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ABSTRACT

Optimizing the Phase Estimation Algorithm
Applied to the Quantum Simulation
of Heisenberg-Type Hamiltonians

Scott R. Johnstun
Department of Physics and Astronomy, BYU

Bachelor of Science

The phase estimation algorithm is a powerful quantum algorithm with applications in cryptogra-
phy, number theory, and simulation of quantum systems. We use this algorithm to simulate the time
evolution of system of two spin-1/2 particles evolving under a Heisenberg Hamiltonian. The simula-
tion is performed on both classical simulations of quantum computers and real quantum computers.
We also introduce three optimizations to the algorithm: circular, iterative, and Bayesian. We apply
these optimizations to our simulations and investigate how the performance improves. We find that
the circular and Bayesian optimizations exhibit the best performance in noiseless simulations and
the iterative and Bayesian optimizations exhibit the best performance on quantum computers which
are subject to noise. We also discuss the paradigms of iterative and update-based algorithms, which
are attributes of these optimizations that can improve quantum algorithms generally.

Keywords: quantum computing, quantum simulation, phase estimation, quantum algorithms, noise,
optimization, noisy systems
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Chapter 1

Background

This work is a contribution to the growing field of quantum technology. Quantum computers

are a particularly significant advancement in this field due to the prospect of leveraging quantum

resources to solve real-world problems. These computers come with their own share of problems,

however; due to a combination of increased sensitivity to noise and more channels for noise to enter,

quantum computers are subject to errors that are substantially more detrimental to computation than

classical computers are. After introducing quantum information and simulation, we connect these

concepts to the quantum phase estimation algorithm. We implement this algorithm and use it to

simulate quantum systems on a real quantum computer. We also present three optimizations to the

algorithm and apply them to our simulations. These optimizations improve performance in both

simulations and on real quantum computers.

1.1 Quantum Information

Since the turn of the 21st century, quantum information has become nothing short of a revolution in

physics. Quantum information exists as a union between quantum mechanics, statistical physics, and

information theory and has recently acquired a mainstream following with the promising prospect

1



2 Chapter 1 Background

of quantum computing. Richard Feynman first proposed quantum systems as a computational

tool in 1985 [1, 2]. Since then, algorithms have been found that are expected to, in theory, solve

difficult problems faster than any classical computer possibly could [3]. These include Peter Shor’s

algorithms for factoring large integers and computing discrete logs [4]; Grover’s algorithm for

efficient database search [5]; and various algorithms for simulation of quantum systems [6]. With

these (and other) algorithms and sufficiently capable quantum computers, many difficult or unsolved

problems in mathematics, physics, chemistry, and other fields could be solved efficiently.

Requisite for the implementation of such problems is the development of physical systems that

can function as large, controllable quantum computers with minimal noise. Quantum computers

are made up of a collection of “qubits”, the quantum version of classical bits with which classical

computers compute. Whereas a classical bit can only hold a value of 0 or 1, a qubit is a quantum

system that can hold any normalized linear combination of two states referred to as |0〉 and |1〉.

Similar to bits in a classical computer, qubits serve as both computational space and storage space

for quantum computers. However, whereas modern classical computers contain billions of bits

with which to compute, modern quantum computers have less to work with: at the end of 2020,

the largest quantum computers to date were a 76-qubit photonic quantum computer produced by a

team of researchers in China [7] and a 72-qubit superconducting quantum computer produced by

Google [8]. All quantum computers are also susceptible to noise altering the state of their qubits.

Noise will be described more specifically, and in the context of our work, in Chapter 2.

1.2 Quantum Simulation

We are particularly interested in the use of quantum computers for quantum simulation, which is

the process of using controllable quantum systems to simulate other, harder-to-control systems.

Quantum simulation has promising applications in developing new drugs, making sense of certain
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chemical reactions, and creating new materials [9]. This is because classical simulation of quantum

systems is inherently inefficient. The amount of memory required to represent a quantum system on

a classical computer grows exponentially as the size (number of particles, degrees of freedom, etc.)

increases: a spin-1/2 system of 40 particles would require 4 terabytes to represent classically [6].

On the other hand, a quantum simulator would only require 40 qubits plus perhaps a few extra

qubits, depending on the objective of the simulation. Evidently classical simulation algorithms for

quantum systems are naturally limited to small systems, prompting the need for quantum simulation

algorithms for future scientific discovery.

Quantum simulation can be divided into digital and analog quantum simulation. In analog

quantum simulation, we have two systems, one controllable and one difficult to control, and a

mapping between the two systems such that evolution of the controllable system corresponds to

evolution in the difficult system. Analog quantum simulation is currently more realistic than digital

quantum simulation, yet examples of systems and mappings between them are rare [10]. Digital

quantum simulation, on the other hand, uses programmable universal quantum computers—quantum

computers on which any unitary operation can be implemented—to simulate quantum systems.

Digital quantum simulation is more versatile, allowing many types of systems to be simulated with

a single physical system [11], yet currently universal quantum computers are both too small to

simulate systems beyond those that can be simulated classically and too noisy to produce reliable

results.

In this work we use digital quantum simulation to evolve a two-particle, spin-1/2 system

described by a Heisenberg Hamiltonian and recover its first excited energy. This problem is entirely

solvable on a classical computer (or with analytic methods), but our implementation of a simulation

algorithm and its optimizations demonstrates some of the same challenges and questions that must

be addressed in order for a large scale quantum computer to simulate the evolution of more complex

systems. We assume that the reader has some basic familiarity with quantum algorithms and
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notation; for general references on the subject, see [12] and [13].

1.3 Quantum Phase Estimation Algorithm (PEA)

Among the most celebrated algorithms in quantum computing is the Phase Estimation Algorithm

(PEA). The purpose of the PEA is to estimate the phase φ conferred by a unitary operator U to an

eigenstate |u〉. Mathematically, if |u〉 is an eigenstate of U , then

U |u〉= λ |u〉 ,

which indicates that λ is the eigenvalue corresponding to the eigenstate |u〉. If U is unitary, then

λ must satisfy the condition |λ |2 = 1; since λ may be complex, we can write λ = e2πiφ for some

φ ∈ [0,1). The goal of the PEA is to estimate φ given U . One common usage of unitary operators

is for time evolution operators in quantum mechanics. We will decide on a choice for U in Section

1.4. As we will see, knowing φ allows us to estimate the energy of a system evolving in time, since

the rate at which the phase of a stationary state oscillates is proportional to its energy.

The PEA can be represented on a quantum circuit with two quantum registers, or groups of

qubits. The first register is the counting register, which can hold any amount of qubits; we denote

the number of qubits by n. This register is the register that will actually store the estimate of the

phase, so more qubits in this register allows for a more accurate estimate of the phase. The second

register is known as the state register, and it exists solely to hold the eigenstate |u〉 from which the

phase is deduced. The PEA performs its task in three steps: superposition, wherein the two registers

are initialized into appropriate states; phase kickback, wherein simulation happens and phase

information is recorded; and Quantum Fourier Transform (QFT) (see Chapter 5 of [12]), wherein

the recorded phase information is converted to a binary representation through the inverse QFT.

Note that in the following discussion, a subscript after a state indicates the number of qubits that

state represents, and for an m-bit integer x, |x〉m represents the m-qubit state |xm〉 |xm−1〉 . . . |x1〉 |x0〉,
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where xi is the ith bit of the binary representation of x. Tensor products, represented by ⊗, between

the kets are implied; as an exponent to an operator U , we denote U⊗n ≡U⊗U⊗·· ·⊗U , where n

instances of U are linked by n−1 tensor products. The three steps of the PEA are:

1. Superposition: Initialize a uniform superposition of all 2n possible states on the n-qubit

counting register:

|count〉n = |0〉n −→ H⊗n |0〉n =
1

2n/2 (|0〉+ |1〉)
⊗n .

If necessary, also initialize the state register to the eigenstate |u〉 (here assumed to be known

beforehand; see [14] for PEA with superposition states):

|state〉m = |0〉m −→ |state〉m = |u〉 ,

where m is the number of qubits required to represent |u〉; we have dropped the m subscript

from |u〉 itself for brevity.

2. Phase Kickback: For each k from 0 to n−1, use the kth qubit of the counting register as the

control for a controlled-U2k
gate acting on the state register. Each application performs the

following transformation on the partial system consisting of only the kth qubit of the counting

register and the full state register

|countk〉 |u〉=
1√
2
(|0〉+ |1〉) |u〉 −→ 1√

2
(|0〉+ e2πiφ ·2k

|1〉) |u〉

since U |u〉= e2πiφ |u〉 =⇒ U2k |u〉= e2πiφ2k |u〉 and the controlled nature of the gate ensures

U is only applied in the subspace where the kth counting qubit is in the |1〉 state. Note that

since |u〉 is an eigenstate of U and the phase transfers to the counting register, the state register

remains unchanged. That is why this step is referred to as phase kickback. Once this has been

applied to all n register qubits, the counting register is left in the state

|count〉= 1
2n/2

2n−1

∑
k=0

e2πiφk |k〉 . (1.1)
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3. Quantum Fourier Transform: The right hand side of Eq. (1.1) happens to be exactly the

QFT of input |2nφ〉. Therefore, applying the inverse quantum Fourier Transform (denoted as

QFT †, since the QFT is unitary) to the counting register will leave it in the state

QFT †(QFT |2n
φ〉) = |2n

φ〉 ,

from which phase information can be obtained. We will detail specific methods for obtaining

the phase as well as variations of this algorithm in Chapter 2.

1.4 Heisenberg Hamiltonian

In the discussion of the implementation of the PEA, we did not specify U . In this work we choose

to use a Heisenberg Hamiltonian, which represents a spin interaction between two particles

H =
λ

4
(σ1 ·σ2) =

λ

4
(X1X2 +Y1Y2 +Z1Z2), (1.2)

where Xi, Yi, and Zi are the Pauli spin operators corresponding to particle i and σi = Xix̂+Yiŷ+Ziẑ.

This Hamiltonian is parameterized by λ , which controls the strength of the interaction.

Evolution under this Hamiltonian is governed by its time evolution operator

U = exp(−iHt/}) = exp(−iHτ)≡U(τ), (1.3)

where we have defined the evolution parameter τ = t/}. Note that τ has units of inverse energy but

increases exactly proportionally to time during the simulation, so it can be thought of as a parameter

akin to time. Applying U to an eigenstate yields the result

U |u〉= exp(−iHτ) |u〉= exp(−iετ) |u〉 .

Here ε denotes the system’s energy. Estimating the phase produced by the Heisenberg Hamiltonian

for various values of τ gives a function φ(τ) which satisfies

2πiφ(τ) =−iετ.
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|state0〉 • Rx(2τ ) • • Ry(2τ ) •

|state1〉 X Rz(2τ ) X Y Y

Figure 1.1 Quantum circuit diagram for the Heisenberg Hamiltonian’s time evolution op-
erator U(τ) in Eq. (1.3). The X and Y gates indicates Pauli X and Y operators respectively.
The Rx, Ry, and Rz gates indicate a Pauli rotation about the corresponding axis by the input
angle 2τ . To implement a controlled U gate as will be necessary in Chapter 2, only the
three rotation gates need to be controlled by a qubit external to the system.

Differentiating with respect to τ and solving for ε gives us the important equation

ε =−2π
dφ

dτ
. (1.4)

This is how phase estimation can be used to determine energy levels in a system.

Implementing U on a quantum computer is a nontrivial task. Although any unitary operator

can be represented on a quantum computer, decomposing one into a sequence of simple unitary

operations that can be implemented on a quantum computer is difficult. In Cruz et al. it was

shown how the time evolution operator corresponding to a Hamiltonian containing Z1Z2 can be

decomposed into cNOT gates and a Z rotation gate [14]. Following this result, we implement the

Heisenberg Hamiltonian with the gate sequence pictured in Fig. 1.1. Gates involving X , Y , or Z

refer to the corresponding Pauli operators. A filled circle on a qubit indicates that it is the control

for the operation it is linked to. If T is an n-qubit gate, the controlled-T gate is the (n+1)-qubit

gate defined by |0〉〈0|⊗1+ |1〉〈1|⊗T . Armed with this decomposition, we are able to use the

PEA to simulate evolution under the Heisenberg Hamiltonian and determine energy levels.
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1.5 Prior Work in the Quantum Group at BYU

Previous work on quantum computing in the Quantum Information and Dynamics group of BYU

consists of some early work on classical simulations of quantum computers [15–17] in the 1990s

and, in 2020, a proposed implementation for a Deutsch gate, which is a powerful quantum logic

gate that can be used to form a universal gate set [18]. Our work does not directly build off of any

of this prior work.

1.6 Overview

We build off work in References [14, 19–21] and apply their PEA optimization techniques to

simulation of evolution under a Heisenberg Hamiltonian. We implement these simulations in

classical quantum computer simulators and on real IBM quantum computers in Chapter 2, and in

Chapter 3 we find that all optimization techniques offer some sort of improvement to the base PEA.



Chapter 2

Methods

This chapter describes our implementations of the PEA as well as the IBM Q System on which they

run. We explain the concepts needed to understand the implementation of the base algorithm as well

as three optimizations: circular, iterative, and Bayesian. We also describe the quantum operations

needed for these algorithms and provide diagrams of the corresponding quantum circuits.

2.1 IBM Q System

The IBM Q System provides free public access to superconducting quantum computers maintained

by IBM [22], which we use to run our experiments. Experiments on these computers can be

designed in Qiskit [23], a Python library maintained by IBM, then sent to a quantum computer to be

executed. In this way, we can run experiments on actual quantum computers to determine how well

our algorithms perform in real conditions. Qiskit also provides functionality to simulate the result

of a computation with classical computers among its many features. Running an experiment on

an IBM quantum computer amounts to creating a circuit to be run, specifying the amount of shots

(times the computer is initialized, the circuit is run, and the qubits are measured; multiple shots are

necessary to reduce uncertainty due to probabilistic measurements), sending the experiment request,

9
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and obtaining measurement results.

Noisy Intermediate Scale Quantum (NISQ) computers—including those available through IBM

Q—are prone to challenges that classical computers do not have to deal with. Having far more

states available to them, qubits are more sensitive to small perturbations than classical bits are.

Qubits in superconducting quantum computers like those available through IBM are affected by

three types of stochastic noise [24]: Johnson noise (or Johnson-Nyquist noise), which is white

noise proportional to temperature; quantum noise, which is noise that results from the possibility of

the qubit releasing energy to its environment, even at zero temperature; and classical 1/f noise from

stray electromagnetic fields, which can cause dephasing to occur. In addition to these stochastic

errors, systematic errors from imperfect hardware or incorrect pulse timing may also affect the

computers [25]. Larger circuits require more time to run, making them more prone to errors than

shorter circuits. In this context, circuit length is determined by the number of gates. In the next

chapter we will see how circuit length affects the success of each algorithm.

2.2 Implementation of the PEA

In this section we describe our four algorithms for implementing the PEA. Throughout this section

φ refers to the true phase and φ̂ refers to an estimate of the phase produced by an algorithm.

2.2.1 Base Algorithm

We first detail our base implementation of the PEA on IBM quantum computers. By base imple-

mentation we refer to the common implementation of the PEA as found in textbooks on quantum

computing [26]. Most public quantum computers at IBM have five qubits, so we choose to imple-

ment a five-qubit version of the PEA. We also use three classical bits to record information onto. The

resulting circuit is pictured in Fig. 2.1. Since our Hamiltonian acts on two qubits, we choose to use



2.2 Implementation of the PEA 11

|count0〉 H •
QFT †|count1〉 H •

|count2〉 H •
|state0〉

init U U2 U4
|state1〉
cbits : /

3
0 1 2

Figure 2.1 Circuit diagram for the base implementation of the PEA with a Heisenberg
Hamiltonian on a 5-qubit quantum computer. The upper three qubits form the counting
register and the lower two form the state register. The double line at the bottom represents
the three classical bits (indicated by the slash with a three) onto which measurement
information is stored. Numbers below measurements indicate the classical bit onto which
the measurement result is read.

two qubits for our state register. This leaves three qubits for the counting register. Three Hadamard

gates on the input register put it into the desired superposition state while the init gate initializes

the state register to the eigenstate (|01〉+ |10〉)/
√

2 of the Heisenberg Hamiltonian. We then apply

a sequence of controlled U gates, where U is the time evolution operator corresponding to the

Heisenberg Hamiltonian, acting on the state register and controlled by a single qubit on the counting

register. The kth qubit on the counting register controls the operation U2k
. This sequence results in a

counting register state of QFT (|23φ̂〉), so we apply the inverse Quantum Fourier Transform QFT †

to recover the state |23φ̂〉. Finally, we measure each of the counting qubits and record the result on

the corresponding classical bit. After performing many shots of this circuit, we obtain a distribution

of binary integers betwen zero and seven, inclusive, which we represent as P(x) : {0,1, ...,7}→ R.

For the base implementation of the PEA, we simply choose the result that happened with the largest

frequency, argmax
x

P(x). Dividing this result by eight reveals an approximation of the phase:

φ̂ma j =

argmax
x

P(x)

8
.
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This technique is simple, but it is limited in resolution. In general, we can obtain one binary digit of

precision per counting qubit. With only three counting qubits, the estimator φ̂ is limited to the eight

possibilities {k/8}7
k=0, whereas φ itself can be any real number in the interval [0,1). This leads

to discontinuous jumps in φ̂ as φ varies. Thus the base algorithm computes a rudimentary phase

estimate that is limited in precision.

2.2.2 Circular Optimization

Circular statistics offer one way to optimize the PEA. This first optimization uses the same circuit

as the base PEA implementation, pictured in Fig. 2.1. The optimization is in how we process the

measurement data. Instead of using a simple majority rule, we calculate the circular mean of the

data and use its argument as the phase estimator. Given a measurement probability distribution P(x)

defined for integers x, its circular mean µ is defined as

µ =
7

∑
x=0

P(x)eiπx/8.

The circular mean is a complex number whose argument can be used as an approximator for φ :

φ̂circ =
1

2π
arg µ.

This is a more natural estimator for φ because, like φ , arg µ is a circular measure—the difference

between φ = 0.01 and φ = 0.99 is much smaller than the difference between φ = 0.01 and φ = 0.50

due to modular arithmetic. In addition to this, utilizing the circular mean in this way allows for

better resolution in φ̂ . Although φ̂ cannot always exactly represent φ , it does vary smoothly as φ

changes. Cruz et al. showed that the circular optimization used on data from a counting register of

N qubits has a smaller error bound (defined as |φ̂ −φ |) than a majority rule estimator for a counting

register of N +1 qubits [14].
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|countk〉 H • Rz(ωk) H

|state0〉
init U2k

|state1〉
c : /

1
0

Figure 2.2 Circuit diagram for the iterative optimization to the PEA with a Heisenberg
Hamiltonian. The upper qubit forms the counting register and the lower two form the
state register. The bottom-most line represents a classical bit onto which measurement
information is stored. The Rz gate performs one step of the semiclassical QFT when
parameterized by ωk as defined in Eq. (2.1). Note that for the iterative algorithm, three
versions of this circuit must be run, each with different values for k, which affects both the
U2k

gate and the Rz gate.

2.2.3 Iterative Optimization

The iterative PEA is another optimization that we tested. Unlike the circular optimization, the

iterative optimization uses a different circuit than the base algorithm. It is so named because instead

of performing the whole phase estimation in one circuit, it uses multiple smaller circuits to build up

an estimation. In our implementation, we used three 3-qubit circuits. These circuits are identical

except for the power of the controlled U and the angle of the Rz gate. A diagram for the circuits

is pictured in Fig. 2.2. Just as each counting qubit in the base circuit provides one binary digit of

precision, each individual circuit in the iterative PEA provides one binary digit of precision. Instead

of applying the controlled U2l
gate in parallel on one circuit, we create each PEA circuit with

one counting qubit and apply a controlled U2l
gate, where l is determined by the order in which

the circuits are run. In place of the QFT, we perform a semiclassical QFT [27], which separates

the typical QFT algorithm into an iterative sequence of independent measurements and rotations.

The iterative algorithm constructs φ̂ from the most ((n−1)st) to least significant (0th) bit with the

following procedure:
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1. Run the k = n−1 circuit with ωn−1 = 0 to find the largest bit of φ̂ .

2. Repeat while k > 0:

(a) Decrement k.

(b) Calculate the rotation angle ωk for circuit k via the formula

ωk =−2π

n−k−2

∑
j=0

b j+k+1

2 j+2 , (2.1)

where bx refers to the measurement outcome of the xth circuit (the xth bit of φ̂ ).

(c) Run circuit k with the newly calculated ωk to find bk.

3. Recover the estimator φ̂ from its binary expansion:

φ̂iter =
1
23

n−1

∑
x=0

2xbx.

In this way, we are able to perform each counting qubit of the PEA separately. To provide a fair

comparison with the base algorithm, we used n = 3 circuits. This optimization trades a larger

multiplicity of circuits to run for smaller circuit sizes. It also has the same resolution as the base

algorithm, permitting only values of φ̂ that are multiples of 1/2n = 1/8. Note that circular statistics

cannot be used to to improve the iterative optimization because each bit is measured independently,

whereas the base algorithm permitted us to determine coincidences among qubits.

2.2.4 Bayesian Optimization

Our final optimization for the PEA utilizes Bayesian statistics. In the versions of the algorithm

we have already discussed, the estimator of the phase we are trying to determine is stored in the

quantum state of a few qubits in some way. With the Bayesian PEA, we instead store the estimator

as a parameter in the quantum circuit and use the states of the qubits to inform us how close our
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|count0〉 H Rz(−Mθ) • H

|state0〉
init UM

|state1〉
c : /

1
0

Figure 2.3 Circuit diagram for the Bayesian PEA with a Heisenberg Hamiltonian. The
upper qubit is the counting register and the lower two form the state register. The bottom-
most lines represent a classical bit onto which measurement information is stored. The
circuit is parameterized by θ and M, which approximately represent our estimate for the
phase and the certainty of our estimate, respectively. In the Bayesian algorithm, several
versions of this circuit are run as the parameters M and θ are updated.

estimator is. The circuit is pictured in Fig. 2.3. It is reminiscent of the circuits used for the iterative

optimization, but the role of binary digit precision is replaced by a parameter M, which is repeatedly

updated in the algorithm. It also includes an extra Rz gate like the iterative algorithm; however, this

Rz gate serves a different purpose. In the Bayesian algorithm, this Rz gate is also parameterized by

θ , which is our current guess for the true phase. When θ is close to the true phase φ , the counting

qubit ends up being almost purely in the |0〉 state; exactly how close depends on the parameter M.

When θ is far from φ and M is small, the counting qubit is almost purely in the |1〉 state. This

property is used to guide our Bayesian updates.

Bayesian statistics is focused on the idea of updating a guess with newly acquired information.

We begin with an initial guess of the mean and variance of the phase distribution, together known as

the prior. We choose a wide prior distribution to account for our total uncertainty about the phase.

Specifically, we start with a normal distribution with a mean µ = π and variance σ2 = π2. Once an

initial prior distribution is established, we perform the following algorithm, adapted from [19–21]:

1. Repeat N times:

(a) Sample θ from the current prior distribution and assign M = d1.25/σe.
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(b) Run the quantum circuit in Fig. 2.3 with the parameters M and θ . Record the measure-

ment result as E ∈ {0,1}.

(c) Sample 100 x values from the prior distribution. For each x and based on the measure-

ment result E, compute either

P(E = 0|x;θ ,M) =
1
2
+

cos(M(θ − x))
2

(2.2)

or

P(E = 1|x;θ ,M) =
1
2
− cos(M(θ − x))

2
, (2.3)

which tell us the likelihood of measuring 0 or 1 if the true phase φ was equal to x.

(d) Generate 100 random values u ∈ [0,1) from a uniform distribution.

(e) For each xi, if the result of Eq. (2.2) or (2.3) is greater than ui, add xi to a new data set.

(f) Calculate the mean and variance of the new data set. Use the new mean and variance as

the parameters of the updated prior distribution.

2. Use the final distribution’s mean µN as the approximator for φ :

φ̂Bayes = µN .

The purpose of the Bayesian PEA is to perform successive updates on this prior in the hopes

that it will become a sharp distribution around the true phase φ , at which point sampling φ̂ from the

distribution yields a good estimate. Because the phase estimate is stored in a classical parameter

θ instead of the quantum state of a few qubits, we obtain a significantly better resolution for this

algorithm than for the other optimizations, limited only by the numerical precision available to

classical computers. The trade-off is the fact that the classical portion of the algorithm is probabilistic

as well as the quantum portion, so our estimate may be incorrect even when no errors happen in the

quantum calculation.
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2.3 Experimental Protocol

For each algorithm, we replace the U gate with the time evolution operator for the Heisenberg

Hamiltonian as discussed in Section 1.3.1. After constructing the relevant circuits in Qiskit, we run

them with 8192 shots (the maximum allowed by IBM) to simulate evolution under the Hamiltonian

for a time parameterized by the evolution parameter τ . We choose τ to range from 0 to 2π ,

representing one full period of time evolution. At each τ , the phase is estimated, allowing us to

build up the phase as a function of τ . This evolution is performed on both quantum simulators and

real quantum computers provided by IBM Q. We then calculate the energy of the system with Eq.

(1.4), using a finite difference method and taking the average derivative across the full evolution as

our estimate.
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Chapter 3

Discussion

As we completed the the simulations and experiments, we looked at each algorithm’s accuracy

of phase estimation at each time step and overall effectiveness at estimating the energy in the

system—which may not be correlated. In the following sections, we explain how we found that

the algorithms perform very differently in quantum simulations and experiments on real quantum

computers. In particular, the circular and Bayesian methods performed best in simulations, whereas

the iterative and Bayesian optimizations performed best in quantum experiments.

3.1 Results

In this section we compare the results of simulations of quantum computers to the results of

experiments on actual quantum computers. The former is useful because it provides an objective

measure of the algorithm’s individual performance, regardless of its implementation. The latter

is important as it represents the current computational power available with modern quantum

computers.

19
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Figure 3.1 Comparison of simulation and experimental data from each algorithm using a
Heisenberg Hamiltonian with the parameter λ = 4, which gives an energy of ε = 1. All
three lines plot the phase φ as a function of the evolution parameter τ . Plotted in blue is
the result of the evolution when the PEA is run on a simulation of a quantum computer
and in orange is the result of the evolution when the PEA is run on an actual quantum
computer at IBM. The actual phase of the Hamiltonian at each simulated time is plotted in
dotted black lines.

3.1.1 Simulation Results

In simulations of noiseless quantum computers, we find that the circular optimization is ideal. A

comparison of the base algorithm as well as the three optimizations is presented in Fig. 3.1, which

plots calculated phase φ against evolution parameter τ for all four algorithms. In Figs. 3.1a and

3.1c it is apparent that the simulation results of the base and iterative algorithms are identical. The



3.1 Results 21

Algorithm
Simulation Experiment

ε % Error R2 ε % Error R2

Base 1.013 1.3% 0.986 0.887 11.3% -1.245

Circular 1.009 0.9% 0.997 0.419 58.1% -1.140

Iterative 1.013 1.4% 0.986 1.013 1.4% 0.975

Bayesian 0.992 0.8% 0.941 0.990 1.0% 0.913

Table 3.1 Comparison of calculated energy values from simulations and experiments with
each type of PEA. The energy ε is calculated from Eq. (2.4) based on the evolution
results, with an expected value of ε = λ/4 = 1 (unitless). R2 represents the coefficient of
determination, calculated using the true phase function (plotted in black dotted lines in Fig.
3.1) instead of a line of best fit.

flat plateaus followed by sharp jumps indicate the limited resolution of these two algorithms. By

comparison, the continuous variation capability of the circular and Bayesian algorithms is visible in

Figs. 3.1b and 3.1d. The probabilistic nature of the Bayesian algorithm is apparent in the spikes

away from the trend. All four algorithms’ phase estimates follow the black dotted line in the figure,

which indicates the true phase value. On the left side of Table 3.1 we present the energy estimate

ε , the percent error from the true energy value, and the coefficient of determination R2, which is

calculated from the true phase plotted in black instead of a line of best fit. This R2 value gives us

quantitative measure of the reliability of our energy estimate. We can see that all four algorithms are

good at estimating the energy of the system, boasting both a small percentage error and a high R2

coefficient. Of particular note is the Bayesian algorithm, which obtains the closest energy estimate

to the true value but has the worst R2 value in simulations.

While the improved resolution of the circular and Bayesian algorithms makes the actual phase

estimation more accurate, it does not significantly affect the average derivative in Eqn. (1.4) from

which the energy is calculated. This indicates that if an accurate result for one particular phase is

desired, then the circular and Bayesian algorithms are ideal—but for energy estimation in simulation
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of time evolution, all four algorithms perform acceptably well in simulations.

3.1.2 Quantum Experiment Results

Looking at the orange lines in Fig. 3.1, it is apparent that experiments on real quantum computers

behave very differently from simulations of quantum computers. In simulations, there is no noise

present; however on real quantum computers, noise enters as explained in Section 2.1. The base and

circular algorithms give phase estimates that vary wildly, almost never giving the true phase value.

In fact, the noise seems to be sufficient to render the output of these algorithms essentially random.

However, the iterative and Bayesian algorithm do not demonstrate the same result. In particular,

we can see that the iterative algorithm’s phase estimate in experiment only deviates from that of

the simulation at three time steps, and the Bayesian algorithm’s experimental phase estimate varies

from the true value about as much as the simulation estimate does. In the right half of Table 3.1,

we present parameters to quantify the results of the experiments. The base and circular algorithms

demonstrate much worse performance, both having over 10% error in the energy estimate. Even

worse, their R2 values are negative. This is not a numerical error; instead, it indicates that the

results of the experiment better approximate a horizontal line at the mean of the phase data than the

expected phase value plotted in black in Fig. 3.1. On the other hand, we also see that the iterative

and Bayesian algorithms maintain a very small error in the energy calculation as well as a fairly

high R2 value, indicating that they perform very well in experiments on quantum computers. We

can deduce that these latter two optimizations are essential to get reliable results from the PEA if

it runs on a real quantum computer, regardless of whether phase estimates at particular times or

average energy estimates are desired.



3.2 Conclusions 23

3.2 Conclusions

It is clear from the results that the base algorithm is not sufficiently robust (with respect to noise) to

provide acceptable performance on real quantum computers. This is due to a combination of the

significant amount of noise that they are subject and the length and size of the circuit—whereas the

Bayesian and iterative algorithms use three-qubit circuits with no more than ten gates, the base and

circular algorithms use a five-qubit circuit with over 50 gates. Both circuit size (qubit count) and

circuit length (gate count) contribute to error buildup in quantum computers, though determining

the relative contributions is outside of the scope of this paper.

We conclude that algorithms which recycle or otherwise reduce qubit count are likely to exhibit

better performance than those which use more qubits. The iterative algorithm recycles a single

qubit that is used with the functionality of multiple counting qubits. Although this was not possible

in our implementation with the IBM Q system, it is possible for the state register to be re-used

while the counting qubit is recycled [28]. This produces the effect of reduced circuit size while

maintaining identical functionality. Obtaining this effect in a quantum algorithm is typically difficult

as larger circuit sizes generally provide a larger algorithmic space to work in, increasing the range

of problems it can solve. The Bayesian algorithm confronts this challenge by effectively becoming

a “phase checker” instead of a “phase estimator,” as it dynamically updates itself to produce an

estimate that converges to the true phase. Circuit space is reduced by having the estimate stored as a

real number in the classical system that controls the quantum computer instead of storing it on the

computer itself.

3.3 Future Research

In the future, the PEA needs to perform its task accurately on large quantum systems in order to

make quantum computing a useful computational tool in the hands of scientists. Our Hamiltonian
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was a simple two-qubit, four-dimensional Hamiltonian whose eigenvalues are simple to calculate

analytically, yet it is one of the larger Hamiltonians that is currently feasible to simulate without

noise taking over. For quantum simulation to lead to novel scientific results, we need to be able to

implement it on systems with Hamiltonians that are too large or complex to handle analytically or

numerically. Examples include many-body problems, spin glasses, and open quantum systems [6].

Implicit in this problem is also the need to reduce a given Hamiltonian into a sequence of gates that

can be implemented efficiently on a quantum computer as we did with the Heisenberg Hamiltonian

in Chapter 1. Using the PEA perform previously difficult tasks in cryptography or number theory,

such as breaking RSA, requires it to be run on thousands to millions qubits. Considering we

found that a quantum circuit of five qubits was too large to get reliable results from a real quantum

computer, it is clear that the field has a lot of room to grow and develop.

While noise reduction is a common thread that underlines the development of quantum com-

puters everywhere, it is also important to consider other paths to optimal quantum computer

performance, such as qubit connectivity and error correction. Qubits on quantum computers are

typically not fully connected, which complicates qubit allocation in algorithms and can result in

the addition of unwanted yet necessary gates to quantum circuits [29]. Quantum error correction is

another active field of research that aims to produce robust quantum computers that are subject to

noise yet remain able to produce accurate results by recognizing when an error has occurred [30].

With these and other advancements in the field, we hope to utilize quantum technology to solve

problems that have never before been solved.
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