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ABSTRACT

Modeling Surface Imperfections on Diffraction Gratings for the Extreme Ultraviolet

Ethan Edwards
Department of Physics and Astronomy, BYU

Bachelor of Science

When the wavelength of light is comparable to the length scale of a surface’s features, physical
and geometrical optics approximations of reflectance fail. Since even the smoothest surfaces have
nanometer-scale defects, finding direct methods for evaluating optical performance is critical in the
extreme ultraviolet. One direct method for calculating reflectance uses the electric field integral
equation (EFIE). In this project I use the EFIE to study how defects affect the far-field reflection
of monochromatic plane-wave light from a one-dimensional blazed grating. Three defects were
studied: uncorrelated and correlated ruling errors, and surface roughness. I examined effects
on the resolving power (R) and efficiency (E) of a first-order diffraction peak. Considering 0.2
wavelengths of RMS error in each case, I found that roughness decreased R by 0.4% and E by
94.5%, uncorrelated ruling errors decreased R by 0.0% and E by 1.3%, and correlated ruling errors
decreased R by 4.4% and E by 32.0%.

Keywords: Extreme Ultraviolet, Reflectance, Mirror, Roughness, Diffraction Grating, EFIE, Gaus-
sian Quadrature, XUV
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Chapter 1

Background

1.1 Extreme Ultraviolet

Reflective surfaces have many applications in the sciences. Astronomers use highly reflective

mirrors to collect light of all wavelengths in their study of the cosmos. Spectroscopy, which probes

the composition and structure of matter with light, often uses reflective surfaces called gratings to

break up light into individual frequencies for analysis. Lasers, which are practically ubiquitous in

modern society, often rely on a highly reflective optical cavity to contain light and provide optical

feedback.

One challenge to producing reflective surfaces of high quality is surface defects. Defects change

surface geometry, causing unwanted scattering and degrading performance. The severity of a defect

is dependent on its size relative to incident wavelength; therefore, as incident wavelength decreases

scattering becomes harder to control. My project involves quantifying the degradation which occurs

as defect size increases relative to incident wavelength. Specifically, I will introduce defects of

varying relative size to a diffraction grating and compute its intensity profile to determine effects on

performance.

1



1.2 Previous Work 2

Recently, interest has grown for studying the reflective properties of surfaces in the extreme

ultraviolet (EUV). This has been spurred in part by potential applications for astronomy and EUV

lithography. One uniquely challenging aspect of producing reflective surfaces for use in the EUV

is that of surface defects. Since EUV wavelengths span roughly from 100nm to 10nm, even

small defects may cause considerable scattering. Since an understanding of how defects affect

performance is important to the EUV community, I will apply my results to a diffraction grating for

use in the EUV. In this study I frequently reference code which I developed with the help of my

advisor, Dr. Turley. All of the code developed for this project may be found on the BYU Department

of Physics and Astronomy’s GitLab account under the project ReflectRough.

1.2 Previous Work

Scalar correction factors such as the Debye-Waller and Nevot-Croce factors have been used in the

past to account for surface roughness [1, 2]. These factors have had some success in predicting the

effect of roughness.

Deriving the Debye-Waller factor starts by assuming that light in vacuum strikes an interface

made up of a random superposition of lattice vibrations [2]. This interface causes reflections of

different period and phase to interfere, leading to a Gaussian distribution for reflectivity r:

r(z) =
r0

σ
√

2π
exp
[
−z2/(2σ

2)
]

(1.1)

where σ represents the RMS roughness of a surface. Taking the Fourier transform of this distribution:

r(q) =
∫

∞

−∞

r(z)e−iqzdz (1.2)

= r0e−q2σ2/2 (1.3)

where q = 4π

λ
nsinθ represents the transfer of momentum. Note that λ is the vacuum wavelength of

the incident light, n is the material index of refraction, and θ is the angle measured clockwise from

https://git.physics.byu.edu/ethanwe/reflectrough
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grazing. The reflected intensity R(q) is obtained by squaring r(q):

R(q) = R0e−q2σ2
. (1.4)

The exponential in Equation 1.4 is the Debye-Waller factor .

Nevot and Croce introduced one correction to Equation 1.4. Since interactions at an interface

necessarily involve two indices n1 and n2 and two propagation angles θ1 and θ2, they replaced q2 in

the Debye-Waller factor with a geometric average q1q2 resulting in

R(q) = R0e−q1q2σ2
(1.5)

In the 1980’s work done by D.G. Stearns at Lawrence Livermore National Labs resulted in

a more generalized model of reflectance [3]. His work, which describes interfaces as transition

layers of varying relative permittivity εr, offers several distinct advantages over other models. His

formulation applies to any arbitrary surface structure, including rough, diffuse and nonhomogeneous

interfaces; it does not constrain the extent of an interface; it applies at any angle; and it accounts for

absorbing media.

Many other scientists have extended roughness models to multilayers . For example, in a paper

by Wang et al., specular reflection from a rough single layer was modeled by the equation [4]

I =
∣∣∣∣(ρs−ρ f

ρs

)
e−q2σ2

s +
ρ f

ρs
e−q2σ2

f eiqd
∣∣∣∣2 IF (1.6)

where I is the specular reflected intensity and IF is the Fresnel intensity of the substrate. The

quantities ρs and ρ f represent substrate and thin film electron density, respectively; q represents the

momentum transfer used in Equation 1.4; σs and σ f represent the roughness of the substrate and

thin film; and d is thin film thickness. Equation 1.6 reveals that intensity oscillates with varying

thin film thickness d but that as σ f increases the oscillations damp out. Experimental evidence by

Wang et al. confirmed this prediction.

Many of these models include assumptions which do not hold in the EUV. For one, roughness

is often assumed to be small in comparison to the incident wavelength. Second, these correction
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factors were developed for X ray scattering, where scattering is often weak for any interface [3, 5].

Finally, the models assume that non-specular scattering does not couple back into specular scattering.

For these reasons I will instead calculate reflectance from a surface directly using the Electric Field

Integral Equation (EFIE). This method works in all regimes, at any level of scattering, and it makes

no assumptions.

1.3 Diffraction Gratings

1.3.1 Operation

One of the important reflectors used in the EUV is a diffraction grating. Diffraction gratings allow

scientists to break up light into its various components. Gratings work either by allowing light to

transmit through small slits or by allowing light to reflect off a grooved surface. Since I model the

latter type of grating, I will explain how a reflection grating works. The following explanation uses

geometrical optics to simplify the concepts.

In Figure 1.1, coherent and collimated light comes in at an angle θi (measured clockwise from

the grating parallel) and reflects off the surface of a blazed grating. The blazed grating has periodic

grooves spaced a distance d apart and teeth that slope upward at an angle θB, called the blaze angle.

Consider two rays of light that strike the surface a horizontal distance d apart. When the rays

reflect from the surface they will have traveled different optical path lengths. Their path length

difference is d(cosθi + cosθr). If this difference is some integer multiple m of λ , these rays will

interfere constructively; if their path difference is some half-integer multiple m+ 1
2 of λ , the rays

will interfere destructively. In mathematical form, then,

mλ = d(cosθi + cosθr) (constructive interference) (1.7)

(m+
1
2
)λ = d(cosθi + cosθr) (destructive interference). (1.8)
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Figure 1.1 The angle of diffraction peak

When light incident at an angle θi strikes a grating with groove spacing d, we want to know the

angles for which reflection is a maximum. If m = 0, we see from Eq. 1.7 that

cosθi =−cosθr (1.9)

cosθi = cos(π−θr) (1.10)

which is Snell’s law. For m 6= 0 we can rearrange Eq. 1.7 to show θr as a function of m and λ :

θr = arccos
(

mλ

d
− cosθi

)
. (1.11)

This equation describes the angular distribution of maxima and minima from a blazed grating.

Angles θr of maximum intensity corresponding to a path length difference mλ are called mth order

peaks. Since θr is dependent on λ , scientists cane use diffraction gratings to isolate a wavelength of

interest.
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1.3.2 Measures of Performance

In this project I focus on two measures of performance: efficiency E and resolving power R .

Efficiency relates the intensity of a peak of interest to the total reflected intensity and ranges from

zero to one. Resolving power, defined as λ

∆λ
, describes how well the diffraction grating separates

wavelengths; it quantifies the uncertainty of any measured wavelength.

1.4 Scope of Project

For this project I calculate the efficiency and resolving power of blazed gratings with defects and

compare their performance to an ideal grating. The initial setup of each reflectance problem is

the same. Monochromatic plane-wave light strikes a perfectly-conducting one-dimensional blazed

surface at 45◦ measured clockwise from the grating parallel. Using the Electric Field Integral

Equation, I am able to determine the surface current J which generates a reflected electric field.

Using J I find the far-field angular distribution of reflected intensities due to the S-polarized field

and calculate the efficiency and resolving power of the first-order diffraction peak.

Measuring length in units of optical wavelength λ , the ideal surface has 250 teeth (249 grooves)

spaced 7.9λ apart giving a surface 19750 wavelengths wide. I then modify the ideal surface to

include one of three defects: surface roughness, uncorrelated ruling errors, or correlated ruling

errors. Surface roughness is random deviation in the normal vector of an ideal surface and may

be quantified with a root mean square (RMS) height σr. Ruling errors are errors in the location

of a groove on a grating surface. Details on each type of defect is found in Section 2.3. Defects

are characterized by the parameters σr, σu amd σc, which determine the RMS error for a defect.

Although the defects are assumed to be random in nature, the parameters σr, σu and σc allow me to

generate surfaces with a specific RMS value for each given defect. After generating a sample of 50

surfaces with some non-zero value of σr, σu or σc, I estimate the average E and R for a population
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of surfaces with equal RMS error and compare these values to the efficiency Ei and resolving power

Ri of the ideal grating. To facilitate this, I use relative efficiency Er and relative resolving power Rr,

defined as the ratios of E to Ei and of R to Ri. Using Er and Rr elucidates the effect of defects on

grating performance.

1.5 Electric Field Integral Equation

In classical electrodynamics, the Electric Field Integral Equation (EFIE) relates an electric current

density J with its generated electric field E. Understanding how the geometry of a surface affects

its reflective properties requires solving the EFIE for J. In this section I will derive the EFIE from

Maxwell’s equations; the following section focuses on using it to find J.

1.5.1 Maxwell’s Equations

Maxwell’s equations form the theoretical basis for classical electromagnetism. In differential form,

Maxwell’s equations are

∇ ·E =
ρ

ε0
(1.12)

∇ ·B = 0 (1.13)

∇×E =−∂B
∂ t

(1.14)

∇×B = µ0J+µ0ε0
∂E
∂ t

. (1.15)

In these equations E represents the electric field, B represents the magnetic field, ρ is charge density,

J is current density, ε0 is vacuum permittivity and µ0 is vacuum permeability.



1.5 Electric Field Integral Equation 8

1.5.2 Wave Equation

I am interested in finding a solution to Maxwell’s equations that describes wavelike behavior for

the electric field. In particular, I am interested in finding a solution that describes an electric field

propagating in vacuum. Following the work done by Thevenin [6], I will rewrite Eq. 1.14 and take

its curl

∇×∇×E+
∂

∂ t
(∇×B) = 0 (1.16)

Using the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A, the previous equation becomes

∇(∇ ·E)−∇
2E+

∂

∂ t
(∇×B) = 0 (1.17)

Replacing ∇ ·E using Eq. 1.12 and ∇×B using Eq. 1.15 gives

∇(
ρ

ε0
)−∇

2E+µ0
∂J
∂ t

+µ0ε0
∂ 2E
∂ t2 = 0 (1.18)

Assuming the medium of propagation is vacuum, ρ = 0 and J = 0. Switching the sign and recalling

that c≡ 1√
µ0ε0

gives the wave equation in its usual form

∇
2E− 1

c2
∂ 2E
∂ t2 = 0. (1.19)

1.5.3 Helmholtz Equation

The Helmholtz equation is a time-independent form of the wave equation describing radiation from

a source that propagates out to infinity. This describes reflection, in which currents on a conducting

surface generate a field that propagates out to infinity. The Helmholtz equation may be derived

using separation of variables. Assume the time-dependent electric field may be expressed as a
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product of two functions, one of space and one of time: E = Ei(r)T (t)

∇
2EiT −

1
c2 Ei

∂ 2T
∂ t2 = 0 (1.20)

Divide each term by A(r)T (t)
∇2Ei

Ei
− 1

c2T
∂ 2T
∂ t2 = 0 (1.21)

Note that both terms are equal for all values of r and t. This is true if and only if both terms are

constant. Assume that both terms are equal to −k2

∇2Ei

Ei
=−k2 (1.22)

1
T c2

∂ 2T
∂ t2 =−k2 (1.23)

Since I am not interested in time-dependency, I can drop the second equation from consideration

and focus on Equation 1.22:

∇
2Ei =−k2Ei (1.24)

∇
2Ei + k2Ei = 0 (1.25)

Since I will be working with Ei exclusively, I can suppress the subscript on it as long as I re-

member that E represents the time-independent electric field. Continuing thus and factoring E in

Equation 1.25 gives

(∇2 + k2)E = 0. (1.26)

Equation 1.26 is the Helmholtz Equation. The variable k represents the wavenumber. In general

form, k =
√

µεω ; however, since the electric waves are propagating in vacuum, µ becomes µ0 and

ε becomes ε0 so that k = ω

c .
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1.5.4 Electric Field Integral Equation

In my problem the surface current J generates an electric field which satisfies the nonhomogeneous

Helmholtz Equation; that is,

(∇2 + k2)E = J. (1.27)

I want to know the field E generated by J; mathematically, this means solving for E. This can be

done by taking the convolution of J and G, the Green’s function of the Helmholtz equation. The

Green’s function of the Helmholtz equation

(∇2 + k2)G(r) =−δ (r) (1.28)

describes how a system which obeys the Helmholtz Equation responds to an impulse. Equation

2.65 in Johnson’s thesis gives an expression for the z-component of E in terms of J and G [7]. I

will make two modifications. First, I will replace Az with Equation 2.47 in his thesis. Second, I will

set Kt to zero; this term is defined from the magnetic field strength H and will be ignored in this

study [8]:

E(r) = (G∗ J)(r) =−ikη

∫
J(r′)G(r− r′)dr′ (1.29)

where k is the wave number (recall that k = 2π in units of wavelengths) and η =
√

µ/ε . For

convenience, I will absorb the factor ikη into J. Equation 1.29 is known as the Electric Field

Integral Equation (EFIE) . In order to understand how surface geometry affects reflection, I must

solve the EFIE for J.

1.6 Matrix Equation

The variable I wish to solve for is inside an integral. In most cases, including this one, finding an

analytic solution for J is not possible. Instead, I can obtain a numerical solution by converting the
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EFIE into a matrix equation. Up to this point I have only made a few assumptions, but moving

forward I will make more assumptions to simplify and contextualize the problem.

1.6.1 Perfect Conductor

In Equation 1.29 J generates an electric field E. In the context of this problem E is the reflected

field, which I will denote as Eref. Since the grating is assumed to be a perfect conductor, the total

electric field is 0. Noting that Etot = Einc +Eref it follows that

Eref =−Einc. (1.30)

1.6.2 Green’s Function of the Helmholtz Equation

Electromagnetic waves generated on the grating surface will propagate outward in the xy-plane.

Therefore, the Green’s function used must be for the 2D-Helmholtz equation. In two dimensions

(and recalling that units of distance are in wavelength), the Green’s function for the Helmholtz

equation is [7]

G(r− r′) =
i
4

H(1)
0 (2π|r− r′|) (1.31)

where r is the observation point (x,y), r′ is the source point (x′,y′), and H(1)
0 is the zero-order

Hankel function of the first kind.

1.6.3 Line Integration

With these modifications in place, Eq. 1.29 becomes

Einc(r) =
∫

C
J(r′)G(r− r′)dr′ (1.32)

which is integrated along the grating surface. Here Einc(r) denotes the incident electric field at

a point r and the variable of integration r′ denotes source points where J(r′) contributes to the
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observed electric field. To evaluate Equation 1.32, I can use a line integral across the surface. Let

dx′ and dy′ represent infinitesimals along source coordinates x′ and y′, respectively. How far along

the surface do I move when going from x′ to x+dx′? Using the Pythagorean theorem, I would move

a distance √
dx′2 +

(
dy′

dx′

)2

dx′2, (1.33)

where
(

dy′
dx′

)
is the slope at x′. Then

Einc(r) =
∫

J(r′)G(r− r′)

√
dx′2 +

(
dy′

dx′

)2

dx′2 (1.34)

Einc(r) =
∫

J(r′)G(r− r′)

√
1+
(

dy′

dx′

)2

dx′. (1.35)

Note that in the line integral y′ is a function of x′, and therefore integration over just x′ is allowed.

1.6.4 Quadrature Rule

Now that Einc and G(r− r′) are known and the integral is defined correctly, only solving for

J(r′) remains. To find J(r′) the integral must be discretized using a quadrature rule (examples of

quadrature rules are the Riemann sum, which is a zero-order rule; the first-order trapezoidal rule;

and the second-order Simpson’s Method). While higher-order rules produce better approximations,

they require many evaluation points and are computationally expensive. In an effort to preserve

both accuracy and efficiency, the bounds of integration are separated into n patches, and each patch

is integrated using a third-order quadrature rule. Such a rule requires four evaluation points along

each patch and will be exact inasmuch as J may be represented by a third-order polynomial over

any patch-length region `.

With n patches each requiring four evaluation points, the integral across the surface requires 4n

source points. However, the Green’s function includes two points–the observation point r and the

source point r′. For this problem, I chose the observation points to be at the same locations as the
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source points. This means the integral requires 4n total evaluations; furthermore, it means that Einc

will become a vector with 4n elements. Let Ei be the electric field evaluated at the observation point

xi and let x j represent a source point. Then

Ei =
4n

∑
j=1

J jw jGi j (1.36)

where w j is a product of the weights of integration c j and the line integral term

√
1+
(

dy′
dx′

)2
. Let

Zi j = w jGi j. Then

Ei =
4n

∑
j=1

J jZi j. (1.37)

Let E be a vector containing each Ei, J be a vector containing each J j, and Z be a matrix (called the

impedance matrix) containing each Zi j. With this notation in place,

E = ZJ (1.38)

where E and J are 4n-element vectors and Z is a 4n×4n matrix. I can solve for J by multiplying

both sides of Equation 1.38 by the inverse of Z. I describe how I calculate Z−1 in Section 2.4.



Chapter 2

Methods

2.1 Incident Wave

The coordinate system chosen is given in Figure 1.1. Assuming symmetry about the z-axis effectively

reduces the scattering surface to one dimension. The surface lies on the x-axis centered at the origin.

Section 1.4 describes the light source for each surface modeled; here I will write out the incident

wave in mathematical form.

Using complex notation a plane wave takes the form Re{ei(~k·~r−ωt)} where~k is the wave vector,

~r is the position vector, ω is angular frequency and t is time. Following standard notation, I will

suppress Re{} and let it be implicit. Assuming time independence, the incident wave is of the

form ei(~k·~r). Recalling that distance is measured in units of wavelength, let~k = 2π(cosθiî− sinθi ĵ),

where θi is the incident angle. For each test θi = 45◦; therefore~k ·~r becomes
√

2π(x− y) and the

plane wave becomes e
√

2πi(x−y).

14
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Figure 2.1 Evaluation points along a patch of length `

2.2 Surface Discretization

In Section 1.5, I discretized the EFIE into a matrix equation which may be solved for J. To do so, I

followed Johnson’s method and separated the surface integral into n patches of integration using a

third-order quadrature rule [7]. The quadrature rule requires four weights c j which I left underived.

In this section I will derive the weights to be used.

Letting the observation points be at the same location as the source points causes some integrals

to have singularities; specifically, integrating over patches containing observation points. In these

integrals, when xi = x j the Hankel function (Equation 1.31) has an argument of zero, which returns

a complex infinity. Thus a separate set of weights must be used to integrate over patches with an

observation point. I will therefore introduce separate weights for nonsingular and singular patches.

2.2.1 Nonsingular Quadrature Rule

Let ` be the length of a patch and choose four equally spaced evaluation points at `
8 , 3`

8 , 5`
8 , and

7`
8 , measured from the beginning of the patch. An example of this is depicted in Figure 2.1. The

general equation for the rule is then

c1 f
(
`

8

)
+ c2 f

(
3`
8

)
+ c3 f

(
5
`

8

)
+ c4 f

(
7
`

8

)
= A (2.1)
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As mentioned in Section 1.4, I want this rule to allow exact integration over a patch of all functions

up to third-order polynomials; as such, it will satisfy the following equations:

c1 + c2 + c3 + c4 =
∫ `

0
dx (2.2)

c1

(
`

8

)
+ c2

(
3`
8

)
+ c3

(
5`
8

)
+ c4

(
7`
8

)
=
∫ `

0
xdx (2.3)

c1

(
`

8

)2

+ c2

(
3`
8

)2

+ c3

(
5`
8

)2

+ c4

(
7`
8

)2

=
∫ `

0
x2dx (2.4)

c1

(
`

8

)3

+ c2

(
3`
8

)3

+ c3

(
5`
8

)3

+ c4

(
7`
8

)3

=
∫ `

0
x3dx (2.5)

Solving this system of equations yields

c1 =
13`
48

(2.6)

c2 =
11`
48

(2.7)

c3 =
11`
48

(2.8)

c4 =
13`
48

(2.9)

Since these integrals are linear operators, the weights c j will allow exact integration for any patch

which may be represented by a cubic polynomial f (x) = ax3 +bx2 + cx+d.

2.2.2 Singular Quadrature Rule

When integrating over a patch containing an observation point, the Green’s function will have a

singularity. The constants derived above will not work for these patches, so another quadrature rule

must be developed. Jedediah Johnson [7] derived these weights in his paper, and I will give the

result here. Let ` be the length of a patch, and choose four equally spaced evaluation points at `
8 , 3`

8 ,
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5`
8 , and 7`

8 . Then

c1 =
1

48
[105W1−142W2 +60W3−8W4] (2.10)

c2 =
1

16
[−35W1 +94W2−52W3 +8W4] (2.11)

c3 =
1

16
[21W1−62W2 +44W3−8W4] (2.12)

c4 =
1

48
[−15W1 +46W2−36W3 +8W4] (2.13)

where

Wn ≡
(

4
`

)n ∫
patch

xnG(xi,x)dx. (2.14)

2.3 Surface Generation

As described in Section 1.4, I generated grating imperfections by modifying the ideal surface to

include some RMS error in either surface roughness, uncorrelated ruling error or correlated ruling

error. Here I will outline the methods used to generate these imperfect surfaces.

2.3.1 Surface Roughness

To correctly model surface roughness, I imitated characteristics seen in the atomic force microscope

(AFM) images of thin film surfaces observed in the Allred-Turley lab. Figure 2.2 shows an AFM

image of a sample thin film from the Allred-Turley lab. Using a data visualization program called

Gwyddion, I was able to study features of the surface.

One statistic I obtained was the RMS roughness of the surface. Gwyddion defines the one-

dimensional RMS surface roughness as √√√√ 1
N

N

∑
j=1

x2
j (2.15)
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where N is the number of surface samplings and x j is the height of the surface and is defined to

average to zero [9]. For the surface in Figure 2.2, for example, the RMS roughness was 2.24 nm.

Another statistic I used was the one-dimensional power spectral density function (PSDF) of a

cross section of the surface in Figure 2.2. Signal analysts often use the PSDF of stochastic signals

to analyze their behavior in the frequency domain. The PSDF may be applied not only to electrical

signals, but to any abstract signal. Let f (x) represent surface height as a function of location on a

cross-sectional strip of some surface. Then f (x) is a random function. It will be beneficial to define

a truncated form of f (x) as

fX(x) = f (x)wX(x) (2.16)

where wX(x) is a unit window function with a period of X centered about x0. The (abstract) energy

of this random function may be defined as [10]

E =
∫ x0+X/2

x0−X/2
| f (x)|2dx =

∫
∞

−∞

| fX(x)|2dx (2.17)

The average power P is then

P =
1
X

∫
∞

−∞

| fX(x)|2dx =
1
X

∫
∞

−∞

|FX(k)|2dk (2.18)

by Parseval’s theorem, where FX(k) is the Fourier transform of fX(x). To get the average power in

the case of an untruncated process, let X → ∞

P = lim
X→∞

1
X

∫
∞

−∞

|FX(k)|2dk. (2.19)

Define

Sxx(k) = lim
X→∞

1
X
|FX(k)|2, (2.20)

then

P =
∫

∞

−∞

Sxx(k)dk. (2.21)

Note that the units of Sxx(k) must be power per frequency; in other words, Equation 2.20 defines the

power spectral density function (PSDF). Equation 2.20 reveals that Sxx(k) ∝ F(k). Intuitively, this
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Figure 2.2 AFM image of a thin film from the Allred-Turley lab

means that surface roughness can be thought of as a random signal across a surface composed of

spatial frequencies with varying intensities; the PSDF gives the relative intensities of these spatial

frequencies.

Figure 2.3 is the PSDF of a cross section of the surface sampled in Figure 2.2. As you can see,

the PSDF looks like a Gaussian distribution of spatial frequencies centered about zero. To imitate

this, I generated a list of random values centered around zero with a standard deviation of one,

transformed the list to obtain spatial frequencies, then used a Gaussian filter function to match the

trend of spatial frequency amplitudes seen in Figure 2.3. For this study I used a standard deviation

of σ = 2π on the Gaussian filter function, which translates to a standard deviation of one optical

wavelength for spatial frequencies. I then took the inverse transform of the filtered frequencies

to obtain a one-dimensional list of heights. Finally, I multiplied the list by a constant to obtain a
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Figure 2.3 A cross-sectional PSDF of the surface in Figure 2.2 reveals an approximate
normal distribution of spatial frequencies

desired RMS value and added this list element-wise to the list of surface heights for the ideal blazed

grating.

2.3.2 Ruling Errors

To describe ruling errors I will define the location of the nth groove on an ideal grating as xn and

let d be the ideal spacing between adjacent grooves. Uncorrelated ruling errors occur when the

location of groove n is given by

ξn = xn + εu (2.22)

where εu is a random number taken from a normal distribution centered at the origin with a standard

deviation σu. Correlated ruling errors occur when the location of groove n is given by

ξn = ξn−1 +d + εc (2.23)
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where εc is defined similarly to εu. These equations show that error propagates in the case of

correlated ruling errors and does not propagate for uncorrelated ruling errors.

Recognizing that the parameter varied for ruling errors is the standard deviation σ , one may

question whether σ actually represents the RMS error. I will show that this is the case using a

generic random variable ε from a normal distribution f (ε) centered about 0

f (ε) =
1

σ
√

2π
e−ε2/2σ2

. (2.24)

The RMS value of the random variable εRMS is the square root of the expectation value of ε2:

εRMS =

√∫
∞

−∞

ε2 f (ε)dε (2.25)

=
1

4√
σ22π

√∫
∞

−∞

ε2e−ε2/2σ2dε (2.26)

=
1

4√
σ22π

√√
2πσ3 (2.27)

= σ . (2.28)

2.4 Solving the Matrix Equation

Various techniques may be used to solve Eq. 1.38. In this project I used Julia’s built-in matrix

solver. In this problem Z is a non-triangular square matrix, so Julia uses an LU factorization

method [11]. Each surface was generated with 19748 points, which corresponds to 10 points

per wavelength and leads to a 19748×19748 impedance matrix. Justification for this is found in

Appendix B.
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2.5 Far-field Reflectance

Once J has been determined, it can be used to find the reflected electric field. Johnson [7] derived

an equation for determining the far-field reflectance. While his equation expresses a more general

problem, ignoring surface magnetization (and recalling that J has absorbed ikη) leads to the form

E(φ) =
ei(kr+π/4)

2
√

2πkr

∫
C

J(x′,y′)e2iπ(cos(φ)x′−sin(φ)y′)ds′ (2.29)

Here r represents distance from the origin and φ is the observation angle measured clockwise from

grazing. To solve this integral, I use the same quadrature rule as the one developed for generating

the matrix equation. Since this equation has no singularities, only the nonsingular weights need to

be used. I also do not care about dependence on r; therefore, I will integrate along a semicircle a

distance r from the origin. I am interested in finding the normalized intensity profile, which is given

by

I(φ) =
|E(φ)|2

I0
(2.30)

where I0 = sinθi|Einc(φ)|2. The sinθi is necessary to account for changes in incident intensity

due to incident angle θi (intuitively, incident intensity is greatest when θi =
π

2 and lowest as θi

approaches 0).

The far-field distribution I contains the angular width ∆φ of the m = 1 order peak; however, in

order to calculate resolving power R the quantity ∆λ must be determined. I review the steps for

determining ∆λ from ∆φ in Appendix A.



Chapter 3

Results and Conclusions

3.1 Results

Now that I’ve developed methods to compute reflectance from various surface geometries I can

model the effect of surface defects on grating performance. As I explained in Section 1.4, my aim is

to understand how efficiency E and resolving power R is affected when increasing surface roughness,

uncorrelated ruling errors or correlated ruling errors. To do so I computed the performance of an

ideal grating at the first order diffraction peak then added surface defects and re-computed the

performance for comparison. In this section I plot the relative efficiency Er and relative resolving

power Rr as a function of increased RMS error. Since these errors are random, each data point

(except the point representing the ideal surface) represents an average of 50 surfaces with equal

RMS error. Along with each data point I plot the standard error of the mean (SEM). The SEM is

defined as

SEM =
σ√

n
(3.1)

where σ represents the standard deviation of the sample set and n is the sample size. The SEM is an

estimate of where the population mean may be, and thus gives a quantitative measure of uncertainty.

23
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Figure 3.1 Relative resolving power for increasing RMS surface roughness

3.1.1 Surface Roughness

Figure 3.1 shows Rr for a surface with increasing surface roughness. From the graph we can see

that Rr decreases as surface roughness increases. If we look at the overlap of uncertainty between

adjacent points, though, it is unclear how far Rr drops. Roughness of up to 0.15λ has no observable

effect on Rr, and most of the error bars past 0.15λ overlap with the line Rr = 1.0. Note that the final

data point, σr = 0.30λ , which has an average max angle of intensity about 5◦ off of the first-order

diffraction peak, is untrustworthy. Since the code used to calculate R looks for the peak of highest

intensity this offset suggests that, at σr = 0.30λ , peaks from scattered light are of comparable
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Figure 3.2 Relative efficiency for increasing RMS surface roughness

intensity to those from diffraction. For this reason I did not run tests past σr = 0.30λ .

In Figure 3.2 we see a clear decrease in Er as roughness increases. In fact, the data points seem

to follow a Gaussian distribution. At σr = 0.2λ , Er is at about 5.5%; by σr = 0.275λ , Er drops to

0.5%. The SEM for each data point is minuscule, suggesting a clear correlation between efficiency

and roughness.

3.1.2 Uncorrelated Ruling Error

Figure 3.3 shows that uncorrelated ruling errors produce even less variation in Rr than surface

roughness does. For σu values up to 1.0λ , the first-order diffraction peak has the same R value as
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Figure 3.3 Relative resolving power for increasing RMS uncorrelated ruling error
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Figure 3.4 Relative efficiency for increasing RMS uncorrelated ruling error

an ideal surface to within 0.1%.

In Figure 3.4 we again see a decrease in Er as σu increases. As in Figure 3.2, the SEM for each

data point is imperceptible. Unlike surface roughness, however, uncorrelated ruling errors only

cause a steady decrease in Er. Whereas Er was practically 0% for σr = 0.3λ , for σu = 0.3λ Er

sits at around 96%. Furthermore, the angle of peak intensity for each data point never strays by

more than a thousandth of a percent, so each data point accurately represents Er for the first-order

diffraction peak. Perhaps if σu extended far past 1.0λ we would see a Gaussian distribution just as

in Figure 3.2, but at σu = 1.0λ the RMS error is already about 15% of the ideal groove spacing;

larger values of σu would be unrealistic.
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Figure 3.5 Relative resolving power for increasing RMS correlated ruling error

3.1.3 Correlated Ruling Error

As seen in Figure 3.5, correlated ruling errors cause a clear decrease in Rr. This decrease continues

through about σc = 0.3λ ; as error increases past that point, what happens is unclear. The averages

indicate a steady increase in Rr, but the uncertainties are large. In fact, the uncertainties for

Figure 3.5 are the largest of any figure. It could be that Rr levels off as σc increases past 0.3λ , but

more samples would need to be taken.

In Figure 3.6, Er decreases in a manner similar to Figure 3.2, but the change is much more

gradual. As σc increases to 1.0λ , Er decreases to 10%.
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Figure 3.6 Relative efficiency for increasing RMS correlated ruling error
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Thresholds for decreasing E

σr σu σc

5% .025λ 0.39λ 0.07λ

10% .036λ 0.55λ 0.1λ

20% .053λ 0.81λ 0.14λ

Table 3.1 Thresholds for efficiency in λ

3.2 Thresholds

From the data a simple question arises: when should someone care about surface defects of each

type, and when are they ignorable? In an attempt to answer this question I will determine threshold

values for performance loss of 5%, 10% and 20%. I will first determine these values in units of

wavelength. I will then convert into units of nm and apply these results to the EUV.

3.2.1 Thresholds in Wavelengths

Results reveal that surface roughness and uncorrelated ruling errors meet none of the thresholds for

performance degradation in the range of values this study considered. Correlated ruling errors do

have a significant impact on R, though; a 5% loss occurs at σc = 0.23λ and a 10% loss occurs at

σc = 0.38λ .

Table 3.1 shows thresholds for decreases in efficiency. All defect types decrease efficiency,

which makes sense because each defect reflects light away from the first-order diffraction peak.

Roughness has the largest effect because it scatters the most light.
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Thresholds for decreasing E (EUV)

σr σu σc

5% 2.15 nm 33.54 nm 6.02 nm

10% 3.10 nm 47.3 nm 8.60 nm

20% 4.56 nm 69.66 nm 12.04 nm

Table 3.2 Thresholds for efficiency at λ = 86 nm

3.2.2 Application to EUV

Now that I have found thresholds for performance degradation in units of optical wavelength, I

will apply the results to the case of an incident wave in the EUV. I can use the PSDF in Figure 2.3

to pick a reasonable wavelength in nm. Fitting the PSDF in Figure 2.3 with a Gaussian, I found

the standard deviation to be about σ = 0.073nm−1. When I modeled surface roughness I used a

Gaussian filter function with a standard deviation of 2π (in units of optical wavelength) to imitate

the spatial frequencies seen in Figure 2.3. In order for the standard deviation in my code to match

the standard deviation in Figure 2.3, I need an optical wavelength of

2π

λ
=

0.073
nm

(3.2)

λ =
2π

0.073
nm = 86nm (3.3)

With conversions the ideal surface has a groove spacing of d = 679.4 nm (about 1470 lines/mm),

a realistic spacing for a diffraction grating. With these numbers in place we can see that correlated

ruling errors cause a 5% degradation in R at σc = 19.78 nm and a 10% degradation in R at σc = 32.68

nm. Table 3.2 shows thresholds for an incident wavelength of 86 nm. Data from our lab reveals

that many thin film surfaces have surface roughness around 2-3 nm–for example, the surface in

Figure 2.2 has an RMS roughness of 2.24 nm. If these RMS values are typical for diffraction

gratings, then at λ = 86 nm Er will be between 90% and 95%.
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3.3 Discussion

Referring to Table 3.1, the result that RMS roughness of 0.035λ decreases efficiency by 10% agrees

well with a similar study done by a former student. In his thesis, Thevenin found that σr = 0.3λ

decreased efficiency by 10% when modeling the effect of roughness on a flat conducting surface [6].

Another interesting observation is the Gaussian distribution in Figure 3.2. This figure corroborates

the assumption made by Debye that reflectance may be thought of as a Gaussian distribution

centered on an ideal surface and parametrized by surface roughness [5].

The result that surface roughness and uncorrelated ruling errors have little influence on R is also

believable because each defect type does not change the overall periodicity of the grating spacing.

Diffraction gratings work by summing the diffraction patterns of many equally-spaced grooves (or

slits) to create regions of constructive interference. Since roughness doesn’t change the location

of grooves, it should have little effect on R, as Figure 3.1 shows. Uncorrelated ruling errors do

change the spacing of grooves; however, since the location of each groove differs from the ideal

case by a random amount, in the limit of many grooves phase changes caused by groove errors in

one direction are consistently offset by phase changes from groove errors in the other direction. This

is not the case for correlated ruling errors, where the offset in groove locations accumulate across

the surface. For correlated ruling errors, a general offset of many grooves undoes the periodicity of

the ideal grating surface. Phase changes from dislocated grooves have less chance of being offset by

phase changes in an opposite direction, and the resolving power should decrease. The data supports

this. Section 3.2 showed that only correlated ruling errors cause significant changes in resolution.

3.4 Future Work

While the results of this study are informative, its scope is limited for many reasons. Limitations

include the problem sizes we were able to model, model accuracy, and assumptions that simplified
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the math. In the future these limitations may be addressed by increasing computational resources

and lowering computational cost, and by decreasing the number of assumptions in our study.

Three factors led to large computational cost. The first and second have to do with the size of

the impedance matrix Z. The number of elements in Z depends upon both how large the modeled

surface is and how wide each patch should be, where larger surfaces lead to more realistic problems

and smaller patch sizes improve the accuracy. The third factor increasing cost is the number of

samples run. Running more samples decreases the uncertainty in measuring average performance

values, but increases the time of computation. To improve results, one could run more samples of

larger surfaces with smaller patches; doing so, however, requires either more resources or faster

code. In future studies there are two major steps that could address this issue. The first is to expand

computational resources by paralellizing the code. The second step would be to use a multipole

expansion of the Green’s function to further approximate the far-field reflectance in a way that

preserves accuracy . This latter step is particularly promising; preliminary studies by Dr. Turley

show an almost tenfold reduction in required storage.

In addition to increasing model sizes and numerical accuracy, including fewer assumptions will

make models more realistic. For example, this study only looked at S-polarization. Furthermore

this study assumed a perfect conductor, but future studies could model the optical properties of

frequently-used materials. The surface I modeled was one-dimensional, which limited the kinds of

defects I could study. A two-dimensional surface would allow me to observe other kinds of defects

such as angled grooves or grooves with line shifts along a direction perpendicular to the groove

spacing. Additionally, by modeling multilayers I could study the effect of interfacial roughness

below the surface. Finally, having data about the surface characteristics of actual EUV gratings

would allow me to get a much better idea of which manufacturing defects are common and how

severe they typically are.
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3.5 Conclusion

Using the EFIE, I was able to determine how surface geometry affects the far-field reflection of

light from a diffraction grating. Using a model of a one-dimensional blazed grating I studied how

surface roughness, uncorrelated ruling errors and correlated ruling errors affect resolving power and

efficiency. I found that roughness decreases efficiency most, degrading performance by as much as

20% when σr was only about 0.05λ . I found that roughness and uncorrelated ruling errors had little

to no effect on resolving power, but that correlated ruling errors of 0.38λ may cause a decrease

in resolving power of 10%. Finally, applying these results to the case of an EUV grating with an

incident wavelength of 86 nm, I found that RMS roughness of 4.56 nm causes a 20% decrease in

efficiency and correlated error of 32.68 nm causes a 10% decrease in resolving power.



Appendix A

Calculating R

Since data about the intensity of reflected light is expressed as a function of observation angle φ , it

is necessary to convert the width of a peak ∆φ to a width ∆λ . To do so I will start with Equation

1.7, noting that φ = θr:

mλ = d(cosθi + cosθr) (A.1)

Setting m, d, and θi as constants, carrying m to the other side and taking derivatives on both sides

gives

dλ = |− d sinθrdθr

m
|, (A.2)

where the absolute value is necessary since R is necessarily positive. I will continue by dropping

the minus sign. Dividing both sides by λ and inverting I get

R≡ λ

dλ
=

mλ

d sinθrdθr
(A.3)

Equation A.3 is the definition of resolving power in my coordinate system. Setting m = 1, d = 7.9λ ,

θr = 125.49◦ and changing the notation from dλ to ∆λ gives

λ

∆λ
=

0.1555
∆θr

rads (A.4)
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or, expressing the answer in milliradians

λ

∆λ
=

155.5
∆θr

mrads. (A.5)

The accuracy of Equation A.5 depends on the assumptions that d and θr are constant. Due to the

nature of my study this is necessarily not always the case, but I can quantify how close Equation A.5

is to what it should be by defining R as a function of d and θ (I will drop the subscript). Let di and

θi denote the spacing of an ideal surface and the first-order diffraction angle of maximum intensity

from an ideal surface. By using Equation A.5, the relative error δ is

δ =

∣∣∣∣R(d,θ)−R(di,θi)

R(d,θ)

∣∣∣∣= ∣∣∣∣1− Ri

R

∣∣∣∣ . (A.6)

Figure A.1 shows where δ ≤ 1% and Figure A.2 shows where δ ≤ 5%. In all data points

from the results section the location of the first-order peak was never off by more than 0.1◦ (save

σr = 0.3λ , which was discussed in Section 3.1.1). Therefore the main factor in determining R’s

accuracy is d. Since groove spacing is preserved when adding surface roughness, Equation A.5 is

correct for Figure 3.1. For the other defects d changes from groove to groove; Equation A.5 may

not address these cases as well. Currently I do not know whether an average groove spacing for a

surface dave would suffice in Equation A.3 or if another technique for finding ∆λ from ∆θ must be

developed.
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Figure A.1 The blue region represents values of θ (in degrees) and d (in λ ) where
Equation A.5 is accurate to within 1%.
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Figure A.2 The blue region represents values of θ (in degrees) and d (in λ ) where
Equation A.5 is accurate to within 5%.



Appendix B

Choosing the Number of Points Across a

Surface

Two concerns which I had to address when choosing the number of points used for a surface model

were preserving numerical accuracy and minimizing unwanted diffraction effects. Addressing both

concerns requires compromise; larger surfaces require more points and greater accuracy requires

greater point density, but both result in higher computational cost. I address both concerns and my

compromise in this appendix.

The accuracy of Equation 1.38 is dependent upon the number of patches p used to model a

surface. Let surface width be given by w. Then patch width `= w
p . Since each patch is integrated

with a third-order quadrature rule, ` needs to be small enough that every patch on a surface is

well-approximated with a third-order polynomial. On the other hand, solving Equation 1.38 for J

requires computing the inverse of the 4p×4p matrix Z. As referenced in Section 2.4, Julia uses LU

factorization to take Z’s inverse. The number of computations required to take the inverse is O[p3];

thus the computational cost scales with the cube of p [12].

Finding a balance required running tests. My advisor Dr. Turley ran the tests included here.

39



40

Figure B.1 Real part of J for a blazed grating with four points per wavelength. The dots
represent the computed values.

He modeled an ideal blazed grating of width w = 200λ , groove spacing d = 7.9λ , and blaze angle

θB = 0.1 rad. Monochromatic plane-wave light was incident at θi = 45◦ measured clockwise from

grazing. The following plots show computed surface current J along a small portion of the surface.

Each dot represents an evaluation points; the lines are to guide the eye. Note that these plots consider

points per wavelength rather than patches per wavelength, and I will speak in terms of points per

wavelength from here.

Figures B.1 - B.3 show an increasingly detailed surface current as point density increases. At

eight points per wavelength you can see discontinuities at each groove along the surface, and at
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Figure B.2 Real part of J for a blazed grating with eight points per wavelength. The dots
represent the computed values.
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Figure B.3 Real part of J for a blazed grating with sixteen points per wavelength. The
dots represent the computed values.
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length λ width (milliradians)

200 5.442

400 2.716

1000 1.084

2000 0.541

3000 0.359

3500 0.380

4000 0.300

Table B.1 First-order peak width. Surfaces were modeled at five points per λ .

sixteen points per wavelength Re{J} appears smooth even along grooves.

Another concern was the effect of diffraction . Diffraction is most pronounced when the size of

barriers are near the same order of magnitude as an incident wave. As discussed in Section 1.3.1

this is the principle by which diffraction gratings work, but diffraction caused by the width w of the

entire grating is unwanted. Table B.1 shows the results of tests run when varying w. Point density

was kept at five per wavelength.

In a compromise between accuracy and computational cost, I decided to perform tests with

surfaces 1975 wavelengths wide at a point density of ten points per wavelength. This allowed me

to model surfaces large enough to minimize diffraction effects while retaining enough accuracy to

resolve discontinuities.
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