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Abstract 
 
This paper delves into the connections between physics and finance, at the surface two 

seemingly unrelated fields. Central to the nature of the scientific method as an integral part of 

the physics education, I will connect elements of the method to the field of finance. The skills of 

building models to mathematically describe a law of physics based on certain assumptions is a 

skill that translates to build financial models to price assets. Both fields rely on the need for 

data to work in harmony with derived models to better understand the subject.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Introduction 

Often times as I would tell individuals that I am studying both physics and economics for 

my college education, many were surprised to hear of that combination that I choose. A common 

response I would receive was, “How are those two subjects related?”. At the beginning after my 

choice to pursue these two subjects, I was unsure how to best respond since I had a difficult time 

to see how the two fields were connected. Physics, a hard science that studies the immutable 

laws that govern the physical universe, seems to be in stark contrast to economics, a social 

science that studies both individual and market behavior given scarcity of capital and goods. 

However, as I have gone through the process of completing both majors, I have come to realize 

that there is a core process that runs through the heart of these two disciplines: develop a 

mathematical model to describe a situation and then find data to verify the model. In essence, 

the scientific method, which has been engrained into me based on my education in physics, 

applies just as much in the field of economics and finance, one of its subfields.  

This paper will show examples of how I have been able to apply the principles and skills 

of my physics education into the field of finance, a field I am deeply passionate about and in 

which I am building my career. The processes of making a mathematical model based on 

assumptions, collecting data, and using complex mathematics to describe certain phenomena 

will be shown. Elaborating on how the skillset of a physics education can be applied into the field 

of finance could help current or prospective students of physics see one of many possible routes 

to take with their education. The knowledge of problem-solving, trial and error, critical thinking 

in the realm of studying the laws of the universe are applicable in many fields and can be used 

for a successful career. My goal is to show how combining a skillset provided by a physics 
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education with a passion, in my case finance, creates a more enriching experience in the pursuit 

of truth. 

 

Making a Model 

 The happenings of the physical world can be difficult to describe, even more so when one 

tries to do it mathematically. A mathematical model of a physical phenomenon, derived using 

intuition of everyday experience and mathematics, is how one conveys mathematically what 

happens physically. One of the first models that is introduced to a first-year physics student is 

projectile motion. Given the initial velocity of a particle and an angle indicating the direction of 

the initial velocity, the model of projectile motion can provide useful information about what will 

happen in this system. One can know how far out the particle will land from the initial launch 

point, how high up the particle will travel relative to the ground, how long will the particle be in 

the air and so forth. A curious student could then devise their own experiment to test the validity 

of the model of projectile motion. Knowing what the model predicts will happen given certain 

inputs, the student can do an experiment where they, for example, build a contraption to launch 

a ball at a given angle, measure how far the ball lands, and compare what is experimentally 

observed to the predicted landing distance. If there is a discrepancy between what is observed 

and what the model predicts, something must be wrong. One can troubleshoot the experimental 

design to make sure the inputs are correct; if that is the case, then something must be wrong 

with the model. 

 One of the most prevalent flaws used in models to describe the laws of physics are the 

assumptions being made in the formulation of said model. The simplest models used in physics 
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rely on key assumptions about a given system without losing a general core idea of what will 

happen. In the case of introductory projectile motion, the key assumptions being made are that 

the particle does not have a volume and the particle is traveling in a vacuum. It does not take 

long to realize that those assumptions are not accurate, explaining the difference in results; 

however, those assumptions still provide a good picture of the laws of physics at work. In order 

to create a better model, the assumptions need to be altered and other facets need to be taken 

into account. If one takes into account the drag force on the projectile as it moves through the 

air, the density of the air, cross-sectional area of the object, and drag coefficient need to be 

known. In certain cases, the Coriolis force might be appropriate to be accounted for. The result 

is a more complicated model with sophisticated mathematics in order to describe the physics of 

projectile motion. So there exists this trade-off in how fine does one want the model to describe 

whatever it is they are trying to describe: the model can be simple to provide strong intuition 

without losing generality, or more complex requiring greater knowledge to understand what is 

going on and stronger mathematical rigor to have more predicting power. 

The power of making assumptions to produce models that provide a lot of knowledge and 

insight is found in finance. As one can imagine, trying to mathematically describe the workings of 

the financial market with all of its economic agents involved can seem like an impossible task. 

One of the first models used in finance is the Capital Asset Pricing Model, or CAPM. Developed in 

the 1960s, the model is used to determine what the expected rate of return of an asset is. The 

expected excess return of an asset i is  

E[ri] - rf = βi!E[rM] - rf" 



 6 

where rf is the risk-free rate, rM is the return of the market portfolio, and βi is defined as Cov(ri,rM)
σM

2 .  

Some of the main assumptions used to derive this model to find the expected return of an asset 

are all investors have an identical holding period, all investors are risk-averse and are mean-

variance optimizers, and there are no transaction costs or taxes. Not surprisingly, these are very 

strong assumptions that are not really reflective of what actually exists in financial markets 

creating a model that does not provide strong predictive capabilities for the return of an asset. 

Yet, the CAPM does provide a valuable piece of insight in that it helps understand the market risk 

of a given asset and how exposed it is to fluctuations in the stock market. The assumptions used 

in the derivation allow for a clear and concise mathematical expression where one can gain astute 

intuition in financial economics. Further research has been done to build upon the ideas 

presented in the CAPM and more advanced models with relaxed assumptions such as the Fama-

French Three Factor Model have been shown to have more predictive power when it comes to 

asset pricing.  

 The CAPM is one of many models that is used in the field of finance. The assumptions 

used in its derivation can add fantastic economic understanding while at the same time provide 

short comings in its actual representation of financial markets and asset pricing. This is just like 

many of the models that a physics student is exposed to during their course of studies that 

balance these kinds of trade-offs. Both disciplines rely on the power and skill to make good 

assumptions, whatever the circumstance calls for, in order to produce a model for the system, 

environment, physical process, or economic behavior an individual is looking to understand.  
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Gathering Data 

 As previously mentioned, a model is not a good picture of reality if there is no evidence 

to support it. In physics, scientific experiments are conducted in order to test the validity of a 

given model and its underlying assumptions. In a sense, a model is an extension of a hypothesis 

of what one thinks will happen, and the data collected can either support or refute that 

hypothesis. This same process is used in finance. Instead of running experiments, however, a 

common tool used in finance is using regression analysis with historical data. In the case of testing 

the CAPM and its ability to price a certain asset, an individual can go collect, as an example, 

historical time-series monthly return data of a given asset i, the monthly return of thirty day U.S. 

Treasury Bill as a proxy for the risk-free rate of return, and the monthly return of the S&P 500 as 

a proxy for the market portfolio. The regression for the CAPM would look like 	

rit	- rft = αi + βi(rMt	- rft) + eit 

where rit is the return of asset i at time t, rft is the risk-free rate at time t, rMt is return at time t of 

the market, and eit is a residual term for asset i at time t. αi and βi are the coefficients of interest 

in the test of the CAPM. The hypothesis of the CAPM is that αi is equal to zero and βi is non-zero. 

Using the ordinary least squares method for a regression to find αi and βi and a t-test used in 

statistics to see if the coefficients are equal to zero, statistical evidence can be produced to either 

validate or refute the hypothesis. Just like in physics, models used in finance are scrutinized and 

put through the test of experimentation. 

 I would like to walk through an example of how I used data to answer a question I was 

interested in. A couple of years ago during the massive rally in the bitcoin market, I was interested 

in seeing if the price of gold had any effect on the price of bitcoin. Using econometrics, or the 
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study of quantifying casual relationships, I looked to develop a model to try to explain if the price 

of gold had any explanatory power in the price of bitcoin. Looking through the research to see 

what variables to control for so as to isolate the price effect of gold, my model looked like 

𝛥𝐿𝑁𝑋𝐵𝑇𝑈𝑆𝐷/ = 𝛽2 + 𝛽4𝐿𝑁𝑋𝐴𝑈𝑈𝑆𝐷/ + 𝛽6𝐿𝑁𝐼𝑁𝐷𝑈/ + 𝛽8𝐿𝑁𝑆𝑃𝑋/ + 𝛽:𝐿𝑁𝑈𝑆𝐷𝐸𝑈𝑅/ +

𝛽=𝐿𝑁𝑋𝐴𝐺𝑈𝑆𝐷/ + 𝛽?𝐿𝑁𝐺𝐶1/ + 𝛽B𝑇𝐼𝑀𝐸/ + 𝑢/ 

where 𝛥𝐿𝑁𝑋𝐴𝑈𝑈𝑆𝐷/ is the change in log-price of gold, 𝐿𝑁𝐼𝑁𝐷𝑈/ is the log-price of the Dow 

Jones Industrial Average, 𝐿𝑁𝑆𝑃𝑋/ is the log-price of the S&P 500, 𝐿𝑁𝑈𝑆𝐷𝐸𝑈𝑅/ is the log-price 

US Dollar-Euro exchange rate, 𝐿𝑁𝑋𝐴𝐺𝑈𝑆𝐷/ is the log-price of silver, 𝐿𝑁𝐺𝐶1/ is the log-price of 

gold futures, 𝑇𝐼𝑀𝐸/ is dummy variable for time to account for seasonality, and 𝑢/ is a general 

error term. These control variables are strongly correlated with the gold market and accounting 

for them and finding data on them acted to better isolate the casual effect between the price of 

gold and the price of bitcoin. My null hypothesis was that 𝛽4 was equal to zero and my alternative 

hypothesis was that 𝛽4 was not equal to zero. After gathering historical data on all the variables 

in my model and running an ordinary-least squares regression on my dataset, I found that there 

was not enough statistical evidence to say that 𝛽4 was not equal to zero. Based on my findings, I 

was able to know that my model did not correctly capture the effects of the market for gold on 

the market for bitcoin.  

 Experimentation and testing hypothesis are at the center of a physics education. Finance 

teaches a student to do the exact same thing. Both disciplines teach about how to test a model 

and what data one would need to gather in order to prove/disprove a theory. Having been 

exposed to that key philosophy of the critical nature of having data in both the physical and social 

sciences has been a tremendous benefit for me.  
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Complex Mathematics 

 This past summer, I had the chance to intern at PIMCO, the premier fixed-income asset 

management firm working on their pension solutions team. The team focuses on developing 

investment strategies for clients who oversee massive pension plans. The core strategy that the 

team focuses on is Liability-Driven Investing, or LDI. At its core, Liability-Driven Investing is 

factoring into the investment calculus both the timetable and the magnitude of future expected 

benefit obligations that a plan sponsor will need to make. LDI is using assets that a sponsor has 

at its disposal today and investing them in such away so that one can consistently pay for their 

expected liabilities that extend to fifty, sixty, or seventy plus years into the future. That can be a 

very imposing task and the analysis of it is very technical in nature and highly quantitative. With 

my mathematical background that has been provided by my physics education, I was able to 

quickly pick-up and understand some of the basics of LDI. 

 A central tenet of LDI is both duration and convexity matching of a plan sponsors assets 

and liabilities. The schedule of expected benefit obligations for a plan sponsor in the future are 

discounted to order to find the present value P of the liabilities for a given plan. The present value 

of liabilities is  

𝑃 = E
𝐶𝐹/

(1 + 𝑦)/

H

/	I	4

 

where 𝐶𝐹/ is the cash-flow representing the obligation the pension plan sponsor is expected to 

pay in year t. Taking the derivative of P with respect to (1+y),  
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𝜕𝑃
𝜕(1 + 𝑦) = 	 E

−𝑡𝐶𝐹/
(1 + 𝑦)/M4

H

/	I	4

 

=	−
1

1 + 𝑦 E
𝑡𝐶𝐹/

(1 + 𝑦)/

H

/	I	4

. 

Multiplying both sides by O4MP
Q
R, 

𝜕𝑃
𝜕(1 + 𝑦)	S

1 + 𝑦
𝑃 T = 	−

1
1 + 𝑦 E

𝑡𝐶𝐹/
(1 + 𝑦)/

H

/	I	4

S
1 + 𝑦
𝑃 T 

𝜕𝑃
𝜕(1 + 𝑦)	S

1 + 𝑦
𝑃 T = 	−

∑ 𝑡𝐶𝐹/
(1 + 𝑦)/

H
/	I	4

𝑃 . 

The term on the left, is defined as an elasticity in economics. In general, an elasticity can 

capture how one variable affects the other. Mathematically, this can be shown as  

%∆𝑃
%∆(1 + 𝑦) 	=

∆𝑃
𝑃

∆(1 + 𝑦)
(1 + 𝑦)

	= 	
∆𝑃

∆(1 + 𝑦) ∗ 	
(1 + 𝑦)
𝑃 	= 	

𝜕𝑃
𝜕(1 + 𝑦)

(1 + 𝑦)
𝑃  

 where %∆ is denoting a percentage change. In fixed-income mathematics, this elasticity is 

called duration. In the case of a bond, the duration of a bond is a metric capturing how the 

price of a bond will change of interest rates [1].	

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 	−
∑ 𝑡𝐶𝐹/

(1 + 𝑦)/
H
/	I	4

𝑃  

In the case of liabilities for a plan sponsor, the duration of liabilities show by how much the 

present value of liabilities will change as interest rates change, a very useful thing to know 

depending on the overall direction of interest rates in the economy and the amount of assets 

the plan sponsor has in order to better fund those changes in liabilities. The negative sign is 
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strictly to capture the inverse relationship between present value of liabilities and interest rates 

due to discount future value of expected benefit obligations. Normally the absolute value of 

duration is quoted. 

 Just like with a Taylor Series Approximation, the second derivate with respect to (1+y) is 

useful to know to better approximate for larger changes in interest rates. 

𝜕6𝑃
𝜕(1 + 𝑦)6 = 	E

𝑡(𝑡 + 1)𝐶𝐹/
(1 + 𝑦)/M6

H

/	I	4

 

𝜕6𝑃
𝜕(1 + 𝑦)6 = 	

1
(1 + 𝑦)6 E

𝑡(𝑡 + 1)𝐶𝐹/
(1 + 𝑦)/

H

/	I	4

 

𝜕6𝑃
𝜕(1 + 𝑦)6 = 	

1
(1 + 𝑦)6 E

𝑡(𝑡 + 1)𝐶𝐹/
(1 + 𝑦)/

H

/	I	4

	S
1
𝑃T𝑃 

In fixed-income mathematics, convexity is defined as [2]: 

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 = 	
∑ 𝑡(𝑡 + 1)𝐶𝐹/

(1 + 𝑦)/
H
/	I	4

𝑃(1 + 𝑦)6 	 

𝜕6𝑃
𝜕(1 + 𝑦)6 = 	 (𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦)𝑃 

𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =
𝜕6𝑃

𝜕(1 + 𝑦)6
1
𝑃. 

The goal of duration and convexity matching in the case of LDI is to calculate these metrics for 

one’s liabilities and create a benchmark portfolio whose duration and convexity as similar, if not 

exactly the same as the liabilities. The idea is that if interest rates change by a given amount, 

the plan’s assets are invested in such a way that the value of the assets would change by the 

same amount as the liabilities. We were trying to hedge the plan sponsor from interest rate risk 

so that the invested assets would act as an immunizer to this risk.  
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 Throughout the course of the summer, I got the chance to perform a lot of these types 

of analyses. Given an expected benefit schedule of a plan sponsor, I would calculate the present 

value of the liabilities, calculate the duration and convexity of the liabilities, and create a 

benchmark portfolio in such a way that it has the same duration and convexity as the liabilities. 

The benchmark would often consist of a combination of different fixed income indices with 

their respective duration and convexity comprised of bonds with different ranges in maturities. 

Since the derivative operator is linear, the duration of a portfolio of different indices is a linear 

combination of each item’s duration in the portfolio, whose weights represent the fraction of 

the portfolio that is invested in each item. The same is true for convexity.  

The analyses that I conducted for the myriad of clients that the team had was actually 

used in presentations and phone meetings that senior leaders of the team had with clients. 

These analyses were very helpful to clients as they tried to navigate the difficult challenges they 

are facing trying to figure out the best way to invest their assets to fund their pension plan in 

the future. I know that my math skills allowed me to quickly pick-up, understand, and provide 

strong analyses in LDI that led to success on my team throughout the summer. 

 

Conclusion 

 While two seemingly unrelated subjects and disciplines, physics and finance/economics 

share more similarities than one may think. The skillset the one develops studying physics is 

completely relatable to the soft sciences of finance/economics. Principles that are central 

tenets to the training in a physics education such as building models based on assumptions, the 

necessity of experimentation and gathering data to prove/disprove a hypothesis, and using 
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complex mathematics are pertinent to strong empirical research skills in finance. The 

combinations of these two disciplines has been extremely instrumental in my understanding on 

how to pursue truth. As I graduate from BYU and move-on to start my career at PIMCO, I know 

that I am in a much better place because of my decision to have studied both physics and 

economics. 
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