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ABSTRACT

Polarization of Nonlinear Thomson Scattering from a High-Intensity Laser Focus

Brittni Tasha Pratt
Department of Physics and Astronomy, BYU

Master of Science

Thomson scattering from free electrons in a high-intensity laser focus has been widely studied
analytically, but not many measurements of this scattering have been made. We measure polarization-
resolved nonlinear Thomson scattering from electrons in a high-intensity laser focus using a
parabolic mirror. The weak scattering signal is distinguished from background noise using single-
photon detectors and nanosecond time-resolution to distinguish a prompt scattering signal from
noise photons. The azimuthal and longitudinal components of the fundamental, second, and third
harmonics were measured. Our measurements reasonably match theoretical results, but also show
some asymmetry in the emission patterns.

Keywords: Nonlinear Thomson scattering, free electrons, high-intensity, polarization, photon
detector, parabolic mirror
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Chapter 1

Introduction and Background

1.1 Thomson Scattering

In the early 1900’s, scientist J. J. Thomson described the radiation emitted when unbound

charged particles scatter electromagnetic radiation. This radiation, now known as Thomson scatter-

ing, can be well-described by classical electromagnetic theory. Thomson scattering is an elastic

scattering process, meaning that the kinetic energy of the charged particle and the frequency of the

scattered light are conserved. It is the low-energy limit of Compton scattering [1].

The motion of a charged particle in an electromagnetic wave is described by the Lorentz force:

dp
dt

= q(E+u×B), (1.1)

where q is the charge of the particle, E is the electric field, B is the magnetic field, and p is the

momentum given by

p = γmu, (1.2)

where

γ =
1√

1−u2/c2
. (1.3)

1
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When the particle experiences a low intensity oscillating electromagnetic field, the motion of the

particle is nonrelativistic, meaning that u� c. This makes it so the u×B term in the Lorentz force

law is negligible and the magnetic force has little impact on the trajectory of the particle. In this

case, Eq. (1.1) simplifies to dp
dt = qE. The Lorentz factor γ in the momentum approaches one in the

non-relativistic case, so that p = mu.

Figure 1.1 Radiation from an oscillating electron located at the center of the sphere. The
laser focus is represented by the black cones and the color scale represents different values
of intensity where white is the highest intensity and black is the lowest intensity.

In this low-intensity regime, the particle accelerates in the same direction as the electric field and

radiates as an electric dipole. Figure 1.1 shows the radiation pattern from such a dipole, where an

oscillating electron is located at the center of the sphere. A laser linearly polarized in the x-direction

is represented by the black cones. The radiation from the particle carries the same frequency as that

of the driving electromagnetic wave.
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1.2 Nonlinear Thomson Scattering

In the previous section, we discussed a particle in a low intensity oscillating electromagnetic

field which allowed us to ignore the magnetic field component when determining the motion of the

particle. Now we will consider a particle in a high-intensity electromagnetic field.

The motion of a particle at high-intensity is relativistic, so γ in the momentum becomes

appreciably larger than one and u×B in Eq. (1.1) can no longer be neglected. The motion of the

particle is now significantly influenced by the magnetic field as well as the electric field. Figure 1.2

shows the patterns that an electron traces in (a) a low intensity field verses (b) a high-intensity field

in the average rest frame of the electron. In this figure, the electric field oscillates in the x-direction

and the magnetic field in the z-direction. In Fig. 1.2a, we see the pattern traced by an electron

moving nonrelativistically and that the electron simply oscillates in the direction of the electric field.

Figure 1.2b displays the figure-eight pattern traced by an electron moving relativistically since it is

also influenced by the magnetic field component. From the lab frame, the figure-eight pattern is not

apparent. The trajectory of the electron from the lab frame will be discussed in greater detail in

Chapter 2.

Figure 1.2 Motion of an electron in a low intensity field (2×1016 W/cm2) (a) and a
high-intensity (2×1019 W/cm2) field (b) in the average rest frame of the electron.

As the particle in a high-intensity field oscillates nonlinearly, it radiates photons at harmonic

frequencies of the incident light [2]. This is known as nonlinear Thomson scattering. We will review
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the equations that describe the motion and radiation of a particle in a high-intensity field in greater

detail in Chapter 2.

1.3 Previous Research on Nonlinear Thomson Scattering

Many analytical studies have been done on nonlinear Thomson scattering [3–5]. A topic of

interest has been the potential of using nonlinear Thomson scattering from electrons in intense

laser pulses to generate short-pulse x rays. These x rays could be used in many applications, such

as medical imaging and x-ray spectroscopy [1, 3, 6]. In 1993, Eric Esarey et al. investigated the

possibility of using a laser synchrotron source based on nonlinear Thomas scattering to produce high

energy ultrashort x-ray pulses. His model showed that this may be a viable method for producing

these x rays, as a laser synchrotron source has many attractive features such as compactness and

low cost [3].

The harmonic orders of nonlinear Thomson scattering from free electrons have also been studied

by many researchers, most notably by Sarachik and Schappert in 1970. Their theoretical analysis

included the solutions for the electron trajectory, radiated power, momentum, and harmonics in the

laboratory frame and the average rest frame of the electron [4]. We will review the equations of

motion for the electron in the average rest frame in greater detail in Chapter 2.

In 1998, Wei Yu et al. also investigated the harmonic orders of nonlinear Thomson scattering

analytically. Their study was based on nonlinear Thomson scattering from counterstreaming

relativistic electrons in an ultraintense laser beam. In their study, they considered a high-intensity

flat-top laser of circular polarization with an electron orbiting in the plane perpendicular to the laser

propogation. Figure 1.3a shows the angular distribution of scattered radiation for the 1st to the 50th

harmonics in the average rest frame of the electron. The scattered radiation for the fundamental

frequency peaks in the plane normal to the electron orbit, whereas the radiation for the higher
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Figure 1.3 (a) Angular distribution of the 1st to the 50th harmonics in the average rest
frame of the electron (b) Differential cross section of the scattered radiation for the 1st to
the 50th harmonics in the laboratory frame. The peak in the higher harmonics peak in the
plane containing the electron orbit from the average rest frame of the electron and shifts to
around 162 ◦ from the lab frame. Figure taken from [5].

harmonics peak in the plane that contains the electron orbit. Figure 1.3b shows the differential cross

section of the scattered radiation with respect to angle in the laboratory frame. The fundamental

radiation peaks in the opposite direction to that of the incident laser, and the higher harmonics,

which peak in the plane that contains the electron orbit in the average rest frame of the electron, shift

forward to an angle of about 162 ◦ in the laboratory frame [5]. Their results show that relativistic

electrons in an ultraintense laser beam scatter radiation mainly in the higher harmonics and that

the Doppler effect causes a frequency up-shift. Using the effects of high harmonic generation and

Doppler shift, the radiation scattered can be of very short wavelength and thus strong frequency

up-conversion is possible [5].

The first measurements of nonlinear Thomson scattering were done by the Umstadter group in

1998 [2]. They measured nonlinear Thomson scattering from free electrons using a high-intensity

pulse laser system focused onto a helium gas jet. Their results show the second and third harmonics

radiated from the electrons. Figure 1.4 shows the radiation as a function of azimuthal angle for the

third harmonic; the solid line represents the theoretical prediction, and the black dots represent their
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measured results. These were groundbreaking results since nonlinear Thomson scattering had never

been measured before, and their study confirmed the analytical models theorized by researchers.

Figure 1.4 Third harmonic from the Thomson scattering in plasma for 0.8 J pulse energy
and 6.2 ×1019 cm−3 electron density at θ = 90◦ is shown with respect to angle detected.
The theoretical prediction is shown with the black line and the experimental measurements
is shown with the black dots. Figure taken from [2].

In 2006, the second harmonic of nonlinear Thomson scattering was also measured by Marcus

Babzien et al. In their experiment, they collided laser pulses with electron beams and found

the angular distribution of the intensity for the second harmonic of nonlinear Thomson scattered

x rays [7]. They imaged the transverse intensity profile of the x-ray beam scattered from the

electrons using a CCD camera and measured the x-ray yield using a silicon diode. A 10 µm thick

Ag foil was placed in front of the detector to cut off low-energy x rays in order to obtain the

nonlinear component of the Thomson scattering [7]. Figure 1.5 shows the azimuthal distribution of

the intensity for the second harmonic where the crosses and triangles represent measurements of

orthogonal laser polarization directions and the lines represent the theoretical prediction. These

measurements were from a linearly polarized laser. Their results also confirmed the analytical

predictions for nonlinear Thomson scattering.



1.4 Quantum vs. Classical Electron 7

Figure 1.5 Azimuthal distribution of second harmonic from nonlinear Thomson scattered
x rays from a linearly polarized laser, where the crosses and triangle represent measure-
ments of orthogonal laser polarization directions and the lines represent the theoretical
prediction. Figure taken from [7].

1.4 Quantum vs. Classical Electron

When considering radiation from individual electrons, we must consider the influence of the

electron wave packet on the radiation. Our research group investigated the possibility of different

portions of the electron wave packet interferring with each other and thus suppressing the radiation.

If the electron is treated semiclassically, a vector potential is obtained with a classical current density

as [8]

A(r, t) =
µ0

4π

∫
d3r′J(r′, tr)/R, (1.4)

where R =| r− r′ | and tr = t −R/c. If we associate the quantum probability current with the

classical current density J, it has been shown that there is significant destructive interference in

the scattered radiation A in the perpendicular direction, especially when the electron wave-packet

spreads to the size of the driving laser wavelength [9–11].

Our research group studied photoemission by a single-electron wave packet in a laser field using

both relativistic semi-classical and quantum electrodynamic (QED) frameworks. Their results show

that the amount of radiation is not influenced by the size of the electron wave packet, and single
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electrons radiate with the strength of point emitters [11, 12].

Figure 1.6 (Left) Two-dimensial images showing the x−z plane and the y−z plane where
the electron experiences intensities around 1018 W/cm2. (Right) Cross-section of laser
focus showing the regions where first and second ionization of helium occurs. Figure taken
from [13].

This theoretical prediction was confirmed experimentally by our research group as well. In

their experiment, free electrons in very low density pressures (around 10−6 Torr) interact with

a high-intensity laser field. Simulations showed that 1018 W/cm2 was an ideal intensity, and as

can be seen in Fig. 1.6, the region in which the electrons experience this high-intensity is very

small compared to the region in which helium is ionized [13]. A weaker prepulse (2 mJ) was used

to pre-ionize the helium and give the electron wave packets time to expand larger than the laser

wavelength. The primary laser pulse (20 mJ) accelerates the electron wave packets causing the

electrons to scatter light [14].

The experimental setup is shown in Fig. 1.7. At this high-intensity, the free electrons drift

along the direction of the laser propagation at a significant fraction of the speed of light causing

the scattered light to be red-shifted from the side-view [14]. The redshifted scattered light from

the electrons peak around 900 nm [13] which allows for discrimination against the 800 nm laser

wavelength. As shown in Fig. 1.7, the light scattered off of the electron wave packet is collected

and focuses onto an optic fiber which sends the light to spectral filters. The spectral filters detect
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light in the 875-925 nm range. The light is then sent to an avalanche photodiode (APD) for photon

counting.

Figure 1.7 Experimental setup for previous research conducted by our research group.
Scattered light from electron wave packet focused onto an optic fiber and sent through
spectral filters to an APD. Figure taken from [14].

Figure 1.8 (Left) Number of photon counts per shot as a function of prepulse delay at a
pressure of 10−5 Torr. (Right) Number of photon counts per shot as a function of laser
intensity at a pressure of 3 ×10−5 Torr. The dashed lines show the computational models
and the dots show experimental measurements with error bars giving the standard deviation.
Figure taken from [14].

In order to see if the scattered radiation depends on the size of the electron wave packet, the



1.5 Overview 10

number of photon counts were taken for various prepulse delays, as shown on the left in Fig. 1.8.

The factor of 2 drop in the signal was expected and accounts for two ionized electrons from helium

atoms to drift apart enough so that they do not enhance each other’s radiation [14]. If the size of the

electron wave packet did influence the scattered radiation, we would expect to see a dramatically

larger drop in the number of counts per shot for a large wave packet. Since the signal only shows

the factor of 2 drop, the size of the electron wave packet does not influence the scattered radiation.

The number of photon counts per shot were also taken for various values of intensity with no

prepulse, as shown on the right of Fig. 1.8. The dashed line shows the theoretical prediction from

classical point emitters, and the dots show the experimental measurements. The data demonstrates

that the electron wave packet radiates with the strength of classical point emitters. Therefore, it

is appropriate to analyze our nonlinear Thomson-scattering experiments in a classical framework.

These earlier experiments also pointed the way to look at nonlinear Thomson scattering using

single-photon counting as a way of getting clean signal at very low densities where plasma effects

could be minimized.

1.5 Overview

For my masters-thesis project, I have experimentally and theoretically studied nonlinear Thom-

son scattering from diffuse free electrons. We have used the techniques previously developed by our

research group to measure polarization-resolved nonlinear Thomson scattering from free electrons.

This technique allows us to distinguish individual photons scattered from electrons in the focus

from the huge number of photons in the laser pulse. This technique is also done using pressures of

around 1 Torr instead of atmospheric pressures used by the groups previously mentioned, and it

gives very clean results. We have resolved the fundamental, second harmonic, and third harmonic

of polarization-resolved nonlinear Thomson scattering from free electrons. Our results reasonably
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match the theoretical prediction and show some asymmetry in the third harmonic. My research

focused on setting up the experiment and positioning the detector on the high-intensity region in

which nonlinear Thomson scattering occurs. I also measured the photon counts with respect to the

detector angle.

Chapter 2 discusses the motion of the electron in a high-intensity laser beam and its radiation.

Our experimental setup and methods is discussed. Chapter 4 presents our measurements for the

first, second, and third harmonics. Our results show good agreement with theoretical predictions.



Chapter 2

Theoretical and Computational Model

2.1 Equations of Motion for an Electron in a High Intensity

Laser Field

In 1970, Sarachik and Schappert analytically modeled the trajectory and radiation of an electron

in a high-intensity electromagnetic plane wave [4]. They derived the equations that describe the

motion of an electron moving relativistically as discussed in the previous chapter. Their report

shows the trajectory in the electron’s average rest frame, which is shown in Fig. 2.1. We review the

equations that describe the trajectory of an electron in a high-intensity beam in this section.

As discussed in Chapter 1, the equations of motion for an electron moving in a high-intensity

laser field are given by Eq. (1.1). As can be seen in this equation, the trajectory of the electron

is affected by the electric and magnetic vector fields in the focal region. We model the vector

fields using the analytic model developed by Erikson and Singh in 1994 for vector fields in the

focal region [15]. Our research group has shown that the Singh model accurately approximates the

field produced by a Gaussian beam reflected from a parabolic mirror. The relatively simple model

represents the vector fields of the laser in the focal region [16]. According to the model, the electric

12
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Figure 2.1 The electron trajectory in the electron’s rest frame for various values of
intensity in the x− z plane. Figure taken from [4].

and magnetic fields are:

E(x,y,z, t) = Re
{

Ep

(
x̂+

xy
2Z2 ŷ− i

x
Z

ẑ
)

ψei(kz−ωt)
ε

}
(2.1)

B(x,y,z, t) = Re
{Ep

c

( xy
2Z2 x̂+ ŷ− i

y
Z

ẑ
)

ψei(kz−ωt)
ε

}
, (2.2)

where Z = z0 + iz, ψ = z0
Z e−

kρ2
2Z , and ρ2 = x2 + y2. Our envelope function is given by ε =

e−
(

t− z+ρ2/2R
c

)2

τ2 , where R = z+ z2
0
z and z0 is the Rayleigh range.

We can make these equations dimensionless by letting r′ = kr, t ′ = ωt, u′ = u/c, p′ = p/mc,

and E ′ = E
kmc2/q . Then our equations of motion for the electron become:

dp′

dt ′
= E′+u′×B′ (2.3)

p′ = γu′ (2.4)

γ =
1√

1−u′2
, (2.5)
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and our electric and magnetic fields are given by:

E′(x′,y′,z′, t ′) = Re
{

E ′p
(

x̂+
x′y′

2Z′2
ŷ− i

x′

Z′
ẑ
)

ψei(z′−t ′)
ε

}
(2.6)

B′(x′,y′,z′, t ′) = Re
{E ′p

c

( x′y′

2Z′2
x̂+ ŷ− i

y′

Z′
ẑ
)

ψei(z′−t ′)
ε

}
, (2.7)

where Z′ = z′0 + iz′ and z′0 = kz0, ψ =
z′0
Z′ e
− ρ ′2

2Z′ , and ρ ′2 = x′2 + y′2. Our envelope function is now

given by ε = e−
(t′−z′+ρ ′2/2R′))2

τ ′2 , where R′ = z′+ z′20
z′ .

It is convenient for us to write u′ and γ in terms of p′. With some algebra, it can be shown that

γ =
√

1+ p′2. Then our differential equation is

dp′

dt ′
= E′+

p′

γ
×B′. (2.8)

It can also be shown that the acceleration of the electron is given by:

a′ =
du′

dt ′
=

1
γ
[E′+u′×B′−u′(u′ ·E′)]. (2.9)

Figure 2.2 The position (left), velocity (center), and trajectory (right) of an electron that
is initially slightly out of the focus of a high-intensity (1.5 × 1018 W/cm2) laser beam.
The red cylinder in the left frame represents the laser beam and the blue line represents
the electron position with respect to time. The blue, red, and green lines in the next two
frames represent the x, y, and z components of the velocity and trajectory respectively.
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Figure 2.3 Trajectories of ten electrons with random initial positions in the focal region.
Each line of a different color represents the position of one electron with respect to time,
and the red cylinder represents the laser beam.

The solution to the differential equation given by the Lorentz force law will allow us to find

the position (originating from the focal center), velocity, and acceleration of the electron. This

differential equation must be solved numerically using a computer program. We have used the

ode45 differential equation solver in Matlab to solve the equation and determine the electron’s

position, velocity, and acceleration. The first frame in Fig. 2.2 shows the electron’s position in the

lab frame where the red cylinder represents our laser beam and the blue line represents the electron

position with respect to time. The next two frames show the electron’s velocity and trajectory as a

function of time. The blue, green, and red lines represent the x, y, and z components respectively.

Figure 2.3 shows the trajectory of ten electrons with random initial positions in the focal region.
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There is also a random phase applied to the laser field because experimentally the phase of the laser

will vary from shot to shot. We can see from Fig. 2.3 that the electrons get shot quickly out of our

laser beam, but while the electrons are being accelerated in the focal region, they scatter light. The

equations that govern this radiation are discussed in the following section.

2.2 Radiation from Free Electrons

Now that we have found expressions for the velocity and acceleration of electrons in a high-

intensity laser field, we can use them to determine the electric and magnetic fields radiated by

the electrons. The electric and magnetic fields for a moving point charge are found using the

Liénard-Wiechert potentials [8] and can be approximated as:

ES(rd, td) =
qk

4πε0rd

1
(1− r̂d ·u/c)3 r̂d×

(
(r̂d−u/c)× a

c2k

)
=

qk
4πε0rd

r̂d×
(
(r̂d−u′)×a′

)
(1− r̂d ·u′)3

(2.10)

BS(rd, td) = r̂d×
ES(rd, td)

c
, (2.11)

where rd is the detector position and td is the time at the detector when the field is measured. We can

define L =
r̂d×
(
(r̂d−u′)×a′

)
(1−r̂d ·u′)3 to simplify our expression. The Poynting vector indicates the direction

of flow of intensity and is given by:

S(rd, t ′d) = ε0c
[ qk

4πε0rd

]2
L2(rd, t ′d), (2.12)

where the dimensionless detector time is t ′d = t ′+ rd/c− r̂d · r′.

Since we are resolving longitudinal and azimuthal polarization, we must split L up into longitu-

dinal and azimuthal components. Using spherical coordinates, we obtain L = r̂dLrd + θ̂Lθ + φ̂Lφ ,

where Lrd = r̂d ·L = 0,Lθ = θ̂ ·L, and Lφ = φ̂ ·L. This gives Lθ = Lx cosθ cosφ +Ly cosθ sinφ −

Lz sinθ and Lφ =−Lx sinφ +Ly cosφ . The intensity along these components is thus:

Sθ (rd, t ′d) = ε0c
[ qk

4πε0rd

]2
L2

θ (2.13)
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Sφ (rd, t ′d) = ε0c
[ qk

4πε0rd

]2
L2

φ . (2.14)

We are interested in the energy per steradian, or angular fluence so that we can determine the

number of photons scattered. Integrating the intensity with respect to area will give us the power

scattered by the electron, which we can write as:

P =
∫ 2π

0
dφ

∫
π

0
dθ sinθPΩ, (2.15)

where PΩ = r2
dS(rd, t ′d) is the power per steradian. Our collection system collects from a 7/8"

diameter aperture that is 2" from the focus, which gives a solid angle of 0.15 steradian. Since this is

a small solid angle, we can approximate the power as P = 0.15PΩ.

Now to get the energy per steradian, we integrate over time:

ΦΩ =
∫

∞

−∞

PΩdtd = ε0c
[ qk

4πε0rd

]2 ∫ ∞

−∞

L2 dt ′d
ω

=
q2

8πε0λ

∫
∞

−∞

L2dt ′d. (2.16)

This can be evaluated for both L2
θ

and L2
φ

for the different polarization components, and we finally

multiply by 0.15 steradians to get the energy that reaches our detector.

Our experiment also requires separating the field into harmonic components. We do this by

taking the Fourier transforms of Lθ and Lφ :

Lθ ( f ) =
1√
2π

∫
∞

−∞

Lθ (t ′)e−i2π f t ′dt ′ (2.17)

Lφ ( f ) =
1√
2π

∫
∞

−∞

Lφ (t ′)e−i2π f t ′dt ′, (2.18)

where f is a dimensionless frequency in which f = 1 corresponds to the fundamental frequency,

and f = N correpsonds to the Nth harmonic. Parseval’s theorem tells us that
∫

∞

−∞
L2(t ′d)dt ′d ∝∫

∞

−∞
L2( f )d f . Thus the amount of energy within a narrow band f1 to f2 that reaches the detector is:

ε = (0.15)
( q2

8πε0λ

)(∫ ∞

−∞

L2dt ′d
)∫ f2

f1
L2( f )d f∫

∞

0 L2( f )d f
. (2.19)
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Using a wavelength of λ = 800 nm, the laser photon energy is hc
λ
= 1.55 eV. The number of photons

in the band is then:

N =
ε

f ·1.55 eV
, (2.20)

where f represents the frequency in the narrow band from f1 to f2.

To simulate our experiment, we will find the radiation patterns averaged over many initial

electron positions in the focal region. A visualization of the averaged radiation from 500 electrons

in the focal region of a laser beam is shown in Fig. 2.4. The vertical cones in the images represent

the laser beam with its focus at the origin, and the radiation pattern is the far field radiation from an

electron in the focus. The colors from dark to light represent increasing intensity. As mentioned

previously, the electrons in a high-intensity laser field radiate harmonic frequencies of the incident

light. The longitudinal and azimuthal components of the fundamental signal, second, and third

harmonics radiated are shown in Fig. 2.4.

Taking a slice along the equator of these radiation patterns, we obtain a plot of the intensity

as a function of angle. The first image on Fig. 2.5 shows the plane that these patterns are in,

which is perpendicular to the laser propogation. The longitudinal and azimuthal components of the

polarization are shown in red and blue respectively. From Fig. 2.5, we can see that the magnitude of

the intensity decreases as the harmonic order increases.
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Figure 2.4 Average far-field radiation patterns of 500 electrons initially at the center of the
sphere in a 1.5 ×1018 W/cm2 laser pulse with a fundamental wavelength of 800 nm. The
black cones represent the laser focus and the colors represent different values of intensity
where white is high intensity and black is low intensity. The longitudinal and azimuthal
polarization components of the fundemental, second, and third harmonic are shown.
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Figure 2.5 Far-field radiation patterns as a function of angle averaged over 500 electrons
in a 1.5 ×1018 W/cm2 laser pulse with a fundamental wavelength of 800 nm. The blue and
red lines represent the theoretical prediction for the azimuthal and longitudinal components
respectively. The average intenisty for the fundmental signal, the second harmonic, and
the third harmonic are shown.



Chapter 3

Methods

3.1 Experimental Setup

Our experimental setup for measuring nonlinear Thomson scattering is very similar to the setup

discuss in Section 1.4. We use a Ti:sapphire laser system that produces 50 mJ pulses of 800 nm

light with a pulse duration of 38 fs, which we measured using a frequency resolve optical grating

(FROG). The pulse laser beam focuses using a parabolic mirror so that in the focal region we

achieve intensities above 1018 W/cm2. We use a high-resolution (3.45×3.45 µm) camera to measure

the spot while we adjust pointing. We eliminate astigmatism and optimize the focus to achieve the

smallest possible focal spot, which is around 5 µm in diameter.

As can be seen in the left image of Fig. 3.1, the laser beam (shown in red) enters our vacuum

chamber is focused by the parabolic mirror. The vacuum chamber is evacuated and filled with

low-density helium (less than 1 Torr). The helium atoms in the laser field ionize, and the free

electrons in the high-intensity focal region scatter radiation. The light that the electrons scatter is

redshifted so that the fundamental 800 nm light has an emission peak around 900 nm. The second

and third harmonics are redshifted from 400 nm to 450 nm and 266 nm to 300 nm respectively.

21
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Figure 3.1 Left: (Side view) Laser light being focused by a parabolic mirror; light
emitted from the focus being collected by the detector. Right: (Front view) Schematic of
experimental setup.

Scattered light (shown in green in Fig. 3.1) goes through a motorized polarizer which allows

us to switch between the longitudinal and azimuthal components of the polarization. A pair of

achromatic lenses focus it into the optic fiber cable. Different sets of achromatic lenses associated to

the wavelengths of the fundamental signal and the second and third harmonics are used to measure

each harmonic. Having the optic fiber cable at the bottom of the tube containing the achromatic

lenses helps to block out other light scattering around the vacuum chamber. A waveplate, not shown

in the image, is also located upstream of the laser so that we can change the detection angle by

rotating the linear polarization of the laser instead of having to rotate the detector around the focus.

The schematic shown in Fig. 3.1 has the parts of our setup labeled and shows the detector at
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a 90 degree angle. We determined that having the detector at 90 degrees provided the cleanest

measurements. The schematic also shows the vertical and horizontal motors that allow us to center

our detector on the focus. Since our focus is only about 5 µm in diameter, aligning the collection

system requires care.

The light collected by the optic fiber cable is sent through bandpass filters to isolate wavelengths

associated to each harmonic. For the fundamental signal two 850 nm longpass cutoffs and one

900 nm bandpass filter with a 40 nm width are used. For the second and third harmonics, a 450 nm

bandpass filter with a 10 nm width and a 310 nm bandpass filter with a 10 nm width are used

respectively. As mentioned previously, since the scattered radiation is redshifted from the laser

wavelength, the bandpass filters allow us to pass the signal from the scattered radiation and block

the light coming from the laser pulse.

An avalanche photodiode (APD) is used to count photons for the fundamental signal and the

second harmonic. A photomulitplier tube (PMT) is used for the third harmonic. The signal is time

stamped relative to the arrival of the laser pulse. This setup allows us to distinguish individual

photons coming from the nonlinear Thomson scattering from the millions of other photons being

scattered.

3.2 Positioning the Detector

As mentioned previously, aligning the collection system requires care due to the small size of

the focus. To add to the difficulty of this task, the position of the focus changes slightly as the

vacuum chamber is evacuated of air and taken down to low pressures. We found a viable method of

positioning the detector on the focal region.

We begin by sending diode laser light with the same frequency as the harmonic we are looking

for into the vacuum chamber through the optic fiber cable shown in Fig. 3.1. This back-propagating
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light is focused by the achromatic lenses and focuses at the location where the lens system will

collect light a couple of centimeters above the motorized polarizer. We align the pointing mirrors

on our high-intensity laser so that the high-intensity focus occurs at the collection focus. Once they

are aligned, we connect the optic fiber cable to a spectrometer to see the emission spectrum of the

radiation at atmospheric pressure. We choose a peak in the emission spectrom that has a wavelength

close to the harmonic we are measuring and use the vertical and horizontal motors to position the

collection lenses until the emission peak is maximized. As we evacuate the vacuum chamber, we

continue to adjust the collection position so that the emission peak is still maximized. This allows

us to decrease the pressure without losing the position of the focus.

Once the pressure is low enough that the emission peaks are no longer visible with the spec-

trometer, we rely on photon counting from the electrons themselves to fine-tune the position of the

focus. We discuss this fine-tuning in the next section.

3.3 Photon Counting

Using a Labview program created by our research group, we count the number of photons

emitted over a given time interval. To find the position of our high-intensity region in the focus,

we do spatial scans along the laser beam, the side-to-side dimension and the vertical dimension in

which we plot the number of counts with respect to position. We search for the peaks in each of

these dimensions and center on them. By rotating the waveplate and the motorized polarizer, we

verify that the number of counts is dependent on polarization.

The photon counts from the nonlinear Thomson scattering occur in a very narrow time window (a

few nanoseconds), as shown in Fig. 3.2. This figure shows histograms obtained for the fundamental

signal, and the second and third harmonics. The histograms for the fundamental signal and second

harmonic show a peak in counts at around 67 ns, and the histogram for the third harmonic shows a
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Figure 3.2 Fundamental signal, second harmonic, and third harmonic histograms are
shown. Histograms show the total number of photon counts with respect to arrival time
at the photon counter collected over thousands of laser shots during experimental mea-
surements. The photons from the narrow peaks are the photons from nonlinear Thomson
scattering.

peak in counts at around 53 ns. The position of the peak is different for the third harmonic because

a PMT is used for third harmonic instead of the APD that is used for the fundamental signal and the

second harmonic. The fact that these peaks occur in such narrow time windows is another indicator

that the counts are from nonlinear Thomson scattering instead of from recombination light.

Once we determine that the collection lenses are positioned on the high-intensity region, we

plot the number of counts from nonlinear Thomson scattering in a given time interval with respect

to angle. We use a time interval of 100 seconds, or 1000 laser shots, and rotate the wave plate for
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each data point to achieve these plots. We also rotate the motorized polarizer 90 degrees to switch

between the longitudinal and azimuthal polarization components for each data point. We did this

for the fundamental signal, and the second and third harmonics. Our results will be discussed in the

following chapter.



Chapter 4

Results

4.1 Measurements of Nonlinear Thomson Scattering

The data achieved for the fundamental signal, the second harmonic, and the third harmonic were

all taken with a laser energy of 25 mJ. The estimated intensity in the focal region was 1.5 ×1018

W/cm2. An APD was used for the data taken for the fundamental signal and the second harmonic,

and a PMT was used for the third harmonic. The number of photon counts in 100 seconds, or 1000

laser shots, were taken for each data point represented by dots in the figures discussed below.

4.1.1 Fundamental Radiation

The theoretical prediction and the data achieved for the fundamental signal are shown in the left

and right images of Fig. 4.1. The ambient pressure was at 1.1×10−2 Torr. The emission pattern for

the fundamental signal matches very closely to the theoretical result. As can be seen in Fig. 4.1, the

photon counts go to zero as the detector angle goes to 0°and 180°. The fundamental signal only

contains the azimuthal polarization component as the longitudinal polarization component goes to

zero for the fundamental signal because the detector is perpendicular to the focus.

27
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Figure 4.1 (Left) Theoretical prediction for fundamental radiation with respect to detector
angle (Right) photon counts with respect to detector angle. Azimuthal scattering is shown
in blue.

4.1.2 Second Harmonic

Figure 4.2 shows the theoretical prediction and the data for the second harmonic, which was

taken at a pressure of 3.1×10−2 Torr. The emission pattern for the second harmonic signal matches

closely to the theoretical result for the azimuthal and longitudinal polarizations. Our data shows

that the peaks of the longitudinal component are smaller in magnitude than those of the azimuthal

component.

Figure 4.2 (Left) Theoretical prediction for second harmonic radiation with respect
to detector angle (Right) photon counts with respect to detector angle. Azimuthal and
longitudinal scattering are shown in blue and red respectively.
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4.1.3 Third Harmonic

The theoretical prediction and the data for the third harmonic are shown in Fig. 4.3. A higher

pressure of 1.45 Torr is required for measuring the third harmonic since the third harmonic signal

is much weaker than the fundamental signal or the second harmonic. As shown in Fig. 4.3, the

emission pattern for the third harmonic signal shows good agreement with the theoretical result.

The longitudinal polarization is larger in magnitude than the azimuthal polarization, as expected

from the theoretical result.

Our data also shows asymmetry in the petals for the azimuthal polarization, and we are investi-

gating the cause for this asymmetry. Since the parabolic mirror used in the experiment is an off-axis

parabolic mirror, further study on the vector fields from an off-axis parabolic mirror is required in

order to know if the off-axis parabolic mirror is causing the asymmetry.

Figure 4.3 (Left) Theoretical prediction for third harmonic radiation with respect to
detector angle (Right) photon counts with respect to detector angle. Azimuthal and
longitudinal scattering are shown in blue and red respectively.

Since these measurements were taken at such low pressures, they are unaffected by plasma

effects and thus give a clean visualization of nonlinear Thomson scattering. This is a significant

advancement over past measurements which were made at atmospheric pressures. These results are

the first polarization-resolved measurements of both the second harmonic and the third harmonic of
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nonlinear Thomson scattering and confirm the theoretical prediction. The polarization components

increase our understanding of Thomson scattering.

4.2 Summary

In conclusion, we have successfully measured the fundamental signal, the second harmonic and

the third harmonic of polarization-resolved nonlinear Thomson scattering using a high-intensity

laser and single-photon detectors. The method we have performed for measuring nonlinear Thomson

scattering gives clean results. As shown in the previous section, our results reasonably match the

theoretical emission patterns for the fundamental signal and the second and third harmonics. The

results also show some asymmetry in the third harmonic petals, which need further investigation.

4.3 Future Work

Our research group is studying other factors that can influence the Thomson scattering from

free electrons. One of these is how using different gas species will affect the radiation; our group

has performed this study using neon and argon instead of helium. Another topic of interest is how

the peak laser intensity influences the scattered radiation. We have used intensity filters to conduct

this experiment.

We can also gain further insight by changing the shape of our focus. We would like to know if

intentionally adding astigmatism or elongating the focus affects the scattered radiation. Changing

the focal shape will be investigated in future studies.
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