
1

Red/green Colorblindness Simulation: Creating a Colorblind Friendly Environment

Jenny Kang

A senior capstone project report submitted to the faculty of

Brigham Young University

In partial fulfillment of the requirements for the degree of

Bachelor of Science

David Allred, Advisor

Department of Physics and Astronomy

2

Brigham Young University

April 14, 2021

Abstract

Red/green Colorblindness Simulation: Creating a Colorblind Friendly Environment

Jenny Kang

Department of Physics and Astronomy, BYU

Bachelor of Science

A revolutionary solution for colorblindness was devised by Dr. Don McPherson who invented

color corrective glasses for the colorblind to see colors in 2012. We are hoping to create greater

empathy for colorblind individuals and to assist in creating a more colorblind-accessible

environment. Hence, converse to the colorblind corrective glasses, in this project we assumed a

person with normal color vision would perceive the world as a red-green colorblind person if

only 540 nm to 570 nm of wavelengths transmitted through by the dichroic filters. We report on

the creation of googles that causes people wearing them to lose red-green discrimination. Our

goal is to allow non-colorblind individuals to experience red/green colorblindness. Seventeen

volunteers completed Ishihara colorblind tests, sixteen of them with healthy color vision were

diagnosed as severely red/green colorblind while taking the test with colorblind goggles on.

3

Acknowledgements

I would like to express my deepest appreciation to my advisor, Dr. David Allred, who has

the attitude and the substance of a genius, Professor Sandberg, who patiently guided me, and my

partner, Zach Westhoff, who helped turn a project idea into reality. In addition to the challenge

of finding the appropriate filters in a short amount of time, this dissertation would not have been

possible without their guidance and persistent help.

I would also like to thank my partner, Zach Westhoff, and teaching assistant, Nick Porter.

Both continually and convincingly conveyed a spirit of adventure towards this research and an

excitement for finding solutions from obstacles. In addition, I would like to express appreciation

to all the volunteers who helped testing out the colorblind goggles.

Lastly, I would like to thank Dr. Steve Turley and Dr. Karine Chesnel, who instructed me

on writing skills and gave me feedback so I can make this thesis more polished and complete. I

want to also thank Brigham Young University for providing me the opportunity to gain a

wonderful education and the resources which not only to helped me obtain a higher level of

education, but also helped me build my character.

4

Table of Contents

Chapter 1: Introduction ...5

1.1 Motivation and Background ..5

1.2 Objective of Research ...6

Chapter 2: Methods ..7

2.1 Dichroic Filters ..7

2.1.1 Characteristics of Bandstop and Shortpass Filters ...7

2.1.2 Target Wavelength Range ..9

2.2 Computational Simulation ...10

2.2.1 Computational Techniques and Algorithms ...10

2.2.2 Challenges in Computational Simulation ...11

2.3 In Vivo Experiment ...12

2.3.1 Testing Method and Procedure ..12

Chapter 3: Results and Conclusions ..13

3.1 Experimental Results ..13

3.1.1 Data Analysis...13

3.1.2 Highlighted Result: Corey ...14

3.2 Conclusions ..14

Bibliography ..16

Appendix I: Simulation Code ...17

5

Chapter 1: Introduction

1.1 Motivation and Background

Approximately 300 million people worldwide suffer from color blindness—roughly 1 in

10 men in most Caucasian populations [1]. The struggles of colorblind people might not be as

obvious as other forms of disability; nevertheless, colorblind individuals can face many

challenges in their day-to-day life. These challenges may manifest in routine activities including

preparing and cooking for meals, charging electronics which use red/green indicator lights,

operating a vehicle, and selecting clothing. Moreover, some people may not notice sunburns on

their children or discoloring in their stool due to diseases [2]. There are several types and various

levels of severity of color blindness; because the most common form is red/green color

blindness, our project will focus on this type.

Human eyes have photoreceptors on the retina: color detectors called cones. Each cone

contains a type of opsin protein, and each protein responds to different wavelengths of light. S-

opsin is sensitive at short wavelengths (blue, ~430 nm), M-opsin at medium wavelengths (green,

~530 nm), and L-opsin at long wavelengths (red, ~560 nm) [3]. When the energy carried by light

transfers to cones, the opsin protein changes shape, sending signals to the brain. Red/green

colorblindness is caused by defects in M-opsin, shifting its sensitivity closer to L-opsin.

Therefore, the brain receives signals from both M-opsin and L-opsin when viewing certain colors

instead of just red or green, see Fig.1.

Figure 1: Color cone comparison between normal vision and red/green colorblindness
Source: Enchroma.Com, https://enchroma.com/pages/what-is-color-blindness

6

Hence, one solution to the problem of simultaneous activation of two different color

cones is to filter out the wavelengths that the cones cannot differentially respond to by adding

optical filters, which control the transmittance of the light at certain wavelengths. Thus, the brain

will not be confused by two signals and only produce one color at a time. See Fig. 2. These

wavelengths correspond mostly to the yellow to yellow-green portion of the spectrum.

1.2 Objective of the Research

Opposite of colorblind correcting glasses, in this project we assumed that if we used

filters to block out the wavelengths that M-opsin and L-opsin can distinctly respond to, leaving

only the wavelengths that confused the brain when seeing red or green together, a person with

healthy color vision would perceive the world as a red/green colorblind person does. In short,

we aimed to create classes that simulate red/green colorblindness in a user with normal

vision. By doing so, we hoped to create greater empathy for colorblind individuals and to assist

in creating a more colorblind- environment.

Figure 2: The black line is the transmittance spectrum of colorblind correcting lenses created

by Dr. McPherson
Source: H. S. Fairman, M. H. Brill, and H. Hemmendinger, “How the CIE 1931 color-matching functions were

derived from Wright-Guild data,” Color Res. Appl. 22(1), 11–23 (1997).

7

Chapter 2: Methods

In this chapter we are going to unfold the mechanisms and process of creating a goggle

which cause a normal vision person to become red/green colorblind.

2.1 Dichroic Filters

 2.1.1 Characteristics of Bandstop and Shortpass Filters

Dichroic filters were used because the transmission as a function of wavelength

range could be modulated by the thickness and the layers of coatings. In addition,

tilting the filters changes the position of transmission bands. As light travels through

coatings with different indices, optical interferences occur and phase reflections are

produced [4]. Some resonate constructively, others cancel out destructively; only

certain wavelengths can transmit through while the unwanted wavelengths are

reflected. This was a desirable characteristic for our experiment, since we needed to

tune the filters so that only a narrowband, centered on the the target wavelength

would go through filters [5]. Hence, shortpass filters have a role to play. They allow

shorter wavelengths to transmit through while reflecting all the longer wavelengths.

Contrarily, bandpass filters are designed to allow longer wavelengths to transmit

through and to reflect all the shorter wavelengths.

The extreme angle sensitivity of dichroic filters was a desirable characteristic to

design our goggles. As dichroic filters were tilted away from the normal, the

transmission spectrum is shifted to the shorter wavelengths. The shifted wavelength

𝜆𝜃 could be calculated through following the formula:

 𝝀𝜽 = 𝝀𝟎√𝟏 − (
𝐬𝐢𝐧 𝜽

𝓷𝒆𝒇𝒇
)

𝟐

 (1)

Where 𝜆0 is the unshifted wavelength at normal incidence, 𝜃 is the angle of

incidence and 𝓃ℯ𝒻𝒻 is the effective refractive index inside the filter.

We used a spectrometer to characterize filters we obtained for our project. A

spectrometer is a device to decompose wavelengths of light. In our case, the

intensity of the spectra is converted into counts via an analog-to-digital converter

(ADC). We integrated 100 data points over 50 ms on average. To get accurate

measurements, we first collected the data of ambient light and subtracted the ADC

counts of ambient light for the following four measurements, bandstop with angle of

8

incidence (AOI) of 0, 15, 30, and 45 degrees. AOI alludes to the tilt of the optical

filter with respect to the incident light. Zero AOI is defined from the normal

incidence. In Fig. 3 below, the collected data of light transmission with various AOIs

using the spectrometer are shown. In the next section we will discuss which angle

would capture the best target wavelengths to simulate red-green colorblindness.

2.1.2 Target Wavelength Range

Figure 3: Bandstop filter tilted at different angles (a)AOI at 0 degrees (b) AOI at 15 degrees

(c) AOI at 30 degrees (d) AOI at 45 degrees.

9

To cause color blindness for a person with normal vision, we aimed to block

out the shorter wavelengths M-opsin responded to and the longer wavelengths L-

opsin responds to while still retaining the range 535 nm - 575 nm. M-opsin and L-

opsin were most likely to overlap and be activated simultaneously within this range. A

combination of two optical filters attained the target range:

• Filter 1: A dichroic shortpass filter (570FDS) reduced the

transmittance of the wavelengths that were longer than 570 nm.

• Filter 2: A dichroic bandstop filter (537 FDN) at AIO of 45 degrees cut

off the transmittance wavelengths that were between 440 nm to 540

nm, which reduce most of the transmittance of green and still allow

blue to go through.

 Combining these two filters, we hoped to see the color spectrum shown in Fig. 4, red

and green should turn into a combination of red and green, yellowish brown.

After finding the desirable target wavelength, we used spectrometry to measure

transmittance. We stacked two filters together: the bandpass filter and the shortpass

filter. The bandstop filter was tilted at 45 degrees and the shortpass filter was at

normal incidence. The transmittance of the combined filters is shown in Fig. 5.

Figure 4: Normal and Deuteranopia (also called green-blind) colorblind spectrum
Source: Color-Blindness.Com, https://www.color-blindness.com/deuteranopia-red-green-color-

blindness/

10

The black line shows the range of wavelengths which will transmit through

the filters is centered on 550 nm. Theoretically, the range is the band of wavelengths

for which the brain cannot differentiate red and green colors well; consequently,

people with normal color vision will become red/green colorblind. As we saw the

experimental data line up with our expectation, we saw the probability of achieving

the research’s aim increase.

2.2 Computational Simulation

 Make computer simulation of red/green colorblindness with collected data in python.

 2.2.1 Computational Techniques and Algorithms

To obtain the principal wavelength by converting an RGB image (red, green,

and blue) to HSV (hue, saturation, and value), we followed the formula outlined in

the previous entry. After obtaining that wavelength, we calculated the ratio of L- and

M-cone sensitivities multiplied by the transmission of combined filters at that

wavelength. We reasoned that it might be a decent approximation of the impact of

our filters to ensure that the ratio of R and G (red and green) values were equal to

Figure 5: Target wavelength through combine filters

11

that ratio. That is, if ~550 nm wavelength is supposed to evenly trigger red and

green based on the adjusted sensitivities, we would expect to see an even amount of

R and G. Essentially, we used R, G, and B as proxies of the triggering of L, M, and

S cones, respectively.

Here is the process that results in R/G = L/M without dramatically reducing

brightness of pixel:

1. Create HSV array from RGB array for each pixel

2. Obtain principal wavelength from H of HSV array

3. Calculate L and M cone sensitivity at that wavelength

4. Calculate sqrt(L/M)

5. Average R and G

6. Set R equal to (Average) * sqrt(L/M)

7. Set G equal to (Average) / sqrt(L/M)

Performing this operation on a rainbow, produced better results than we had

initially, though they were still not perfect. Note, for example, the obvious

discontinuity in Fig. 6 below.

 2.2.2 Challenges in Computational Simulation

In the first place, it is a difficult problem, as real-life colors are not

monochromatic, and there is a good amount of biology tied up in how we perceive

colors. Additionally, it is quite difficult to determine how to modify a pixel as if

seen through a filter, which has broadband effects that change the character of image

perceived, when the only information that can possibly be gained about the pixel is

its dominant wavelength. For example, if we looked at a pure red object through our

filter, we would not expect it to be pitch black. Thus, the simple model above would

not work. We determined that the biggest flaw in the way we had been approaching

this program was that we had completely ignored the cones of the eye, L for red, M

for green, and S for blue. It was beyond our scope to make an accurate complex

computer simulation of human eyes; therefore, a clinical experiment was carried out.

 Figure 6: Simulation of color spectrum of anticipated red/green colorblindness

12

2.3 In Clinical Experiment

 2.3.1 Testing Method and Procedure

We invited 17 people from a senior lab class at BYU to participate in the

Ishihara red-green colorblindness test with and without the colorblind goggles we

had created. This test contains colored digits which test takers view in a petri dish of

colored splotches. Normal-visioned people see 74 in Fig 6 (a), while mildly red-

green colorblind people often see 21, and severely colorblind people cannot make

anything out.

 This is the procedure of the clinical test is: first, we had the participant wear

the goggles for a couple minutes, so their brain could adjust to them. Then, we led

the volunteer into a dark room which we administered the test. We darkened the

room to mitigate the effects of ambient light, which would otherwise cause

reflections on the filters and make it harder to see the test through the goggles. We

asked the participants to hold the goggles straight and view the test, shown on a

computer screen, straight-on. Keeping the viewing angle is necessary because the

transmission of the filters changes as a function of the angle of incident light. We

stepped through the twelve images of the selected test and then recorded the

responses of the goggle wearing participants. After taking the test with the goggles,

the participant would take the same test again without the goggles in order to control

for the possibility that some participants would be unable to resolve the numbers

even without the goggles.

Example images from the test are shown in Fig. 6 below. Fig. 6 (a) and (b)

are taken with the same phone camera; the image on the left is direct, and the image

on the right is through our goggles. Finished colorblind goggles are shown in Fig. 7.

Since we stacked two lenses together and the bandpass filter is tilted 45 degrees, the

goggles are shaped like binoculars.

13

Figure 6: Pictures of Ishihara test (a) without goggles on (b) with goggles on

Figure 7: Picture of the final product: colorblindness goggles

Chapter 3: Results and Conclusions

3.1 Experimental Results

 3.1.1 Data Analysis

From the Ishihara test result of 17 volunteers, we found that almost 100% of the

responses indicated the test takers had sever colorblindness while wearing the

colorblindness goggles, see Fig. 8. We had successfully created goggles that tricked the

(a) (b)

14

brain and induced colorblindness in people who were not affected by any color vision

impairments. Even with a small data sample, the test results presented consistent and

strong evidence in support of our conclusion.

 3.1.2 Highlighted Result: Cory

One of the volunteers, Cory, was unaware of his colorblindness until he took the

Ishihara test without the glasses. We found out that he responded to a certain question

incorrectly in the same way (that is, reporting 21 instead of 74) as many participants did

while wearing the glasses. People with normal vision would see 74 in Figure 6 (a) in

chapter 2, while mildly red-green deficiencies often see 21 [6]. Cory’s test result and his

responses reinforced our experiment’s conclusion and proved that the colorblindness

goggles we had created provide the desired result.

3.2 Conclusions

We had proposed that by only letting through the undistinguishable wavelength, the

overlapping area of M-opsin and L-opsin activating wavelengths, people with normal color

vision would experience see a red-green colorblind world. In this paper we showed that by

stacking two dichroic filters, the shortpass filter (570 FDN) and the bandpass filter (537

FDN) at 45 degrees AOI, wavelengths that are between 540 nm to 570 nm would transmit

through. The M-opsin and L- opsin would be activated simultaneously to then simulate

red/green colorblindness. With these glasses, people with normal vision can gain a greater

Figure 8. Ishihara test results (a) Average percent correct across all participants

(b) Percentage of correct responses by each test item

(a) (b)

15

Empathy for those who affected by colorblindness. This also allows engineers to create a

safer and more mindful environment for those with color deficiencies.

16

Bibliography

[1] Enchroma.Com, https://enchroma.com/blogs/beyond-color/interesting-facts-about-color-

blindness

[2] Living with Colour Vision Deficiency, https:/ /www.colourblindawareness.org/colour-

blindness/living-with-colour-vision-deficiency/

[3] Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd edition. Sunderland

(MA): Sinauer Associates; 2001. Cones and Color Vision,

https://www.ncbi.nlm.nih.gov/books/NBK11059/l

[4] What is a Dichroic Filter, https://abrisatechnologies.com/2014/10/what-is-a-dichroic-filter/

[5] Optical Filters | Edmund Optics, https://www.edmundoptics.com/knowledge-

center/application-notes/optics/optical-filters/

[6] 1255 Ishihara 24 Plate Instruction,

http://www.dfisica.ubi.pt/~hgil/p.v.2/Ishihara/Ishihara.24.Plate.Instructions.I.pdf

https://enchroma.com/blogs/beyond-color/interesting-facts-about-color-blindness
https://enchroma.com/blogs/beyond-color/interesting-facts-about-color-blindness
https://www.ncbi.nlm.nih.gov/books/NBK11059/l
https://abrisatechnologies.com/2014/10/what-is-a-dichroic-filter/
https://www.edmundoptics.com/knowledge-center/application-notes/optics/optical-filters/
https://www.edmundoptics.com/knowledge-center/application-notes/optics/optical-filters/

17

Appendix

Computer simulation code

This is a sample Python script.

Press ⌃R to execute it or replace it with your code.

Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.

import numpy as np

import matplotlib.pyplot as plt

https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html

from scipy.interpolate import interp1d

class Optical:

 wavelengths = []

 transmittances = []

 pairing = []

Create list of wavelengths, every ten nm, across visible spectrum

Taking visible spectrum to be 380 to 700 nm

wavelengthArray = np.arange(380, 710, 10).tolist()

For each Optical object

Create a list of transmission percentages

This is done by visual inspection, yuck

Make sure they line up with the correct index of wavelength

shortPass = Optical()

shortPassTransmission = [0.40, 0.75, 0.91, 0.94, 0.93, 0.93, 0.95, 0.93, 0.94, 0.95, 0.93, 0.91, 0.93, 0.94, 0.93, 0.95,

0.96, 0.96, 0.90, 0.70, 0.15, 0.08, 0.03, 0.02, 0.01, 0, 0, 0, 0, 0, 0, 0, 0]

Helps make it easier to not lose your place when looking at graphs

for i in range(0, len(wavelengthArray) - len(shortPassTransmission)):

 wavelengthArray.pop()

merged = tuple(zip(wavelengthArray, shortPassTransmission))

print(merged)

shortPass.wavelengths = wavelengthArray

shortPass.transmittances = shortPassTransmission

shortPass.pairing = tuple(zip(wavelengthArray, shortPassTransmission))

BANDSTOP

bandStop = Optical()

#wavelengthArray = np.arange(380, 710, 10).tolist()

bandStopTransmission = [0.75, 0.82, 0.89, 0.90, 0.90, 0.89, 0.91, 0.91, 0.91, 0.93, 0.85, 0.20, 0.05, 0.03, 0.01, 0.01,

0.01, 0.02, 0.03, 0.10, 0.40, 0.92, 0.94, 0.94, 0.92, 0.91, 0.91, 0.93, 0.93, 0.92, 0.91, 0.91, 0.91]

#Helps make it easier to not lose your place when looking at graphs

for i in range(0, len(wavelengthArray) - len(bandStopTransmission)):

 wavelengthArray.pop()

merged = tuple(zip(wavelengthArray, bandStopTransmission))

print(merged)

18

bandStop.wavelengths = wavelengthArray

bandStop.transmittances = bandStopTransmission

bandStop.pairing = tuple(zip(wavelengthArray, bandStopTransmission))

COMBINED

combinedFilters = Optical()

combinedFilters.wavelengths = wavelengthArray

combinedFilters.transmittances = []

for i in range(0, len(wavelengthArray)):

 combinedFilters.transmittances.append(abs(shortPass.transmittances[i] * bandStop.transmittances[i]))

merged = tuple(zip(combinedFilters.wavelengths, combinedFilters.transmittances))

print(merged)

BANDSTOP 45, angle of incidence

bs45 = Optical()

bs45Transmission = [0.65, 0.75, 0.71, 0.67, 0.62, 0.50, 0.30, 0.18, 0.10, 0.03, 0.02, 0.01, 0.01, 0.01, 0.02, 0.07, 0.60,

0.70, 0.58, 0.70, 0.85, 0.82, 0.83, 0.84, 0.83, 0.82, 0.81, 0.72, 0.61, 0.43, 0.25, 0.15, 0.09]

for i in range(0, len(wavelengthArray) - len(bs45Transmission)):

 wavelengthArray.pop()

merged = tuple(zip(wavelengthArray, bs45Transmission))

print(merged)

bs45.wavelengths = wavelengthArray

bs45.transmittances = bs45Transmission

bs45.pairing = tuple(zip(wavelengthArray, bs45Transmission))

sp0bs45 = Optical()

sp0bs45.wavelengths = wavelengthArray

sp0bs45.transmittances = []

for i in range(0, len(wavelengthArray)):

 sp0bs45.transmittances.append(abs(shortPass.transmittances[i] * bs45.transmittances[i]))

merged = tuple(zip(sp0bs45.wavelengths, sp0bs45.transmittances))

print(merged)

spf = interp1d(shortPass.wavelengths, shortPass.transmittances, kind='cubic')

plt.plot(shortPass.wavelengths, shortPass.transmittances, 'o', shortPass.wavelengths, spf(shortPass.wavelengths), '--')

plt.title("Short Pass at 0 AOI")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Transmission")

plt.show()

bsf = interp1d(bandStop.wavelengths, bandStop.transmittances, kind='cubic')

plt.plot(bandStop.wavelengths, bandStop.transmittances, 'o', bandStop.wavelengths, bsf(bandStop.wavelengths), '--')

plt.title("Band Stop at 0 AOI")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Transmission")

plt.show()

cf = interp1d(combinedFilters.wavelengths, combinedFilters.transmittances, kind='cubic')

plt.plot(combinedFilters.wavelengths, combinedFilters.transmittances, 'o', combinedFilters.wavelengths,

cf(combinedFilters.wavelengths), '--')

19

plt.title("Combined Filters, 0 AOI")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Transmission")

plt.show()

bs45f = interp1d(bs45.wavelengths, bs45.transmittances, kind='cubic')

plt.plot(bs45.wavelengths, bs45.transmittances, 'o', bs45.wavelengths, bs45f(bs45.wavelengths), '--')

plt.title("BandStop at 45 Degrees AOI")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Transmission")

plt.show()

sp0bs45f = interp1d(sp0bs45.wavelengths, sp0bs45.transmittances, kind='cubic')

plt.plot(sp0bs45.wavelengths, sp0bs45.transmittances, 'o', sp0bs45.wavelengths, sp0bs45f(sp0bs45.wavelengths), '--

')

plt.title("Combined Filters, SP 0, BS 45 AOI")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Transmission")

plt.savefig("ShortpassBandstop45")

plt.show()

Now I will make Optical() objects for each of the cones in the eye

In this case "transmittance" is actually sensitivity

Values taken from the graph available at https://en.wikipedia.org/wiki/Spectral_sensitivity

Values are normalized

scone = Optical();

scone.transmittances = []

sconeSensitivities = [0.01, 0.03, 0.06, 0.18, 0.55, 0.85, 1, 0.9, 0.75, 0.45, 0.3, 0.18, 0.12, 0.08, 0.06, 0.03, 0.02, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

To help with inputting values

for i in range(0, len(wavelengthArray) - len(sconeSensitivities)):

 wavelengthArray.pop()

merged = tuple(zip(wavelengthArray, sconeSensitivities))

print(merged)

scone.wavelengths = wavelengthArray;

scone.transmittances = sconeSensitivities

sconef = interp1d(scone.wavelengths, scone.transmittances, kind='cubic')

plt.plot(scone.wavelengths, scone.transmittances, 'o', scone.wavelengths, sconef(scone.wavelengths), '--')

plt.title("S-Cone Sensitivity")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Sensitivity")

plt.savefig("S-Cone")

plt.show()

mcone = Optical();

mcone.transmittances = []

mconeSensitivities = [0, 0, 0.01, 0.02, 0.04, 0.07, 0.09, 0.1, 0.12, 0.16, 0.25, 0.35, 0.55, 0.75, 0.97, 1, 0.98, 0.9, 0.85,

0.75, 0.60, 0.45, 0.35, 0.25, 0.17, 0.09, 0.07, 0.03, 0.02, 0.01, 0, 0, 0]

To help with inputting values

for i in range(0, len(wavelengthArray) - len(mconeSensitivities)):

 wavelengthArray.pop()

20

merged = tuple(zip(wavelengthArray, mconeSensitivities))

print(merged)

mcone.wavelengths = wavelengthArray;

mcone.transmittances = mconeSensitivities

mconef = interp1d(mcone.wavelengths, mcone.transmittances, kind='cubic')

plt.plot(mcone.wavelengths, mcone.transmittances, 'o', mcone.wavelengths, mconef(mcone.wavelengths), '--')

plt.title("M-Cone Sensitivity")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Sensitivity")

plt.savefig("M-Cone")

plt.show()

lcone = Optical();

lcone.transmittances = []

lconeSensitivities = [0, 0, 0, 0, 0, 0.01, 0.02, 0.04, 0.06, 0.1, 0.14, 0.2, 0.3, 0.4, 0.55, 0.7, 0.83, 0.9, 0.99, 0.98, 0.94,

0.89, 0.81, 0.7, 0.6, 0.45, 0.28, 0.17, 0.1, 0.05, 0.02, 0.01, 0]

To help with inputting values

for i in range(0, len(wavelengthArray) - len(lconeSensitivities)):

 wavelengthArray.pop()

merged = tuple(zip(wavelengthArray, lconeSensitivities))

print(merged)

lcone.wavelengths = wavelengthArray;

lcone.transmittances = lconeSensitivities

lconef = interp1d(lcone.wavelengths, lcone.transmittances, kind='cubic')

plt.plot(lcone.wavelengths, lcone.transmittances, 'o', lcone.wavelengths, lconef(lcone.wavelengths), '--')

plt.title("L-Cone Sensitivity")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Sensitivity")

plt.savefig("L-Cone")

plt.show()

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray), 'k--', wavelengthArray, sconef(wavelengthArray), 'b',

wavelengthArray, mconef(wavelengthArray), 'g', wavelengthArray, lconef(wavelengthArray), 'r')

plt.title("Sensitivies by Cone")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Normalized Sensitivity")

plt.legend(['Transmission (BS45)', 'S-Cone', 'M-Cone', 'L-Cone'], loc='best')

plt.savefig("Sens_Transm")

plt.show()

plt.plot(wavelengthArray, sconef(wavelengthArray), 'b', wavelengthArray, mconef(wavelengthArray), 'g',

wavelengthArray, lconef(wavelengthArray), 'r')

plt.title("Sensitivities of the Optical Cones of the Human Eye")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Normalized Sensitivity")

plt.legend(['S-Cone', 'M-Cone', 'L-Cone'], loc='best')

plt.savefig("Sensitivities")

plt.show()

21

plt.plot(wavelengthArray, spf(wavelengthArray), 'b:', wavelengthArray, bs45f(wavelengthArray), 'y--',

wavelengthArray, sp0bs45f(wavelengthArray), 'g-.')

plt.title("Transmission of Chosen Filters")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Sensitivity")

plt.legend(['Shortpass', 'Bandstop at 45 Deg.', 'Combined'], loc='best')

plt.savefig("Transmission_of_filters")

plt.show()

plt.plot(wavelengthArray, sconef(wavelengthArray)*sp0bs45f(wavelengthArray), 'b', wavelengthArray,

mconef(wavelengthArray)*sp0bs45f(wavelengthArray), 'g', wavelengthArray,

lconef(wavelengthArray)*sp0bs45f(wavelengthArray), 'r')

plt.title("Sensitivities x Transmission")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Sensitivity")

plt.legend(['S-Cone', 'M-Cone', 'L-Cone'], loc='best')

plt.savefig("Sens_x_Transm")

plt.show()

import pandas as pd

cols = ['Pixel', 'Wavelength', 'Sum', 'Average']

Ambient light data, subtract off from the average of other experimental

ambientlight = pd.read_csv('ambient-avg100_50ms.csv')

ambientlight.columns = cols

ambientlightf = interp1d(ambientlight['Wavelength'], ambientlight['Average'], kind='cubic')

plt.plot(ambientlight['Wavelength'], ambientlightf(ambientlight['Wavelength']))

plt.title("Ambient Light, No Filters")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

plt.savefig("AmbientLight")

plt.show()

White light, experimental

whitelight = pd.read_csv('whitelight-avg100_50ms.csv')

whitelight.columns = cols

Subtract off ambient light

whitelight['Average'] -= ambientlight['Average']

whitelightf = interp1d(whitelight['Wavelength'], whitelight['Average'], kind='cubic')

plt.plot(whitelight['Wavelength'], whitelightf(whitelight['Wavelength']))

plt.title("Light from Source, No Filters")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

plt.savefig("SourceLight")

plt.show()

#%%

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

bandstopfar_0_45 = pd.read_csv('bandstopfar_0_45.csv')

cols = ['Pixel', 'Wavelength', 'Sum', 'Average']

bandstopfar_0_45.columns = cols

Subtracting ambient light here makes graph blank; goes negative somewhere?

bandstopfar_0_45f = interp1d(bandstopfar_0_45['Wavelength'], bandstopfar_0_45['Average'], kind='cubic')

22

plt.plot(bandstopfar_0_45['Wavelength'], bandstopfar_0_45f(bandstopfar_0_45['Wavelength']))

plt.title("(d) $\u03B8 = 45^\circ$", fontsize = 18)

plt.xlabel("Wavelength (nm)", fontsize = 13)

plt.ylabel("ADC Counts", fontsize = 13)

plt.savefig("BandStopFar_0_45_Exp")

plt.show()

#%%

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import interp1d

bandstopfar_0_0 = pd.read_csv('bandstopfar_0_0.csv')

cols = ['Pixel', 'Wavelength', 'Sum', 'Average']

bandstopfar_0_0.columns = cols

Subtracting ambient light here makes graph blank; goes negative somewhere?

bandstopfar_0_0f = interp1d(bandstopfar_0_0['Wavelength'], bandstopfar_0_0['Average'], kind='cubic')

plt.plot(bandstopfar_0_0['Wavelength'], bandstopfar_0_0f(bandstopfar_0_0['Wavelength']))

plt.title("(a) $\u03B8 = 0^\circ $", fontsize = 18)

plt.xlabel("Wavelength (nm)", fontsize = 13)

plt.ylabel("ADC Counts", fontsize = 13)

plt.savefig("BandStopFar_0_0_Exp")

plt.show()

#%%

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray)*65535, 'k--', wavelengthArray,

whitelightf(wavelengthArray), 'r-')

plt.title("Source Light and Calculated Transmission")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts & Transmission")

plt.legend(['Calculated Transmission (SP0, BS45)', 'Experimental Light'], loc='best')

plt.savefig("ExperimentalLight_CalculatedTransmissionBS45")

plt.show()

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray) * whitelightf(wavelengthArray))

plt.title("Source Light x Calculated Transmission")

plt.xlabel("Wavelength (nm)")

plt.ylabel("Predicted ADC Counts")

plt.savefig("ExperimentalLight_X_CalculatedTransmissionBS45")

plt.show()

plt.plot(wavelengthArray, sp0bs45f(wavelengthArray) * whitelightf(wavelengthArray), 'b--', wavelengthArray,

bandstopfar_0_45f(wavelengthArray), 'k-')

plt.title('Predicted and Experimental Spectrums, SP0 BS45')

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

plt.legend(['Calculated', 'Experimental'], loc='best')

plt.savefig("Experimental0_45_and_CalculatedTransmission")

plt.show()

#%%

Bandstop Filter at 0 Degrees

bandstop0 = pd.read_csv('bandstop_0.csv')

bandstop0.columns = cols

bandstop0f = interp1d(bandstop0['Wavelength'], bandstop0['Average'], kind='cubic')

plt.plot(bandstop0['Wavelength'], bandstop0f(bandstop0['Wavelength']))

plt.title("Bandstop Filter at 0 Degrees")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

23

plt.savefig("Bandstop_0")

plt.show()

#%%

Bandstop Filter at 45 Degrees

bandstop45 = pd.read_csv('bandstop_45.csv')

bandstop45.columns = cols

bandstop45f = interp1d(bandstop45['Wavelength'], bandstop45['Average'], kind='cubic')

plt.plot(bandstop45['Wavelength'], bandstop45f(bandstop45['Wavelength']))

plt.title("Bandstop Filter at 45 Degrees")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

plt.savefig("Bandstop_45")

plt.show()

#%%

bandstopclose_0_0 = pd.read_csv('bandstopclose_0_0.csv')

bandstopclose_0_0.columns = cols

bandstopclose_0_0f = interp1d(bandstopclose_0_0['Wavelength'], bandstopclose_0_0['Average'], kind='cubic')

plt.plot(bandstopclose_0_0['Wavelength'], bandstopclose_0_0f(bandstopclose_0_0['Wavelength']))

plt.title("Both, Bandstop Filter Close, SP0 BS0")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

plt.savefig("BSClose_SP0_BS0")

plt.show()

#%%

bandstopclose_45_0 = pd.read_csv('bandstopclose_45_0.csv')

bandstopclose_45_0.columns = cols

bandstopclose_45_0f = interp1d(bandstopclose_45_0['Wavelength'], bandstopclose_45_0['Average'], kind='cubic')

plt.plot(bandstopclose_45_0['Wavelength'], bandstopclose_45_0f(bandstopclose_45_0['Wavelength']))

plt.title("Both, Bandstop Filter Close, SP0 BS45")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

plt.savefig("BSClose_SP0_BS45")

plt.show()

#%%

bandstopfar_0_30 = pd.read_csv('bandstopfar_0_30.csv')

bandstopfar_0_30.columns = cols

Subtracting ambient light here makes graph blank; goes negative somewhere?

bandstopfar_0_30f = interp1d(bandstopfar_0_30['Wavelength'], bandstopfar_0_30['Average'], kind='cubic')

plt.plot(bandstopfar_0_30['Wavelength'], bandstopfar_0_30f(bandstopfar_0_30['Wavelength']))

plt.title("(c) $\u03B8 = 30^\circ$", fontsize = 18)

plt.xlabel("Wavelength (nm)", fontsize = 13)

plt.ylabel("ADC Counts", fontsize = 13)

plt.savefig("BandStopFar_0_30_Exp")

plt.show()

#%%

bandstopfar_0_15 = pd.read_csv('bandstopfar_0_15.csv')

bandstopfar_0_15.columns = cols

Subtracting ambient light here makes graph blank; goes negative somewhere?

bandstopfar_0_15f = interp1d(bandstopfar_0_15['Wavelength'], bandstopfar_0_15['Average'], kind='cubic')

plt.plot(bandstopfar_0_15['Wavelength'], bandstopfar_0_15f(bandstopfar_0_15['Wavelength']))

plt.title("(b) $\u03B8 = 15^\circ$", fontsize = 18)

plt.xlabel("Wavelength (nm)", fontsize = 13)

plt.ylabel("ADC Counts", fontsize = 13)

plt.savefig("BandStopFar_0_15_Exp")

plt.show()

#%%

24

shortpassonly = pd.read_csv('shortpassonly.csv')

shortpassonly.columns = cols

Subtracting ambient light here makes graph blank; goes negative somewhere?

shortpassonlyf = interp1d(shortpassonly['Wavelength'], shortpassonly['Average'], kind='cubic')

plt.plot(shortpassonly['Wavelength'], shortpassonlyf(bandstopfar_0_15['Wavelength']))

plt.title("Shortpass Filter")

plt.xlabel("Wavelength (nm)")

plt.ylabel("ADC Counts")

plt.savefig("Shortpass Only")

plt.show()

#%%

wavelengthArray = np.arange(380, 710, 10).tolist()

White light, experimental

whitelight = pd.read_csv('whitelight-avg100_50ms.csv')

whitelight.columns = cols

Subtract off ambient light

whitelight['Average'] -= ambientlight['Average']

whitelightf = interp1d(whitelight['Wavelength'], whitelight['Average'], kind='cubic')

plt.plot(wavelengthArray, whitelightf(wavelengthArray), 'r--', wavelengthArray, bandstop45f(wavelengthArray), 'g-

-', wavelengthArray, shortpassonlyf(wavelengthArray), 'b--', wavelengthArray,

bandstopfar_0_45f(wavelengthArray), 'k')

plt.title('Filters Independent and Combined')

plt.xlabel("Wavelength (nm)")

plt.ylabel('ADC Counts')

plt.legend(['Source Light', 'BS45', 'SP0', 'SP0BS45'], loc='best')

plt.savefig("FiltersSep&Combined")

plt.show()

#%%

Plot actual transmission of combined filters at 45

This can be done by dividing the amount of the light with filters by the light with no filters

plt.plot(wavelengthArray, bandstopfar_0_45f(wavelengthArray)/whitelightf(wavelengthArray))

plt.title("Experimentally Determined Transmission by Wavelength")

plt.xlabel("Wavelength (nm)")

plt.ylabel('Transmission')

plt.savefig("ExperimentalTransmissionWRONG")

plt.show()

#%%

from skimage import data

from skimage import io

from skimage.color import rgb2hsv, hsv2rgb

changed

 rgb_img = data.coffee()

 rgb_img = io.imread("rainbow_squares.jpg")

hsv_img = rgb2hsv(rgb_img)

hue_img = hsv_img[:, :, 0]

value_img = hsv_img[:, :, 2]

fig, (ax0, ax1, ax2, ax3) = plt.subplots(ncols=4, figsize=(8, 2))

25

ax0.imshow(rgb_img)

ax0.set_title("RGB image")

ax0.axis('off')

ax1.imshow(hue_img, cmap='hsv')

ax1.set_title("Hue channel")

ax1.axis('off')

ax2.imshow(value_img)

ax2.set_title("Value channel")

ax2.axis('off')

new_rgb_img = hsv2rgb(hsv_img)

ax3.imshow(new_rgb_img)

ax3.set_title("HSV to RGB")

ax3.axis('off')

fig.tight_layout()

fig.savefig("Original")

fig.show()

rainbow = io.imread("rainbow_squares.jpg")

hsv_rainbow = rgb2hsv(rainbow)

hue_rainbow = hsv_rainbow[:, :, 0]

value_rainbow = hsv_rainbow[:, :, 2]

fig, (ax0, ax1, ax2, ax3) = plt.subplots(ncols=4, figsize=(8, 2))

ax0.imshow(rainbow)

ax0.set_title("RGB Rainbow")

ax0.axis('off')

ax1.imshow(hue_rainbow, cmap='hsv')

ax1.set_title("Hue channel")

ax1.axis('off')

ax2.imshow(value_rainbow)

ax2.set_title("Value channel")

ax2.axis('off')

Get wavelength from hue?

https://stackoverflow.com/questions/11850105/hue-to-wavelength-mapping

wavelengths_from_image = ((650 - 250) / 270) * hue_img

print(wavelengths_from_image)

JUST TESTING IMPACT

V is the 2 column

Setting all values to 0 makes whole image black

Gets darker as you multiply by numbers less than 1

hsv_rainbow[:, :, 2] = 1 * hsv_rainbow[:, :, 2]

JUST TESTING IMPACT

S is the 1 column

Setting s to 0 and changing nothing else makes the image grayscale

hsv_rainbow[:, :, 1] = 0.1 * hsv_rainbow[:, :, 1]

26

JUST TESTING IMPACT

H is the 1 column

Setting h to 0 and changing nothing else makes the image all red

Multiplying by 0.5 changes colors, as you'd expect

hsv_rainbow[:, :, 0] = 0.5 * hsv_rainbow[:, :, 0]

So!

Go through the entire array, get wavelength of pixel (first two indices)

by using the hue value (a 0 in the third index)

Knowing the wavelength, do different things to different SV values at

that pixel according to the transmission spectrum

Namely,

get transmission by hue!

should save some work inside loops

maxhue = 270 # was 270, changed to 360

wavelengthrange = 250 # was 250, changed to 320

maxwavelength = 650 # was 650, changed to 700

hueArray = list(map(lambda x: (x / ((maxwavelength - wavelengthrange) / maxhue)), wavelengthArray))

hueArray = list(map(lambda x: (x - maxwavelength) * (-1)*(maxhue / wavelengthrange), wavelengthArray))

sp0bs45f() is function for calculated transmission by wavelength

hueTransmission = sp0bs45f(wavelengthArray) * hueArray / maxhue

hueTransmissionf = interp1d(hueArray, hueTransmission, kind='cubic')

rows = hsv_rainbow.shape[0]

columns = hsv_rainbow.shape[1]

print(rows)

print(columns)

print("Entering modification loop!")

for i in range(0, rows):

print(str(i))

for j in range(0, columns):

TODO make the alterations more sophisticated, at the moment just attenuates

Modify saturation

print("Hue: " + str(270 * hsv_rainbow[i, j, 0]))

print("Transmission: " + str(hueTransmissionf(270 * hsv_rainbow[i, j, 0])))

hsv_rainbow[i, j, 1] = hsv_rainbow[i, j, 1] * (hueTransmissionf(maxhue * (1 - hsv_rainbow[i, j, 0])))

Modify value

hsv_rainbow[i, j, 2] = hsv_rainbow[i, j, 2] * (hueTransmissionf(maxhue * (hsv_rainbow[i, j, 0])))

hsv_rainbow[i, j, 0] = 0 # Make everything red to test

Wavelength of that pixel?:

Thought process:

The less transmission in a given hue, the more grayscale it should be

Reducing V makes more dark

Reducing S makes more grayscale

#new 2 was with 1 being inverted, 2 commented out

#new 3 is with 1 being inverted, 2 also inverted

#new 4 is with 1 being inverted, 2 not inverted

27

new_rgb_rainbow = hsv2rgb(hsv_rainbow)

ax3.imshow(new_rgb_rainbow)

ax3.set_title("HSV to RGB")

ax3.axis('off')

fig.tight_layout()

fig.savefig("rainbow_modifyingsaturation_new4")

fig.show()

plt.plot(hueArray, hueTransmissionf(hueArray), '-')

plt.title("Transmission by Hue")

plt.xlabel("Hue")

plt.ylabel("Transmission")

plt.savefig("Transmission by Hue")

ishihara45 = io.imread("ishihara45.jpg")

hsv_ishihara45 = rgb2hsv(ishihara45)

hue_ishihara45 = hsv_ishihara45[:, :, 0]

value_ishihara45 = hsv_ishihara45[:, :, 2]

fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(8, 2))

ax0.imshow(ishihara45)

ax0.set_title("RGB ishihara45")

ax0.axis('off')

rows = hsv_ishihara45.shape[0]

columns = hsv_ishihara45.shape[1]

print("Entering modification loop!")

for i in range(0, rows):

print(str(i))

for j in range(0, columns):

hsv_ishihara45[i, j, 1] = hsv_ishihara45[i, j, 1] * (hueTransmissionf(maxhue * (1 - hsv_ishihara45[i, j, 0])))

Modify value

hsv_rainbow[i, j, 2] = hsv_rainbow[i, j, 2] * (1 - (hueTransmissionf(maxhue * (1 - hsv_rainbow[i, j, 0]))))

new_rgb_ishihara45 = hsv2rgb(hsv_ishihara45)

ax1.imshow(new_rgb_ishihara45)

ax1.set_title("HSV to RGB")

ax1.axis('off')

fig.tight_layout()

fig.savefig("ishihara45modified_2")

fig.show()

This is sensitivity of each cone at various wavelengths multiplied by our filter's transmission

s_new_sensitivity = sconef(wavelengthArray)*sp0bs45f(wavelengthArray)

28

m_new_sensitivity = mconef(wavelengthArray)*sp0bs45f(wavelengthArray)

l_new_sensitivity = lconef(wavelengthArray)*sp0bs45f(wavelengthArray)

rainbow = io.imread("spectrum.jpg")

rgb_rainbow = rainbow

hsv_rainbow = rgb2hsv(rainbow)

hue_rainbow = hsv_rainbow[:, :, 0]

value_rainbow = hsv_rainbow[:, :, 2]

fig, (ax0, ax1) = plt.subplots(nrows=2, figsize=(8, 2))

ax0.imshow(rgb_rainbow)

ax0.set_title("RGB Rainbow Before")

ax0.axis('off')

rows = hsv_rainbow.shape[0]

columns = hsv_rainbow.shape[1]

print(rows)

print(columns)

print("Entering modification loop!")

Maybe I could do this faster with a map?

for i in range(0, rows):

print(str(i))

for j in range(0, columns):

Get dominant wavelength from the hue

pixel_dominant_wavelength = maxwavelength - ((wavelengthrange / maxhue) * maxhue * hsv_rainbow[i, j,

0])

Get sensitivities of cones at that wavelength

s_sensitivity = sconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength)

m_sensitivity = mconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength)

l_sensitivity = lconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength)

print("New Pixel, Hue: " + str(hsv_rainbow[i, j, 0]) + ", Wavelength: " + str(pixel_dominant_wavelength))

print(str(rgb_rainbow[i, j, 0]) + " * " + str(l_sensitivity))

print(str(rgb_rainbow[i, j, 1]) + " * " + str(m_sensitivity))

print(str(rgb_rainbow[i, j, 2]) + " * " + str(s_sensitivity))

I want the ratio R / G = L_Sens / M_Sens for given pixel

I also want the ratio G / B = M_Sens / S_Sens for given pixel

First I will try this using G as reference and modifying the others

That didn't work because divide by zero

Try average

R = G * L_Sens / M_Sens

B = G * S_Sens / M_Sens

r_g_ave = (rgb_rainbow[i, j, 0] + rgb_rainbow[i, j, 1]) / 2

r_g_b_ave = (1/3)*(rgb_rainbow[i, j, 0] + rgb_rainbow[i, j, 1] + rgb_rainbow[i, j, 2])

print("HERE")

print((l_sensitivity / m_sensitivity))

l_over_m_sens_sqrt = np.sqrt(abs(l_sensitivity / m_sensitivity))

Modify blue after obtaining green

rgb_rainbow[i, j, 0] = r_g_ave * l_over_m_sens_sqrt

rgb_rainbow[i, j, 1] = r_g_ave / l_over_m_sens_sqrt

rgb_rainbow[i, j, 2] = rgb_rainbow[i, j, 1] * (s_sensitivity / m_sensitivity)

print(rgb_rainbow[i, j, 0] / rgb_rainbow[i, j, 1])

this_g = rgb_rainbow[i, j, 1]

29

rgb_rainbow[i, j, 0] = this_g * (l_sensitivity / m_sensitivity)

rgb_rainbow[i, j, 2] = this_g * (s_sensitivity / m_sensitivity)

Modify rgb_rainbow

0th index is red, 1st is green, 2nd is blue

rgb_rainbow[i, j, 0] = rgb_rainbow[i, j, 0] * l_sensitivity + 75

rgb_rainbow[i, j, 1] = rgb_rainbow[i, j, 1] * m_sensitivity + 75

rgb_rainbow[i, j, 2] = rgb_rainbow[i, j, 2] * s_sensitivity + 75

ax1.imshow(rgb_rainbow)

ax1.set_title("AfterModifying")

ax1.axis('off')

fig.tight_layout()

fig.savefig("Spectrum_Approach3_RealVals_averagingmodifyingrgb")

fig.show()

ishihara45 = io.imread("ishihara45.jpg")

hsv_ishihara45 = rgb2hsv(ishihara45)

fig, (ax0, ax1) = plt.subplots(nrows=2, figsize=(8, 2))

ax0.imshow(ishihara45)

ax0.set_title("RGB ishihara45")

ax0.axis('off')

rows = hsv_ishihara45.shape[0]

columns = hsv_ishihara45.shape[1]

print("Entering modification loop!")

for i in range(0, rows):

 print(str(i))

 for j in range(0, columns):

 pixel_dominant_wavelength = maxwavelength - ((wavelengthrange / maxhue) * maxhue * hsv_ishihara45[i, j,

0])

 r_g_ave = (ishihara45[i, j, 0] + ishihara45[i, j, 1]) / 2

 s_sensitivity = sconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength)

 m_sensitivity = mconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength)

 l_sensitivity = lconef(pixel_dominant_wavelength) * sp0bs45f(pixel_dominant_wavelength)

 r_g_ave = (ishihara45[i, j, 0] + ishihara45[i, j, 1]) / 2

 l_over_m_sens_sqrt = np.sqrt(abs(l_sensitivity / m_sensitivity))

 ishihara45[i, j, 0] = r_g_ave * l_over_m_sens_sqrt

 ishihara45[i, j, 1] = r_g_ave / l_over_m_sens_sqrt

ax1.imshow(ishihara45)

ax1.set_title("After Changing R and G")

ax1.axis('off')

fig.tight_layout()

fig.savefig("Ishihara45_App3_RG_ForumVals")

fig.show()

