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ABSTRACT

DESIGN OF A FREQUENCY-DOUBLED 423 nm LASER

FOR USE IN A CALCIUM INTERFEROMETER

Jeremiah Birrell
Department of Physics and Astronomy

Bachelor of Science

In this thesis | determine the optimal parameters faximizing second
harmonic generation of 423 nm light for use in an atonmfert@meter.
The analysis is done using the nonlinear crystal BetaiBdBorate. Both
critical and noncritical phase matching methods areidered. The
optimal beam size for a Gaussian beam profile is tted. Build-up
cavity design is analyzed in order to maximize the intgmnsthe crystal.
An optimal setup, one that maximizes the output powdre®423 nm

beam, is proposed.
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1. Introduction

1.1. Interferometry

In this thesis | analyze the problem of optimizing gdency doubled 423nm laser
for use in an atom interferometer. The introductiomtams background information on
interferometry and nonlinear optical processes. Irfdh@wing sections, the optimal
values for the free parameters are calculated. Tihekgle phase matching, beam size,
and build-up cavity design. The recommended configurationderin the interferometer
is summarized in the final section.

Over the last century, interferometers have developedmimary tool for making
precise measurements in science and industry. Irdenéters are devices that split and
recombine a wave so that it travels to a detector thratggast two different paths or
“arms.” The different arms can accrue a phase #idtive to one another, due to a
difference in path length, electromagnetic fieldspthrer differences between the paths.
This results in an interference pattern at the dete@his pattern can be analyzed to
determine differences between the arms of the imterfeter [1].

Interferometers were initially developed using light wabes,they can be made
using any substance that exhibits wave properties. Mosntly, particles and even
entire atoms or molecules have been used [1]. BecheskeBroglie wavelengths of
atoms at thermal velocities are much smaller thamidvelengths of available light
sources, atom interferometers can have a much higberazy than optical
interferometers in many applications. Additionallye rest mass and internal structure of

atoms allows atom interferometers to be used in egjins where optical



interferometers cannot, such as measuring accelergtawity, or electric and magnetic

fields.

1.2. Lasers and Atom Interferometry

A necessary part of an atom interferometer is a ptisdiiecan measure the number of
atoms in a particular state after the two arms hatefered. Additionally, the atom
beam in an atom interferometer needs to be collimateders can be utilized for both of
these purposes.

A laser that is resonant with one of the atomsigitgons out of the ground state can
be directed at the beam of atoms exiting the interfetem The ground state atoms in
the beam will scatter the light. The number of grouatesatoms in the beam can be
determined by measuring the amount of light scattered bgttim beam.

Lasers can also be used to cool, and thereby collinm@deam. Laser cooling
involves placing the atoms in the path of several coyntigpagating laser beams. The
frequencies of these beams are tuned slightly belsaneace for an atomic transition.
When the atoms are traveling against a beam, theddsequency is Doppler shifted up,
and the transition will be in resonance. The rasyithange in momentum from
absorbing photons will slow the atoms down. When tbmatare traveling with the
beam, the laser’s frequency is Doppler shifted down arabsorption takes place [2].
Several counter-propagating laser beams aligned perpé&rdician atom beam can be

used to damp the atoms’ transverse motion, thereby ediignit.



1.3. Calcium Interferometry and Frequency Doubling

In this thesis, a cooling and probe laser for use ialai@n-I interferometer will be
considered. The transition that will be used to cool anbiepthe atoms is the 3 s,

- 3p°4s4pP? transition at 423 nm [3]. A minimum of approximately 12 rof¥23 nm
light is needed for the interferometer probe, butemmower will improve collimation and
the probe signal.

Unfortunately, 423 nm diode lasers are not commercialljebla. However, diode
lasers at 846 nm are widely available. A process calepiéncy doubling can be used
to transform the 846 nm light to 423 nm light. In this theseseral frequency doubling
schemes will be analyzed to determine which will allowthe creation of a 423 nm laser

beam with the required output power.

1.4.Nonlinear Processes and Frequency Doubling

Frequency doubling is a nonlinear optical process. Wheremstexposed to an
electromagnetic field oscillating at a frequengythe material becomes polarized. The
polarization can be written as a power series expamsitanms of the applied field [4]:
P =¢,(x1 + x2E + x3E? + ---)E. This expansion has a linear term, proportiondl,to
that oscillates ab, but it will also have nonlinear terms, proportiotwE?, E3, etc, that
oscillate akw, 3w, etc. For most familiar materials and under nornralstances, the
response is predominantly linear; the higher order dida@sponse tensorg) are
vanishingly small. However, for certain materials amgh field intensities, nonlinear
effects can become significant. If the second diateresponse tensor is large enough,

the polarization will have a significant componentilkeging at twice the frequency of



the applied field. This will result in the generationedectromagnetic wave at twice the
applied frequency, a phenomenon known as second harmoeiagen (SHG) or
frequency doubling [4].

Second harmonic generation with lasers is most comnatmmg by focusing the laser
into a crystal with significant nonlinear propertiesheTresponse of the crystal to the
applied fields is determined by the second dielectric resptensor. However, for a
given crystal type, input beam polarization, and angke gffects can be summarized by
a single number, called the effective nonlinear coeffic[4]. The higher the coefficient
for a given crystal and direction, the higher the cosioa efficiency; more of the energy
in the incident beam will be transferred to the secomthbaic beam. There are many
different crystals available, but the one we willitneestigating in this thesis is Beta
Barium Borate (BBO). BBO has a high nonlinear coafficand is a commonly used

crystal type for SHG.

1.5.Parameters Affecting Frequency Doubling Efficiency

The efficiency of second harmonic generation in nonlicegstals depends primarily
on four factors: phase matching, Poynting vector walkiofiut beam size, and input
beam power. Of these, phase matching, beam size, amdooeeer are optimizable
parameters, while Poynting vector walk-off is not [$he following sections will
determine the effects and appropriate values for theseptis in order to maximize

efficiency.



2. Optimization of Second Har monic Gener ation Parameters

2.1.Phase Matching

There are several problems that need to be overcome wsingg nonlinear crystals
for SHG. One of these is the dispersive nature ofimeaul crystals; the index of
refraction is frequency dependant. Due to this frequenggrikence, the first and
second harmonic beams will travel at different speediss causes the second harmonic
light generated at different points in the crystdbeoout of phase. The resulting
destructive interference greatly reduces the conveesfamency. This problem can be

overcome by phase matching.

2.1.1. Index of Refraction

There are two primary methods of phase matching, craialnoncritical, both
of which take advantage of the index of refraction’s depeod on polarization direction
(anisotropy). Anisotropic materials are classified bgéhprinciple indices of refraction
(ny,ny, n,), Which define an orthogonal coordinate system. The/sisas much simpler
in uniaxial crystals, such as BBO, where two of threehindices are equal. These are
denoted byr, = n, = n, andn, = n,, where n, andn, stand for the ordinary and
extraordinary index, respectively. Waves traveling imexial crystal are called
ordinary if they are polarized in the x-y plane, anttaotdinary if they have a
component of polarization along the z-axis (optical ax@jdinary waves experience an
index of refractiom,, while extraordinary waves experience an index of cdfra

n.(6) which depends on the angle between the wave vectdaharmdaxis [4].



2.1.2. Noncritical Phase Matching

In noncritical phase matching, the first harmonic trayarpendicular to the z-axis
and is polarized in the x-y plane. The second harmaose polarization is always
generated orthogonal to the first harmonic, is polaringtie z direction. This gives the
first harmonic an index of refractiorf and the second harmonic an ind&%.*

Noncritical phase matching takes advantage of the temperdpendence of the
indices of refraction. If a temperature can be foundrath the ordinary index for the
first harmonic equals the extraordinary index for th@sddarmonic, then noncritical
phase matching can occur. If the crystal is heated toettmigerature, both waves will
travel at the same speed and will remain in phase.nWieetemperatures involved are
reasonable, noncritical phase matching is typicallyepadfie over critical phase
matching because it avoids one of the main detrimer8$4G efficiency, walk-off (see
sections 2.2 and 2.3). Because of this, the feasibflitpncritical phase matching will
be explored first.

The index of refraction of a material at differentvet@ngthg4) can be calculated

from the Sellmeier equation:

B
A2+C

n?=A+—5—+DA? (2.1)

The Sellmeier coefficients A, B, C, and D depend omthterial and temperature. The
value of the coefficients as a function of temperaisitgpically not known so their value
will be extrapolated from the room temperature valuee ditange in index of refraction

with temperature for BBO is well approximated by a lineaction [6]. Thereforen(T)
can be approximated b(T,) + Z—TTLAT whereT, is room temperature arié is the

thermo-optic coefficient. Phase matching occurs wherotdinary index for the first



harmonic equals the extraordinary index for the secontdrac, n®(T) = n2®(T).
Solving forAT gives:
_ ne®(To) — ng (To)

AT = =, (2.2)
dT — dT

The values of the Sellmeier and thermo-optic coeffits for BBO at room temperature
are given in appendix A. Using these, the phase matalmgerature can be found for a
first harmonic beam at 846 nm. Unfortunately, the requeeatberature of over

10000 °C is not reasonable. Noncritical phase matching of BB846 nm is not an

option, so the feasibility of critical phase matchwill now be explored.

2.1.3. Critical Phase Matching Angle

In critical phase matching, the first harmonic beanem sto the crystal polarized
as an ordinary ray such that it makes an aéglath respect to the z axis in the y-z plane
(¢ = 0).% This gives the second harmonic, whose polarizationti®gonal to the first, a
component of polarization along the z-axis. As a tetheg second harmonic has an
angular dependant index of refractiag® (8). Critical phase matching involves
choosingd such that the ordinary index of refraction for thetfharmonic{%) equals
the extraordinary index of refraction for the seconahiaic (2% (0)).

The Sellmeier equation (2.1) can be used to calcupaéadn2®. From these,

n2®(6) can be calculated fiy

s _ [€0S(B)? sin(B)? _%
nee(0) = ((nzw)z * (nzw)2>

(2.3)



Figure 2.1 is a polar plot af®(8) andn®(0). The ordinary index of refraction is
independent of angle, s (0) is a circle. On the other handt®(9), is an ellipse (2.3).
For certain angles),,,, from the z axis, the circle and ellipse intersetthese angles
n® = nZ®(0); critical phase matching is achieved. Using the Selinpgieameters in
appendix A along with equations 2.1 and 2.3, the phase matclgieggfanSHG in BBO
using 846 nm light is found to be 27.6

In this section the phase matching angle was determinest threlassumption that
perfect phase matching yields optimal efficiency. HosveBoyd and Kleinman [5]
show that for a finite crystal length, a small amoafifthase mismatch is desirable. In
practice, this adjustment is very small and has a ribtgligffect on both the indices of
refraction and the walk-off angle (section 2.3). Thlaewe assume perfect phase
matching in calculating these quantities.  The optphalke mismatch will be analyzed

guantitatively in section 2.3.
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2.2.Poynting Vector Walk-off

In a birefringent material, the wave vector and Pognector of an extraordinary
wave are not parallel. Therefore, for criticallygsk matched SHG, the second
harmonic’s Poynting vector will make some angleith the first harmonic’s Poynting
vector. Because the direction of energy propagatiootishe same, the second harmonic
beam will “walk off’ the axis of wave propagation. Whée two beams no longer
overlap, the SHG efficiency is greatly reduced [4].

The walk-off anglep between the first and second harmonic is given by [4]:

tan(p) = (ne® (6))? [ 1 1

N (COENNCYD0 M @4
Using equations 2.1, 2.3, and 2p4for BBO critically phased matched @t= 27.6 is
calculated to be 3.73 The effect of this walk-off angle on efficiencyliMoe determined

in the following section.

2.3. Beam Waist and Phase Mismatch for a Gaussian Basen

With the phase matching and walk-off angles determinedgtagonship between
output power and input power can now be calculated. BagdKleinman [5] have
developed a theory of second harmonic generation inatdee @f a Gaussian input beam.
A Gaussian beam is an electromagnetic wave whosesityen any plane perpendicular
to the direction of propagation is a Gaussian distrilbutio

In order to improve efficiency, the doubling will take m@an a build-up cavity. The
laser will be coupled to tHEBEM,, mode of the cavity, which has a Gaussian intensity
profile. This makes a Gaussian beam the preferred modld laser. A Gaussian beam

is completely characterized by the location and radiits beam waist, the point where
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the beam’s “radius” is a minimum. The value of leam radius is the lateral distance
from the z-axis at which the intensity drops by a faofdr/e? [7].

Boyd and Kleinman’s theory provides a formula for the oupowver of a frequency-
doubled Gaussian laser bedhty,, as a function of the input first harmonic powey,
taking into account phase mismatch, beam waist, and vialkFbe following equation
assumes the beam waist is in the center of theéatigsd absorption by the crystal is
negligible:

Py = EnP2 (2:9)

From this equation, one can see that the output powendep@ the input power and
the effective nonlinearit\,,;. Because the effects are multiplicative, theylman
optimized separately. A build-up cavity will be used toease the input power into the

crystal. This is described in section 2.4. This seatitirbe concerned with maximizing

the effective nonlinearity.

The effective nonlinearity, which determines the efiicieof SHG, is given by the

following.
Ey = Klk,h(0,B,¢) (2.6)
Where:
2w?d?
_ T eS| (2.7)
EoN2 Ny, C3T

Here,l is the crystal lengthk, is the first harmonic wave number, andn,,, the
first and second harmonic indices of refraction, dgg the effective nonlinear
coefficient. These parameters are fixed for a givengphagching angle and are not

considered optimizable.
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h(o, B, &) contains the dependenceR)f on the optimizable parameteossB, and¢.
These variables represent the phase mismatch, wadlaglé, and beam waist
respectively (see Glossary for exact functional forfile assumption that the crystal is
cut for complete phase matching fixes the value of ttheas of refraction, along with
the walk-off angle (and therefore B). This reducesptioblem of maximizingg,,; to one
of maximizingh(a, B, &) for a given value of B wherk(g, B, ) is the following integral

[5]:

10'(1' r)e—BZ(‘t t/)2/¢&

' 2.8
A+in)(1—it) dedt 28)

m'\:m

¢

1
h(O',B,f) = 4— f
-§ -

A Matlab program that will maximize(o, B, ¢) for a given value oB and output the
optimal beam waist is given in appendix B. Using thiggpem it was determined that,
for a 10 mm long BBO crystal cut 27.6° (B = 11.4), the maximum ofi(c, B, §) is:

Rmay = 0.0619 (2.9)

This corresponds t§=1.43 andr = 0.75 (Figure 2.2). The optimal beam waist

parameter valu€, = 1.43, corresponds to a beam waigt = 23.8 um. To maximize

Emax=1.43

h(Opmax, 11.4,8)

H

Figure 2.2: Optimal Bem Wais
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SHG, the input laser beam should be focused into trstadrsuch that the beam waist is
23.8 um.

The phase mismatch parameter vatties 0.75, indicates that incomplete phase
matching is optimal. Although we assumed complete phasehing when determining
the crystal cut, indices of refraction, aBdthe difference between the optimal and
complete phase matching angles is so small that iniggatite crystal can be cut for
perfect phase matching [5]. The incomplete phase matchijtiom can be met
experimentally by slight adjustments of the crystgirahent. As mentioned in 2.1.3, the

changes in angle necessary are too small to sigrtifycaffect B orn,,, .

2.4.Cavity Design

The heavy dependence of frequency doubling efficiency on inputmpmeans that a
build-up cavity is needed to achieve the necessary outpugrpdA build-up cavity is an
arrangement of mirrors that allows the electromagmetwer inside to build up to a
higher value than the input power. This higher poweryglld a better SHG efficiency.

The two most common cavity configurations are linear leowtie. A linear cavity is
composed of two mirrors, with the nonlinear crystalasn them (Figure 2.3). The
beam travels both directions as it reflects offhaf mirrors. A bow tie cavity is

composed of two curved mirrors and two flat mirrors (Figudg with the nonlinear

Input
Z% —— > 2\

Input : Reflection

: —>

<— <“ Outpu

Reflection
Figure 2.3: Linear Cavity

& — L/
’ . . Outpu
Figure 2.4: Bow Tie Cavity
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crystal between mirrors 3 and 4. In a bow tie caWigylieam travels in one direction
only. In both configurations the output mirror is desigteetle reflective to the first
harmonic but transparent to the second harmonic. Addilig the curvature of the
mirrors is chosen to provide the appropriate beam waiktlee reflectivity of the mirrors
is chosen to maximize the intensity in the cavity.

The bow tie cavity requires twice as many mirrorshaslinear cavity, making it more
expensive and more difficult to align. In addition, thgelr hits the mirrors at an angle,
which can cause astigmatism. However, the lineatychas more significant
drawbacks. First, the counter propagating first harmoe&ns create a standing wave
pattern of high and low intensity spots. This degradeslupmlity. Secondly, the
second harmonic is generated in both directions, leadipgwer loss out of the input
mirror. Third, reflections off of the input mirror aceupled back into the laser, which
can lead to instability [8]. These significant drawbadsoaiated with linear cavities

suggest that a bow-tie cavity would be preferable.

2.4.1. Calculation of Optimal Reflectivity

Designing a bow tie cavity requires a calculation ofapemal reflectivity of all four
mirrors, the optimal focal length of the two curvednouis, as well as a stability
assessment. We will assume the mirrors have ritesog or other losses and ignore the
absorption in and reflection off the crystal, as ¢hae typically small compared to
mirror transmission and SHG losses. l.rid f denote the field transmission and
reflection coefficients of the"hmirror, respectively (Figure 2.4) aid the field losses in

the crystal due to the transfer of power to the seconddmaemA laser beam with
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electric field amplitude Eis incident on the first mirror. After the first mor the
amplitude (ignoring phase) is:
(2.10)
E = tlEO
The beam then propagates to the second mirror andtsedigain. After this second
reflection, the amplitude is:
(2.11)
E = rztlEO
Similarly, after reflecting off the third and fourth mars and traveling through the
crystal, the amplitude is:
(2.12)
E = T'2T3T4fct1E0
The beam then reflects off the first mirror and carabiit's amplitude with the
transmitted incident beam (assuming the beams areasejph

E = T1T2T3T4fct1E0 + tlEO (213)

So after n round trips, the field amplitude just afteritipgit mirror is:

n
E = Z(T1T2T3T4‘Ec)it1E0 (214)
i=0

In the limit asn — oo, this geometric series converges to:

_ bk (2.15)
1 - T1T2T3T4fc

The amplitude at the crystal's position, between mirdand 4, is:

T3t Ey

E, = (2.16)

1 - T1T2T3T4fc
Mirrors are more commonly characterized by their pawéectance and transmittance,
R and T respectively. These are related to the fefldctance and transmittance, r and t,

by R = r? andT = t2. Assuming the mirrors are lossleBs,+ T,, = 1 giving
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t, =+1—R, . Interms of R:

N RZR3(1 - Rl)EO (217)

w =

1 - R1R2R3R4’€C

The beam’s power is proportional to the square of &#id Emplitude. To maximize the
power, the square of the amplitude must be maximized.

RyR3(1—Ry)Py (2.18)

E?xP =
Y (1= JRRR3R,£,)?

The field loss due to SHG in the crystafjs= ,/1 — E,;; P, whereE,; is the effective
nonlinearity, as defined in section 2.3. Substituding thidtreda equation 2.18 gives a
implicit equation forP,,:

_ RyR3(1—Ry)Py
(1= VR1R2R3Ry (1 — Ey Py))?

(2.19)

w

From equation 2.5 it is evident that SHG efficiency iged@ent on the input power into
the crystal. Therefore, the reflectivities that maixe P, for a given input poweR,,
should be found. The closRg, R;, andR, are to 1, the less power will be lost out those
mirrors as the beam circulates, so those mirrdect¥ities should be as high as possible.
The input mirror is different, however. A higher vafoe R, reduces the losses in the
circulating beam, but limits the light coming into tevity. The value oR,that
maximizes the power (denot&d,,,,) can be calculated by solving:

dp, _ 0
de leax (220)

Which gives:

leax = (1 - Enlpw)R2R3R4 (221)
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Typical values for highly reflective mirrors aRe~ 0.99. LettingR, = R; = R, = 0.99
turns equations 2.19 and 2.21 into two implicit functionsPfpandR;,,,., respectively,
in terms ofP,. For SHG in BBO, configured as specified in the previegsiens,
E, = 1.1 x10~* . This value of,, indicates that the single pass conversion efficiency
is low enough to neglect crystal losses when designingaviey. We therefore use the
approximationl — E,,;P,, = 1. Making the approximatioh — E,;; P, = 1is equivalent
to selectingR; = Rymax (Po = 0) whereR,,,..(Py) is the optimal value oR; as a
function of the input power. Figure 2.5 shows g} .. (P,) is approximately constant
over the range of powers we are interested in; thexefpproximation doesn’t
significantly affect the chosen value ®f. Making the approximatioh — E,,;P,, =
1 givesSR jax = RyR3R, = 0.97.

The relationship betwedr), andP, is approximately linear (Figure 2.6), and will be
approximated by:

P» = 30P, (2.22)

This is a conservative estimate over the rafg¢0,1] W, an appropriate range for

typical diode laser and amplifier output powers. Arenaccurate value @, for a

105 a0+

— 25
0975 :
20

leax 0.952 pw (W) 15—;

0925+

O AL A e e e B e o o
0o 0.25 05 07s 1.0 oo 025 0s 075 1.0

Py (W) Py (W)

Figure 2.5 OptimumIinput Figure 2.6: Power in Cryst
Reflectivity versus Input Power versus Input Power
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particular value of, can be calculated from equation 2.19. From equation 2i22 it
evident that the power circulating in the cavity is sigaifitly greater than the input

power. This greatly increases the SHG efficiency.

2.4.2. Calculation of Mirror Focal Length

In section 2.5 it was shown that the optimal beanstfar doubling 846 nm light
in a 10 mm BBO crystal i23.8 um. The radii of curvature of mirrors 3 and 4 can be
chosen to provide this beam waist in the center oftystal. SNLO [9] is a computer
program designed to assist in cavity design. By inputtingvehelength, the crystal
length and index of refraction, the cavity mirror ciovas, and the distances between
mirrors, the program will calculate the beam waighm crystal and assess the cavity's
stability. By varying the distances between mirrors dn@ir curvatures, a combination
can be found that provides the desired beam Whiaishe crystal. Using SNLO, it was
determined that a éeam waist 0£3.8 um can be achieved using two mirrors with
radii of curvature of 75 mm, with 103 mm of separation betwairrors 3 and 4, and a

total cavity path length of 405 mm.

2.5. Second Harmonic Power

All the necessary parameters have been calculatedetordiee the second harmonic
output power for the proposed frequency doubling scheme. itBtibgtthe results from
equations 2.9 and 2.22, along with the appropriate constatatshe equation for the
second harmonic power (2.5) gives:

P,,, = 0.095PZ W1 (2.23)
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WhereP, is the input laser power into the cavity.

3. Conclusion

423 nm laser light is an integral part of building a Calciaterferometer. In this
thesis the optimum parameter values were calculat@édised to determine the output
power at 423 nm of a frequency-doubled 846 nm Gaussian beam. nRdtakeng,
Poynting vector walk-off, and build-up cavity design welestainto account in the
analysis. The values of the optimized parametera fidd mm long Beta Barium Borate
crystal in a bow tie build up cavity were calculatedbéathe following: critical Phase
matching angleé = 27.6° and¢ = 0, beam waistv, = 23.8 um, mirror radii of
curvature of75 mm, input mirror reflectivity oR = 0.97 (assuming R =0 .99 for the
other three mirrors), curved mirror separation of 103 amd, total cavity path length of
405 mm.

The second harmonic output power of this configuratios eedculated to be
0.095P2 W, whereP, is the output power of the 846 nm laser in watts. Tieze the
necessary 12 mW for use in the interferometer, an iaget power of 356 mW is
necessary. This is well within the range of availabler@a@liode laser and amplifier
setups, making a frequency-doubled 846 nm laser a feasible sddiZz® nm light for a

Calcium interferometer.
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Notes

1. Superscripts on indices of refraction that contaimdicate what frequency the
index corresponds to, the fundamental or the first hamnoni

2. This describes Type | (ooe) critical phase matching. Typeicates that a first
harmonic beam with a single polarization directionged. This is opposed to
Type I, in which the first harmonic is composed of twthogonally polarized
beams. ooe indicates the first harmonic is an ordirarywhile the second
harmonic is an extraordinary ray.

3. SeePhysicsof Light and Optics[10] pp. 95-99 for a derivation.

4. SNLO uses a FWHM definition of beam waist, whereasimthesis the 1fe

definition is used. To translate FWHM beam waist® 1/é beam waist,

multiply the former byl /v/21n 2.
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Appendix

Appendix A: Beta Barium Borate Crystal Properties

1. Sellmeier parameters (room temperature):

A B C D

(um*) | (um™?) | (um™?)

n, 2.373( | 0.012¢ | -0.015¢ | -0.004«
1, 2.740° | 0.018 | -0.017¢ | -0.015¢

(Davis et al., 1987) [6]

2. Nonlinear coefficients:

Type | Critical Phase Matching (00€d,ss = d;5 sin(8) — d,, cos(8) cos (3¢)
Type Il Critical Phase Matching (eoe, oe®);; = d,,cos (0)*cos(3¢)

dis =0.08 pm/V  d,, = 2.3 (pm/V)

(Sutherland, 208372, 296) [4], (Smith, 2007) [9]

3. Thermo-optic coefficients:

dn,
dT

dn,
dT

=-16.6 x107%/°C =-93x107%/°C

(Davis et al., 1987) [6]



Appendix B: Matlab Program for Calculation of Optimal Beam Waist

clear; close; clc;

N=200; m=0; n=0;

rho=.0651; %walk-off angle

no=1.659; %ordinary index of refraction

lambda=846e-9; %first harmonic wavelength

I=.01; Y%crystal length

B=rho*sqrt(pi*no*l/2/lambda);  %value for B based onlkvaff

zetamin=1; zetamax=4, zetastep=10"-2; %range for zeta
j=ceil((zetamax-zetamin)/zetastep+1);

sigmamin=-.1; sigmamax=1; sigmastep=10"-2; %range forasigm
k=ceil((sigmamax-sigmamin)/sigmastep+1);

Sigma=zeros(1,k); z=zeros(1,)); H=zeros(j,k); f=zergbs(\

for sigma=sigmamin:sigmastep:sigmamax  %step thrsiggha
n=n+1;
for zeta=zetamin:zetastep:zetamax  %step throeigh
m=m-+1,
h=2*zeta/(N-1);
t=-zeta:h:zeta;
[T, T1]=meshgrid(t);
f=exp(i*sigma*(T-T1)).*exp(-B"2*(T-T1)."2/zeta)./(TH)./(1-*T1);
%integrand of h(sigma,B,zeta)

H(m,n)=1/4/zeta*real(sum(sum(f))*h"2); %numaly integrate to get

%h(sigma,B,zeta)
z(m)=zeta;
end
m=0;
Sigma(n)=sigma;
end

[X,Y]=meshgrid(z,Sigma);
surf(X,Y,H."
xlabel(\zeta')
ylabel(\sigma’)
zlabel('h(\sigma,B,\zeta)")

[hm,m_max]=max(H);
[hmm,n_max]=max(max(H));

fprintf('max h')
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max(max(H)) %maximum value of h(sigma, B, zeta)

fprintf('optimal zeta ')

z(m_max(n_max))

fprintf('optimal sigma’)

Sigma(n_max)

fprintf(‘'optimal w0")

sgrt(lambda*l/2/pi/no/z(m_max(n_max))) %value of beanmstveorresponding to
optimal zeta

figure

loglog(z,max(H.")) %plot of h(sigma_max,B,zeta)
axis([zetamin zetamax min(min(H)) max(max(H))])
xlabel(\zeta')

ylabel(*h")

title("h(\sigma, B, \zeta) optimized in \sigma’)
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Appendix C: Glossary
Anisotropy: Directional dependence

B: A parameter in the optimization of SHG that repntse¢he walk-off angleB =

py/ TN, 1/2A
Beam waist: The point in a Gaussian beam where tAdd#ém diameter is a minimum.

Build up cavity: An arrangement of mirrors that allows & circulating beam power
greater than the input beam power.

Critical Phase Matching: A process where the angledmtwhe crystal's optical axis and
the first harmonic wave is adjusted to achieve phase magtchi

Effective nonlinear coefficient: A constant describihg strength of a given nonlinear
process.

Effective nonlinearity(E,,;): The coefficient relating the output beam power tostipgare
of the input beam power.

First harmonic beam: The input beam into the nonlinestat.
Frequency doubling: See second harmonic generation

Gaussian Beam: An electromagnetic wave who intensitfjlgoro any plane
perpendicular to the wave vector is a Gaussian disiif.

Index of refraction: The ratio of speed of light towwapeed of an electromagnetic wave
in a material.

Interferometer: A device that splits and recombines aewsauvthat it travels to a detector
through at least two different paths or “arms”.

Noncritical Phase Matching: A process where the nonliogetal's temperature is
adjusted to achieve phase matching.

Optical Axis: The direction in a uniaxial crystal fohieh all polarizations have the same
index of refractionn,. Typically denoted the z-axis.

P,,,: The power in the second harmonic beam exiting the meanlicrystal.
P,: The power in the first harmonic beam entering thainear crystal.

Phase matching: Any process that allows the first armhsiesarmonic beams to remain
in phase.
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Poynting vector: A vector indicating the directionesfergy propagation of an
electromagnetic wave.

Poynting vector walk-off: A phenomenon in birefringerdtarials where the Poynting
vector of the first harmonic is not parallel to the Rayg vector of the second harmonic.

Second harmonic: The output beam from the nonlineatadnyith twice the input
frequency.

Second harmonic generation (SHG): A process whereby therpo an input
electromagnetic wave is transferred to another eleetgnetic wave at twice the input
frequency. Also known as frequency doubling.

o: A parameter in the optimization of SHG that repntseéhe phase matching of the
beamso = n,nwZAk/A whereAk is the phase mismatch, givendly = |2k, — k,|.

Thermo-optic coefficient: The first derivative of timelex of refraction with respect to
temperature. Usually given at room temperature.

Uniaxial (birefringent): A material in which two of therée principle indices of
refraction are equal.

Wave vector: A vector indicating the direction of wgwopagation with magnitude equal
to the wave number.

&: A parameter in the optimization of SHG that repnes¢he beam waist of the first
harmonic.é = Al/(2nn,wé)
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