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ABSTRACT

Two Reduced Models of Nerve Behavior

Joshua Rasband
Department of Physics and Astronomy, BYU

Bachelor of Science

Predictive models are key to understanding the behavior of physical systems. Effective models
can facilitate understanding of a complicated system. Ineffective models may have a large number
of parameters, leading to the phenomenon of sloppiness, characterized by large uncertainties in
estimating parameter values from data. Sloppiness has previously been observed in many fields,
including power systems, chemical kinetics, and systems biology. We observe that the Hodgkin-
Huxley model, a canonical model of the action potential in the giant squid axon, is a sloppy model.
We describe the Manifold Boundary Approximation Method (MBAM), a technique for general
model reduction. We use MBAM to construct minimal versions of the Hodgkin-Huxley model of
the action potential for two example behaviors. These minimal models can better inform large-
scale simulation of neurons in addition to lending important insight into biologically conserved
characteristics of the neuron.

Keywords: Hodgkin-Huxley, FitzHugh-Nagumo, model reduction, manifold boundary approxima-
tion method, sloppy model, parameter identifiability
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Chapter 1

Introduction

The human brain remains a poorly-understood system. Despite science’s success in modeling large,

complex systems, there are factors that make it difficult to model the brain. Here, I introduce the

idea of effective models, illustrate some problems with modeling the brain, introduce the idea of

sloppiness, and explain the question my research will answer.

1.1 Philosophical Foundations

Predictive models are key to scientific understanding. Without getting lost in the philosophical

thicket of what constitutes “understanding,” scientific understanding can be thought of as identifying,

measuring, and describing physical systems. Mathematics provides an excellent formalism for

describing the behavior of systems. Physicists, armed with mathematics, have been remarkably

(some would say unreasonably [1]) successful at describing and predicting many types of behavior

at very different scales, from the interactions of subatomic particles to black hole mergers.

1
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1.2 The Successes of Physics and Effective Models

One of the great successes of physics is its ability to accurately describe the macroscopic behavior

of complex systems with just a few parameters. As an example, we consider the ideal gas. A

microscopic description of a system of 1023 gas particles would require solving the Schrödinger

equation for a system of 1023 atoms, an impossibility with finite computational resources. Making

the assumptions that quantum effects are small and that the particle sizes are very small, we could

treat the system classically as point masses and describe their motion with Newton’s laws of

motion. This is better, but the system is still too large to compute a numerical solution with finite

computational resources. Finally, we make assumptions about the distributions of energy and

momenta among the gas particles. At last, we are able to describe macroscopic behavior (volume,

pressure) of the gas with convenient parameters (moles of gas particles, temperature, et cetera). The

ideal gas law is an example of an effective model because it has a simple mathematical form and

contains parameters with meaningful contributions to predictions. It’s important to note, however,

that the ideal gas law rests on a number of assumptions that don’t always apply. For example, under

high-pressure or low-temperature conditions, intermolecular forces may become significant and

a more complete description is necessary. Despite the successes of the ideal gas law and other

effective models, some systems remain poorly understood.

1.3 Problems With Modeling the Brain

There is no effective model of the entire human brain, despite decades of concerted effort. Part

of the problem is complexity. The brain has tens of billions of neurons with tens to hundreds of

trillions of synaptic connections [2]. Even with incredible advances in computational resources,

modeling the brain remains extremely computationally expensive. Another problem is variability.

Even though most healthy human brains have the same capacities for vision, speech, and abstract
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thought, individuals differ greatly in the precise wiring of their nervous system. Moreover, within an

individual there is variation as neurons are born, grow, adapt, and die over the individual’s lifetime.

Especially during childhood and adolescence, neurons rapidly and dynamically change the ways

that they are connected to each other. Finally, the same types of statistical assumptions that worked

for the ideal gas don’t work for the brain. The brain has no equilibrium state, is heterogeneous, and

spatially distant parts of the brain can have strong effects on each other. Despite these and other

challenges, the search for an effective model continues. Similarities in human behavior despite

microscopic variability in nervous structure indicate that there may be laws of brain function that do

not depend heavily on the precise details of the structure of the brain.

1.4 Neuroscience for Physicists

Those with a background in neuroscience are welcome to skip this section, which is intended to

serve as a primer for those unfamiliar with the nervous system. The nervous system is composed of

neurons which are connected to each other via synapses and dendrites. Dendrites receive signals

from the synapses of other neurons. Signals propagate along the nerve membrane as a wave of

drastic change in electrochemical potential of the membrane. This change in electrochemical

potential is accomplished as ions flow down their concentration gradients into or out of the cell

(see Figure 1.1). Neuroscientists have used various mathematical models to try to understand the

behavior of neurons.

1.5 Models in Neuroscience

Although there are no effective models of the entire brain, there are good models of neurons

(e.g. [3]). The neuron is the fundamental unit of the brain. Each neuron has the capacity to send

and receive electrical signals to and from other neurons. These electrical signals are created by the
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Figure 1.1 A cartoon drawing of a neuron. Modified, original from Wikimedia Commons,
by Dhp1080, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported
license.

flow of ions across the cell membrane. The membrane has embedded proteins that act as channels

or gates for the ions. Hodgkin and Huxley experimentally measured the kinetics of ion channels

in response to externally applied potentials. The data were fit to Boltzmann equations, equations

that describe the statistical behavior of a thermodynamic system in disequilibrium. Their results of

their experiments were used to create the Hodgkin-Huxley model (Appendix A.1) [4], a physically

motivated model of the membrane potential in nerve membrane. The Hodgkin-Huxley model has

served as a template for many other modern conductance-based models.

Another model of nerve membrane potential is the FitzHugh-Nagumo model (Appendix A.2)

[5]. Although both the Hodgkin-Huxley and FitzHugh-Nagumo models describe the same physical

quantity — the resting membrane potential of the neuron — they are very different models. The

Hodgkin-Huxley model may be considered a mechanistic model, a model which tries to capture

microscopic physical processes and relationships. In contrast, the FitzHugh-Nagumo model may be

considered a phenomenological model, a model which merely approximates macroscopic behavior

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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with a mathematical function. The differences between the equations of these two models (see

Appendix A) illustrate the complimentary advantages and disadvantages of these two models.

Although the Hodgkin-Huxley model is much more complicated than the FitzHugh-Nagumo model

(25 parameters vs. 4 parameters, 4 differential equations vs. 2 differential equations), the Hodgkin-

Huxley model has the advantage of describing the system in a physical, measurable way. The

parameters of the Hodgkin-Huxley model correspond to real, measurable quantities. In contrast,

the parameters of the FitzHugh-Nagumo model are dimensionless and it’s less clear how they

relate to characteristics of a physical system. The FitzHugh-Nagumo model is favored in many

computational neuroscience applications because of its simplicity and decreased computational cost

compared to the Hodgkin-Huxley model. Although not exhaustive, this brief comparison of the two

models serves to illustrate their comparative advantages and disadvantages.

1.5.1 Example Behaviors and Comparison

The models can make a wide variety of predictions for different input currents and parameter

values. Figure 1.2 shows the model predictions for two input currents. We call these behaviors

the transition and limit cycle models, respectively. Figure 1.3 shows how the FitzHugh-Nagumo

model approximates the Hodgkin-Huxley model very well for limit cycle behavior.

1.6 Sloppiness in the Hodgkin-Huxley Model

The Hodgkin-Huxley model is a model that exhibits sloppiness, a fact which was determined by the

work of T. Bahr [6]. Sloppy models are models whose parameters are poorly constrained by data,

leading to huge uncertainties in estimating parameter values. For parameters with huge uncertainties,

there exist limiting approximations that eliminate the parameters from the model. The Manifold

Boundary Approximation Method, a general algorithm for parameter reduction in sloppy models, is
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Figure 1.2 Demonstration of the transition and limit cycle behaviors in the Hodgkin-
Huxley model
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Figure 1.3 Comparison of predictions of the Hodgkin-Huxley and FitzHugh-Nagumo
models.
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described in Section 2. Bahr was able to use the Manifold Boundary Approximation Method to

reduce the Hodgkin-Huxley model to fourteen parameters from its original twenty-six. My work

extends his work by examining limit cycle behavior rather than only transition behavior.

1.7 Problem Formulation

I ask whether the FitzHugh-Nagumo model is a reduced form of the Hodgkin-Huxley model. That is,

I attempt to discover some limiting assumptions for parameter values that result in a simplification

of the Hodgkin-Huxley model to something more like the FitzHugh-Nagumo model. By discovering

the parameter approximations for which the FitzHugh-Nagumo model’s predictions approximate the

Hodgkin-Huxley model well, one can determine under what conditions the FitzHugh-Nagumo model

is appropriate to use as a substitute for the full Hodgkin-Huxley formalism. This clearly identifies

which model may be suited for a given modeling task. Additionally, identifying the parameter

combinations in the Hodgkin-Huxley model that correspond to parameters in the FitzHugh-Nagumo

model will give physical meaning to the parameters of the FitzHugh-Nagumo model.



Chapter 2

Methods

The Manifold Boundary Approximation Method (MBAM) is an iterative technique for model

reduction. It has been previously described in detail [7, 8]. Here, we discuss the theoretical

basis of MBAM, describe its implementation for the Hodgkin-Huxley model, and give a sample

demonstration.

2.1 Definitions: The Model, Residuals, and Cost

We begin with definitions. For a given system, we may experimentally measure data points {ym}

sampled over an independent variable t at points {tm}. A model is a function f with parameters

θ = {θn} that control model behavior. The model may be considered effective for describing the

system if the predicted values f (tm,θ) are close to the experimentally observed data {ym}. As a

preliminary step to optimizing parameter values for given data, we introduce the residuals:

rm(θ) = ym− f (tm,θ). (2.1)

Individual weights {σm} can be assigned to data points, in which case the residuals become:

rm(θ) =
ym− f (tm,θ)

σm
. (2.2)

9
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The sum of squares of residuals quantifies difference between model predictions and experimental

observations. This metric, called the cost C is defined:

C(θ) =
1
2 ∑

m
[rm(θ)]

2. (2.3)

With the cost as a function of parameter values for given experimental data, optimizing parameter

values to fit a model to data becomes a cost minimization problem. We use a modified version of

the Levenberg-Marquardt algorithm [9, 10] for fitting our models to data.

2.2 The Model Manifold and Reduction by Boundaries

Another interesting feature of the model is the set of all predictions available to the model for

different parameter values. This set of all predictions is a high-dimensional object in the prediction

space called the model manifold. It is visualized by using the model to map the entire parameter

space into the prediction space.

Some models have a large number of parameters, some or most of which are poorly constrained

when fit to experimental data. Such models with huge uncertainties in parameter values are called

sloppy models. Sloppy models have been identified in many fields, including power systems,

chemical kinetics, and systems biology [11]. The model manifold for a sloppy model is bounded by

a hierarchy of widths spanning many orders of magnitude. The boundaries of the model may be

used as submanifold approximations to the full model manifold. These geometric approximations to

the model manifold have a symbolic interpretation as reduced forms of the original model, created

by pushing parameter values to extremes.

Starting at an initial point on the model manifold, representing a prediction for an initial set of

parameter values, we may calculate a path to the nearest boundary of the manifold. This path is called

a geodesic. After reaching the closest boundary, we fit the model on the boundary by minimizing

the cost. If the distance traveled from the initial point to the point on the boundary is sufficiently
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small, as measured by the cost function, we say that the boundary is a good approximation of the

original manifold. This process can be repeated for the boundary, which is itself a reduced model

manifold. Once the distance to a boundary is too large there are no longer any reduced models that

make good predictions.

2.3 Parameter Space Transformation

Because parameter values can get very large on the boundaries of the model manifold, it is convenient

to transform the parameters. If the parameter can have only positive, nonzero values, a logarithmic

transformation “shrinks” that axis of parameter space for convenience during numerical calculation,

as well as ensuring that the parameter can never take forbidden values during calculation. Similarly,

a hyperbolic sine transformation may be used for parameters that can take both positive and negative

values.

2.4 Hodgkin-Huxley Model Definition

The Hodgkin-Huxley model was implemented in the Julia programming language, using the

Sundials package for finding numerical solutions to differential equations. These packages were

developed by the Transtrum research group for their accessibility and high performance.

2.5 The Fisher Information Matrix

The Fisher Information Matrix g is a metric for the model manifold. It is defined by g = JT J, where

J is the Jacobian matrix. Elements of the Jacobian are calculated as the derivative of residuals with

respect to parameter values:

Jmµ =
∂ rm

∂θµ

= ∂µrm (2.4)
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The largest eigenvalues of the Fisher Information Matrix correspond to parameters which are most

important for determining model behavior. (The eigenvalues of the Fisher Information Matrices for

the full and reduced Hodgkin-Huxley models are graphed in Figure 3.1c, d.)

2.6 Geodesic Calculation

The calculation of the geodesic is described in detail in [7] (especially Section VI). Here, we

reproduce the essentials of geodesic calculation. The geodesic is the shortest path between two

points on a manifold. The parameters corresponding to a geodesic path can be found by solving the

differential equation

ẍµ +Γ
µ

αβ
ẋα ẋβ = 0 (2.5)

where Γ
µ

αβ
are the connection coefficients calculated from the metric of the manifold and the dot

means differentiation with respect to the curve’s affine parameterization. The connection coefficients

are defined according to

Γ
α
µν =

1
2

gαβ (∂µgβν +∂νgβ µ −∂β gµν) (2.6)

where g is the metric. The connection coefficients may also be defined in terms of the residuals

Γ
α
µν = gαβ

∑
m

∂β rm∂µ∂νrm. (2.7)

In our implementation, we used automatic differentiation to calculate a geodesic path. The direction

of the geodesic was chosen to correspond to the direction that had the least effect on model

predictions, i.e., corresponding to the smallest eigenvalue of the Fisher Information Matrix.

2.6.1 Einstein Summation Convention

This section briefly explains the use of Einstein notation for those who may be unfamiliar with it.

In the Einstein summation convention, the occurence of the same subscript and superscript index
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variable in a term indicates an implied sum over the index. In the geodesic calculation, the indices

are coordinates in a coordinate system. This convention results in much more concise algebraic

formulae. A detailed explanation of the convention is beyond the scope of this thesis.

2.7 Nonlinear Fitting

Models were fit using a Levenberg-Marquardt algorithm [9]. In brief, the modified Levenberg-

Marquardt algorithm is an adaptive algorithm for nonlinear least-squares fitting. It interpolates

between the Gauss-Newton algorithm and gradient descent, two early approaches to least-squares

fitting.

2.8 Sample Demonstration

We demonstrate elements of MBAM using the Hodgkin-Huxley model. First we pick three time-

points at which to sample our model (Figure 2.1b). These timepoints correspond to the axes of the

prediction space (Figure 2.1a). Next, we pick two parameters from which to form our parameter

space (Figure 2.1c). Note that the selection of only three timepoints and two parameters is done so

this example reduction may be easily visualized. In full MBAM, there are 1001 sampled timepoints

and many more parameters.

The model manifold is created by using the model to map the parameter space to the prediction

space (Figure 2.1a). Every point in the parameter space corresponds to a point in prediction space.

The resulting model manifold in this case is a thin, two-dimensional sheet or ribbon. It is much

wider in some directions than in others. The wide directions correspond to parameters or parameter

combinations which are important for determining model behavior, while the narrow directions

correspond to less important parameters. In this sample demonstration, we have identified the red

edge as the edge closest to the initial point on the manifold. The red edge corresponds to the limit
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of the model as Kβn approaches infinity. Note in Figure 2.1c, which shows the cost surface as

parameter values are varied, the “canyon” of low cost as the parameter Kβn is pushed to very large

values. This limit corresponds to the same edge of the model manifold highlighted in red. The low

cost of pushing Kβn to extreme values indicates that the reduced model obtained by the limit of the

model as Kβn approaches infinity gives predictions that are close to the original predictions.
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Figure 2.1 Partial demonstration of the Manifold Boundary Approximation Method
(MBAM). (a) The model manifold, a surface created by plotting model predictions for
each of the three time points as model parameter values are varied. (b) Three time points
are selected for calculating and plotting the cost surface (c) and model manifold (a). (c)
Cost contour plot as model parameter values are varied.
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Chapter 3

Results and Discussion

3.1 Description of Reduced Models

By applying MBAM to the full Hodgkin-Huxley model, we were able to obtain greatly reduced

models for the two types of data studied. The model of a transition from resting to spiking was

reduced to ten parameters, while the model of limit cycle spiking was reduced to seven parameters.

The full model definitions are given in Appendix A.

Figure 3.1 demonstrates full and reduced model predictions. Even with the majority of parame-

ters eliminated from the models, they are still able to reproduce important features of full model

behavior.

3.2 Sensitivity Analysis of Reduced Models

Each parameter in the reduced models is associated with some unique capacity of the model to

vary predictions. By slightly changing parameter values one parameter at a time, we can learn how

changes in parameter values affect model behavior.

Figure 3.2 shows a qualitative sensitivity analysis for the reduced dimensionless transition

17
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Figure 3.1 Overview of model predictions for a given applied current, with the eigenvalues
of the Fisher Information Matrix for each model. Two types of applied current were
studied. (a) A Gaussian "pulse" of input current shows a transition from a resting to a
spiking state. (b) Constant input current shows limit-cycle behavior.
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Figure 3.2 Sensitivity analysis for the dimensionless, seven-parameter reduced transition
model (Appendix A.4).

model, described in Appendix A. The solid line indicates reduced model predictions for unperturbed

parameter values. Each dashed line shows model predictions after one parameter has been slightly

changed. Rather than showing an overview of all predictions, each panel focuses on time intervals

that highlight the relevant changes in model predictions.

In Figure 3.2a, the parameters θ4, θ5, and θ6 are adjusted. Inspection of their effects on model

predictions shows that θ4 controls the threshold voltage for spiking, θ5 controls rate of change of

voltage, and θ6 controls equilibrium potential. Similarly, inspection of Figure 3.2b shows that θ2

controls depth of hyperpolarization while θ7 controls the length of the refractory period. Finally,

Figure 3.2c shows that θ1 and θ3 are parameters that control for the duration of spiking and the

frequency of spiking, respectively.
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3.3 The Reduced Limit Cycle and FitzHugh-Nagumo Models

The reduced limit cycle and FitzHugh-Nagumo models have almost identical forms. This indicates

that the FitzHugh-Nagumo model’s parameters have physical correlates in the Hodgkin-Huxley

model. A next step for our work will be to identify experimental conditions under which it is

appropriate to use the FitzHugh-Nagumo model rather than a more complex model.

3.4 Local Sloppiness

Initial analysis of the eigenvalues of the Fisher Information Matrix (Figure 3.1c, d) indicated that

we would be able to remove about half of the parameters in the model. As we iterated MBAM,

the eigenvalues of the Fisher Information Matrix changed significantly. Sometimes eigenvalues

increased, indicating parameters becoming more stiff, while other times eigenvalues decreased,

indicating parameters becoming more sloppy. We believe that the shifts in eigenvalues are due to the

phenomenon of local sloppiness which we observed while calculating geodesics. At some points on

the model manifold, one parameter would appear to be very sloppy and the geodesic would move

in that direction. After a while, the parameter became extremely stiff. Parameters representing

potentials were particularly prone to being locally sloppy. The model was able to compensate

for modifications to the threshold potential, up to a certain critical threshold, at which changes to

the potential became extremely important for determining behavior. Locally sloppy parameters

pose challenges for implementing MBAM automatically, without human oversight. More work is

necessary to understand how local sloppiness occurs in models and how MBAM can be modified to

detect and adapt to local sloppiness.
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3.5 Conclusion

The reduced models described in Section 3.1 and Appendix A are a powerful demonstration of the

capacity of MBAM to reduce unnecessary model complexity. Our success suggests that the Hodgkin-

Huxley model (and similar mechanistic models) contain more information than is necessary for

many common modeling applications.

This work represents a significant improvement in parameter reduction of the Hodgkin-Huxley

model. Although previous work had established that the Hodgkin-Huxley model exhibits sloppiness,

the limit cycle behavior of the Hodgkin-Huxley model had not yet been studied with MBAM [6].

Additionally, our work on the transition model eliminated four more parameters than previous work

had been able to do.

Walch and Eisenberg noted the need for identifiability analysis in current-clamp experiments [12].

Our findings are a first investigation of parameter identifiability for the Hodgkin-Huxley model in

current-clamp experiments. MBAM selects for the parameters and combinations of parameters that

are able to be determined from data.

Although the two behaviors we studied capture important elements of typical neuron behavior,

they are by no means exhaustive of the full range of behaviors available to the Hodgkin-Huxley

model. Further work could very easily apply MBAM to interesting experimental conditions for

the Hodgkin-Huxley model, such as altered initial parameter conditions or modified input currents.

Additionally, the Hodgkin-Huxley model is only one model in a population of detailed, conductance-

based models commonly used by computational neuroscientists. The methods outlined in Section 2

are general and will work for any conductance-based model. More work is necessary to understand

how additional types of ionic channels will affect reduced model structure and behavior.





Bibliography

[1] E. P. Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences,”

Communications in Pure Applied Mathematics 13, 1–14 (1960).

[2] C. S. von Bartheld, J. Bahney, and S. Herculano-Houzel, “The search for true numbers of

neurons and glial cells in the human brain: a review of 150 years of cell counting,” Journal of

Comparative Neurology 524, 3865–3895 (2016).

[3] F. Buchholtz, J. Golowasch, I. R. Epstein, and E. Marder, “Mathematical model of an identified

stomatogastric ganglion neuron,” Journal of neurophysiology 67, 332–340 (1992).

[4] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its

application to conduction and excitation in nerve,” The Journal of physiology 117, 500 (1952).

[5] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane,”

Biophysical journal 1, 445–466 (1961).

[6] T. Bahr, undergraduate Senior Thesis (Brigham Young University Department of Physics and

Astronomy) (unpublished).

[7] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Geometry of nonlinear least squares with

applications to sloppy models and optimization,” Physical Review E 83, 036701 (2011).

23



24 BIBLIOGRAPHY

[8] M. K. Transtrum and P. Qiu, “Model reduction by manifold boundaries,” Physical review

letters 113, 098701 (2014).

[9] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” Journal

of the society for Industrial and Applied Mathematics 11, 431–441 (1963).

[10] M. K. Transtrum and J. P. Sethna, “Improvements to the Levenberg-Marquardt algorithm for

nonlinear least-squares minimization,” arXiv preprint arXiv:1201.5885 (2012).

[11] M. K. Transtrum, B. B. Machta, K. S. Brown, B. C. Daniels, C. R. Myers, and J. P. Sethna,

“Perspective: Sloppiness and emergent theories in physics, biology, and beyond,” The Journal

of chemical physics 143, 07B201_1 (2015).

[12] O. J. Walch and M. C. Eisenberg, “Parameter identifiability and identifiable combinations in

generalized Hodgkin–Huxley models,” Neurocomputing 199, 137–143 (2016).

[13] E. Buckingham, “On physically similar systems; illustrations of the use of dimensional

equations,” Physical review 4, 345 (1914).



Appendix A

Model Definitions

A.1 The Hodgkin-Huxley Model

The following description of the Hodgkin-Huxley model is adapted from [6]. The Hodgkin-Huxley

model consists of four nonlinear coupled differential equations. They describe the dynamics of four

variables: voltage V , potassium channel activation constant n, sodium channel activation constant m,

and sodium channel inactivation constant h. The activation and inactivation constants, also called

gating variables, describe the statistics of how many channels in a population of ion channels will

be in the open configuration. Accordingly, the gating variables can take values between zero and

unity. The time differential of voltage is given by

dV
d t

= (Iapp− IK− INa− IL)/Cm (A.1)

where

IK = n4GK(V −EK) (A.2)

INa = m3hGNa(V −ENa) (A.3)

IL = GL(V −EL) (A.4)
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IK , INa, and IL represent the current passing through potassium, sodium, and leak channels, respec-

tively. The Gx correspond to maximal conductances of the ion channels and are determined by

channel structure and composition. (Conductance, a convenient unit in electrophysiology, is defined

as the inverse of resistance.) The Ex correspond to electrochemical potentials that result from ion

concentration gradients across the cell membrane. The membrane capacitance Cm is determined by

cell geometry.

The differential equations for the gating variables are very similar, so we introduce an iterator i

representing n, m, and h. Then the time differential of i is given by

d i
d t

=
i− i∞

τi
(A.5)

where

i∞ =
Ai

Ai +Bi
(A.6)

τi =
1

Ai +Bi
(A.7)

where Ai, Bi are functions of V that vary for each n, m, h.

An =
αn(V −Vαn)

1− exp[−(V −Vαn)/Kαn]
(A.8)

Am =
αm(V −Vαm)

1− exp[−(V −Vαm)/Kαm]
(A.9)

Ah = αh exp[−(V −Vαh)/Kαh] (A.10)

Bn = βn exp[−(V −Vβn)/Kβn] (A.11)

Bm = βm exp[−(V −Vβm)/Kβm ] (A.12)

Bh =
βh

1+ exp[−(V −Vβh
)/Kβh

]
(A.13)

Each αx, βx, Vx, and Kx is a parameter of the Hodgkin-Huxley model and characterize the dynamics

of the ion channels. There are a total of 25 parameters in the Hodgkin-Huxley model.
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V0 =−86.8 n0 = 0.0537 m0 = 0.00179 h0 = 0.987 Iapp = 90e−[
(t−100)2

1250 ] Cm = 1.0

GK = 36.0 GNa = 120.0 GL = 0.30 EK =−95.3 ENa = 36.7 EL =−87.0

Vαn =−50.0 Vαm =−36.0 Vαh =−60.0 Vβn =−60.0 Vβm =−60.0 Vβh
=−30.0

Kαn = 10.0 Kαm = 10.0 Kαh = 20.0 Kβn = 80.0 Kβm = 18.0 Kβh
= 10.0

αn = 0.01 αm = 0.1 αh = 0.07 βn = 0.125 βm = 4.0 βh = 1.0

Table A.1 Table of initial parameter values for the Hodgkin-Huxley model. See Appendix
A.1.1 for units.

A.1.1 Initial Parameter Values for the Hodgkin-Huxley Model

The initial parameter values in the Hodgkin-Huxley model are given in Table A.1. Parameters

of the form Vx, Ex, and Kx have units of milivolts, parameters of the form Gx have units of

milisiemens (where a siemen is an inverse ohm, 1/Ω), Cm has units of microfarads, Iapp has units of

nanoamperes, parameters αn and αm have units of inverse milivolts miliseconds (mV−1msec−1), all

other parameters of the form αx or βx have units of inverse miliseconds (msec−1), and the gating

variable initial conditions n0, m0, h0 are dimensionless.

A.2 The FitzHugh-Nagumo Model

The FitzHugh-Nagumo model [5] is a phenomenological model of nerve excitation.

v̇ = v− v3/3−w+RIext (A.14)

τẇ = v+a−bw (A.15)

The variable v is a dimensionless membrane potential, while w is a relaxation variable. The

parameters a, b, τ , and RIext are dimensionless parameters, with τ being a time constant and RIext a

term intended to correspond to externally applied current. There are a total of four dimensionless
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parameters in the FitzHugh-Nagumo model.

A.3 The Reduced Transition Model

V̇ = [Iapp− G̃K ñ4(V −EK)+ INam̃3
∞h̃∞−GL(V −EL)]/Cm (A.16)

˙̃n = ReLU(V −Vαn)− β̃nñ (A.17)

where

m̃∞ = ReLU(V −Vαm) (A.18)

h̃∞ = e−V/Kαh (A.19)

ReLU(x) = xH (x) (A.20)

and H is the Heaviside step function. This reduced model has a total of ten parameters. There are

three physical dimensions present in this model: voltage, time, and membrane capacitance. By the

Buckingham π Theorem [13], this model can be transformed into a dimensionless model of seven

dimensionless parameters.

A.4 The Reduced Transition Model (Dimensionless)

v̇ = Ĩapp−θ1w4(v−θ2)+θ3e−v[ReLU(v−θ4)]
3−θ5(v−θ6) (A.21)

ẇ = ReLU(v−θ7)−w (A.22)

where

ReLU(x) = xH (x) (A.23)

and H is the Heaviside step function.
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A.5 The Reduced Limit Cycle Model

V̇ =−IK ñ4 + INa{1/(1+ exp[−(V −Vβm)/Kβm]}
3 (A.24)

˙̃n =V −Vαn− β̃nñ (A.25)

A.6 The Reduced Limit Cycle Model (Dimensionless)

v̇ =−w4 +θ1

(
1

1+ e−v

)3

(A.26)

ẇ = (v+θ2−w)θ3 (A.27)
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Appendix B

Reduction Descriptions

B.1 The Transition Model

We describe here, in order, the limits found via MBAM and used to reduce the number of parameters

in the Hodgkin-Huxley model for a transition from resting to spiking to resting.

B.1.1 Treatment of Initial Conditions

Although initial conditions can be written as parameters in the model code, initial conditions are not

“true” parameters in the sense that they do not define rules for how the system behaves, rather, they

define the initial state of the system. In the transition model, we eliminated the initial conditions by

using a steady-state approximation. The initial conditions were set to whatever values would result

in the system being at equilibrium at time t = 0.

B.1.2 List of Reductions

1. 25→ 22: Elimination of Structurally Unidentifiable Parameters

The parameters Vαh , Vβn , and Vβm are structurally unidentifiable. They can be combined with

31



32 Appendix B Reduction Descriptions

another parameter to create a single equivalent parameter with no loss of model fidelity. The

parameters all appear in the form

X = xe−(V−Vx)/Kx . (B.1)

We note that this is equivalent to

X = (xeVx/Kx)e−V/Kx = x̃e−V/Kx . (B.2)

For each of the parameters Vαh , Vβn , and Vβm , we can “absorb” them into their corresponding

parameters αh, βn, and βm to create the new parameters α̃h, β̃n, and β̃m. This elimination of

structurally unidentifiable parameters occurs as a preliminary step to performing MBAM in

both the transition and limit cycle models.

2. 22→ 21: Kβn → ∞

3. 21→ 20: GK → ∞, α4
n → 0, GKα4

n → G̃K

4. 20→ 19: GNa→ ∞, αh→ 0, GNaαh→ G̃Na

5. 19→ 18: βh→ ∞, Vβh
→ ∞, βhe−Vβh

/Kβh → β̃h

6. 18→ 17: Kβh
→ ∞

7. 17→ 16: Kβm → ∞

8. 16→ 15: GNa→ 0, α3
m→ ∞, GNaα3

m→ G̃Na

9. 15→ 14: Kαm → 0

10. 14→ 13: GNa→ 0, ENa→ ∞, GNaENa→ INa

11. 13→ 12: τh→ 0, h→ h∞
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12. 12→ 11: Kαn → 0

13. 11→ 10: τm→ 0, m→ m∞

14. 10→ 7: Removing Dimension

We describe briefly the process of obtaining the dimensionless transition model in Appendix

A.4 from the reduced transition model in Appendix A.3. First, we pick a convenient definition

for dimensionless voltage v =V/Kαh . Next, we find an appropriate dimensionless time, in this

case τ = Kαht. Finally, we remove the dimension of capacitance, Cm. This process recovers

seven dimensionless parameters:

θ1 =
G̃KK3

αh

β̃ 4
n Cm

(B.3)

θ2 = EK/Kαh (B.4)

θ3 =
INaKαh

Cm
(B.5)

θ4 =Vαn/Kαh (B.6)

θ5 =
GL

KαhCm
(B.7)

θ6 = EL/Kαh (B.8)

θ7 =Vαm/Kαh (B.9)

B.2 The Limit Cycle Model

We describe here, in order, the limits found via MBAM and used to reduce the number of parameters

in the Hodgkin-Huxley model for limit cycle behavior.
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B.2.1 Treatment of Initial Conditions

As in the transition model, initial conditions are not “true” parameters. The initial conditions don’t

matter very much in the limit cycle case because we are concerned only about the limit cycle

itself (amplitude, frequency, shape of cycle, et cetera). Any initial conditions that lead to limit

cycle behavior are permissible, and any transient imperfections resulting from poorly-chosen initial

conditions are not very concerning because we can use the limit cycle itself to find good values for

initial conditions of the dynamical variables.

B.2.2 List of Reductions

1. 25→ 21: Elimination of Structurally Unidentifiable Parameters As in the transition model,

structurally unidentifiable parameters

Vαh , Vβn , and Vβm can be eliminated. Additionally, the parameter Cm is structurally unidentifi-

able in this model because the applied current is constant in time. The applied current can be

“absorbed” into the leak current IL, by redefining IL (and EL) in the following way:

ĨL = Iapp− IL = Iapp−GL(V −EL) =−GL[V − (EL + Iapp/GL)] =−GL(V − ẼL) (B.10)

We can now redefine all Gx by G̃x = Gx/Cm and thus eliminate the parameter Cm from

our model. It’s important to note that this changes the units of Gx, as they are no longer

conductances but units of inverse time.

2. 21→ 20: Kβn → ∞

3. 20→ 19: Kαn → 0

4. 19→ 18: GK → ∞, α4
n → 0, GKα4

n → G̃K

5. 18→ 17: Kαh → ∞
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6. 17→ 16: Kβh
→ 0

7. 16→ 15: GNa→ ∞, αh→ 0, GNaαh→ G̃Na

8. 15→ 14: GL→ 0, EL→ ∞, GLEL→ IL

9. 14→ 13: Kαm → 0

10. 13→ 12: GNa→ 0, ENa→ ∞, GNaENa→ INa

11. 12→ 11: Vαm →−∞, αm→ 0, αmVαm → α̃m

12. 11→ 10: αm→ ∞, βm→ ∞, m→ m∞, βm/αm→ β̃m

13. 10→ 9: Vβh
→−∞

This limit eliminates voltage-dependence for the gating variable h, making it solely time-

dependent.

14. 9→ 8: GK → 0, EK → ∞, GKEK → IK

15. 8→ 7: βh→ 0, h∞→ 1

16. 7→ 6: IL→ 0

17. 6→ 3: Removing Dimension

We describe briefly the process of obtaining the dimensionless reduced limit cycle model

in Appendix A.6 from the reduced limit cycle model in Appendix A.5. First, we pick a

convenient definition for dimensionless voltage v = (V −Vβm)/Kβm . Next, we solve to find an

appropriate definition for dimensionless time. Rearranging parameters in the two remaining

differential equations and changing gating variables from n to w, where w = (βn/Kβm)n, we
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find a redefinition of dimensionless time τ = (IKK3
βm
/β 4

n )t. This recovers three dimensionless

parameters:

θ1 =
INa

IK

(
βn

Kβm

)4

(B.11)

θ2 =
Vβm−Vαn

Kβm

(B.12)

θ3 =
Kβm

IK

(
βn

Kβm

)4

(B.13)
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