement. The full diffraction pattern is measured by modulating the

pattern with each step, and effectively shifting the interference pattern, so that what was the center

of k-space (along with the large DC offset that it carries) is shifted away from the measurement

region, and a different region of k-space is shifted to the center to be measured. An illustration of

this is demonstrated in Fig. 3.5.

In this section I will derive a signal equation for this kind of a fourier ‘filtered’ detection setup,

which will follow a similar process to the derivations above. It turns out that this method is also

another way to perform ‘complex’ imaging, since the resulting signal equation depends on m(x,y)
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instead of M(x,y).

At the object plane (after light has been transmitted) the amplitude of the light field is

Eobj(x,y) = m(x,y)(E1(x,y)+E2(x,y)). (3.18)

We assume the detector is far enough away that we can use the Fraunhofer diffraction equation to

calculate the field at the point of the detector (or pinhole).

Edet(x′,y′) ∝

∫
∞

−∞

∫
∞

−∞

Eobj(x,y)e−i kl
z (x
′x+y′y)dxdy, (3.19)

where the primed coordinates are the coordinates on the plane of the detector, and the unprimed

coordinates are on the plane of the object. Note that this is just a Fourier transform of the field. To

calculate a signal s, we then need to average the intensity incident on the detector. To do so we take

the intensity of the field multiplied by a function representing the detector area, which we assume is

small enough to approximate as a Dirac-delta function:

s ∝

∫
∞

−∞

∫
∞

−∞

δ (x′,y′)
∣∣∣∣∫ ∞

−∞

∫
∞

−∞

Eobj(x,y)e−i kl
z (x
′x+y′y)dxdy

∣∣∣∣2 dx′dy′

=

∣∣∣∣∫ ∞

−∞

∫
∞

−∞

Eobj(x,y)dxdy
∣∣∣∣2

=

∣∣∣∣∫ ∞

−∞

∫
∞

−∞

m(E1 +E2)dxdy
∣∣∣∣2 , (3.20)

Note that this equation is almost identical to Eq. 3.7, except that the absolute value is taken after the

integral instead of before it. Expanding E1,2 we get,

s =
∣∣∣∣eiωt

∫
∞

−∞

∫
∞

−∞

m(Ã1eik1·r + Ã2eik2·r+i∆ωt)dxdy
∣∣∣∣2 (3.21)

=

∣∣∣∣eiωt
∫

∞

−∞

∫
∞

−∞

m(Ã1eik1xx+k1yy + Ã2eik2xx+k2yy+i∆ωt)dxdy
∣∣∣∣2 , (3.22)

where k(1,2)x and k(1,2)y are the x and y components of the wave vectors of the individual beams.

Note that we again have the form of a Fourier transform in each term inside the absolute value.
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With the 2D Fourier transform of f evaluated at (kX ,ky) denoted as F{ f}(kx,ky), we have,

s =
∣∣∣F{mÃ1}(k1x,k1y)+F{mÃ2}(k2x,k2y)ei∆ωt

∣∣∣2 (3.23)

=
∣∣∣Beiφ1 +De−iφ2e−i∆ωt

∣∣∣2 (3.24)

= B2 +D2 +Re
{

BDei(φ1−φ2−∆ωt)
}

(3.25)

where B, D and φ1,2 are introduced to shorten later equations and represent the magnitude and phase

components of the Fourier transform terms.

After temporal demodulation we get,

s̃ = BDei(φ1(k1x,k1y)−φ(k2x,k2y)). (3.26)

Note that we have two sets of k-values now (as opposed to one, the kx,y values, in Section 3.1).

There are multiple ways to extract the phase and amplitude values for individual spatial frequencies

(i.e. determine B, D, φ1 and φ2). As a theoretical proof of concept I will lay out below one way it

might be done, but will leave it to future work to determine if this is practical, or if there are other

methods which give better results.

The amplitudes can, in principle, be extracted from a single measurement. Let s̄ be the time

average value of the raw signal (before demodulation). Then

s̄+ |2s̃|= (B+D)2

s̄−|2s̃|= (B−D)2

⇒

B =

√
s̄+2|s̃|+

√
s̄−2|s̃|

2

D =

√
s̄+2|s̃|−

√
s̄−2|s̃|

2

(3.27)

Recovering the phase functions φ1,2(kx,ky) is a little trickier because only a phase difference

(φ1−φ2) is ever measured. One way to do it would be to just pick a fixed angle (other than θ = 0)
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for the second beam through the whole scan. Then φ1 is determined relative to an arbitrary global

phase (φ2). Imaging a complex object m is then just a process of scanning k1x, and k1y to obtain

F{mÃ1}(k1x,k1y) and performing an inverse transform.



Chapter 4

Imaging Issues and Solutions

There are various issues which can affect image quality when using MAS-IPSII. These include

potential experimental problems as well as more fundamental problems. In this chapter I will give

an overview of issues that we have encountered or considered. In cases where we have observed the

image artifacts or distortions resulting from the issue, I will include data and images to demonstrate

the problem, and in cases where we have found a solution or a workaround I will describe that as

well.

See also Appendix D for a list of k-space images showing more trivial scan errors and data

corruption issues we have encountered during 2DFT MAS-IPSII scans.

4.1 Parallels with Magnetic Resonance Imaging

While the use of Fourier transforms in image and data processing is very common, there are relatively

few experimental techniques that involve making complex (i.e. phase and amplitude) measurements

directly in k-space. Perhaps the largest body of literature that deals with this type of measurement

is magnetic resonance imaging (MRI). The physics of MRI measurements is, of course, wholly

unrelated to IPSII, but many of the problems encountered in MRI related to k-space measurements

61
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are very similar to what can happen with MAS-IPSII measurements and reconstructions. As a result,

many techniques and algorithms developed for MRI can also apply directly to MAS-IPSII. Some

of the ideas used in this chapter were inspired by their MRI counterparts, and I will point to the

relevent literature where appropriate.

4.2 Phase Distortions

One of the first questions one might consider about the practical implementation of a phase sensitive

imaging method such as IPSII is the effect that phase distortions in the beam wavefronts will

have. Obtaining a uniform illumination intensity is relatively simple, but obtaining a source with

perfectly flat wavefronts is much more difficult, experimentally. In practice small phase distortions

are likely to result in interference patterns such as those displayed in Fig. 4.1. To what degree are

imperfections like these in the phase of the beam mode going to affect or limit MAS-IPSII?
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Figure 4.1 Simulations of non-sinusoidal illumination patterns. Interference patterns are
generated between two Gaussian beams, one with flat wavefronts and the other with phase
distortions from a spherical lens, an uncollimated source beam, or a pseudo-random phase
surface. A large input wavelength was used to make fringes easily visible. Top row: phase
plot of distorted beam. Bottom row: resulting interference pattern with a θ = 45◦ beam
angle (unless otherwise noted) and an orientation of φ = 45◦. The simulations of a lens
in one arm are also equivalent to a path-length imbalance coupled with an uncollimated
beam. Note that the distorted illumination patterns are not simple 2D sine waves.
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It is partly in anticipation of dealing with this question that the signal equation was derived using

complex exponentials and put in terms of a Fourier transform instead of a real valued sine transform.

If one considers the interference patterns to be 2D sine functions (which with ideal beams, they

are), then the signal equation could just as easily be described in terms of a sine transform. In this

case the idea of ‘negative’ spatial frequencies, and of ‘negative’ beam angles would be meaningless,

and scanning the beam angles from −θmax to θmax would give redundant information compared

to a scan from 0 to θmax. This information redundancy in the spatial spectra of a real object can

also be seen in a complex Fourier transform. As long as the function being transformed is real, the

transformed function has complex symmetry,

F(kx,ky) = F∗(−kx,−ky). (4.1)

The difference between a sine transform and a complex transform is more apparent when phase

distortions are introduced. Starting from a sine transform, this would be properly accounted for

by adding a spatially varying phase to the sine terms, resulting in basis functions which are far

from simple sine waves (see Fig. 4.1 for some examples), and a transform that is mathematically

intractable. With a complex transform, the phase variations can be separated from the complex

exponentials, and instead considered to be part of the object—i.e. the complex function M̃′(x,y)

introduced in Chapter 3—so that we still have a reversible Fourier transform.

Even if the object function is not real (or equivalently, the basis functions are not sinusoidal),

we can generate conjugate symmetry by using half of k-space to fill in the other half, and use the

resulting image reconstruction to get an idea of how good or bad the assumption of a real object

is. In cases where the object function is close to real, this will have little effect on a reconstructed

image, but in cases with large phase distortions the distortions this process introduces int the object

will become more pronounced.
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Large Angles

In Section 3.4 I pointed out that the inconvenient kx,y dependence in the mode functions (Ã1,2) can

only be neglected if the beam wavefronts are constant or when small angles are used. Since we are

discussing phase distortions, the mode functions are inherently not constant, so small angles must

be assumed to get any useful analytical insight. Unless noted otherwise, the following discussions

and solutions assume the maximum scan angle is sufficiently small to ignore these issues.

Properly dealing with the effects of phase distortions at larger angles where kx,y dependence

in the beam modes must be accounted for is a more complicated problem that remains unsolved

for now. Imaging at larger angles can still be done, but will require high quality beams with flat

wavefronts. Further work is needed to determine under what experimental conditions and angles the

results from the small angle assumption are no longer applicable, and how else one might resolve

distortion issues in that case.

Types of Distortions

Phase Distortion Categories
Constant (during scan) Changing

Common
(to both
beams)

Bad mode quality or uncollimated
beam. Imperfect optics before first

beamsplitter.
Unstable laser mode.

Different
Unbalanced interferometer.

Imperfect optics after beamsplitter,
but before scanning mirrors.

Imperfect optics between first pair
of scanning mirrors and second

beamsplitter.

Table 4.1 Likely sources of phase distortion sorted into categories. Green cell (top left):
No direct affect on imaging. Blue (bottom left, top right): does not affect imaging in some
cases. Red (bottom right): Effectively adds noise to k-space data which cannot be removed
or compensated for with any known method.

Phase distortions can be categorized into those that are constant throughout the scan versus

those that are not, those that are common to both beams versus those that are not, and those that are
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known versus those that are unknown. Likely sources of distortion are divided into intersections of

the first two categories in table 4.1. Some examples of distortions which affect only one beam but

are constant during a scan are shown in Fig. 4.1. These distortions are particularly interesting since

they can have a drastic effect on the illumination patterns, effectively changing the SI imaging basis

to something wholly different (and unknown), and yet, a quality object image can still be obtained.

Constant Distortions

Constant phase distortions that are common to both beams are the easiest distortions to deal with.

So long as the interferometer is well balanced, and properly aligned (such that the beam modes

perfectly overlap) they have no effect on the resulting interference pattern, and should have no

appreciable effect on imaging. This is readily apparent when simplifying the integrand from the

signal equation (Eq. 3.9) using the expanded definition of Ã1,2 (Eq. 3.1) and setting the spatial

phases φ(x,y) of both beams equal:

M̃′(x,y) = MÃ1Ã∗2

= MA1A2ei(���
ϕ1(x,y)−���

ϕ2(x,y)) (4.2)

= MA1A2.

For a phase distortion that is not common to both beams the phase does not cancel out, but

adds a complex phase ∆ϕ = ϕ1−ϕ2 to the measured function M̃′. After completing a 2D scan and

performing the inverse transform one can simply take the absolute value of the result and this phase

goes away:

|M̃′(x,y)|= M|Ã1Ã∗2|

= MA1A2�����|ei∆ϕ(x,y)| (4.3)

= MA1A2.
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Non-constant Distortions

Phase distortions which are not constant but are common to both beams (such as mode hopping,

assuming a well balanced interferometer) still experience the same cancellation as in Eq. 4.2.

Distortions that are not constant and different between beams, however, cannot be eliminated as

in Eq. 4.3. The changing dependence can be thought of as a dependence on angle, or equivalently

kx,y, even if the phase distortion is a function of time (e.g. mode hopping with an unbalanced

interferometer), since the scan maps kx,y to time. This leads to the following signal equation:

s̃(kx,ky) =
∫

∞

−∞

∫
∞

−∞

MA1A2ei∆ϕ(kx,ky;x,y)ei(kxx+kyy)dxdy (4.4)

This transform is no longer generally reversible, though for particular forms of the ∆ϕ(kx,ky;x,y)

function it may be possible to remove it.

For example, if the phase is separable in the form ∆ϕ = α(kx,ky)+β (x,y), and the α term is

known, then the kx,y term comes out of the integral and can be divided out of the signal. Of course

this is a relatively trivial dependence, one that would account for something like a slight change

in the relative path-length of the two interferometer arms due to imperfect symmetry in optical

layout or motor movements. This correction is not necessary for our setup because the way our

reference signal is derived already eliminates such phase offsets. It could be useful, however, if

there were some slight (known) movement of the pinhole relative to the object during the scan, or if

the reference signal were derived in some other way. In principle, with an extremely stable or small

measurement setup, it should be possible to use an independent reference rather than a measured

(e.g. pinhole) reference. In this case it would almost certainly be necessary to correct for phase

shifts occurring due to mechanical movement throughout the scan.

Other, more interesting, kx,y dependencies may be possible to deal with on a case by case basis.

A particularly interesting case would be the mode distortion (i.e. stretching) introduced by going

to large angles. In this case the kx,y dependence is well known and understood since it simply
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shows up in the transformation of (x,y)1,2→ (x,y) coordinates as a dependence on the beam angles.

Unfortunately, we have not yet found a simple way to account for this dependence in the signal

equation, and instead need to either control the wavefronts so that such distortions are not a problem,

or stick to smaller angle (and lower resolution) scans.

Some examples of phase distortion data are shown in Fig. 4.2 and Fig. 4.3. These figures

show image reconstructions of a negative and a positive, respectively, USAF1951 resolution test

target. In these figures various objects were used to deliberately distort the wavefronts of one

of the lasers inside the interferometer, to introduce a large ∆ϕ . When full k-space data is used

(i.e. including positive and negative spatial frequencies, from corresponding positive and negative

angles), the resulting image reconstruction (obtained by taking the absolute value of the inverse

Fourier transform of the k-space data) is shown to be relatively robust against beam distortions.

Images constructed using only half of k-space, with an assumption of conjugate symmetry being

used to fill in the other half, are shown for comparison. These are similar to what would be obtained

if the (incorrect) assumption were made that that the interference patterns were all nicely sinusoidal

and a discrete sine transform were used. An image reconstructed from half of k-space with no

attempt to fill in the other half is also shown for comparison. The last column of the table shows

the phase of the complex image obtained from the full k-space data, which clearly shows the phase

structure of the object used to obstruct the beam, as described in Section 3.5.

The limits of our ability to deal with distortion in the beam are clear in the last row of Fig. 4.3,

where the beam was distorted so badly that the amplitude was also visibly affected (noisy and

diffuse, with a grainy texture), and the reference signals were noisy and demonstrated characteristics

indicating interference fringe widths that were sometimes on the order of the pinhole radius.
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Figure 4.2 Images of a negative resolution test target made with a distorted wavefronts.
Images have a 1.67x1.67 mm2 FOV. Four scans were taken in which the mode of the laser
beam in one arm of the interferometer was distorted up by inserting various ‘phase’ objects
(such as a lens or clear piece of plastic) . The first column gives the image reconstruction
obtained using full k-space data. In the second column, only half the k-space data was
used, with the other half being filled in using conjugate symmetry. In the third column,
only half of k-space data is used, with the other half set to zero. The fourth column shows
the phase. The phase image is blacked out in areas with low values where the complex
phase is mostly just due to noise.
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Figure 4.3 Images of a positive resolution test target made with a distorted wavefronts.
Images are from two dual wavelength scans (532nm and 407nm). In the first scan both
lasers have relatively clean modes, as is visible in the phase images in the last column. In
the second scan a lens was placed in the beam path of one arm of the interferometer. Note
that the circular rings in the phase images show the curvature of the wavefronts caused by
the lens.
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4.3 Amplitude Distortions

Another issue which can affect image reconstructions is an amplitude in either beam which is not

constant over the imaged area, or an ‘amplitude distortion’. Similar to phase distortions, dealing

with amplitude distortions is an intractable problem at large angles. For small angles, however, it has

the same effect as non-uniform lighting does in conventional imaging, and similar to conventional

imaging, it can be easily compensated for if measured. The reconstructed image, after removing

phase distortions (i.e. taking the absolute value) is just M(x,y)A1(x,y)A2(x,y), so if A1,2 are known,

they can be divided out of the image anywhere they are not close to zero. Measuring A1,2 is a simple

matter of imaging a blank object (see Section 3.2). Unlike the phase distortions, however, amplitude

distortions cannot be removed without prior knowledge of the distortion.

4.4 K-space Position Errors

Section 3.3 introduced the theoretical FOV constraints imposed by a minimum angle ∆θmin. In our

setup the minimum relative angle step size can be much smaller than our absolute angular accuracy.

Because of this, we can easily do a scan where the angular step size ∆θ is comparable in size to

angular error, meaning that each time we take a data point we measure a spatial frequency that is

slightly offset from the one we intended to measure. This error may be parameterized as α , where

α is the ratio of the maximum error in k-space to dk. See Fig. 4.4 for an illustration of periodic or

random k-space position errors with α = 0.2.

Errors arise due to mechanical error in the angle scan (or measurement error if a closed loop

system were to be used). We believe our system is subject to some amount of both random and

periodic error arising in the gearbox of our stepper motors. It is possible that both of these could

be significantly lowered by using higher-quality stepper motors, or using optical encoders to make

closed loop angle adjustments.
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(a)

kx

ky

(b)

kx

(c)

kx

Figure 4.4 Types of k-space position error. The light grey grid represents the points at
which a measurement is supposed to be made (i.e. the kx,ky coordinates corresponding
to the beam angles as they were set or measured). The dots represent the point where the
measurement was actually made. In (a) there is no k-space error. In (b) the k-values are off
periodically, and in (c) the k-values are off by a random amount. Both (a) and (b) have an
error parameter of α = .2.

The result of k-space position errors depends on the type and magnitude α of the errors. These

errors impose another effective field-of-view limit,

FOVerr =
2π

(α +1)dk
. (4.5)

This limit is centered around the position of the pinhole, and is the only reason why positioning

the pinhole and the object close to the same relative positions in the two interferometer outputs is

important. Outside of FOVerr noise and image artifacts will cover up and distort the image beyond

recognizability, but regions in the image that are well within FOVerr should be mostly unaffected by

the k-space errors.

Position errors in k-space can be categorized as random, periodic and constant. A small constant

shift has little effect on the resulting image, and can be undone by re-centering k-space data.

Random errors show up in the image reconstruction by increasing noise as a function of distance

from the pinhole (see random error simulations in Fig. 4.5), while periodic errors cause a stretching

and ghosting effect (see periodic error simulations in Fig. 4.6). Acutal image reconstructions

demonstrating what we believe are the effects of random or periodic errors in our experiment are
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Figure 4.5 Random k-space position errors. Position of points in k-space is randomly
offset in either the x direction or the x and y directions. Error in either direction is
uniformly distributed in the range (−αdk,αdk), where dk is the discrete k-space spacing.
The simulated origin (i.e. where the pinhole would be) is by the dragons head. The last
row shows averages of 100 image reconstructions made with each α random error (in both
directions). In this row, it is clear that the average effect of the error is to effectively limit
FOV as expected—e.g. α = 1.0 is effectively equivalent to doubling dk, and halving the
FOV.

shown in Fig. 4.7. The location of the pinhole is also indicated in each image. As expected, the

images are clearer in a region around the pinhole location.

The ghosting effect caused by periodic errors occurs in the direction of the periodic error

(especially near or outside of FOVerr). The brightness of the ‘ghost’, and the amount it is shifted
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Figure 4.6 Periodic k-space position errors. The magnitude of the error offsets are periodic
in x, and the direction of the offsets is in either the same (x̂) or the perpendicular (ŷ)
direction (i.e. position error with a period T was modeled as sin(2πx/T )x̂ or sin(2πx/T )ŷ).
This causes stretching and ghosting that gets worse towards the right (where x is large),
but the ghost images are shifted in the direction of the offsets (either x̂ or ŷ). The error
parameter α is equal to the ratio of the error amplitude to the discrete k-space spacing
dk. Then simulated origin (i.e. where the pinhole would be) is on the dragons head. The
frequency of the error is give in cycles/image width.
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Figure 4.7 Demonstration of k-space position error effects. Images from three dual
wavelength (532nm and 407nm) show the corruption of image data far from the effective
pinhole location. The relative location of the pinhole (which is in the other output arm of
the interferometer) is shown with a red dot in each image. The precision of our angular
movement limits us to a clear image up to about 0.5 mm from the pinhole, corresponding
to an angular accuracy of about 100 arcsecs (or about 50 arcsecs per mirror—5 times worse
than we had measured independently). The ghosting caused, presumably, by periodic
errors is clearly visible in the first image (look closely next to the label for group 4). Similar
to the blurring and fading caused by random errors, the ghosting effect also gets more
pronounced with increasing distance from the pinhole.
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(relative to the main image) depends on the amplitude and period of the periodic error. This ghosting

error is very similar to a well known phenomenon in MRI [33–35] in which ghosting occurs because

of periodic movement. The k-space position error is related, because it has a similar effect of causing

small periodic phase shifts to k-space measurements. Of course, the exact equivalent phenomena

could also occur with MAS-IPSII if the object were to move periodically in sync with the scan. For

example, rapid scans with rotating mirrors, etc. could cause vibrations that would also give rise to

ghosting artifacts.

4.5 Aliasing

As discussed in Section 3.3, FOVF (the field of view of an image from a discrete inverse Fourier

transform) depends on the spacing dk between points in k-space. A separate limit, FOVdet, is the

field-of-view of the detector—the extent of the area contributing to the detector’s signal. FOVdet is

determined by the area of the illumination, the spatial response of the detector, and may also be

controlled with additional optics such as an iris or other aperture placed before or after the object,

or lenses. If FOVF < FOVdet, then aliasing will occur, causing ghosting artifacts where areas from

outside the FOVF appear superimposed in the image, such as demonstrated in Fig. 4.8.
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Figure 4.8 Demonstration of aliasing from incomplete data. The first column shows
images formed from a complete k-space dataset from a single dual-wavelength scan. The
proceeding columns show the result of skipping every other column (i.e. using half the
k-space data), every other row and column (i.e. using one quarter of the data) or skipping
2 out of 3 rows and columns (i.e. using one ninth the total data). The top row contains
images from data corresponding to blue (407nm) laser, and the bottom row contains data
from a green (532nm) laser.
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4.6 Potential Improvements to Imaging Speed

The limits on imaging speed discussed in Section 3.3 are only the limit if using a design such

as what we presented in Chapter 2. This design was intended to make the experiment and data

gathering as simple and controllable as possible, while demonstrating the feasibility of fully lensless

IPSII. It was not designed for speed. Much faster designs could be used to drastically speed up

MAS-IPSII (and would most likely be necessary for practical applications). I will lay out a few

potential methods for improving the scan speed of MAS-IPSII, as well as some tricks that could be

used to speed up any IPSII method. While we have not yet implemented most of these methods (due

to the added complexity in engineering or data analysis they would require), I believe it is important

to enumerate some of the ways it could be done, since our current research would likely be of little

utility if MAS-IPSII were fundamentally limited to the speeds which we have demonstrated. The

methods I will introduce are continuous rapid scans (instead of discrete steps), parallel imaging,

multi-wavelength imaging, and compressive sensing.

Continuous Rotation

One method to drastically increase speed would be to precisely measure the angle instead of trying

to precisely control it, enabling the use of much faster (but less controlled) methods of producing

mechanical angle changes—for example, galvos or high speed motors. Of course the frequency

shift would need to be much faster (fast enough that many oscillations occur between each k-step).

Alternately, it may be possible to image without a separate phase scan at all, since the motion of the

mirrors tends to sweep the phase as well.

One example of a design implementing a rapid continuous scan would be to mount the mirrors

in an interferometer setup (such as Fig. 2.2) on motors with a rotational axis through the vertical

axis of the mirror, and spin the mirrors as fast as possible. Keeping the two beams overlapping

requires two mirrors be moved proportionately together (as discussed in Section 2.3.1), such that
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(a) (b) (c) (d) (e)

Figure 4.9 Various types of scan patterns discussed in the text. a) 2DFT Grid scan. b) 2D
Grid scan, alternating direction—faster, but more prone to backlash errors in a mechanical
scan. c) Spokes with uniform point spacing—requires regridding of data or a different
inverse transform (basically a filtered back projection). e) Curved spokes—requires
regriding of data. d) Lissajous figure—requires regriding of data.

for continuous motion, they could be locked together with an appropriate gear ratio, or sufficiently

accurate software control. With such a setup, only a fraction of each rotation would result in proper

positioning of the beams (i.e. before the beam falls off the second mirror), but during this portion

of each rotation a full 1D scan through k-space could be recorded. In this case, rotation speeds of

10,000 rpm or greater could easily be obtained, with each rotation giving one row in k-space. To

gather 2D data would require either rotating the object around the interferometer output axis, or

vice versa.

Using a continuous scan pattern with continuous rotating mirrors would result in altered scan

patterns. For example, if the object were rotated, with the object rotation paused before each 1D

scan, the resulting scan pattern would be spokes in k-space (see Fig. 4.9), similar to what is obtained

in CAT scans when performing filtered back projection. The same inverse transform could be

applied here to recover an image of the object. If the rotation of the object were constant in time, the

result would effectively be that of spiraling spokes, and the inverse transform would be somewhat

more complicated. Alternately, the mirror could be made to swivel within the rotating mount to

give simpler scan patterns at the cost of increased engineering complexity. In this case, a regular

2D scan could be obtained by incrementing the vertical angle a discrete amount before each scan.

Higher speeds could potentially be obtained by scanning mirrors sinusoidally, which would result
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in a Lissajous pattern in k-space.

The speed of any such imaging system would be orders of magnitude faster than our current

setup. At 160 rotations/s (i.e 10,000 rpm, a fairly manageable speed for even inexpensive high

speed electric motors) a 1 MPixel image could be taken in 6 s—fast enough to be practical in many

microscopy applications.

Partial Fourier Reconstruction

Full k-space 75% k-space 60% k-space 55% k-space 50% k-space
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Figure 4.10 Partial k-space reconstruction. Shown are two sets of image reconstructions
using only partial k-space data, one from a scan with a clean mode (interference patterns
were from the Fourier basis) and one from a scan with a mode distorted up by a lens
(patterns were from some distorted basis). Note that even with the distorted mode, a
decent image can be formed with only 60% of k-space. These images were made by
re-centering the k-space data (by moving the brightest pixel to the middle) and then using
conjugate symmetry to fill in the bottom half of k-space. More advanced partial Fourier
reconstruction algorithms should get even better results.

One way to speed up imaging is to just measure half of k-space (see the discussion around Eq. 4.1

in Section 4.2), but this can cause unwanted effects due to the phase distortions in the illuminating

beams (such as in the middle two columns of Fig. 4.2 and 4.3). If these phase distortions are slowly

changing in space, however, it is possible to get good results by scanning just a little more than
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half of k-space, and then filling in the rest using conjugate symmetry. Using a technique from MRI

called Partial Fourier Reconstruction [36], a partial data set can be further improved on by using

the symmetrically sampled part of the data to fill in the missing data in k-space using an algorithm

akin to the conjugate symmetry approach, but that also accounts for the phase variations in object

space. This works because the data towards the center is sufficient to resolve the slowly varying

phase distortions in the beam. The net result is that a good image can be reconstructed with about

60% of k-space, even when phase distortions are present (more or less data is needed depending on

the spatial bandwidth of the phase distortions).

Parallel Imaging

Another potential method of speeding up MAS-IPSII (or other forms of IPSII) is parallel imaging.

This method would use multiple detectors to effectively measure multiple small FOV images which

are then combined into one large image. Examples of this idea include hybrid techniques that

combine IPSII with traditional imaging systems. SIM is one example of this where each pixel of

the imaging detector effectively measures a 2x2 pixel image, and these are all combined to make

and image with double the resolution of what the imaging system alone could accomplish.

This idea can be taken farther, however, to work with an arbitrary FOV and detector pixel count.

The IPSII k-step would just need to be small enough to make the IPSII FOV about the size of one

pixel. An example of this is the multibeam technique employed at MIT [17].

Using auto-calibrating parallel imaging algorithms used in MRI such as SENSE or GRAPPA

[37–39], parallel imaging could be done even with overlapping and unknown detector regions. This

would allow for parallel imaging that would be unaffected by lens distortions and blurring between

pixels in the conventional imaging system. Completely lensless parallel imaging could also be done

in this manner if multiple detectors could be made to have distinct spatial responses (such as by

placing a detector array close to the object, using a micro aperture array, or both—note though, that
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this would not be constrained the same as other on-chip microscopy techniques, because diffraction

between the object and the detector is less important).

Parallel imaging with N detectors could increase the speed of MAS-IPSII by up to a factor of N,

though it may be somewhat less than N if auto-calibrating algorithms are used, and depending on

the overlap of information between detectors. For example, if a low resolution traditional imaging

system were used, such as a 128x128 pixel array, then arbitrary FOV and pixel count could still

be obtained using IPSII, but 16,384 times faster than single pixel IPSII. This could be particularly

powerful when combined with modern smart-pixel detector arrays [40–45] such as correlation

sensors, which could do the analog lock-in detection on chip. Such sensors have been developed

with some impressive processing capabilities, but are too limited in pixel count to generally be

useful in conventional imaging systems. Combining them with IPSII techniques, however, would

make good use of their capability without limiting the resolution or pixel count of the final image.

Multispectral Imaging

Another way to speed up IPSII is to image with multiple wavelengths at the same time. Examples of

this include our own dual wave setup described in Chapter 2, as well as DEEP and F -basis [19,20].

This could increase the speed of a system by a factor of N where N is the number of wavelengths

used within a spectral band over which the object does not change. For example, when measuring

a monochrome (black and white) object, a red, blue and green laser could be used in the same

mechanical sweep to measure the object 3 times faster. (With a full color object the speed would

not be increased, but full color information could be obtained.)

If wavelengths very close together were used, such that they did not produce interference

patterns with appreciably different k-values, they would need to be scanned separately somehow

to measure k-space components far enough apart to be useful. This would likely be less useful

with MAS-IPSII (which would need a separate scanable interferometer for each beam), but is a key
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component of F -basis, and the primary reason it can be so fast (along with acousto-optic controlled

angle changes). For MAS-IPSII multiple beams could be used in the same interferometer to speed

up a scan as long as they are separated in wavelength to change dk sufficiently to measure unique

data.

Compressive Sensing

IPSII is also naturally suited to a set of techniques referred to as ‘compressive sensing’, which

allows an image to be taken with fewer measurements than the pixel count of the final image.

Compressive sensing requires some prior knowledge about the object to be imaged, which is an

assumption that the image will be ‘sparse’ in some known image basis (i.e. will contain a large

number of near zero values in that basis). It turns out that nearly all types of object images we are

interested in have this property in Fourier related domains (and some others). By contrast, an image

with little to no sparsity in the Fourier domain would most likely appear to be random noise to us.

Compressive sensing works by transforming a partial dataset (with less than N points of data) to the

known sparse domain (with N points of data). Because there are more points in the transformed

basis than the initial dataset, there is not a unique solution. Instead, a solution with a high amount of

sparsity, but still consistent with the data from the original dataset is found. This is then transformed

to the object domain to recreate the object image.

Compressive sensing techniques have been applied with great success in MRI [46], where the

data is taken on a randomized grid in k-space and the sparsity is minimized on a regular grid (even

though both basis sets are composed of sinusoidal functions, they are different because of the chosen

k-values). Due to the similarities between MAS-IPSII and MRI, the same approach and algorithms

used in MRI could be applied. Unlike MRI, MAS-IPSII could also easilly use non-sinusoidal basis

functions to potentially optimize speed even more [47–49]. In other imaging fields where it has

been applied, compressive sensing can often cut the number of measurements needed by a factor of
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3 to 10 without visually degrading the resulting image reconstruction.

Combined Speed Improvements

All of these methods could be used together, resulting in the imaging speed increasing by the product

of the speed improvement factors of the individual methods. For example, 4 lasers with slightly

different wavelengths could be used with 4 high speed detectors, partial Fourier reconstruction, and

compressive sensing with a modest compressive factor of 3 to improve the imaging speed by a net

factor of 4×4×1.7×3 = 82. This would change the previously quoted example of a continuous

rotation scan from a 6s scan time for a 1 MPixel image to only 73 ms, or about 14 frames/s—fast

enough for many video microscopy applications. All of this could be done without the use of any

lenses. Note, however, that this is just given as an example of what I believe is technically possible.

We have not implemented some of these methods, so I can not comment on the technical difficulty

of engineering such a system.

4.7 Dynamic Range

Dynamic range can be more problematic when imaging in the Fourier basis. Real life images tend

to be relatively ‘sparse’ in the Fourier basis, meaning most of the k-space values are near zero,

with a handful that are very large (relative to the image average). Experimentally, this means the

signal on the detector will be very, very small for most measurements. It can not be amplified much,

however, or the signal will saturate when measuring values near the center of k-space. The small

values away from the center of k-space are where all the high resolution data is contained, though.

Because of this, IPSII (similarly to MRI) requires sensors with a large dynamic range.

We have found that phase distortions in the interfering beams can significantly reduce the

sparsity of the image in the Fourier domain (you can also think of this as changing the basis to one
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in which the image is less sparse). The result is to effectively ‘spread’ the image energy around in

k-space, drastically reducing the required dynamic range. This is demonstrated in Fig. 4.11, in which

raw sensor data was truncated to various bit depths before analysis and image reconstruction. The

resulting image reconstructions demonstrate, qualitatively, that the image made with the distorted

beam requires 2-3 fewer bits, indicating dynamic range was reduced by a factor between 4 and 8.

The reason for this is demonstrated in 4.12, which contains a histogram of the two k-space data sets,

as well as k-space plots. Various quantitative estimates for dynamic range (e.g. comparing max

value to the .1 percentile, or the non-zero min) indicate a dynamic range decrease by a factor of 3

to 7 in the distorted k-space data relative to the undistorted data (in agreement with the qualitative

factor mentioned above).
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Figure 4.11 Bit depth and dynamic range. Shown are the resulting image constructions
after truncating the raw signal data to a given number of bits. The reconstructions from the
distorted imaging basis are much better at lower bit depth, demonstrating that they require
a much lower dynamic range. See also Fig. 4.2.
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Figure 4.12 Effect of distortions on k-space sparsity. K-space magnitude density distribu-
tions are plotted (above) along with k-space magnitude images (below) from two scans,
one with clean beam modes, and the other with one mode distorted by a lens (see Fig. 4.11
for corresponding image reconstructions). The axes and bins of the histogram are all
logarithmically scaled. Note that distribution of values for the distorted mode is cut off
at the high end, relative to the clean mode. The small number of measurements that fit
into this area for the clean mode correspond to the peak in the center of k-space, and are
responsible for the high dynamic range. Note how these areas of k-space appear smeared,
or spread out in the k-space spectrum of the distorted mode.



Chapter 5

Conclusion

In this dissertation I have proposed and demonstrated a novel type of lensless imaging referred

to as MAS-IPSII. This imaging technique can be done with nothing but flat optics, a single pixel

detector, and a coherent wave source. No curved mirrors, lenses or other refractive focusing optics

are required anywhere in the system. This leads to a singularly unique set of features: the ability to

decouple working distance from resolution, even at subwavelength resolutions, and without a lens.

The theoretical limit of resolution of MAS-IPSII is λ/4. The fact that MAS-IPSII can be done

without any lenses, and still achieve subwavelength resolution means that it could feasibly be

used to improve on the state of the art resolution in areas of the spectrum where focusing devices

(particularly those with high NA) are difficult or impossible to manufacture, such as the UV or x-ray

regimes. Requiring only a single pixel detector is an additional benefit in these regimes.

Another advantage of MAS-IPSII is that it decouples resolution, optic size and working distance.

It could be used to perform subwavelength imaging at arbitrarily large distances without arbitrarily

large optics. This is very different from conventional imaging with focusing optics, which require an

optic on the same scale as the working distance to reach resolutions on the order of the wavelength.

Because lens size is very limited in practice (high NA focusing optics are only available up to a few

centimeters in diameter), even state of the art microscopy can only be done at very close distances.
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MAS-IPSII could be done from meters away. This is also very different from other lensless imaging

techniques, which require even shorter working distances than conventional imaging to reach

wavelength scale resolutions.

I also showed how to derive a signal equation summarizing the theory of 2D MAS-IPSII, and

showed how this signal equation could be used in various types of 2D imaging. Those imaging types

include measurements of an object, measurements of the intensity of a beam, or even a full complex

measurement of a light field on a plane (i.e. a hologram). I showed data from proof-of-concept

experiments performing each of these types of measurements.

In chapter 4 I discussed and quantified various practical issues that could arise with MAS-IPSII.

Many of these are problems that we have dealt with, and I described solutions or workarounds to

most of them.



Appendix A

Publications

A.1 MAS-IPSII

Our published works related to MAS-IPSII include a patent application [50] two peer reviewed

conference proceedings [51, 52], and article in Optics Express [53].

A.2 Light Splitting with Imperfect Wave Plates

Abstract: We discuss the use of wave plates with arbitrary retardances, in conjunction with a

linear polarizer, to split linearly polarized light into two linearly polarized beams with an arbitrary

splitting fraction. We show that for non-ideal wave plates, a much broader range of splitting ratios is

typically possible when a pair of wave plates, rather than a single wave plate, is used. We discuss the

maximum range of splitting fractions possible with one or two wave plates as a function of the wave

plate retardances, and how to align the wave plates to achieve the maximum splitting range possible

when simply rotating one of the wave plates while keeping the other one fixed. We also briefly

discuss an alignment-free polarization rotator constructed from a pair of half-wave plates. [54]
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A.3 Laser Wavelength Metrology with Color Sensor Chips

Abstract: We present a laser wavelength meter based on a commercial color sensor chip. The chip

consists of an array of photodiodes with different absorptive color filters. By comparing the relative

amplitudes of light on the photodiodes, the wavelength of light can be determined. In addition to

absorption in the filters, etalon effects add additional spectral features which improve the precision

of the device. Comparing the measurements from the device to a commercial wavelength meter and

to an atomic reference, we found that the device has picometer-level precision and picometer-scale

drift over a period longer than a month. [55]

A.4 Magneto-Optical Trap Field Characterization with the Di-

rectional Hanle Effect

Abstract: We demonstrate the use of spatial emission patterns to measure magnetic fields. The

directional aspect of the Hanle effect gives a direct, visual presentation of the magnetic fields, in

which brighter fluorescence indicates larger fields. It can be used to determine the direction as

well as the magnitude of the field. It is particularly well suited for characterizing and aligning

magneto-optical traps, requiring little or no additional equipment or setup beyond what is ordinarily

used in a magneto-optical trap, and being most sensitive to fields of the size typically present in a

magneto-optical trap. [56]
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Motorized Mirrors

We found that commercial motorized mirror mounts were lacking in either range or precision,

i.e. they lack an effective ’dynamic angular range’ (the ratio of the angular range to the angular

precision). They are also very expensive (a single mirror would cost more than the rest of our setup

combined). The dynamic range issue could, perhaps, be overcome by combining some commercial

parts (i.e. a motorized adjustment screw with long range, and a compatible mirror mount), but we

decided to make our own solution to get the range we need and save on cost. To do so we used

standard manual kinematic mirror mounts, and 3D printed an attachment module used to mount

inexpensive stepper motors on the commercial mirror mounts (see Fig. B.1). We used ultra fine

threaded adjustment screws (254 TPI) to generate extra precision in our angular motions. The

performance of these mounts is shown in Fig. B.2.
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Figure B.1 Motorized mirror mounts. These mounts are made by using 3D printed parts
to attach stepper motors to high TPI actuators placed in a 2 in kinematic mirror mount.
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0 2 4 6 8 10
Error (arcsec)

Angular Precision and Accuracy Tests

Single-Point Repeatability: 0.5±0.3arcsec
(2.5±1.6µrad)

Multi-Point Repeatability: 2.3±1.8arcsec
(11.0±8.5µrad)

Accuracy: 4.4±2.3arcsec
(21.4±11.3µrad)

Figure B.2 Mirror performance. These data were taken by focusing a laser onto a CCD
detector, with the lens placed before a motorized mirror. The position of the spot on the
CCD detector was calculated to sub-pixel precision by calculating the first moment of the
image. The position was then used to calculate the angular position of the spot relative
to the mirror. Repeatibility was tested by adjusting the mirror from a measured point to
a random position and back again, and measuring the net change in the position (which
ideally should be 0). This test was done for a single randomly chosen point, and for a set
of 10 randomly chosen points. The motor was then calibrated by using linear fit between
motor position and physical angle. The accuracy of the calibration was tested by picking a
random point, setting the corresponding motor position, and measuring the error between
set and the measured spot location. Each test was done with 1000 measurement, and a
distrubution of the errors of each test is displayed. Note that the repeatability is about 10x
better than the accuracy. This is because non-linear couplings between the motor steps and
the physical angle changes, which could theoretically be calibrated for if enough position
data were measured.
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Calibration Code

Python code:

import numpy as np

# This code helps find the calibration numbers to move mirrors in sync
# The goal is that each arm of the intf should be able to change angle without
# changing the beam position *at the plane of the object *
#
# Unfortunately , the axis are not independent , which means a horizontal
# adjustment in one mirror requires horizontal and vertical adjustments in the
# second. However, this effect is small , so if the intf is set up symmetrically ,
# and the object is about the same distance away as mirror 2 is from mirror 1,
# then the correction should be close to a factor of −2 in the same axis . i .e . if
# m1 is set to angle (a ,b) then mirror two should be set to angle (−2a, −2b).
# This is a good starting point for what to expect .
#
# points are in this format :
# [ mirro1_position , mirror2_position ]
# = [(h1,v1) , (h2, v2)] (where h1, etc . absolute steppermotor positions , or angles )
#
# To find calibration , make beam small (with iris ) , put an iris directly in
# front of a detector at the object location , connect to o−scope. Move m1 (mirror1) to
# maximize signal . Reset home coordinates . Set m2 to some angle (towards edge of
# range . manualMove(m1) to get the beam back on center and maximze signal again .
# Copy coordinates from:
#
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# [m1,m2,m3,m4] = intf. mirrors
# [(m.stepperH. position , m.stepperV. position ) for m in [m1,m2]]
#
# Repeat for several angles . Paste points below in an array . Run array through
# code for linear regression fits . This will tell you the calibration values , as
# in if m1 is set to (a ,b) the m2 should be set to
# (a2, b2) = (h1*a+v1*b+c1, h2*a+v2*b+c2)
# The fit values should be close to (h1, v1, h2, v2) = (2, 0, 0, 2)
# The resulting beam angle is approximately (a2−a1, b2−b1)
#
# Then this whole process should be repeated for arm2 (m3 and m4)
#
# Note, the fit is done twice , once allowing for a fit offset , c , which should be
# close to 0 ( if you started at the right position ) , and once without the offset
#
# From mathematica − if you want to go to intf angle to ( th , tv )
# a = −((c1−th−c2 v1+tv v1+c1 v2−th v2)/(1+h1−h2 v1+v2+h1 v2))
# b = −((−c2−c2 h1+c1 h2−h2 th+tv+h1 tv)/(−1−h1+h2 v1−v2−h1 v2))
# then m1 = (a, b)
# and m2 = (h1*a+v1*b, h2*a+v2*b) ~= (28th
# but beam angle is 2x mirror angle , and intf angle = arm1+arm2
# so for beam angle ( th , tv ) you should input ( th /4, tv /4)

# Calibration data
points_arm1 = [[(0,0) , (0,0) ],

[(23408, 0) , (−50328, 234) ],
[(−23408, 23408), (47753, −47753)],
[(23408, −23408), (−47753, 48689)],
[(−23408, −23408), (53371, 47753)],
[(23408, 23408), (−53137, −47285)],
[(0, 23408), (−2574, −47519)]
]

points_arm2 = [[(0, 0) , (0, 0) ],
[(0, 23408), (−2106, −49860)],
[(23408, 0) , (−51264, −3745)],
[(23408, 23408), (−53371, −51499)],
[(−23408, −23408), (52201, 44008)],
[(−23408, 0) , (51030, −3043)],
[(0, −23408), (1638, 45178)]
]

# Insert data set here
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datasets = [np.vstack ([np.hstack (p) for p in points_arm1]) ,
np.vstack ([np.hstack (p) for p in points_arm2]) ]

names = [ ' Arm1', ' Arm2']

# Perform regressions for each arm
for j in range( len ( datasets ) ) :

p = datasets [ j ]
print (" Fitting {} 1st without offset , second with ( better ?)" . format(names[j ]) )

# Perform the regression both with an offset , and without
# ( If calibration was done properly , offset should be 0)
for i in [0,1]:

m1 = np.c_[p [:,0:2], i*np.ones( len (p)) ]
m2H = p[:,2]
m2V = p[:,3]
h1, v1, c1 = np. linalg . lstsq (m1, m2H)[0]
h2, v2, c2 = np. linalg . lstsq (m1, m2V)[0]
fs = "{:+04.4f}"
print ( ' Horizontal m2 axis h1, v1, c1, : {0}, {0}, {0}' . format( fs ) . format(h1,

v1, c1))
print ( ' Vertical m2 axis h2, v2, c2, : {0}, {0}, {0}' . format( fs ) . format(h2,

v2, c2))
fs = "{:+04.5f}"
print ( ' Calibration String : [{0},{0},{0},{0}] ' . format( fs ) . format(h1,v1,h2,v2))

print ( ' \n ' )



Appendix D

Scan Errors

Image Log K-Space Description

The battery powering a very noise sen-
sitive circuit was low, so the circuit was
switched to be powered by an AC adapter.
The resulting increase in noise is clearly
visible as a strip in k-space.

Reference signal or interferometer not
tuned up very well resulting in some miss-
ing data points. Missing points are some-
what periodic.
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Periodic spots of missing data. In both
cases the fringes on the pinhole were
formed with non-ideal wavefronts in one
or both beams. The pinhole signals were
weaker and more noisy as a result, leading
to occasional failures in the demodulation
algorithm. The source of the periodicity is
unknown, but could be related to periodic
non-linearities in the stepper motors con-
tributing to small misalignments, result-
ing in particular noisy signals periodically
throughout the scan.

Motorized mirror failures leading to bad
k-space data. Top: A stepper motor at-
achement slipped off one of the mirrors
partway through the scan. Bottom: bind-
ing of one of the adjustment screws in one
of the mirrors.
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Beam mode distorted so much (from plas-
tic in beam) that the lock in algorithm of-
ten failed. Note that this occurred in large
contiguous regions.

A mirror was bumped causing a small mis-
alignment partway through the scan caus-
ing a shift in k-space for the rest of the
scan, as well as a drop in SNR.

A stepper motor attachment came off to-
wards the end of the scan causing the re-
maining data to be ‘smeared’ in the y di-
rection.
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Scan mistakenly started far away from cen-
ter of k-space, such that all measurements
were in one quadrant.

Table D.1 Scan error effects. A list of k-space and object space images are shown
demonstrating results of various errors during the scan process.
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[40] J. Mitić, T. Anhut, M. Meier, M. Ducros, A. Serov, and T. Lasser, “Optical sectioning in

wide-field microscopy obtained by dynamic structured light illumination and detection based

on a smart pixel detector array,” Optics Letters 28, 698–700 (2003).

[41] S. Bourquin, P. Seitz, and R. P. Salathé, “Two-dimensional smart detector array for interfero-

metric applications,” Electronics Letters 37, 975–976 (2001).

[42] S. Ando and A. Kimachi, “Correlation image sensor: Two-dimensional matched detection of

amplitude-modulated light,” IEEE Transactions on Electron Devices 50, 2059–2066 (2003).



BIBLIOGRAPHY 105

[43] M. Habibi, “A high sensitivity correlation image sensor,” In Sensors Applications Symposium

(SAS), 2011 IEEE, pp. 197–202 (2011).

[44] M. Habibi, “Analysis, enhancement, and sensitivity improvement of the correlation image

sensor,” IEEE Transactions on Instrumentation and Measurement 61, 708–718 (2012).

[45] B. Büttgen and P. Seitz, “Robust Optical Time-of-Flight Range Imaging Based on Smart Pixel

Structures,” IEEE Transactions on Circuits and Systems 55, 1512–1525 (2008).

[46] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing

for rapid MR imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).

[47] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk,

“Single-pixel imaging via compressive sampling,” IEEE Signal Processing Magazine 25, 83–91

(2008).

[48] D. Takhar, J. N. Laska, M. B. Wakin, M. F. Duarte, D. Baron, S. Sarvotham, K. F. Kelly,

and R. G. Baraniuk, “A new compressive imaging camera architecture using optical-domain

compression,”, Proceedings SPIE, 2006.

[49] T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast and efficient compressive sensing using

structurally random matrices,” IEEE Transactions on Signal Processing 60, 139–154 (2012).

[50] D. S. Durfee and J. Jackson, “Wave interference systems and methods for measuring objects

and waves,”, U.S. Patent App. 16/030,520 (January 10, 2019).

[51] J. Jackson and D. Durfee, “Lensless Single Pixel Imaging with Laser Interference Patterns,”

Microscopy and Microanalysis 24, 1366–1367 (2018).

[52] J. S. Jackson and D. S. Durfee, “Demonstration of Interference Pattern Structured Illumination

Imaging,” In Frontiers in Optics, pp. FW7B–6 (2018).



BIBLIOGRAPHY 106

[53] J. Jackson and D. Durfee, “Mechanically scanned interference pattern structured illumination

imaging,” Optics Express 27, 14969–14980 (2019).

[54] J. S. Jackson, J. L. Archibald, and D. S. Durfee, “Light splitting with imperfect wave plates,”

Applied Optics 56, 1062–1068 (2017).

[55] T. B. Jones, N. Otterstrom, J. Jackson, J. Archibald, and D. S. Durfee, “Laser wavelength

metrology with color sensor chips,” Optics Express 23, 32471–32480 (2015).

[56] J. S. Jackson and D. S. Durfee, “Magneto-Optical Trap Field Characterization with the

Directional Hanle Effect,” arXiv e-prints p. arXiv:1703.03817 (2017).


	Brigham Young University
	BYU ScholarsArchive
	2019-06-01

	Mechanically Scanned Interference Pattern Structured Illumination Imaging
	Jarom Silver Jackson
	BYU ScholarsArchive Citation


	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Analog Imaging
	1.2 Computational Imaging
	1.3 Lensless Imaging
	1.4 Single Pixel Imaging
	1.5 Interference Pattern Structured Illumination Imaging
	1.6 MAS-IPSII
	1.7 My Research at BYU
	1.8 Dissertation Overview

	2 MAS-IPSII Implementation
	2.1 MAS-IPSII Design Requirements
	2.2 Simple MAS-IPSII Interferometer
	2.3 Two-Stage Interferometer
	2.3.1 Geometry

	2.4 Dual Wavelength Setup
	2.5 High NA Imaging
	2.6 Implementation Details
	2.7 Results
	2.7.1 Working Distance


	3 Theory
	3.1 Signal Equation Derivation
	3.1.1 3D Imaging

	3.2 Imaging Possibilities
	3.3 Imaging Properties
	3.4 Inconvenient Angle Dependencies
	3.5 Complex Imaging
	3.6 Filtered Imaging

	4 Imaging Issues and Solutions
	4.1 Parallels with Magnetic Resonance Imaging
	4.2 Phase Distortions
	4.3 Amplitude Distortions
	4.4 K-space Position Errors
	4.5 Aliasing
	4.6 Potential Improvements to Imaging Speed
	4.7 Dynamic Range

	5 Conclusion
	Appendix A Publications
	A.1 MAS-IPSII
	A.2 Light Splitting with Imperfect Wave Plates
	A.3 Laser Wavelength Metrology with Color Sensor Chips
	A.4 Magneto-Optical Trap Field Characterization with the Directional Hanle Effect

	Appendix B Motorized Mirrors
	Appendix C Calibration Code
	Appendix D Scan Errors
	Bibliography

