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ABSTRACT

Deep Learning to Predict Ocean Seabed Type and Source Parameters

David Franklin Van Komen
Department of Physics and Astronomy, BYU

Master of Science

In the ocean, light from the surface dissipates quickly leaving sound the only way to see at a
distance. Different sediment types on the ocean floor and water properties like salinity, temperature,
and ocean depth all change how sound travels across long distances. Hard sediment types, such
as sand and bedrock, are highly reflective while softer sediment types, such as mud, are more
absorptive and change the received sound upon arrival. Unfortunately, the vast majority of the
ocean floor is not mapped and the expenses involved in creating such a map are far too great.
Traditional signal processing methods in underwater acoustics attempt to localize sources and
estimate seabed properties, but require a priori decisions and fall victim to ill conditioning and
non-linear relationships between the unknowns and are computationally expensive. To address
these problems, a deep learning method is proposed to distinguish between seabed types while also
predicting source parameters such as source-receiver range from simulated training data. In this
thesis, several studies are presented that explore the effectiveness of convolutional neural networks
to make predictions from two types of sounds that propagated through the ocean: impulsive
explosions and ship noise. These studies show that time-series signals and spectrograms contain
sufficient information for deep learning, and additional preprocessing for feature extraction is not
necessary. Training data considerations, such as randomness in the network weights and inclusion
of representative variability are also explored. In all, this study shows that deep learning is a useful
tool in underwater acoustics and has significant potential for seabed parameter estimation.

Keywords: underwater acoustics, source localization, seabed sediment prediction, ocean modeling,
machine learning, deep learning
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Chapter 1

Introduction

1.1 Background

In ocean acoustics, one of the factors that affects sound propagation is the seabed. Different

sediment types allow for different amounts of reflection and absorption when sound interfaces

with the sediment. As the sound travels through the water, reflections from the surface and seabed

combine through constructive and destructive interference. Examples that illustrate the impact of the

seabed on the received sound are found in Sec. 2.2. Because different seabeds link different effects

on the sounds observed, seabed mismatch can impact technologies like SONAR. Thus, proper

interpretation of the SONAR output when identifying objects in the ocean requires knowledge of

the seabed. A machine learning approach to seabed identification has the potential to provide quick

estimates of the seabed type that can allow for safer and more efficient SONAR operation in the

ocean.

Because of the impact of the seabed on sound propagation, efforts to localize acoustic sources and

estimate the ocean environment through acoustic methods are active areas of research. Challenges

arise due to nonlinear relationships between the unknowns, high-dimensional search spaces, and

1



1.1 Background 2

large uncertainty due to ill-conditioning of the inferred parameters. Another challenge is the

variability that also exists across multiple parameters such as sediment type (sand, mud, silt, clay,

etc.) and thickness of sediment layers, the depth of the ocean, the depth-dependent speed of sound

in the water, and many other parameters. Efforts to solve the source localization and environmental

estimation problems have used two different types of algorithms to make predictions from data:

model-driven and data-driven. The differences between these two highlight the potential for machine

learning models in underwater acoustics.

1.1.1 Model-driven Solutions

Model-driven architectures are typically implemented by explicit relationships and rules that dictate

a response. Model-driven solutions estimate model parameters by minimizing a cost function

that represents the data-model mismatch. Model-driven approaches incorporate large bodies of

knowledge that have been obtained through extensive research and iterative testing. For example,

some classical systems can be described by the Newtonian laws of physics, which are model-

driven as they can be represented as mathematical equations. More complex models can have

more parameters, which are generally found by trial and error in many optimization schemes that

minimize data-model mismatch. These models require a priori decisions such as data sampling

rates, the search algorithm, bounds on parameters, whether to vary individual or multiple parameters

at once, and what qualifies as a "good" data-model match. Many algorithms have been developed

for model-driven solutions, such as simulated annealing, genetic algorithms, Markov Chain Monte

Carlo sampling, and Bayesian approaches. Underlying model-driven approaches are parameterized

based on the physics.

Propagation models for the ocean are based upon solving the wave equation with boundary con-

ditions that represent the ocean environment. There are models that solve this problem through range

dependent and range independent methods. Common range-independent ocean propagation models
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is the normal mode model ORCA2 (used in this thesis) and KRAKEN.3 Common range-dependent

models include PE-RAM4, 5 which take an iterative approach through range-stepping. These prop-

agation models are used in various model-driven algorithms to find source and environmental

parameters.

The model-driven solutions in underwater acoustics use physics-based propagation models

given a specified parameterization of the ocean and strive to minimize the model-data mismatch.

This differs from strictly data-driven solutions (explained in depth in Sec. 1.1.2) in that they require

an assumed model of sound propagation in their calculations. Some examples of model-driven

solutions applied to underwater acoustics include matched-field processing6 and matched field

inversion.7 Different optimization algorithms have been applied such as genetic algorithms,8

Monte Carlo estimation algorithms,9 simulated annealing,10 improvements by applying broadband

sound propagation,11 a fast Gibbs sampler approach,12 and more recently maximum entropy13

and trans-dimensional Bayesian inference.14 These optimization techniques can provide solutions,

though some drawbacks are the need for information used to decide bounds and priors as well as

computational expense due to their iterative nature, which requires running the propagation model

for each model-data comparison. Estimation of environmental parameters using these traditional

methods have seen success,15, 16 though the challenges remain.14, 16, 17

1.1.2 Data-driven Solutions

Data-driven approaches can make predictions based on patterns and features present within large

datasets without an underlying mathematical model. Machine learning techniques are data-driven

as they use input data to learn features that allow predictions to be made. These data-driven models

do not need specific rules of physics hard-coded within, as they "learn" what pieces of the data are

important through extensive iteration. The largest limitation to data-driven approaches is the amount

of data required to learn the features needed to make accurate predictions. In ocean acoustics, the
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shortage of unclassified measured labeled data and the expense of creating such a dataset led this

research to use data simulated with a propagation model for the studies in this thesis, as detailed in

Sec. 2.2.

For the data-driven models used in this thesis, supervised deep learning (a subset of machine

learning that structures algorithms into multiple layers) through neural networks is used. Supervised

approaches allow the networks to learn to predict labels based on features observed in the labeled

training data. For example, a label used in this thesis is seabed class. All data samples used as

training must be labeled with their seabed class for the network to learn how to predict seabed class.

Some unsupervised approaches can be used to categorize unlabeled data into distinct classes by

finding divisions, but these divisions identified by the algorithm require additional interpretation

and are not used in this thesis.

Machine learning techniques are actively being applied to the problem of acoustic source

localization in the ocean. Early efforts in air acoustics, such as the work of Steinberg et al.18 that

introduced the idea of using neural network techniques to localize an acoustic point source in a

homogeneous medium using single- and two-layer neural networks, highlight potential for such

techniques. Underwater acoustic efforts include those by Lefort et al.19 and Niu et al.20, 21 and

found that machine learning classifiers for source range outperform traditional methods such as

inversion and matched field processing. Others, such as Huang et al.22 and Wang et al.23 have had

similar success with using neural networks to localize sources in the ocean. Other efforts include

deep transfer learning between simulated and measured data,24 direction-of-arrival estimation,25

classification of underwater targets,26 vessel detection and range estimation using cepstrums,27 and

using normalized acoustic matrices calculated through vertical line array data to estimate source

range in deep oceans.28

Machine learning has also been used for estimation and prediction of ocean environmental

parameters. Early efforts included the use of neural and statistical classifiers by Michalopoulou
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et al.,29 artificial networks on transmission loss by Benson et al.,30 and global and hierarchical

approaches by Stephan et al.31 Recently, Piccolo et al.32 used generalized additive models for

predicting compressional sound speed and attenuation from time-domain features. Frederick et al.33

also used physics-based modeling and machine learning to classify the seabed. A more detailed

review of machine learning and its applications in various fields of acoustics can be found in Bianco

et al.,34 and the deep learning methods used in this thesis are discussed further in Chapter 2.

1.2 Thesis Overview

This thesis presents research analyzing the potential of deep learning models to distinguish seabed

types using recorded and simulated sound signals. Chapter 2 provides a foundation necessary to

understand the deep learning models used throughout the various studies presented as well as the

software used for deep learning (Sec. 2.1). Four "canonical" seabeds ordered by bottom loss are

presented and parameterized as the basis for data simulation (Sec. 2.2.1).

Chapter 2 also details the data simulation process and the different sound sources used with

deep learning to differentiate seabed types and provide predictions on source parameters. Two

different types of sound sources are used: pressure time-series recordings of explosive charges and

spectrograms of surface ships. Explosive charges have been useful for seabed characterization35 as

an impulsive source.36 Surface ship sources have also been used for seabed characterization37–40

as a well-modeled broadband noise source.41 Example simulations of the different sound sources

are also presented to demonstrate how environmental and source parameter differences change the

received sound. For both of these source types, the deep learning methods are trained on simulated

data then tested on both simulated and measured data.

Chapter 3 is a preliminary study using simulated explosive sound source recordings using

feed-forward neural networks (FNNs) and convolutional neural networks (CNNs). It compares
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the results between the two network types when both utilize pressure time-series as inputs (Sec.

3.3). The work presented in this chapter was submitted and published in Proceedings of Meetings

on Acoustics under the title "A convolutional neural network for source range and ocean seabed

classification using pressure time-series."42

Chapter 4 extends the study in Ch. 3 by applying the networks to measured explosive charges.

This study shows how well the CNNs can generalize training on only simulated data by application

to measured data (Sec. 4.3). The standard is also set and used for the rest of the studies of

training multiple networks of the same architecture to provide a better statistical analysis of network

performance (Sec. 4.3.2). The work presented in this chapter was published in JASA Express Letters

under the title "Seabed and range estimation of impulsive time series using a convolutional neural

network."43

Chapter 5 continues the work of Ch. 4 by examining potential impact of ocean variability on the

CNN performance. Specifically, the effect of using training datasets simulated with different degrees

of ocean variance is evaluated for CNNs making predictions on measured pressure time-series

explosive charges. Two simulated datasets are presented, where one contains upward-refracting,

downward-refracting, and isovelocity ocean sound speeds with a single ocean depth and the other

contains multiple ocean depths but only contains upward-refracting ocean sound speeds (Secs. 5.2.1

and 5.4). The work presented in this chapter constitutes the first time deep learning is applied to

both source range and seabed type and is being prepared for submission to the IEEE Journal of

Oceanic Engineering.

Chapter 6 shifts to the moving surface ship sound sources and provides preliminary evidence

that deep learning methods can learn to make predictions on seabed type, ship speed, and closest

point of ship approach (CPA range). Due to the lack of measured data, this study also shows

model validation on separate training datasets with source parameters near and extending beyond

the original bounds of the training set. The trained models are then applied to the one available
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measured data sample. At the time of writing, the work presented in this chapter is being prepared

for submission to The Journal of the Acoustical Society of America’s special issue on machine

learning.

Chapter 7 summarizes the main conclusions from the research presented in this thesis. Addition-

ally, a summary of additional future work is given.



Chapter 2

Methods

2.1 Machine Learning Background

Machine learning is a data analysis method that builds predictive models (networks) through the idea

that systems can be dynamically learned from data through the identification of patterns. In recent

years, machine learning interest has exploded as computational hardware has increased in speed

and capacity. Though multitudes of model architectures, techniques, optimizations, and methods

are being published in the community almost daily, only a subset of deep learning approaches are

used throughout this thesis. Because deep learning is a relatively new field in underwater acoustics,

the feed-forward neural network (FNN) and convolutional neural network (CNN) methods are of

particular interest. FNNs and CNNs are also convenient because of their relative simplicity in

implementation.

The FNN44, 45 is an artificial neural network that takes a set of inputs and maps them to outputs

through learned linear transformations. This neural network is typically organized by a number

of layers of "neurons" (a vector of numbers) where the first layer is the input, the last layer is the

output, and any layers between are hidden layers. The particular value of a neuron at layer j is given

8
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by O j through the following:

O j = f (net j), (2.1)

net j =
nodes

∑
i=1

wixi +b (2.2)

where wi is the weight applied to the previous node output xi, b is a bias term, and f (net j) is an

activation function chosen by the network designer (such as a sigmoid function or a rectified linear

unit46). The network learns these weights and biases through iterative steps by calculating the

error of predictions against the true output (known commonly as "loss"). This loss value is then

used through back propagation (a gradient descent algorithm throughout all values) to update the

parameters. The number of layers, the number of neurons, and other such values that must be

decided before training are known as hyperparameters and are generally chosen through trial and

error.

FNNs are useful for learning on data features that are representative of any raw phenomena,

but they begin to fail on grid-structured data (verified by a preliminary investigation published as

Van Komen et al.47 in Proceedings of Meetings on Acoustics). Grid-structured data are represented

discretely across an independent axis, such as time or frequency. Example’s of grid-structured

data in acoustics include pressure time-series data and spectrograms (pressure information divided

into frequency bins via a Fourier transform across time). Features such as peak signal amplitude,

average amplitude, or any other number of descriptions of a signal, are useful for describing acoustic

phenomena but must be extracted either through determined algorithms or by hand. Raw grid-

structured data, such as pressure recordings, are data rich and could contain features that a deep

learning model can use to make better predictions.

The models used to handle grid-structured data throughout this thesis are CNNs.48 CNNs have

significantly more hidden values and parameters throughout multiple layers of the network than

shallow models, like a simple FNN. For example, some of the most common CNN-based networks in

the literature have millions of learnable parameters, like AlexNet,49 VGGNet,50 and GoogLeNet.51
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The CNN uses a "convolution" that slides a learned filter across the data and calculates the dot

product between the values of the filter with the input data. The convolution operation produces an

activation map that can then be passed through another set of convolutions or directly input into a

FNN (though the final combined network is still referred to as a CNN). CNN parameters are learned

through the same iterative method as FNNs: loss calculation and backwards propagation through a

gradient descent algorithm.

This thesis shows that CNNs have significant potential for classifying ocean seabeds and

predicting source information from time-series pressure and spectrogram data.

2.1.1 PyTorch Framework

To implement the deep learning models and facilitate learning without needing to program all of

the mathematical transformations, the open-source deep learning framework PyTorch was used

throughout the studies presented in this thesis. PyTorch was written with "Pythonic" (follows

accepted Python standards) syntax for usability and provides a simple interface into the CUDA

libraries to interface with GPU hardware to accelerate learning. PyTorch includes a vast library of

common mathematical operations used in deep learning, data processing tools, learning algorithms,

and other tools necessary to build and train a machine learning model.

Appendix C contains a configuration file with all available options for the codes used for CNN

learning. Each of the subsequent chapters contain details about the particular model structure and

other operations used within PyTorch.

2.2 Synthetic Data Generation

Due to the lack of labeled field data and the need to generate sufficient amounts of training data

for deep learning, synthetic data are generated. The synthetic data depends on (1) the source type
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and (2) the ocean environment. For the studies presented in this thesis, two different types of noise

sources are simulated in different ocean environments. The first source type is known as Simulated

Underwater Sound (SUS)35, 36 sources, which are explosive charges detonated at certain depths in

the ocean. The second type is ship of opportunity (SOO) spectrograms. These two sources provide

different types of data to be used in CNNs as the SUS charges are pressure waveforms represented

only in time while the SOO spectrograms give pressure information across time and frequency.

To simulate the sound propagation through an ocean environment, the range-independent normal-

mode model for acousto-elastic ocean environments ORCA2 is used to calculate the mode functions

at discrete frequencies. These mode functions can then be used to calculate the ocean response or

Green’s function that can be combined with source information to calculate a received signal. This

response is also calculated with the assumption of azimuthal symmetry in cylindrical coordinates.

David Knobles provided an initial MATLAB script for the data simulation, and all subsequent code

that handles data generation relies on that original code.

The factors that affect sound travel are (1) the water depth, (2) the sediment layers on the sea

floor and (3) the depth-dependent sound speeds in the ocean. Although the ocean contains an infinite

variety of seabeds, these initial studies use a consistent set of seabeds. Four "canonical" seabeds

were identified from the literature with different sediment layers for the ocean simulation. These

seabeds are labeled as (1) deep mud, (2) mud over sand, (3) sandy-silt, and (4) sandy. The "deep

mud" environment (seabed 1) comes from geoacoustic inversion on data from the Gulf of Mexico

by Knobles et al.11 The "mud over sand" environment (seabed 2) comes from maximum entropy

statistical inference on data collected during the SUS circle experiments in SBCEX.13 The "sandy

silt" environment (seabed 3) comes from geoacoustic inversions done in the New England Bight by

Potty et al.52 The "sand" environment (seabed 4) comes from a study on sandy seabeds done by

Zhou et al.53 The parameters from those papers were then input into ORCA to calculate the normal

modes. A visualization of these seabeds and their parameters is shown in Fig. 2.1.
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(a) Deep mud (b) Mud over sand (c) Sandy silt (d) Sand

Figure 2.1 Parameterization of the four canonical seabeds. The thicker black lines indicate
the depth-dependent sound speed. The attenuation, α , and density, ρ are listed in the
legend with subscripts indicating water (w), layers (1-3), and the lower half-space (hs).
These environments increase in reflectivity and are numbered 1 through 4 from left to right
for the use of the machine learning algorithms.

These seabed diagrams show a vertical "slice" from the surface of the ocean to the sediment

layers that constitute the ocean floor. The water column (in blue) has a dashed line showing a

representative sound speed profile, typical of a shallow ocean. The water is assumed to have constant

attenuation, αw, and density, ρw, listed in the legend. Each sediment layer l is parameterized by

a thickness hl in meters, compressional sound speed cl at the top and bottom of the layer in m/s,

density ρl at the top and bottom in g/cm3, and compressional attenuation αl at the top and bottom

in dB/λ . The bottom boundary, or half-space (hs), is defined by the compressional sound speed,

attenuation and density. These parameters are all fed into the normal mode model ORCA to simulate

the frequency-dependent response of the ocean.

Propagation in the ocean water also needs to be modeled when simulating data. The most

important property is sound speed profile (SSP) which contains the sound speed associated with

each depth point. In general, the SSPs for the studies presented in this thesis are based off of
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measurements taken during the 2017 Seabed Characterization Experiment (SBCEX 2017).54 These

SSPs are nearly linear with a slight positive slope and range between 1469 and 1472 m/s. The water

depth over the area measures between 72 and 78 m deep. The exact sound speed profiles used when

generating data are detailed in the studies presented in later chapters.

With the ocean environments (including the seabed and SSPs) parameterized, simulations are

then performed to simulate SUS charges and SOO spectrograms. What follows in this section is

a basic description of how the synthetic data generation script works and how it handles the two

different types of sources.

2.2.1 General Procedure for Data Generation

Organization for the data generation script is necessary to effectively create large datasets. First,

the data generation script reads multiple inputs through a configuration file. These inputs dictate

parameters such as which source type to use, the length of the data, the positions of receivers,

source-receiver ranges, seabed types, ocean sound speed profiles, and more. The program then sets

up the parameters it needs for calculations later, like frequency arrays and time arrays. Then the

simulation process loops through all seabed and SSP combinations.

For each combination, the program then loads in the seabed and SSP parameterizations and then

calls ORCA to obtain the mode functions (φ(z), where z is depth in the ocean) for each frequency

requested. The mode functions are then used to calculate the Green’s function for that particular

environment. Equation 16 in Ref. [2] shows how the calculated modes are summed to form the

pressure field, p(r,z) produced by a source at a depth zs:

p(r,z) =

√
2π

r
eiπ/4 1

ρs
∑
n

φ̄n(z)φ̄n(zs)eiknr
√

kn
(2.3)

where φn(z) is the n-th mode function evaluated at depth z, kn is the n-th mode eigenvalue, ρs is the

density at the source, and r is the horizontal range between source and receiver. The program then
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splits to simulate either the SUS charges or SOO spectrograms modeled as point sources. When it

finishes, it saves the data so that it can be loaded later for machine learning purposes.

2.2.2 SUS Charge Simulations

The SUS charge model as proposed by Chapman36 and refined by Wilson et al.35 was used to

mimic the charges that were recorded at SBCEX 2017. The model provides a pressure time-

series representation of the charge’s source signal at a range of 1 meter. This time-series signal

is converted to the frequency domain via a Fourier transform. This spectrum is multiplied by

the Green’s functions at each frequency. Then an inverse Fourier transform yields the simulated

pressure time-series. This process is done across all selected SUS charge depths and specified

source-receiver ranges. Information about the specific ranges and source depths are provided in

subsequent chapters for the studies performed.

An example of the simulated SUS charges across three different source-receiver ranges for all

four canonical seabeds are shown in Figure 2.2. This figure demonstrates differences in received

sounds with these different seabeds and ranges. As range increases, the amplitude of the received

signals drop as expected. The simulated signals also show the relative reflectivity of the chosen

canonical seabeds as the received pressures with the sandy seabed are much louder than those in

the deep mud seabed. The shape of the signals and their ringing are also distinct across seabed and

range. If these differences between seabed and source-receiver range can be seen by the naked eye

in plots like these, then a CNN should be able to make the predictions as well. A comparison to

measured SUS charges can be seen in Fig. 4.1. Studies involving predictions with SUS charges like

these are discussed in Chapters 3, 4, and 5. These studies use normalized levels which discards the

relative amplitude information resulting in a more challenging problem.
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Figure 2.2 Simulated SUS charges for four different seabed types (rows) and three different
source-receiver ranges (3, 8, and 13 km, columns). These signals were simulated at a
source depth of 18.3 m below the surface of the ocean. Note the different pressure scales
in the y-axis for the signals.



2.2 Synthetic Data Generation 16

2.2.3 Ship of Opportunity Spectrogram Simulations

The SOO spectrograms differ from the SUS charges because they have dependencies in both

frequency ( f ) and time (t). The source spectrum of radiated ship noise is simulated using the

ensemble source model described by the equation in Sec. 3 of Wales and Heitmeyer.41 This

equation provides the sound pressure level (SPL) spectrum across frequencies in dB re 1µPa/
√

Hz,

which needs to be converted back to complex pressure densities. The following transform is applied

to convert to pressures:

P( f ) = pref10SPL( f )/20 (2.4)

where pref is 1µPa. Since phase information is not available through SPL, a random phase is added

to make the P( f ) complex. Each random phase is selected between 0 and 2π and applied through

Euler’s formula to convert the absolute pressure density P( f ) to a complex pressure density P̃( f )

with random phase. Due to the slow speed of the ship, the range of the ship varies slowly, so the

Doppler shift effects can be ignored (see Eq. (2) in Ref. [55]).

The challenge with SOO simulation is calculating source-receiver range as the ship moves. The

ship is assumed to travel with a constant velocity in the y direction over a specified time window

(Fig. 2.3 shows the perspective). To calculate the horizontal source-receiver ranges, the closest

point of approach (CPA) is assigned to the center of the time window, then the starting point (at the

bottom of Fig. 2.3) is determined that keeps CPA in the center. As the y position changes through

time, the range is calculated at each discrete time step, t. For each range calculated, P̃( f ) is drawn

(with new random phase each time) and multiplied by the Green’s function for each particular range.

This creates a matrix of complex pressures P( f , t) where ¶i j = P̃( fi, t j).

This procedure is repeated across all seabed and SSP combinations for multiple different ship

speeds and CPAs to create a simulated dataset. Figure 2.4 shows generated ship spectrograms for

the four canonical environments with three CPAs of 3, 8, and 13 km and the same speed of 15 kts.

The large "U" shape for the CPA of 3 km is distinctive of SOO spectrograms and the curvature
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Figure 2.3 A simple diagram of a ship of opportunity’s motion in relation to the receiver.
This diagram is shown as if the viewer is looking down on the ocean surface. The ship is
traveling with a constant velocity in the y-direction and the ship-to-hydrophone range is
calculated for each time step.

of the "U" is related to the distance and ship speed. The levels decrease as CPA increases, as for

the SUS charges in Fig. 2.2. The "U" shape also flattens out considerable as CPA increases, as all

ship-reciever ranges are much closer to the CPA than at nearer CPAs.

To visualize the difference between speeds, another set of simulated spectrograms are presented

in Fig. 2.5. In these spectrograms, the CPA is 3 km and the speeds are 5, 15, and 25 kts. The first

noticeable difference between the different shapes is the sharpness of the "U" shape increasing and

speed increases.

SOO spectrogram plots do not show environmental differences as easily as the plots for SUS

charges do (see Fig. 2.2). At the frequencies shown, the deep mud and mud over sand environments

have very similar shapes and levels. Some differences can be noted by the naked eye, such as deep

mud levels decreasing more at the edges of the plots than mud over sand. The differences in sandy

silt and sandy are even harder to detect in the pictures, though some small differences can be seen

upon close inspection (particularly near the edges and the faint differences between lines). The

similarity between spectrograms for pairs of seabed types provides a challenge for the machine

learning models to distinguish between the different seabeds. Chapter 6 is a study using simulated
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Figure 2.4 Simulated SOO spectrograms for four different seabed types and three different
values of closest point of approach (3, 8, and 13 km). For these spectrograms the simulated
ship is traveling at a constant velocity of 15 knots.
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Figure 2.5 Simulated SOO spectrograms for four different seabed types (rows) and three
different ship speeds (5, 15, and 25 kts, columns). For these spectrograms the simulated
ship’s closest point of approach is 5 km.
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and measured SOO spectrograms to distinguish seabed type and predict CPA and speed. In that

study, the source level of the measured SOO spectrogram at 1 m was unknown (S0 in the equation

in Sec. 3 of Wales and Heitmeyer41), so the spectrograms were normalized which discards range

information in the relative amplitudes.

2.3 Summary

The deep learning methods presented in Sec. 2.1 are used throughout the rest of the studies in

this thesis. Each study reports specific hyperparameters used to set up the models and during

training. Simulated data methods presented in 2.2 are used to generate datasets used for training and

validation of the machine learning models throughout all studies in this thesis. The four canonical

seabeds used in this study are shown in Fig. 2.1. As with the models, specific source parameters

used to generate the data are explained within their respective studies.



Chapter 3

Study: Preliminary Work using SUS

Charges

The first tests using SUS charges were done using only simulated data. A feed-forward neural

network (FNN) attempt that compared learning on extracted features and learning on pressure

time-series was published in Proceedings of Meetings on Acoustics.47 The results from that study

indicated that FNNs perform better on extracted features than on the time-series waveforms. The

next study shifted to using convolutional neural networks (CNNs) on the pressure time-series and

was published as a separate article in Proceedings of Meetings on Acoustics as "A convolutional

neural network for source range and ocean seabed classification using pressure time-series" in

December 2019.42 Comparisons between FNNs and CNNs were also shown in this work. The

relevant work from that paper is presented in this chapter. The introduction (Sec. 3.1) of this work

has been reduced for inclusion in this thesis as Chapter 1 contains a more exhaustive literature

review.

21
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3.1 Introduction

The goal of this paper is to expand beyond using a simple feedforward neural network (FNN)45 for

predicting environmental information from full pressure time-series through the use of convolutional

neural networks. This paper contains preliminary results on a simulated dataset. Future work will

use more sophisticated networks with simulated and real datasets.

3.2 Method

Predicting seabed type and source range with a CNN requires training data. This section illustrates

how the data were generated, how specific features summarizing the data were selected, and how

the network was designed for this problem.

3.2.1 Data Simulation and Feature Extraction

For this experiment, data were generated with SUS36 charges in environments simulated by the

range-independent ocean model ORCA.2 The four different environments (muddy, mud over sand,

sandy slit, and sand) are shown in Figure 2.1. The charges were simulated at 30 equally-spaced

ranges (r = 0.5−15 km) away from a receiver. The charges were also simulated at three different

depths (zs = 4, 18.3, or 35 m). The environment type, range value, and explosion depth are the

values that the network attempts to learn to predict. In the case of regression, the network attempts

to predict the actual values independently as a regression problem, though the classification case

attempts to predict which unique combination of values the sample belongs to.

The SUS charges were also simulated with 20 different water column profiles sampled from real

and typical shallow-water measurements in an ocean 80 m deep to provide variability in the samples.

The signals are approximately 14 seconds at a sampling rate of 1,000 Hz making each consist of

approximately 14,000 discrete pressures. The 14 seconds was chosen to maintain absolute travel
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time within the signal which provides extra information about the range.

Before the data goes into the network, the dataset first needs to be normalized. For this particular

case, the data were normalized by the absolute maximum of the entire dataset. This normalization

not only places all values between -1 and 1, but it also maintains relative amplitude across the whole

dataset. Another method considered is normalizing each sample individually by its own maximum,

but in that case the relative amplitude information is lost.

3.2.2 Convolutional Neural Network Topology and Hyperparameters

The CNN used to predict environment and source range was built in Python with the PyTorch56

package. PyTorch1 is an open-source deep-learning platform that uses native Python syntax to

quickly prototype, train, and test networks of any configuration. PyTorch also automates the

required algorithms to perform gradient descent, learning rate scheduler components, and other

useful algorithms making it ideal for proof-of-concept and production work. The CNN used

consisted of 4 convolutional layers and 2 linear operations. The hyperparameters corresponding to

each of the network layers can be found in Table 3.1.

The network was trained with the Adam optimizer57 using a learning rate of 0.001 that annealed

via a cosine function (a function included in PyTorch56) over 1,500 epochs. The loss function

chosen was mean squared error loss,58 which is useful for predicting the true physical values through

regression. The learning rate was annealed to allow the network to approach the optimal weights

early in training and then refine them later in training. The 7,200 data samples were split into

training and testing datasets with a random 80/20 split (5,760 training samples, and 1,440 testing

samples randomly divided each training instance). The results of training this network are shown

using 1,440 testing samples not used during training.

1More information about how to use PyTorch can be found on their website at https://pytorch.org/.

https://pytorch.org/
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Table 3.1 Details of the CNN. Layers in the network along with operation type, kernel
size, number of channels, stride, and what type of activation function was used at the end
of the layer. In the case of the linear operations, the kernel size indicates the number of
output nodes. "Conv1D" is an abbreviation for one-dimensional convolution.

Layer Layer Operation Kernel Size Channels Stride Activation Batch Norm

1 Conv1D 16 3 4 ReLU Y

2 Conv1D 8 9 4 ReLU Y

3 Conv1D 8 18 4 ReLU Y

4 Conv1D 8 27 4 ReLU Y

5 Linear 500 N/A N/A ReLU Y

6 Linear 3 or nclasses N/A N/A Linear or Softmax N

3.3 Results

The results have been divided into two sections. The first sections shows the performance of a FNN

on this dataset of simulated pressure time series. (A previous study with an FNN was limited to 135

data samples.47) The second section provides the results for the CNN detailed in Section 3.2.2 on

the dataset.

3.3.1 Feedforward Neural Network Results

To provide a baseline result, the dataset was input into a FNN. This FNN consisted of two hidden

layers with 5,000 nodes each, was trained across over 300 epochs, and predicted a number between 1

and 4 for a seabed type, and value in km for the source-reciever range of the signal. Figure 3.1 shows

the predictions the trained network made on environment class and source range independently

on the validation data. The colors in Figure 3.1 are used to show the density of the predictions

since there are over one thousand points on each plot. The FNN was asked to only predict the
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(a) Predicted vs correct environment. (b) Prediction vs correct range.

Figure 3.1 Prediction results from the FNN. There are 1,440 different points on these plots,
so the colormap scale shows the density of points (the darker the color, the denser the
scatter plot). When the environment predictions (Figure 3.1a) are rounded to the nearest
integer, an 85% accuracy is achieved. The source range predictions (Figure 3.1b) have a
RMSE of 1.19 km when compared to the true range. The dashed line shows the values
that would be obtained if the network made an exactly correct prediction.

environment number and the source range to better match the previous study on FNNs,47 where

more information about setting up a FNN can be found.

To determine the accuracy of the environment class, the predicted environment value was

rounded to the nearest integer and compared against the true environment. With this rounding, the

network was 85% accurate on environment. The network correctly identifies the first environment,

but as soon as more reflectivity is added, the network struggles, especially with the sandy silt and

sandy seabeds. However, the dark color near the correct answer indicates a high density of points

near there, so only a small number of these samples are actually incorrect as indicated by the 85%

accuracy. The source-receiver range predictions had a root mean squared error (RMSE) of 1.19 km

when compared to the true range. The FNN tends to over-predict the range until around 8 km and

then it begins to under-predict the range. However, the FNN still gets close to correct range on most

of the training samples.

If this FNN network was instead configured for classification, the FNN was 71.2% accurate on
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the 120 unique range-seabed classes. These results are significantly better than the results that used

pressure time-series instead of extracted features found in a previous study using FNNs.47 This

improvement could be due to the larger training dataset or the inclusion of absolute travel time in

the signals.

3.3.2 Convolutional Neural Network Results

The CNN was trained on the same dataset but was designed and trained to learn environment

number, source range r, and source depth zs. Figure 3.2 shows the results of the CNN on the same

size of validation dataset from a different random split. A visual indicator that the network has

learned well is how clustered the different values are and how dark the points get near the correct

answer line.

These figures show interesting trends when compared to the FNN. First, in Fig. 3.2, the

predictions all appear closer to the true value across all samples and all predictions. As for the

seabed environment prediction (as seen in Fig. 3.2a), there are several predictions that are outside

the dense cluster, but the majority are correctly predicted. The error in range prediction (as seen

in Fig. 3.2b) increases towards the min and max ranges, but are still relatively close to the correct

values. This increase is likely due to the fact that there are not training data points beyond these

extremes to help the CNN distinguish these ranges. In comparison with the FNN results, which had

some wildly inaccurate predictions, the CNN predictions are mostly correct or incorrect by only a

small margin. The source depth predictions (as seen in Fig. 3.2c) show a distinct grouping around

the correct source depth.

Comparison of the accuracy confirms the superiority of the CNN to the FNN. The RSME for

the CNN range predictions is 0.1798 km—an order of magnitude better than the predictions of the

FNN. The accuracy of the environment prediction is 97%, which is 13% higher than that of the

FNN. The CNN also predicts a third label, the source depth, with an RMSE of 0.7633 m. The CNN
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(a) Predicted vs correct environment. (b) Predicted vs correct range.

(c) Predicted vs correct source depth.

Figure 3.2 Prediction results from the CNN. There are 1,440 different points on these
plots, so the colormap scale is used to show density of points (the darker the color, the
denser the scatter plot). When the environment predictions (Figure 3.2a) are rounded to the
nearest integer, a 98.96% accuracy is achieved. The source range predictions (Figure 3.2b)
has a RMSE of 0.1798 km when compared to the true range. The source depth predictions
(Figure 3.2c) has a RMSE of 0.7633 m. The dashed line shows the values that would be
obtained if the network made an exactly correct prediction.
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performed much better than the FNN even when predicting an additional label.

The results described come from the CNN structured for regression, but the final output layer

can be modified for classification. Beforehand, each sample must be labeled into a class representing

its combination of source-receiver range, source depth, and environment. This creates 360 unique

classes for the network to learn. The same 80/20 training/testing data split was used. The CNN was

97% accurate in classifying the 1440 testing samples, which is 26% higher than the FNN on triple

the number of classes.

3.4 Conclusion

This paper has shown that CNNs have the potential to learn source range and environmental

classification from time-series waveforms. The CNN on the waveforms performed better than an

FNN applied to the same set of data. This improvement implies a significant advantage to using

convolutions on the grid-like structure of pressure time-series data. This study also lays the ground

work for developing deeper and more complex networks, such as U-net CNNs59 and recurrent

neural networks (such as long short-term memory networks60), which have also shown success

in image and speech recognition. Future work seeks to expand on these results by increasing the

amount of data, increasing the number of environments used, application of noise to training and

testing data, and applying the networks to real measured data.



Chapter 4

Study: CNN Predictions on Measured SUS

Data

The study presented in this chapter extends the work done with CNNs in Chapter 3 by applying

trained CNNs to measured SUS data. The contents of this chapter were published in JASA Express

Letters as "Seabed and range estimation of impulsive time series using a convolutional neural

network" in April 2020.43 The introduction (Sec. 4.1) of this work has been reduced for inclusion

in this thesis as Chapter 1 contains a more exhaustive literature review.

4.1 Introduction

In this paper, a machine learning model known as a convolutional neural network (CNN) is used to

simultaneously predict source range and seabed type. This CNN is trained on synthetic pressure

time waveforms and, as a proof of concept, applied to waveforms measured on a single pressure

sensor1 from an impulsive SUS source35, 36 in the New England Mudpatch during the 2017 Seabed

Characterization Experiment (SBCEX2017).

29



4.2 Background and Methodology 30

4.2 Background and Methodology

Several steps are needed before a CNN can simultaneously predict source range and environment

type on a real-world measurement. First, the CNN training data needs to reflect the real-world

testing data and incorporate the variability likely to be found. The real-world testing data used in

this work is described in Sec. 4.2.1. Second, due to the lack of real-world labeled data, simulated

training data was generated using a verified source spectrum and a propagation model, as described

in Sec. 4.2.2. Finally, the training data are used to tune the hyperparameters of the CNN. The CNN

model architecture and tools used to build and train the model are presented in Sec. 4.2.3.

4.2.1 Intensity Vector Autonomous Recorder in SNCEX2017

SBCEX201754 was conducted on the New England Mud Patch centered at [408′N, 705′W] in

spring of 2017. The Intensity Vector Autonomous Recorder (IVAR) system deployed by the Applied

Physics Laboratory, University of Washington recorded the waveforms of SUS Mk64 charges

deployed at ranges of 2-13 km. Three to five SUS were deployed at each location. More details

about the system, the recordings, locations of the SUS stations, and the experiment conducted can

be found in Ref. [1].

While IVAR has multiple sensors for measuring both pressure and particle velocity, the data

used here are restricted to the pressure sensor located 1.32 m above the seabed. Examples are

displayed in Fig. 4.1(a) and (b). Because the signals were downsampled to 5000 Hz and isolated to

one second, the simulated training data are each one second long and have a sampling frequency of

5000 Hz. To facilitate the generation of trained data for this study and to provide proof of concept,

only the data collected from a single pressure sensor IVAR was used; additional SBCEX2017

sensors can be used in future studies.

The environment at SBCEX2017 informed the simulation of the training data. The SUS charges
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Figure 4.1 Normalized pressure waveforms measured on IVAR from SUS station S54 (a),
and S42 (b) (the exact positions are shown in Fig. 3 of Ref. [1] Fig. 3) and two simulated,
normalized waveforms, in a representative environment, at 2.5 (c) and 6.5 km (d) away
from the source.

were deployed in an area with an average ocean depth of 74 m and a nearly isospeed sound speed

profile in the water (as seen in Fig. 2(b) in Ref. [1]): varying from 1467.8-1468.6 m/s. The New

England Mud Patch has an uppermost sediment layer consisting of fine-grained mud-like material.61

Thus, training data are simulated for a variety of linear sound speed profiles and four different of

seabed types, one of which was inferred from the analysis of the SUS waveforms on a different

receiving array.13

4.2.2 Synthetic Data Generation

Machine learning models require a significant amount of training data to identify and learn patterns.

Because of the lack of labeled field data, synthetic training data is used. The range-independent,
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normal-mode model ORCA2 model was used to generate the ocean’s impulse response at frequencies

up to 2500 Hz. This impulse response is convolved with a simulated SUS Mk64 signal spanning a

bandwidth of 5-2500 Hz to produce the simulated time-series waveform using the model in Wilson

et al.35 Examples of the simulated samples are shown in Fig. 4.1(c) and (d).

The time series were simulated using four different seabeds representing deep mud, mud over

sand, sandy silt, and sand environments. The "deep mud" environment comes from a study done in

the gulf of Mexico by Knobles et al.11 The "mud over sand" environment comes from maximum

entropy statistical inference on data collected during the SUS circle experiments in SBCEX.13 The

"sandy silt" environment comes from geoacoustic inversions done in the New England Bight by

Potty et al.52 The "sand" environment comes from a study on sandy seafloors done by Zhou et al.53

A visualization of these seabeds and values for sound speeds, densities, and attenuations is shown

in Fig. 1 of Van Komen et al.42

A variety of sound speed profiles were also used in the simulation to expand the training

dataset. Fifty different linear, downward-refracting sound speed profiles were used with water

depths between 73-75 m, representative of the measurements taken at SBCEX2017. These profiles

(spanning 1465 - 1470 m/s) were selected to add variability that was present in the measurements.

This variability also allows the machine learning model to better generalize the internal feature

extraction used for prediction.

Source and receiver parameters were selected to cover the variability in the measured IVAR

data. The signals were simulated to be received on a hydrophone located 1.3 m from the ocean

floor at ranges between 0.5 and 15 km at 0.5 km intervals. The true IVAR-to-SUS charge ranges (as

reported by station locations in Ref. [1]) were not used in the simulations so as to test the model’s

ability to generalize on the range label. Because the nominal source depth of the SUS charges is

18.3 m, the simulations were performed at eight different source depths spanning 10.3 to 24.3 m

from the surface to account for any variability.
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With the four seabed types, 50 sound speed profiles, 30 ranges, and eight source depths, a dataset

of 48,000 signals was generated. The one-second signals, normalized and sampled at 5000 Hz, were

aligned with the arrival time occurring at approximately the same time in each sample, as illustrated

in Fig. 4.1. Thus, the data contain no information about absolute travel time or absolute amplitude.

4.2.3 Machine Learning Model Architecture and Training

The machine learning model employed in this study is a Convolutional Neural Network (CNN). A

CNN is chosen due to its ability to find patterns in gridded data, which makes it an ideal candidate

for analysis on time-series waveforms. Using a CNN also eliminates the need for data preprocessing

because a CNN learns to extract features necessary for accurate predictions. More information on

CNNs can be found in Goodfellow et al.58 The CNN architecture used in this study is a simple

network with four convolutional layers and two fully connected layers and is the same network

architecture found and explained in more detail in Van Komen et al.42

To implement and train the machine learning models, the Python package PyTorch62 is used.

PyTorch automates many of the functions used in machine learning for developing and training

models and provides an interface for learning on a GPU, a necessity for training quickly on 48,000

training samples. PyTorch also provides the algorithms needed for the models to learn, such as the

Adam57 optimizer used to train the network’s weights.

The dataset of 48,000 simulated signals were labeled with the source-receiver range (in km) and

a number representing the seabed type. The dataset was randomly divided into a training-validation

split of 95%/5%, leading to 45,600 training and 2,400 validation samples. This split was chosen

because the final testing dataset is the IVAR signals. Validation errors for this network are reported

in Van Komen et al.42

For a single training session, the CNN was trained over 200 epochs. The learning rate began at

0.001 and was annealed via a cosine function to allow the algorithms to make large adjustments in
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the early epochs and then make smaller adjustments in the later epochs. These hyperparameters

were selected over several trial runs and led to sufficiently low validation error; the results on the

IVAR SBCEX2017 data (Sec. 4.3) also confirm the selections. Unfortunately, there is no special

formula or method for selecting hyperparameters, so there is a possibility that other hyperparameters

could give more precise results, but for the sake of consistency, these parameters were chosen and

used across all tests in this study.

The network was trained multiple times to get a broader picture of the potential the CNN has to

make predictions on the IVAR SBCEX2017 data. This process of training multiple networks was

chosen to account for the random initialization of weights and the random training-validation split.

Ten instances of this training-validation split led to ten different networks that were then applied

to the IVAR SBCEX2017 data. The predictions from these ten different networks are shown and

discussed in Sec. 4.3.

4.3 Results and Discussion

The results section has been divided into two subsections: results from a single trained network

applied to the IVAR SBCEX2017 data and results from multiple trained networks. The division of

the results is to illustrate how different random initializations and splits of training data can lead to

different predictions. The network, in all cases, attempts to make predictions via regression and

outputs two values for each sample: the range (in km) and a number representing the seabed type.

4.3.1 Individual Network Results

After training the CNN on the simulated data, the 37 IVAR SBCEX2017 data samples were passed

through the network to obtain predictions of range and seabed type. The predictions of the CNN

from two separate networks are shown in Fig. 4.2. The predicted ranges are compared to the
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Figure 4.2 (color online) Predictions from one training instance of the CNN on the 37 data
samples of SUS signals recorded on IVAR. The "True Range" corresponds to the measured
distance; the diagonal dashed line indicates where the "ideal" predictions should lie. The
color/symbol indicates the predicted seabed type. The red pluses indicate the "sandy"
seabed, the blue diamonds indicate the "sandy-silt" seabed, and the green squares indicate
the "mud over sand" seabed while the black crosses indicate an environment out of scope.

measured IVAR-to-SUS ranges spanning 2-12 km. If the network predictions matched the true

ranges, the points would lie exactly on the diagonal line. In both cases, the signals of range 7 km

and closer are overpredicted by the network, and those farther away are closer to the truth or slightly

underpredicted. In these cases, the root mean squared error for all range predictions is 0.84 in (a)

and 0.7 km in (b).

For each data sample, the CNN also yields a number corresponding to a prediction of the seabed

type. The predicted seabed type is a decimal number, which is rounded to the nearest integer to

easily display the results. In Fig.4.2, the different symbols/colors indicate which seabed type is

predicted. For the two cases shown, the CNN predicts that the signals farther than 5 km from

IVAR are identified as being from the "mud over sand" seabed (green squares), which most closely

resembles the New England Mudpatch area. However, the network is predicting environments that

are more reflective: the "sandy silt" environment (blue triangles), the "sandy" environment (red

pluses), and even a "5th" environment (black crosses) which does not exist for the closer ranges.

This variability likely ties to the physics of the sound propagation. One potential explanation is
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the variation in propagation paths. Another potential explanation is that the longer ranges sense

primarily the upper portion of the seafloor, and, when the range is shorter, deeper features of the

seafloor have more impact the propagation. Thus, the "mud over sand" seafloor represents what

influences propagation to ranges greater than 6 km, while the tendency towards a seafloor with less

bottom loss at short ranges indicates that the deeper features of the "mud over sand" seafloor are

likely too absorptive.

4.3.2 Multiple Network Results

After training and applying the network that produced the predictions shown in Fig.4.2, nine

more networks were trained to test how well the network architecture generalizes with multiple

initializations. The number of networks (ten) was selected because adding more instances did not

signficantly change the distribution of the results, which are displayed using violin plots. Violin

plots show the median (white dot), inter-quartile range (black rectangle), and the full distribution of

the data (in color). The violin plots for results from the ten trained networks are shown in Fig. 4.3,

where (a) shows the distribution of ranges and (b) shows the same for environment number.

The violin plots for range (Fig. 4.3a) show how well the network learned to predict IVAR-to-

SUS ranges using the simulated training dataset. The median ranges (white dots) follow the same

trend as the expected values. For several of the stations, the centers of the distributions are close to

the expected values (S54, S41, S42, and S37), while the other centers are off by 1-2 km, with closer

ranges (S60 and S40) being overpredicted and lonfer ranges (S36 and S44) being underpredicted.

These results show that network is learning how to predict ranges, though there is certainly room

for improvement.

The violin plots for seabed type (Fig. 4.3b), reflect the trend seen in the Fig. 4.2. For the two

closest stations (Stations S54 and S60 at approximately 2.4 and 3.3 km), the network never predicts

a seabed below three. The next two stations (S41 and S40 at 5.3 and 5.2 km, as well as some results
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Figure 4.3 (color online) Violin plots (a combination of probability density and box plots)
showing the distributions of the predictions a CNN made on IVAR data samples for a)
range and b) seabed type separated by SUS station number. (A map of the stations is
shown in Fig. 3 of Ref. [1].) The yellow diamonds show the expected values, with the
horizontal dotted lines highlighting the true range. The seabed types are numbered as 1:
deep mud, 2: mud over sand, 3: sandy silt, and 4: sandy.

from S42 at 6.2 km) also predict seabeds closer to three than the expected two. However, the results

for the remaining stations show the majority of their distributions approach the "mud over sand"

environment with some extension to the "sandy silt" environment. In addition, the distribution of the

seabed type predictions becomes narrower as range increases. These plots suggest that the network

learns how to predict the seabed type, but some additional information needs to be included in the

training dataset to increase the efficacy of the network at close ranges.

4.4 Conclusion

This paper has shown that a CNN can be trained on simulated data to make seabed type and

range predictions simultaneously on real-world data. As IVAR-to-SUS range increases, the mean

distribution of range predictions tends to be underpredicted as the environmental predictions tend

towards the correct seabed. At ranges less than 5 km, a more correct answer for range tends to be

coupled with a prediction of a more reflective seabed type. Although predictions from this network

are not perfect, these results show the potential for machine learning models to make range and
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seabed predictions simultaneously if the training dataset represents the variability of the real world

data. The violin plots shown here also provide one way of tracking uncertainty due to random

initialization of the network.

Future work will seek to improve the results by refining the simulated dataset to include more

variation in environment and range to allow for further generalization. For example, only downward

refracting sound speeds were used in this study, though some measurements also show that at

some locations an isovelocity profile was observed. This variation was not included in these

simulations, so a larger dataset that takes varying ocean sound speeds could prove beneficial. As

with all applications of machine learning, there is also the possibility of developing deeper and

more advanced networks to improve results.



Chapter 5

Study: Exploration of Different Training

Datasets on CNN Predictions

This study continues the work done by training CNNs with simulated SUS data and then making

predictions on measured SUS data. In this particular study, more attention is given to developing a

proper training dataset that accounts for variations in the measured data. The contents of this chapter

are being prepared for publishing in IEEE Journal of Oceanic Engineering with the tentative title

"A CNN for impulsive time series: Training data considerations." The introduction (Sec. 5.1) of this

work has been reduced for inclusion in this thesis as Chapter 1 contains a more exhaustive literature

review.

5.1 Introduction

This study seeks to use a CNN to simultaneously identify an ocean seabed type and predict source-

to-receiver ranges on measured data while only training on simulated data. This synthetic training

data consists of one-second pressure time-series from an signal underwater sound (SUS) charge.

Networks are trained and validated on these synthetic signals and then tested on signals recorded
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during the Seabed Characterization Experiment 2017. The impact of the training data on the seabed

type and range predictions is explored and yields several important lessons for future training of

deep learning algorithms in ocean acoustics.

5.2 Background and Methodology

Because applications of deep learning models are vast and varied, a discussion on the specific steps

and decisions made for this study is presented. The rationale behind the synthetic data generation

process as well as the inspiration for the synthesized environments are discussed in Section 5.2.1,

followed in Sec. 5.2.2 by a description of the choices made in preparing the simulated and measured

data for training, validation, and testing. Section 5.2.3 discusses the software packages used for the

deep learning algorithms as well as the network topology used for this study. Sections 5.2.4 and 5.3

address how the machine learning models were trained and tested.

5.2.1 Data Generation

The Sediment Characterization Experiment1 (SBCEX) was conducted on the New England Mud

Patch centered at [40◦28′N, 70◦35′W] in spring of 2017. The Intensity Vector Autonomous Recorder

(IVAR) was located in 74 m of water to measure SUS charges deployed at various locations between

2 km and 11 km in range during SBCEX. Though IVAR was equiped with multiple sensors, the

37 recorded pressure time-series data are used for testing the deep learning networks in this study.

The design and location of this SUS charge experiment (in an environment with a mud over sand

seabed13) inform the training data simulations.

Machine learning models require a significant amount of data for training to be able to identify

and learn patterns, and the 37 samples from IVAR are insufficient for training. To mitigate such

a limitation, synthetic data samples were generated for training. Using ORCA2 model, depth-
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dependent mode functions in range-independent environments are calculated through upward- and

downward-reflecting plane wave reflections instead of solving parabolic equations (such as the

range-dependent PE-RAM4, 5 software), resulting in a faster computation time. The calculated

mode functions can then be used to generate the Green’s function of the ocean for specified source

and receiver locations. The range-independent ORCA model is sufficient for this case because,

although the SBCEX seabed is not range independent, variations are gradual (See Fig. 3 in Ref.1).

Additionally, the frequencies used in this experiment do not exceed 2,500 Hz, and the maximum

range of the measured data is approximately 11 km. The frequency-dependent Green’s functions

are multiplied by the SUS charge spectral model and an inverse fast Fourier transform is performed

to obtain a pressure time-series waveform.

The simulated SUS36 charge model as proposed by Wilson et al.35 was used to mimic the

charges at SBCEX. The SUS charges were simulated at 30 discrete source-receiver ranges from

0.5 to 15 km at 0.5 km intervals. These ranges not only cover the measured ranges of 2-11 km, but

also provide data outside that range. The depth of the SUS charge was recorded to be at 18.3 m in

SBCEX, but to provide variability, the SUS charge depth was simulated to be between 10.3 and

24.3 m at 2 m intervals. The receiver was set to be at the measured IVAR depth of 1.32 m above the

ocean floor.

The ocean response from ORCA depends on the selected seabed and sound speed profile.

Although a myriad of possible seabed configurations exist, the goal is to test if a CNN can distinguish

between a few seabed types. Thus, in this investigation, four different seabeds—representing

deep mud, mud over sand, sandy silt, and sand—were used in the simulations. The "deep mud"

environment (seabed 1) comes from a study done in the gulf of Mexico by Knobles et al.11 The

"mud over sand" environment (seabed 2) comes from maximum entropy statistical inference on data

collected during the SUS circle experiments in SBCEX.13 The "sandy silt" environment (seabed 3)

comes from geoacoustic inversions done in the New England Bight by Potty et al.52 The "sand"
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environment (seabed 4) comes from a study on sandy seabeds done by Zhou et al.53 A visualization

of these seabeds and values for sound speeds, densities, and attenuations is shown in Figure 2.1.

The "mud over sand" seabed is the target seabed for the IVAR data as it comes directly from an

inversion performed at SBCEX.13 These four seabeds were chosen to be distinct and ordered from

least to most reflective.

To investigate the impact of training data on the network, two different simulated datasets

were used. The two datasets were generated with the different sets of sound speed profiles (SSPs)

shown in Fig. 5.1. In the first simulated dataset (SIM1), a static ocean depth of 74.4 m was chosen

to mimic an average depth of the ocean during the SBCEX experiment. The SIM1 signals were

generated for each of the 72 SSPs in Fig. 5.1a. This collection of linear upward refracting, downward

refracting, and isovelocity SSPs was selected to include a variety of propagation conditions The

second simulated dataset (SIM2) was generated with featured 50 sound speed profiles all upward

refracting with approximately the same slope as was measured during SBCEX 2017. The five

unique SSPs in Fig. 5.1b were assigned ten depths between 73 and 75 m to simulate ocean depth

variability. To test different variations, a third dataset was uses; the synthetic signals from SIM1

and SIM2 were combined to create a dataset denoted as SIM1+2 as a means for testing the impact

of training the models with all variations explored. The resulting differences provide insights into

considerations needed to generate a sufficiently representative training data.

This study seeks to predict between four seabed types and predict a range corresponding to the

data. With the four different seabeds, 30 ranges, and eight source depths along with the varying

ocean sound speed profiles, SIM1 had 69,120 signals and SIM2 had 48,000 signals. Although these

training datasets are smaller than some machine learning projects, which use hundreds of thousands

of samples in a single dataset, the sizes of these two datasets are considerably larger than the number

of real-world test samples (37).
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(a) SIM1 SSPs (b) SIM2 SSPs

Figure 5.1 (Color online.) The various sound speed profiles (SSPs) used to generate the
SIM1 and SIM2 datasets. In the SIM1 set, 72 various upward (dashed lines), downward
(dotted lines), and isovelocity (solid lines) profiles are used with a static ocean depth of
74.4 m. In the SIM2 set, only upward velocity profiles are used and the water depth varies
from 73 and 75 m, resulting in 50 SSPs for SIM2.

5.2.2 Data Preparation

After data generation, the data is prepared for input into the machine learning model. The primary

preparation step is data normalization. Normalization is important for efficient machine and deep

learning, especially when the inputs are large numbers. When input values have a large values and,

perhaps more importantly, large variance, a much longer time is required for the algorithm to learn.

The machine learning community does not have a "one-size-fits-all" solution for normalization, so

this study will use maximum normalization.

In this study, each synthetic signal was normalized by its own maximum. This normalization

removes relative pressure information across the dataset. This normalization was done primarily to

reduce training time as the weights would only need to learn how to handle small, unitless numbers

instead of large values in Pa. This approach also mimics common techniques in image-based

machine learning which normalizes pixel values to be between 0 and 1. However, this type of

normalization incurs a potential for a loss of accuracy as all variation in maximum amplitude due

to different propagation distances is lost as well. This hindrance further shows the power of the
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CNN to localize sources and classify seabed types on measured data by making the problem more

difficult to solve as the networks never see the true maximum value of the signals nor their relative

loudness. Normalizing by a static pressure value across all signals could have satisfied the need for

small inputs and preserved relative amplitudes, however, individual normalization was selected as a

way to test the network and because the real-world data were normalized in the same way.

In addition to the normalization, the time duration of each sample was reduced to one second.

After calculating a "direct" arrival time with the average sound speed in the ocean, the signals were

extracted so that the direct arrival time was at about t = 20µs. This extraction is another hindrance

for the network, as all absolute arrival time is removed through this process. The absolute arrival

time, like the absolute amplitude of the signal, provides range information. However, the removal

of travel time from the signals also supplies a more realistic example. As absolute time is often

not known, new signals could be extracted from a recording and quickly aligned in this manner.

Examples of the resulting normalized one-second pressure time series are shown in Fig. 1 in Ref X

(submitted JASA-EL, will update with proper reference before submission). These synthetic signals

form the training dataset.

5.2.3 Machine Learning Model and Software

For this study, a convolutional neural network (CNN) is used. A CNN uses the convolution operation

where a learned "filter" is slid across filtered data to find patterns. A CNN eliminates the need

for feature extraction preprocessing on the data as it finds its own "features" in the data. (More

information on CNNs can be found in Goodfellow et al.58) The CNN architecture used in this study

is a network with four convolutional layers and two fully connected layers (one hidden and one

output) with a rectified linear unit (ReLU) activation function after each internal layer. A regression

output trained via mean squared error is used for source range and seabed number. The exact

specifications of the network architecture can be found and are explained in more detail in Van
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Komen et al.42

The model was built, trained, and tested in the Python programming language. In particular,

the PyTorch62 open-source framework was used. PyTorch was written with a focus on usability

and speed which makes it a great candidate for prototyping models quickly and efficiently in native

Python while providing the tools to learn on GPUs. PyTorch includes a vast library of common

mathematical operations used in neural networks, data processing tools, and learning algorithms.

To train the network, the stochastic optimization method called Adam57 was used. As with the

procedure detailed in Van Komen et al.,42 a cosine annealing learning rate was used, though the

method of warm restarts as detailed in the original paper by Loshchilov et al.63 was not used as the

current PyTorch framework opted to not include that implementation.

5.2.4 Training the Model

The PyTorch library was used for training (in particular, Python 3.6.9 with PyTorch version 1.4.0).

To accelerate learning, an NVIDIA Tesla T4 was used during the learning phase. With a GPU,

training time decreases by a factor of 5 when compared to an Intel Xeon CPU e5-2630 with two

allocated processors (approximately 75 minutes to 15 minutes) on one of the datasets.

For the networks employed in this paper, a training period of 200 epochs was used for the SIM1

and SIM2 training datasets and 150 epochs for the SIM1+2 dataset (due to the increase in training

data samples, this was done to reduce computation time). The fixed number of epochs was selected

without early stopping to give each network the same amount of time to learn. Section 5.3.1 shows

the results of self- and cross-validation during and after training. Each instance of training had a

different random initialization of weights and used a starting learning rate of 0.001 and a batch size

of 32.
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5.3 Testing the Model

Simply training the model is not enough to know how well the model has learned. This section

provides a discussion on the methods used to evaluate the model’s performance and to provide a

baseline for how the model learns on the different datasets used in this study. Section 5.3.1 discusses

model validation which occurs using simulated datasets similar to the one used in training. Section

5.3.2 discusses model generalization through application of the trained networks to measured data.

Both the validation and generalization quantify performance with the same metrics. The first

metric applied for range is root mean squared error, RMSE =
√

∑
n
i=1(ŷi− yi)2/n with ŷi being the

prediction, yi being the truth, and n being the number of samples. The second applied for range

is mean absolute percentage error: MAPE = 1
n ∑

n
i=1(yi− ŷi)/yi. For seabed type, accuracy makes

more sense than RMSE or MAPE because of the discretized nature of seabed representation being

used. The accuracy is calculated by rounding the prediction to the nearest integer and determining

if it equals the target number defined in Sec. 5.2.1.

5.3.1 Validation

One measure to ensure the model learns is through a validation dataset. A validation dataset

generally comes from the same source as the training dataset or is a selection of the data not used in

training and is useful for determining how a model behaves during training. If a model does not

give satisfactory results on a validation dataset, there is little reason to believe that performance on

another dataset will be better.

While training, learning was paused at certain intervals, and the network was given the validation

dataset for making predictions and calculating loss values to monitor for potential overfitting. One

clear sign of overfitting is when the loss on the training data continues to decrease while the loss on

the validation dataset increases. This difference implies that the network is learning to model the
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training data too well and cannot accurately model other data. For the datasets in this work, both

the training and validation loss values continually decreased across all training periods, indicating

that that model was not overfitting during training.

k-fold Cross-Validation

The first method employed for network validation is the k-fold cross-validation method.64 This

method divides a dataset into k random blocks of near-equal size and then trains and tests k times.

During each of these tests, the network is trained on k−1 blocks of the dataset excluding one block

and then tested on the withheld block. The network is then reinitialized with random weights and

trained again with the next set of blocks repeated k−1 times.

The k-fold cross-validation method was performed with k = 4 for SIM1 and SIM2 datasets.

Networks trained on SIM1 predicted on average 99.89% of the seabeds correctly and obtained

a RMSE of 0.05 km on source-receiver range predictions. Networks trained on SIM2 predicted

on average 100% of the seabeds correctly and obtained a RMSE of 0.01 km on source-receiver

range predictions. According to these results, the network can more accurately make predictions on

holdouts from the SIM2 dataset when trained with data from SIM2. However, due to the differing

physics, these results do not necessarily mean that one dataset is better than another, so further

validation and testing is required.

Validation Across Datasets

Another validation method used involved training networks on one dataset and testing on the other

dataset. To calculate these results, ten instances of the CNN were trained on a 95/5% split for each

dataset. Multiple instances were selected to account for random initialization of network parameters

and to get a statistical average of the network’s potential. The results of these validation tests are

outlined in Table 5.1 and indicate the important connection between the variablity in the training
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Table 5.1 Validation results across multiple runs for the trained networks as defined in Sec.
5.3.1. The "Training" column refers to either "4-fold"(the k-fold cross validation method
outlined in Sec. 5.3.1) in the dataset indicated in the "Testing" column or the training
dataset that was then tested in the other dataset (detailed in Sec. 5.3.1).

Training Testing Seabed Accuracy Range RMSE

4-fold SIM1 99.89 % 0.0464 km

4-fold SIM2 100 % 0.00993 km

SIM1 Trained SIM2 99.99 % 0.185 km

SIM2 Trained SIM1 74.31 % 1.92 km

and testing datasets. These results show that SIM2’s collection of slightly upward refracting ocean

sound speed profiles does not contain enough variability to account for the propagation through

upward refracting and isovelocity profiles in SIM1 leading to mispredictions in the seabed and

source-receiver range. An interesting result from this validation is that networks trained on the

SIM1 dataset can make accurate predictions on the seabed and on average predict within 0.2 km on

the range even though the ±2 m variation in ocean depth in SIM2 were not included in SIM1.

With these validation results completed on the simulated datasets, the trained networks were then

tested on real-world data to show how the networks generalize what was learned from simulations.

The measured dataset is described in Sec. 5.3.2, and Sec. 5.4 shows the predictions of the trained

networks on that measured data to provide a case study that models trained on simulated data can

make reasonable predictions on real world data.

5.3.2 Generalization

To obtain generalization results, a dataset of measured SUS charge signals was used. The data was

recorded in an area of the New England Mudpatch centered at [40◦28′N, 70◦35′W] during the 2017

Seabed Characterization Experiment (SBCEX2017). The Intensity Vector Autonomous Recorder

(IVAR) system deployed by the Applied Physics Laboratory, University of Washington recorded
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Figure 5.2 (Color online.) Map of SBCEX stations. The encircled station numbers indicate
the stations included in the measured dataset. The large circle near the words "IVAR"
shows the location of the IVAR system. The color map indicates the mean water depth at
each position. This figure was originally published in Ref.1

the waveforms of small 31 kg SUS explosive charges deployed at ranges of 2-13 km. Figure 5.2

shows a map of the SBCEX experiment with circles around each of the stations selected for this

study. Three to five SUS signals were collected at each station for a total of 37 signals.More details

about the system, the recordings, and the experiment conducted can be found in Ref.1

While IVAR has multiple sensors for measuring both pressure and particle velocity, only signals

from the pressure channel located 1.32 m above the seabed in used in this paper. As with the

simulated training data, each sample of the IVAR data was normalized between -1 and 1. The results

of inputting the 37 IVAR samples into the trained CNNs are presented in Sec. 5.4.

5.4 Results and Discussion

The networks trained on the synthetic datasets are applied to 37 measured IVAR signals taken from

eight different ranges. For each synthetic dataset (SIM1, SIM2, SIM1+2), ten CNNs are trained for

simultaneous seabed type and range predictions. The predictions for seabed type and range from the

thirty different networks are presented in Secs. 5.4.1 and Secs. 5.4.2, respectively. For comparison,
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the networks were also configured and trained to predict either seabed or range in Sec. 5.4.3. The

comparisons across the datasets yields insights for future network training.

5.4.1 Seabed Prediction Results

First, comparisons are made between the seabed predictions. The seabed type predictions across

each station where the SUS charges were deployed are shown in Figure 5.3 as violin plots. A

violin plot contains the median prediction (white dot), a box and whisker plot (in black) to show

inner and outer quartile ranges, and a normalized distribution of the predictions (in color). The

distribution shows the probability density of the predictions, smoothed by a kernel density estimator.

The left-to-right order of the stations indicates increasing range. In the case of the IVAR data, the

"expected" value should be two. ("Expected" is used here instead of "true" due to the many different

parameterizations of the seabed from SBCEX.35)

A clear trend is consistent across all three training datasets in Fig. 5.3.: the seabed type

predictions approach seabed "two" for data from the farther the stations. For the first two stations

(S54 and S60 at approx. 2.4 and 3.3 km, respectively), the seabed type predictions are much closer

to four (the sandy seabed) and even approaching a "5th" seabed not included in training. The next

two stations (S41 and S40 at 5.3 and 5.2 km, respectively), as well as some predictions from S42 (at

6.2 km) are closer to three (the sandy silt seabed). The stations beyond S42 (S36 at 9.0 km, S37 at

9.0 km, and S44 at 10.9 km) give predictions much closer to seabed type two in all cases with the

SIM1 training providing the closest and tightest results.

This range-dependent trend relates to the discretized representations of the seafloor selected for

this work. At longer ranges, propagation is primarily influenced by upper portion of the seafloor,

while the closer ranges retain more information about propagation effects due to the deeper portions

of the seafloor. Thus, the "mud over sand" seabed parameterization more directly represents the

effective seafloor at ranges greater than 6 km, and the tendency of the network to predict a more
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(a) Networks Trained on SIM1 (b) Networks Trained on SIM2

(c) Networks Trained on SIM1+2

Figure 5.3 (Color online.) Seabed type predictions of 30 separate networks (ten for each
dataset trained to predict seabed and range simultaneously) on the measured IVAR data
taken at multiple stations. The horizontal axis shows the station numbers, which are
ordered from nearest to farthest source-receiver range. The vertical axis is the seabed type
number. These results are shown via violin plots, which show the median (white dot), box
and whisker blot (in black), and a normalized distribution of the predictions (the "violins"
in color).

reflective seafloor at the closer ranges indicates that deeper sediment properties are more reflective

than seabed type 2.

While the violin plots provide lots of visual information about the CNN predictions and uncer-

tainties, another way to quantify the performance is through seabed type accuracy and RMSE, as

described in Sec. 5.3 Table 5.2 provides accuracy (relative to expected seabed type 2) and RMSE

for the different networks trained with different simulated datasets in different modes. The results

in "Multi" prediction mode are used in this section, while the "Single" prediction mode results are
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Table 5.2 Seabed prediction errors and accuracy across training datasets and prediction
modes. The "Single" prediction mode refers to networks that were trained to only predict
on the seabed type while the "Multi" prediction mode refers to networks that were trained
to simultaneously predict both range and seabed types. The "accuracy" is calculated by
rounding each prediction to the nearest integer and comparing it to the expected value of 2
for the representative "mud over sand". Root mean square error (RMSE) helps quantify the
repeatability of the predictions. The bold values indicate the "best" errors and accuracy.

Training Mode Accuracy RMSE

SIM1 Single 80.45% 0.528

SIM1 Multi 49.19% 1.015

SIM2 Single 63.78% 0.833

SIM2 Multi 30.54% 1.305

SIM1+2 Single 88.38% 0.376
SIM1+2 Multi 42.70% 1.146

addressed in Sec. 5.4.3. From the rows labeled as "Multi" prediction mode, the networks trained

on SIM1 have the have the highest seabed accuracy, with an accuracy of 49% (over the 31% and

43% accuracy of SIM2 and SIM1+2 respectively). In all cases, however, the seabed accuracy is

improved when the network is trained only to predict seabed type, as discussed in Sec. 5.4.3.

5.4.2 Range Prediction Results

As with the seabed prediction results in Sec. 5.4.1, the range predictions are presented from the same

thirty different networks (ten for each of the three datasets trained for simultaneous range and seabed

predictions). Similar violin plots of the predictions sorted by station number are shown in Figure 5.4

so that the distribution of predictions can be easily seen for the hundreds of predictions presented.

For these stations, the diamonds and dotted horizontal lines indicate the true source-receiver ranges

for each station.

The training dataset makes a difference in the network predictions on range. The first observation
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from these results is that the networks trained on SIM1 (Fig. 5.4a) tend to overpredict the source-

receiver ranges, though the overprediction tends to decrease as the source-receiver ranges decrease

(S44 is much closer to the correct range than S54, for example). This overprediction is likely

correlated with the network’s tendency to predict a harder seabed for data from these stations. The

networks trained on SIM2 tend to make predictions much closer to the true range values, and Table

5.3 confirms that assessment (with a RMSE of 0.742 km vs. 2.197 and 2.132 km for SIM1 and

SIM1+2, respectively). However, the SIM2-based predictions tend towards underestimating the

farther ranges (particularly S44) though not by the same amount of overprediction seen in the

networks trained on SIM1 (at their worst). This improvement in training with SIM2 is possible

evidence that accounting for various ocean depths and less SSP variability helps the network learn

ranges more accurately.

An unexpected observation comes from the networks trained on SIM1+2 (Fig. 5.4c) when

compared to the other results (Figs. 5.4a and 5.4b). Deep learning models tend to be "data hungry,"

leading to a common thought that more data leads to better predictions. However, Table 5.3 shows

that the metrics of the combined SIM1+2 dataset in the "Multi" mode has a performance between

SIM1 and SIM2 rather than improved results. Perhaps the large number of variable SSPs and static

ocean depths provided by SIM1 overwhelmed the learning, making proper range predictions more

difficult. This evidence confirms that the quality of training data is an important factor in learning

and that the ocean variability included in simulated training data should be representative of the

real-world system that is being modeled.

5.4.3 Comparison to Individual Predictions

All of the previous tests were done with networks configured to simultaneously predict seabed

and range. To further investigate the potential of the networks to learn from these synthetic

datasets, another set of networks were trained to learn only one label: either range or seabed.
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(a) Networks Trained on SIM1 (b) Networks Trained on SIM2

(c) Networks Trained on SIM1+2

Figure 5.4 (Color online.) Range predictions of 30 separate networks (ten for each dataset
trained to predict seabed and range simultaneously) on the measured IVAR data taken at
multiple stations. These plots are similar to those in Fig. 5.3. The diamonds and dashed
lines represent the "true" source-receiver range at each station.

Though simultaneous prediction is more convenient, the thought behind this separation was that the

networks could learn to focus specifically on features or patterns closely associated with the single

specified label.

The results of the networks trained to only predict seabed are presented in Fig. 5.5 and

some immediate differences are seen when compared to the results of the networks trained for

simultaneous predictions (Fig. 5.3). The first difference is the tighter distributions of predictions in

all cases, but especially for the networks trained on SIM1 (Fig. 5.5a) and SIM1+2 (Fig. 5.5c) where

the seabed predictions for stations S41 and beyond are much closer to the expected seabed type

2. These tighter distributions appear to indicate the network learned something identifiable about
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Table 5.3 Range prediction errors across training datasets and prediction modes. The
"Single" prediction mode refers to networks that were trained to only predict on range
while the "Multi" prediction mode refers to networks that were trained to predict on both
range and seabed types. Two error values are presented here: root mean square error
(RMSE) and mean absolute percent error (MAPE). The bold values indicate the "best"
errors.

Training Mode RMSE MAPE

SIM1 Single 2.256 km 42.55%

SIM1 Multi 2.197 km 41.34%

SIM2 Single 0.704 km 10.41%
SIM2 Multi 0.742 km 10.99%

SIM1+2 Single 1.965 km 37.57%

SIM1+2 Multi 2.132 km 35.42%

the seabed. For the closest range, the very extended distribution likely means that none of the four

seabed types in the training data represent a reasonable effective seabed.

As confirmed by Table 5.2, cases of the "Single" (only seabed) predictions outperformed the

"Multi" (both seabed and range) predictions. The accuracy of seabed predictions increases by

approximately 30-45% across all training datasets. The RMSE also significantly decreases. Thus,

these networks make more accurate predictions on seabed type when only asked to learn one label

for this particular network design. As with the "Multi" predictions, SIM1 and SIM1+2 provide the

most accurate seabed predictions, with SIM1+2’s accuracy surpassing SIM1 by 8%. Thus, for the

seabed-only predictions, the larger variability of SSPs in the training yields tighter distributions

in seabed type predictions. This improvement in seabed prediction in "Single" mode could also

be explained by the relatively small network size, as there may not be enough parameters for the

network to learn how to predict both seabed type and range predictions simultaneously.

A similar comparison can be made with the range predictions. Distributions of results for the

range-only predictions are similar to the the "Multi" regression results in Fig. 5.4. In Table 5.3, the
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(a) Networks Trained on SIM1 (b) Networks Trained on SIM2

(c) Networks Trained on SIM1+2

Figure 5.5 (Color online.) Seabed predictions of 30 separate networks (ten for each dataset
trained to predict only seabed type) on the measured IVAR data taken at multiple stations.
These plots are similar to those in Fig. 5.3.

RMSE and MAPE are shown for the "Single" regression case. Results using SIM2 (identified as

the most accurate in Sec. 5.4.2) show an improvement of 0.04 km in RMSE and 0.58% in MAPE.

The nearly negligible improvement when the network only predicts the range is surprising as the

the seabed predictions demonstrated an enormous improvement by comparison when switching to

"Single" predictions.

A potential explanation for this small change could be in how the loss was implemented during

training these networks. A summed MSE loss function (MSE was calculated for each label and

then summed) was used in the "Multi" regression mode. Although the optimizer is attempting to

get that loss value to zero in training, the scale of the learn-able labels possibly caused the network

to focus on the label with the highest numbers. Each dataset has source-receiver ranges extending
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from 0.5−15 km while the seabed types extend from 1−4. A larger error in range would be more

apparent in summed MSE than a similarly-scaled error in seabed type. Potential fixes for this could

be to combine scaled errors for each label or scale the labels before training the network, both of

which are beyond the scope of this study.

5.5 Conclusion

The results of this study provide evidence that convolutional neural networks (CNNs) trained on

synthetic data have the potential to learn to make predictions on measured data, when care is taken

regarding the training dataset. Specifically, one-second, normalized pressure time series were

simulated for a variety of sound speed profiles, four seabed types, and a collection of source ranges

and depths. The resulting simulated datasets were used to train CNNs for seabed type and range

predictions. The trained CNNs were then applied to SUS charge signals measured during SBCEX

2017.

These results indicate that training on synthetic data is a reasonable start for making predictions

on real-world measurements. Sufficient measured data to train a deep learning model would be

expensive to collect and label, while simulated data only requires computer time. In this particular

study, the sizes of the simulated training datasets were several orders of magnitude larger than the

measured dataset on which final predictions were made.

This study has also yielded insights into considerations for generating simulated datasets to train

neural networks to make seabed type and range predictions. Both the source-receiver parameters

and the environmental parameters used in the simulations must account for the variability in the

measured data. In particular, seabed type predictions in this work were better when significant

variability was included in the water sound speed profiles used to generate the training dataset.

Source-receiver range predictions, however, improved when ocean-depth variability was included.
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This study highlights the importance of accounting for ocean variability in training machine and

deep learning algorithms for marine applications.

This paper also contributes to the discussion of how to honestly evaluate the performance of

machine and deep learning algorithms. Similar to many traditional optimization algorithms, most

machine and deep learning networks provide an answer without an indication of the associated

uncertainty. Care must be taken to account for the randomness associated with initializing the

network weights and the training/validation split. In this paper, multiple instances of each network

were executed on each training dataset, and the resulting predictions were displayed as a violin plot

indicative of the statistical distribution of the results. Reporting the root mean squared error and

mean absolute percentage over the results is also useful to quantify the prediction uncertainties.

Avenues exist for reducing the uncertainty of the seabed and range predictions. One potential

investigation would be to use a deeper network, as the one used in this study consisted of only three

convolutional layers and one hidden layer. A deeper network has the potential for more parameters

to learn how to make better predictions. Likely a multi-regression approach to learning would

also improve the results as the network could potentially allocate more parameters to learning

individual labels. Another future step would be increasing the complexity of the training datasets by

adding more source-receiver ranges, varying the ocean depth further while using the upward- and

isovelocity sound speed profiles, and varying parameters in the seabed floor. One significant area of

needed future research is to determine how to include more seabed types. Studies are needed to

discern how to best choose from among the infinite number of possible seabed parameterizations to

build a robust system for using deep learning in ocean acoustics.



Chapter 6

Preliminary Work Using Ship of

Opportunity Spectrograms

This study shifts focus from impulsive SUS signals to cargo ship noise. The regular passage of

ships in the ocean makes them a commonly occurring noise source, leading to the term "ships of

opportunity" (SOO). The SOO noise is presented as spectrograms, which contain sound energy

across time and frequency. At the time of writing, this work is in preparation for submission to the

Journal of the Acoustical Society of America, Special Issue on Machine Learning, with the tentative

title "Preliminary seabed classification and source parameter estimation using deep learning on

broadband ship noise." The introduction (Sec. 6.1) of this work has been reduced for inclusion in

this thesis as Chapter 1 contains a more exhaustive literature review.

6.1 Introduction

Successes of machine learning in underwater acoustics have prompted multiple questions about

what can be learned from acoustical sources. A well-modeled broadband noise source exists in the

form of ship of opportunity (SOO) noise.41 Due to the machinery that propels a cargo ship forward,

59
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a constant broadband source of noise is radiated through the ocean. A model for the spectral shape

of SOO noise was developed by Wales and Heitmeyer.41 The interaction of the SOO noise with the

ocean environment impacts the received noise. In addition to having a broadband source model,

another thing that makes SOO an attractive sound source is that they tend to travel along straight

tracks at a constant velocity (along shipping lanes), which simplifies the modeling procedure. Also,

the AIS database65 of all cargo ships gives sufficient information to estimate the actual range and

speed corresponding to measured SOO spectrograms.

SOO sources have been used for seabed characterization in past studies. Battle et al.66 applied

near-matched-field processing for geoacoustic inversion to ship noise and noted that even quiet

ships radiate enough noise for basic geoacoustic inversion. Nicholas et al.67 used an L-shaped array

to perform environmental inversion and matched-field tracking and noted that the vertical leg of

the array provides environmental information and ship range-depth information while horizontal

leg provides ship bearing information. Heaney37 notes the challenges of predicting the full ocean

response due to uniqueness of solution, sensitivity to mismatch, and variability with range and

instead moves to prediction of average field levels and time spreads of sound in the ocean. Heaney

then uses SOO noise to perform geoacoustic inversion of ship radiated noise from a single hy-

drophone in shallow water. Park et al.38 used time-domain inversion techniques with time-reversal

in a ray-based forward model to estimate geoacoustic parameters.

Other studies have expanded the geoacoustic inversion problem through waveguide invariant

extraction and other statistical estimation techniques. Gervaise et al.55 used inversion techniques on

SOO noise to extract the waveguide invariant for geoacoustic inversion, though they concluded that

attenuation cannot be estimated accurately with their inversion scheme and that density and sound

speed estimation required injection of a priori information about the bottom. The same study notes

that if ship range varies slowly enough, than effects from the Doppler shift can be ignored (see Eq.

(2) in Ref. 55). Crocker et al.68 measured SOO noise with an autonomous underwater vehicle and
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used Bayesian methods to obtain posterior probability distributions for the properties of a lower

half-space. Byun et al.69 used ray blind deconvolution to estimate channel impulse response to

inform matched-field processing. Muzi et al.39 used a vertical line array and time-averaged SOO

noise to estimate passive bottom loss and noted that incorrect bottom loss estimation is a major

source of error in SONAR performance prediction. Xu et al.40 used joint time-frequency inversion

for seabed parameters with ship noise recorded on a VLA.

SOO noise has also been used for source paramater estimation, such as source range. In a study

done in the Gulf of Mexico, Koch and Knobles70 and Stotts and Koch71 used 15 min of noise from

a moving ship measured on a horizontal line array to obtain simultaneous geoacoustic and source

track parameter values. Gemba et al.72 calculated channel impulse responses from 2.5 sec of SOO

noise measured on a VLA to calculate arrival time. Niu et al.20, 73 and Ozanich et al.25 recently

used deep learning techniques for SOO localization.

This paper proposes to extend such research through a deep learning approach to see if SOO

spectrograms can be used in convolutional neural networks (CNN) to make distinctions between

different seabed types. Simultaneously, the models are trained to make source parameter estimation

such as the ship’s closest point of approach and speed. Three different multi-task CNN architectures

are employed to investigate the impact of CNN depth and parameter count on generalizability. A

comparison of input data type is also presented to decide if complex, magnitude or magnitude

squared spectral values work best. Synthetic SOO spectrograms are used during training due to a

lack of labeled field data and testing is performed on separate synthetic datasets and measured SOO

noise. These tests show the potential for CNNs to distinguish seabed type and source speed and

distance from SOO sources.
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6.2 Background

The CNNs are trained on synthetic data, one measured SOO spectrogram was available for an

initial test of the networks’ generalizability. This measured spectrogram is from the Kalamata,

and was recorded during the Seabed Characterization Experiment in 2017 (SBCEX2017)54 on a

vertical line array in the New England Mud-Patch. Though many sensors were present during the

experiment,54 the data used in this study were collected at a vertical line array (VLA) deployed by

Marine Physical Laboratories/Scripps Institute of Oceanography (MPL/SIO). The Kalamata was

recorded by their VLA2, which was located in the SE region of the experimental area of the study at

[40.442N, 70.527W]. VLA2 consists of 16 hydrophones, with the lowest being 3 m from the ocean

floor and a spacing of 3.75 m. For this preliminary study, only the recording from channel 8 (33 m

from the ocean floor, in approximately 75 m of water) is used.

The Kalamata ship was found (from AIS data) to have a closest point of approach to the VLA of

3.29 km and was traveling at 19.9 kts. The measured Kalamata spectrogram from channel 8 of VLA

2 is shown in Fig. 6.1a. The spectrogram is calculated from an input signal sampled at 25,000 Hz

with 50% overlap time-averaging with a time window size of 213 samples. Due to low-frequency

background noise, the 300-1500 Hz band is used for this work. The resulting spectrogram spans 15

minutes with the closest point of approach placed at 7.5 minutes, which centers the characteristic

"U" shape of ship spectrograms. Though the ship noise was present in recordings longer than 15

minutes, the time limit was selected to reduce computation time and storage needs of the synthetic

datasets (Sec. 6.3.1).

The authors realize that one data sample is not sufficient to test deep learning models. In an

effort to address this concern, two synthetic datasets are generated for validation purposes and

multiple model architectures are explored. Multiple models for each model architecture type are

trained to provide a more statistically accurate estimation of model performance.
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6.3 Methods

Supervised deep learning models require training datasets with a large number of labeled samples.

Due to the scarcity and expense of real-world labeled ship of opportunity (SOO) spectrograms,

synthetic data were used during the training and validation steps. Thousands of ship of opportunity

spectrograms were simulated in four different seabed types with water profiles representative of the

SBCEX2017 experiment for numerous ship speed and closest points of approach (CPA) to provide

datasets for training and validation of CNNs. These trained CNNs are then applied to measured

data as preliminary evidence of how SOO spectrograms can be used to obtain estimates of seabed

type and source parameters. Details regarding these steps are provided in this section.

6.3.1 Synthetic Data

The simulations model received SOO noise using a modeled source spectrum and frequency-

response of the ocean waveguide. The source spectrum of radiated ship noise is simulated using

the ensemble source model described by the equation in Sec. 3 of Wales and Heitmeyer.41 While

this equation yields spectral levels in decibels at 1 m, these levels are converted to pressures (in Pa)

and assigned a random phase. The ocean response is modeled with ORCA,2 a range-independent,

normal-mode model for acousto-elastic ocean environments. The ocean environment is simulated

for different combinations of sound speed profiles (SSPs) and four seabed types. The four seabed

types selected for this study are shown in Fig. 2.1: 1) deep mud,11 2) mud-over-sand,13 3) sandy-

silt,52 and 4).53 The ocean SSPs are taken from measurements made during SBCEX2017 with

random ocean depths selected between 73 and 78 m to account for changes in bathymetry across

the area spanned by the experiment.

The SOO is assumed to travel in a straight line at a constant velocity. The SOO source is modeled

with a quasi-static assumption corresponding to a point source at discrete locations throughout
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time, and no Doppler shift was accounted for due to the relatively slow speed of the SOO. The

closest point of approach (CPA) is defined to be the point where the range between the ship and

the hydrophone is at a minimum. For this study, the CPA assumed to occur at the center of the

time array, t. Range positions over the entire interval can then be calculated based on time and

velocity. The frequency array, f is is selected to generate the source spectrum of the ship through

the Wales-Heitmeyer model.41 The frequency-dependent Green’s functions, calculated through the

mode functions from ORCA and the range, are multiplied by the source spectrum to calculate the

received complex spectrum, P̃( f ) at each time position. By iterating through each time position, the

spectra are then combined to form the spectrogram, P, with Pi j = P̃( fi, t j). This process is repeated

for all selected combinations of seabed type, SSP, ship speed, CPA range, and effective ship source

depth to generate the synthetic dataset.

The frequency and time dimensions of the generated spectrograms must match those of the

final data being tested. In this study, decisions were guided by considering a prominent SOO event

recorded by MPL/SIO VLA2: the passage of the Kalamata (details in Sec. 6.2). The measured

Kalamata spectrogram is shown in Fig. 6.1a for the 300-1500 Hz band. When extracting the

Kalamata spectrogram from the measured data, a significant amount of environmental noise was

observed below 300 Hz. The characteristic "U" shape of SOO spectrograms was also clearest across

15 minutes as measured by the hydrophone of Channel 8 (33 m above the ocean floor) in the VLA.

These observations, coupled with computational limits such as available computer memory and

storage capacity, led to the simulation of the 300-1501.7 Hz band (with a ∆ f spacing of 6.1 Hz) and

a 15 min span measured (with time steps intervals of 3 sec).

An example spectrogram generated for the mud-over-sand bottom at the same CPA and with

the same speed as the measured ship is shown in Figure 6.1c for comparison with the measured

spectrogram from the Kalamata ship (Fig. 6.1a). The difference between the measured and

synthetic levels is caused by the source level of the Kalamata, which is unknown. To circumvent
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(a) Measured Kalamata Spectrogram (b) Normalized Kalamata Spectrogram

(c) Synthetic SOO Spectrogram (d) Normalized Synthetic SOO Spectrogram

Figure 6.1 (Color online) Example ship of opportunity spectrograms. (a) Absolute and
(b) normalized spectrograms of the Kalamata measured on channel 8 of the MPL/SIO
VLA2 during SBCEX 2017. (c) Absolute and (d) normalized synthetic spectrograms for a
ship travelling 20.0 kts with a closest point of approach (CPA) of 3.3 km— similar to the
Kalamata—, using the mud-over sand seabed type. The "normalized" spectrograms have
the reference pressure be the maximum pressure of the spectrogram instead of 1µPa

that limitation, each spectrogram was normalized by its absolute maximum. The corresponding

normalized spectrograms are shown in Figs. 6.1d and 6.1b. This normalization discards information

about the range that is contained in the absolute levels, thus presenting an additional challenge for

the deep learning models as the range information contained in relative and absolute amplitude is

lost.

As only one recording of the Kalamata is avialable, synthetic data are used for training and

validation. The synthetic data need to contain sufficient variability to account for the real-world
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Figure 6.2 (Color online) Ten SSPs measured during SBCEX. To create the 50 training
and 30 validation SSPs, five and three, respectively, random water depths were used with
each SSP, .

conditions that exist in the measured data, as discussed in Van Komen et al.. To provide variability,

the training dataset was generated with the following parameters. To represent the ocean, 50

different sound speed profiles (SSPs) were used in combination with the four designated seabeds.

The SSPs were drawn from ten measurements made during SBCEX, as shown in Fig. 6.2 with each

having five water depths randomly drawn over 75 m±0-3 m (while preserving the SSP gradient).

The distribution of the randomly assigned ocean depths across the 50 SSPs is shown in Fig. 6.3(d).

The 50 SSPs combined with each of the four seabeds creates 200 separate environments used for

simulation.

For each of these 200 ocean environments, nine ship speeds were selected, nine CPAs were

selected, and two ship depths were selected. The combinations of these source parameters and the

200 environments produced a dataset containing 32,400 (200 environments × 9 CPAs × 9 sounds

speeds × 2 depths) samples for training. Previous internal studies showed that using randomly

drawn source parameters improved the generalizability of the network as long as a sufficient number

of samples were selected over the entire span of the labels of interest. To accomplish these goals,
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multiple set of the source parameters was used for each of the 200 environments. The nine CPA

values for each environment included three fixed values used (3, 8, and 13 km) and six additional

ranges randomly drawn between 0.5 and 15.5 km. The ship speed values included three fixed

values (18, 20, and 22 kts) and six random values drawn between 16 and 24 kts. The two ship

depths were randomly drawn to be between 6.5 and 9.5 m for each environment. The distributions

of these source parameters over the 200 environments are shown in Fig. 6.3. The peaks in the

distributions for CPA and ship speed correspond to the fixed values, selected to ensure that each of

the 200 environments contained several of the same values as a means of consistency and for visual

inspection.

To test the ability of the networks to interpolate between labels used in the training data samples

and extrapolate beyond the edges of the training labels, two validation datasets were generated using

the same procedure as the training dataset. The first validation dataset test the ability of the networks

to interpolate. This first dataset (validation dataset 1) of 5,400 samples contains source parameter

values similar to those encountered in the training dataset but with slight adjustments. Thirty SSPs

were used (from the same ten measured SSPs but with only three random depths each). Four ship

speeds were selected (18 and 22 kts for every environment and two randomly drawn between 16

and 24 kts), and nine CPAs were drawn (4, 9, and 14 km for every environment along with six

random CPAs between 0.5 and 16 km). The remaining parameters were the same. The distribution

of the water depths and source parameters used in validation dataset 1 are shown as dashed lines in

Fig. 6.3. Validation dataset 1 measures the ability of the trained networks to interpolate.

The ability of the networks to perform at the edges of the training labels and extrapolate beyond

the training labels are tested with validation dataset 2. For this second validation dataset, the

same 30 SSPs were used as for validation dataset 1, but the CPAs (1, 2, 14, and 15 km for every

environment with eight random CPAs between 0.5 and 16 km ) and ship speeds (16 and 25 kts for

every environment with two random CPAs between 14 and 26 kts) were chosen to be closer to the
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Figure 6.3 Normalized histograms (shaded gray areas) and distributions (solid lines) of
the random parameters selected for the training dataset: (a) distribution of ocean depths
over the 50 SSPs, (b) distribution of CPAs, (c) distribution of speeds, (d) distribution of
source depths over the 200 environments. The large peaks correspond to values that were
selected for each environment. The dashed and dotted lines represent the distributions of
the various parameters for the two validation sets.

edges of the values used for the training dataset. Validation dataset 2 contains 8,640 samples. The

distribution of the water depths and source parameters used in validation dataset 2 are shown as

dotted lines in Fig. 6.3. Results of training and validation are discussed in Sec. 6.4.1.

Data and Label Preparation for Training

The manner in which SOO spectrograms should be used as input to the CNNs is studied in this

paper. The measured SOO spectrograms come from a discrete fast Fourier transform on the received

time-dependent signals resulting in complex values in the frequency domain. The synthetic SOO
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spectrograms are modeled in the frequency domain as complex numbers. This work evaluates if

CNNs learn better on these complex values (real and imaginary parts) P, the absolute value of those

values |P|, the squared pressure |P|2. For P, the real and imaginary parts are split into two channels,

where the real part is channel 0 and the imaginary part is channel 1. This is analogous to the red,

blue, and green channels present in digital images. |P| and |P|2 are input as single channels, similar

to the single black and white channel in digital images. As mentioned in Sec. 6.3.1, all samples are

also divided by their absolute maximum before being passed to the network.

Another preparatory step was the normalization of the CPA and ship speed labels (a common

practice with neural networks74). Instead of the networks learning their raw values in meters and

knots, the networks learn scaled labels. Since CPA in the training set can vary between 0.5 and 15

km and ship speed can vary between 16 and 24 kts, this forces the values to be on the same scale,

which has the potential to expedite learning and mitigate potential biases that due to the different

scales. This scaling corresponds to taking the distributions of each label (Fig. 6.3) and scaling and

shifting each distribution to lie between 0 and 1. For each set of labels, y, the scaled labels, ŷ, are

found via

ŷi = (yi−miny)/(maxy−miny), (6.1)

where yi correspond to the individual label of data sample i.

6.3.2 Convolutional Neural Network Topology

For this study, three different neural networks were selected to make predictions on seabed type,

closest point of approach, and ship speed. The first two CNNs were hand-designed and incorporate

different numbers of convolutional layers, with the full network architectures shown in Fig. 6.4. The

third CNN is an implementation of "AlexNet" presented in Krizhevsky et al.49 originally designed

to classify between 1,000 different classes of images in the ImageNet75 database.

Though various opinions on CNN design exist in the community, the two hand-designed CNNs
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were designed with simplicity in mind and to compare the effect of depth and number of parameters

on predictions. The first CNN (Selkie3) has three convolutional layers with each followed by

maximum pooling layers. These convolutional layers are followed by two hidden layers before

reaching the output layer. The second CNN (Selkie5) differs by having five convolutional layers

with no pooling after any of the layers. In both networks, the convolutional layers are followed by

batch normalization. Selkie3 was designed to include pooling to reduce the number of features in

each layer while using small filters to reduce the number of learnable parameters. Selkie5 uses more

convolutional layers to give the model more learnable parameters and to let the stride parameters of

the convolutions reduce the features within each layer, rather than allowing that reduction come

directly from the pooling layers. Selkie5 also has larger hidden layers than Selkie3 because more

parameters in the hidden layers can allow more complex linear transformations. Selkie3 has 4.3

million parameters while Selkie5 has 14.2 million parameters.

The implementation of "AlexNet" used in this paper comes from using half of the network size

depicted in Figure 2 in Ref.49 and is referred to as "HalfAlexNet" throughout the current study.

Krizhevsky et al. mentions division of the network for simultaneous training across two GPUs, and

one of those halves was implemented for this study. Even with just half of the original AlexNet

there are over 15.6 million learnable parameters.

6.3.3 Training Convolutional Neural Networks

The implementation of the neural networks mentioned in Sec. 6.3.2 was done in Python 3 using the

open-source PyTorch framework62 (version 1.5.0). PyTorch was written using Python-native syntax

with a focus on speed and usability and provides the tools required for loading data, building models,

and training on a GPU using algorithms standard to the machine learning community. In particular,

this study uses the PyTorch implementation of the Adam optimizer57 for stochastic optimization

during training. As with the procedure detailed in Van Komen et al.,42 a cosine annealing learning
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(a)

(b)

Figure 6.4 (Color online) Network topology for the two hand-designed CNN networks in
this study. (a) Selkie3 features three convolutional layers each followed by a maxpooling
step. (b) Selkie5 features five convolutional layers with no pooling steps. Each network
also has two hidden layers before the output layer.

rate was used to limit the variable learning rate used by the Adam optimizer. (The method of warm

restarts in the original paper by Loschilov et al.63 was not used.) The annealing learning rate was
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implemented to prevent over-fitting

Because of the random initialization of the weights and splits of the dataset into batches, ten

instances of each network type were trained for each type of input. Training multiple networks

allows a statistical approach to evaluating the model’s performance, as every new instance of a

model is initialized with random values for all parameters. Each network was trained for 50 epochs.

The networks were trained on an NVIDIA Tesla T4 GPU to accelerate learning.

Multi-task Learning

The final decision for CNN implementation is how to assign outputs for the final layer. The way

networks learn to make predictions is through a loss function that determines how incorrect the

predictions are compared to the truth. Through the selection of a loss function, these outputs can

be trained to make different types of predictions such as regression or classification. Prior work

using one-second pressure time series42, 43 and towed tonals used a regression approach to learning

both the seabed type and source labels. Though some success was seen using regression to predict a

seabed type, regression loss functions generally rely on a definition of distance between the truth

and prediction. While differences in range, speed, or depth have a physical connection to distance,

the choice to represent the seabed type as discrete numbers does not. The seabed types (used in

Refs. 42, 43 and the current study) were ordered from highest to lowest bottom loss to provide a

sequential progression, but the "distance" between seabeds 1 and 2 is not the same as the "distance"

between seabed 2 and 3. Thus, in this work, the seabed type is found through classification while

the ship speed and CPA range are found via regression.

To accomplish this combination of prediction types, the multi-task method proposed in Kendall

et al.76 was implemented which weighs losses for individual tasks by considering the homoscedastic

uncertainty through learning the weighting. This multi-task method works by calculating an original

loss value for each of the outputs of the network (mean squared error for regression and cross
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entropy for classification) and then scaling each loss by a learnable parameter. When building

the network, the final output layer needs to include enough neurons to accomplish each of the

tasks. For this particular study, six output neurons were used where the first four were reserved for

classification on the seabed type and the last two were for CPA and ship speed. Though more details

on this implementation of scaling loss can be found in Ref.,76 we also implemented a variable

transformation1 of the learnable parameters σi via ηi = 2logσi. This transformation changes Eq.

(7) in Ref.76 to
i

∑
n=1

1
2σi

Li + log
i

∏
n=1

σi =
1
2

i

∑
n=1

(e−ηiLi +ηi) (6.2)

where Li is the loss obtained for each task and i represents the task. This transformation avoids

numerical instability as the original equation limits σ ∈ R>0 but Eq. 6.2 allows η ∈ R.

Thus, during training, the network learns how to properly scale the loss values for each of the

tasks. In this particular study, the initial ηi were selected to be 1.0, 0.5, and 0.8 for seabed type,

CPA, and ship speed respectively. No exhaustive testing was performed on what the initial ηi should

be. However, because these values are learnable parameters, the network adjusts them to minimize

overall loss as with the model parameters so these ηi were sufficient.

6.4 Results and Discussion

The results of predictions from the trained neural networks are presented in this section. In particular,

model validation and model generalization are presented. As explained in Neilsen et al., there is a

distinct difference between validation and generalization of CNN models especially in the context of

synthetic and measured data. For the validation results, we present model predictions on synthetic

SOO spectrograms with similar parameters as the training data. For the generalization results, we

present model predictions on a measured SOO spectrogram. Metrics for model performance include

1This suggestion was given by Tony-Y on the PyTorch online forums

https://discuss.pytorch.org/t/how-to-learn-the-weights-between-two-losses/39681/12
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Table 6.1 Results from the k-fold cross validation tests where k = 5. The bolded numbers
indicate the highest performing network for that metric.

Model Seabed Accuracy CPA RMSE Speed RMSE

Selkie3 99.55% 0.33 0.61
Selkie5 98.98% 0.34 0.63
HalfAlexNet 99.84% 0.2825 1.04

root mean squared error (RMSE), mean absolute percent error (MAPE), and accuracy.

6.4.1 CNN Validation on Synthetic Data

Two methods of validation are presented in this section. The first is k-fold cross validation,64 where

the training dataset is divided into k random splits. The network trains on k− 1 of those splits

and tests on the remaining split. The network is then reinitialized and training is done on the next

combination until all k blocks have been used for testing.

To validate that all three networks are learning relationships between the features of the training

dataset and the six outputs, k-fold cross validation was done with k = 5 on the real and imaginary

input data. The k-fold validation results, in Table 6.1, show that for seabed type predictions,

HalfAlexNet has the highest accuracy, though Selkie3 and Selkie5 trail by less than a percentage

point. For CPA predictions, HalfAlexNet has the lowest RMSE, though Selkie3 and Selkie5 differ by

approximately 0.05 km. For ship speed, Selkie3 has the lowest RMSE at 0.61 kts while HalfAlexNet

performs considerably worse. These results show that overall the networks perform similarly and

are learning features that allow for estimations of seabed type, CPA, and ship speed, though more

testing is required. These models trained through k-fold cross-validation are not used for further

testing in this study.

The second validation involves testing the model on different separate datasets simulated in

the same manner as the training dataset, but with different values. For these validation tests, the
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models were trained with all 32,400 samples in the training dataset, instead of a random subset as in

the k-fold cross-validation. These fully trained models are then applied to the synthetic validation

datasets (Sec. 6.3.1) the measured data (Sec. 6.2).

Ten instances of each model were trained with each input data type to account for uncertainties

associated with the random initialization of the weights in the models. The results of the ten

instances of each model applied to the 5,400 samples in validation dataset 1 are given in Table 6.2

as the average accuracy of the seabed classification and the RMSE and MAPE of the CPA and ship

speed. The best scores across the various networks are in bold.

Validation dataset 1 has a similar distribution of ranges and speed, as shown in Fig. 6.3(b)

and (c), but different the distribution of ocean depths was skewed slighted higher, as shown in

Fig. 6.3(a). Application of the trained networks to validation dataset 1, thus, investigates of the

performance of the networks in a presence of slight ocean depth mismatch. For validation dataset 1,

all seabed predictions have an accuracy above 90%, which indicates the model is learning features

required for seabed classification. When analyzing the individual results, it was noticed that the

misclassifications across all networks generally were from distinguishing between the sandy-silt

seabed and the sandy seabed. Looking at spectrograms for the same ship speed and CPA at the

different seabeds for the selected frequencies (see Fig. 2.4), the sandy-silt and sandy seabeds appear

nearly identical to the naked eye due to the similarities in propagation over the distances involved.

However, this misclassification occured only in less than 500 of the 5,400 samples. The network that

performed the best on seabed predictions was HalfAlexNet using |P| as input, though the |P|2 inputs

performs less than 0.2% worse. However, Selkie3 and Selkie5 barely trail behind HalfAlexNet on

seabed predictions. These validation results are significant because Selkie3 has around 10 million

fewer parameters than Selkie5 and HalfAlexNet and performs similarly.

As for CPA predictions, HalfAlexNet performs the best once again, though none of the RMSE

values in the other networks extend beyond 0.6 km, and the MAPE values fall between 3.22 and
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Table 6.2 Results from ten instances of each model on validation dataset 1 containing 5,400
samples, which used similar speeds and CPAs to the training dataset, but had different
ocean depths (see Fig. 6.3). The "input" column indicates the type of input data used
for that set of tests. For all model and method combinations, ten networks were trained
to produce these results and the accuracy, RMSE, and MAPE values come from 54,000
predictions (10 CNNs × 5,400 samples). The bolded numbers indicate the best value of
the metric across all networks and methods.

Model Input Seabed Accuracy CPA RMSE CPA MAPE Speed RMSE Speed MAPE

Selkie3 P 92.98% 0.60 5.20% 0.88 3.10%
|P| 99.11% 0.52 4.16% 0.73 2.47%
|P|2 99.03% 0.50 3.99% 0.68 2.32%

Selkie5 P 92.98% 0.60 5.33% 0.90 3.22%
|P| 99.18% 0.45 3.60% 0.64 2.10%
|P|2 99.00% 0.46 3.72% 0.65 2.18%

HalfAlexNet P 91.95% 0.57 5.44% 0.97 3.56%
|P| 99.70% 0.36 3.24% 0.52 1.73%
|P|2 99.56% 0.36 3.22% 0.49 1.63%

5.44% across the board with small deviances. The same is seen in speed metrics. HalfAlexNet once

again performs the best when making these predictions, though for the other networks, the speed

prediction RMSE values are less than 0.88 km and MAPE varies between 1.63% and 3.56%.

Validation dataset 2 has the same ocean depth mismatch as validation dataset 1, but the distribu-

tion of the CPAs and speeds are also different from the training dataset, as shown in Fig. 6.3. The

average network performance on the 8,640 samples of validation dataset 2 is summarized in Table

6.3. In this case, the scores are generally worse, though that was expected due extreme nature of the

speed and CPA selection used. The networks were never trained on speeds outside 16-24 kts, and

few CPAs were included outside the 1-15 km range, while the networks are now making predictions

on data simulated at or beyond those ranges. When operating on dataset 2, the networks are making

predictions at the edges of and beyond the source parameters used in training. For these edge cases,

the networks are still near or above 90% accurate on seabed classification. Once again, HalfAlexNet

performs the best on seabed classification, though Selkie5 and Selkie3 still have accuracy greater
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Table 6.3 Results from ten instances of each model on validation dataset 2 containing
8,640 samples, which had more speeds and CPAs near and beyond the boundary of those
values in the training dataset (see Fig. 6.3 for parameter distributions). The "input" column
indicates the type of input data for that set of tests. For all model and method combinations,
ten networks were used to produce these results and the accuracy, RMSE, and MAPE
values come from 86,400 predictions (10 CNNs × 5,400 samples). The bolded numbers
indicate the best value of the metric across all networks and methods.

Model Method Seabed Accuracy CPA RMSE CPA MAPE Speed RMSE Speed MAPE

Selkie3 P 89.63% 0.80 13.21% 1.50 5.54%
|P| 97.49% 0.72 11.35% 1.28 4.55%
|P|2 97.24% 0.73 10.90% 1.24 4.45%

Selkie5 P 92.88% 0.78 13.38% 1.45 5.35%
|P| 98.03% 0.60 9.12% 1.03 2.10%
|P|2 97.45% 0.65 10.13% 1.06 2.18%

HalfAlexNet P 91.68% 0.74 13.15% 1.55 6.10%
|P| 98.47% 0.54 8.57% 0.93 3.26%
|P|2 97.83% 0.54 8.05% 0.93 3.22%

than 97% for these edge cases.

The biggest increase in error between the two validation datasets is in the CPA and speed

predictions, as expected since many of them extend beyond the ranges used during training. When

looking at individual network predictions, the speed and CPA ranges tend to be underpredicted at the

largest ranges and speeds, while they are generally overpredicted at the smallest ranges and speeds.

In part, these trends can be be attributed to the label normalization process mentioned in Sec. 6.3.1.

Since the smallest speed in the training datset, for example, was 16 kts, that value was normalized

to 0 while the largest speed of 24 kts was normalized to 1. Any true values less than 16 would then

have their normalzed value as less than 0, which the network never needed to predict during training.

The same holds for values above the maximum. This label normalization is beneficial for training

and testing on datasets within the bounds of the training set, but potentially becomes a detriment for

datasets that contain samples beyond those bounds. However, it is currently unknown if that is the

only reason why this occurs and requires further investigation. For the purposes of this study, the
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label normalization suffices as the measured data falls within the bounds of the training dataset.

An interesting observation from both validation datasets is how the different data input methods

produce different results. In general, the differences in results based on input type is larger than

differences due to the network type. When using the complex P matrix, the models have the lowest

seabed accuracy across all networks. The prediction results when using |P| or |P|2 are close for all

network types, but |P| does slightly better than |P|2 on seabed predictions while the opposite is true

for CPA and speed. This difference could be due to the squaring of the |P| causing larger differences

between features that the networks couldn’t learn in other input method. These validation tests

emphasize the importance of input data type and have shown the performance of the networks in the

presence of slight ocean depth mismatch and for source labels near and beyond the edges included

in the training data.

6.4.2 CNN Generalization on Measured Data

After testing the networks on the validation data, the networks were applied to the spectrogram

from the Kalamata (described in Sec. 6.2). AIS data for the Kalamata during this time indicates an

approximate CPA of 3.3 km and speed of 19.9 kts. The expected seabed prediction is the mud-over-

sand seabed, as it was obtained from a maximum entropy bayesian approach for the SBCEX2017

area13 or the deep mud, which has similar surficial properties including an angle of intromission. For

the |P| and |P|2 inputs, the Kalamata spectrograms were obtained via time-averaging while P was

not. Table 6.4 shows the full results of the predictions when the values mentioned are considered

the true labels for the signal.

As for CPA and speed predictions, the best predictions come from the Selkie3 model, which is

surprising due to its worse performance on the validation datasets than Selkie5 and HalfAlexNet

(Sec. 6.4.1), though Selkie5 gives a lower speed MAPE. To further investigate these differences,

Fig. 6.5 shows the individual prediction distributions of each network. Figs. 6.5b and 6.5a show
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Table 6.4 Results from testing on the Kalamata sample. The RMSE and MAPE are
calculated from one sample across ten networks.

Model Method CPA RMSE CPA MAPE Speed RMSE Speed MAPE
Selkie3 P 0.50 14.41% 0.90 4.08%

|P| 1.28 33.21% 1.45 6.01%
|P|2 1.07 25.21% 1.20 5.25%

Selkie5 P 1.15 24.94% 0.97 3.85%
|P| 0.86 18.53% 1.44 5.98%
|P|2 0.81 19.66% 1.71 7.28%

HalfAlexNet P 1.29 32.79% 2.14 9.75%
|P| 1.58 42.85% 2.33 9.46%
|P|2 0.79 19.83% 2.59 12.17%

violin plots (a combination of normalized distributions and box-and-whisker plots) of CPA and

speed predictions. It is clear that Selkie3 trained on the P input data has a tighter distribution for

speed and CPA than the other networks.

Even though some of the medians of other networks are closer to the truth (the dashed horizontal

line), the tighter distribution shows more confidence and repeatability from Selkie3. This could be

an example of the 14+ million paramaters present in Selkie5 and HalfAlexNet leading to overfitting

on the P synthetic data. Though they perform the best in the validation results (Sec. 6.4.1) drawn

from the same statistical distribution as the training data, they do not generalize as well as Selkie3

on measured data. This serves as a caution for using the deepest networks presented in deep learning

literature, as for these types of problems there could be a tendency of overfitting.

The seabed type classification results are depicted differently. Figure 6.5c shows a set of

stacked barcharts of the predictions for the seabed class. These barcharts should be evaluated by

rememberring that the key propagation feature for the frequencies used (300-1500 Hz) is likely the

angle of intromission, due to the speed of sound at the top of the seabed being less than the speed of

sound of the water at the bottom of the ocean. With this in mind, the combination of deep mud and

mud-over-sand predictions given are reasonable. From this figure, it is clear that the noise in the
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(a) CPA Predictions (b) Speed Predictions

(c) Seabed Predictions

Figure 6.5 (Color online) Prediction results from the three models and the three input
data types. (a)Violin plots (a normalized probability distribution kernel with the median
and quartile ranges) of the CPA predictions. (b) Violin plots of the speed predictions. (c)
Stacked barchart showing the percentage of predictions for each seabed type.

complex P inputs increases the difficulty in getting an accurate seabed prediction. However, the

time-averaged |P| and |P|2 inputs identify a seabed type with an angle of intromission 100% of the

time for Selkie3 and HalfAlexNet and 80% of the time for Selkie5. For seabed type predictions on

the Kalamata measured data, P is not a reasonable input type. However, further testing on more

measured data is required to conclusively determine which data input type is the correct choice for

these predictions in all situations.

In Sec. 6.3.1, it was mentioned that the true source level of the Kalamata ship was unknown

(see Fig. 6.1 for a comparison). Due to this unknown source parameter, the simulated levels do

not match the measured levels. The required normalization used to account for this difference
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also discarded information about range which could have impacted the results seen here. One

idea for future implementation is to include a source level parameter as a label for the CNN to

learn. In addition, the measured spectrogram contains significantly more noise than the sumulated

spectrograms, which could be a source of the prediction errors. The addition of random noise during

training on the synthetic data could potentially teach the network to ignore such noise.

6.5 Conclusion

The results of this study provide evidence that CNNs trained on synthetic ship-of-opportunity (SOO)

spectrograms have the potential to make predictions on seabed type and source speed and closest

point of approach. Specifically, 15 min SOO spectrograms spanning 300-1500 Hz were simulated

with four seabed types, ten measured sound speed profiles with different ocean depths, and a variety

of source speeds and CPAs on a single hydrophone. The synthetic training dataset was used to

train CNNs to make these predictions. The trained CNNs were then applied to additional synthetic

testing datasets and one measured spectrogram from the ship Kalamata.

The results indicate that SOO spectrograms contains extractable features and patterns that CNNs

can identify to make predictions. Though the networks struggled identifying differences between

signals with a deep mud and mud over sand seabed or a sandy silt and sandy seabed at times, results

were reasonable across the different tests. The networks even performed well on synthetic data near

the edges of the training distribution regardless of the data input method.

The results on the measured data also provide evidence that the networks can learn from synthetic

data and make appropriate predictions on measured data. Though only one sample was used, the

ten instances of each dataset type provided insights that a smaller network better generalizes to

the nosier measured data. The smallest network was able to consistently provide good CPA and

speed predictions while also providing reasonable seabed predictions. However, the input data
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type impacted the seabed type predictions. When using the real and imaginary part of the complex

pressure, P, the networks chose a more reflective environments no matter the size of the network,

though the smallest network did make a few correct predictions. With both |P| and |P|2 as inputs,

the networks chose the deep mud and mud over sand environments for the measured data, which is

reasonable due to the angle of intromission present in these seabeds.

Future work can expand on these findings by including noise in the training data. Even with the

time-averaged measured data, background noise is still visible noise. Introducing such noise into the

training data could help the network learn to ignore noise in the input data. Another improvement

would be using additional measured SOO spectrograms for testing. This study was limited by only

allowing a single receiver depth of 33 m, so further use of data recorded during SBCEX 2017 would

be to use additional receiver depths. Another future topic is the inclusion of more seabed types so

that networks could begin to learn how to predict seabed parameterizations instead of just selecting

between distinct seabed types.



Chapter 7

Conclusions

Throughout the studies presented in this thesis, multiple lessons have been learned regarding using

deep learning to predict seabed type and source parameters. Chapter 3 demonstrated that CNNs

have the potential to make such predictions and perform better than FNNs on the raw data. Chapter

4 applied networks trained on simulated data to measured data and found that good predictions can

be made when the simulated training data represents the measured source and environment. Chapter

5 took that finding a step further to show that adequate sampling of the search space needs to be

included in the training data due to differences between real-world data and simulated data. Chapter

6 showed the potential of using spectrograms of ship noise to make such predictions and extended

the training data simulation by including random source parameters to more adequately sample the

search space. Each study in this thesis has presented conclusions regarding their specific findings.

(See Secs. 3.4, 4.4, 5.5, and 6.5.)

One general finding from the research shown in this thesis is the power of CNNs to minimize

preprocessing. In all of the studies shown, minimal preprocessing was applied to the input data.

In the case of the SUS charges, they remained in the time-domain and were only normalized by

their maximum. No component analysis, frequency-domain transforms, or other signal processing

was done before the signals were input to the CNNs. The SOO spectrograms, which were only
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normalized by their maximum as well, came from a FFT on the received signals. The use of pressure

time series and spectrograms removes the need for preprocessing techniques, which are generally

time consuming and computationally expensive when performed on large datasets. The reason

preprocessing is not necessary is that CNNs have the potential to extract features necessary for

predictions directly from time-domain waveforms or spectrograms.

Another important finding throughout this research had to do with the generation of simulated

training data. Intermediate testing and the results seen in Chapters 5 and 6, showed that randomly

sampling source parameters was more effective than evenly spacing the values (e.g., 0.5 - 15 km at

0.5 km intervals). This randomness potentially teaches the networks to not focus on hitting those

exact intervals but instead how to best regress in a more generalizable fashion. More research is

required to determine exactly what type of distributions are best for each source parameter, but

some randomness improves generalizability.

This thesis has also provided insight regarding the use of output layers in CNNs to make

predictions. Regression and classification approaches were both used for prediction, and different

labels do better with each one. Regression makes sense and works well for labels that are smoothly

varying quantities, such as source-receiver range or ship speed. Those quantities are known from

the labels, and the distance between one and two meters is the same as two and three meters, which

is the principle undelying regression. However, for labeling seabed type, no continuously varying

value contains the same consistent definition of the distance between seabeds. Though the four

canonical seabed types were sorted by by the overall amount of bottom loss, the difference between

deep mud (1) and mud over sand (2) was not necessarily the same as between mud over sand (2) and

sandy silt (3). Initial attempts to apply regressing to the seabed type label gave reasonable results

(See Secs. 4.4 and 5.5.), but a classification approach is more appropriate (Sec. 6.5).

To combine different types of outputs, such as regression and classification, a multi-task

approach was used (Sec. 6.3.3). Multi-task learning allowed the loss functions (mean squared error
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for regression and cross entropy loss for classification) to be combined and scaled in a learnable way.

Success was seen with the multi-task method for simultaneously predicting seabed type, source

range, and ship speed. When regression was used instead of multi-task (as done in the SUS studies,

Sec. 5), predictions from networks trained on just one parameter performed better than models that

had to perform multiple predictions (Secs. 5.4.1 and 5.4.2), though that could be attributed to the

network size, dataset size, or other factors and requires further research.

Network size and structure is also a factor to consider when using CNNs to make predictions.

In the case of the SUS charges as input data, a network with few layers was used (Sec. 4.2.3). This

network is tiny compared to some of the models found in literature (such as AlexNet,49 VGGNet,50

and GoogLeNet51), but the results were very promising. Three different network sizes were used

on the SOO noise study in Chapter 6 (Sec. 6.3.2), and the network with four million parameters

performed comparably to the networks with over 14 million parameters and appears to generalize

better. These results illustrate that large networks do not always guarantee better results than smaller

networks when making predictions on the SUS charges or SOO noise. Perhaps more complicated

tasks in the future that attempt to predict many individual prameters in the sediment layers will

require deeper and more sophisticated networks, but the small networks worked remarkably well

for these studies.

7.1 Future Work

This thesis has shown the potential for deep learning in underwater applications, and future work

using machine deep projects is very promising. Current projects in Dr. Neilsen’s research group are

investigating the use of more complicated and advanced network structures, such residual networks,

recurrent networks, echo-state networks, and attention-based networks. These different models have

the advantage of incorporating the context available through the time dependent inputs to inform
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predictions. Letting the models incorporate that context could remove the need for the input data to

be aligned (such as the closest point of approach being in the center, or the impact of received SUS

charges being a few milliseconds past zero).

Other machine learning methods beyond deep learning are also important for this research. The

use of support vector machines in creating a representative set of ocean sound speed profiles is being

researched to identify how to condense days worth of measurements into a reduced basis set that

can be used for training data simulation. Clustering algorithms could also be used as a visualization

method or to evaluate methods for dividing data, such as in classifying signals. Ensemble learning

could also provide a clearer look at the uncertainty of predictions. This list will continue to grow

as the machine learning and deep learning fields are vast, with new techniques being published

regularly.

Exploration of input data is also an important research topic for these applications. Questions

regarding the use of multiple hydrophones (in a horizontal or vertical line array, for example)

as extra input channels could provide more localization information similar to the multi-receiver

beamforming approach used in acoustic signal processing. The question regarding whether networks

perform better on frequency-domain spectrograms or time-domain pressue signals for the same

source should be addressed. Other decisions about the optimal input data sampling frequency,

frequency limits and spacing, length of signals, etc.) also need to be investigated. Further exploration

into the distributions of the source parameters and ocean parameters to be included in simulating

the synthetic training data is also an active topic of research. The use of other source types should

be investigated along with using additional simulation methods, such as a range-dependent model.

To extend deep learning techniques to estimate individual parameters in the ocean seabed,

parameter sensitivity and sloppiness will need to be carefully considered. The type of input data

and choice of labels can be informed through the use of the Fisher information matrix and manifold

boundary approximation methods. These tools investigate the sensitivity of ocean and source
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parameters and quantify the information content in the input data about each parameter. These

methods can also be used to investigate what parameters (like sediment density) make the most

significant change to ocean acoustics and provide guidance on how to select seabeds that are ordered

in a physical manner and acoustically distinct.

There are many things to consider when it comes to future research into deep and machine

learning in underwater acoustics. With the rise of a plethora of applications from science to

business, new approaches will always be available to try and improve upon. This thesis has laid

the foundation for these future studies and shown that deep learning techniques have significant

potential for predicting environmental and source parameters in underwater acoustics.



Appendix A

ORCA Python Interface

The modeling code ORCA2 was originally written in Fortran. The original program was designed

to take in an input file, run calculations to determine the mode functions, then return the values in

plain text files. Modifying the original input files is tedious especially when hundreds or thousands

of calls need to be made to ORCA to calculate the mode functions in different environments and

different frequencies. To improve workflow and speed, an interfaces was developed so that ORCA

could be used natively in Python. "ORCA Interface" (Sec. A.1), is a whole package that contains the

entire functionality of ORCA and calls the original compiled binary. The source code is available to

the Underwater Acoustics Research Group at BYU through the Physics and Astronomy department

GitLab installation. This documentation was generated by the Sphinx Python package.

A.1 ORCA Interface Documentation

Documentation for the ORCA Class, a simple way to handle interfacing with ORCA.

A sample SVP TOML file is presented in Sec A.1.4 and a sample OPT TOML file is presented

in Sec. A.1.5.

class orca_interface.ORCA(file_prefix, base_svp=None, base_opt=None, temp_dir=True)
88
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Bases: object

A class that can handle all of the ORCA functionality.

The ORCA class can be used for many things. It is intended to be a catch-all for using the
ORCA Fortran script in an easy-to-use class. It has methods for loading in ORCA options
(OPT) and sound velocity profiles (SVP) from default files or from custom files. ORCA can
then be run, and the generated transmission loss or mode functions can be found directly in
the attributes.

Example usage:

>>> from orca_interface import ORCA orca = ORCA() orca.run()

To pull any of the variables, you can do the following

>>> tl = orca.tl

Parameters
• file_prefix (string, optional) – The prefix for ORCA to use in all of its output files.
• base_svp (string, optional) – An SVP file to be used to overwrite all SVP defaults.
• base_opt (string, optional) – An OPT file to be used to overwrite all SVP defaults.
• temp_dir (bool, optional) – Whether or not you want to run ORCA in a temporary

directory. True is recommended to keep the working directory clean.

Variables
• file_prefix (string) – The selected file prefix that ORCA will use for many things,

including building the output ASCII files and also for saving the finished data.
• temp_dir (bool) – This is a basic switch for if a temporary directory will be used

when ORCA is called.
• opt (OPT_Configs) – The opt attribute contains all of the necessary data to build

the ORCA options files. There shouldn’t be much need to change things directly
inside here, so please use some of the methods.

• svp (SVP_Data) – The svp attribute contains all of the sound velocity profile infor-
mation. It is what characterizes the water and the seabed.

• nmode (int) – The number of calculated modes.
• eig_re (np.ndarray) – The real eigenvalues.
• eig_im (np.ndarray) – The imaginary eigenvalues.
• vg (np.ndarray) – The group velocity.
• freq (float) – The frequency ORCA calculated at. This is set by the set_frequency()

method.
• mf_re (np.ndarray) – The real part of the mode functions.
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• mf_im (np.ndarray) – The imaginary part of the mode functions.
• mfz (np.ndarray) – The z grid corresponding to where the mode functions were

evaulated at.
• tl_z (np.ndarray) – The z grid that corresponds to the transmission loss map.
• tl_r (np.ndarray) – The r grid corresponding to the transmission loss map.
• tl (np.ndarray) – The transmission loss map calculated by ORCA.

Note
The variables nmode, eig_re, eig_im, vg, freq, mf_re, mf_im, mfz, z, r, and tl do not
exist until the run() method is called. Also, some might not exist based on the many
of the different options ORCA supports. However, by default ORCA is configured
to return all of these variables.

add_sediment_layer(layer_, position=None) A method to add a sediment layer.
This method can add an entire sediment layer at any position. This is useful to have a
script replace a sediment layer to calculate some form of change in transmission loss or
mode function calculations. Posision needs to be done with Python indexing. if not set,
it will be inserted at the end.
Note: ap has the following units: dB/m/kHz if positive, dB/wavelength if negative
The new layer needs to follow any of the following forms depending on the type you
wish to use:
linear : [1 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2]
blug1 : [2 h cp1 g cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol]
blug2 : [3 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol]
blug3 : [4 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 g ctol]
These arrays can also be in the form of dictionaries with those specific keys. Just also
include a type key set to the first number in the list.
Usage:

>>> # a linear layer
>>> # :1 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2
>>> new_layer = [1, 20.15, 1650.0, 1670.0, 0.0, 0.0, 1.85, 1.85,
>>> 0.1, 0.15, 0.0, 0.0]
>>> # insert the new layer *after* the top sediment layer
>>> orca.add_sediment_layer(new_layer, 1)

Parameters
• layer_ (list or dict) – The pre-defined input layer to be added. Can be ei-

ther a dictionary or a list, see the description above for array and dictionary
construction.
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• position (int, optional) – The position to put the new layer. By default it places
it at the end of the set of layers. Use Python indexing for this parameter.

build_mfz_grid() Builds the mode function grid
This returns the grid where the mode functions are defined at.

dump_bottom_layers() Return the bottom layers as a 2D Numpy array
This undoes the add_sediment_layer method and directly outputs the 2D array that
makes up the bottom layers.

max_modes(num_modes) Sets the maximum number of modes to look for.
Use this method to set the maximum number of modes that ORCA should find. It does
not guarantee this many, but it will absolutely limit the calculations.
Usage:

>>> # only find a maximum of 10 modes
>>> orca.max_modes(10)

Parameters num_modes (int) – The maximum number of modes. This must be an
integer.

Note
Default is 50. Set to zero to force no limit.

new_opt_from_file(opt_file) Create the OPT configs object from a specific file.
This method was developed to be used in constructing the class if a particular OPT file
was desired after class construction. It is recommended to set the OPT configs with the
ORCA class constructor directly.

Parameters opt_file (string) – The filename/path of the OPT TOML/YAML file to be
used.

new_svp_from_file(svp_file) Create the SVP configs object from a specific file.
This method was developed to be used in constructing the class if a particular SVP file
was desired after class construction. It is recommended to set the SVP with the ORCA
class constructor directly.

Parameters svp_file (string) – The filename/path of the OPT TOML/YAML file to be
used.

remove_sediment_layer(index=None) A method to remove a sediment layer.
This method will remove a sediment layer at any position. By default, it removes the
last listed sediment layer.
Usage:
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>>> # remove the second layer
>>> orca.remove_sediment_layer(1)

Parameters index (int, optional) – Which sediment layer you wish to remove. Use
Python indexing for this parameter.

replace_water_profile(water_data, constant_rho=None, constant_ap=None)
A method to replace the water profile.
This method will remove the entire water profile with the new set input. It accepts an
array of arrays with [depth, speed] pairs, if the constant terms are both set. If they are
not, it expects an array of arrays with [depth, speed, rho, ap] sets.
Usage:

>>> # a new ocean profile with 2 points and constant rho and ap
>>> new_water = [[0.0, 1480], [80, 1530]]
>>> const_rho = 1.0
>>> const_ap = 0.0
>>> orca.replace_water_profile(new_water, const_rho, const_ap)

Parameters
• water_data (list of lists) – This parameter must be a list of lists. Either of

[depth, speed] pairs or [depth, speed, rho, ap] sets.
• constant_rho (float, optional) – The rho value that you wish to set as the

constant value. This value must be set with constant_ap
• constant_ap (float, optional) – The ap value that you wish to set as the constant

value. This value must be set with constant_rho.

Note
If constant_rho and constant_ap is set, if water_data contains a list of [depth,
speed, rho, ap] sets, the rho and ap values will just be ignored.
Also, please be sure to set both constant_rho and constant_ap together or not at
all. Errors will be thrown if not.

run() Run the ORCA binary based on current configs
This method takes all of the current configs and then runs ORCA. Without this method,
nothing will be calculated. This method also sets all of the mode function variables
and the transmission loss variables, so be sure to call this one!
Syntax for this method is simple:

>>> orca.run()

run_single_frequency(freq, alpha=None) Run the ORCA binary based on current con-
figs but specify one frequency



A.1 ORCA Interface Documentation 93

This method is particularly useful when you are looping through multiple frequencies
and want parallel processing. It allows you to make sure that you are not running into
race conditions when using it.
This function also ignores the temp_dir input in the class construction. The ORCA
calculation will automatically be run in a temporary directory. This is to facilitate
parallelization to not need a separate context manager.

Note
Please also be advised that this function actually returns the values that ORCA
processes from the sub_orca() function in the base module. It does not set the
internal values at all.

Parameters freq (float) – Frequency for which to run the single frequency.
Returns

• nmode (int) – The number of calculated modes.
• eig_re (np.ndarray) – The real eigenvalues.
• eig_im (np.ndarray) – The imaginary eigenvalues.
• vg (np.ndarray) – The group velocity.
• freq (float) – The frequency ORCA calculated at. This is set through the

set_frequency() method.
• mf_re (np.ndarray) – The real part of the mode functions.
• mf_im (np.ndarray) – The imaginary part of the mode functions.
• mfz (np.ndarray) – The z grid corresponding to where the mode functions

were evaulated at.

save(save_dir=None, new_save_name=None) Save the innards of the ORCA class
Use this method to create a .npy file of all calculated results as well as metadata about
the current internal state of ORCA. By default, it saves as [orca_pref]_[freq]_saved.npy
new_save_name overwrites that default entirely.
Usage:

>>> # save with the default name in the existing `output` dir
>>> orca.save("output")

Loading in saved data:

>>> # load in the data
>>> loaded_data = np.load("filename.npy").item()
>>> # access the frequency:
>>> loaded+data['freq']

Note
Please note that when Numpy saves a dictionary, you will need to load it in
with .item() to get the dictionary. See usage above/
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Parameters
• save_dir (string, optional) – A string for a folder or path to save the data.
• new_save_name (string, optional) – A string for a new save name. Can be a

path with a name, or just a string for the new name.

set_frequency(freq) Sets the frequency to run the calculations at.
This method overwrites any frequency that is currently within memory. It is important
to use this method to make sure that the correct frequency is set. By default, it uses the
frequency set in the OPT file (whether it be the default or the input file).
Usage is simple:

>>> new_frequency = 250 orca.set_frequency(new_frequency)

Parameters freq (float) – The new single frequency for ORCA to be run at. It must be
a single value.

set_mode_grid(mode_grid, force_list=True) Set up the grid for the mode functions to be
evaluated at.
ORCA can calculate the mode functions loss based on an input grid. This method sets
up the grid for where the mode functions will be calculated. The grid is the depths in
meters.
Usage:

>>> # set the mode grid to be from 0-70 m deep with 100 points
>>> orca.set_mode_grid([0, 70, 100])

Parameters
• z_grid (array) – This is the depth grid positioning for calculating modes.
• force_list (bool, optional) – Set to false to allow ORCA to have 3 values to set

it’s own grid

Note
If mode_grid is of length three and force_list is false, then it will assume the
order of min, *max, number for ORCA to create its own grid for computation.

set_ram_disk(ram_disk_path) Set the root to a temporary directory
This method let’s us set a temporary directory with a RAM disk path - used in run and
run_single_frequency

set_sources(source_grid, force_list=False) Set up the depths of simulated sources for
transmission loss
ORCA allows for transmission loss calculations by simulating source positions. Use
this method to set up the grid for sources. They are placed at r=0 at the depths specified.
Usage:



A.1 ORCA Interface Documentation 95

>>> # move the source to 10 m deep
>>> orca.set_sources([10])

Parameters
• source_grid (list) – The list defining the depth points of the sources.
• force_list (bool, optional) – If placing 3 sources at specific locations, use this

parameter to force them instead of being min, max, num.

Note
If source_grid is of length three, then it will assume the order of min, max,
number for ORCA to create its own grid for computation. Set the optional
force_list parameter to True to force 3 points.
Currently ORCA interface does not support multiple sources. In the mean-
time, please use one source.

set_tl_grid(z_grid=None, r_grid=None) Set up the transmission loss calculation grid
ORCA can calculate the transmission loss based on an input grid. It also relies on a
source grid (which can be set with set_sources()) to calculate the transmission loss at
depths and ranges. This method sets up the grid for where the transmission loss will be
calculated. The depth grid is in meters, and the range grid is in kilometers.
Either z_grid or r_grid can be set beyond the default, but it is recommended to set both
together at the same time. The best method is to use sets of 3 for each, where you go
[min, max, num] for each. Self-generated arrays are supported.
Usage:

>>> # set the tl grid to be from 0-70 m deep with 100 points
>>> # set the tl grid to be from 0.01-2 km in range with 200 points
>>> orca.set_tl_grid([0, 70, 100], [0.01, 2, 200])

Parameters z_grid (array, optional) – This is the depth grid positioning. r_grid : array,
optional This is the range grid positioning.

Note
If either are of length three, then it will assume the order of min, max, number
for ORCA to create its own grid for computation. If the number value is directly
casted to an int no matter what.
z_grid is the depths, and each depth is in meters. r_grid is the ranges, and each
range is in kilometers.

static water_attenuation(freq) Get the water attentuation value corresponding to the
frequency
Water attenuation in the watercolumn is dependent on frequency. This function takes
that into account and calculates the new attenuation.
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From MATLAB: alpha_f: attenuation in water column:
[pos~db/m/kHz, neg~dB/wavelength]

Parameters freq (float) – The frequency (in Hz) of the current case.
Returns The modified ORCA object
Return type float

A.1.1 ORCA Options and Configurations

Documentation for handling the OPT class. This class contains all of the options necessary to run

ORCA properly.

class orca_interface.orca_class.OPT_Configs(input_file)
Bases: object

A class that can handle all of the OPT options

This class isn’t loadable by the orca_interface package, by default. It is instead built into
the ORCA class and can be accessed as a nested object.
Anyway, this class contains all of the various OPT options. More information about many of
them can be found within the opt.sample.toml file included in the package repository.

To pull any of the variables, you can do the following:

>>> # access the rmax information, for example
>>> orca.opt.rmax

Parameters input_file (string) – The input file for setting up the OPT dataclass. By default,
it pulls the default options distributed with the package.

Variables rmax (float) – The selected file prefix that ORCA will use for many things,
including building the output ASCII files and also for saving the finished data.

Note
Please visit the opt.sample.toml file to view more information about these options.
Generally, you should not be needing to modify any of these as the default options
have been set for maximum functionality.

dict_dump() Creates a dictionary dump of all of the attributes in the class

Returns out_dict – OPT data.
Return type dict A dictionary containing all options contained in the
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A.1.2 ORCA Sound Velocity Profile Options

Documentation for handling the SVP class. This class contains all of the water and sediment layer

properties that ORCA uses.

class orca_interface.orca_class.SVP_Data(default_file) Bases: object

A class that can handle all of the SVP parameters

This class isn’t loadable by the orca_interface package, by default. It is instead built into
the ORCA class and can be accessed as a nested object.
Anyway, this class contains all of the various SVP parameters. More information about many
of them can be found within the svp.sample.toml file included in the package repository.

To pull any of the variables, you can do the following:

>>> # access the rmax information, for example
>>> orca.svp.svp_title

Parameters input_file (string) – The input file for setting up the OPT dataclass. By default,
it pulls the default options distributed with the package.

Variables
• svp_title (string) – The title given to this specific SVP.
• sediments (Sediment_Layer) – The sediments are directly attached to another

class caleed Sediment_Layer. This particular attribute is actually a plain Python list
of sediment layers. To access a particular layer and its attributes, use something
like opt.svp.sediments[0].h to access the height value of layer 1. You can also see
the documentation for the Sediment_Layer class for information on its attributes.

• upper_cp (float) – The compressional sound speed at the upper halfspace.
• upper_cs (float) – The shear sound speed at the upper halfspace.
• upper_rho (float) – The density of the upper halfspace.
• upper_ap (float) – The compressional attenuation of the upper halfspace.
• upper_as (float) – The shear attenuation of the upper halfspace.
• ctol (float) – The tolerance for the speed of sound. Not recommended to change.
• ocean_constant_rho_ap (bool) – Whether or not to use a constant rho and ap

when defining the ocean. NOTE: it is not recommended to update this parameter.
Use ORCA’s built in replace_water_profile() to modify this parameter.

• ocean_constant_rho (float) – The constant value set for the water’s density.
NOTE: it is not recommended to update this parameter. Use ORCA’s built in
replace_water_profile() to modify this parameter.
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• ocean_constant_ap (float) – The constant value set for the water’s attenuation.
NOTE: it is not recommended to update this parameter. Use ORCA’s built in
replace_water_profile() to modify this parameter.

• ocean_layers (list of lists) – The list of lists that defines the water’s sound speed
and depth. NOTE: it is not recommended to update this parameter. Use ORCA’s
built in replace_water_profile() to modify this parameter.

• lower_cp (float) – The lower compressional sound speed at the lower halfspace.
• lower_cs (float) – The shear sound speed at the lower halfspace.
• lower_rho (float) – The density of the lower halfspace.
• lower_ap (float) – The compressional attenuation of the lower halfspace.
• lower_as (float) – The shear attenuation of the lower halfspace.

Note
Please visit the svp.sample.toml file to view more information about these options.

add_sediment_layer(layer_, position=None) A method to add another sediment layer
This method will add a sediment layer to the ocean enviornment. If the optional position
argument is given, it will place the sediment layer at different positions.
The new layer needs to follow any of the following forms depending on the type you
wish to use:
linear : [1 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2]
blug1 : [2 h cp1 g cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol]
blug2 : [3 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol]
blug3 : [4 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 g ctol]
These arrays can also be in the form of dictionaries with those specific keys. Just also
include a type key set to the first number in the list.

Parameters layer_ (list or dict) – The pre-defined input layer to be added. Can be
either a dictionary or a list, see the description above for array and dictionary
construction. position : int, optional The position to put the new layer. By default it
places it at the end of the set of layers. Use Python indexing for this parameter.

Warning
Please do not use this method directly. The ORCA class has an identical
method and passes all information directly to this function. Please use the
ORCA class method instead.*

dict_dump() Creates a dictionary dump of all of the attributes in the class

Returns out_dict – A dictionary containing all options contained in the OPT data.
Return type dict



A.1 ORCA Interface Documentation 99

remove_sediment_layer(index=None) Remove an entire sediment layer
This method will remove a sediment layer from the set of sediments. By default, it will
remove the bottom-most layer. Use the optional index parameter to select which layer
index you want to remove.

Parameters index (int, optional) – Which sediment layer you wish to remove. Use
Python indexing for this parameter.

Warning
Please do not use this method directly. The ORCA class has an identical
method and passes all information directly to this function. Please use the
ORCA class method instead.*

replace_water_profile(water_data, constant_rho=None, constant_ap=None)
A method to replace the water sound speed profile
This method will remove the entire water profile with the new set input. It accepts an
array of arrays with [depth, speed] pairs, if the constant terms are both set. If they are
not, it expects an array of arrays with [depth, speed, rho, ap] sets.

Parameters
• water_data (list of lists) – This parameter must be a list of lists. Either of

[depth, speed] pairs or [depth, speed, rho, ap] sets.
• constant_rho (float, optional) – The rho value that you wish to set as the

constant value. This value must be set with constant_ap
• constant_ap (float, optional) – The ap value that you wish to set as the constant

value. This value must be set with constant_rho.

Note
If constant_rho and constant_ap is set, if water_data contains a list of [depth,
speed, rho, ap] sets, the rho and ap values will just be ignored.
Also, please be sure to set both constant_rho and constant_ap together or not at
all. Errors will be thrown if not.

Warning
Please do not use this method directly. The ORCA class has an identical
method and passes all information directly to this function. Please use the
ORCA class method instead.*

A.1.3 ORCA Sediment Layer Options

Documentation for handling the Sediment Layers and its attributes. This is what defines a single

layer contained in the SVP “sediments” attribute.
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class orca_interface.orca_class.Sediment_Layer(input_data) Bases: object

A class to hold information about a sediment layer.

This class makes it easy to manage a single sediment layer. The SVP class has the attribute
sediments that is a list of these classes. To use a particular type of layer, make sure you
have the right set of inputs. For this reason it is highly recommended to use ORCA’s
add_sediment_layer() method to handle creating a sediment layer. However, once it is built,
internal variables can be accessed and modified.

Accessing one of these attributes from ORCA can be done like so:

>>> # change the height of the first layer
>>> orca.svp.sediments[0].h = 30.5
>>> # change the compressional speed at top of the third layer
>>> orca.svp.sediments[2].cp1 = 1500

Also, the variables corresponding to the different layers are:

linear : [1 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2]

blug1 : [2 h cp1 g cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol]

blug2 : [3 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol]

blug3 : [4 h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 g ctol]

Variables
• type (string) – Which type of layer you are using. Accepts “linear”, “blug1”

“blug2”, or “blug3”.
• h (float) – The height of the layer in meters.
• cp1 (float) – Compressional sound speed at the top of the layer.
• cp2 (float) – Compressional sound speed at the bottom of the layer.
• cs1 (float) – Shear sound speed at the top of the layer.
• cs2 (float) – Shear sound speed at the bottom of the layer.
• rho1 (float) – Density at the top of the layer.
• rho2 (float) – Density at the bottom of the layer.
• ap1 (float) – Compressional attenuation at the top of the layer.
• ap2 (float) – Compressional attenuation at the bottom of the layer.
• as1 (float) – Shear attenuation at the top of the layer.
• as2 (float) – Shear attenuation at the bottom of the layer.
• g (float) – Gradient value. (For use in a blug type.)
• beta (float) – A beta value. (For use in a blug type.)
• ctol (float) – A sound speed tolerance value. (For use in a blug type.)
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Note
Not all of the variables exist above, and some may never be used based on the type
of sediment layer selected (linear, blug1, blug2, blug3). Please refer to each layer
type for more information.
For reference, commonalities accross all layer types include h, cp1, cs1, cs2, rho1,
rho2, ap1, ap2, as1, as2.

dict_dump() Creates a dictionary dump of all of the attributes in the class

A.1.4 Example SSP TOML File� �
1 # ORCA NORMAL MODE MODEL SETTINGS
2 #
3 # This YAML File is an updated configuration file to interface with ORCA
4 # Follow the comments for directions , as all comments are proceeded with

'#'
5 #
6 # This YAML File assumes version 2.0 of the ORCA opt files
7

8 # -------
9 # SECTION 1: General Set -up

10 # -------
11 # Insert the name of the file here. Not necessarily filename.
12 svp_title = "svp_mud_over_sand_sbc"
13

14

15 # -------
16 # SECTION 2: Upper Halfspace
17 # -------
18 [upper_halfspace]
19 # speed of sound
20 cp = 343.0
21 cs = 0.0
22 # density
23 rho = 0.00121
24 # attenuation
25 ap = 0.0
26 as = 0.0
27

28

29 # -------
30 # SECTION 3: SVP Points and Tolerance
31 # -------
32 [svp_ctol]
33 # tolerance used in fitting SVP to eliminate layers
34 # use 0 to keep all layers
35 ctol = 0
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36

37

38 # -------
39 # SECTION 4: Ocean SVP Profile
40 # -------
41 # Make sure that section 3 includes the correct number of SVP points
42 [ocean_svp]
43 # will you be using constant rho and ap?
44 constant_rho_ap = true
45 # constant rho (will be added on the first line)
46 rho = 1
47 # constant ap
48 ap = 0
49

50 # The ocean SVP points. If constant rho and ap was not selected , include
them

51 # in each layer
52 # layers can be either a list of lists (the current example) or a

dictionary of pairs
53 # seen below.
54 # list version MUST follow pattern of [z, cp] (if constant is false)
55 # or [z, cp, rho , ap] (if constant is true)
56

57 # if constant_rho_ap is set to false , the list and dictionary *must*
include rho and ap

58 # values for each defined layer
59 # sidenote , ALL values in a TOML array must be of the same type , so just

add a .0
60 layers = [
61 [0.0, 1468.5] ,
62 [74.4, 1469.5]
63 ]
64

65

66 # -------
67 # SECTION 6: Bottom Layer Profiles
68 # -------
69 # Make sure that section 5 includes the correct number of bottom layers
70 [[ layer_profiles ]]
71 # There are three different types of profiles that can be entered.
72 # Use "linear", "blug1", "blug2", "blug3" and include the following:
73 # type: linear
74 # h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2
75 # type: blug1
76 # h cp1 g cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol
77 # type: blug2
78 # h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 beta ctol
79 # type: blug3
80 # h cp1 cp2 cs1 cs2 rho1 rho2 ap1 ap2 as1 as2 g ctol
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81 # just make sure that each object in the list contains the elements
requested

82 # by the type.
83 type = "linear"
84 h = 11.1
85 cp1 = 1468.785
86 cp2 = 1568.685
87 cs1 = 0.0
88 cs2 = 0.0
89 rho1 = 1.6
90 rho2 = 1.6
91 ap1 = 0.035
92 ap2 = 0.045
93 as1 = 0
94 as2 = 0
95

96 [[ layer_profiles ]]
97 type = "linear"
98 h = 5.0
99 cp1 = 1650.0

100 cp2 = 1650.0
101 cs1 = 0.0
102 cs2 = 0.0
103 rho1 = 1.8
104 rho2 = 1.8
105 ap1 = 0.1
106 ap2 = 0.15
107 as1 = 0.0
108 as2 = 0.0
109

110

111 # -------
112 # SECTION 7: Lower Halfspace
113 # -------
114 [lower_halfspace]
115 cp = 1800.0
116 cs = 0.0
117 rho = 2.20
118 ap = 0.25
119 as = 0.0
120

121 # Section 8: Top Layers
122 # This is unsupported since we have no use for it. It could be useful for
123 # oil in the future.� �

A.1.5 Example ORCA OPT File� �
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1 # ORCA NORMAL MODE MODEL SETTINGS
2 #
3 # This TOML File is an updated configuration file to interface with ORCA
4 # Follow the comments for directions , as all comments are proceeded with

'#'
5 #
6 # This TOML File assumes version 2.0 of the ORCA opt files
7

8 # -------
9 # SECTION 1: Types of Computation

10 # -------
11 [computation_config]
12 # Mode Computations
13 # - 0 for no computations
14 # - 1 for CW
15 # - 2 for broadband
16 iicw = 1
17 # Complex k-plane images
18 # - 0 for none
19 # - 1 for ln(R1*R2)
20 # - 2 for ln(1-R1*R2)
21 iikpl = 0
22 # PW Reflection Coefficient
23 # - 0 for none
24 # - 1 for R vs angle , f
25 # - 2 for FFT file vs. angle
26 iirc = 0
27 # Parameter Study
28 # Parameter study uses iicw , iikpl , iirce
29 # - 0 for no
30 # - 1 for yes
31 iiparm = 0
32 # Geoacoustic Profile
33 # Outputs a geoacoustics profile file (_prof)
34 # - 0 for no
35 # - number of depth pts (an integer)
36 n_env = 0
37 # Output Format
38 # Select output format
39 # - 1 for HDF
40 # - 2 for MAT
41 # - 3 for ASCII (RECOMMENDED)
42 # - 4 for all types
43 iifmt = 3
44

45

46 # -------
47 # SECTION 2: Mode Computation General Parameters
48 # -------
49 # Note: Set all to 0 to find modes automatically
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50

51 [mode_config]
52 # Real Axis Version
53 # - 0 for no
54 # - 1 for yes
55 iirx = 0
56 # Min Phase Speed
57 # - 0 for p-wave modes only
58 # - number for the minimum phase speed
59 # - -1 for seismic modes also
60 cphmin = 0
61 # Max Phase Speed
62 # - 0 to just use the minimum
63 # - number for the maximum phase speed
64 # - negative number for maximum angle in degrees
65 cphmax = 0
66 # Min Range of Interest in km
67 # - >999 to use cphmax
68 # - number for range
69 # - 0 to use S/R geometry
70 rmin = 0.01
71 # Max range of Interest
72 # - 0 to use S/R geometry
73 # - number for range
74 rmax = 100
75 # Phase Step Parm
76 # Step by 2*pi/phfac
77 # - Set to 4-8
78 # - 0 for default (4)
79 phfac = 4
80 # Modes Weaker by db_cut Ignored
81 # Removes the modes weaker than specified dB value
82 # - Set between 0 and 120
83 # - 0 for default (50)
84 db_cut = 200
85 # Gradient Lower h-space
86 # - 0 for default
87 # - -1 for homogeneous
88 # - greater than 0 to set to da_bar
89 Aih_l = 135.001
90 # Aih_l = 0
91 # Gradient Upper h-space
92 # - 0 for default
93 # - -1 for homogeneous
94 # - greater than 0 to set to da_bar
95 Aih_u = -1
96 # Gaussian Beam Source
97 # - 0 for no
98 # - 1 for yes
99 # If set to yes , add the beam angle and beamwidth for each source depth
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100 # in sections 5 or 8
101 iigbs = 0
102 # Print Diagnostic Messages
103 # - 0 for no
104 # - 1 for yes
105 iidiag = 0
106

107 # -------
108 # SECTION 3: CW Node Frequencies
109 # -------
110 # Note: this section is only applied if iicw is set to 1 in Section 1
111

112 [cw_frequencies]
113 # Will you list the frequencies?
114 list = true
115 # Number of Frequencies
116 nf = 1
117 # List of Frequencies (in Hz)
118 # This must be a TOML list of frequencies
119 # The length of this list must also be equal to nf set above
120 items = [
121 200
122 ]
123 min = 200
124 max = 400
125

126

127 # -------
128 # SECTION 4: CW Output Options
129 # -------
130

131 [cw_out_config]
132 # TL
133 # - 0 for no
134 # - 1 for zs , zr, and r (see Section 5)
135 # - 2 for source track/rec array in Section 10
136 iitl = 0
137 # Mode Functions
138 # - 0 for no
139 # - 1 for p-wave
140 # - 2 for s-wave
141 # - 3 for both
142 # Enter the depths in Section 6
143 iimf = 1
144 # Display uz, ux, and Stress sigzz , sigzx
145 # - 0 for no
146 # - 1 for yes
147 iisig = 0
148 # Mode Trajectory in k-plane
149 # Associated ASCII file
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150 # - 0 for no
151 # - 1 for yes
152 iimt = 0
153 # Disp Curves
154 # - 0 for no
155 # - 1 for vg
156 # - 2 for vph
157 # - 3 for both
158 iidc = 3
159 # Mode Eigenvalues
160 # Re(kn), Im(kn)
161 # TODO: Figure this one out
162 iikn = 1
163 # List of Eigenvalue Characteristics
164 # TODO: Yeah , what do the values mean?
165 iieig = 0
166 # Output Various Files to Use in Other Programs
167 # - iikrak: Kraken
168 # - iioas: OASES
169 # - iifepe: FEPE
170 # - iimlab: MODELAB
171 # - 0 for no
172 # - 1 for yes
173 iikrak = 0
174 iioas = 0
175 iifepe = 0
176 iimlab = 0
177

178

179 # -------
180 # SECTION 5: Source Depths , Reciever Depths , and Ranges
181 # -------
182 # source_depths creates an object with various bits of information.
183 #
184 # If you wish to specify individual source depths , set source_depths.list
185 # to true and then within source_depths.items , list the individual depths
186 # in meters.
187 # TODO: clean this section - I have to double check how this all works
188 [source_depths]
189 list = true
190 # list the source depths themselves
191 # 6 is generally a default for a surface ship
192 items = [
193 6
194 ]
195 # values for if list is set to False
196 num = 50
197 min = 1
198 max = 99
199
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200 # receiver_depths works the same way as source_depths
201 [receiver_depths]
202 list = false
203 items = [
204 60,
205 100
206 ]
207 num = 200
208 min = 1
209 max = 120
210

211 # reciever_ranges works the same way as source_depths and reciever_depths.
212 # However , these values are all in kilometers.
213 [receiver_ranges]
214 list = false
215 items = [
216 5,
217 20,
218 25
219 ]
220 num = 250
221 min = 0.1
222 max = 10
223

224

225 # -------
226 # SECTION 6: Mag/Phase Options and Depths
227 # -------
228 # Use these options if iimf is greater than 0 or iisig = 1
229 [mag_phase_config]
230 #
231 iiri = 3
232 #
233 iimp = 0
234 #
235

236 [mag_phase_config.mag_phase]
237 list = false
238 items = [
239 5,
240 10,
241 15
242 ]
243 num = 74
244 min = 1
245 max = 74
246

247

248 # -------
249 # SECTION 7: BB Mode Computation Parameters
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250 # -------
251 [bb_config]
252 # Sample Frequency
253 fs = 512
254 # NFFT or Time Window
255 # - positive number: NFFT
256 # - negative number: time window in S
257 nfft_Tw = 256
258 # Minimum Frequency
259 fmin = 90
260 # Maximum Frequency
261 fmax = 250
262 # Output FFT File
263 # - 0 for no
264 # - 1 for yes , input zs, zr , and r in Section 8
265 # - 2 for yes , read file in Section 10
266 iifft = 1
267 # Output BB Eigenvalues and Functions
268 # - 0 for no
269 # - 1 for yes , input zs, zr , and r in Section 8
270 # - 2 for yes , read file in Section 10
271 iiout = 0
272 # Frequency Trajectory (ASCII)
273 # - 0 for no
274 # - 1 for yes
275 iift = 0
276 # Mode Trajectory (ASCII)
277 # - 0 for no
278 # - 1 for yes
279 iimt = 0
280 # Display Curves
281 # - 0 for no
282 # - 1 for yes
283 iidc = 0
284 # Mode Functions at Receiver Depth
285 # Returns mode functions at the depths defined in Section 8
286 # - 0 for no
287 # - 1 for 2D HDF
288 # - 2 for 3D HDF
289 iimf = 0
290

291

292 # -------
293 # SECTION 8: Depths and Ranges for IIFFT , IIOUT or IIMF
294 # -------
295 # Source information to use with IIFFT and IIOUT
296 # If list is set to true , the script looks at items. If false , it uses

num ,
297 # min , and max
298 [ii_source]
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299 list = true
300 items = [
301 36
302 ]
303 num = 10
304 min = 5
305 max = 20
306

307 # Reciever depths information to use with IIFFT and IIOUT
308 # If list is set to true , the script looks at items. If false , it uses

num ,
309 # min , and max
310 [ii_depths]
311 list = true
312 items = [
313 70
314 ]
315 num = 10
316 min = 5
317 max = 40
318

319 # Reciever range information to use with IIFFT and IIOUT (km)
320 # If list is set to true , the script looks at items. If false , it uses

num ,
321 # min , and max
322 # This uses km instead of meters
323 [ii_ranges]
324 list = false
325 items = [
326 2,
327 10
328 ]
329 num = 5
330 min = 0.5
331 max = 0.8
332

333

334 # -------
335 # SECTION 9: Parameter Study
336 # -------
337 # TODO: adjust this to accept multiple parameter variation studies
338 [iiparm_opts]
339 # Number of CW mode Runs
340 nrun = 10
341 # Number of parameters to vary
342 nparm = 1
343 # Random # seed (Integer)
344 # - 0 for none (will vary linearly from val1 to val2)
345 rseed = 0
346 # Medium



A.1 ORCA Interface Documentation 111

347 obt = 0
348 nlay = 1
349 ktb = 2
350 pc = 0
351 val1 = 200
352 val2 = 100
353

354

355 # -------
356 # SECTION 10: S/R Geometry for Source Track and Rec Array
357 # -------
358 # this is if iitl=2 in section 4 or iifft =2 in section 8
359 [sr_geom]
360 # zs spacing
361 zs = 36
362 # number of source segments
363 n_src_seg = 1
364 # filename to run
365 file_name = "hla_array"
366

367

368 # -------
369 # SECTION 11: Source Track
370 # -------
371 # For specifying a source track
372 [source_track]
373 # a list of objects
374 x_y_form = true
375 iic = 0
376 v = 5
377 t1 = 0
378 t2 = 1
379 # + for dt, - for nt
380 dtnt = 50
381 # if we 're using rect form , these will be used
382 x1 = 0.5
383 y1 = 90
384 x2 = 0
385 y2 = 0
386 # if we 're using polar form , these will be used
387 cpa = 0
388 phi = 10
389

390

391 # -------
392 # SECTION 12: k-plane Images
393 # -------
394 # if iikpl is greater than 0 in section 1
395 # List of k-plane images
396 [[ kplane_imgs ]]
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397 freq = 100
398 iivar = 1
399 iikf = 3
400 kr1 = 0.8
401 kr2 = 1.0
402 nkr = 101
403 ki1 = 200
404 ki2 = 0
405 nki = 101
406 nduct = 1
407 iiph = 2
408 iishp = 1
409 iishs = 1
410

411

412 # -------
413 # SECTION 13: Reflection Coefficient vs f (Hz) and Grazing Angle (deg)
414 # -------
415 # Used if iirce is set to 1 in Section 1
416 [r_vs_f]
417 freq1 = 10
418 freq2 = 50
419 nfreq = 41
420 iilog = 0
421 theta1 = 90
422 theta2 = 0
423 ntheta = 91
424

425

426 # -------
427 # SECTION 14: F T File of R vs. Frequency and Angle
428 # -------
429 # Used if iirc is set to 2 in Section 1
430 [rtr_vs_fa]
431 freq1 = 10
432 freq2 = 50
433 fs = 100
434 nfft = 512
435 theta1 = 90
436 theta2 = 0
437 ntheta = 91� �



Appendix B

Data Simulation Program

What follows is a configuration file used for the data generation script. This configuration file

(written with the TOML syntax) shows the capabilities of the data generation script for building

simulated datasets. There are two main options for the source type, SUS charge and SOO spectro-

gram simulation (see Sec. 2.2 for more information). The full source code for the data simulation

program is available to the Underwater Acoustics Research Group at BYU on the Physics and

Astronomy department GitLab installation.� �
1 # This document contains the configurations for the main file TOML was

chosen
2 # because its harder to actually mess up indentation isn 't necessary
3

4 # some general setup first:
5 dataset_name = "test_dataset"
6

7 # SAVETYPE - how to save the final array
8 # - "numpy" will save it as a NumPy file - ONLY IN SUS
9 # - "matlab" will save it as a MATLAB file - ONLY IN SUS

10 # - "hdf5" will save it as an hdf5 file - ONLY IN SOO
11 save_type = "hdf5"
12

13 # base output directory: blank defaults to "output"
14 output_directory = "output"
15

16 ## extraction information *FOR SUS CHARGES ONLY*
17 extract_signal = true
18 # how long (in seconds) the extraction should be

113



114

19 extract_length = 1.0
20 # where direct arrival should occur
21 extract_direct = 0.158
22 # if you want to save the true times from extraction , only triggers if

extract_signal is /also/ true
23 extract_time_save = false
24

25 # ONE ORCA OPTION
26 # how many modes to get from ORCA
27 # increasing this number may provide more "precise" results , but will also

increase
28 # runtime , so be careful adjusting this.
29 # TODO: remove this option and allow the number of modes be dynamically

chosen
30 max_modes = 50
31

32 # PARALLELIZE - whether or not you wish to parallelize the calculations (
highly recommended)

33 parallelize = true
34 # how many cores you wish to use , recommended one minus the number of

cores available (leave as 0 for this case)
35 num_cores = 0
36

37 # CHECKPOINTS - whether or not you wish to save checkpoints
38 # - True will save a checkpoint that can easily be reloaded if there 's

a system failure
39 # - False will not save a checkpoint offering a speed -up
40 # THIS ONLY APPLIES TO SUS CHARGES
41 checkpoint = true
42

43 # Maximum File Size - in Megabytes , only applies to the SUS charges
44 max_file_size = 500
45

46

47

48 ### SOURCE BLOCK ###
49 # this block lets us set up more information about our source
50 [source_info]
51

52 # Which source type you 're going to use , currently only supports "sus", "
ship" and "impulse"

53 source_type = "ship"
54

55 # maximum frequency: half of the sampling rate , keep 2500 for IVAR tests
56 # if using "soo" spectrograms , this is the highest frequency in the

spectrogram
57 fmax = 500
58

59 [source_info.sus_charges]
60 ### SUS CHARGE INFORMATION - THIS IS ONLY USED IF THE SOURCE TYPE IS
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SET
61 # TO SUS ABOVE
62

63 # source depth 24.8 is the Mk46 detonation depth (18.3) + a correction
factor

64 # depth of the source
65 zs = [18]
66

67 # w constant for the SUS generation - keep at 0.031
68 w = 0.031
69

70 # frequency windowing - set the upper and lower bounds (Hz) of the
window applied to

71 # the SUS spectra
72 bandpass_window = [20, 2500]
73

74 [source_info.ship_noise]
75 ### SHIP NOISE INFORMATION - THIS IS ONLY USED IF THE SOURCE TYPE IS

SET TO
76 # SHIP ABOVE
77

78 # the minimum frequency to save the spectrogram , only if spectrogram!
79 # useful for reducing the amount of data needed to load
80 # set to 0 to have the minimum be df
81 fmin = 30
82

83 # total length of time to use (in hours) for the half track sims
84 spec_length = 1 # other good examples: 3.3333333333333 #0.5 #1.229
85

86 # interval between the "measurements" (in seconds)
87 spec_interval = 10
88

89 # how long the "extracted" signal should be at each interval
90 # this is what determines the frequency spacing: df = 1 / spec_length
91 # e.g. 1 for 1 Hz spacing
92 ship_time_chunk = 1 # 3.125 is the value used in the original MATLAB

script
93

94 # ship depth used for calculations in m, generally about 6
95 ship_depth = [6.0]
96 # randomize ship depths , if this is selected it'll choose a random

value between
97 # the FIRST and SECOND values in the ship_depth above. It will ignore

other values!
98 ship_depth_random = false
99 # number of random ship depths to choose

100 ship_depth_random_num = 1
101

102 # if the CPA should be centered in the grid
103 # THIS IS ALWAYS TRUE BECAUSE THE STARTING PLACES BELOW ISN 'T YET
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IMPLEMENTED
104 ship_cpa_centered = true
105

106 # ship speeds in knots , these become the bins like the ranges (see
below)

107 ship_speeds = [18, 20, 22]
108 # add randomized ship speeds
109 ship_speeds_per_bin = 1
110 # min , max ship speeds when doing random values
111 ship_speeds_min_max = [16, 24]
112 # type of distribution for the random selection , uniform or normal (u/

n)
113 ship_speeds_random_dist = 'u'
114 # randomize the ship speeds every SSP calculation
115 ship_speeds_random_each_ssp = true
116 # how far to stay from bin boundaries
117 ship_speeds_random_epsilon = 0.01
118

119 # ship starting distances (in y). The ship 's CPA is always at Y=0, but
you can use this to have

120 # different starting places
121 # NOT YET IMPLEMENTED
122 ship_starting_places = []
123

124 # spectra output type
125 # true - converts the values to levels
126 # false - returns the complex "pressure"
127 spec_output_level = false
128 # spectral output density
129 # if you just want to save the levels , (previous must be true)
130 # you can choose to have spectral levels or spectral density levels.

True does the latter
131 spec_output_density = true
132

133 # whether or not to use random phase in the spectrum
134 # as per SIM 1.1, this should be false , but the option remains
135 rand_phase = true
136

137

138 ### ENVIRONMENT INFORMATION
139 # What follows are the environments you wish to use.
140 [environments]
141 # inside this block , you can list the config file names that you want to

loop
142 # through. By default , it will search for the files within the `/data `

folder.
143 # use directory
144

145 # if directory is blank , it will just search inside data. this can be
relative
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146 # to this program or an absolute directlry.
147 env_directory = "data"
148

149 env_file_list = [
150 "svp_deepmud_sbc.toml",
151 "svp_mud_over_sand_sbc.toml",
152 "svp_sandysilt_sbc.toml",
153 "svp_sandy_sbc.toml"
154 ]
155

156 # Now , give us some information about the files that will be loaded to
change

157 # the ocean SVP. Same rules apply to these files as above. NOTE: the OCEAN
parts

158 # of the SVP config files will be ignored and replaced with those found
here. So

159 # MAKE SURE all of your oceans are expressed in this list.
160 ocean_svp_directory = "data"
161 ocean_svp_file = "SSPs_SCB2017_sample.mat"
162

163

164

165 ### RANGE INFORMATION
166 ## This governs how the ranges are set. All arrays of microphones
167 # are based off of this.
168 # NOTE:
169 # THESE RANGES BECOME CLOSEST POINT OF ARRIVAL WHEN USING SHIP OF

OPPORTUNITY
170 [range_classes]
171 # number of ranges per bin. It will *always* include the bin centers
172 # in the list of ranges. If it is just one , it will just be the bin

centers.
173 # if set to more than one , it'll randomly select between the bounds of the

bin
174 # in a uniform or normal distribution as defined below
175 ranges_per_bin = 1
176

177 # SET THE ABSOLUTE BIN LIMITS minimum range value
178 min_range = 1.5
179

180 # max range value - not included , just an extra bound for the final
181 # distribution - doesn 't really affect gaussian but could affect
182 # normal distribution
183 max_range = 15
184

185 # where the centers of the binds should be, or a full list of the ranges
186 # of interest - this is all in km
187 # minimum for first bin will always be 0
188 bin_centers = [2.0, 2.5, 3.0, 3.5, 4.0,
189 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0,
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190 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5
191 ]
192

193 # whether or not you want the ranges to be randomly drawn each ssp
194 # meaing it will be drawn for every env + ssp combo.
195 # this is only really used if ranges_per_bin is set to greater than one
196 random_each_ssp = true
197

198 # how far to stay from boundaries
199 epsilon = 0.01
200

201 # sampling type - uniform or normal - u or n
202 type = "n"
203

204

205

206 ### RECEIVER BLOCK ###
207 # this block governs how the receivers are built
208 [receiver_info]
209 # the grid - currently supports independent ranges and
210 # depths , meaning that it 'll make a grid given input and
211 # output
212

213 # if you want the depths to be a number of meters off of the *bottom* of
the ocean , do so here

214 relative_depth = true
215

216 # positions of receivers - *in m*
217 # this is a list -of -lists where each inner list requires three values
218 # those are [z, x, y]
219 # z is the depth of the receiver (this can be relative thanks to

relative_depth)
220 # x is the "horizontal" point of the receiver , whether it's closer or

farther from the source from 0,0 (negative is closer)
221 # y is the "vertical" point of the receiver , whether it's offset from the

center of the array
222 receiver_positions = [
223 [0.5, 0.0, 0.0],
224 # [0.5, 0.0, 0.0],
225 # [1.0, 0.0, 0.0],
226 # [1.5, 0.0, 0.0],
227 ]
228 # [0.5, 0.0, 0.0] indicates 0.5 meters from the bottom , centered in x and

y with range calculations
229

230 #### LEGACY for SUS CHARGES
231 # depth of receivers - *in m*
232 zra = [0.5] # half a meter off the bottom of the ocean
233 # sub ranges of receivers
234 ra = [0.0] # the different ranges relative to the main range - *in km*� �



Appendix C

Machine Learning Code Information

What follows is a configuration file for the script that runs the machine learning framework. After

the study presented in Chapter 5, an effort was made to standardize the machine learning code used

in the research group. The reworked code contains all of the pieces used to train the models in

all of the studies used, but now can be configured by a single TOML file. A copy of this file is

presented. All code used for the machine learning aspects of the studies in this thesis are available

to the Acoustics Research Group on the Physics and Astronomy GitLab installation.

Machine learning framework configuration file:� �
1 ##### TRAINING SETTINGS as a TOML
2 # To ease the use of the training script , a method of setting up
3 # various settings in a TOML is provided. Just go through these
4 # settings and edit them as you please.
5

6 ### GENERAL TRAINING SETTINGS
7 # What follows are some general training settings.
8

9 ## Run Name
10 # A simple name used to uniquely identify this particular run. It
11 # is used when saving the model and statistics about training and
12 # testing
13 run_name = "TEST_run"
14

15 ## Run Save Path
16 # Where you 'd like the model and stats saved to your machine.
17 run_save_path = "default_output"

119



120

18

19 ## Run Description
20 # A longer -form description if you need to express what you were
21 # trying in words.
22 run_description = """
23 This is just a test run of the various training options
24 available through the "base" script.
25 """
26

27 ## Number of Models to Train
28 # This option lets you set how many times you want to run the
29 # script with the same configurations. This is useful for
30 # determining how well a specific model does on a dataset by
31 # accounting for random weight initialization and dataset splits.
32 # If you just need one model , just set this option to one. Please
33 # note , if using k-fold cross validation (an option later in this
34 # file), this will be ignored and it will be performed
35 num_runs = 1
36

37 ## GPU Device
38 # This option lets you select a GPU to run this on if you have
39 # more than one. If you only have one , leave it as 1
40 gpu_id = 0
41

42 ## Model Name
43 # This is one of the cool features of this code base. You can
44 # specify what model you want to train on just by providing a
45 # name. Make *your own* Python file containing your deep learning
46 # model and save it to the `models ` directory. Then , the script
47 # will find the model 's class name based on what you put in the
48 # option below. That way you don 't even have to edit the training
49 # script to actually load your model! An example model is found in
50 # `models/example_cnn.py `.
51 model_name = "Example2DModel"
52

53 ## Number of Epochs used for Training
54 # Number of times a dataset is passed through a network through
55 # training.
56 num_epochs = 20
57

58 ## Starting Learning Rate
59 # Could be used as a *starting* learning rate if a scheduler is
60 # defined and used below.
61 learning_rate = 0.001
62

63 ## Lable Names to Train On
64 # This is a list of names that you want to train on. Please note
65 # that the dataloader *has* to support these for them to work.
66 labels_to_learn = ["geo", "cpa", "speed"]
67
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68 ## Scheduler
69 # When an epoch is finished , the learning rate can be adjusted via
70 # a scheduler. A cosine annealing rate is probably our favorite.
71 # OPTIONS: cosine , exponential , step , plateau , none
72 scheduler = "cosine"
73

74 ## Epochs Per Test Pass
75 # The number of epochs to pass before geting metrics on testing.
76 # For long runs , 5 is sufficient , but a more accurate view of the
77 # trends may require smaller numbers.
78 epochs_per_test = 5
79

80 ## LEARN MODE
81 # What mode you want the labels to be learned. The options are:
82 # classification , regression , and multitask.
83 # * classification:
84 # * the "unique" values are split up into "classes" and the
85 # network learns a probability distribution In the case of
86 # more than one label to learn , it employs
87 # "multiclassification" where all unique *combinations* are
88 # devided into their own class.
89 # * regression:
90 # * The network learns to return a number. If the correct
91 # value is 10, it will learn to return 10. In the case of
92 # more than one label to learn , it employs "multiregression"
93 # where all of the labels are given as numbers.
94 # * multitask:
95 # * The network learns to do combinations of regression and
96 # classification on the multiple labels learned. If this is
97 # selected , please be sure to modify multitask_settings
98 # below!
99 learn_mode = "regression"

100

101 ### Training and Testing Options
102 # These options govern how many times the network will be run and
103 # how the train and test dataset will be used.
104

105 ## Number of Times to Train the Network
106 # This is how many times the network should be trained. It will
107 # produce this number of networks. This option is *ignored* if
108 # K-fold cross -validation is selected.
109

110 ## Test on Secondary Dataset
111 # If this option is set to true , the script will load a secondary
112 # dataset. If set to false , it will rely on the train -test split
113 # defined below
114 use_test_dataset = false
115

116 ## K-FOLD Cross -validation
117 # If this is true , it will enable k-fold cross validation and
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118 # ignore the train_test_split. However , this will be ignored if
119 # the use_test_dataset option is set to true
120 k_fold = false
121 k_num_folds = 5
122

123 ## Train -test Split
124 # If there is no k_fold enabled , nor a secondary dataset , the
125 # script will split the dataset by this amount. The number entered
126 # refers to how much of the data goes to the *training* dataset.
127 train_test_split = 0.90
128

129 ## Early Stopping
130 # If you want to train the network with early stopping. This takes
131 # the loss specified ees if it is improving between epochs.
132 # **NOTE** if this is enabled , the `epochs_per_test ` option will
133 # effectively become **one**.
134 early_stopping_enable = true
135 # Which metric to use to determine
136 early_stopping_metric = "validation"
137 # How many epochs to wait for improvement before ending , lowest
138 # patience is 1
139 early_stopping_patience = 5
140 # Minimum change to be observed before an improvement is noted
141 early_stopping_delta = 0.001
142

143 ### DATASET OPTIONS
144 # These options are required for loading in the training and
145 # testing datasets.
146 ## Dataset Type
147 # This option specifies the dataset options that you will be
148 # learning from. It currently supports "sus" and "soo "/" ship". To
149 # add more types of datasets , please edit the
150 # `tools/dataset_selection.py ` and add your dataset class to the
151 # dataloaders repository. Please note that your __item__ method
152 # must return (features , labels) as tuples for these scripts to
153 # work. For testing purposes (on a small dataset), "mnist" is also
154 # an option.
155 dataset_type = "soo"
156

157 [dataset_settings]
158 # This covers the settings required to load in a dataset from the
159 # soo or sus categories.
160

161 # The name of the train dataset. See the csv file located with the
162 # dataloaders for the names you can choose.
163 train_dataset_name = "example_train_dataset"
164 # the name of the test dataset. If k-fold crossvalidation was
165 # selected , this will be ignored. This will also be ignored if
166 # use_test_dataset was set to true
167 test_dataset_name = "example_test_dataset"
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168 # The total amount of memory that can be allocated to these datasets
169 # (WIP feature)
170 hard_memory_limit = 32
171

172 # whether or not to normalize the data
173 data_norm = false
174 # the method to normalize the data if data_norm is true
175 data_norm_method = "individual"
176

177 # whether or not to normalize the labels (useful for regression ,
178 # saved to the model so that real predictions can be made)
179 label_norm = true
180 # label norm method (ignored if label_norm is false): max ,
181 # normalize , standard
182 label_norm_method = "standard"
183 # which labels to normalize , *must* be from the list above , leave
184 # empty for all
185 label_norm_use = []
186

187 # FOR SOO TYPE ONLY
188 # How you want the channels to be loaded: real_imaginary , abs ,
189 # levels real_imaginary -> one channel is the real part , the other
190 # channel is the imaginary part abs -> only one channel and it's the
191 # absolute pressure (take the abs of the real and imaginary part)
192 # levels -> converts the absolute pressure to decibels re 1 muPa
193 spectrogram_channel_type = "real_imaginary"
194

195 train_ssps = []
196 train_rs = []
197 train_geo = []
198

199

200 ### MISCELANEOUS OPTIONS:
201 # Some of these settings are necessary for other things to work.
202

203 ### MODEL KEYWORD ARGUMENTS
204 # If the model you 've programmed has different keyword arguments ,
205 # you can add them here
206 [model_kwargs]
207 batch_norm = true
208

209 ### SCHEDULER KEYWORD ARGUMENTS
210 [scheduler_kwargs]
211 # This will need to be edited based on the documentation for your
212 # scheduler of choice. Please visit
213 # https :// pytorch.org/docs/stable/optim.html and find your
214 # scheduler and see what other information it requires to run.
215 # e.g.
216 # the "cosine" annealing learning rate requires a "T_max"
217 # parameter and an optional 'eta_min ' parameter , so it would be
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218 # input as the following. If the cosine annealing one is selected ,
219 # if T_max is 0, then it uses the number of epochs:
220 T_max = 0
221 eta_min = 0
222

223 ### MULTITASK SETTINGS
224 # If you set MULTITASK to true above , you *need* to make sure that
225 # this section is built *IF* you want fine control over the
226 # individual labels you want to learn. If these are empty , then it
227 # will default to options set inside the tools/__init__.py file.
228 [multitask_settings]
229 # Part of multitask requires "scaling" so that the network learns
230 # the importance of different labels on it's own. The "learnable"
231 # value here is "eta" in the multitask equation. Enter in X numbers
232 # in a list to be the starting eta values. put them in order
233 # applying to `labels_to_learn ` so that it is properly
234 # added.
235 eta = [1.0, 0.5, 0.8]
236

237 [[ multitask_settings.individual ]]
238 # Here 's an example for the 'geo ' label. MAKE SURE the label name
239 # matches exactly
240 label = "geo"
241 mode = "classification"
242 criterion = "crossentropy"
243 [multitask_settings.individual.criterion_args]
244 # and then includind this criterion_args , you can specify individual
245 # loss parameters according to
246 # https :// pytorch.org/docs/stable/nn.html
247 reduction = "mean"
248

249 [[ multitask_settings.individual ]]
250 label = "cpa"
251 mode = "regression"
252 criterion = "mse"
253 [multitask_settings.individual.criterion_args]
254 # this section can be blank if you have no arguments to add (that 's
255 # the usual case)
256

257

258 [other_options]
259 # Don 't mess with these unless you know what you 're doing.
260

261 # if you need to extend the available options , please feel free to
262 default_classification_criterion = "crossentropy"
263

264 # default regression criterion:
265 default_regression_criterion = "mse"
266

267 # use these fields to add your kwargs for the loss values.
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268 [other_options.regression_kwargs]
269 # This section exists for regression criterion kwargs if necessary
270

271 [other_options.classification_kwargs]
272 # This section exists for classification criterion kwargs if
273 # necessary� �
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