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ABSTRACT

Asymptotic and Bayesian Approaches to Uncertainty Quantification
of Interatomic Models

Kinamo Williams
Department of Physics and Astronomy, BYU

Bachelor of Science

Interatomic models (IMs) are used in molecular modeling to predict material properties of
interest. The development of an IM can take several months to years and relies on expert intuition,
and yet these potentials are usually only valid for a particular application of interest. Extending
existing IMs to new applications is an active area of research. Quantifying the uncertainty of an
IM can tell us how much we can trust the predictions it makes. I discuss here two methods for
analyzing uncertainty: Fisher Information Matrix (FIM) and Markov Chain Monte Carlo (MCMC).
Using MCMC methods, I sample from the posterior distribution of the parameters when trained
on data. I demonstrate this method on Lennard-Jones and Morse potentials fit to triclinic crystal
configurations from the OpenKIM database. In particular, IMs are often sloppy, i.e., have likelihood
surfaces with long, narrow canyons and broad, flat plateaus. I will be comparing the benefits and
drawbacks of the two methods.

Keywords: Interatomic Models, Fisher Information Matrix, Uncertainty Quantification, Markov
Chain Monte Carlo, Bayesian Analysis
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Chapter 1

Introduction

1.1 Interatomic Models

Interatomic models (IMs) are used widely in material modeling and simulations to predict material

properties. These properties may include total energy, forces, lattice constants, and/or elastic

constants. Many IMs were designed for specific conditions and applications. The development

of a single IM can take anywhere from a few months to a couple of years and relies on expert

intuition, yet these potentials are usually only valid for a particular application of interest. Extending

existing IMs to new applications is an active area of research. An important question comes up

as we consider extending these IMs to new applications: how much can we trust the predictions

of the IMs for applications that they were not originally designed for? This is where the field of

uncertainty quantification comes into play, which is the subject of my thesis.

An interatomic model is a function that approximates the potential energy of the nuclei of a

collection of atoms based on their positions. Usually an IM is a function of ri j where ri j represents

the distance between two atoms. However, as we will see with Stillinger-Weber in Eq. 2.13, more

complicated IMs, including those used on tests with more than one element, can be a function of

1



2 Chapter 1 Introduction

more than just ri j. For example, Eq. 2.13 is the 3-body term that is a function of ri j, rik and the

bond angle between the i− j and i− k bonds.

The way these IMs and tests work together is that the atomic configuration and the interatomic

model are brought together to give energy and forces which then undergo simulation to give

predictions. The IM evaluates the energy and forces for a given r; r is based on the atomic

configuration. The test contains the atomic configuration and simulation. For these research project,

we take IMs and tests from the OpenKIM database, which is an interatomic potential repository.

OpenKIM provides a framework for IMs and tests to work together. Together, the test and IM is the

model.

1.2 Uncertainty Quantification

There are two ways to represent models geometrically: the model manifold in data space and the

cost contour in parameter space. We represent models by taking a point in parameter space (this

point is a specific combination of all parameters) and map it onto a point in prediction space using

the model.

If we take the set of all possible parameter values, we can use the model to map them onto the

model manifold in prediction space, i.e. the set of allowed model predictions. The uncertainty in

the parameters transfers onto the model predictions. We use cost and sloppiness to determine the

uncertainty of the parameters.

1.2.1 Cost

We define a cost function which tells us how far from the data is from the predictions. In our

research, it is normally given by,

C(θ) =
1
2 ∑

m

(
ym− ym(θ)

σm

)2

. (1.1)
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In this equation, θ is the parameter that is being evaluated (IMs have multiple parameters), m is the

index of the data, ym is the actually data, ym(θ) is the predictions from the model, and σm is the

inverse weights. The weights, which we took to be 10% of the data, tells us how much each data

point contributes to the cost. The cost function can also be written as

C(θ) =
1
2 ∑

m
r2

m(θ), (1.2)

where rm is the residuals defined by as

rm(θ) =
ym− y(θ)

σm
. (1.3)

The cost quantifies uncertainty in parameters which derives from the uncertainty in the original

data. We then propagate that uncertainty to new predictions. The cost function has a probabilistic

interpretation as the negative log-likelihood,

P(y|θ)∼ exp(−C(θ)) . (1.4)

For a model with two parameters, we can plot the cost contour directly where the different

colors correspond to different costs, see Figure 1.1. Low cost translates to lower uncertainty. We

can propagate uncertainty in the original data to the cost contour which can be used to propagate the

uncertainty to a new model and its predictions. (For our research, this new model has the same IM

but a different test, meaning a different set of data points ym.) Propagating the uncertainty from the

cost contour to the new model is straightforward, but mapping the uncertainty to the cost contour is

more complicated. For models with more than two parameters, it is not possible to plot the cost

contour directly in respect to all the parameters simultaneously. Thus, we need other methods to get

information about the cost contour.

1.2.2 Sloppiness

Sloppiness is a common property of IMs; this complicates uncertainty quantification. When a model

is sloppy, a large change in certain parameter combinations, known as sloppy parameters, leads to
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Figure 1.1 Cost contour plot of the Lennard-Jones potential.

only small changes in predictions. For a sloppy model, some parameters may be sloppy while other

parameters may be stiff. A stiff parameter is the opposite of a sloppy parameter; for a stiff parameter,

a small change in the parameter leads to large changes in the predictions. Additionally, with many

models, its not just one or two parameters that are sloppy; there may be many combinations of

parameters that are sloppy.

My thesis will focus on two different approaches to uncertainty quantification: the asymptotic

approach and the Bayesian approach. The asymptotic approach uses the Fisher Information Matrix

(FIM) and the Bayesian approach samples from the Bayesian posterior using Markov Chain Monte

Carlo (MCMC) techinques. These methods will give us information about the cost contour which is

impossible to plot for IMs with more than 2 parameters. These techniques, along with the IMs and

tests that we used, will be discussed in the next section.



Chapter 2

Methods

In this chapter, I will be discussing the methods we used for uncertainty quantification and the IMs

and tests that we applied these methods on. The methods we used were the Fisher Information

Matrix and Bayesian analysis. The three IMs are Lennard-Jones, Morse, and Stillinger-Weber; the

tests corresponding to each IM will also be explained. Lennard-Jones and Morse use a Triclinic

PBC energy and forces test while Stillinger-Weber uses a test for monolayer MoS2.

2.1 Fisher Information Matrix

The first method we use to analyze the uncertainty of an IM is the Fisher Information Matrix (FIM).

FIM is calculated by using the Jacobian around the point of interest, usually the best fit. For our FIM

analysis, we calculated the Jacobian at the default parameter values. For the local neighborhood

around the best fit, we linearize the residuals, from Eq. 1.3:

rm(θ)≈ rm(θ
∗)+

∂ rm

∂θ
(θ −θ

∗). (2.1)

The derivative of the residuals with respect to the parameters is given by the Jacobian matrix,

Jmµ = ∂µrm =
∂ rm

∂θµ

, (2.2)

5



6 Chapter 2 Methods

where µ and m are indices of the Jacobian matrix. The Jacobian matrix contains information about

the sensitivity of each prediction to the change in each parameter.

FIM is especially useful for determining the sloppiness of a model. The sloppiness of a model

can be quantified by analyzing the quadratic approximation of the cost around the best-fit parameters.

The coefficient of the quadratic term of the approximation is given by the matrix of the second

derivative of the cost, called the Hessian matrix Hµν [1], where µ and ν are indices of the matrix.

In terms of the residuals, the Hessian matrix is given by

Hµν = ∂µ∂νC

= ∑
m

∂µrm∂νrm +∑
m

rm∂µ∂νrm

≈∑
m

∂µrm∂νrm,

(2.3)

assuming that the residuals around the best-fit parameters are small.

Thus, the approximation of the Hessian matrix can be written in terms of the Jacobian matrix as

Hµν = Iµν =
(
JT J
)

µν
, (2.4)

where I is the Fisher Information Matrix. To understand how the FIM is related to the model

manifold locally, consider the singular value decomposition of the Jacobian,

J =UΣV T , (2.5)

where U is an M×N matrix, Σ is an N×N postive diagonal matrix, and V is an N×N unitary

matrix, satisfying V TV =VV T = 1. After substituting this singular value decomposition into Eq.
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2.4, the FIM can then be written as

I =V Σ
2V T ,

I =V Σ
′UU ′ΣV ′ =V Σ

2V ′,

with V =

[
−→v1

−→v2 . . . −→vn

]

and Σ
2 =



σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
... . . . ...

0 0 . . . σ2
n


=



λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...

0 0 . . . λn


.

(2.6)

In this equation, {λi}n
i=1 and {σi}n

i=1 are the eigenvalues of the FIM and the singular values

of the Jacobian, respectively. The eigenvalues of the FIM and the singular values of the Jacobian

are related by σi =
√

λi. V is a unitary matrix constructed from the orthonormal eigenvectors of I.

Eq. (2.6) is a very useful form to express the FIM. This equation shows how a unit ball around a

point in the parameter space is mapped onto an ellipsoid in the prediction space, see Figure 2.1. The

orientation of the ellipsoid is described by matrix V , which consists of the eigenvectors of the FIM,

with the semi-major axis of the ellipsoid is aligned with the first eigenvector, ~v1, corresponding

to the largest eigenvalue, λ1. The ratio of the length of the semi-major axis to the length of the

semi-minor axis is proportional to the ratio of the largest eigenvalue to the smallest eigenvalue of I

(see Figure 2.1).

We can get even more information about the local geometry of the cost contour around the best

fit point as shown by Figure 2.2. The eigenvectors and eigenvalues tell us the shape and direction of

the cost contour around the point of interest in parameter space.
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Figure 2.1 Unit ball in parameter space mapped onto an ellipsoid in prediction space. FIM
tells us how the unit ball in parameter space is mapped onto an ellipsoid in the prediction
space. The unit ball is stretched and compressed in the direction along the eigenvectors of
FIM with magnitude of compression proportional to the eigenvalues of the FIM.

2.2 Bayesian analysis

Another common approach to uncertainty quantification in parameter space is using a Bayesian

framework. In Bayesian statistics, the parameter uncertainty is described by a posterior distribution

given by Bayes’ theorem.

P(θ |y) ∝ L(θ |y) ·π (θ) , (2.7)

where L(θ |y) and π (θ) are the likelihood and the prior distribution of the model’s parameters,

respectively [2, 3].

Additionally,

L(θ |y) ∝ exp(−C(θ)/T ), (2.8)

where T is a "sampling temperature" as in [4]. The cost is analogous to the internal energy of a

system, so low temperature distributions are concentrated near the low-energy (i.e., low cost) region

of parameter space. Formally, the temperature uniformly scales the tolerances σm in Eq. (1.3).
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Figure 2.2 Geometry of the Fisher Information Matrix (FIM). I is the FIM and λ is
the eigenvalue of I with~v being the corresponding eigenvector. I−1 is the inverse FIM.
These quantities tell us the shape and direction of the cost contour around the point of
interest in parameter space. ~v tells us the direction of the cost contour while λ tells us the
corresponding length. The conditional variance is 1 over the square root of the diagonal of
I which tells us how the cost contour changes by varying one parameter and holding the
others fixed. The first diagonal element corresponds to θ1, parameter 1, and so on. The
variance of θ1 is given by the square root of the first diagonal of the inverse FIM.
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By sampling at multiple temperatures, we can easily assess how the choice of σm affects any

conclusions we draw from the distribution.

The likelihood is functionally the same as the probability distribution, L(θ |y) = P(y|θ), so Eq.

2.7 could be rewritten as,

P(θ |y) ∝ P(y|θ) ·π (θ) . (2.9)

Here, θ represents the parameter, and y represents the data. The posterior distribution, P(θ |y), repre-

sents the probability of getting a certain parameter given the data. The likelihood, L(θ |y) or P(y|θ),

is the probability of getting that data given that the certain parameter is chosen. The prior, π (θ), is

the probability of getting a certain parameter out of all possible parameters; as discussed later on in

this paper, the choice of prior has important ramifications on the MCMC calculation.

Markov Chain Monte Carlo (MCMC) is an algorithm that is used to sample from the posterior.

As one may expect, running MCMC depends on defining the posterior that the MCMC calculation

will be sampling. Defining the posterior distribution requires making some nontrivial decisions that

can affect the outcome of the calculations. These decisions include using bare parameters vs log

parameters, the choice of prior, and the effect of temperature, described by Eq. 2.8.

The first decision, deciding whether to use bare parameters (parameters in normal scale) or log

parameters (parameters in log scale), is significant because it affects the prior probability density

of the parameters. For example, a parameter that is close to one would have a higher chance of

being selected in log scale compared to a parameter that has a number that is much bigger than

one. Additionally, parameters that are negative cannot be represented at all in log scale—though a

solution could be to first take the absolute value of each parameter before converting to log scale.

The choice of prior, π(θ), is another important decision that affects the probability of parameters.

The problem is that there is no simple way to choose a good prior. We choose to use a flat prior

for all of our calculations; a flat prior means that all parameters within specified boundaries are

equally likely to be chosen while parameters outside of those boundaries are rejected. Using a flat
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prior simplifies the process of choosing a prior, but it still requires making a good decision on the

boundaries. Choosing too small of a range can lead to inaccurate results, but choosing too wide a

range can affect speed of convergence.

2.3 Interatomic potentials and tests

We choose three different IMs to illustrate these methods of uncertainty quantification. The first IM

we choose was the Lennard-Jones potential for silicon. The Lennard-Jones potential is a potential

between pairs of atoms; this IM only has two parameters, ε and σ , as seen below:

V (ri j) = 4ε

((
σ

ri j

)12

−
(

σ

ri j

)6
)
+∆,

with ∆ =−4ε

((
σ

rcut

)12

−
(

σ

rcut

)6
)
.

(2.10)

The potential is a function of ri j where ri j is distance between atoms i and j in the configuration.

The parameter ε is an energy scaling factor in the potential, and σ is associated with the equilibrium

distance of the pair interaction. ∆ is chosen so that the potential goes to zero at the cutoff radius,

rcut.

For our chosen test, the default parameter values are ε = 3.17431 eV and σ = 1.9778 Å [5–9].

The test we chose for this potential was Triclinic PBC energy and forces [10]. A triclinic PBC is a

crystal lattice structure similar to a body centered cubic lattice; however, in the triclinic PBC, the 3

side lengths corresponding to the height, width, and depth of the shape are of different lengths so

that the shape is no longer a perfect cube and none of the angles between the sides are a perfect

90°. We use the pair potentials to predict the unrelaxed energy and forces of the atoms of a silicon

system in a body-centered triclinic configuration.

The Morse potential, the second IM we used, is also a pair-wise function but with three
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parameters, ε , C, and r0,

V (ri j) = ε

(
−e−2C(ri j−r0)+2e−C(ri j−r0)

)
+∆,

with ∆ =−ε

(
−e−2C(rcut−r0)+2e−C(rcut−r0)

)
.

(2.11)

Similar to the Lennard-Jones potential, ε is also an energy scaling factor in the potential. The r0

parameter shows the equilibrium distance of the pair interaction; C controls the width of the potential

well. Again, ∆ is chosen so that the potential is zero at the cut-off radius, rcut; we only change the ε ,

r0, and C parameters. The default parameters that we use are ε =−0.4205 eV, C = 1.4199 Å
−1

,

and r0 = 2.78 Å [11–13]. We also used a Triclinic PBC energy and forces test for Morse but used

nickel instead of silicon. We can see a graph of the Lennard-Jones and Morse potentials in Figure

2.3.

The third IM we studied was Stillinger-Weber for monolayer MoS2. This potential contains

both pair-wise interactions and 3-body interactions. The 2-body interaction is

φ2
(
ri j
)
= AIJ

(
BIJ

(
ri j

σIJ

)−pIJ

−
(

ri j

σIJ

)−qIJ
)

exp
(

σIJ

ri j− rcut
IJ

)
, (2.12)

where the uppercase subscripts denote the types of atom, i.e. AIJ is the parameter A corresponding

to interaction between atoms type I and J. The 3-body term is given by

φ3
(
ri j,rik,β jik

)
= λJIK

(
cosβ jik− cosβ

0
JIK
)2

exp
(

γIJ

ri j− rcut
IJ

+
γIK

rik− rcut
IK

)
, (2.13)

with β jik be the bond angle between the i− j and i− k bonds.

We use this potential to predict the forces of the atoms in configurations around the equilibrium

state. More detailed information of the fitting process of this potential are explained in [14].

Following the original paper, we set qIJ = 0 and let γ be the same for all types of interaction.

We apply non-unity weighting factors in our cost function, Eq. 1.1. Since the fitting data are the

forces around the equilibrium state, then we want the magnitudes of the force to be close to zero.

Thus, we put larger weights on the force data that are closer to zero. We achieve this by setting
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Figure 2.3 Comparative graph of the Lennard-Jones and Morse potentials.
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the error tolerance of each prediction to be 10% of the magnitude of the force data acting on the

corresponding atom. Additionally, we allow parameters p’s to take any non-integer, positive value.

We also remove the relation between σ ’s and the equilibrium lattice constants of the system. Thus,

we don’t require the force of each type of interaction to be zero, and we remove the constraint on

parameters B’s. Using these conditions, we consider parameters A, B, p, and σ for each type of

pair-wise interaction (Mo−Mo, Mo−S and S−S interactions). Then for the 3-body interaction,

we consider parameters λ , for S−Mo−S and Mo−S−Mo interactions, and γ . Applying these

conditions and setup gives us a new set of default parameters. The values of these parameters are

listed in Table 2.1 for the two-body interaction term and Table 2.2 for the three-body interaction

term.

Interaction

Parameter Mo-Mo Mo-S S-S

A (eV) 18.4310060 8.83861305 0.37463396

B 0.00641786 1.04793603 561.429270

p 4.73717813 8.26621744 2.66196913

σ(Å) 6.16940454 1.92967991 0.41904814

Table 2.1 Parameters of the 2-body term in the Stillinger-Weber fitted to the MoS2 test.

Parameter Value

λS−Mo−S 4.28784076 eV

λMo−S−Mo 14.4285026 eV

γ 1.53800500 Å

Table 2.2 Parameters of the 3-body term in the Stillinger-Weber fitted to the MoS2 test.
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Results and Conclusions

3.1 Fisher Information Matrix

From the plot of the eigenvectors for Lennard-Jones in Figure 3.1, we can see how the eigenvectors

map onto the cost contour of Lennard-Jones. We plotted the eigenvectors of Lennard-Jones with the

length of the arrow proportional to 1/
√

λ where λ is the corresponding eigenvalue in Figure 3.1.

The longer vector represents the sloppy parameter direction while the shorter arrow represents the

stiff direction. These eigenvectors were plotted against the cost contour zoomed in around the best

fit point (see Figure 3.1). As we can see from Figure 3.1, the eigenvectors for Lennard-Jones show

the direction of the cost contour.

One primary use of FIM is to evaluate the sloppiness of a model. The more parameters a model

has, the more useful this analysis can be. The high eigenvalues represent stiff parameter directions

while low eigenvalues represent sloppy combinations; these parameter combinations are in the

direction of their respective eigenvectors. The eigenvalues are dimensionless.

In Figure 3.2, we can see the eigenvalues plotted for six different IMs and tests. The first three

IMs are the three that we focused our analysis on: Lennard-Jones, Morse, and Stillinger-Weber

15
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Figure 3.1 FIM results for Lennard-Jones plotted along the cost contour. The longer vector
represents the sloppy direction while the short vector represents the stiff direction.
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for MoS2. The last three IMs are included for additional comparison and analysis of this method.

These IMs are three-body bond order, environment dependent interatomic potential (EDIP), and

Stillinger-Weber for a silicon crystal. (Stillinger-Weber for a silicon crystal doesn’t have as many

parameters because it doesn’t have the three-body interaction that the Stillinger-Weber model we

normally use has.) As we can see from Figure 3.2, the more parameters an IM has, the easier it is to

tell which eigenvalues are sloppy and which are stiff. Just looking at Lennard-Jones, the difference

between the highest and the lowest eigenvalues may seem like a lot, but comparing it to the other

IMs with more parameters, it doesn’t seem like a large range. The graph is in log scale to better

compare eigenvalues.

As we can see in Figure 3.2, the eigenvalues can vary greatly in their magnitude. The high

eigenvalues represent stiff parameter directions of the IM in the direction of their respective

eigenvector while the low eigenvalues represent sloppy parameter combinations in the direction of

their respective eigenvectors. However, it is not the actual value of the eigenvalue that matters as

much as the value of the eigenvalue in respect to the other eigenvalues. For example, the highest

eigenvalue for Three-Body Bond Order is lower than the highest eigenvalue for Lennard-Jones or

Morse, but we know that the eigenvalue is in the stiff parameter direction because it is much larger

than any of the other eigenvalues. We included these additional IMs in our dicussion to show how

sloppiness is inherit in IMs; it’s not just the IMs that we choose that are sloppy.

As mentioned above, the eigenvectors along with their respective eigenvalues can give informa-

tion about how a unit sphere or hyper-sphere can be mapped from parameter space to an ellipsoid or

hyper-ellipse in prediction space. The resulting hyper-ellipse is compressed a lot in stiff directions

and stretched a lot in sloppy directions. This leads to large uncertainty, especially in the sloppy

directions. Thus, the low eigenvalues correspond with higher uncertainties.

One major advantage of FIM is that it is fast computationally, especially compared to running a

MCMC calculation. Accordingly, it is recommended that FIM analysis should be the first step in
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Figure 3.2 Eigenvalues from the FIM of a few IMs. The high eigenvalues represent
stiff parameters of the IM in the direction of their respective eigenvectors. The low
eigenvalues represent sloppy parameters in the direction of their respective eigenvectors.
(a) Lennard-Jones, (b) Morse, (c) Stillinger-Weber with MoS2, (d) Three-Body Bond Order,
(e) Environment Dependent Interatomic Potential, (f) Stillinger-Weber for Si crystal.
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analyzing the uncertainty of a model. However, the primary limitation of FIM analysis is that it only

gives information about the cost contour locally, around the point of interest; it does not give any

information about the cost contour globally. This is a result of FIM being a linear approximation.

3.2 Bayesian Posterior

3.2.1 Lennard-Jones

Since Lennard-Jones has only two parameters, we can see the results of the MCMC calculation

plotted directly on top of the cost contour, see Figure 3.3. We can see how the MCMC points,

plotted in black, follow the canyon of lowest cost on the cost contour. (The best fit point is the

default parameters that this model was fitted with.) We can also see how the cost contour stretches

until the end of the graph which is something that we cannot get from FIM alone. Additionally, we

see that Lennard-Jones gets very sloppy as we move along the ε axis. We can see that the global

approach of MCMC gives a better idea of the shape of the cost contour away from the best fit point.

One important choice discussed earlier is the decision to use log parameters vs. bare parameters.

Comparing Figure 3.3 with Figure 3.4, we can see that for bare parameters, there is a greater

concentration of regions with a high cost, i.e. regions that are yellow in the figure, in the cost

contour compared to the cost contour with log parameters. On the other hand, for the cost contour

with log parameters has a greater concentration of regions with lower cost—but not the lowest cost;

these are the blue regions of the figure. Additionally, the bare parameters has a larger region with

the minimum cost. This illustrates how the region that the MCMC calculation is sampling from

depends on the choice of parameterization. As we can see from Figure 3.3 and Figure 3.4, the

resulting MCMC points are different.
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Figure 3.3 MCMC results for Lennard-Jones plotted against the respective cost contour.
The best fit point is the parameter values with the lowest cost.
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Figure 3.4 MCMC results for Lennard-Jones plotted against the respective cost contour in
log scale. The best fit point is the parameter values with the lowest cost.
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3.2.2 Morse

With the Morse potential, we are unable to plot the MCMC results directly against the cost contour

because it has more than two parameters. However, we can see the different parameters plotted

against each other in Figure 3.5. In this figure, we plotted the MCMC sample points onto the two-

dimensional projections of the parameters. We also plotted the histograms for the parameters. By

performing statistical analysis on the histograms, we can analyze the uncertainty of the parameters.

Additionally, since Morse only has three parameters, we can see the MCMC points plotted in three

dimensions in Figure 3.6 along with the projection onto each of the three planes of the parameters.
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Figure 3.5 MCMC results for Morse with histograms. The scatter plot represents the
MCMC sample points projected onto the two dimensional projection of parameters. The
histogram shows the distribution of the sample points for a given parameter.
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Figure 3.6 MCMC results for Morse in three dimensions. The different colors represent
projections onto the planes: green is the projection onto the log(−ε)− log(r0) plane;
blue is the projection onto the log(C)− log(r0) plane; yellow is the projection onto the
log(−ε)− log(C) plane. The black dots represent the MCMC samples in three dimensional
space.
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3.2.3 Stillinger-Weber

We plotted the MCMC results for Stillinger-Weber in Figure 3.7; this plot is a subsection of

the complete figure with all 15 parameters (the complete figure has 120 subgraphs compared

to the 10 subgraphs in Figure 3.7). This subsection was chosen because it illustrates parameter

evaporation. Parameter evaporation is when the MCMC sample points run off to infinity (or reach

the boundaries of the prior, π(θ)). From Figure 3.7, we can see that some parameters evaporate

while others do not. For example, parameters log(BMo−Mo) and log(pMo−Mo) both evaporate in

these graphs; this is shown by how the sample points run off to either one or both boundaries of the

graph. The boundaries of the graph are chosen so that they reflect π(θ). Conversely, parameters

log(σMo−Mo) and log(AMo−Mo) don’t evaporate. The histograms of the parameters also show

parameter evaporation. Histograms that spread out across the range of possible parameters (the

prior, π(θ)) show parameter evaporation, such as the histograms for parameters log(BMo−Mo) and

log(pMo−Mo). Histograms that are more narrow, on the other hand, show parameters that don’t

evaporate, like the histograms for parameters log(σMo−Mo) and log(AMo−Mo).

Parameter evaporation is the result of sloppiness in a model. Parameter evaporation makes

uncertainty quantification difficult because a parameter that evaporates has infinite uncertainty. We

can also see examples of parameter evaporation in the plots for Lennard-Jones and Morse, see

Figures 3.3, 3.4, and 3.5. However, those plots have parameters that only evaporate in one direction.

3.2.4 Advantages and disadvantages

The primary benefit of using a Bayesian analysis to uncertainty quantification of IMs is that it is

a global method. It can be used to see the shape of the cost contour far away from the best fit

point. However, running a MCMC calculation takes a long time due to the difficulty of convergence.

This issue of convergence is partially due to the fact that a Bayesian analysis depends heavily

on the choice of prior, π(θ), and the choice of using bare parameters vs. log parameters. A
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Figure 3.7 MCMC results for Stillinger-Weber with histograms. The scatter plot represents
the MCMC sample points projected onto the two dimensional projection of parameters.
The histogram shows the distribution of the sample points for a given parameter.
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MCMC calculation can show parameter evaporation which can give additional information about

the sloppiness of a model. This issues are the result of the inherent sloppy nature of IMs.

3.3 Conclusion

3.3.1 Summary

The cost contour, given by Eq. 1.1, can give useful information about how the parameters, θ , of

an IM propagate uncertainty. However, the cost contour can’t be plotted directly in respect to all

the parameters simultaneously for IMs with more than two parameters. FIM and Bayesian anlysis

are methods that are useful for extracting information about the cost contour for IMs with a higher

number of parameters.

3.3.2 Future Work and Applications

Sloppiness is a common property of IMs. When a model is sloppy, a large change in certain

parameter combinations, known as sloppy parameters, leads to only small changes in predictions.

Sloppiness makes uncertainty quantification difficult. This is especially true when using a Bayesian

approach to uncertainty quantification. However, there are other methods that can be used for

uncertainty quantification. These methods include likelihood profile and information geometry. Our

future work includes applying these other methods to the same IMs and tests that we have already

looked at and applying FIM and MCMC to new IMs and tests.
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