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ABSTRACT

Learning inter-atomic forces with an SE(3)-Transformer

Bryce E. Hedelius
Department of Physics and Astronomy, BYU

Bachelor of Science

Density-functional theory (DFT) is the gold standard for quantum chemistry calculations but is
prohibitively expensive to use in molecular dynamics simulation. Deep learning has the potential to
speed up these calculations by five orders of magnitude. Atomistic systems may be represented
as point clouds so SE(3) equivarient neural networks (graph networks that preserve translational
and rotational symmetry) provide the appropriate architecture. I present several SE(3)-Transformer
models designed to predict DFT energy and forces. Given a point cloud of atoms, the network
predicts the overall energy and the net force on each atom. Unlike other SE(3) networks, the
SE(3)-Transformer architecture has attention weights that add degrees of freedom in the angular
direction. I demonstrate that the network can learn inter-atomic energy and forces.

Keywords: density-functional theory, deep learning, inter-atomic potential, force fields, molecular
dynamics
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Chapter 1

Introduction

Predicting the properties of an atomistic system is an outstanding problem in computational chem-

istry [1]. All properties of atomistic systems are determined from first principles but it is usually

impossible to solve first principle calculations analytically [2] [3]. Instead, these calculations require

careful approximations and numerical methods. My hypothesis is an SE(3)-Transformer [4] [5]–a

novel machine learning algorithm built around the symmetries of Euclidean space–can approximate

first principle methods with minimal loss of accuracy.

Molecular dynamics (MD) is a common method of studying systems containing thousands

of atoms with computer simulations. The trajectories of atoms and molecules are determined by

Newton’s equations of motion. The forces are calculated by taking the negative gradient of the

inter-atomic potential–a mathematical function to describes the potential energy of an atomistic

system–with respect to the position.

Force fields are a method of calculating the inter-atomic potential. Force fields consist of a

functional form and a set of parameters, which are usually derived from experimental studies and

quantum calculations. The parameters allow you to bypass the expensive integral calculations that

first principle calculations require but can substantially degrade the accuracy.

Density functional theory (DFT) [6] is another method of calculating the inter-atomic potential.

3



4 Chapter 1 Introduction

It is based on first principles and is considered to be the gold standard for quantum chemistry

calculations. Unfortunately, accurate DFT calculations are computationally expensive [7], limiting

their application.

Deep learning has proven to be a useful approximation for DFT energy and force calculations [8].

Additionally, it much faster than DFT calculations. My goal is to develop and test a deep learning

model that predicts DFT forces and energies.

1.1 Background Information

1.1.1 Molecular Dynamics

Molecular dynamics is a computational method of studying the movement of atom and molecules

[9] [10] [11]. Molecular dynamics software calculates the forces on the atoms and iteratively uses

numerical methods to determine the positions in a future time step [12].

The forces are commonly calculated by taking the negative gradient of an inter-atomic potential

function:

~f =−∇V (~r). (1.1)

Forcefields are a type of inter-atomic potential commonly used in molecular dynamics and have a

functional form that is usually similar to [13] [14] [15] [15]:

V = ∑
bonds

kb(b−b0)+ ∑
angle

kθ (θ −θ0)
2 + ∑

dihederals
kφ [1+ cos(nφ −θ)] . (1.2)

This functional form has terms for equilibrium and spring constant terms.

The positions are updated using Newton’s equations of motion by an algorithm called the

integrator [16]. Integrators should obey conservation of energy, be reversible, and be efficient [17]

[18] [19]. I’ll derive and use the simplest integrator, called the verlet integrator [20]. The Taylor
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expansion of positions can be written as

~x(t +∆t) =~x(t)+
d~x
dt

∆t +
d2~x
dt2

∆t2

2
+O(∆t3) =~x(t)+~v∆t +

~f
m

∆t2

2
+O(∆t3). (1.3)

Velocity can be approximated by

~vn+1 =
~xn−~xn−1

∆t
(1.4)

so the integrator algorithm can be expressed as

~xn+1 = 2~xn−~xn−1 +
1

2m
~fn∆t2. (1.5)

1.1.2 Density Functional Theory

Density functional theory (DFT) is a quantum mechanical computational method of studying

many-atom systems [21]. Rather than considering the electrons individually, it considers their

overall density. The properties of many-electron systems can then be determined using functionals

(functions of another functions) of the electron density [21].

DFT is based on the Born-Oppenheimer approximation [22], which says that electrons move

much faster than the nuclei, so the nuclei are treated as being stationary.

The Hamiltonian [23] for electrons in an atomistic system can be written as:

Ĥ =
[
T̂ +V̂ +Û

]
Φ =

[
−
(

h
2π

)2 N

∑
i=1

(
1

2mi
∇

2
i

)
+

N

∑
i=1

V (~ri)+
N

∑
i< j

U(~ri,~r j)

]
Ψ. (1.6)

The operators represent the different contributions to energy: T̂ is the kinetic energy, V̂ is the to

nuclei-electron potential energy, and Û is the electron-electron interaction energy [24].

An atomistic system with N electrons would have a wavefunction with 3N components (disre-

garding spin) [25]. The electron density n(~r), defined as

n(~r) = N
∫

d3~r2...
∫

d3~rNΨ
∗(~r,~r2, ...,~rN)Ψ(~r,~r2, ...,~rN), (1.7)



6 Chapter 1 Introduction

contains 3 components. Making this transformation significantly reduces the number of components

so might seem reasonable that information in lost in the process. Surprisingly, this is not the case.

The Hohenberg-Kohn theorems [26] demonstrate that the wavefunction formulation has the

same information as the density formulation. Therefore, the DFT formulation is equivalent to

Schrodinger’s equation [27].

1.1.3 Deep Learning

Deep learning [28] is a subset of machine learning that can solve more complicated problems

compared to other machine learning algorithms. Deep learning is based on artificial neural networks

(hereafter referred to as neural networks or networks), which are inspired by neural systems in

biology. Each neuron is a mathematical function which accepts a vector as inputs and outputs a

scalar. Typically, these neurons are arranged in layers. All neurons in a layer accepts the same

vector as input and the outputs of all the neurons are concatenated to create a new vector. Since the

input and output are both vectors, the output of one layer can be fed into another. When a network

has many layers it is called a deep neural network.

A neuron consists of three steps . First, the components of the input vector are used to generate

a scalar by taking the scalar product between the input vector and a weight vector unique to that

neuron. Next, the scalar output of the first layer is added to a scalar bias unique to the neuron.

Finally, the output of the second step passes through a nonlinear function known as the activation

function. Mathematically, a neuron N : Rm→ R is defined as

N(~x) = f (~w ·~x+b) = f

[(
m

∑
i=1

wixi

)
+b

]
(1.8)

where ~x is the input vector, ~w is the weight vector, b is the scalar bias, and f is the activation

function [29].

Working with each neuron individually can be tedious and computationally inefficient so, as

previously mentioned, a layer may be formed from a set of neurons. The layer l : Rm → Rn is
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defined as:

L(~x)i = f (W ·~x+~b)i = f

[(
m

∑
j=1

Wi jw j

)
+bi

]
. (1.9)

This paradigm allows for efficient computation and is easier to work with than considering each

neuron individually.

A nonlinear activation is essential to learning more complicated representations. For sake of

argument, assume that the activation is the identity function: f (x) = x. Then the result of two

consecutive layers is

g(x) = L2(L1(x)) = W2 · (W1 ·~x+~b1)+~b2 = (W2 ·W1) · x+(W2 ·~b1 +~b2) = W · x+b, (1.10)

which is another linear layer with different parameters. In general, if the activation is any linear

operation, the result will still be a linear layer. Therefore, stacking many linear layers isn’t any more

powerful than a single linear layer.

Many activation functions exist [30] [31] [32] but the most commonly used one (and the only

one I used in my network) is the Rectified Linear Unit (ReLU) [33]. The ReLU : R→ R activation

function is defined as

ReLU(x) =


x x≥ 0

0 x < 0
. (1.11)

A plot of the ReLU function is shown in Fig. 1.1.

A neural network is a chain of neuron layers, where the output of a layer is the input to the next.

Collectively, the weights and biases are known as the parameters. The parameters are random at the

start of training. The parameters are adjusted to useful value during a process known as learning.

In supervised learning, the algorithm is given labeled data, which consists of the inputs and the

labels. The optimizer algorithm adjusts the parameters so that the network outputs are closer to

the true values. The loss function says how close the networks outputs are to the true values. The

most common loss function used in regression problems is mean squared error (MSE), which is the



8 Chapter 1 Introduction

Figure 1.1 Plot of the Rectified Linear Unit commonly used as an activation function in
neural networks
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function MSE : Rn→ R define by

MSE(Y ) =
1
n

n

∑
i=1

(Yi− Ŷi)
2 (1.12)

where Y is the output of the network and Ŷi is the label values.

Most optimizer algorithms determine how much each parameter contributes to the network error

by calculating the gradient of the error with respect to the parameters [34]. When gradients are

usually calculated mathematically, an analytic expression for the gradient is derived and all the

appropriate values are plugged in. This algorithm is infeasible for deep neural networks because

the number of terms in each gradient function grows with the number of neurons and layers which

is why neural networks weren’t been widely used until recently [35]. One of the fundamental

advancements in deep learning was the development of the backpropogation algorithm [36].

Backpropogation calculates the gradient by going backward in the computational graph and

makes uses of the gradients of successive layers, hence its name. It is based on the chain rule, which

says how the gradient of values in a composite function contribute to the gradient of the input. Thus,

values that would occur in different gradient calculations only are calculated once.

The optimizer uses the gradient values to optimize the parameters. The simplest optimizer is

stochastic gradient descent [37], which multiplies a parameter’s gradient by a constant called the

learning rate, then decreases the parameter by that value. This process is called a learning step.

All optimizer are based off of stochastic gradient descent optimization. The weights are updated

with

w := w−η∇Qi(w) (1.13)

where η is the learning rate and ∇Qi(w) is the gradient of the objective with respect to the parameter

w. The optimizer I used is called Adam (short for Adaptic Moment Estimate) [38]. It estimates the

second moments of the gradients, enabling it to compensate for the curvature of the parameter space

and find a faster route to the minimum.
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Attention [39] is a technique used in deep learning that mimics cognitive attention. It amplifies

the important parts of the input data and quiets the rest. Transformers are a neural network

architecture that uses a form of attention called scaled dot-product attention. The transformer learns

three weight matrices: the query weights WK , the key weights WK , and the value weights WV . The

attention is then calculated as

Attention(Q,K,V ) = softmax
(

WQWᵀ
K√

dk

)
WV (1.14)

where dk is the dimension of the key vectors and softmax : Rn→ Rn is defined by

softmax(~x) =
e~x

∑
n
i=1 exi

. (1.15)

1.1.4 Graph Neural Networks

In mathematics, a graph is a pair G = (V,E), where V is a set of vertices and E is a set of vertex

pairs, or edges [40]. Nodes that are connected by an edge are called adjacent. Graphs are useful in a

variety of fields, such as computer science, linguistics, physics, and chemistry, social science, and

biology [41]. In my approach, I represent the atomic systems as a graphs. Nodes represent atoms

and edges represent inter-atomic interactions.

Graph neural networks (GNNs) are deep learning models that operate on data in a graph [42] [41].

Convolutional operations on a graph are defined in an analogous way to the convolutional operations

in a convolutional neural network [43]: information from nodes are passed to adjacent nodes in graph

neural networks just how information from pixels are passed to adjacent pixels in a convolutional

neural network. The process of transferring information between nodes is known as message

passing. After the messages are passes, the message are aggregated to update the data on the node.

An example of a graph network is shown in Fig. 1.2.
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Figure 1.2 Architecture of a graph neural network for a water network. Here, the blue
balls represent hydrogen and the red ball represents oxygen. The input data x j associated
with atom j is used to calculate the message vector, M ji(x j), which gets passed to node
i. The way the message vector is generated depends on the type of graph neural network.
The message vectors M jk(x j) are then aggregated (usually by summing or averaging) at
each destination node and combined with the original input vector xi to calculate the new
xi.
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1.1.5 Group Theory

Groups are a mathematical objects that are useful for representing certain relationships [44]. They

find use in physics, chemistry, computer science, and even music.

Definition 1.1.1 A group G is a set along with a binary operation · on G that satisfies the following

properties:

• Closure: For all elements A,B ∈ G, A ·B ∈ G.

• Associativity: For all elements A,B,C ∈ G, (A ·B) ·C = A · (B ·C).

• Identity: There exists an element I ∈ G such that for all A ∈ G, I ·A = A · I = A.

• Inverse: For each element A ∈ G, there exists an inverse B ∈ G such that A ·B = B ·A = I.

It is possible to represent many groups and their operators as a set of matrices and matrix

multiplication. This is useful because it allows a group-theoretic problems to be reduced to linear

algebra problems.

Definition 1.1.2 A representation is a map ρ : G→ GL(N) 1 such that

ρ(g1g2) = ρ(g1)ρ(g2) (1.16)

for all g1,g2 ∈ G.

A useful class of functions are those that are symmetric under the group. That is, if you get the

same result whether you put rotated inputs into the network or you rotated the output of the network

raw inputs. These functions are called equivariant functions.

1The general linear group GL(N) is the set of invertible N×N matrices. The binary operation of such a representation

is matrix multiplication. In general, the matrix can be defined over any field but I will only be using the real numbers.
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Definition 1.1.3 Let X and Y be representations of the group G. The function f : X → Y is

equivariant if

f (g · x) = g · f (x) (1.17)

for all g ∈ G and all x ∈ X.

Since the algebraic properties of group and its representations are equivalent, a group can be

studied by studying its representations [45]. A representation D can be decomposed if there exists a

similarity transformation P such that

D′(g) = P−1D(g)P (1.18)

for all g ∈ G which diagonalizes every matrix D in the representation into the same pattern of

diagonal blocks D′ [46]. Each matrix in the block is also a representation of the group. Any

non-zero representation that cannot be decomposed into two non-trivial representations is call an

irreducible representation or irrep.

In linear algebra, matrices are linear transformations [47]. Similarly, in group representation

theory, representation matrices transform a vector space [48]. For example, a vector~x in R3 can be

rotated about the z-axis by some angle θ with the matrix

S =


cotθ −sinθ 0

sinθ cosθ 0

0 0 1

 (1.19)

and the transformation would be written as

~x′ = S~x. (1.20)

Since atoms live in Euclidean space, which is rotationally and translationally symmetric, I’m

interested in the special Euclidean group in R3, written as SE(3), which consists of the proper
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rotations and translations respectively in 3D space [49]. The group SO(3) is a subgroup of SE(3)

that consists of the proper rotations in R3, has the property that irreducible representations of order

l are (2l +1)× (2l +1) orthogonal matrices with determinant 1.

The spherical harmonics Y m
l : S(2)→ R are a set of basis functions on the sphere [50] [51].

They can be found by solving Laplace’s equation ∇2u = 0 in spherical coordinates. The spherical

harmonics provide a set of basis functions for the irreducible representations of SO(3) of order l.

Two irreducible representations of SO(3) may be combined using a tensor product. Clebsch-

Gordan decomposition [52] transforms the result from the product basis to the irrep basis. If

Dk(g) and Dl(g) are irreps of g ∈ G of orders k and l respectively, then their tensor product may be

expressed in the irrep basis as:

Dk(g)⊗Dl(g) = Qlk>
[
⊕k+l

J=k−lDJ(g)
]

Qlk (1.21)

where the change of basis matrices Qlk are called the Clebsch-Gordan coefficients [52], ⊗ is the

direct product, and ⊕ is the direct sum. The direct sum results in a block matrix if the operands are

matrices, otherwise the direct sum results in a concatenation vector if the operands are vectors.

1.2 Situation of general area of research

Several networks exist that approximate the inter-atomic potential and have been used in molecular

dynamics simulations [53] [54] [55] [56] [57] [58]. The ANI-1 network [8] encodes the geometric

information of the system using symmetric functions to create the input vectors. The input vectors

are then fed through different multilayer perceptrons (MLP’s) to estimate the energy associated

with that atom. The outputs from all the MLP’s are added to get the total energy. Next, using the

standard backprop algorithm, the gradients are calculated from the energy back to the the positions

of the atoms to get the forces.

Since each atom type has its own MLP, ANI-1 isn’t able to generalize between different atom
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types [59]. In order to add another atom type, you would have to train a new network. Most other

existing networks have the same property. My method can be easily extended to include more atom

types because atomic species is an input feature rather a fundamental change to the architecture.

Thus, my method maybe able to improve on one of the weaknesses of the ANI-1 network.
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Chapter 2

Methods

2.1 Existing methods

A variety of machine learning approaches are emerging to predict inter-atomic potentials and forces.

The most common approaches involve neural networks, gaussian approximation, kernel ridge

regression, or moment tensor potentials [54]. These different approaches have been used to model

material science, chemical reactions, and phase changes. I’ll focus on the neural network methods.

First, the chemical environment of the atom using symmetry functions [60]. The vector is then

passed through a network corresponding to the atoms’ species. The outputs of all the networks are

added together to produce the potential. An example of an MLP network are the ANAKIN-ME (Ac-

curate NeurAl networK engINe for Molecular Energies) networks or ANI for short. Accompanying

the ANI-1x network is a database of about 5 million molecular positions along with their energies

and forces which I used for my network.

Most of the neural network methods predict inter-atomic potentials. These methods are then

predict the forces indirectly using the relationship ~f (~r) =−∇V (~r) where ~f (~r) is the vector of forces

and V (~r) is the potential. The method of taking the gradient of the potential to find the force works

17
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across all networks topologies because all neural networks are end-to-end differentiable. A major

benefit to using a potential network is that the forces are ensured to be conservative.

However, there are few main drawbacks to using the gradient of potential networks to calculate

forces. First, the gradient calculation increases computational cost because the network must feed

forward before the gradient is propagated backward. Second, the network isn’t actually trained

on the forces, so there is no guarantee that the forces are accurate. Third, the output of potential

networks is a single scalar whereas the output of force networks is an array of vectors. Therefore, a

force network has more values to predict, leading to a better informed gradient while training the

network. Few networks have been trained this way [61].

Within the last few years, the field of SE(3)-equivarient graph neural networks has emerged.

Several of the different methods have been used on toy models for inter-atomic potentials and

inter-atomic energies. The Tensor Field Network was able to learn inter-atomic forces and energies

for simple systems [62]. The SE(3)-transformer [4] was able to learn the same energies as the

Tensor field network with a 50% increase in accuracy and was used in N-Body simulations. I base

my approach on the SE(3)-transformer.

2.2 Approach

I base my method on the SE(3)-Transformer [4]. This network has two main layers types that I

describe below. The networks makes extensive use of group theory and group theory to ensure that

it preserves symmetries. For more information on SE(3) theory, refer to the introduction 1.1.5
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2.2.1 Equivariant kernels and attention

Kernels

The SE(3)-Transformer uses equivarient kernels as its basis. A basis kernel W lk
J (~x) is a matrix of

size R(2l+1)×(2k+1) defined for a vector~x as follows:

Wlk
J (~x) =

J

∑
m=−J

YJm(~x/||~x||)Qlk
Jm. (2.1)

where YJm(~x/||~x||) are the spherical harmonics of degree J and Qlk
Jm are Clebsch-Gordan matrices

1.1.5. The basis kernels have no learnable parameters.

Basis kernels are combined with a MLP radical basis function ψ lk
J : R≥0→ R to produce a

kernel matrix Wlk of size R(2l+1)×(2k+1) using

Wlk(x) =
k+l

∑
J=|k−l|

ψ
lk
J (||~x||)Wlk

J (~x). (2.2)

Attention

The power of the SE(3) transformer lies in the attention mechanism, which was shown by Fuchs et.

al to increase a network’s accuracy.

First, a query vector qi associated node i is calculated according to

qi =
⊕
l≥0

∑
k≥0

Wlk
Q f k

in,i (2.3)

where
⊕

is the direct sum and f k
in,i are the input features of degree k associated with node j.

Next, a set of key vectors {ki j} between each node j adjacent to node i is computed with

ki j =
⊕
l≥0

∑
k≥0

W lk
K (~x j−~xi) f k

in, j. (2.4)
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Next, the query and key vectors are used to calculate the attention weight αi j analogous to how

attention is calculated in vanilla transformer architectures.

αi j =
exp(qᵀi ki j)

∑ j′∈Nii exp(qᵀi ki j′)
(2.5)

Here, Ni

i represents the set of nodes that are adjacent to i and are not i.

Attentive self-interaction

The attentive self-interaction weights wll
i,c′c are defined by

wll
i,c′c = MLP

⊕
c,c′

f lᵀ
in,i,c′ f

lᵀ
in,i,c

 . (2.6)

where MLP is a multilayer perception.

These weights are then used to calculate the attentive self-interaction using

f l
out,i,c′ = ∑

c
wll

i,c′,c f l
in,i,c. (2.7)

2.2.2 SE(3) Transformer Layer

Using the weight kernels, attention mechanism, and self-interaction, the layer is defined as

f ll
out,i = Wll

V f l
in,i + ∑

k≥0
∑

j∈Nii
αi jWlk

V (~x j−~xi) f K
in, j. (2.8)

Like other transformer architectures, I have multiple of these layers together in parallel to form

a multihead attention block. I concatenate the outputs from each head then apply an equivarient

linear layer.
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2.2.3 Nonlinear norm layer

I also used the nonlinear norm layer from the Tensor Field Network paper [62], defined as

fout = ReLU
(
LN
(
|| fin||

))
· f l

|| f l||
(2.9)

where ReLU is the Rectified Linear Unit commonly used in deep learning and LN is a layer norm.

2.3 Development of method

I used the ANI-1x dataset [63] because it has the energy forces for about 5 million different

molecular configurations. The molecules in the dataset contain the elements C, H, N, and O.

I implemented the SE(3)-Transformer [4] using PyTorch and the Deep Graph Library [42]. The

network uses the position of atoms to create the kernels and the chemical species are converted

into a one-hot encoding that is fed into the network. Atomic species are invariant to rotation in

Euclidean space so the inputs for the network were all of order 0. The network consisted of 3 of the

SE(3) Transformer layers with 8 heads and 4 channels each. The input to the first layer is tensors of

order 0. The other layers used tensors of order 0, 1, and 2. The final layer outputs tensors of order 0

and 1, corresponding to potential and forces respectively. This is represented in fig 2.1.

2.4 Challenges encountered and resolution

The biggest challenge I encountered was ensuring that the outputs from each layer respect the

symmetry of the network. An equivariance bug is especially difficult to locate because not every

piece of an equivariant function is equivariant. While testing the implementation, I found that

our SE(3)-Transformer layer was invariant but not equivariant, which led me to conclude that the

problem was likely in the Clebsch-Gordan matrices, which were used to calculate the kenrels.
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Figure 2.1 Architecture of the SE(3)-Transformer network. The input to the network
is an embedding of the atomic species. The first layer transforms the species into three
tensors of orders 0, 1, and 2. That is followed by 2 additional sets of layers that change the
order of the input and output tensors. If the outputs of layers in a set are the same type, the
outputs are concentrated, increasing the number of channels. The final layer transformers
the input to tensors of order 0 and 1, representing energies and forces respectively. The
energies are summed over the nodes to calculate the total energy.
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After switching to the same implementation of Clebsch-Gordan matrices as the original SE(3)-

Transformer, the problem was resolved.

While training, I discovered that the network is inheritantly unstable because the spherical

harmonics have undefined derivatives as certain places. After training for a while, the errors would

accumulate and the network would no longer produce a numerical result, halting training. I opted

to used a shorter network. Based off a suggestion from Fabian Fuchs, I clipped the gradient norm

so that the gradient values didn’t become too large. If the losses produced nonnumerical values,

the optimization step was skipped. However, this solution is somewhat of a hack. Further work is

needed to improve the stability of the network.
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Chapter 3

Results

3.1 Evaluating network implementation

I implemented the methods from chapter 2. I tested all layers for equivalence by calculating their

equivariance errors ∆EQ, which is defined as

∆EQ = ||LΦ( f )−ΦL( f )||2/||LΦ( f )||2 (3.1)

where L represents a roto-translational transformation, Φ represents a network layer, f is the input

to the network, and ||.||2 is the L2 norm.

A layer is said to be equivariant if ∆EQ = 0 for all transformations L. In practice, the errors are

nonzero due to round off error. I used float32, which has a machine epsilon of 1.19×10−7 and all

the layers had equivarient errors smaller than 10−6 so my implementation is equivarient.

I trained both my implementation and Fabian’s implementation [4] on a toy dataset to ensure

that they perform similarly. The dataset is a set of 50000 trajectories from 5-body simulations of

charged particles. The simulations were run for 4901 time steps and saved every 100 time steps so

each simulation has 50 saved points. I trained both models to use the current positions, velocities,

and charges to predict the future relative positions and velocities 500 time steps into the future. My
25
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Figure 3.1 This plot shows true trajectories of five charged particles and the trajectories
predicted by an SE(3)-Transformer. The true trajectories are red, green, blue, orange, and
purple and the predicted trajectories are brown. The true trajectories are shown every 100
time steps over 4901 time steps and the predicted trajectories are predicted every 500 time
steps.

model achieved an MSE of 0.0389 and Fabian’s implementation achieved an MSE of 0.0511. There

weren’t any fundamental difference between the implementations so I believe the difference in MSE

is a result of different hyperparameters and architectures. Achieving similar errors indicates that the

implementations have similar learning capacities. Fig. 3.1 shows the true trajectories and predicted

trajectories from the test set.
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3.2 Training network on forces and energies

I trained several SE(3)-Transformer networks to predict both energies and forces. The networks

use the positions and one-hot encoding of atomic species as inputs and outputs a scalar (type-0)

and vector (type-1) for each node. The sum of the scalars is the total energy and the vectors are the

net forces on each atom. I also trained some networks to predict just energies. The networks were

trained on batches of about 100 molecules. The loss function was

L =
1
N

n

∑
i=1

[
We
(
Êi−Ei

)2
+

1
Mi

Mi

∑
j=1

(
f̂i j− fi j

)2
]
, (3.2)

similar to the loss function used in the ANI2 network [64]. The network was trained by the ADAM

optimizer and I used a variety of learning rates.

I used two different dataset sets: The ANI1 and ANI1x datasets [8] [63]. The ANI1 dataset

contains about 20 million conformations of small molecules and their energies. The ANI1x dataset

contains about 5 million conformations of small molecules and their forces and energies.

I multiplied the energy losses by 10−5 due to the spread of energy values. My model has 8

heads, 3 layers, and 2 channels. I trained both models for 200,000 iterations. I began the training

with a learning rate of 10−3. After 86,000 iterations I dropped the learning rate to 10−5 and at

176,000 iterations I dropped the learning rate to 10−7. I clipped the gradient norm of the parameters

to stabilize the training. The results are shown in Fig. 3.2.

The force errors were comparable to the result of the the ANI-1 and ANI-1x networks but

the energies were completely off. I later learned that self-interaction energies of many atomistic

systems (the energy of the system if it were completely atomized) makes up over 99% of the total

energy. I believe that the network was unable to effectively learn the self-interaction energy because

there were only two channels which created a bottleneck. I also tried doing rudimentary molecular

dynamics simulations of a water molecule to see if the forces were useful. The initial position of

the water molecule was in its equilibrium position and with no velocity. After a few hundred time



28 Chapter 3 Results

Figure 3.2 Plot of the learning curves for the original training. Force errors went down to
about 4 kcal·mol−1Å−1, but energy errors went down to 100 kcal·mol−1.
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Dataset Mean (Ha) STD (Ha)

ANI1 -338 60.9

ANI1 w/o SI 0.0574 0.110

ANI1x -395 139

ANI1x w/o SI 0.0184 0.106

Table 3.1 Comparison between the ANI1 and ANI1x datasets and adjusted versions of
the dataset with the self-interaction energies subtracted. The majority of the energy is
attributed to the self-interaction energy. Subtracting the self-interaction energies greatly
decreases the standard deviation of the dataset, making it easier for the model to learn.

steps, the atoms were completely separated by dozens of Angstroms so the predicted forces didn’t

seem to be very useful.

I did a parameter sweep of the energy weights to determine which hyperparameter value would

improve the performance. Suprisingly, force losses seemed much more affected by the energy

weight than the energy losses. I hypothesize that is due to gradient clipping: energy caused the

largest gradients so they were always clipped, so the magnitude of the energy losses wouldn’t matter.

The energy losses rapidly decreased when the learning rate was dropped. This also may be due to

large parameters associated with energy. The losses curves are shown in Fig. 3.3.

All of the energy values root-mean-squared (RMS) values were several times larger than those

achieved by the ANI networks. From a conversation with Olexandr Isayev, I learned that when

training the ANI networks, they shifted energies by subtracting "self-interaction energy". The core

electrons contribute much more to the total energy than chemical bonds, and this contribution is

the self interaction energy. I found that subtracting the self-interaction energy greatly decreased

the spread of the energies in the dataset, as shown in Table 3.1. In both cases, subtracting the self

interaction energy brought the mean closer to zero and decreased the standard deviation by over

99%.
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Figure 3.3 Plot of the learning curves for different energy weight values. I varied the
energy weight from 10−2 to 10−6 by powers of 10. I started all trainings with a learning
rate of 10−3, lowered it to 10−5 at 62,000 iterations, and lowered it to 10−7 at 94,000.
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Model Energy error (kcal ·mol−1) Force error (kcal ·mol−1·Å−1)

basic 3.211 4.104

wider 3.305 4.339

higher-order 5.459 6.294

Table 3.2 Comparison of the energy and force losses between the different models.

I subtracted the self-interaction energies from the datasets and normalized. I then used the

adjusted datasets for new trainings. Since the energy and forces were normalized, I set the energy

weight equal to 1. The training curves are shown in Fig. 3.4.

After training the SE(3)-Transformer networks for 100,000, the model with a learning rate of

10−3 had the lowest losses so I continued training that model for another 241,000 iterations for a

total of 341,000 iterations. A plot of the energy and force losses are shown in Fig. 3.5.

I also trained a energy only model on the ANI-1 dataset. The training curve is shown in Fig. 3.6.

I trained two other models with 4 channels instead of 2 channels. Additionally, one of the

models using up to type-3 vectors instead of just type-2 vectors. The second model had batch sizes

about the third of the size of the first due to being higher-ordered. The results of those training is

show in Fig. 3.7.

The overall results of the three models is shown in Table 3.2.

Now that models are trained, my next steps would be to compare how the losses in the training

set compare to the validation set. This will allow me to select which model actually performs

best on the test instead of memorizing the training set. Then I need to see how the best model

performs on the randomly selected test set and the COMP6 test set [65]. Next, I would see how

the models perform when used in molecular dynamics simulations and whether it can reproduce

physical properties of various molecules.



32 Chapter 3 Results

Figure 3.4 Plot of the learning curves for learning rates of 10−3, 10−4, 10−5. The networks
were trained using the rescaled and normalized ANI1x dataset for 100,000 iterations.



3.2 Training network on forces and energies 33

Figure 3.5 Plot of the learning curves for learning rates of 10−3. The networks were
trained using the rescaled and normalized ANI1x dataset for 341,000 iterations. The latest
force loss was 4.104kcal ·mol−1·Å−1 and the latest energy loss was 3.211kcal ·mol−1.
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Figure 3.6 Plot of the learning curves a network trained on the rescaled and normalized
ANI1 dataset. The latest energy loss was 3.802kcal ·mol−1
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Figure 3.7 Plot of the learning curves networks trained on the rescaled and normalized
ANI1x dataset. Both networks has 4 channels instead of 2 and the second one uses
up to type-3 vectors. The latest errors on the first model were 3.305kcal ·mol−1 and
4.339kcal ·mol−1·Å−1; the latest errors on the second model were 5.459kcal ·mol−1 and
6.294kcal ·mol−1·Å−1. The second model never reached the same losses of the first model,
possibly due to there being so many more parameters and smaller batch sizes.
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3.3 Suggestions for further work

Further investigation is needed to see whether a similar network would work on a dataset consisting

of more atom types. Additionally, the size of molecules in my dataset was limited. It is unknown

how well the network can generalize to more complicated systems.

In my implementation of the network, I represent the five atom types using a one-hot encoding.

That is, I represented each type of an atom with a vector of length 5 with zeros everywhere except

for a 1 at an index that represents that atomic species. I would eventually like a network to be able

to generalize to all atomic species. This would require the network to have a better representation

of the atom types. This could be achieved by either having a fixed atomic embedding or switching

the network’s radial functions to those that are derived from DFT densities.

When the network has finished training, I’ll integrate the network into molecular dynamics

software. I’ll then see if the network is capable of simulating chemical reactions.

3.4 Potential impact

The take away message is that I have successfully implemented a deep-learning model that will be

able to predict inter-atomic forces. It will be able to predict forces much faster and hopefully more

accurately than conventional force fields. The network will be eventually integrated into software

so that it can be used in molecular dynamics simulations.

This is the first time that I am aware of an SE(3) equivariant neural network being trained on a

large dataset of density functional theory data. SE(3)-equivariant neural networks have increased

learning power over manually designed chemical encoding functions so it is likely that accuracy will

increase as this field develops. It is possible that such network will be able to replace conventional

force fields in molecular dynamics simulations and will be a valuable tool to investigate molecular

properties.
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