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ABSTRACT 

 

DESIGN OF A FREQUENCY-DOUBLED 423 nm LASER 

FOR USE IN A CALCIUM INTERFEROMETER 

 

Jeremiah Birrell 

Department of Physics and Astronomy 

Bachelor of Science 

 
 

In this thesis I determine the optimal parameters for maximizing second 

harmonic generation of 423 nm light for use in an atom interferometer.  

The analysis is done using the nonlinear crystal Beta Barium Borate.  Both 

critical and noncritical phase matching methods are considered.  The 

optimal beam size for a Gaussian beam profile is calculated.  Build-up 

cavity design is analyzed in order to maximize the intensity in the crystal.  

An optimal setup, one that maximizes the output power of the 423 nm 

beam, is proposed. 
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1. Introduction 

1.1.  Interferometry 

In this thesis I analyze the problem of optimizing a frequency doubled 423nm laser 

for use in an atom interferometer.  The introduction contains background information on 

interferometry and nonlinear optical processes.  In the following sections, the optimal 

values for the free parameters are calculated.  These include phase matching, beam size, 

and build-up cavity design.  The recommended configuration for use in the interferometer 

is summarized in the final section. 

Over the last century, interferometers have developed as a primary tool for making 

precise measurements in science and industry.  Interferometers are devices that split and 

recombine a wave so that it travels to a detector through at least two different paths or 

“arms.”  The different arms can accrue a phase shift relative to one another, due to a 

difference in path length, electromagnetic fields, or other differences between the paths.  

This results in an interference pattern at the detector.  This pattern can be analyzed to 

determine differences between the arms of the interferometer [1].   

Interferometers were initially developed using light waves, but they can be made 

using any substance that exhibits wave properties.  More recently, particles and even 

entire atoms or molecules have been used [1].  Because the deBroglie wavelengths of 

atoms at thermal velocities are much smaller than the wavelengths of available light 

sources, atom interferometers can have a much higher accuracy than optical 

interferometers in many applications.  Additionally, the rest mass and internal structure of 

atoms allows atom interferometers to be used in applications where optical 
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interferometers cannot, such as measuring acceleration, gravity, or electric and magnetic 

fields. 

 

1.2.  Lasers and Atom Interferometry 

A necessary part of an atom interferometer is a probe that can measure the number of 

atoms in a particular state after the two arms have interfered.  Additionally, the atom 

beam in an atom interferometer needs to be collimated.  Lasers can be utilized for both of 

these purposes.   

A laser that is resonant with one of the atoms’ transitions out of the ground state can 

be directed at the beam of atoms exiting the interferometer.  The ground state atoms in 

the beam will scatter the light.  The number of ground state atoms in the beam can be 

determined by measuring the amount of light scattered by the atom beam.   

Lasers can also be used to cool, and thereby collimate, the beam.  Laser cooling 

involves placing the atoms in the path of several counter-propagating laser beams.  The 

frequencies of these beams are tuned slightly below resonance for an atomic transition.  

When the atoms are traveling against a beam, the laser’s frequency is Doppler shifted up, 

and the transition will be in resonance.  The resulting change in momentum from 

absorbing photons will slow the atoms down.  When the atoms are traveling with the 

beam, the laser’s frequency is Doppler shifted down and no absorption takes place [2].  

Several counter-propagating laser beams aligned perpendicular to an atom beam can be 

used to damp the atoms’ transverse motion, thereby collimating it. 
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1.3.  Calcium Interferometry and Frequency Doubling 

In this thesis, a cooling and probe laser for use in a Calcium-I interferometer will be 

considered.  The transition that will be used to cool and probe the atoms is the 3p64s2 1�� 

- 3p64s4p ��� transition at 423 nm [3].  A minimum of approximately 12 mW of 423 nm 

light is needed for the interferometer probe, but more power will improve collimation and 

the probe signal.     

Unfortunately, 423 nm diode lasers are not commercially available.  However, diode 

lasers at 846 nm are widely available.  A process called frequency doubling can be used 

to transform the 846 nm light to 423 nm light.  In this thesis, several frequency doubling 

schemes will be analyzed to determine which will allow for the creation of a 423 nm laser 

beam with the required output power.  

 

1.4. Nonlinear Processes and Frequency Doubling 

Frequency doubling is a nonlinear optical process.  When matter is exposed to an 

electromagnetic field oscillating at a frequency �, the material becomes polarized.  The 

polarization can be written as a power series expansion in terms of the applied field [4]: 

� = 	�
�� + ��� + ���� + ⋯ ��.  This expansion has a linear term, proportional to �, 

that oscillates at �, but it will also have nonlinear terms, proportional to ��, ��, etc, that 

oscillate at 2�, 3�, etc.  For most familiar materials and under normal circumstances, the 

response is predominantly linear; the higher order dielectric response tensors (�� are 

vanishingly small.  However, for certain materials and high field intensities, nonlinear 

effects can become significant.  If the second dielectric response tensor is large enough, 

the polarization will have a significant component oscillating at twice the frequency of 
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the applied field.  This will result in the generation an electromagnetic wave at twice the 

applied frequency, a phenomenon known as second harmonic generation (SHG) or 

frequency doubling [4].   

Second harmonic generation with lasers is most commonly done by focusing the laser 

into a crystal with significant nonlinear properties.  The response of the crystal to the 

applied fields is determined by the second dielectric response tensor.  However, for a 

given crystal type, input beam polarization, and angle, the effects can be summarized by 

a single number, called the effective nonlinear coefficient [4].  The higher the coefficient 

for a given crystal and direction, the higher the conversion efficiency; more of the energy 

in the incident beam will be transferred to the second harmonic beam.   There are many 

different crystals available, but the one we will be investigating in this thesis is Beta 

Barium Borate (BBO).  BBO has a high nonlinear coefficient and is a commonly used 

crystal type for SHG. 

 

1.5. Parameters Affecting Frequency Doubling Efficiency  

The efficiency of second harmonic generation in nonlinear crystals depends primarily 

on four factors: phase matching, Poynting vector walk-off, input beam size, and input 

beam power.  Of these, phase matching, beam size, and beam power are optimizable 

parameters, while Poynting vector walk-off is not [5].  The following sections will 

determine the effects and appropriate values for these parameters in order to maximize 

efficiency.   
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2. Optimization of Second Harmonic Generation Parameters 

2.1. Phase Matching  

There are several problems that need to be overcome when using nonlinear crystals 

for SHG.  One of these is the dispersive nature of nonlinear crystals; the index of 

refraction is frequency dependant.  Due to this frequency dependence, the first and 

second harmonic beams will travel at different speeds.  This causes the second harmonic 

light generated at different points in the crystal to be out of phase.  The resulting 

destructive interference greatly reduces the conversion efficiency.  This problem can be 

overcome by phase matching. 

 

2.1.1. Index of Refraction 

There are two primary methods of phase matching, critical and noncritical, both 

of which take advantage of the index of refraction’s dependence on polarization direction 

(anisotropy). Anisotropic materials are classified by three principle indices of refraction 

(�� , ��, ��), which define an orthogonal coordinate system.  The analysis is much simpler 

in uniaxial crystals, such as BBO, where two of the three indices are equal.  These are 

denoted by �� = �� ≡ �� and �� ≡ ��, where  �� and �� stand for the ordinary and 

extraordinary index, respectively.  Waves traveling in a uniaxial crystal are called 

ordinary if they are polarized in the x-y plane, and extraordinary if they have a 

component of polarization along the z-axis (optical axis).  Ordinary waves experience an 

index of refraction ��, while extraordinary waves experience an index of refraction 

��
 � which depends on the angle between the wave vector and the z-axis [4]. 
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2.1.2. Noncritical Phase Matching 

In noncritical phase matching, the first harmonic travels perpendicular to the z-axis 

and is polarized in the x-y plane.  The second harmonic, whose polarization is always 

generated orthogonal to the first harmonic, is polarized in the z direction.  This gives the 

first harmonic an index of refraction ��! and the second harmonic an index ���!.1   

Noncritical phase matching takes advantage of the temperature dependence of the 

indices of refraction.  If a temperature can be found at which the ordinary index for the 

first harmonic equals the extraordinary index for the second harmonic, then noncritical 

phase matching can occur.  If the crystal is heated to this temperature, both waves will 

travel at the same speed and will remain in phase.  When the temperatures involved are 

reasonable, noncritical phase matching is typically preferable over critical phase 

matching because it avoids one of the main detriments to SHG efficiency, walk-off (see 

sections 2.2 and 2.3).  Because of this, the feasibility of noncritical phase matching will 

be explored first. 

The index of refraction of a material at different wavelengths 
"� can be calculated 

from the Sellmeier equation:  

�� = # + $
%&'( + )"� 

The Sellmeier coefficients A, B, C, and D depend on the material and temperature.  The 

value of the coefficients as a function of temperature is typically not known so their value 

will be extrapolated from the room temperature value.  The change in index of refraction 

with temperature for BBO is well approximated by a linear function [6].  Therefore, �
*� 

can be approximated by �
*�� + +,
+- Δ* where *� is room temperature and 

+,
+- is the 

thermo-optic coefficient.  Phase matching occurs when the ordinary index for the first 

(2.1) 
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(2.3) 

harmonic equals the extraordinary index for the second harmonic,  ��!
*� = ���!
*�.  

Solving for Δ* gives:  

Δ* = ���!
*�� − ��!
*��
0��0* − 0��0*

 

The values of the Sellmeier and thermo-optic coefficients for BBO at room temperature 

are given in appendix A.  Using these, the phase matching temperature can be found for a 

first harmonic beam at 846 nm.  Unfortunately, the required temperature of over 

10000 3�  is not reasonable.  Noncritical phase matching of BBO at 846 nm is not an 

option, so the feasibility of critical phase matching will now be explored.  

 

2.1.3. Critical Phase Matching Angle 

In critical phase matching, the first harmonic beam is sent into the crystal polarized 

as an ordinary ray such that it makes an angle   with respect to the z axis in the y-z plane 

(4 = 0�.2  This gives the second harmonic, whose polarization is orthogonal to the first, a 

component of polarization along the z-axis.  As a result, the second harmonic has an 

angular dependant index of refraction, ���!
 �.  Critical phase matching involves 

choosing   such that the ordinary index of refraction for the first harmonic (��!) equals 

the extraordinary index of refraction for the second harmonic (���!
 )).   

The Sellmeier equation (2.1) can be used to calculate ��!and ���!.  From these, 

���!
 ) can be calculated by3: 

 ���!
 � = 5cos
 ��

���!�� + sin
 ��


���!�� ;
<��

 

(2.2) 
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Figure 2.1: Critical Phase  
Matching Angle 

Figure 2.1 is a polar plot of ��!
 � and ���!( �.  The ordinary index of refraction is 

independent of angle, so ��!
 � is a circle.  On the other hand, ���!
 �, is an ellipse (2.3).  

For certain angles,  =>, from the z axis, the circle and ellipse intersect.  At these angles 

��! = ���!( �; critical phase matching is achieved.  Using the Sellmeier parameters in 

appendix A along with equations 2.1 and 2.3, the phase matching angle for SHG in BBO 

using 846 nm light is found to be 27.6o. 

In this section the phase matching angle was determined under the assumption that 

perfect phase matching yields optimal efficiency.  However, Boyd and Kleinman [5] 

show that for a finite crystal length, a small amount of phase mismatch is desirable.  In 

practice, this adjustment is very small and has a negligible effect on both the indices of 

refraction and the walk-off angle (section 2.3).  Therefore we assume perfect phase 

matching in calculating these quantities.     The optimal phase mismatch will be analyzed 

quantitatively in section 2.3. 

 

 

 

z axis 
 => 

��!
 � 
���!
 � 
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2.2. Poynting Vector Walk-off 

In a birefringent material, the wave vector and Poynting vector of an extraordinary 

wave are not parallel.  Therefore, for critically phase matched SHG, the second 

harmonic’s Poynting vector will make some angle ? with the first harmonic’s Poynting 

vector.  Because the direction of energy propagation is not the same, the second harmonic 

beam will “walk off” the axis of wave propagation.  When the two beams no longer 

overlap, the SHG efficiency is greatly reduced [4].   

The walk-off angle ? between the first and second harmonic is given by [4]: 

tan
?� = 
���!
 ���
2 B 1


���!�� − 1

���!��C sin 
2 � 

Using equations 2.1, 2.3, and 2.4, ? for BBO critically phased matched at   = 27.6o is 

calculated to be 3.73o.   The effect of this walk-off angle on efficiency will be determined 

in the following section. 

 

2.3.   Beam Waist and Phase Mismatch for a Gaussian Laser Beam 

With the phase matching and walk-off angles determined, the relationship between 

output power and input power can now be calculated.  Boyd and Kleinman [5] have 

developed a theory of second harmonic generation in the case of a Gaussian input beam.  

A Gaussian beam is an electromagnetic wave whose intensity in any plane perpendicular 

to the direction of propagation is a Gaussian distribution.   

In order to improve efficiency, the doubling will take place in a build-up cavity.  The 

laser will be coupled to the *�D�� mode of the cavity, which has a Gaussian intensity 

profile.  This makes a Gaussian beam the preferred model for the laser. A Gaussian beam 

is completely characterized by the location and radius of its beam waist, the point where 

(2.4) 
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the beam’s “radius” is a minimum.  The value of the beam radius is the lateral distance 

from the z-axis at which the intensity drops by a factor of 1 E�⁄  [7]. 

Boyd and Kleinman’s theory provides a formula for the output power of a frequency-

doubled Gaussian laser beam, ��!, as a function of the input first harmonic power, �!, 

taking into account phase mismatch, beam waist, and walk-off.  The following equation 

assumes the beam waist is in the center of the crystal and absorption by the crystal is 

negligible: 

��! = �,G�!� 

From this equation, one can see that the output power depends on the input power and 

the effective nonlinearity, �,G.  Because the effects are multiplicative, they can be 

optimized separately.  A build-up cavity will be used to increase the input power into the 

crystal.  This is described in section 2.4.  This section will be concerned with maximizing 

the effective nonlinearity. 

 

The effective nonlinearity, which determines the efficiency of SHG, is given by the 

following. 

                                                               �,G = HIJ�ℎ
L, Β, N) 

Where: 

H = 2��0�OO�
	��!� ��!P�Q 

Here, I is the crystal length, J� is the first harmonic wave number, �! and ��! the 

first and second harmonic indices of refraction, and 0�OO the effective nonlinear 

coefficient.  These parameters are fixed for a given phase matching angle and are not 

considered optimizable.   

(2.5) 

(2.6) 

(2.7) 
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ℎ
L, Β, N) contains the dependence of �,G on the optimizable parameters, L, Β, and N. 

These variables represent the phase mismatch, walk-off angle, and beam waist 

respectively (see Glossary for exact functional form).  The assumption that the crystal is 

cut for complete phase matching fixes the value of the indices of refraction, along with 

the walk-off angle (and therefore B).  This reduces the problem of maximizing �,G to one 

of maximizing ℎ
L, Β, N� for a given value of B where ℎ
L, Β, N� is the following integral 

[5]: 

 

ℎ
L, Β, N� = 1
4N S S ETU
V<VW�E<$&
V<VW�&/Y


1 + Z[�
1 − Z[\� 0[0[\
Y

<Y

Y

<Y
 

 

A Matlab program that will maximize ℎ
L, Β, N� for a given value of Β and output the 

optimal beam waist is given in appendix B.  Using this program it was determined that, 

for a 10 mm long BBO crystal cut at 27.6� (` = 11.4�, the maximum of ℎ
L, Β, N� is: 

ℎ>a� = 0.0619 

This corresponds to N=1.43 and L = 0.75  (Figure 2.2).  The optimal beam waist 

parameter value, N = 1.43, corresponds to a beam waist d� = 23.8 fg.  To maximize 

(2.8) 

(2.9) 

 
                             N 

 ℎ
L>a� , 11.4, N�

 

 

 

 

N>a�=1.43 

Figure 2.2: Optimal Beam Waist 
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SHG, the input laser beam should be focused into the crystal such that the beam waist is 

23.8 fg.   
The phase mismatch parameter value, L = 0.75, indicates that incomplete phase 

matching is optimal.  Although we assumed complete phase matching when determining 

the crystal cut, indices of refraction, and Β, the difference between the optimal and 

complete phase matching angles is so small that in practice, the crystal can be cut for 

perfect phase matching [5].  The incomplete phase matching condition can be met 

experimentally by slight adjustments of the crystal alignment.  As mentioned in 2.1.3, the 

changes in angle necessary are too small to significantly affect B or ��!.  

 

2.4. Cavity Design 

The heavy dependence of frequency doubling efficiency on input power means that a 

build-up cavity is needed to achieve the necessary output power.  A build-up cavity is an 

arrangement of mirrors that allows the electromagnetic power inside to build up to a 

higher value than the input power.  This higher power will yield a better SHG efficiency.   

The two most common cavity configurations are linear and bowtie.  A linear cavity is 

composed of two mirrors, with the nonlinear crystal between them (Figure 2.3).  The 

beam travels both directions as it reflects off of the mirrors.  A bow tie cavity is 

composed of two curved mirrors and two flat mirrors (Figure 2.4) with the nonlinear 

Figure 2.3: Linear Cavity 

Input 

Output 
Reflection 

1 2 

3 4 

      Figure 2.4: Bow Tie Cavity 

Input 

Output 

Reflection 
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crystal between mirrors 3 and 4.  In a bow tie cavity the beam travels in one direction 

only.  In both configurations the output mirror is designed to be reflective to the first 

harmonic but transparent to the second harmonic.  Additionally, the curvature of the 

mirrors is chosen to provide the appropriate beam waist and the reflectivity of the mirrors 

is chosen to maximize the intensity in the cavity.   

The bow tie cavity requires twice as many mirrors as the linear cavity, making it more 

expensive and more difficult to align.  In addition, the laser hits the mirrors at an angle, 

which can cause astigmatism.   However, the linear cavity has more significant 

drawbacks.  First, the counter propagating first harmonic beams create a standing wave 

pattern of high and low intensity spots.  This degrades beam quality.  Secondly, the 

second harmonic is generated in both directions, leading to power loss out of the input 

mirror.  Third, reflections off of the input mirror are coupled back into the laser, which 

can lead to instability [8].  These significant drawbacks associated with linear cavities 

suggest that a bow-tie cavity would be preferable. 

 

2.4.1.  Calculation of Optimal Reflectivity 

Designing a bow tie cavity requires a calculation of the optimal reflectivity of all four 

mirrors, the optimal focal length of the two curved mirrors, as well as a stability 

assessment.  We will assume the mirrors have no scattering or other losses and ignore the 

absorption in and reflection off the crystal, as these are typically small compared to 

mirror transmission and SHG losses.  Let tn and rn denote the field transmission and 

reflection coefficients of the nth mirror, respectively (Figure 2.4) and ℓi the field losses in 

the crystal due to the transfer of power to the second harmonic.  A laser beam with 
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electric field amplitude E0 is incident on the first mirror.  After the first mirror the 

amplitude (ignoring phase) is: 

� = j��� 

The beam then propagates to the second mirror and reflects again.  After this second 

reflection, the amplitude is: 

� = k�j��� 

Similarly, after reflecting off the third and fourth mirrors and traveling through the 

crystal, the amplitude is: 

� = k�k�klℓij��� 

The beam then reflects off the first mirror and combines it’s amplitude with the 

transmitted incident beam (assuming the beams are in phase): 

� = k�k�k�klℓij��� + j��� 

So after n round trips, the field amplitude just after the input mirror is: 

� = m
k�k�k�klℓi�Tj���
,

Tn�
 

In the limit as � → ∞, this geometric series converges to: 

� = j���1 − k�k�k�klℓi 

The amplitude at the crystal’s position, between mirrors 3 and 4, is:  

�! = k�k�j���1 − k�k�k�klℓi 

Mirrors are more commonly characterized by their power reflectance and transmittance, 

R and T respectively.  These are related to the field reflectance and transmittance, r and t, 

by q = k� and * = j�.  Assuming the mirrors are lossless, q, + *, = 1 giving   

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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j, = r1 − q, .  In terms of R: 

�! = rq�q�
1 − q����
1 − rq�q�q�qlℓi

 

The beam’s power is proportional to the square of the field amplitude.  To maximize the 

power, the square of the amplitude must be maximized.   

�!� ∝ �! = q�q�
1 − q����

1 − rq�q�q�qlℓi�� 

The field loss due to SHG in the crystal is ℓi = r1 − �,G�! where �,G  is the effective 

nonlinearity, as defined in section 2.3.  Substituding this result into equation 2.18 gives a 

implicit equation for �!: 

�! = q�q�
1 − q����

1 − rq�q�q�ql
1 − �,G�!��� 

 

From equation 2.5 it is evident that SHG efficiency is dependent on the input power into 

the crystal.  Therefore, the reflectivities that maximize �! for a given input power, ��, 

should be found.  The closer q�, q�, and ql are to 1, the less power will be lost out those 

mirrors as the beam circulates, so those mirror reflectivities should be as high as possible.  

The input mirror is different, however.  A higher value for q� reduces the losses in the 

circulating beam, but limits the light coming into the cavity.  The value of q�that 

maximizes the power (denoted q�>a�) can be calculated by solving: 

0�!0q� tq�>a�
u = 0 

Which gives: 

 q�>a� = 
1 − �,G�!�q�q�ql (2.21) 

(2.20) 

(2.19) 

(2.17) 

(2.18) 
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Typical values for highly reflective mirrors are q ≈ 0.99.  Letting q� = q� = ql = 0.99 

turns equations 2.19 and 2.21 into two implicit functions, for �! and q�>a�  respectively, 

in terms of ��.  For SHG in BBO, configured as specified in the previous sections, 

�,G = 1.1 × 10<l .  This value of �,G indicates that the single pass conversion efficiency 

is low enough to neglect crystal losses when designing the cavity.  We therefore use the 

approximation 1 − �,G�! ≈ 1.  Making the approximation 1 − �,G�! ≈ 1 is equivalent 

to selecting q� = q�>a�
�� = 0� where q�>a�(��� is the optimal value of  q� as a 

function of the input power.  Figure 2.5 shows that q�>a�(��� is approximately constant 

over the range of powers we are interested in; therefore approximation doesn’t 

significantly affect the chosen value of q�.  Making the approximation 1 − �,G�! ≈
1 gives q�>a� ≈ q�q�ql = 0.97.   

The relationship between �! and �� is approximately linear (Figure 2.6), and will be 

approximated by: 

 �! = 30�� 

This is a conservative estimate over the range ��xy0,1z {, an appropriate range for 

typical diode laser and amplifier output powers.  A more accurate value of �! for a 

Figure 2.5: Optimum Input  
Reflectivity versus Input Power 

(2.22) 

 

��
{� 

q�>a� 

 

�� 
{� 

�!  
{� 

Figure 2.6: Power in Crystal  
versus Input Power 
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particular value of �� can be calculated from equation 2.19.  From equation 2.22 it is 

evident that the power circulating in the cavity is significantly greater than the input 

power.  This greatly increases the SHG efficiency. 

 

2.4.2.  Calculation of Mirror Focal Length 

 In section 2.5 it was shown that the optimal beam waist for doubling 846 nm light 

in a 10 mm BBO crystal is 23.8 fg.  The radii of curvature of mirrors 3 and 4 can be 

chosen to provide this beam waist in the center of the crystal.  SNLO [9] is a computer 

program designed to assist in cavity design.  By inputting the wavelength, the crystal 

length and index of refraction, the cavity mirror curvatures, and the distances between 

mirrors, the program will calculate the beam waist in the crystal and assess the cavity’s 

stability.  By varying the distances between mirrors and their curvatures, a combination 

can be found that provides the desired beam waist3 in the crystal.  Using SNLO, it was 

determined that a 1/e2 beam waist of 23.8 fg can be achieved using two mirrors with 

radii of curvature of 75 mm, with 103 mm of separation between mirrors 3 and 4, and a 

total cavity path length of 405 mm. 

 

2.5.  Second Harmonic Power 

All the necessary parameters have been calculated to determine the second harmonic 

output power for the proposed frequency doubling scheme.  Substituting the results from 

equations 2.9 and 2.22, along with the appropriate constants, into the equation for the 

second harmonic power (2.5) gives: 

��! = 0.095��� {<� (2.23) 
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Where �� is the input laser power into the cavity.   

 

3. Conclusion 

423 nm laser light is an integral part of building a Calcium interferometer.  In this 

thesis the optimum parameter values were calculated and used to determine the output 

power at 423 nm of a frequency-doubled 846 nm Gaussian beam.  Phase matching, 

Poynting vector walk-off, and build-up cavity design were taken into account in the 

analysis.  The values of the optimized parameters for a 10 mm long Beta Barium Borate 

crystal in a bow tie build up cavity were calculated to be the following: critical Phase 

matching angles  = 27.6| and 4 = 0, beam waist d� = 23.8 fg, mirror radii of 

curvature of 75 mm, input mirror reflectivity of q = 0.97 (assuming R =0 .99 for the 

other three mirrors), curved mirror separation of 103 mm, and total cavity path length of 

405 mm. 

The second harmonic output power of this configuration was calculated to be 

0.095��� {, where �� is the output power of the 846 nm laser in watts.  To achieve the 

necessary 12 mW for use in the interferometer, an input laser power of 356 mW is 

necessary.  This is well within the range of available 846 nm diode laser and amplifier 

setups, making a frequency-doubled 846 nm laser a feasible source of 423 nm light for a 

Calcium interferometer.   

 
 
 
 
 
 
 



19 

Notes 
 

1. Superscripts on indices of refraction that contain � indicate what frequency the 

index corresponds to, the fundamental or the first harmonic,.   

2. This describes Type I (ooe) critical phase matching.  Type I indicates that a first 

harmonic beam with a single polarization direction is used.  This is opposed to 

Type II, in which the first harmonic is composed of two orthogonally polarized 

beams.  ooe indicates the first harmonic is an ordinary ray, while the second 

harmonic is an extraordinary ray. 

3. See Physics of Light and Optics [10] pp. 95-99 for a derivation. 

4. SNLO uses a FWHM definition of beam waist, whereas in this thesis the 1/e2 

definition is used.  To translate FWHM beam waist to the 1/e2 beam waist, 

multiply the former by 1/√2 ln 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20 

Appendix 

Appendix A: Beta Barium Borate Crystal Properties 

1. Sellmeier parameters (room temperature): 

 A 
 

B 
fg�� 
C 
fg<�� 

D 
fg<�� 
�� 2.3730 0.0128 -0.0156 -0.0044 

�� 2.7405 0.0184 -0.0179 -0.0155 

                (Davis et al., 1987) [6]  

2. Nonlinear coefficients: 

Type I Critical Phase Matching (ooe):  0�OO = 0�� sin
 � − 0�� cos
 � cos 
34� 

Type II Critical Phase Matching (eoe, oee): 0�OO = 0��P�� 
 ��P��
34� 

0�� = 0.08  pm/V    0�� = 2.3 (pm/V) 

                                     (Sutherland, 2003, p. 72, 296) [4], (Smith, 2007) [9] 
  

3. Thermo-optic coefficients: 

             0��0* = −16.6 × 10<� 3�⁄         0��0* = −9.3 × 10<�/ 3�  

                (Davis et al., 1987) [6] 
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Appendix B: Matlab Program for Calculation of Optimal Beam Waist 
 
clear; close; clc; 
N=200; m=0; n=0; 
rho=.0651;   %walk-off angle 
no=1.659;    %ordinary index of refraction 
lambda=846e-9;  %first harmonic wavelength 
l=.01;   %crystal length 
B=rho*sqrt(pi*no*l/2/lambda);      %value for B based on walk-off 
 
zetamin=1; zetamax=4; zetastep=10^-2;   %range for zeta 
j=ceil((zetamax-zetamin)/zetastep+1); 
 
sigmamin=-.1; sigmamax=1; sigmastep=10^-2;   %range for sigma 
k=ceil((sigmamax-sigmamin)/sigmastep+1); 
 
Sigma=zeros(1,k); z=zeros(1,j); H=zeros(j,k); f=zeros(N,N); 
 
for sigma=sigmamin:sigmastep:sigmamax     %step through sigma 
    n=n+1; 
    for zeta=zetamin:zetastep:zetamax      %step through zeta 
        m=m+1; 
        h=2*zeta/(N-1); 
        t=-zeta:h:zeta; 
        [T,T1]=meshgrid(t);    
        f=exp(i*sigma*(T-T1)).*exp(-B^2*(T-T1).^2/zeta)./(1+i*T)./(1-i*T1);  
                      %integrand of h(sigma,B,zeta)                                                                                                                  
        H(m,n)=1/4/zeta*real(sum(sum(f))*h^2);   %numerically integrate to get     
                                                                             %h(sigma,B,zeta) 
        z(m)=zeta; 
    end 
    m=0; 
    Sigma(n)=sigma; 
end 
 
[X,Y]=meshgrid(z,Sigma); 
 
surf(X,Y,H.') 
xlabel('\zeta') 
ylabel('\sigma') 
zlabel('h(\sigma,B,\zeta)') 
 
[hm,m_max]=max(H); 
[hmm,n_max]=max(max(H)); 
 
fprintf('max h') 
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max(max(H))  %maximum value of h(sigma, B, zeta) 
fprintf('optimal zeta ') 
z(m_max(n_max))   
fprintf('optimal sigma') 
Sigma(n_max) 
fprintf('optimal w0') 
sqrt(lambda*l/2/pi/no/z(m_max(n_max))) %value of beam waist corresponding to 
optimal zeta 
 
figure 
 
loglog(z,max(H.')) %plot of h(sigma_max,B,zeta) 
axis([zetamin zetamax min(min(H)) max(max(H))]) 
xlabel('\zeta') 
ylabel('h') 
title('h(\sigma, B, \zeta) optimized in \sigma') 
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Appendix C: Glossary 
 
Anisotropy: Directional dependence 
 Β: A parameter in the optimization of SHG that represents the walk-off angle.  Β =
ρrπn�l/2λ 
 
Beam waist: The point in a Gaussian beam where the 1/e2 beam diameter is a minimum. 
 
Build up cavity: An arrangement of mirrors that allows for a circulating beam power 
greater than the input beam power. 
 
Critical Phase Matching: A process where the angle between the crystal’s optical axis and 
the first harmonic wave is adjusted to achieve phase matching. 
 
Effective nonlinear coefficient: A constant describing the strength of a given nonlinear 
process. 
 
Effective nonlinearity 
�,G�: The coefficient relating the output beam power to the square 
of the input beam power. 
 
First harmonic beam: The input beam into the nonlinear crystal. 
 
Frequency doubling: See second harmonic generation 
 
Gaussian Beam: An electromagnetic wave who intensity profile in any plane 
perpendicular to the wave vector is a Gaussian distribution. 
 
Index of refraction: The ratio of speed of light to wave speed of an electromagnetic wave 
in a material. 
 
Interferometer: A device that splits and recombines a wave so that it travels to a detector 
through at least two different paths or “arms”.   
 
Noncritical Phase Matching: A process where the nonlinear crystal’s temperature is 
adjusted to achieve phase matching. 
 
Optical Axis: The direction in a uniaxial crystal for which all polarizations have the same 
index of refraction, ��.  Typically denoted the z-axis. 
 ��!: The power in the second harmonic beam exiting the nonlinear crystal. 
 �!: The power in the first harmonic beam entering the nonlinear crystal. 
 
Phase matching: Any process that allows the first and second harmonic beams to remain 
in phase. 
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Poynting vector: A vector indicating the direction of energy propagation of an 
electromagnetic wave. 
 
Poynting vector walk-off: A phenomenon in birefringent materials where the Poynting 
vector of the first harmonic is not parallel to the Poynting vector of the second harmonic.  
 
Second harmonic: The output beam from the nonlinear crystal with twice the input 
frequency. 
 
Second harmonic generation (SHG): A process whereby the power in an input 
electromagnetic wave is transferred to another electromagnetic wave at twice the input 
frequency. Also known as frequency doubling. 
 L: A parameter in the optimization of SHG that represents the phase matching of the 
beams. L = �!Qd��ΔJ/" where ΔJ is the phase mismatch, given by ΔJ = |2J� − J�|. 
 
Thermo-optic coefficient: The first derivative of the index of refraction with respect to 
temperature.  Usually given at room temperature. 
 
Uniaxial (birefringent): A material in which two of the three principle indices of 
refraction are equal.   
 
Wave vector: A vector indicating the direction of wave propagation with magnitude equal 
to the wave number. 
 N: A parameter in the optimization of SHG that represents the beam waist of the first 
harmonic. N = "I/
2Q�!d��� 
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