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ABSTRACT 

Numerical renormalization of divergences for pair-production in QED 

Ethan Gibson 

Department of Physics and Astronomy 

Bachelor of Science 

 

Quantum electrodynamics (QED) is a quantum field theory for electromagnetic interactions. By 

quantizing the electric field, we can analyze the properties of the electromagnetic interactions between 

quantum systems. Historically, QED has been able to predict the behavior of quantum particles with 

unprecedented success. However, the success of QED has relied upon perturbation theory to approximate 

results to a given order of precision. Physicists have largely abandoned analytical, closed form solutions 

to QED due to the problematic mathematical divergences in attempts to resolve systems non-

perturbatively. By using the dressed vacuum as a basis, we may be able to renormalize systems which 

possess Hamiltonians of similar attributes. We use analytical tactics to avoid the divergence, and form a 

basis upon which the Hamiltonian can be normalized for the dressed vacuum, giving hope that we can 

obtain an analytical, closed-form solution for some systems in QED. By doing so, we accomplish an 

analytical, closed-form type of solution to problems within QED. 
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1 INTRODUCTION 

 

In this chapter, we will provide background to quantum field theory, and more specifically quantum 

electrodynamics (QED). We will discuss its successes and its failures, particularly its theoretical 

shortcomings. We will discuss our attempts to overcome these shortcomings with both analytical and 

numerical methods. We will introduce the concept of the dressed vacuum, and how the analysis of it can 

lead us to resolve infrared divergences in QED. 

1.1 INTRODUCTION TO QUANTUM ELECTRODYNAMICS 
 

1.1.1 Motivation for quantum field theories 

 

Quantum field theories (QFTs) developed as a relativistic interpretation to quantum mechanics. In 

essence, it attempted to apply the principles of early quantum mechanics to particles traveling at speeds in 

which special relativity applied. The earliest attempts at a quantum field theory resulted in the Klein-

Gordon equation, which is given by: 

 

2 2 2
2

2 2 2

1
0

m c

c u
  


− + =


 (0.0.1) 

The idea is basically a “second quantization.” The first quantization is that of quantum mechanics, where 

particles become wave functions, whose modulus square describes the probability of locating the particle 

at a given point upon collapse of the wave function. The second quantization involves representing 

physical observables (position, momentum, etc.) as variables, and fields as fundamental operators1. 

Particles can be thought of as excitations of these quantum fields. 
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1.1.2 Quantum Electrodynamics 

 

Quantum electrodynamics (QED) is a quantum field theory revolving around the electric field, and the 

fundamental electromagnetic interactions of quantum particles. QED describes the energy of quantum 

field excitations by assuming a setting where electromagnetism is the only dominant force. As such, we 

will not be considering strong and weak interactions. 

1.2 PROBLEMS WITH (AND SOLUTIONS TO) QED 
 

1.2.1 Infrared Divergence 

 

QED has historically seen much success. Its predictions are some of the most precise in the history of 

physics. However, QED has some theoretical shortcomings. 

The problems with QED have been well-documented since its beginnings. As will be seen hereafter, the 

nature of the QED Hamiltonian leads it to yield divergences, thus disallowing theorists from finding a 

mathematical solution to QED systems using mathematical analysis.  

In order to solve problems in QED, one is forced to resort to perturbation theory, a series of 

approximations to the QED Hamiltonian, in order to find solutions. Despite the aforementioned success 

of these techniques, the absence of an analytical, closed-form solution is a glaring flaw in the theory that 

leads many physicists to believe that QED may be incomplete.  

The type of divergence which we will encounter in this work is known as infrared divergence, or in other 

words, divergence in the low-energy limit. It is characterized by the presence of an unresolvable 

singularity in the denominator, which blows up the value of the integrand as it passes through zero. We 

postulate that through numerical methods, and a number of constraints that will be discussed hereafter, we 

can find a way around these problematic divergences. 
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1.2.2 QED Dressed Vacuum 

 

The basic idea is to extensively and mathematically analyze what we will call the dressed vacuum. 

Consider the following Feynman diagram: 

 

Figure 1.1 The Feynman diagram of the dressed vacuum system 

This diagram represents the dressed vacuum system. The curved line in the middle represents a photon, 

and the straight lines represent an electron-positron pair. All particles are produced as an excitation of the 

electric field, and are thus produced from the vacuum. We will be using the projector method (to be 

described in Chapter Two) to analyze this system, so we will be taking different time slices of this 

Feynman diagram. 

1.2.3 Numerical Renormalization 

 

The idea is to relate the dressed vacuum to other, similar types of excitations. Even though the dressed 

vacuum cannot be normalized due to the divergences that arise in it, if we adjust the parameters, we may 
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just have a chance. We will see that by introducing a new parameter, we can beat the infrared divergence, 

allowing us to normalize the dressed vacuum. We call this process renormalization. The hope is to use the 

normalized dressed vacuum state as a basis where other systems of similar particle excitations can be 

treated as perturbations of the dressed vacuum, and thus renormalized using the basis we will have found. 

With this background in mind, we can begin our analysis of the dressed vacuum. 
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2 THEORETICAL METHODS 

 

In this chapter, we will walk through the analytical methods used to renormalize the dressed vacuum. We 

will introduce definitions of mathematical constructs relevant to the problem at hand. We will address the 

steps taken to solve the problem, then introduce a unitless set of variables. We will introduce the 

mollifier, which will aide us in resolving the infrared divergence. We will arrive at a normalizable 

expression for the QED Hamiltonian, which we may use to numerically renormalize the dressed vacuum. 

2.1 MATHEMATICAL BACKGROUND 
 

 

2.1.1 The Hamiltonian Operator 

 

Classically, Hamiltonian mechanics is a framework in which we can mathematically derive the equations 

of motion for a system using what we call the Hamiltonian of the system. The Hamiltonian is a function 

used to introduce a system of potentially coupled differential equations. In cases where the behavior of 

the pertinent variables of the system is time-independent with respect to the Cartesian plane1, the 

Hamiltonian becomes the total energy of the system as a function of the pertinent variables. 

In quantum mechanics, the Hamiltonian becomes an operator in abstract vector space. The Hamiltonian is 

known as a linear operator, meaning that it can be separated into a sum of its constituent parts. In 

quantum mechanics, the Hamiltonian is the potential energy operator plus the kinetic energy operator 

given by: 

 

2 2
2ˆˆ ˆ ˆ ( ) ( )

2 2

p
H T V V V

m m
= + = + = −  +r r  (0.0.2) 
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Where the potential is a function of the spatial coordinates. The Hamiltonian operator plays a critical role 

in the study of quantum systems, as it is the key to understanding the energy of quantum systems. The 

Hamiltonian is related to energy in the following way: 

 ˆ
nH E =  (0.0.3) 

This is an eigenvalue equation, as the Hamiltonian is operating in Hilbert space on eigenvectors known as 

eigenstates, and the energy is a scalar to be multiplied into the same eigenstates. The energy is therefore 

an eigenvalue of the Hamiltonian. If we can find the eigenvalues of a given Hamiltonian, we may figure 

out the specific “allowed energy” of any quantum system. 

2.1.2 The QED Hamiltonian 

 

In quantum electrodynamics (QED), the Hamiltonian plays as important a role in understanding a system 

as in elementary quantum mechanics. Recall that QED is a quantum field theory, and that a quantum field 

theory describes particles as excitations of a quantum field. The Hamiltonian operator in quantum field 

theory is therefore a tool to understand the excitation of the relevant quantum field. In QED, we quantize 

the electric field, leading to a fully-fledged quantum field theory for the electric field. Much of the work 

of this quantization has previously been investigated in depth. For our purposes, we will draw from 

Photons and Atoms by Claude Cohen-Tannoudji2 for pertinent mathematical results regarding the QED 

Hamiltonian. We will split the linear operator into four separate operators, each of which will represent a 

property of the system. We define the Hamiltonian operator as:  

 D R I CH H H H H= + + +  (0.0.4) 

We will call these terms, respectively: the Dirac term, the radiation term, the interaction term, and the 

Coulomb term. The Dirac term describes the free energy of the massive particles of the system. The 

radiation term describes the free photonic radiation of the system. The interaction term describes the 
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coupling between massive particles and photons in the electric field. Finally, the Coulomb term describes 

the electromagnetic interaction of the particles of the system. The definitions of the respective terms of 

the Hamiltonian are: 

 

( )

 

3 † 2

3 † †

1 1 2 2

3 †

3 3

0

 ( ) ( )

 ( ) ( ) ( ) ( )

 ( ) ( ) ( )

( ) ( )
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H d d





 



⊥

 =  −   

= +

= −   


=

−






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k

r r α r

k k k k k

r r α A r r

r r
r r

r r

 (0.0.5) 

A full explanation of the symbols in this equation will be given hereafter. By solving the eigenvalue 

equation using this definition for the Hamiltonian operator, we can find the allowed energies for our 

quantum system. As discussed in the previous chapter, finding the ground state energy for the dressed 

vacuum will be crucial in our attempts to create a basis for renormalization upon which we can construct 

solutions for other quantum states. 

2.1.3 The Projection method 

 

One last point of mathematical background is the concept of the projector. This technique will allow us to 

extract the information we need out of the Hamiltonian with relative ease. In quantum mechanics, we can 

solve for all potential eigen-states of the Hamiltonian. Much of the time, most of the possible states will 

disappear due to the nature of the system. By using what is known as a projector, we can single out only 

the states that will survive, allowing us to single in on the energies which we wish to find. 

We will define the projector for the dressed vacuum state to be: 

 
† † †: ( ) ( ) ( ) ( ) ( ) ( )p pe e e e e e

P d d d a c d d c a  − + − + + −    
= +   k k k k k k k k k  (0.0.6) 
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The reader will note that we have included a bare vacuum term and an “excited” state. This indicates that 

by taking time slices of the Feynman diagram (Fig. 1.1) for the dressed vacuum, we have a state of bare 

vacuum added with a state involving the production of an electron-positron pair and a photon. 

The main idea is to “sandwich” the Hamiltonian with the projector, which will “spit out” the desired 

energies for the system. This will look like: 

 
( )D R I C

D R I C

P HP P H H H H P

P H P P H P P H P P H P

   

       

= + + +

= + + +
 (0.0.7) 

We can thus project onto each individual component of the Hamiltonian. We will now go into a detailed 

overview of the mathematical methods used in resolving the Hamiltonian. 

2.2 ANALYTIC MATHEMATICAL METHODS 

 

2.2.1 Projection onto one spatial dimension 

An important feature of our theoretical investigation is projecting our system down to one spatial 

dimension. Recall that our Hamiltonian involves mostly integrals over all space in three spatial 

dimensions. For computational ease, we wish to push this down to be a one-dimensional problem. The 

mechanism which we will use to project down is to constrain our system to a “tube” of length L, and 

assume a periodicity in the Hamiltonian in two of the arbitrary orthogonal spatial coordinates (reminiscent 

of a quantum standing wave). For the Dirac term this looks like: 

( ) ( ) ( )
2 22 † † † † ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )D z z z z z z z z z z

m n

H dk mc ck c k c k c k c k d k d k d k d k
+ +

       
=− =−

= + + + +  

 (0.1.1) 
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Where two of our coordinates have been transformed using a Fourier-like double sum to represent the 

periodicity. We will see soon that these sums will disappear due to the commutation relations introduced 

in the simplification.  

Ultimately, the other terms in our Hamiltonian become: 

 

( )† †

1 1 2 2

†

0 0

1

2

2
' '0

†

†

 ( ) ( ) ( ) ( )

( )( ( )) ( )

2 2

( )

( )

( )

( )

R z z z z z z

m n

L L
I

z z

n m n m

T

H dk ck a k a k a k a k

H
dx dy dz r A r r

cq

dk dk
c L

C k

C k

D k

D k



 

+ +

=− =−

+

⊥
−

+ + + +

=− =− =− =−









= +

=   
−

 
=  

 

 
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 
 
 
 
 

  

  

     

†

† †2

†

1

†

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )

( )

j j

j j

j

a k k U k k k U k C k

C ka k k U k k k U k

D kk k
D k

 

 




= 



  −  −  
   + −  −  
 −
   



 (0.1.2) 

We will also be neglecting the Coulomb term in our renormalization procedure, for the sake of simplicity. 

It is an effort that will be worthwhile in the long-term, but unnecessary for our current purposes. With 

these definitions set forth, we are ready to project onto the Hamiltonian. 

2.2.2 The Dirac Term 
 

Let us start with the Dirac term. Recall that the process of projecting onto this term will yield the free 

energy for our massive particles. We begin by left and right-multiplying our projector onto the 

Hamiltonian: 
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( ) ( ) ( )

† † †

2 22 † † † †

† † †

( ) ( ) ( ) ( ) ( ) ( )

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

D p pe e e e e e
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 
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 
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 

 +

  

  
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k k k k k k k k k

k k k k k k k ) ( ) ( )pe
c a + −

 
 

k k

 (0.1.3) 

The reader will note that we will refer to the projected Hamiltonian using the lowercase h. We will spare 

the reader the trouble of wading through the minutia, and ultimately, we arrive at: 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 22

3 3 3 3 3 3 3 3

† † †

 

( ) ( ) ( ) ( ) ( ) ( )

e e e e
m n

e e e e e e e e

p pe e e e

dk dk dk dk dk dk dk mc ck

k k k k k k k k k k k k k k k k

a k c k d k d k c k a k

 

   

 

       

− + − +

+ + − − − − + +

− + + −

+ +

=− =−

   

  = +

      − − − − + − − − −

  

        

 (0.1.4) 

Where we have obtained delta functions from the canonical commutation relations. In quantum field 

theories, two creation and/or annihilation operators follow the following rules for commutation: 

For bosons: 

 
† † †,i j i j j i ija a a a a a   = − =   (0.1.5) 

And for fermions: 

  † † †,i j i j j i ija a a a a a = + =  (0.1.6) 

We will see soon that under a continuous index, the commutation relations produce a Dirac delta function, 

while discrete indices produce the Kronecker delta function. In our case, we have three-dimensional delta 
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functions corresponding to our 3 indices or dimensions of concern. These delta functions are actually the 

mechanism that allows us to constrain the system to one spatial dimension. The three-dimensional delta 

functions above are defined by the following: 

 ( ) ( )3

1, 1,i j m n i jk k k k   −  −  (0.1.7) 

We find that only the m=1 and n=1 terms will survive, and the summations disappear leaving the terms 

inside unaffected. This gives us: 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 22

† † †
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 
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  = +

      − − − − + − − − −

  

      

 (0.1.8) 

The Dirac delta functions collapse the majority of these integrals, leaving us with: 

 
( ) ( ) ( ) ( )

2 22 2
2 2

† † †( ) ( ) ( ) ( ) ( ) ( )

D e e e e

p pe e e e

h dk dk dk mc ck mc ck

a k c k d k d k c k a k



 

− + + −

− + + −   

 
= + + + 

 

  

  
 (0.1.9) 

One may note that this expression makes sense, as we have recovered inside the integrals a relativistic 

expression for free energy corresponding to one electron and one positron. 

2.2.3 The Radiation Term 

 

We will now perform the same procedure for the radiation term. Recall that we expect to recover photon 

energies from this procedure. We have: 
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 (0.1.10) 

The reader will note that the creation and annihilation operators that represent the photons in this equation 

contain an arbitrary polarization state p. This polarization was not of importance in the Dirac term, as all 

photonic terms went to zero. In the radiation term, however, this comes into importance for the 

commutation relations. We will select the polarization of our photonic terms in the projector to be 1 for 

the remainder of our problem. With this in mind, eq. 2.2.10 simplifies to: 

 ( ) ( ) ( ) ( )3 3 3 3
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 (0.1.11) 

As before, the delta functions will collapse the summations and some of the integrals. Thus, the radiation 

term reduces to: 

 
† † †( ) ( ) ( ) ( ) ( ) ( )R p pe e e e e e

h dk dk dk ck a k c k d k d k c k a k   − + − + + −   
=     (0.1.12) 

2.2.4 The Interaction Term 

 

Now we move onto the interaction term of the QED Hamiltonian. Recall that the interaction term 

describes the coupling between massive particles and photons in the electric field. The interaction term 

will essentially “perturb” the energy of the system (we use the word independently of perturbation theory, 

which is a whole branch of study within quantum mechanics). Ultimately, the interaction term has a 

tendency to lower the energy of the system by an amount determined by the interaction term itself. In 
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their work on dressed electron eigen-states3, Scott Glasgow et. al produced the following figure 

displaying how the interaction term pulls down the energy of electron eigen-states: 

 

Figure 1.1: Illustration of effect of the interaction term on dressed electron eigen-states, very much analogous to the problem at 

hand. The red curve illustrates the free energy of the eigen-states independent of the interaction term, while the blue curve 

includes the effect of the interaction term 

This effect of the interaction term on the dressed electron eigenstates is analogous to our investigation on 

the dressed vacuum. The Dirac and radiation terms will pull out eigen-energies of the particles, and the 

interaction term will perturb that total energy downward. We will see this reflected in the sign of the 

interaction term of the Hamiltonian. 

Now that we have more thoroughly established the effect of the interaction term, we are prepared to apply 

our projector. As mentioned in Eq. (2.2.2), the interaction term as constrained to one spatial dimension 

becomes: 
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+ + + +

=− =− =− =−

 

 

= 



 
=  

−  

  −  −  
 

  + −  − 
 

− 
 
 

     


†

( )

( )

k

D k


 
 
 
 
   

 (0.1.13) 
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It is important at this point to introduce some relevant definitions for several of the terms involved in the 

interaction term.  

The  in Eq. (2.2.13) is related to the famous Pauli spin matrices by the following rule: 

 ( ) 2 21 2 3

1 2 3

2 2

0 0 1 0 1 0
, , , ,

0 1 0 0 0 1

x

x

i

i






       



−       
           

−      
 (0.1.14) 

The dot product 
j  in the sum essentially pulls out the relevant spin matrix in the form 

 . For 

example: 

 ( )1

0 0 0 1

0 0 1 0
( )

0 1 0 0

1 0 0 0

k k sign  

 
 
   − =
 
 
 

k  (0.1.15) 

And likewise for the higher-order j terms. The U-matrices are defined as follows: 

 ˆ( ) cos( / 2) sin( / 2)
k k

U k I k  = −   (0.1.16) 

Where 

 

1 0 0 0

0 1 0 0
arctan ,

0 0 1 0

0 0 0 1

k

k

mc
 

 
  
  = 
 − 

   
− 

 (0.1.17) 

Recall that we are constraining this system to one spatial dimension, and our momentum state will be 

constrained to the z-axis. Therefore, we will pass in (0,0, )zk into our U matrix: 
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(0,0, ) (0,0, )

0 0 1 0

0 0 0 1
(0,0, ) cos( / 2) sin( / 2)

1 0 0 0

0 1 0 0

1 0 0 0 0 0 1 0

0 1 0 0 0 0 0 1
cos sin

0 0 1 0 1 0 0 02 2

0 0 0 1 0 1 0 0

cos 0 sin 0
2 2

0 cos
2

z z

z z

z z

z

z k k

k k

k k

k

U k I  

 

 



 
 

− = −
 
 

− 

   
   

−      = −   
      
   

−   

   
−   

   



=

0 sin
2

sin 0 cos 0
2 2

0 sin 0 cos
2 2

z

z z

z z

k

k k

k k



 

 

 
 
 
 

  
 

   
    
 

    
−     

    
    
     

    

 (0.1.18) 

With these definitions in mind, we may apply the projector to the interaction term. We find: 

 

( ) ( ) ( )

( )

1

2

2

0

†

1
4 1 1

1

2

2

0

( )
2 2

( ) ( ) ( )
( ) ( ) ( )

(
2 2

I z z z z z ze e e e

T z z z z

e e

z z

z z z ze e e

h dk dk dk dk dk k k k k k k k
c L

U k k k U k
d k c k a k

k k

dk dk dk dk dk k k k k
c L

 





  
 

 

 
 

− + + −

+ −

− + −

 

 
        = − − − − 

 

  −
  

−

 
 + − − 

 

    

    

e e

( ) ( )

†
† † † 1
1 1 4

)

( ) ( ) ( )
( ) ( ) ( )

z z e

T z z z z

e e

z z

k k k

U k k k U k
a k c k d k

k k







 

+

− + 

− −

  −

 −
e e

 (0.1.19) 
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Where again, we obtain delta functions from the commutation relations for the creation and annihilation 

operators. Using our definitions from before, we can multiply the matrices together with relatively little 

difficulty. This yields: 

 

( )
( )

1

2

2

0

1

1

2

2

0

† † †

1

2 2

( )

( ) ( ) ( )

2 2

( ) ( ) (

I

e

ee e e

e e

e

e e

h
dk dk

qc c L

k kk k k k
sign k C C S S

mc mc mc mc
d k c k k a k

k

dk dk
c L

a k c k k d k







 





 

 

 

+

++ + +

+ +

+

+ +

 

 

 
 =  

−  

   −   −     
   −     

              −


 
+ 
 

−

 

 

( )
( ) ( )

)

e ee e
k k k kk k

sign k C C S S
mc mc mc mc

k

 





+ ++ +
    − −   
    +   

           

 (0.1.20) 

The S and C functions in eq. 2.2.20 are likely unfamiliar notation. They are derived from the cosine and 

sine functions introduced in eq. 2.2.16 and are defined as follows: 

 

( ) ( )

( )( )2 2 2

1 1
sin / 2 1 cos 1 cos arctan

2 2

1 1 1
1 1

2 2
1

z z

z
k k

z
z

z

k

mc

mc

kmc k
mc

k
S

mc

 
   

= − = −   
   

 
   
   = − = −    +   +    

  

 
  

 

 (0.1.21) 
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( ) ( )( )

( )
2 2 2

1 1
cos / 2 1 cos 1 cos arctan

2 2

1 1 1
1 1

2 2
1

z z

z
k k

z
z

z

k

mc

mc

kmc k
mc

k
C

mc

 
   

= + = +   
   

 
   
   = + = +
   + +   

 

 
  

 

 (0.1.22) 

This notation offers us conciseness, and more importantly, a way to create a function whose argument is 

k

mc
. We will later define unitless variables in terms of this quantity. 

2.2.5 Photon “Mass” 

 

We have now found a complete simplified term for the QED Hamiltonian for the dressed vacuum system. 

There is one glaring issue with this. The reader may notice that the interaction term goes as
1

k
. This is 

very problematic, as this integral clearly diverges as the photon momentum approaches zero. Here, 

quantum field theorists historically have turned to perturbation theory to solve the remainder of the 

problem. We, however, seek a more analytical method of solving for these energy states. We will 

therefore use a mathematical trick known as a mollifier. 

The mollifier will be introduced in the denominator of the interaction term, in order to allow for a 

normalizable function. Our addition of the mollifier can be thought of as a photon “mass” term, which we 

will allow to approach zero. Numerically, the mollifier allows us to obtain non-infinite values for the 

interaction term, which we can use as a basis for renormalization. Our transformation will be as follows: 

 ( )
1/4

2 2k k  → +  (0.1.23) 
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Where epsilon acts as our mollifier. We have encoded a virtual “mass” inside epsilon, and in the limit that 

epsilon goes to zero, we have our initial denominator. Our interaction term then becomes: 

 

( )

( )

1

2

2

0

11/ 4
2 2

1

2

2

0

† † †

1

2 2

( ) ( )

( ) ( ) ( )

2 2

( ) ( ) (

I e

e e e e

e e

e

e

h cq dk dk
c L

k k k k k k
sign k C C S S

mc mc mc mc
d k c k k a k

k

cq dk dk
c L

a k c k k d



 



 





 

 



 

+

+ + + +

+ +

+

+

 

 

 
 = −  

 

  − −        
 −        

            −
 +

 
−  

 

−

 

 

( )

( )
1/ 4

2 2

( ) ( )

)

e e e e

e

k k k k k k
sign k C C S S

mc mc mc mc
k

k

 



 

+ + + +

+

 − −        
+        

        

+

 (0.1.24) 

With this in mind, we are now ready to numerically solve the eigenvalue problem for the ground state 

energy of the dressed vacuum. 

2.3 NUMERICAL MATHEMATICAL METHODS 
 

We have found analytical expressions for the QED Hamiltonian in our dressed vacuum system. To be 

able to properly solve it for the allowed energy states, we need to turn to numerical methods to solve for 

the energies. We will ultimately find that the preciseness of our ability to find energies is constrained by 

our insertion of the mollifier. 

2.3.1 Transformation to Unitless Variables 
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We wish to work in purely unitless quantities. Thus, we define the transformations, 

, ,i i
i i i i

k p mc mc
p k dk dp

mc


= = = . We additionally allow 

2

04

q

c



= , which is a unitless quantity. 

We begin with the interaction term of the QED Hamiltonian. When applying the variable transformations, 

we obtain: 

 

( ) ( ) ( ) ( ) ( )( )

( )

2

1
1/ 4

2 2

2

† † †

1

( )

( )

I e

e e e e

e e

e

e e

c mc
h dp dp

L

sign p C p p C p S p S p p mc mc mc
d p c p p a p

mc
p

c mc
dp dp

L

mc mc mc
a p c p p d p



  

 





 







+

+ + + +

+ +

+

+ +

 

 

 
 = −  

 

      − − −      
   −     

     
 +

 
−  

 

     
−    

     

 

 

( ) ( ) ( ) ( ) ( )( )

( )
1/ 4

2 2

e e e e
sign p C p p C p S p S p p

mc
p

  

 

+ + + +− + −



+

 (0.2.1) 

To streamline our notation, we introduce the functions: 

 

( )
( ) ( ) ( ) ( ) ( )( )

( )

( )
( ) ( ) ( ) ( ) ( )( )

( )

1/ 4
2 2

1/ 4
2 2

, :

, :

e e e e

e

e e e e

e

sign p C p p C p S p S p p
g p p

mcL p

sign p C p p C p S p S p p
g p p

mcL p

  





  













+ + + +

+

+ + + +

+

      − − −
   = −

 +

− + −
= −

+

 (0.2.2) 

We additionally define unitless basis vectors: 

 

3/ 2

1, , ( )
e e e e

mc mc mc mc
p p p p d p c p p a p   + + + + 

       
       − = −       

       
 (0.2.3) 
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And likewise for the kets. This leaves our simplified interaction term as: 

 
( )

( )

2
, , ,

, , ,

I
ee e e

ee e e

h
dp dp g p p p p p p

mc

dp dp g p p p p p p

   

   

+ + +
+

+ + +
+

        = −

+ −

 

 

 (0.2.4) 

For the Dirac and interaction terms, we define our unitless basis vectors as: 

 

3

† † †

1 1, , , , ( ) ( ) ( ) ( ) ( ) ( )
e e e e e e e e

mc mc mc mc mc mc mc
p p p p p p a p c p d p d p c p a p   − + − + − + + −   

 
=  
 

 (0.2.5) 

After the variable transformations, this gives us a fully simplified Hamiltonian (in units of mc2): 

 
( )

( )

( )

2 2 2

2 21 1 , , , ,

, , ,

, , ,

D R I

e e e e e e

e e

e e e

e e e e

h h h
H

mc mc mc

p p p p p p p p p
dp dp dp

g p p p p p p

dp dp g p p p p p p

  



  

   

− + − + − +

− +

+ + +

+ + + +

= + +

 + + + + 
 =
 
+ −  

        + −

  

 

 (0.2.6) 

2.3.2 Solving for the Ground-State Energy 

 

We can now analytically solve the eigenvalue equation where the energies will be the eigenvalues of the 

Hamiltonian. For renormalization, we are only concerned with the lowest or ground-state eigenvalue of 

the Hamiltonian. 

We have to solve the eigenvalue problem: 
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 ( ) ( ), , , , , ,e ee e
H p p p E E p p p E  − −

+ +
=  (0.2.7) 

We assume the eigenstates to have the general form: 

 ( ) ( ) ( ) † † †

1 2 1, , , : , , , ( ) ( ) ( )e e ee e e e e
p p p E c E dp dp dp c p p p E a p c p d p    − − − − +

+ + +  
= +   

 (0.2.8) 

With two terms. One corresponds to the bare vacuum, and the other corresponds to the state involving and 

electron-positron pair. In order to solve for the ground state energy, we have to apply this function to the 

unitless Hamiltonian, and solve for the energy. This results in: 

 

( )

( )
( )

( )

( ) ( )

2 2

† †

1 2 1

1 1 , , , ,

, , , , , ,

, , ,

, , , ( )

e e e e e e

e e

ee e e e

ee e e

e ee e

p p p p p p p p p
dp dp dp

E p p p E g p p p p p p

dp dp g p p p p p p

c E dp dp dp c p p p E a p c

  



   

   

  



− + − + − +

− +

− + ++ +

+ + +
+

− −
+ + 

  + + + + 
  
  = + −   
 
         + −
 

 +

  

 

  ( )†( ) ( )
e e

p d p− +

 (0.2.9) 

Again, we find commutation relations that give us delta functions that remove the tilde variables of 

integration, and leave us with: 

 

( ) ( ) ( )

( )( )

( ) ( )

1

3/ 2

2 2

2

3/ 2

2

, , , , , ,

, , , 1 1 , ,

, , , ,

e ee e e e e

ee e e e e e e

ee e e

E p p p E dp dp dp c E g p p p p p p

mc
dp dp dp c p p p E p p p p p p

mc
dp dp c p p p p E g p p

    

   

   

 − − + + +
+ +

− + − − + − +
+

+ + +
+

= −

 
+ + + + +  
 

 
        + − 

 

  

  

 

 (0.2.10) 
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From here, we can obtain two equations for two unknowns. One is found by right-multiplying both sides 

by , which gives us the equation: 

 

( ) ( )

( )
( )

3/ 2

2

2

1
† † †

1

, , , ,

, , ,

( ) ( ) ( )

ee e e

ee

ee

e e

mc
dp dp c p p p p E g p p

c p p p E
Ec E E dp dp dp

a p c p d p

   







+ + +
+

−
+

−
+

− + 

 
        − 

 

 
 = +
 
 

 

  

 (0.2.11) 

The second equation is obtained by right-multiplying both sides by , ,
e e

p p p − + . Again, delta functions 

will remove the tilde variables, giving us: 
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And thus, our system of equations is: 
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From here, we simply solve for 2c  using the second equation, and insert it back into the first equation. We 

find that 1c  cancels out, leaving us with: 
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We have a transcendental equation for E! Luckily, we can solve transcendental equations without too 

much issue using computer programming. The programming method we will be investigating here is 
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using python code to solve this equation for various values of E and plotting the solutions against the 

values for E. 

In order to numerically compute these integrals, we will begin by discretizing our equation in order to 

code it and solve it. We will create a 2x2 grid, with grid points of size p  in each direction of p. We have 

to be careful with our choice of grid point size. We will choose our grid points to be smaller than our 

value for epsilon. The discretized numerical version of our transcendental equation for ground state 

energy becomes: 
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The results of the numerical calculations will be discussed hereafter in chapter 3. 
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3 RESULTS AND CONCLUSION 

 

As discussed in chapter 2, our ultimate goal was to use our analytical techniques to open the door to 

finding a numerical basis using the dressed state of the vacuum. This involves numerically solving the 

Hamiltonian introduced in subsection 2.3.2. This chapter will provide the results of this numerical 

analysis, including a numerical value for the ground state energy of the dressed vacuum with given 

parameters. Implications of these results for projects involving similar particle conditions will 

additionally be discussed. 

3.1 PYTHON METHODS 

3.1.1 Setting up Momentum Grids 

As introduced in section 2.3.2, the Hamiltonian gave us a transcendental equation for the energies of the 

dressed vacuum system under given parameters. We have: 
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Where the definitions of the g-functions are given in chapter 2 by Eq. (2.3.2). If it is helpful, the reader 

can imagine that the dressed vacuum system that we are describing is one that has a finite “Planck 

length,” where the Planck length is the value which we choose for the grid spacing. We are therefore 

abandoning our continuous labels in favor of a numerically palatable discretized grid in momentum space. 

The discrete method to solving an integral equation, however, comes with the caveat that we have to be 

conscious of what we choose to be our bounds for integration. If we choose them to be too small, we risk 

missing out on points of the integration, leaving our ultimate calculations vastly imprecise. To get an idea 

of the grid that we will be working with, consider the following plot: 
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Figure 2.1 Behavior of the integrands in the momentum coordinate for the photon and positron directions in the dressed vacuum 

system. The reader will note that the functions quickly move to zero as momentum moves away from zero. 

The figure shows the behavior of the integrand in the pm direction. We fix both pn and E to be one, and 

examine the behavior of the function with respect to pm. We likewise do the same process for pn. The 

behavior of the functions indicates fairly clearly that the functions essentially approach zero by the time 

we reach +/- 20 on the momentum axis. This tells us that +/- 20 is a good limit to use in both momentum 

coordinates. We therefore assign a 2x2 grid with those limits and a fixed number of grid points in each 

direction. 

3.1.2 Solving the Transcendental Equation 

Now that we have a grid over which we may sum, we can proceed to set up our transcendental equation. 

The standard way to graphically solve a transcendental equation is to graphically compare the left-hand 

side of the equation to the right-hand side, and find their intersections. In our case, we are purely 

interested in the lowest (ground-state) energy, so we are looking for the intersection that is closest to zero. 

In Python, we create an energy grid. We constrain the grid to contain only values of energy between 0 and 

2. The energy grid will have a fixed number grid points over which we can evaluate the integral for the 

given value of E. By performing the integration process described in subsection 3.1.1, and looping 

through each point on the energy grid, we can obtain an expression for the right-hand side as a function of 

E. We may perform this with varying parameters; however, we will fix epsilon to be .2, the number of 
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momentum grid points to be 2000, and the number of energy grid points to be 20. When we plot the right-

hand side function superimposed on a plot of the line f(x) = x we obtain the following plot: 

 

Figure 3.2 Plot of the right-hand side of Eq. (3.1.1) vs. the line f(x) = x 

Much of the right-hand side function is out of the window, as we have focused in on the relevant window, 

where we can obtain intersections with the left-hand side function. Furthermore, when we zoom into the 

first (lowest energy) intersection, we obtain the following plot:  

 

Figure 3.3 The zoomed-in look at the lowest-energy solution to the transcendental equation. We have additionally added a 

horizontal line to highlight the value of the intersection. 
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From the plot, we ascertain that the value of the ground-state energy for the dressed vacuum is about E = 

0.067mc2. 

3.2 DISCUSSION OF RESULTS 
 

3.2.1 Theoretical Assumptions 

 

Many of the theoretical methods we have used in our analysis of the QED dressed vacuum may make the 

reader somewhat uncomfortable, and rightfully so. We have made many wild, sweeping assumptions 

about the universe that don’t exist in reality. Throughout this experiment, we have almost been “playing 

God” by our choice of conditions that brought us to an analytical solution. 

For starters, we have made the assumption that in our fictional universe, the only fundamental force is the 

electromagnetic interaction. Strong and weak interactions do not affect our fundamental particles. We 

have chosen our fundamental constants arbitrarily. We have assigned a non-zero massive property to the 

photon. We have constrained our universe to possess only one spatial dimension, already rendering it 

unphysical.  

With all of these modifications to the assumptions of what reality is in this experiment, one may justly 

ask, what is the point? Aside from the pure fun of producing dozens of pages of mathematical documents, 

we have done something that hasn’t really been done before: we have solved QED analytically! We can 

furthermore discover in the future what happens when we let the massive property of our photon get 

closer and closer to zero. Barring our ability to find a limit to our integrals as the photon mass goes to 

zero, we can choose a non-zero mass, and use the E = 0.171815mc2 from section 3.1, or a result found 

using a different mass, and form a basis for a similar Hamiltonian. 
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3.2.2 Potential for Future Non-Perturbative QED 

 

Consider the Feynman diagram for the dressed vacuum which we have been examining: 

 

Figure 3.4 Feynman diagram for dressed vacuum system 

As we have discussed extensively, this diagram represents a photon and an electron-positron pair 

spontaneously being emitted. Consider also the following Feynman diagram: 

 

Figure 3.5 Feynman diagram of a photon decaying into an electron-positron pair 

Here, we have a system in which one photon decays into an electron-positron pair. It turns out that the 

Hamiltonian for this system is actually fairly similar to that of the dressed vacuum! Due to the similarity 

between these systems, we can think of the dressed vacuum as the stage in which this pair-production 
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system plays its role. We can potentially use the results we found in section 3.1 to renormalize the system, 

making a “zero” state for the pair production system to exist in.  

3.3 CONCLUSION 
 

While this analytical method to QED has its limitations, renormalization allows us to obtain eigenvalues 

to the Hamiltonian, something that is unavailable to us using perturbation theory. The results of this 

project ultimately provide a window for us to solve QED without the limitations of perturbation theory. 

Further investigation, however, must be performed to give us an idea of whether or not this is worth 

pursuing. It may be possible, in fact, that QED is fundamentally incomplete. While its predictions have 

been met with unprecedented experimental success, the mathematical issues that arise could very well be 

insurmountable, particularly if we are to move outside of the one-dimensional world we have been 

occupying in this experiment. Nonetheless, the success we have obtained in forming a basis for 

renormalization shows much promise to yield further fruitful investigations into analytical, closed-form 

QED. 
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