
1

Neural Network Solutions to Cylindrical Microwave Cavities

Nathan Schwartz

A senior thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Applied Physics

John Colton, Advisor

Department of Physics and Astronomy

Brigham Young University

Copyright © April 20, 2021 Nathan Schwartz

All Rights Reserved

2

ABSTRACT

Neural Network Solutions to Cylindrical Microwave Cavities

Nathan Schwartz

Department of Physics and Astronomy, BYU

Bachelor of Science

 A microwave cavity, also known as a radio frequency cavity, is a specific type of resonator.

Typical cavities consist of a closed metal structure that acts as a truncated waveguide for

electromagnetic fields in the microwave spectrum. Technological devices that utilize microwave

cavities are widespread and include filters, amplifiers, and oscillators. However, the

computational resource cost and time expense required to find solutions to these cavities are

prohibitive. Thus, a set of neural networks has been developed to find the frequency and mode

characteristics of any given cavity configuration in ~0.05 seconds with a mean absolute error of

0.012 for a normalized frequency range of 0.143-1.949, a cumulative mean absolute error of

0.0022 for 200 coefficients, and an accuracy of 95.46% for mode predictions. The creation,

refinement, and final outputs of the neural networks are discussed.

Keywords: Machine Learning, Neural Network, Microwave Cavity

3

ACKNOWLEDGEMENTS

 I would like to acknowledge my professors who have cultivated my curiosity and given

me the tools and skills necessary to complete this project. I would like to especially thank Dr.

John Colton for advising me on this project. His expertise, good-natured humor, and quick

thinking made this project run smoothly from day one. I would also like to thank Charles Lewis

and Jordan Bryan for their contributions towards creating the TE011 solver and the neural

networks, respectively. Lastly, I would like to thank Kane Fanning and Jonathan Hale for their

work on the neural network refinement.

4

Contents
Contents .. 4

Chapter 1: Introduction ... 5

1.1 Microwave Cavities .. 5

1.2 TE011 Mode.. 6

1.3 Prior Work at BYU ... 7

1.4 Machine Learning ... 7

Chapter 2: Experimental Methods .. 9

2.1 The Initial Neural Network ... 9

2.1.1 Configurations ... 13

2.1.2 Latin Hypercube Sampling ... 14

2.1.3 TE011 Solutions Using the BYU Supercomputer ... 15

2.2 The Revised Neural Networks .. 16

2.2.1 Three Neural Networks ... 17

2.2.2 Highest Errors Lists .. 18

2.2.3 Mathematica Inverse Functions .. 18

2.2.4 New Configurations .. 20

Chapter 3: Results and Conclusions .. 21

3.1 Predictions from the Initial Neural Network ... 21

3.2 Predictions from the Revised Neural Networks .. 22

3.3 Summary ... 23

Bibliography ... 24

Appendix ... 25

A.1 Remapping using Mathematica .. 25

A.2 Remapping using Python ... 27

A.3 Mathematica Remap Histograms ... 28

A.4 Supercomputer Use .. 38

5

Chapter 1

Introduction

1.1 Microwave Cavities

Cavity resonators are metal-bound structures which closely relate to a truncated waveguide.

Waveguides transmit electromagnetic (EM) waves, whereas cavity resonators do not. Microwave

cavities, also known as radio frequency cavities, are a specific type of resonator made of a closed

(or mostly closed) metal structure. This structure contains dielectric material and confines EM

fields within the microwave spectrum. When electromagnetic waves of resonant frequency are

introduced into the cavity, they reinforce to become standing waves.[1] Multiple resonant

frequencies exist for a cavity of any given dimension. Each resonant frequency will have a

corresponding EM field mode, one of which is the TE011 mode (given the cavity is cylindrically

symmetric).

6

1.2 TE011 Mode

The TE011 mode is relevant for its applications in resonance, specifically as it relates to the

quality factor (Q factor) and the power to field conversion efficiency. The resonance associated

with the TE011 mode is quite stable, and therefore allows for a consistent Q factor and conversion

efficiency.

The natural resonance frequency of a TE011 mode in a cylindrical cavity of radius r and length l is

given by Equation 1, [2]

 𝑓 =

𝑐

2
√(

𝑥′
01

𝜋 𝑟
) +

1

𝑙2
(1)

where c is the speed of light in vacuum and 𝑥′01is the first nonzero root of the Bessel function

derivative, 𝐽′
0

(𝑥).

The TE011 mode can be described as follows: The electric field is only in the phi direction and

has a node at the center of the cavity. The magnetic field is only in the z direction. The first zero

means there is no phi dependence, the first 1 means there is an antinode node radially in the

electric field, and the second 1 means there is an antinode in the z direction in the magnetic field.

Throughout this paper, references will be made to the quasi-TE011 mode. This mode results from

deviations from a standard cylindrical cavity either by including dielectrics or omitting the metal

shell. The quasi-TE011 mode is the mode that qualitatively looks like the TE011 of a regular

cylindrical cavity. We could have had the network represent the field directly, but to save

computational resources we chose to represent the mode in terms of the empty cavity mode. This

is why we output 200 empty cavity expansion coefficients as described in Section 2.2.1.

7

1.3 Prior Work at BYU

Computational work for solving resonance cavities has been done by Kyle Miller et al. [3] Miller

used MATLAB to find and solve for the frequency and modes for any given cavity

configuration. As explained in Miller’s paper, 10 different configurations were solved with

computations taking anywhere from two to six hours. All solutions were then compared to a

physical model, and yielded accuracies within 1% save for one configuration. While Miller’s

work is a step forward towards fast and computationally inexpensive solutions to the resonance

cavity problem, his work can be improved upon through machine learning.

1.4 Machine Learning

Machine learning is a specific set of algorithms contained in the field of artificial intelligence.

Machine learning uses statistics to identify trends and to make predictions based on the data fed

into the algorithms. In essence, machine-learning algorithms take in data, whether that be in the

form of pictures, sounds, or website activity, and use that data to make an educated guess on

what behavior can be expected in the future. For example, Facebook uses machine learning

algorithms to take in data about a user’s age, gender, and consumer preferences to show ads that

other users with a similar profile have found to be useful. [4]

Within machine learning lies the class of artificial intelligence called deep learning, which relies

on a neural network to make predictions. Neural networks are a concept loosely based on the

workings of the human brain. The networks are composed of multiple layers of nodes, akin to

neurons, which act together to detect and enlarge small patterns. [5] This pattern identification is

8

what enables the neural network to make accurate guesses about the implications of other data

points.

Machine learning algorithms could offer a distinct advantage to Miller’s aforementioned

approach. Instead of solving for the TE011 mode in a given cavity through a long and

computationally expensive process, a neural network could be trained using tens of thousands of

cavity configuration data points. This neural network would then be able to make an accurate

prediction of any cylindrical cavity’s resonant characteristics by relying on previous training.

Although the upfront time cost to create and train the neural network is high, the final

computation process would take mere seconds and a much smaller amount of computer

resources.

9

Chapter 2

Experimental Methods

2.1 The Initial Neural Network

As mentioned in Section 1.4, an artificial neural network (ANN) is a subclass of machine

learning that imitates the function of a human brain. The neurons in this analogy, referred to as

nodes, are contained in individual layers and interconnected in series. The first layer, known as

the input layer, receives data that is then fed into the next layer of nodes. Each node receives a

weighted combination of the outputs of the previous layer, applies an “activation function”, and

then passes its output to the next layer. After the data passes through each inner layer, or hidden

layer, the final output is passed to an output layer. [6] See Figure 2.1 for reference.

10

Figure 2.1 The neural network receives inputs, passes those inputs through a predetermined set of hidden layers,

then outputs the results. The data passed between each layer is a weighted combination of the outputs of the

previous layer after having applied a nonlinear activation function. Figure from [7].

In our case, artificial neural networks were employed to take in six cavity configuration

parameters: aspect ratio (AR), dielectric inner radius (IR), dielectric outer radius (OR), dielectric

height (DRH), dielectric separation distance (SEP), and the value of the dielectric constant (DR)

as visualized in Figure 2.2.

11

Figure 2.2 The cavity configurations can be described by the aspect ratio, dielectric inner radius, dielectric outer

radius, the dielectric height, the dielectric separation, and the value of the dielectric constant. The aspect ratio is

obtained using the cavity height and diameter as in Equation 2.

Cavity radius, height, and aspect ratio are related through a term known as the harmonic mean

(HM). Our experiment set the harmonic mean to be one, since two cavities which differ only by

a scaling factor have the same resonant modes with resonant frequencies differing only by the

ratio of the two sizes. Normalizing our cavities in this way allows us to streamline our

computational work in training and testing the neural networks, or alternatively to get more

accuracy for the same amount of computational work.

12

The relationship between AR and HM and can be derived as follows:

 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝐻𝑒𝑖𝑔ℎ𝑡

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 (2)

 𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑀𝑒𝑎𝑛 =
2∗𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟∗𝐻𝑒𝑖𝑔ℎ𝑡

𝐻𝑒𝑖𝑔ℎ𝑡+𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
 (3)

where diameter is twice the cavity radius.

From Equations 2 and 3, we can derive the height and diameter of the cavity.

 𝐻𝑒𝑖𝑔ℎ𝑡 =
(1+𝐴𝑅)∗𝐻𝑀

2
 (4)

 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =

(1 + 𝐴𝑅) ∗ 𝐻𝑀

2 ∗ 𝐴𝑅

(5)

Using approximately 100,000 parameters generated via Latin Hypercube sampling and their

respective solutions, the machine was trained to solve for the TE011 mode. The machine’s

learning was then tested using approximately 10,000 points of holdout data. Latin Hypercube

sampling is explained in further detail in Section 2.1.2.

13

2.1.1 Configurations

Our dielectric resonator consisted of a cylindrically symmetric cavity containing two dielectrics

who were centered on the axis of the vertical axis of the cavity. The dielectrics were separated by

a distance of SEP. These identical dielectrics are characterized by the same dielectric constant,

which was used in conjunction with the 5 other parameters mentioned in the previous section to

describe the geometry of our cavity. Alternatively, instead of using the aspect ratio, we could

have used the cavity radius and height, but since HM was always set to one, we could convey the

same information using one parameter instead of two. Since we intend for the final neural

networks to provide quick and accurate results of the quasi-TE011 mode and its resonant

frequency in real world experiments, we implemented two weighting functions similar to the

remapping described in Section 2.2.4, so that the dielectric constants were more likely to take

higher values, and the aspect ratio was equally distributed on both sides of 1.

Certain measures were taken to ensure all generated configurations would have valid geometries

of sufficient resolution for the frequency and mode calculations. I.e., the outer radius had to be

larger than the inner radius, the heights of the two dielectrics combined with their separation

distance couldn’t exceed the total cavity height, and the dielectric had to have sufficiently large

dimensions for our code’s resolution.

 For each of the cavities, AR was set by random number selection between 0 and 1 as explained

in Section 2.1.2, then rescaled to be between 0.25 and 4 using a logarithmic scale. For a given

choice of AR, the cavity height and cavity radius were determined via Equations 4 and 5 with

HM=1. IR and OR were determined by linearly rescaling random numbers between 0 and 1 to be

between 0 and the cavity radius, then swapping if IR was greater than OR. The difference

14

between the OR and IR was divided by the max of the cavity radius and the cavity height, and

the configuration was removed if the resulting ratio was less than 0.01. The heights of the

dielectrics were linearly mapped between zero and the cavity height divided by two. The

dielectric height value was compared to the max of the cavity radius and the cavity height, and

the configuration was removed if the ratio was less than 0.01. The separation between the

dielectrics was mapped from zero to the cavity height minus the sum of the dielectric heights,

thus ensuring the dielectrics never extended beyond the roof and floor of the cavity. Finally, the

dielectric constant was scaled from 1 to 45.

2.1.2 Latin Hypercube Sampling

Latin Hypercube sampling (LHS) is a method of generating random parameter values. LHS

relies on the concept of a two-dimensional Latin Square design, where there is only one sample

in each row and each column. Any square of three dimensions or higher is known as a Latin

Hypercube.

LHS is a form of stratified sampling that ensures near-random sampling of a multivariable

distribution. First, the distribution is divided into 𝑁 equally sized intervals. Then 𝑁 sample

points are placed such that the requirements of the Latin square design are satisfied. This

placement forms 𝑁 equal divisions for each variable. This process is repeated for every variable,

thus ensuring there is only one sample point for either one row or column of every variable. This

interval assignment results in a Latin Hypercube of dimensions 𝑁𝑛, where 𝑛 is the total number

of parameters in the distribution and 𝑁 is the total number of sample points. This method covers

the entire multiparameter distribution, but still maintains the randomness required for machine

learning datasets.[8]

15

2.1.3 TE011 Solutions Using the BYU Supercomputer

To properly train the neural network, we needed to generate solutions for the ~100,000 resonant

cavities training data. These solutions were calculated using FEniCS, an open-source package for

solving partial differential equations through finite element programming in Python. [9] We used

FEniCS to define a finite element representation of the two-dimensional cross section of a

generalized cylindrical cavity and then numerically approximated the resonant frequency and

electric field of the TE011 mode.

The finite element method (FEM) numerically approximates an unknown function by expressing

a partial differential equation as a variational problem. FEM creates the variational problem by

multiplying the unknown function by a test function, integrating the resulting equation over the

domain, and performing integration by parts of terms with second-order derivatives.[9]

The FEniCS code to solve the TE011 mode was written by my collaborator Charles Lewis, who

describes the details as follows1:

To solve for the electric field and resonant frequency of the quasi-TE011, the defined

dimensions of the cavity were used to create a rectangular 2D mesh of the cylindrical cavity

mapping the height versus the radius with the FEniCS-related packages “mshr” and

“dolfin”. The dielectrics were mapped with their own 2D rectangular meshes within the

mesh of the cavity. The appropriate value for the relative permittivity of each mesh domain

was assigned and Dirichlet boundary conditions were applied so that the central axis and

conductive boundary of the cavity would ensure a value of 0 for the electric field. This 2D

problem is valid for resonant modes where m equals 0 since both the electric and magnetic

fields will be uniform in the phi-direction.

Once the problem has been setup, the program can solve for the electric field and the

resonant frequency using the finite element method. However, because there are infinite

solutions, the program requires an estimated target frequency. The resonant frequency of

the DRs corresponding empty cavity is chosen as the starting target, since the quasi-TE011

for a cavity with dielectrics will have a frequency that is always greater than the resonant

1 Personal communication reflects updated practice

16

frequency for the TE011 mode of the corresponding empty cavity. FEniCS will attempt to

solve for a resonant mode in the vicinity of that frequency and if none are found then the

target frequency will be increased iteratively at a higher and higher rate until it finds a

resonant mode, or until a time limit imposed by the code is reached. If the limit is exceeded,

the code outputs “TE011 mode not found”. Once a resonant mode is found, the increment

value of the frequency is reset and the program tests whether the mode is quasi-TE011 by

first approximating the electric field by sampling a 50 by 50 grid of the field.

The mode is determined to be the quasi-TE011 mode by two separate checks. The first is to

check if the resonant mode is a TE or TM mode by comparing the sum of the electric field

at all points in the phi direction with the r and z directions. If the sum of the field at all

points in the phi direction is greater than in the other directions together, then the resonant

mode is a TE mode. The second check was done by taking the curl of the electric field to

get the field pattern of the magnetic field. If the z-component of the magnetic field always

points in the same direction and never flips over the 50 by 50 grid, then this resonant mode

was successfully determined to be the quasi-TE011 mode.

After this code was written, it was uploaded to the BYU Supercomputer (Appendix A.4) to solve

the ~100,000 training configurations and the ~10,000 holdout configurations generated from the

Latin Hypercube sampling. It should be noted that the output frequency is dimensionless (i.e.

not in Hertz). To achieve the more common definition of frequency in Hertz, we multiplied our

output frequencies by the speed of light and divided by the Harmonic Mean.

2.2 The Revised Neural Networks

To improve the accuracy of our network, we split the initial ANN into three networks focused on

the cavity frequency, mode, and empty cavity expansion coefficients, identified the worst

parameter value ranges (i.e., the configurations that our initial network had trouble generating

accurate solutions for), and supplied each neural network with carefully selected datapoint

distributions within the aforementioned ranges as described in Sections 2.2.1-2.2.4 below.

17

2.2.1 Three Neural Networks

The creation of the three neural networks is described in a soon to be published paper as follows:

[10]

For all network training, the Keras API with Tensorflow backend was used. Optimal

hyperparameters, including activation functions, number and type of layers, optimizer,

learning rate and number of training epochs, were found using standard procedures. The

frequency neural network consisted of 6 fully connected layers comprised of 256, 128, 64,

32, 16 and 1 nodes. The sigmoid activation function, 𝑓(𝑥) = 𝑥 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥), was used by

the first five layers, while the output layer utilized a linear activation function. Other

hyperparameters include adam optimizer, initial learning rate of 0.005, batch size of 50,

and 1000 training epochs.

The categorical mode network converted the integer mode number values ranging from 1

to 13 to a categorical array of length 13. The optimal neural network for the mode

predictions contained 8 fully connected layers with 1024, 512, 256, 128, 64, 32, 16, 13

nodes. To combat overfitting, we added dropout layers after the third and fifth main layers.

The first seven layers used the swish activation function, and the final layer used the

softmax function as is common in categorical problems. The loss function was categorical

cross entropy. Other parameters chosen for this network include adam optimizer, an initial

learning rate of 0.0005, batch size of 50, and 500 epochs.

The expansion coefficent neural network contained seven fully connected layers with 2048,

1024, 512, 256, 256, 256, 200 nodes. After the main layers, a lambda layer was added to

ensure all predictions were L2 normalized. Swish activation functions were used for all

layers. The loss function was mean squared error. Other parameters chosen for this network

include adam optimizer, learning rate of 0.0005, batch size of 25, and 500 epochs.

Each of the three networks also used three callbacks: EarlyStopping, ModelCheckpoint,

and LearningRateScheduler. EarlyStopping, implemented with patience of 75 for the mode

and coefficients network, patience of 150 for the frequency network and minimum delta of

10-5, ensured that no time was wasted on unproductive training. If the error metric failed to

improve by at least 10−5 in the given number of consecutive epochs, training was stopped

early. ModelCheckpoint made sure that a new version of the network was saved only when

the error metric improved. After a specific number of epochs, LearningRateScheduler

began decreasing the learning rate according to the following formula: 𝑙𝑟𝑛𝑒𝑤 = 𝑙𝑟𝑜𝑙𝑑ⅇ−0.1.

For the frequency network, this process started after 100 epochs, 25 epochs for the

coefficients network and 40 epochs for the mode network.

18

After creation and initial validation, each neural network could then be retrained using the worst

parameters from all three neural networks. After each neural network achieved a satisfactory

accuracy, their results could be used in tandem to yield accurate predictions for any given cavity

configuration.

2.2.2 Highest Errors Lists

The next step after dividing the neural networks was to identify the configuration parameters that

yielded the highest errors, henceforth referred to as the “worst parameters”. To identify these

parameters, we compared the neural network predictions to the solutions generated through the

FEniCS code. By taking the difference between these values, a measure of difference in

prediction was determined. The worst 1% of these configurations for each of the three neural

networks were collected as comma separated values into a spreadsheet and visualized with

histograms using Wolfram Mathematica (Appendix A.1).

2.2.3 Mathematica Inverse Functions

Upon isolating the worst parameters and visualizing them through histograms, we needed a way

to alter our Latin Hypercube sampling method to focus on these problematic areas. In order to

address this problem, we created the inverse function remapping method. The method is

implemented by taking a function, deriving its inverse, and then combining the two to remap a

given distribution. It should be noted that not every distribution identified in the worst parameter

datasets could be described by a single function with a definable inverse. For example, some

distributions were best characterized by a Cauchy or Gaussian distribution. To address this,

19

certain parameters were remapped using Python’s built-in remapping capabilities in the

scipy.stats.distribution library. The syntax for enacting this remap is located in Appendix A.1.

The inverse function method works by identifying a function, such as an exponential decay, and

deriving its associated inverse. For example, let the function 𝑓(𝑥) be equal to the exponential of

𝑥. The inverse 𝑓−1(𝑥) will then be the natural log of x. The data in our specific case ranges from

0 to 1 as per Latin Hypercube sampling. By inspection of equations 6 and 7 below, one can see

that for a data value of 0, the remap will yield the value of 𝑎, and for a data value of 1, the remap

will yield the value of 𝑏. Thus, the inverse function remaps the Latin Hypercube dataset [0,1] to

the range [𝑎, 𝑏] while simultaneously spacing the datapoints according to the shape of an

exponential function, as visualized in Figure 2.3.

Any data set originally along the interval [𝑐, 𝑑] can then be remapped along a new interval [𝑎, 𝑏]

using these two functions as follows:

 𝑅𝑒𝑚𝑎𝑝 = 𝑓−1(𝑓(𝑎) + (𝑓(𝑏) − 𝑓(𝑎)) ∗ 𝑑𝑎𝑡𝑎) (6)

 𝑅𝑒𝑚𝑎𝑝 = 𝐿𝑜𝑔𝑒(𝑒(𝑎) + (𝑒(𝑏) − 𝑒(𝑎)) ∗ 𝑑𝑎𝑡𝑎) (7)

20

Figure 2.3 The graph on the left shows a plot of 11 datapoints ranging from 0 to 1. The x-axis refers to the point

number, while the y-axis corresponds to the value before remapping of each point. The spacing between remapped

points is seen in the vertical distances between points. The graph on the right shows these same 11 points after being

remapped from 0 to 5 according to the formula above. The vertical spacing is much greater for lower y values but

decreases exponentially for datapoints close to 5. In terms of LHC sampling, this would create a distribution that

follows an exponential curve from 0 to 5.

2.2.4 New Configurations

After determining the remapping functions in both Mathematica and Python (Appendices A.1 &

A.2),we wrote a program in Python for each of the neural networks: frequency, coefficient, and

mode. These three programs remapped our Latin Hypercube parameters according to the

functions determined in Section 2.2.3. After running the remap, we applied the same reality

checks that were utilized in section 2.1.1. Once the three Python files were configured for these

reality checks, the frequency, mode, and coefficient files retained 13.27%, 20.09%, and 33.12%

of their original data points, respectively. After adjusting for these cut factors, roughly 20,000

configurations were generated for training solutions for each neural network, and 10,000

configurations were generated as holdout data.

21

Chapter 3

Results and Conclusions

3.1 Predictions from the Initial Neural Network

Our initial neural network was evaluated by calculating the mean absolute error (MAE) for two

of the three outputs: normalized frequency and coefficient values. The coefficient neural network

error was evaluated for accuracy by calculating the sum of the MAEs for the 200 empty cavity

expansion coefficients. The mode was trained using accuracy as the metric. Frequency and

coefficient values are derived from numerical networks, and mode values correspond to a

categorical network (which can be evaluated based on accuracy). For context, error

measurements can be compared to the original values to determine the accuracy of the

prediction, with dimensionless normalized frequency ranging from 0.143 to 1.949. The sum of

squares for the coefficients adds up to one. MAE is expressed as follows:

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1

𝑛

𝑦𝑖 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒

𝑥𝑖 = 𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

22

The MAEs and square root sum of squares for our three outputs were calculated accordingly:

Normalized Frequency: 0.011

Coefficients*: 0.0024

Mode: 95.14% Accuracy

*Coefficients are calculated in sets of 200, not just one. The value here is actually a sum of the MAE for each of the 200

coefficients

3.2 Predictions from the Revised Neural Networks

The MAEs and square root sum of squares for our three outputs were calculated as follows:

Normalized Frequency: .0009

Coefficients*: 0.0013

Mode: 95.6% Accuracy

*Coefficients are calculated in sets of 200, not just one. The value here is actually a sum of the MAE for each of the 200

coefficients

23

3.3 Summary

A microwave cavity, also known as a radio frequency cavity, is a specific type of resonator. We

seek to approximate the resonant frequency and field patterns of the quasi-TE011 mode for a

given cylindrical resonant cavity with both speed and accuracy. Previous attempts at finding

solutions to these cavities involved significant computational resource cost and time expense.

Thus, we developed three neural networks and trained them with an initial set of 100,000

configurations and validated the networks’ predictions with 10,000 more holdout configurations.

This initial set of networks was able to predict solutions to a given cylindrical cavity with MAE

of 0.011, 0.0024 and an average accuracy of 95.14% for the frequency, coefficients, and mode

respectively.

We then refined the networks by selecting the configurations that represented the greatest points

of inaccuracy in the network. The networks can now solve any given cavity configuration in

~0.05 seconds with MAE of 0.012, 0.0022 and an average accuracy of 95.46% for the frequency,

coefficients, and mode respectively.

24

Bibliography

[1] PCB Cadence, "What Is A Cavity Resonator And How Is One Used In PCB Design", 2021,

https://resources.pcb.cadence.com/blog/2019-what-is-a-cavity-resonator-and-how-is-one-used-in-pcb-

design.

[2] C. G. Montgomery, Technique of Microwave Measurements (McGraw-Hill, New York,

1947), Sec. 5.5.

[3] Kyle Miller, “Resonance of Complex Cylindrically Symmetric Cavities Using an

Eigenfunction Expansion in Empty Cavity Modes”, Oct 2016

[4] Facebook Research. “Machine Learning.” Facebook Research, 20 May 2020,

research.fb.com/category/machine-learning.

[5] Hao, Karen. “What Is Machine Learning?” MIT Technology Review, 2 Apr. 2020

www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-

another-flowchart

[6] F. Bre, J. M. Gimenez, and V. D. Fachinotti, “Prediction of wind pressure coefficients on

building surfaces using artificial neural networks,” Energy and Buildings 158, 1429–1441

(2018).

[7] Charles Lewis, “Neural Network Approximations of the Temperature of CdTe Quantum

Dots”, Brigham Young University Senior Thesis, 2020

[8] McKay, M., Beckman, R., & Conover, W. (1979). A Comparison of Three Methods for

Selecting Values of Input Variables in the Analysis of Output from a Computer

Code. Technometrics, 21(2), 239-245. doi:10.2307/1268522

[9] Solving PDEs in Python, The FEniCS Tutorial Volume 1, Hans Langtangen, Anders Logg

[10] Charles Lewis, Nathan Schwartz, Jordan Bryan, Jonathan Hale, Kane Fanning, John Colton,

“Machine learning to predict quasi-TE 011 mode resonances in stacked dielectric cavities” To Be

Submitted

http://www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-

25

Appendix

A.1 Remapping using Mathematica

The inverse of a simple function that describes a distribution can be found using Wolfram

Mathematica or a similar tool:

1. Identify the function in question

2. Switch out the x and y values and solve

26

3. The functions may then be checked for desired remapping

As explained in Fig. 2 in the text, the vertical spacing guarantees that most of the distribution

will be remapped to the right boundary condition according to an exponential growth curve

The functions may then be implemented in Python:

27

A.2 Remapping using Python

A distribution may be remapped in Python according to the following code:

This remaps the third column in our Latin Hypercube according to a normal distribution with a

mean of SEPmean and a standard deviation of SEPstdev.

After removing values according to prespecified boundary conditions, the final distribution is

visualized:

28

A.3 Mathematica Remap Histograms
Here are the remapping histograms for the three neural networks: Frequency, Coefficient, Mode

Frequency Neural Network

29

30

31

32

Coefficients Neural Network

33

34

35

Mode Number Neural Network

36

37

38

A.4 Supercomputer Use

There are 6 files required to use the BYU supercomputer: a .yml environment file,

submissions_bash.sh, changejobscript.py, the csv containing the configurations,

ultimateTElist.csv, and solveTE011v3.py. After these files have been uploaded, navigate to the

directory where the files are stored and complete the following steps:

1. First, the environment file needs to be run for either linux or mac. After the environment

has been created, run conda activate fenicsproject in the terminal to activate the

environment. After the environment has been created, you will need to activate each time

you log on to the supercomputer, but you won’t have to create it each time.

2. Edit the submissions_bash.sh file by changing maxnum to be the maximum number of

lines in your csv configurations file. Set a to be 1. Set b to be the desired submission

interval. For instance, if you want to submit 1000 lines in each job, then set b=1000.

3. Edit changejobscript.py by changing infile to be your configurations file. Change the

outfile to be the file where the solutions will be written to. Change the email to be your

own.

4. Run bash submissions_bash.sh in the terminal to begin the submissions.

