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ABSTRACT

Spatiospectral Features in Supersonic, Highly Heated Jet Noise

Kevin Matthew Leete
Department of Physics and Astronomy, BYU

Doctor of Philosophy

The sound produced by military aircraft is dominated by noise generated by the turbulent
mixing of the jetted exhaust with the ambient air. This jet noise has the potential to annoy the
community and pose a hearing loss risk for military personnel. The goal of this dissertation is
to characterize spatiospectral features in the field produced by full-scale military aircraft that are
not traditionally seen at the laboratory scale and identify potential noise mechanisms for these
features. Measurements of two military aircraft jet noise fields are found to be best described as a
superposition of spatiospectral lobes, whose relative amplitudes dictate the overall directivity at
each engine power. Near-field acoustical holography techniques are applied to one of the military
aircraft measurements to characterize the behavior of the lobes as a function of engine power.
The simulated jet noise of a highly heated laboratory-scale jet is then analyzed to compare with
the military aircraft measurement and is found to only partially contain the spatiospectral lobe
phenomenon. Application of near to far field coherence tracing and near-field acoustical holography
to the simulations provides validation of the methods used on the military aircraft and illuminate
potential source mechanisms that may explain the presence of the spatiospectral lobes.

Keywords: aeroacoustics, jet noise, near-field acoustical holography, coherence analysis, large eddy
simulations, military aircraft
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Chapter 1

Introduction

Turbulent fluid flow generates noise. From the characteristic sound of a sharp exhalation to the

roar of a military aircraft flying overhead, the fundamental laws governing the motion of the fluid

are simply those of Newton. One may then think that understanding the generation of sound

from fluids would be simple, though as fluid dynamicists can attest, calculating fluid flow can

become prohibitively difficult very quickly. The Navier-Stokes equations, which are the result of

the application of Newton’s laws to continuous fluids, usually have no analytical solution.

The aeroacoustic noise on which this dissertation focuses is simply called jet noise, and refers

to the noise generated from gas being exhausted from an orifice, or jet. The most impactful source

of jet noise to the everyday person is that caused by the exhaust of turbojet aircraft. To achieve the

thrust required to fly, aircraft must expel a large volume of air quickly, which in turn generates a lot

of noise. This jet noise has the potential to annoy communities and harm to those who work in close

proximity to aircraft. As the design of aircraft has changed over the years, commercial passenger

aircraft have increased the bypass ratio of their engines, and as a result of this increase, the jet noise

has decreased significantly [1]. Military jet aircraft and supersonic commercial aircraft, however,

do not have this luxury, as this would significantly increase drag and impact performance.

1
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Rockets to power spaceflight are another source of jet noise, which can be so loud that vi-

broacoustic loading by the radiated sound on the body of the launch vehicle can cause mission

failure [2,3]. Additionally, with the increase in interest in commercial spaceflight, community noise

could become a huge issue as the number of spaceports near urban centers increases.

The generation, propagation, and reception of jet noise is then an important area of research for

current and future goals of military and civilian groups. This dissertation focuses on understanding

the spatiospectral characteristics of jet noise generated by high-performance military aircraft, which

is often significantly different from jet noise studied at smaller scales. Two measurements of

military aircraft and a numerical simulation of a laboratory-scale jet (operating near military aircraft

conditions) are examined to investigate the important features of the radiated sound and their

corresponding source mechanisms.

In the following sections, I present a brief overview of some of the major points of jet noise

research over the past fifty years, covering the development of acoustical analogies, experimental

measurements of jets, numerical simulations of jets, field decomposition analysis, wavepacket

analysis, and the current state of understanding of the basic description of the jet noise field and

their source mechanisms.

1.1 Jet Noise Research Overview

One can think of the start of jet noise research as being with Sir James Lighthill’s 1952 paper [4]

where he rearranged the Navier-Stokes equations so that a linear wave operator was on the left hand

side and a complex expression involving a multidimensional tensor of Reynolds stresses was left on

the right. This formulation is interpreted as the jet noise problem being analogous to an equivalent

fictitious problem in a quiescent medium with an array of sources described by the complicated

terms on the right-hand side. This is known as “Lighthill’s acoustic analogy”, with the tensor named
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Lighthill’s stress tensor. The benefit of the acoustic analogy is that it allows for all known solutions

to the wave operator to be applied immediately: if the values of the stress tensor are known at all

points within the jet, then a simple Green’s function integration would be sufficient to calculate the

sound pressure everywhere. The problem that naturally arises is that one must know essentially all

the fluid variables everywhere in the flow to be able to calculate the acoustic pressure fluctuations in

the field.

Early experiments by Morley [5] found that the overall acoustic power of subsonic jets scaled

as the exit velocity to the eighth power. Subsequent application and manipulation of Lighthill’s

theory by many authors (summarized in [6]) lead to the conclusion that aeroacoustic sources can

be represented by quadrupoles, which ends up matching the experimentally discovered velocity

scaling. However, the lack of explicit evidence of acoustic quadrupoles in the flow still remains a

topic of discussion among researchers [7].

The fundamental idea behind an acoustic analogy is that the problem of solving the Navier-

stokes equations everywhere is reduced to thinking of the turbulent interactions in the flow (the

components of Lighthill’s stress tensor) as acoustic sources that behave like any other source. This

idea of generating an equivalent acoustic source for jet noise is a concept that motivates research to

this day.

Jet noise fields are unique because frequency content and coherence properties are spatially

dependent. Towards the sideline, the spectrum is more broadband and the field is less coherent,

while at large aft angles the spectrum becomes peaked and more coherent. This phenomena is so

consistent between jets of many shapes, sizes, and (mostly subsonic) speeds that Tam et al. [8, 9]

were able to generate empirical fits to the shape of the two spectra (called similarity spectra) based

on a repository of data from a large number of laboratory-scale jets. The superposition of spectra

suggest that multiple independent source mechanisms (responsible for each spectral shape) are in

play in the plume.
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Before the 1970s, jet turbulence was thought of simply as a distribution of many small turbulent

eddies [10]. However, only the incoherent, broadband noise towards the sideline of the jet fit that

source description. Visualizing larger structures in the flow [11, 12] led to the idea that the aft

radiation was due to large coherent structures. Correlation analyses [13–15] between the measured

flow in the plume and microphone recordings in these two acoustic field regions support the idea

that large-scale structures are responsible for the downstream coherent radiation and small eddies

throughout the mixing region are responsible for the sideline radiation.

This paradigm for jet noise has been championed by Tam et al. [8] with their development of

the similarity spectra. The source mechanisms corresponding to the two similarity spectra have

come to be known as large-scale turbulence structures and fine-scale turbulent structures. Fine-scale

turbulent structures are understood as small eddies or other perturbations in the mixing region of

the flow, which exert an effective turbulence pressure on their surroundings [16], creating acoustic

waves that propagate through the flow out to the ambient air. Due to counteracting effects of

convection of the sound downstream by the flow and refraction as it transitions from the flow to the

ambient air causes the sound to be nearly omnidirectional [9]. Large-scale turbulence structures are

generally accepted to be due to Kelvin-Helmholtz instability waves generated at the shear layer of

the jet near the nozzle [17] that grow as they convect downstream.

When the jet flow becomes supersonic, additional components of the noise field are present,

complicating its description. When supersonic jets are operated off design (such that the pressure

of the flow leaving the nozzle does not equal the ambient pressure), shocks and expansion fans

are generated in the resulting flow creating quasi-periodic diamond patterns called shock cells

or Mach diamonds. These shocks and expansion fans interact with the turbulence that propagate

though them to generate a new type of noise called broadband shock-associated noise (BBSAN).

This noise component radiates in the forward direction, and its peak frequency is dependent on the

shock cell spacing. Models of this noise component are known and agree well with laboratory-
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scale measurements [18, 19]. Additionally, the presence of the shock cells cause an acoustical

impedance boundary in the flow, such that some percentage of the acoustically-propagating pressure

fluctuations may resonate between the shock cells and the nozzle exit, causing a loud, tonal noise

called screech [20]. Screech is not seen often in high-performance military aircraft, though BBSAN

is [21].

An additional implication of supersonic flow is that the radiation from large-scale turbulent

structures becomes extremely efficient. As the turbulent structures convect downstream supersoni-

cally, they create nearly plane-wave like wavefronts that radiate at aft angles corresponding to the

convective Mach number of the propagating disturbance. This phenomenon is called Mach wave

radiation, though the term seems to be used interchangeably with the phrase “large-scale turbulent

structure noise” to refer to the aft radiation of supersonic jets.

Figure 1.1 Schematic depicting a supersonic jet operating off-design with corresponding
typical noise components. Large scale turbulence structures radiated noise to the aft, fine
scale radiates omnidirectionally, and BBSAN radiates in the forward direction.

Each of these noise components: large-scale turbulent structure radiation, fine-scale structure

radiation, screech, and BBSAN have been studied extensively over the years using various numerical
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and experimental methods, mostly at the laboratory scale. A schematic, adapted from Ref. [22], in

Fig. 1.1 depicts the major components of jet exhaust operating off design with their corresponding

noise components.

1.2 Flow Imaging and Decomposition

In agreement with the acoustic analogy of Lighthill, the complex interaction of pressure, temperature,

and the three-dimensional components of the velocity all contribute to the radiated noise. Thus,

imaging these fields has been an active area of research. Direct measurements of the turbulence

began with invasive procedures such as Pitot tubes and hot-wires, but have developed into many

complex, less-invasive methods including Rayleigh scattering [23], particle image velocimetry [24],

and Schleiren imaging [25]. These sensitive tools can calculate pressure or particle velocities of

entire flow fields simultaneously, allowing for more in-depth analysis of how the flow develops over

space and time.

With the advent of these full-field imaging methods, the sheer amount of data generated in

measurements necessitates the distillation of the flow fields into their most important components.

A plethora of flow decomposition techniques have been applied in various fluid dynamics situa-

tions [26] and subsequently applied to jet noise. Some of these methods are theory-driven, such as

decomposing the field into acoustic, hydrodynamic, and thermal modes using Doak’s momentum

potential theory [27, 28], or operator-based analysis such as global linear stability analysis [29] and

resolvent analysis [30]. Other decompositions are data-driven, like the spectral proper orthogonal

decomposition (SPOD) [31] and dynamic mode decomposition [32]. Operator-based decomposi-

tions add information about cause and effect relationships within the flow and between the flow

and acoustic radiation and follow-up studies have found relationships between the data-driven and

operator-based decompositions [33].
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Understanding the decomposed time-harmonic flow field is similar to understanding the radiation

from a vibrating surface. When the velocity of bending waves on a plate is higher than the sound

speed in the adjacent air at a given frequency (or in other words, is “supersonic”), that frequency

is found to radiate efficiently into the field. The large, coherent structures (which are readily

visualized by the decomposition methods above) in the flow can be modeled similarly by finding a

time-averaged phase relationship over a portion of the flow. If this phase relationship is supersonic

compared to the adjacent ambient air, then efficient, directional radiation (Mach wave radiation)

occurs at that frequency. The partially coherent nature of the field, however, suggests a superposition

of a multiplicity of these structures. The time-averaged amplitudes of these structures over space

often start small, saturate to a maximum value, then decay again, resembling a wavepacket [34].

The decomposition of the acoustic [35, 36] and flow [31] fields into wavepackets is an ongoing area

of research, with the goal to reduce the complicated jet noise problem into a combination of simple

wavepacket shapes. Progress in measurement techniques in the laboratory as well as availability of

detailed simulations of the jet plume provide opportunities to apply decomposition techniques to

entire flow fields, and these decomposed flow fields are then compared to this wavepacket analogy,

or wavepackets directly educed from the flow field.

Decomposition methods, jointly with the acoustical analogy framework and understanding of

radiation from wavepacket-like structures lays out the backbone of understanding of the large-scale

turbulent structure noise of supersonic jets.

1.3 Numerical Simulations

Simultaneous with the increase in flow decomposition and flow-field imaging methods, numer-

ical simulations of jet noise have also become a widely used and powerful tool [37]. The most

straightforward method is called direct Navier-Stokes (DNS) that simply solves the Navier-Stokes
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equations numerically. To resolve all the turbulence scales, DNS requires a very fine mesh and is

extremely computationally taxing, though it is the most accurate method available. On the other

end of the spectrum, Reynolds-averaged Navier–Stokes (RANS) use a Reynolds decomposition

of the Navier-Stokes system to solve for the time-averaged fluctuations about a mean value. Since

noise is caused by turbulence and the turbulence is modeled instead of calculated, this method’s

evaluation of the noise is inaccurate, though it has a fast computation time. Large eddy simulations

(LES) provide a balance between these two methods: it solves directly for the larger scales and the

smaller, sub-grid scales are modeled. Since the large turbulence scales are more effective than the

fine turbulence scales at generating noise (particularly in supersonic jets), LES has proven itself a

suitable method for calculating jet noise.

To predict the far-field noise generated by jet flow, one could certainly expand their computa-

tional domain into the far field, though this becomes quickly impractical. Acoustic analogies, then,

are applied to the jet flow field after the computation is complete to calculate the far-field acoustics.

A volume integral of Lighthill’s source terms, for example, can be calculated directly from the

LES-generated data to calculate the far-field acoustics. This volume integral is extremely resource

expensive.

The Ffowcs Williams and Hawkings (FW-H) integration method is an alternate method to

calculate the far-field acoustics, where a virtual surface [Ffowcs Williams and Hawkings surface,

(FWHS)] is drawn surrounding the flow and a Rayleigh-type surface integral is taken of the pressure

or velocity components on the surface [38]. The placement and extent of the FWHS is often chosen

based on trial and error: it needs to be far enough outside the flow and large enough that it contains

all the sources, though near enough that the often-variable grid used in the numerical simulations is

dense enough to resolve the salient acoustics. Generally, it is a conical surface that parallels the

shear layer, without end caps. FW-H integration is convenient for supersonic jets because the vast

majority of the radiated sound energy goes right through this kind of conical surface.
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Numerical simulations are ideal because they can provide full flow data for decomposition

techniques as well as predictions of the far-field acoustics through the FW-H integration methods.

As computational schemes become more advanced, more and more difficult jet noise problems

(such as simulating highly supersonic military aircraft jets) can be investigated. At this time, for

example, there are few LES of highly-heated jets at temperature ratios on the same order of military

aircraft jets at afterburner [39–42] and have not been directly validated through laboratory-scale

investigations because of difficulties in reproducing these extreme temperatures in the lab.

1.4 Rockets

Parallel to the investigations of jet noise source phenomena, the jet noise caused by rocket plumes

has been an engineering challenge. With the advent of the space race in the 1950s and 60s, rapid

development of more and more powerful rockets took place, and it was found the acoustic loading

from the noise on the rocket body could cause equipment failure during takeoff. Subsequent research

done to understand and mitigate the noise generated by rockets has focused on semi-empirical

methods. NASA SP-8072 [43] was a landmark document that provides normalized spectra, estimates

of axial distributions of overall sound power, and sound source position as a function of frequency

generated using laboratory-scale supersonic jet and full-scale rocket data [44, 45]. It presents

a method to apply these generalized spectra by scaling to the specific test at hand to create an

equivalent source model of the jet noise, consisting of a distribution of sources along the jet

centerline. The strength of these sources is related to the mechanical power of the jet through an

assumed acoustic efficiency of about 0.5%, or 1% as a conservative upper bound.

Since then, several studies have focused on adapting these empirical relations so that they match

more recent data as they became available [46–48], often tuning the definitions of characteristic

lengths [49], as well as including the integration of computational schemes [50, 51] for generation
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and propagation of the sound field. Recent work [52] has shown that a plotting error in the original

NASA SP-8072 document has led to an understanding in the rocket noise community that the main

source of noise is the subsonic portion of the flow, while in the jet noise community it is understood

that the main acoustic power originates between the potential and supersonic cores [45]. The state

of the art for rocket noise prediction then is a combination of semi-empirical methods, involving

estimating the source locations and strengths from a combination of normalized parameters and

scale model testing of the rocket being investigated.

There is a certain disparity between the rocket and jet noise communities in that many of the

normalization schemes that work for laboratory-scale jets (which use Strouhal number to normalize

their spectra and the nozzle diameter to normalize the lengths) do not seem to apply directly to

rockets, where the peak of the spectra on a Strouhal number scale is an order of magnitude lower.

Additional scaling schemes that attempt to unite these two disparate spaces have been proposed [53],

but not widely adopted.

1.5 Measurements of Full-Scale Aircraft

In recent years, several high-quality measurements of military aircraft jet noise have been produced

[54–56]. Using the similarity spectra to verify that these measurements follow established trends in

jet noise, however, provided some challenges. Neilsen et al. [57], when fitting the similarity spectra

to a rectangular-nozzled aircraft, showed how the fine-scale similarity spectrum fit the field towards

the sideline, the large-scale spectrum fit in the area of maximum radiation, and a mixture of the

two fit in the boundaries around the area of maximum radiation. Where the spectrum did not fit

was when the aircraft was run at high engine powers and the measured spectrum in the direction

of maximum radiation exhibited multiple peaks. Multiple peaks in the spectra were subsequently
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observed in a measurement of an F-18 and F-35 aircraft, and the same issues arose when fitting

similarity spectra to their fields [56, 58].

With the observations of the dual-peaked spectrum in the aft radiation of these three aircraft,

Tam and Parrish [59] suggested that the additional spectral peaks were attributed to combustion

noise originating in the nozzle. Liu et al. [39, 40] hypothesized that the increase of temperature

of the flow causes the radiation originating from the potential core region to have a different

directivity than the radiation originating from the subsonic, downstream portion of the flow. They

used LES of laboratory-scale jets of increasing total temperature ratio to show that the Mach wave

radiation’s directivity shifted towards the sideline, though the portions of the flow that were beyond

the supersonic core still maintained a shallower directivity, thus identifying the importance of the

distinction between Mach wave radiation and large-scale turbulence structure noise. However, when

looking at a single point in space, no multiple peaks in the spectra were observed.

Follow up studies of the correlation and coherence of the measured fields of the rectangular-

nozzled aircraft [60] and the F-35 [61] show that the multiple peaks in the spectra are mutually

uncorrelated, which suggests they may be due to independent noise sources. Swift et al. [61],

analyzing the F-35 field, found that BBSAN was partially coherent with the aft radiation, and could

potentially be a cause for the multi-lobed spectra.

Additional speculations of the cause of the multi-lobed spectra involve the interaction of the jet

with the hard ground. Investigations of laboratory-scale jets near rigid boundaries [62–67] provide

evidence of additional noise components due to jet-surface interactions at frequencies below the

peak frequency of the jet noise.
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1.6 Inverse Methods

Jet noise has often been seen as a fluid dynamics phenomenon that happens to radiate noise and has

been investigated as such. Investigations of the Lighthill stress tensor and complicated simulations

and decompositions of the flow have been the leading driver of understanding of the jet noise

problem. However, because of the sensitive nature of the details of military aircraft engines, this

line of thinking is near impossible to take when investigating the deviation of the jet noise created

by military aircraft from laboratory-scale counterparts. Thus, to understand the noise source of

military aircraft, it is necessary to start from the acoustic field and look backwards into the flow.

Acoustic inverse methods have been instrumental in understanding the localization and charac-

terizations of acoustic sources for many years, and a wealth of array-based localization techniques

are available. Two of these techniques, near-field acoustical holography [68] and beamforming [69],

have been applied to jet noise in recent years, both at the laboratory and full-scale. Beamform-

ing [70–75] is based on an equivalent source model (ESM), which assumes some distribution of

monopoles as a source, then calculates the strength each source would need to combine together

to make the measured field at the location of measurement. Near-field acoustical holography

(NAH) uses an equivalent wave model (EWM), which assumes that the field in the region of the

measurement can be decomposed into a linear combination of a set of wavefunctions. Those wave-

functions can then be fit to the measurement data and evaluated at another location to reconstruct

the field at that location. Near-field acoustical holography, which was developed for the general

three-dimensional imaging of noise fields [76, 77], has been used in laboratory jet noise measure-

ments [78–81] and was recently adapted to full-scale measurements of the jet noise produced by

military aircraft [82, 83].

Alan Wall’s dissertation [84] focused on developing a variant of statistically optimized near-field

acoustical holography (SONAH) called multisource statistically optimized near-field acoustical

holography (M-SONAH) [85], which uses two sets of basis function in the EWM instead of just
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one. This was formulated so that the noise field surrounding the rectangular nozzled aircraft in

Ref. [54] could be reconstructed, as one set of wavefunctions was to represent the direct sound from

the plume and the second from the reflected sound from a virtual source located below the ground.

The M-SONAH technique was successful in reconstructing the field in a large area surrounding the

aircraft based on two-dimensional measurements taken in the near field. These measurements were

a massive undertaking, with a dense array of 90 microphones being laterally translated downstream

parallel to the jet plume of the aircraft over multiple measurements to cover the desired area. Though

this method provided two dimensional measurements, it was found that including an axisymmetric

assumption in the formulation of the EWM did not decrease the reconstruction accuracy.

Taking reconstructions of the field along the nozzle lipline, Wall et al. [36] were able to apply a

decomposition method that was able to generate an equivalent acoustic source for the field generated

by the aircraft in Ref. [54]. This source was tailored to identify independent coherent phenomena

in the plume as a function of frequency and split the multiple directivities associated with the

independent spectral peaks into separate sources, suggesting the spectral peaks be associated with

different fluid dynamics phenomena. This type of analysis was repeated by Harker et al. [75],

though using a different decomposition method of the source generated by a beamforming method

applied to the same measurement.

1.7 Scope

The purpose of this dissertation is to characterize the field produced by high-performance military

aircraft and investigate potential source mechanisms for the presence of multiple peaks in their

spectra. This is accomplished by:

1. Adapting the near-field acoustical holography methods developed by Ref. [84] to measure-

ments of an F-35 aircraft [55].
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2. Measuring the field of the new Boeing T-7A trainer aircraft.

3. Investigating the radiated field of a LES of a highly heated laboratory-scale jet [40].

4. Applying NAH to the radiated field of the LES as if it were a measurement of a full-scale

aircraft and comparing the properties of the flow to the reconstructions.

This dissertation is a compilation of five individual works (each contained in a Chapter) that

accomplish these goals. Chapter 2 presents an acoustical holography-based analysis of spatiospectral

lobes in the measured jet noise field of an F-35 aircraft. It discusses how the multiple peaks in the

spectra measured of full-scale aircraft are better described as multiple lobes in the spatiospectral

domain, which change as a function of engine power. Chapter 3 details a follow-up study to the first,

which investigates the accuracy of the adapted M-SONAH method and discusses the applicability

of the EWM to reproducing the effects of the hard ground on the measurements. Chapter 4 contains

a publication describing the large, multi-organizational effort to measure the field radiated by the

T-7A aircraft and the efforts to identify data artifacts. Spatiospectral lobes following the same

pattern of those observed in the F-35 measurement are seen.

Chapter 5 shifts gears and presents an analysis of the field observed of a LES of a highly heated

laboratory-scale jet. The coherence function is calculated in the field and between points in the

flow and the field, in a similar fashion as was done on a laboratory scale jet in Ward et al. [86].

Chapter 6 contains an application of SONAH to the same simulation, with the ability to compare

the source reconstructions of the field to actual LES data to verify the holography applied to the

F-35. The final analysis in Chapter 6 is the calculation of the axial distribution of sound power

using the LES-generated field and the holographic reconstructions.

Because flow parameters of the F-35 and T-7A are unknown, direct investigation of the source

phenomena responsible for the spatiospectral lobes measured in the field of these aircraft is un-

available. The addition of the LES of a highly heated laboratory-scale jet, however, provides
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opportunities to use the NAH methods applied to the F-35 on the LES and subsequently compare

the flow parameters generated by the simulations to the NAH reconstructions. The juxtaposition

of the full-scale military aircraft measurements with the LES allow for investigation of potential

source mechanisms of the spatiospectral lobe phenomenon.



Chapter 2

Acoustical Holography-based Analysis of

the Spatiospectral Lobes of the F-35

This work was accepted for publication in AIAA Journal February 18th, 2021 under the title

“Acoustical Holography-based Analysis of Spatiospectral Lobes in High-performance Aircraft Jet

Noise”. I hereby confirm that the use of this article is compliant with all publishing agreements.

2.1 Abstract

Holographic reconstructions of the sound field in the vicinity of a tied-down F-35 aircraft were

achieved by applying multisource statistically optimized near-field acoustical holography to mea-

surements taken at a linear ground array approximately parallel to the shear layer of the jet. The

measured field, as well as reconstructions to locations where the field was not measured, show that

the field can be described as a superposition of multiple lobes in the spatiospectral domain. These

lobes are observed in the field when the aircraft is operated at a variety of engine powers, including

afterburner. For a given engine power, as frequency is increased the spatial lobes in the mixing

noise region shift aft in directivity until they disappear beyond the aperture of the measurement

16
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while new ones appear towards the sideline and shift aft with the others. At a fixed frequency, when

engine power is increased the forward-most spatial lobe increases in level more than the other lobes,

which is a major factor in the observed forward shift in overall directivity with increasing engine

power. Frequency-dependent raytracing of the spatial lobes gives insight into the directivity and

apparent source locations for jet noise components as a function of frequency and engine power.

2.2 Introduction

Although important insights are gained from laboratory-scale investigations of jet noise, some

aspects of jet noise produced by full-scale military aircraft have not yet been reproduced by

laboratory-scale measurements. Additional insight into aeroacoustic noise is, therefore, obtained by

application of techniques used in laboratory settings to measurements of full-scale, high-performance

military aircraft. Two such techniques are beamforming and near-field acoustical holography

(NAH). Beamforming has been successfully used to image aeroacoustic sound sources in the

laboratory [70, 72] as well as at the full-scale [71, 73–75]. Near-field acoustical holography,

which was developed for the general three-dimensional imaging of noise fields [76, 77], has been

used in laboratory jet noise measurements [78, 80, 81, 87], and was recently adapted to full-scale

measurements of the jet noise produced by military aircraft [82, 83]. The NAH process involves

fitting an equivalent wave model (EWM) for the field under examination to measured data (called a

hologram). This fitted EWM can then be evaluated at any point of interest and provides reliable

estimations of the field as far as the assumptions in the EWM hold. Acoustical holography studies

of jet noise from high-performance military aircraft have been successful in showing trends across

frequency and engine conditions in both the source extent and directivity [83].

Wall et al. [85] used an advanced method of NAH called multisource statistically-optimized

NAH (M-SONAH) to investigate the characteristics of the field in the vicinity of an F-35 operating
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at 100% Engine Thrust Request (ETR). Using a ground-based linear array as the input to the

holography process, reconstructions were achieved over a large area within the aperture of the

hologram. At several frequencies in the region of maximum radiation, multiple radiation lobes were

observed. As frequency increased, as many as four individual lobes emerged towards the sideline,

moved aft, and submerged back into the overall field. Evidence of broadband shock associate noise

(BBSAN) was also observed as a lobe propagating in the forward direction [58, 88].

The presence of multiple radiation lobes in military aircraft jet noise has been seen in several

data sets [54–56, 89], though no conclusive explanation of its cause has been given. These lobes

are described as either multiple peaks in the spectra at a given measurement location or as mul-

tiple local maxima in the directivity when plotting a single frequency across space. Evidence of

spatiospectral lobe content in laboratory-scale measurements is sparse. In one example, Long [87]

used NAH to image the source from a heated laboratory-scale jet and showed striation patterns in

the spatial/spectral domain.

Several studies have proposed explanations for multiple lobes. Tam and Parrish [59] sought

to explain dual spectral peaks shown in one-third octave band spectra of a rectangular-nozzled

aircraft [57] in terms of indirect combustion noise sources that originate from within the nozzle.

Liu et al. [39, 40, 90, 91] investigated temperature ratio as a possible cause of multiple lobes by

using large-eddy simulations of laboratory-scale jets and showed far-field evidence for at least two

noise source mechanisms which became more distinct as temperature ratio is increased. Schmidt

et al. [31], doing spectral proper orthogonal decomposition and resolvent analysis of large-eddy

simulations of cold laboratory-scale jets, show two main low-rank wavepacket structure types:

one in the initial shear layer of the jet near the nozzle with a high phase speed and another found

downstream, more spatially extended, and with a lower phase speed. These wavepacket types

qualitatively agree with the two source mechanisms observed by Refs. [39, 40, 90, 91], as discussed

in Ref. [92].
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Previous NAH [36] and beamforming [35] performed on measurements of military aircraft jet

noise have constructed equivalent source models that have been successful in reproducing the sound

field. These reduced-order equivalent source models use multiple independent sources to contribute

to individual spatiospectral lobes, suggesting that the multiple lobes are incoherent. Swift et al. [61]

performed an extensive correlation and coherence analyses on the same data set presented in this

paper that verifies incoherence between lobes. The incoherence between the lobes suggest that they

may be due to independent sources or source mechanisms. Additionally, Ref. [61] shows correlation

between the aft radiation where multiple lobes are present and BBSAN in the forward direction,

which suggests that shock cell interactions could be a contributor to these multilobe effects.

The purpose of the current study is to use M-SONAH, which was developed for the use of

imaging the field produced in the presence of a ground reflection, to reconstruct the sound field

produced by a tied-down F-35B aircraft running at various engine conditions. Trends in observed

spatiospectral lobes and BBSAN across engine power are presented in a large area surrounding the

jet for select frequencies. The measured and reconstructed fields show that the noise in the region

of maximum radiation is a superposition of multiple spatiospectral lobes, where the overall trends

across frequency and engine power are best described by the number and levels of the individual

lobes present. Prior observations of a “dual-peak” or multilobe phenomena in Refs. [56, 59, 83]

appear to be subsets of the more complete picture described herein.

2.3 F-35 Measurement

This section discusses the measured spectra and OASPL gathered from a ground-based array in the

geometric near field approximately parallel to the jet shear layer and a far-field arc array 1.5 m off

the ground. Spatiospectral lobes are seen at all engine powers.
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2.3.1 Setup

Extensive static measurements of the F-35 A and B variants were performed at Edwards Air Force

Base in 2013 [55]. The aircraft were tied down on a concrete run-up pad while the engine was

cycled through various engine conditions, including 13% ETR to 150% ETR. Engine powers greater

than 100% ETR are due to the addition of afterburner. This paper uses measurements of the B

variant, which had a Pratt & Whitney F135-PW-600 afterburning turbofan engine. The nozzle of

the engine was 2 m from the ground and had a nominal 1 m diameter, though the exact nozzle

diameter changed with engine condition. Jet parameters such as Mach number, nozzle pressure

ratio, temperature, and exact nozzle diameter for each engine power are unknown by the authors, so

no Strouhal number or other type of scaling is attempted in this work.

The coordinate system used in this study is centered on the nozzle exit (with the point on the

ground below the nozzle exit as the origin) with the jet exhausting in the positive z direction, as

illustrated in Fig. 2.1. The x-axis is the horizontal distance from the jet centerline and the y-axis is

the height above the ground. Cylindrical coordinates are used in the M-SONAH algorithm, with r

being the radial distance from the z axis. Another useful coordinate is the jet inlet angle, θ , which is

measured from the direction of the aircraft nose (−z direction) around a microphone array reference

point (MARP) which was located at z = 7.5 m. The array was laid out to the left side of the aircraft

as shown in Ref. [55], though for ease of plotting and consistency with previous NAH studies, all

plots here are mirrored to show it on the right side of the aircraft. This study focuses on a 32 m

long, 71-element (0.45 m interelement spacing) linear ground array placed approximately parallel

to the shear layer, which is used as the input to the holography processing and is referred to as

the holography array. An arc array located 38m from the MARP is also used to validate the field

reconstructions. Figure 2.1 shows a schematic for the test geometry with the coordinate system and

the approximate location of the F-35B.
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Figure 2.1 Holography array and 38 m arc positions for the F-35B. The red marker is the
microphone array reference point (MARP), which was 7.5 m behind the nozzle.

2.3.2 Measured Data

The measured data along the 71-microphone holography array demonstrate how the sound field

varies with engine condition. The measured overall sound pressure levels (OASPL) and correspond-

ing spectra for each engine condition are shown in Figs. 2.2a) and 2.3, respectively. As engine power

increases from 25% to 150% ETR, a peak in the OASPL appears at about z = 15 m at 50% ETR,

shifts forward to about z = 11 m at 75%, then continues shifting forward until it settles at about

z = 8 m at 150% ETR. The transition between 130% and 150% ETR does not increase the OASPL

significantly, except for rounding out the peak. At 50% ETR and above, a secondary local maximum

is seen at about z = 22 m. The far-field OASPL measured at the 38 m arc in Fig. 2.2b) shows the

forward shift in directivity as engine power is increased, though both afterburning conditions have

similar curves. The increased level in the forward direction at 25% ETR is attributed to aircraft

noise, but at 75% ETR and above the increase in the forward directions is due to BBSAN [58].

There are hints of a split directivity in the OASPL at 75% ETR and greater, though the deviation
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is too small and angular spacing of the array is too large to be sure. The OASPL directivity shifts

from being centered at approximately 145° at 25% ETR to 125° at afterburner.

The spectra at each point on the holography array illuminate why the OASPL changes as it does.

Figure 2.3 shows the sound pressure levels (SPL) for frequencies between 30 and 700 Hz (spacing

of 3 Hz) for each microphone along the array. Each pane of Fig. 2.3 shows the data for an engine

condition (specified above the pane). The color bar on the right (shared across panes) shows the

levels relative to the peak, which is specified above each pane. At 25% ETR, the left portion of the

array (z < 10 m) appears to be dominated by engine noise, with the louder jet noise farther aft. At

50% ETR and above, jet noise dominates the whole array. For engine conditions at 75% ETR and

above, radiation in the forward direction is observed between 300 Hz and 700 Hz, which analyses

in Refs. [58, 88] show to be BBSAN.

Figure 2.2 OASPL across the a) holography array and b) 38 m arc for several F-35B
engine conditions (given in % ETR).

The most prominent feature of the spatiospectral plots in Fig. 2.3 is the presence of multiple

lobes in the space–frequency domain. There are at least two lobes at 25% ETR, four lobes between
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Figure 2.3 Spatiospectral maps of normalized sound pressure level on the holography
array as a function of downstream distance from the nozzle (z) and frequency. The numbers
indicate the several spatiospectral lobes

50% ETR and 130% ETR and five at 150% ETR. Deciphering the exact number of lobes is an

ongoing research problem, with different methods being employed. For this work, the patterns of

minima and maxima in the levels are used, as indicated by the white numbers on the spectra in Fig.

2.3.

The placement of each lobe in the spatiospectral domain appears consistent across engine

conditions, though their individual extent, shape, and relative amplitudes differ greatly. A clear

example is the difference between the 50% ETR and 75% ETR engine conditions; lobe 4 is barely

visible in the 50% ETR case, but in the 75% ETR case it has a much greater contribution to the field.
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The significant addition of upstream energy in the third and fourth lobes in the transition from 50%

ETR to 75% ETR appears to be the single greatest contributor to the increase in OASPL and the

forward shift in directivity seen in Fig. 2.2. Qualitatively, the total spectrum appears to be a simple

superposition of these lobe structures, which would imply an incoherence between them. These

observations seem to show that the aft radiation region, which has been attributed to “large-scale

turbulent structure noise” may actually be a superposition of different noise mechanisms. Analyses

in Sections 2.5.4 and 2.5.4 of this paper are geared to understand the source regions in the jet plume

responsible for these spatiospectral lobes, though additional work is needed to understand if these

are universal aeroacoustic phenomena or only apply to military aircraft jet noise.

2.4 M-SONAH Method

This section discusses the application of M-SONAH to the F-35B measurements (described in Sec.

2.3) to reconstruct the time-averaged complex pressure field in the area surrounding the aircraft.

M-SONAH, developed by Wall et al. [82], modifies the traditional SONAH algorithm [93] to use a

two-source model: one along the jet centerline and an image source–equidistant from but below the

ground–to account for the ground reflection. Each source has a corresponding set of cylindrical

basis functions that constitute the equivalent wave model (EWM) of the field. The time waveforms

recorded from the holography array are the input to the M-SONAH algorithm, which includes the

following steps.

2.4.1 Extract frequency-dependent complex pressures from recorded pres-

sure waveforms

To obtain the frequency-dependent complex pressures for all measurement locations and engine

conditions, the recorded 30-second time waveforms are split into multiple blocks with a 50%
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overlap and windowed with a Hann function. The Fourier transform is then applied to each block.

During the F-35B measurements, several organizations and different data acquisition systems

with different sampling frequencies were involved in the simultaneous measurement of all the

microphone channels. For this study, the block sizes for each different sampling rate were chosen

such that the resultant frequency resolution was 3 Hz in all cases. The applied Fourier transform

yields a single complex pressure value per block, per frequency. The remaining steps are done on a

frequency-by-frequency basis.

2.4.2 Perform a partial field decomposition (PFD) to generate mutually in-

coherent partial fields

Application of acoustical holography fundamentally assumes that the field in question is coherent.

Therefore, to apply NAH to partially coherent jet noise, the complex pressures on the holography

array are decomposed into mutually incoherent, but self-coherent, partial fields that can be processed

independently. After propagation, the individual partial fields are summed energetically to reproduce

the total field [94]. For each frequency, the cross-spectral matrix (CSM) of the input array is

calculated. The CSM is a matrix where the i jth entry is the cross spectrum between elements i and j

in the array. A singular value decomposition (SVD) is done on the CSM, where the singular vectors

of the SVD scaled by their corresponding singular values yields a set of partial fields. The number

of partial fields generated is equal to the number of elements in the input array. Figure 2.4 shows

the SPL of the singular values for two representative engine powers. These singular values indicate

the contribution of each partial field at each frequency. At low frequency, the field exhibits low-rank

behavior; the majority of the energy is compacted by the SVD into relatively few partial fields.

Since each partial field is processed individually and the final reconstructed field is a sum of

all the processed partial fields, a “filtering” of sorts can be done by only using the most energetic

partial fields to reconstruct the total field. In this study, for each frequency of interest, the number
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Figure 2.4 Singular values of the 71 partial fields as a function of frequency for a) 75%
and b) 150% ETR.

of partial fields used was selected such that their sum represented 99.9% of the total energy of

the input hologram. Over the frequency band presented in this paper, only four partial fields were

needed to meet this energy criteria for the lowest frequencies and on the order of 50 for the highest

frequencies. Because the excluded partial fields generally had higher relative amplitudes towards

the edges of the array, the 0.1% of energy removed generally causes the field at the edges of the

array to be slightly underestimated.

2.4.3 Numerically extrapolate each partial field beyond the measurement

aperture

The SONAH algorithm was originally developed to reduce errors caused by having a measurement

aperture that was not significantly larger than the source [93]. Even with the SONAH algorithm,

in this measurement the 32 m aperture was not large enough to capture all the pertinent energy

for the lowest frequencies, causing finite-aperture effects to become significant. The two most

significant finite-aperture effects in this work are wraparound error and high-wavenumber leakage.

Wraparound error is solved easily by zero-padding the edges of the input hologram so that it is much
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larger than the area in which the reconstructions are made. High-wavenumber leakage is caused by

pressure discontinuities in the input, which in turn are caused by the pressures not decaying to zero

by the edges of the hologram. In an attempt to simulate the missing energy from having a too-small

aperture at low frequencies and to reduce the discontinuity at the measurement edge, linear forward

prediction was implemented to estimate values for the complex pressures of the field at locations

beyond the original measurement aperture and a window was applied to the extended measurement

to reduce the pressures to zero by the edge.

In linear forward prediction, the coefficients of a polynomial are determined from existing data,

the polynomial is used to predict one point beyond the original aperture, which is then included

in the fitting of a new polynomial. This process is iterated until the field is extended the desired

amount. This method has been used for previous studies [95] and is repeated here for simplicity.

A challenge with extending the aperture of each partial field individually is that the SVD-based

PFD may generate partial fields which do not monotonically decrease towards the end of the

original measurement. In such cases, the linear forward prediction (which has a tendency to produce

extraneous oscillations [95]) of the higher-order partial fields (which via the SVD are inherently

less energetic than the lower-order partial fields) often end up contributing more to the energy of the

extended field than the lower-order partial fields. This causes the extended field to only be accurate

for short distances outside of the original measurement. To enforce a graceful taper of the pressures

to zero at the end of the extended aperture and reduce the effect of extraneous oscillations outside

the original measurement, a Tukey window is applied to the magnitude of the complex pressures

along the extended hologram. The window has a value of one over the original measurement that

decays to a value of zero within one acoustic wavelength of the edge of original measurement.

Extending the aperture with the window provides zero padding as well. For this measurement

geometry, the aperture is extended approximately 68 m on either side of the array, which is needed

to eliminate wraparound error for as low as 32 Hz.
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2.4.4 Formulate the EWM of the jet in the run-up pad environment and

solve for pressure at desired reconstruction locations

The EWM methodology used in the M-SONAH algorithm is described in detail in Refs. [82, 83].

For this study, the EWM is comprised of two sets of cylindrical wave functions to capture the effect

of the rigid ground on the measurement, one centered along the jet centerline and another along an

image jet centerline below the ground. The basis functions for outward propagation are

Ψl,kz(~r)≡
H1

l (krr)
H1

l (krr0)
eilφ eikzz, r ≥ r0 (2.1)

where r, φ , and z are the radial, azimuthal, and axial spatial coordinates of the position vector,

~r; H1
l is the lth-order Hankel function of the first kind; i is the imaginary unit; r0 is some small

reference radius (traditionally the assumed source radius) [96]; and kz and kr are the axial and

radial wavenumbers, respectively. For this study, only l = 0 is used, since a single, ground-based

linear array is used as the input. This choice of l forces axisymmetry for each wavefunction at

each frequency. This limitation is sufficient to reconstruct the sound field over a limited azimuthal

aperture, as exemplified by the success of prior work [83], where a large two-dimensional array

was used as input but only the zeroth-order mode was needed for accurate reconstructions. The

success of limiting the equivalent wave model to l = 0 is likely due to the reconstructions only

being attempted at sufficiently low frequencies.

The number of wavefunctions in each set, M, is therefore only dependent on the number of kz

values used. The kz values for this study are regularly spaced between − π

dz and π

dz in steps of π

∆z ,

where dz is the interelement spacing along the array in z and ∆z is the total axial span of the array.

The radial wavenumbers are

kr =


√

k2− k2
z for |k| ≥ |kz|,

i
√

k2
z − k2 for |k|< |kz|,

(2.2)
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where k = ω

c is the acoustic wavenumber, ω is the angular frequency, and c is the speed of sound.

This choice for wave function and definition of k implies a time harmonicity of e−iωt .

The basis functions in Eq. 2.1 depend on a position vector ~r = (r,φ ,z), which is expressed

relative to the above-ground jet centerline (superscript 1) or the image jet centerline below the

ground (superscript 2) via Eqs. 2.3 and 2.4,

~r1 =

(√
x2 +(y−2)2, tan−1

(
y−2

x

)
,z
)

(2.3)

~r2 =

(√
x2 +(y+2)2, tan−1

(
y+2

x

)
,z
)
, (2.4)

using the Cartesian coordinates of Fig. 2.1. The notation ~rhi is now used to represent the position

vector of the ith point on the holography array (which has Nh points), and ~rqi represents the position

vector of the ith of Nq points on the reconstruction array.

The total EWM is now created by evaluating all the basis functions at each measurement point

and each reconstruction point. They are combined into the matrices

A =



Ψkz1(~rh
1
1) . . . Ψkz1(~rh

1
Nh
)

... . . . ...

ΨkzM(~rh
1
1) . . . ΨkzM(~rh

1
Nh
)

Ψkz1(~rh
2
1) . . . Ψkz1(~rh

2
Nh
)

... . . . ...

ΨkzM(~rh
2
1) . . . ΨkzM(~rh

2
Nh
)


(2.5)
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and

α =



Ψkz1(~rq
1
1) . . . Ψkz1(~rq

1
Nq
)

... . . . ...

ΨkzM(~rq
1
1) . . . ΨkzM(~rq

1
Nq
)

Ψkz1(~rq
2
1) . . . Ψkz1(~rq

2
Nq
)

... . . . ...

ΨkzM(~rq
2
1) . . . ΨkzM(~rq

2
Nq
)


, (2.6)

where the number of rows in A is equal to the number of wavefunctions used in the model (twice

the M discrete kz values), and the number of rows is equal to the Nh measurement points on the

hologram. The ααα martrix has the same number of rows as A, but with columns equal to the Nq

number of points in the array where the field is to be reconstructed.

At this point, the M-SONAH process is the same as SONAH [93], where the column vector of

pressures at all the reconstruction locations, pq, is given in terms of the column vector of pressures

at each point of the hologram, ph, as

pT
q = pT

h RAHAAH
ααα, (2.7)

where the superscript T is the transpose, the superscript H is the Hermitian transpose, and RAHA is

the regularized inverse of AHA. Regularization was performed using a modified Tikhonov filter

with the generalized cross validation procedure for the selection of the regularization parameter

as outlined in Ref. [97]. The reconstructed pressures for each partial field are then energetically

summed to obtain the final answer for each frequency. All levels shown in this paper for specific

frequencies are scaled as if these frequencies were extracted from an autospectrum with units of

Pa2.
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2.5 Results and Discussion

This section shows the reconstructed field in the area surrounding the aircraft. In Section 2.5.1, the

field is reconstructed along the holography array to verify the spatial and frequency regions where

reliable reconstructions are obtained. Section 2.5.2 contains reconstructions to the two dimensional

plane along the ground surrounding the aircraft as well as comparisons of reconstructions to the

measured field along the 38 m arc. Section 2.5.3 has the reconstructions that were made along the

nozzle lipline of the jet to give insight into acoustic source characteristics of the jet plume. Section

2.5.4 shows reconstructions made to the field in the region to the side of the aircraft to characterize

BBSAN directivity and source location. In Section 2.5.4, the region of maximum radiation in the

aft direction is examined and the field sound level maps are used to characterize the behavior of the

multiple spatiospectral lobes across frequency and engine power. Finally, Section 2.5.5 compares

these results to previous studies of similar military aircraft as well as a numerical simulation of a

heated laboratory-scale jet.

2.5.1 Reconstructions at the Hologram

To verify the frequency range in which the aperture and interelement spacing of the array are

sufficient, field reconstructions are made at the input array and compared to the measured data. The

difference between the reconstructed and measured fields are displayed in Fig. 2.5 for two engine

conditions: an intermediate condition (75% ETR) and the maximum afterburning condition (150%

ETR). The largest errors in the reconstruction occur at low frequencies, where the method overesti-

mates the field level, and at high frequencies (above 400 Hz) where the levels are underestimated.

The low-frequency errors are attributed to the array not being large enough to fully capture all the

pertinent energy in the field. The high-frequency underestimations are due to spatial aliasing, where

the trace wavelength of the noise along the array is smaller than twice the interelement spacing
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in the array. The spatial aliasing at frequencies above 400 Hz causes a reallocation of energy to

a non-physical lobe which starts far downstream and propagates upstream. This reallocation of

energy is manifest as an immediate drop in level at about 400 Hz for z > 10 m. The upstream region

(z < 10 m, where BBSAN is dominant) maintains a smaller error for frequencies above 400 Hz

until the aliased lobe causes an overestimation of the levels there (particularly at 75% ETR). Based

on these limitations, investigations into the directivity of the aft radiation lobes are only conducted

for frequencies less than 400 Hz.

Figure 2.5 Error of the M-SONAH reconstruction along the input holography array as a
function of frequency for two engine conditions, 75% and 150% ETR.

2.5.2 Field Reconstructions

The benefit of the holography process is its ability to reconstruct the field at arbitrary locations,

which gives a physics-based extrapolation of the field to a myriad of points that would be impractical

to measure. Figure 2.6 shows reconstructions of the field to points in the ground plane (y = 0)

for two representative frequencies and engine conditions. The top row corresponds to 162 Hz

and the bottom row to 354 Hz. The columns represent two engine conditions, on the left, an

intermediate condition (75% ETR) and on the right, the maximum afterburning condition (150%

ETR). The color contour maps show the reconstructed sound pressure level at each point, the white
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line is the holography array location, and the gray outline is the aircraft position. In general, the

reconstructions show field trends expected for jet noise, with the maximum radiation beaming at a

large aft angle. However, the most apparent features at these frequencies are the multiple radiation

lobes. At 75% ETR and 162 Hz, two lobes are present with distinct directivities and apparent source

locations; at the same frequency but 150% ETR, the lobes rotate to a more forward directivity, have

a higher level, and overlap more. The same trend (though less clear) can be seen at 354 Hz.

Figure 2.6 Reconstructions along the y = 0 plane at two frequencies and engine conditions.
The colored contour plots show the sound pressure level maps, the thick white line is the
location of the input holography array, and the region between the green dashed lines
represent where errors are expected to be less than 2 dB.
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Figure 2.7 Select spectra along the 38m arc at five polar angles and two engine conditions.
Dotted lines are M-SONAH reconstructions

To be able to characterize the directivity of the multiple lobes across frequency and engine

power, it is important to understand the spatial limitation of accurate field reconstructions. Though

not shown in Fig, 2.1, the F-35 measurement contained a number of arrays in the field, including

arcs with radii of 19, 29, 38 and 76 m as well as additional line arrays in front of and just behind the

holography array. A previous study [98] compared M-SONAH reconstructions to the measurements

at these arrays and found errors were less than 2 dB between θ = 50° and θ = 150°. Further

investigation of the artifacts of the M-SONAH procedure was done using a numerical simulation.

A numerical source was created along the jet centerline, the M-SONAH procedure was applied

to an input hologram (same spatial location as the F-35 measurements), and field reconstructions

of the numerical source were compared to the numerical field. The 2 dB error contours of this

numerical case are used in conjunction with the error of the M-SONAH reconstructions to all the

measurements in the region to determine a conservative estimate of a region of good fit for the

frequencies of interest in this paper. The boundary of the good-fit region is represented by the
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Figure 2.8 Reconstructed spatiospectral maps along the 38 m arc in the same format as
Fig. 2.3

dashed green lines in Fig. 2.6. A line is drawn from the edges of the holography array outward

to select microphone positions at the 19, 38, and 76 m arcs. Upstream of the main radiation lobe,

the boundary points are chosen as θ = 50° for the 19, 38, and 76 m arcs; Downstream of the main

radiation lobe, θ = 140° for the 38 m arc and θ = 130° for the 76 m arc. These lines are continued

from the edges of the holography array inward to the nozzle lipline to the spatial region that contains

the top 6 dB of reconstructed levels at each frequency (represented by the solid green lines in Fig.

2.9).

The accuracy of the outward reconstructions is confirmed by comparing reconstructions to

measured spectra along the 38 m arc. Figure 2.7 shows five spectra measured at 110°, 120°,
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130°, 140°, and 150° at two engine conditions, along with the M-SONAH reconstructions at the

corresponding measurement locations (dotted lines). The spectra are limited between 30-400 Hz and

normalized to the peak of the spatiospectral domain (similar to Fig. 2.3). Though the measurement

was taken at 5 feet off the ground, the multi-peaked spectra observed at all engine conditions are

not attributed to ground reflection interference nulls. Because of the large distance of the array from

the jet, the lowest frequency where ground reflection nulls for even an infinitely long cylindrical

source at the jet centerline is calculated to be above 400 Hz. Reconstructions follow the measured

spectra closely except for frequencies below 150 Hz at the 150° location, where the reconstructions

underestimate the levels, likely due to the limitations in the aperture extension procedure.

To provide a more complete view of the aft radiation, holographic reconstructions to a dense grid

along the 38 m arc are shown in Fig. 2.8 in the same format as Fig. 2.3, with the exception that the

horizontal axis is now the jet inlet angle, θ . The M-SONAH reconstructions appear to interpolate

between the measured spectra in Fig. 2.7 and show up to three clearly defined spatiospectral lobes

in this frequency range.

2.5.3 Source Reconstructions

M-SONAH reconstructions at the nozzle lipline for the F-35B (along the line at x = 0.5 m, y = 2.0

m) can provide insight into source characteristics. Spatiospectral reconstructions to the nozzle

lipline are displayed in Fig. 2.9, which is in the same format as Fig. 2.3. Each pane represents the

reconstructions between 30 Hz and 700 Hz at each point along the lipline. The green contour lines

represent the spatial region where the levels are within 6 dB of the maxima at that frequency. For

a given engine condition, the peak region of the source contracts in size and shifts upstream with

frequency, which is well-documented for subsonic [7] and supersonic [99,100] jet noise at laboratory

scales. However, like previous studies of tactical aircraft [75, 83], there are some deviations in the

source distributions. At 25% ETR between 200-400 Hz there seems to be two spatially separated
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Figure 2.9 Spatiospectral maps of M-SONAH reconstructions along the nozzle lipline.
The solid green contour represents the 6 dB-down region for each frequency, which is the
intersection of the green dashed lines in Fig. 2.6 with the nozzle lipline.

local maxima. The upstream maximum is possibly an attempt by the algorithm to reconstruct

the engine noise, while the other likely the reconstruction of the aeroacoustic noise, with lower

frequencies dominated by aeroacoustic noise and higher frequencies dominated by engine noise.

Spatiospectral lobes are seen at 50% ETR and above that follow similar patterns as seen in Fig. 2.3.

At 50% ETR and 75% ETR though, instead of discrete lobes as seen in Fig. 2.3 it appears as more

of a continuous L-shaped region. At 130% ETR and 150% ETR, however, the spatiospectral levels

in Fig. 2.9 start to mimic the measured data at the input array and split into separate lobes similar to

those in Fig. 2.3.
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As previously mentioned, spatial aliasing starts to appear in the field reconstructions at 400

Hz. Even though an aliased lobe does not appear at the lipline until above 500 Hz, at 50%, 75%,

and 100% ETR there is an enlargement of the marked 6 dB-down region between 400 and 500 Hz.

The enlargement is probably due to the spatial aliasing, as it does not follow trends measured from

similar full-scale military aircraft [75].

2.5.4 Multiple Lobe Tracing

The multiple radiation lobes can now be tracked across space because of the holographic projection

of the field between measurement arrays. First, the field was reconstructed to a dense polar grid

(with the MARP as the origin) along the ground plane in the vicinity of the aircraft. This projection

onto the ground plane provides an approximation of the lobes that would be found in a free-field

analysis (lobe tracing at the jet centerline height with no ground interference effects). Examples

of these field reconstructions are seen in Fig. 2.6. To capture trends of the multiple spatiospectral

lobes across frequency and engine power, lines were fit in the z-x plane to each of the spatial lobes

at each frequency, similar to laboratory-scale work where the field could be measured directly [101].

To trace the lobes, points of local maxima were selected along each radius of the dense polar grid

programmatically. Several local maxima were seen at each arc due to the multiple radiation lobes in

the aft direction, the BBSAN noise lobe in the forward direction, and noise in the reconstruction. To

identify which points correspond to spatiospectral lobes, these points were then overlaid over plots

of the complete field reconstructions such as in Fig. 2.6 to see them in context. Each plot for every

frequency and engine power combination was then viewed to manually select which points were

representative of each directivity lobe in the field. Lines in the z -x plane were then least-squares fit

to each group of selected points to create a line to represent each directivity lobe. This resulted in a

set of lines which represent specific directivity lobes at individual frequencies.
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The lines with a positive slope (representing a spatial lobe with aft directivity) for each fre-

quency were then associated with each of the spatiospectral lobes as numbered in Fig. 2.3. This

association was done by calculating the intersection point of each line with the holography array and

superimposing those points on Fig. 2.3. Each point (representing a traced line at a single frequency)

was then manually assigned to one of the numbered spatiospectral lobes. This process contains

some ambiguity in that sometimes more than one spatial local maximum at a single frequency

appears to be a part of a single spatiospectral lobe as numbered in this paper. This suggests that the

spatiospectral lobes as numbered in Fig. 2.3 are in fact not capturing all the physical phenomena

present. However, for the purposes of this paper, these smaller fluctuations are ignored. Further

analyses to quantitatively isolate finer patterns than the several lobes discussed in this paper (such

as coherence analyses [61]) are ongoing.

The slope and z- intercept of each line now give information about the directivity and apparent

source location of each spatiospectral lobe and can be tracked as a function of frequency and engine

power. This procedure for tracking the spatiospectral lobes is used in Section 2.5.4 to discuss the

trends of the BBSAN lobe in the upstream direction and the multiple radiation lobes in the aft

direction.

BBSAN Trends

Broadband shock-associated noise (BBSAN) has been explored in much more detail in the jet noise

literature than the spatiospectral lobes radiating in the aft direction. The characteristic spatiospectral

signature can be seen along the holography array (Fig. 2.3) for 75%, 100%, 130%, and 150% ETR

between 400 Hz and 700 Hz at z < 7 m. M-SONAH reconstructions of the field show BBSAN as

a lobe radiating upstream. Figure 2.10 shows M-SONAH reconstructions along the ground plane

at two representative frequencies from 75% to 150% ETR. At 450 Hz, there is little evidence of

BBSAN at 75% ETR, but it quickly strengthens as engine condition increases. At 549 Hz, BBSAN
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is apparent at 75% ETR and increases in strength up to 150% ETR. The lines fitted to the BBSAN

lobes are superimposed on Fig. 2.10 in dark blue.

The reconstructions at frequencies above 400 Hz (as shown in Fig. 2.10) are considerably noisier

than low-frequency reconstructions seen in Fig. 2.6. This noise arises during the regularization

step in the inversion of AHA, which becomes more difficult as frequency increases (particularly

above the Nyquist frequency when aliasing is present). A more stringent choice of regularization

parameter significantly smooths out the field but also causes the level to be severely underestimated.

The parameter used here was chosen to favor accuracy in level.

Figure 2.10 Reconstructions along the ground plane of the region towards the side of the
aircraft where BBSAN is apparent.

To track the BBSAN lobe characteristics across frequency and engine condition, Fig. 2.11 shows

the directivity angle and z-intercept of lines fitted to the BBSAN lobe for several engine conditions.

Little variation across engine condition is seen, except for the z-intercept at 75% ETR. The BBSAN

at this engine power is low in level and appears at the edge of the holography array as seen in Figs.

2.3 and 2.10. The low prominence of the BBSAN lobe and incomplete coverage by the array likely
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Figure 2.11 Directivity and z-intercept of line traced through the BBSAN lobe for four
engine conditions

causes the fitted line to be less accurate than at higher engine powers, where the BBSAN lobe

is fully captured. For all engine conditions, however, the placement of the origin of BBSAN in

Fig. 2.11 is within the 6 dB down region seen in Fig. 2.9. The directivity angle of BBSAN noise

increases with frequency across all engine conditions, which is consistent with laboratory-scale

overexpanded jets [18], as well as conclusions for this aircraft by Ref. [58].

Mixing Noise Trends

The trends of the aft spatiospectral lobes across frequency and engine condition are summarized

by Figs. 2.12 and 2.13. Figure 2.12 shows M-SONAH reconstructions in the same format as Fig.

2.6 but including more engine conditions, frequencies, and the lines that were traced through the

multiple spatiospectral lobes. These lines are color-coded to correspond with the spatiospectral

lobe numbers from Fig. 2.3: lobe 1 is blue, lobe 2 is green, and lobe 3 is orange. At a fixed engine

condition, when frequency is increased, the lobes swing aft until they leave the aperture of the array.

While that happens, new lobe(s) appear upstream and then swing aft as well. When each new lobe
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Figure 2.12 M-SONAH reconstructions along the y = 0 plane for several frequencies and
engine conditions. The blue, green, and orange lines represent the lines fitted to the spatial
lobes corresponding to spatiospectral lobes 1, 2 and 3 from Fig. 2.3.
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Figure 2.13 Directivity angle (top row) and z-intercept (bottom row) of the lines fitted
through each of the spatial radiation lobes seen in the M-SONAH reconstructions.
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appears, it starts at a low amplitude, grows to a peak in the maximum radiation direction of the

overall field, and then decays as it continues to swing aft and out of the aperture of the array.

For a given frequency, lobes increase in level for higher engine conditions and their directivity

angle decreases, consistent with an increasing convective Mach number of the jet. Additionally,

whichever lobe originates closest to the nozzle increases in level more than the others do, thus

increasing its relative contribution to the overall field. As with the discussion of Fig. 2.2 and Fig.

2.3, it appears that the increasing contribution of the forward-most lobe is the driving factor in the

change of overall directivity as engine condition increases, especially in the transition from 50%

ETR to 75% ETR.

As was done for the BBSAN lobe, lines were fit to each lobe which defines them by two

parameters: the slope and the z-intercept. The slope of the line can be expressed in terms of

the jet inlet angle, giving a measure of directivity for that lobe. The z-intercept of the line gives

an approximation to the acoustic source region corresponding to that lobe. The directivities and

z-intercepts in Fig. 2.13 came from lines that were fitted to every spatial lobe between 60 and 400

Hz. At 60 Hz, lobe 1 (blue) begins with an aft directivity and downstream source location. As

frequency increases, the directivity and z-intercept tend to increase, though there appears to be some

clustering of the points suggesting that lobe 1, as identified in Fig. 2.3, is probably a superposition

of two lobes that are not entirely separable when looking at level alone. Coherence analyses in

Ref. [61] corroborate this conclusion. Lobe 2 (green) has a source region between 5 m and 10 m

downstream that does not change drastically with frequency but consistently shifts downstream

with increasing engine condition. The directivity angle increases with increase in frequency, with as

much as a 15° increase for 50% and 75% ETR from 150 to 400 Hz. At 130% and 150% ETR, the

change in directivity across frequency is less. Lobe 3 (orange) first appears at a higher frequency

than the other two lobes and has similar trends as lobe 2. Lobes 2 and 3 share similar z-intercepts

as the BBSAN lobe seen in Fig. 2.11. As engine power increases, the z-intercepts for all lobes are
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shifted farther downstream and the directivities shift towards the sideline. In most cases, the lines

representing the several lobes stay in the same ordering relative to each other — lobe 1 remains the

farthest downstream with lobe 3 being the farthest upstream.

2.5.5 Comparison With Other Studies

The spatiospectral lobe trends discussed in this work have been partially observed by several studies

in recent years. Harker et al. [60] show one-third octave band spectra for pressures measured by a

ground-based linear array parallel to the jet centerline of a tied-down high-performance military

aircraft with a rectangular nozzle. Figure 2 of that paper displays the OASPL and spectra as a

function of distance downstream from the nozzle, similar to Figs. 2.2 and 2.3 of this paper. At least

two spatiospectral lobes are apparent at the afterburning engine condition, with the first centered at

about 100 Hz and 17 m downstream of the nozzle and the second centered at 250 Hz and about 10 m.

Acoustic intensity vectors measured in the vicinity of that same aircraft are reported in Refs. [102]

and [103]. A video (Mm. 1.) attached to Ref. [102] shows a vector intensity map which changes as

a function of frequency. At low frequency, the intensity vectors show a large aft directivity with

apparent source region far downstream. As frequency increases, the vectors measured nearer to the

nozzle grow in level relative to the far aft intensity vectors, while all vectors slightly rotate aft. This

pattern is again recorded in Fig. 12 of Ref. [103] where the angular span of the top 3 dB of intensity

vectors is plotted as a function of frequency. The top 3 dB region of the radiation points far aft at

low frequency, then, as frequency increases, the angles jump upstream, shift downstream, then jump

upstream again. This general pattern is the same as is observed in the columns of Fig. 2.12 in the

current work; as frequency increases, new lobes appear upstream and grow in strength as the farther

aft lobes decay and shift out of the measurement aperture.

A recent measurement of the T-7A trainer aircraft [89] with an expansive near-field array identi-

fied spatiospectral lobes in military, afterburner, and two intermediate conditions with qualitatively
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similar patterns across frequency and engine power as those discussed here. Similarity in the

spatiospectral domain of the F-35, the T-7A, and the aircraft measured in Ref. [54] suggests that

with some frequency or velocity scaling they could potentially collapse into self-similar behavior.

For most military aircraft, however, flow parameters are not disclosed, thus rendering this type of

analysis difficult.

Another look at the multiple lobes in the one-third octave band spectra of the same aircraft

in Refs. [54, 57, 60, 83] was performed by Tam and Parrish [59], who attempted to fit large-scale

turbulent structure similarity spectra to the spectra published in Ref. [57]. Tam and Parrish [59]

identify two “new” noise components associated to regions in the measured spectra that do not fit

the ad-hoc similarity spectrum they derived specifically for that study. For the first, this similarity

spectrum was fit to the lower of the two peaks in the measured spectrum at an inlet angle of 115° and

the higher-frequency component was deemed to be a new noise source (see Fig. 22 of Ref. [59]).

For the second new noise source, the similarity spectrum was fit to the higher-frequency peak at an

inlet angle of 150° and the extra low-frequency content is called a new source (see Fig. 29). These

two new noise sources are then identified as “fast wave indirect combustion noise” and “slow wave

indirect combustion noise”. If that aircraft under investigation has a similar spatiospectral structure

as the F-35B, then it would appear that the authors are attempting to fit the similarity spectrum to

lobe 2, and are calling lobe 3 “fast wave indirect combustion noise” and lobe 1 “slow wave indirect

combustion noise”. Because of the high-resolution measurements provided by the current study,

it is clearly seen that lobes exist across multiple engine conditions, regardless of the presence of

afterburner.

In previous laboratory-scale investigations of jets exhausting over rigid surfaces [62–67], an

additional peak in the spectrum was observed below the peak frequency of the jet noise and was

attributed to the interaction of the jet with the surface. For cases where the surface was smaller than

the extent of the plume, the noise source was found to be the scattering of the jet off the edge of the
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surface. In cases where the surfaces were larger than the extent of the plume and were meant to

represent a rigid ground, low-frequency amplification is observed in the far aft beyond inlet angles

of 150° [62, 63]. It is noted that lobe 1 as labelled in the current work is situated below the peak

frequency of the jet noise from this aircraft and is found in this far aft region. It is therefore possible

that jet-ground interactions could be a contributing effect. For example, there are a few cases in

Fig. 2.13 where the directivity and source location of lobe 1 does not follow the same trends as the

other lobes (particularly apparent at 50% ETR). It may be that at these low frequencies jet noise and

jet-ground interaction noise are superimposed, thus corrupting the field reconstructions. Further

work is needed to understand the effect of the ground on the low-frequency component of military

aircraft jet noise.

In an attempt to shed light on the origin of multiple radiation lobes, Liu et al. [39] used the

JENRE® large eddy simulation solver developed at the Naval Research Laboratory to simulate

a supersonic jet at a temperature of 2100 K (total temperature ratio of 7), which is comparable

to operating conditions of high-performance jet engine exhaust at afterburner. Figure 21 a) of

Ref. [39] shows a far-field spatiospectral plot, which is described as being separated into three

regions: the first upstream region as being dominated by BBSAN, the second region that is the

region of maximum radiation, and a third, further aft region that is dominated by a lower frequency

component. These three regions appear similar to those seen in Fig. 2.3 of this paper at afterburning

engine powers, where the z < 7 m region is dominated by BBSAN, 7 m < z < 15 m is dominated

by lobes 2-5, and z > 15 m downstream is dominated by the low-frequency lobe 1. Leete et al. [92]

investigated the coherence of the LES-generated field of Ref. [39] and found that the BBSAN

component originated from the potential core region where shock cells are present, the region

of maximum radiation originated from the supersonic portion of the jet, and the far aft radiation

originated from an extended region around the end of the supersonic core. The source localizations

of the BBSAN in Fig. 2.11 and the lobes in the afterburner cases in Fig. 2.13 agree qualitatively
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with the pattern found in the LES dataset, with BBSAN originating in feasible locations for shock

cells and lobe 1 appearing farther downstream than lobes 2-3.

An important distinction between the LES of the highly-heated laboratory-scale jet [39] and

F-35 data seen in the present work is that the LES does not contain multiple spectral peaks, simply a

smooth transition from spectra with a high-frequency peak towards the sideline to a low-frequency

peak in the far aft. The only time any discrete spatiospectral content is seen in the LES is when the

coherence with the field is calculated to a reference point along the nozzle lipline where shock cells

are present (see Fig. 7 of Ref. [92]). The coherence of the field appears to split into spatiospectral

lobe-type patterns, suggesting that shock cells contribute to the presence of distinct lobes. However,

without more knowledge of the plume characteristics of the F-35, more specific comparisons cannot

be made.

2.6 Conclusions

The sound field in the vicinity of a tied-down F-35B aircraft is examined for engine powers ranging

from 25% to 150% ETR. The OASPL across a linear ground array approximately parallel to the

shear layer show that as engine power increases, the directivity of the field in the main radiation

direction shifts towards the sideline. Spatiospectral maps along the array show that trends in the jet

noise field can be described as a superposition of multiple spatiospectral lobes, and the trends in

overall level with engine power are explained by the number of lobes present and their distribution

of amplitudes.

M-SONAH reconstructions of the field in the vicinity of the aircraft allow for a detailed look

at the evolution of each spatiospectral lobe across frequency and engine power. At a single

engine condition with increasing frequency, the lobes swing farther aft until they pass beyond the

downstream extent of the array. While that happens, new lobe(s) appear upstream and then swing
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aft as well. As engine power increases for a fixed frequency, all lobes increase in level and their

directivity shifts slightly toward the sideline. Additionally, whichever lobe is the farthest upstream

increases in level more than the other lobes present at that frequency, which seems to be the largest

contributor to the overall directivity shifting forward.

The extra detail provided by this measurement of the F-35B along with the M-SONAH recon-

structions of the field sheds light on previous measurements of similar high-performance military

aircraft. These and prior data show that looking at the main radiation region from high-performance

military jet aircraft as a single phenomenon is insufficient. The paradigm needs to shift to thinking

of the main radiation lobe as a superposition of multiple, overlapping lobes, the trends of which

across frequency and engine power dictate the trends of the overall field. The source mechanisms

involved in producing the multiple radiation lobes are still unknown, though their presence at low

engine powers suggests they are not combustion-related. Also unknown is why these phenomena

appear to be more prominent in the current measurement of the F-35B than measurements of other

aircraft, laboratory-scale jets, and numerical simulations. Answering these questions is necessary to

have a complete understanding of aeroacoustic noise from full-scale high-performance jet aircraft.

2.7 Acknowledgments

The authors gratefully acknowledge funding for the measurements provided through the F-35 Joint

Program Office and Air Force Research Laboratory. K. M. Leete was funded by an appointment to

the Student Research Participation Program at the U.S. Air Force Research Laboratory, 711th Human

Performance Wing, Human Effectiveness Directorate, Warfighter Interface Division, Battlespace

Acoustics Branch administered by the Oak Ridge Institute for Science and Education through an

interagency agreement between the U.S. Department of Energy and USAFRL. Distribution A:

Approved for public release, distribution unlimited. F-35 PAO Cleared 07/21/2020, JSF20-612.



Chapter 3

Numerical Validation of M-SONAH Applied

to the F-35 Field

This work has been published as “Numerical validation of using multisource statistically-optimized

near-field acoustical holography in the vicinity of a high-performance military aircraft”, Kevin M.

Leete, Alan T. Wall, Kent L. Gee, Tracianne B. Neilsen, J. Micah Downing, and Michael M. James.

Proceedings of Meetings on Acoustics 31:1. I hereby confirm that the use of this article is compliant

with all publishing agreements.

3.1 Abstract

Multisource statistically optimized near-field acoustical holography (M-SONAH) is an advanced

holography technique [Wall et al., J. Acoust. Soc. Am. 137, 963–975 (2015)] that has been used

to reconstruct the acoustic field from measurements taken in the vicinity of a high-performance

military aircraft [Wall et al. 139, 1938 (2016)]. The implementation of M-SONAH for tactical

jet noise relies on creating an equivalent wave model using two cylindrical sources, one along the

jet centerline and one below the ground as an image source, to represent the field surrounding an

50
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aircraft tethered to a reflecting ground run-up pad. In this study, the spatial and frequency limitations

of using the M-SONAH method to describe the field of a tethered F-35 is explored by using the

same measurement geometry as at a recent test, but substituting the sound field obtained from a

numerical source for the measurement data. The M-SONAH reconstructions are then compared to

numerical benchmarks. A spatial region and frequency bandwidth where bias errors are low are

identified and provide validation for the use of this method in tactical jet noise source and field

reconstructions. [Work supported by USAFRL through ORISE and the F-35 JPO. Distribution A -

Approved for Public Release; Distribution is Unlimited. Cleared 06/28/2018; JSF18-643.]

3.2 Introduction

Near-field acoustical holography (NAH) was developed for three-dimensional imaging of noise

fields. The technique has been used for laboratory jet noise measurements [78,79], and was recently

adapted to measurements of full-scale military aircraft [82, 83, 104]. Statistically-optimized NAH

(SONAH) [77, 93] fits an equivalent wave model (EWM) to the sampled field, which then can be

evaluated at any arbitrary point of interest. Multisource statistically-optimized near-field acoustical

holography (M-SONAH) is a version of SONAH adapted to image a three-dimensional sound field

in the presence of a ground reflection [82]. It was originally developed to image the noise field in

the vicinity of a military aircraft tied down to a concrete run-up pad, where the field was sampled

approximately parallel to the jet shear layer with a two-dimensional measurement [54, 104]. In

the process of analyzing the reconstructed field, it was found that the inclusion of only the zeroth-

order Hankel functions in the EWM was sufficient to obtain accurate sound field reconstructions,

and because of the lack of azimuthal coverage by the array, including higher-order terms did not

substantially increase reconstruction accuracy. This leads to a question: if only axisymmetric terms

in the EWM sufficiently describe the sound field, is a two-dimensional measurement necessary?
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This question can be investigated by applying the M-SONAH technique with the axisymmetric

EWM to one-dimensional measurements of the acoustic emissions of the F-35 Lightning II [55].

In that 2013 measurement, a linear ground array was placed approximately parallel to the shear

layer, which spanned the axial extent of the jet plume. The resulting data are currently being used

to characterize the sound field this aircraft produces across engine condition and frequency using

M-SONAH [85, 105]. The purpose of this paper is to investigate the capabilities and limitations of

the linear ground array as the input to the M-SONAH algorithm to reconstruct a three-dimensional

field of the noise produced by this aircraft.

In the current study, M-SONAH reconstructions of the noise field near the aircraft running at

100% Engine Thrust Request (ETR) are obtained for two frequencies and compared against the

measurement. Due to limitations in the measurement, the M-SONAH reconstructions cannot be

validated at all locations of interest. To help validate the areas where no measurement was taken, a

numerical experiment is created to simulate a sound field at the locations of the input array as well

as the surrounding area. Then, the M-SONAH algorithm is run on this simulated data to reconstruct

the simulated field and check for errors. The error in the field reconstructions of this numerical case

are used to identify a spatial region where the reconstruction of the F-35 is expected to fit well and

are compared to the error of the M-SONAH reconstruction of the F-35 noise field. Finally, measured

spectra at locations in the geometric near field of the jet are compared against reconstructed spectra

to check how well M-SONAH predicts ground interference effects.

3.3 Experiment and Analysis

3.3.1 Military aircraft data

An extensive measurement of the sound field in the vicinity of the F-35B was performed at

Edwards’s Air Force Base in 2013 [55]. The aircraft was tied down to a concrete run-up pad
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while the engine was cycled through various engine conditions, from 13% ETR (idle) up through

150% ETR (maximum afterburner). The aircraft has a Pratt & Whitney F135 afterburning turbofan

engine, which can achieve up to 43,000 pounds of thrust. The nozzle of the engine was 2.0 m

from the ground and had a nominal 1 m diameter, though the exact nozzle diameter changed with

engine condition. Over 350 microphones were deployed at locations near the shear layer out to

1.2 km from the aircraft. The data used as input to the holography process were gathered from

a linear, 71-element ground array with 0.45 m (1.5 ft) inter-element spacing, which was placed

approximately parallel to the shear layer of the jet with a standoff distance of about 8 m. This study

uses the measurement of the F-35B operating at 100% ETR.

The Cartesian coordinate system used in this study is such that the origin is a point on the

ground directly below the nozzle exit plane with the z-axis pointed downstream, the x-axis towards

the sideline, and the y-axis pointed upward. The jet centerline is the line x = 0 and y = 2.0 m and

the nozzle lipline is approximated by the line x = 0.5 m, y = 2.0 m. The array was laid out on the

left side of the aircraft in the test, though for convenience all figures here are mirrored to show it on

the right. Figure 3.1a) shows a schematic of the measurement arrays out to 76 m from the aircraft,

where Figure 3.1b) is a zoomed-in portion near the aircraft. The far-field arcs were centered on the

Microphone Array Reference Point (MARP), which was 7.5 m downstream of the nozzle. Whereas

positions are referenced to the origin located on the ground below the nozzle exit plane, the jet inlet

angle, θ , is defined relative to the MARP, whereθ = 0◦ points in the direction of the aircraft nose.

3.3.2 Numerical Test case

To test the effectiveness of the M-SONAH algorithm in the context of the measurement geometry,

a numerical source was created along the jet centerline. The source, as pictured in Fig. 3.2, is

similar to equivalent source models that have been created for jet noise [35, 106–108]. It is a

superposition of two linear distributions of monopoles along the jet centerline. One is a line of
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Figure 3.1 Schematic of the measurement. The outline of the aircraft is marked with
gray, the red x is the microphone array reference point (MARP), and the blue dots are
measurement locations. The far-field arcs are measured with the MARP as their center
point. Part b) is a zoomed in portion of part a) near the aircraft



3.3 Experiment and Analysis 55

Figure 3.2 The source at 126 Hz (left) and 315 Hz (right). Each source is a superposition
of two distributions of monopoles along the jet centerline one Gaussian distribution of
uncorrelated monopoles (blue) and one asymmetric Gaussian of correlated monopoles
(red) that has a phase relationship to produce directional radiation at θ = 120◦

correlated monopoles whose amplitudes are weighted with an asymmetric Gaussian distribution

and have a fixed phase relationship to produce a directional radiation pattern at θ = 120◦. The

other is an uncorrelated distribution of monopoles, with a Gaussian envelope of amplitude twice

that of the correlated distribution. The frequency-dependent widths of the Gaussian distributions

along with their peak locations on the z - axis were loosely based on Figure 13 of Ref. [103]. To

account for the ground reflection, an identical image source was centered at y =−2.0 m. Rayleigh

integration was performed to calculate the radiated sound at all measurement locations in the field

as well as to a fine, two-dimensional grid at y = 2.0 m. At each frequency of interest, this was

realized 500 separate times with added random phases to simulate measurement blocks. Afterward,

simulated uncorrelated measurement noise was added to each block of each field location to yield

a signal-to-noise ratio of 80 dB. The simulated blocks were then averaged over to give a single

complex pressure value. The radiated fields from these distributions are visualized in the top row of

Figure 3.3.
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3.3.3 M-SONAH method

The M-SONAH method involves the following steps, which are more extensively discussed in

Refs. [82, 83]:

1. Extract frequency dependent complex pressures from recorded pressure waveforms

2. Perform a partial field decomposition to generate mutually incoherent partial fields

3. Numerically extrapolate each partial field beyond the measurement aperture

4. Formulate the EWM of the jet in the run-up pad environment and solve for pressure at desired

reconstruction locations

First, the frequency-dependent complex pressures were obtained. For the F-35 measurement, the

recorded 30-second time waveforms were split into multiple blocks with a 50% overlap, windowed

with a Hann function, then the Fourier transform was applied to each block. The block sizes

were adjusted to give a frequency resolution of 3 Hz. Steps 2-4 were applied for each frequency

independently.

Second, because the complex pressures for a given frequency along the input array were partially

correlated, it was necessary to perform a singular value decomposition of the cross-spectral matrix

of the measurement array to generate mutually incoherent and self-coherent partial fields. Each

partial field is the singular vector given by the decomposition scaled by its corresponding singular

value. Steps 3 and 4 were then applied for each partial field individually and the results summed

energetically to reconstruct the entire field at that frequency.

Third, to reduce leakage to high wavenumbers and wraparound error due to the finite nature of

the input array, each partial field was numerically extrapolated beyond the measurement aperture

using a linear prediction method [95]. Because the aperture extension technique was only accurate

within a short distance of the edge of the array, a Tukey window was used to reduce the field to zero

outside of one acoustic wavelength of the edge of the array.
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Fourth, the EWM uses one set of cylindrical wave functions centered on the jet centerline and

a second set centered on the image source below the ground to model the reflection. The EWM

methodology used in the M-SONAH algorithm is described in detail in Ref. [82], which uses

cylindrical Hankel functions as the basis. The solution for the vector of pressures at the desired

reconstruction locations (p(rq)) is given in terms of the vector of pressures along the input hologram

(p(rh)) by Equation 3.1,

pT (rq) = pT (rh)RAHAAH
α, (3.1)

where A and α are matrices comprised of each of the wavefunctions in the EWM (each column)

evaluated at the hologram and reconstruction locations (each row), respectively. RAHA is the

regularized inverse of the matrix AHA. This entire process can be described as finding the minimum

norm EWM that fits the hologram data, then reevaluating the EWM at the location where the

reconstructed field is desired or alternately, thinking of the matrix RAHAAHα as a transfer matrix

between the measured pressures at the hologram and the reconstruction locations of interest.

3.3.4 Reconstruction of the Numerical Case

The utility of the M-SONAH technique is exemplified via field reconstructions of the numerical case.

The simulated field, M-SONAH reconstructions, and their error are displayed in Figure 3.3 for two

frequencies: 126 Hz (left) and 315 Hz (right). The colored contour plots show the sound pressure

level (SPL) at each point in a two-dimensional plane at y=2.0 normalized to the maximum level

along the nozzle lipline. The black line represents the position of the hologram. The upper plots are

the simulated data from the numerical source, the middle plots are the M-SONAH reconstruction

from the numerical data, and the lower plots are the error in the reconstruction. With the input

of only the measured hologram, reconstructions of the field over a large area are obtained. Low

errors are seen in the triangular aperture covered by the array with high errors outside. The largest
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difference between the left and right plots are the ground interference patterns. By design, the source

at 315 Hz was more compact than the source at 126 Hz, which caused the ground interference nulls

to have a more circular pattern. Since the EWM being used is a cylindrical wave model, it seems

the algorithm has a tendency to align ground interference nulls parallel to the jet centerline instead

of circularly as it should. The largest sources of error inside the aperture covered by the array seem

to be due to the inability of the algorithm to reconstruct the correct ground interference patterns.

The 126 Hz case matches better as the nulls in the field are parallel to the jet centerline.

The region spanned by the array that is not in a ground interference null has errors consistently

less than 1 dB. This region of good fit appears to cover an area where the levels are within ±20

dB of the input holography array, which is quite a large span and is heartening for its potential

usefulness to characterize the F-35 field.

One purpose of performing M-SONAH has been to obtain equivalent acoustic source char-

acteristics by reconstructing the field along the nozzle lipline of the jet [83]. The reconstruction

amplitudes give information about the spatial distribution of noise sources, or the complex pressures

can give an equivalent pressure-source model that can be reradiated to reproduce the field. Figure

3.4 shows the sound pressure levels of the numerical dataset (blue) along with the reconstructions

(red) at the nozzle lipline (x = 0.5 m and y = 2.0 m). The acoustic source region where the error in

the reconstruction is less than 1 dB is marked by the magenta dashed lines, which includes levels

about 5 dB down from the maximum.

3.3.5 Reconstructions of the F-35 field

There is a clear boundary between high and low accuracy in the M-SONAH reconstructions. For the

numerical case, it is seen in the lower row of plots in Figure 3.3, where the area within the aperture

of the input array show errors consistently below 2 dB. This gives a potential region of confidence

in the accuracy of the reconstructions of the F-35. To compare the F-35 reconstructions against the
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Figure 3.3 SPL (normalized to the maximum level along the nozzle lipline) for each point
in a 2-D plane parallel to the ground at the jet centerline height. The black line marks the
location of the input array for the holography process. The left column of plots is at 126
Hz, and the right column of plots is at 315 Hz. The upper row of plots are the simulated
data at each location, the center plots display the M-SONAH reconstructions, and the
lower plots show the differences between the two.
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Figure 3.4 Reconstructions of the field (red) along the nozzle lipline (x = 0.5 m at the jet
centerline height) compared to the simulated data (blue) at the same locations. Magenta
dashed lines represent where the error in the reconstruction exceeds 1 dB.
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measured sound field, the reconstructed and measured SPL along the input hologram as well as

several arrays pictured in Figure 3.1 are plotted in Figure 3.5. The top and bottom plots show 126

and 315 Hz, respectively. The diamonds represent the measured levels at the various subarrays, and

the dashed colored lines represent the M-SONAH reconstructions at those locations. Exceptional

agreement for both inward and outward propagation from the hologram is found for θ between 50◦

and 150◦, where all errors are less than 2 dB and often less than 1 dB. This angular span coincides

with maximum coverage by the input hologram.

The reconstructions of the jet noise field of the tethered F-35 are displayed in Figure 3.6 for

two frequencies. The colored contour maps represent the single-frequency SPL at each point in the

two-dimensional plane parallel to the ground at y = 2.0 m. To identify a region of potential accuracy

of reconstruction, a thick white contour is drawn on Figure 3.6 where the reconstruction error of

the numerical case was less than 2 dB. The field inside the white contour appears as expected for

military jet noise—a large radiation lobe which beams at a large aft angle with lower levels radiating

towards the sideline. The acoustic source region extends tens of meters down the z – axis, with the

126 Hz case having about twice the extent as the 315 Hz case. The 315 Hz case also shows the

maximum radiation lobe at a slightly forward position. Ground reflections are similar in shape and

location to those seen in Figure 3.3 for the numerical case. Additionally, when the green dashed

lines from Figure 3.5 are superimposed on Figure 3.6. It can be seen that for the most part, the 2

dB error contour from the numerical case covers approximately the same region as the 2 dB error

region from the actual measurement (over the aperture pictured here). This provides confidence that

the reconstructed field is representative of the physical field in the angular region covered by the

array propagated outward toward the arc arrays.

For inward propagation from the hologram towards the jet centerline, Figure 3.6 shows that the 2

dB error contour from the numerical case coincides with predicted locations of ground interference

nulls, implying that the model does not accurately capture the ground reflection pattern. In the
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Figure 3.5 Comparison of measured data of the F-35 to the M-SONAH reconstructions
at several arrays at 126 and 315 Hz. The horizontal axis is the jet inlet angle (θ ), the
vertical axis the sound pressure level, the dashed colored lines represent the M-SONAH
reconstruction at the specified array locations, and the diamonds are the measured data.
The vertical green dashed lines represent the angular aperture where all measured errors
are less than 2 dB.
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Figure 3.6 M-SONAH Reconstruction of the field of the F-35B at 126 and 315 Hz. The
colored contour plot shows the SPL of the reconstructed field at each point in the 2-D
plane at the height of the jet centerline. The grey outline shows the position of the aircraft.
The thick white line is the 2 dB contour line taken from the error of the numerical case
(Figure 3.3). The green dashed line is taken from Figure 3.5 to signify the angular aperture
where errors are estimated to be less than about 2 dB.
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numerical case, errors in predicting the ground interference pattern seem to be caused by the

reconstructions having interference nulls characteristic of a cylindrically-radiating source, when the

input data would suggest a more spherically radiating one. For example, at 315 Hz, the numerical

field has a strong interference null in an arc, which suggests that the source is compact enough to

radiate in a spherical fashion, where the reconstructions reallocate the interference nulls into nulls

parallel to the z axis. There are a few aspects of the M-SONAH process which are hypothesized

to cause this reallocation. First, the EWM as formulated in the matrices A and α inherently only

include a finite number of cylindrical basis functions. Also, the regularization step in the inversion

of AHA acts to decrease the influence of the higher order wavefunctions, so as to not become

numerically unstable. The net effects of these is to act as a low-pass spatial filter of sorts, causing

difficulty in reconstructing a spherical shape from a cylindrical model.

For the F-35, the M-SONAH reconstructions in Figure 3.6 show a more cylindrical-like ground

interference pattern between the jet centerline and the hologram, but as seen in Figure 3.1b), the

only measurements in that region were the holography array and the near-field line. These arrays

were both ground-based, so no interference pattern is observed. There is no way to conclusively

verify if the reconstructions of the F-35 field are physically representative of the actual field in that

area, though an investigation of ground interference effects where there were measurements can

give clues as to whether the field is behaving cylindrically or spherically.

To investigate the ground interference pattern of the F-35 field, Figure 3.7 plots the spectra mea-

sured at θ = 70◦ and θ = 140◦ from the 19-m arc. For comparison, the M-SONAH reconstructions

as well as theoretical ground interference patterns calculated at those points are superposed. In

the θ = 70◦ case, the M-SONAH reconstruction (blue dashed lines) match the measured spectra

(solid blue lines) well until it enters a region of a ground reflection interference null, where the

reconstruction severely underestimates the field. The M-SONAH algorithm is expected to over-

estimate the depths of ground interference nulls because of its ideally compact nature. In reality,
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the jet plume is a turbulent, volumetric source that would cause the ground reflection to not have

such a sharp null. To evaluate the proper placement of ground reflection nulls in the frequency

domain, Figure 3.7 includes an ideal ground reflection pattern from a source located at the MARP

(dashed red line), and an infinite cylindrical source along the jet centerline (solid red line) overlaid

on the measured spectra. The θ = 70◦ case shows the measured data, the M-SONAH reconstruction,

and both theoretical ground interference patterns having a null in the same frequency region. This

suggests that the sources contributing to the field at this location can be accurately modeled as either

a monopole-like source close to the MARP or as a line source along the jet centerline.

An interesting feature is seen in the θ = 140◦ plot of Figure 3.7, where M-SONAH predicts there

should be a ground interference null around 480 Hz, the cylindrical and spherical ground interference

patterns predict nulls at 350 and 550 Hz, respectively, and there is no apparent measured null in

the spectrum. This could mean that in actuality, the jet noise field is the superposition of multiple

different interference patterns from multiple sources with different locations and extents, where their

interference patterns combine to yield a flat response. In a previous study of a high-performance

military aircraft engine [16], it was found that microphones that were in different (spatially separated)

ground interference nulls had partial mutual coherence. One possible explanation for this is if

the plume had multiple sources: one which was experiencing a ground interference null at those

locations and another that was not [16]. The M-SONAH algorithm does not appear to replicate this

nuance, and lumps any potential individual source mechanisms into a single source, which has a

ground interference pattern somewhere in between cylindrical and spherical, which is expected for

a cylindrical source of finite length. It is important to note that because of aliasing limitations due to

the inter-element spacing of the input holography array, M-SONAH reconstructions above 600 Hz

were not completed. Ground reflection interference patterns therefore cannot be fully explored in

all locations, particularly in the mid-to-far-fields where the interference nulls are pushed into higher

frequencies.
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Figure 3.7 Measured spectra at θ = 70◦ and θ = 140◦ from the 19-m arc array (solid blue)
compared with reconstructions (dashed blue) as well as theoretical gains due to a ground
reflection by a cylindrical source (solid red) and from a monopole source placed at the
MARP (dashed red)
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In summary, towards the sideline of the jet the interference pattern appears either cylindrical-

like (which matches well with the EWM used in M-SONAH and allows for correct placement of

the ground interference nulls in the reconstructions of the field) or monopole-like from a source

location that by happenstance allows the cylindrical EWM to place the interference nulls in the

correct location. However, in the aft region, the region of maximum radiation, the EWM as

presently constituted is insufficient to accurately model the ground reflection from the complicated

aeroacoustic source of the F-35. Even with this limitation, the reconstructed levels match the

measured levels exceptionally well where there are no ground interference effects, as shown by the

dashed green lines in Figures 3.5 and 3.6 which denote a region where all measured errors were less

than 2 dB from the input hologram out to an arc with a radius of 76 meters. The SONAH algorithm,

and its current implementation in M-SONAH, has sufficient flexibility to allow the user to modify

the EWM to account for additional source locations and distributions without requiring a priori

assumptions about source coherence or source strengths. Future modeling efforts could use more

tailored EWMs to better fit spatial/spectral interference patterns.

3.4 Conclusions

Initial investigations of M-SONAH field reconstructions in the vicinity of an F-35 have been

discussed. Inside the spatial aperture of the measurement array, the reconstruction of a numerical

source has excellent agreement to the field, generally within 2 dB error. The reconstructions of

the F-35 field match measurements to within 2 dB error over that aperture in most cases. Errors

only become substantial in spatial and frequency regions where ground interference nulls dominate

the field. Outside the angular coverage of the hologram, the M-SONAH process substantially

underestimates the field in both the numerical and measured cases due to a lack of an effective



3.4 Conclusions 68

aperture extension protocol. The use of a few sparse datapoints collected beyond the measurement

aperture to inform improved aperture extension processes is being explored.

Investigation of the ground interference nulls predicted by the M-SONAH algorithm show

that the field towards the sideline of the jet, outside of the region of maximum radiation, can be

accurately represented by the cylindrical EWM. In the region of maximum radiation, the ground

interference nulls predicted by the M-SONAH process are not apparent in the data. It is likely that

multiple, distinct sources in the jet plume are spatially separated (or distributed) enough to cause

changes to the measured ground interference pattern that is not captured by the EWM. In theory,

this should be correctable by the inclusion of additional source terms, which will be explored as a

possible model refinement.
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Chapter 4

Measurement of the Boeing T-7A Aircraft’s

Noise Emissions

This chapter is an abridged version of the publication entitled “Jet Noise Measurements of an

Installed GE F404 Engine”, Kevin M. Leete, Aaron B. Vaughn, Michael S. Bassett, Reese D.

Rasband, Daniel J. Novakovich, Kent L. Gee, Steven C. Campbell, Frank S. Mobley and Alan T.

Wall. AIAA 2021-1638. AIAA Scitech 2021 Forum. January 2021. I hereby confirm that the use of

this article is compliant with all publishing agreements.

A large, multi-organizational effort to measure the sound field generated by the T-7A trainer

aircraft is documented. My role was to aid in the planning of the near-field array (which will be

used for future acoustical holography purposes, in the same vein as Chapter 2) and oversee the

data validation and compilation into a single, usable framework (including the publication of the

document).
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4.1 Abstract

This paper describes noise measurements taken of the new Boeing T-7A Red Hawk trainer aircraft,

which uses a single F404 afterburning turbofan engine. The extensive measurement satisfies

the American National Standards Institute/Acoustical Society of America standard S12.75-2012

for ground run-up for future environmental impact assessment and includes additional locations

around the aircraft to understand exposure by maintenance personnel. A large near-field array

was also deployed to shed light on phenomena that are not generally seen in the measurement of

laboratory-scale jets, such as the presence of spatiospectral lobes. Initial data analysis shows they

are of high fidelity and contain similar phenomena as other recent high-performance jet aircraft

noise measurements, including evidence of large and fine-scale noise radiation, broadband shock-

associated noise, spatiospectral lobing at multiple engine powers, an upstream shifting of overall

level directivity with engine power, and appreciable shock content in the measured waveforms.

Further analysis of this dataset will add to the understanding of full-scale, high-speed jet noise and

allow comparisons to similar numerical simulations and laboratory-scale measurements.

4.2 Introduction

The Air Force Research Laboratory (AFRL) led a multi-organizational effort to measure the noise

generated by the new Boeing/Saab T-7A "Red Hawk" aircraft at Holloman Air Force Base in August

2019. The three purposes of the measurement were to a) characterize the noise for environmental

and community impact assessment following the ANSI/ASA standard S12.75 for ground run-up, b)

understand levels experienced by maintainers working around the aircraft during various operations,

and c) increase understanding of the aeroacoustic noise sources generated by military aircraft,

including phenomena not generally seen in laboratory-scale jet noise measurements.
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Numerous methods have been used to alter the jet flow produced by aircraft in an attempt to

reduce the radiated noise [1]. Specifically for the F404 engine, the use of microjet injectors, [109],

chevrons [110], contoured inserts [111] and twin jet nacelles [112] have been investigated for noise

reduction. Of critical importance in developing these and future technologies is the understanding

of how jet noise differs between full-scale installed engines, laboratory-scale models, and numerical

simulations [113]. The addition of this dataset to growing repositories of measurements of high-

performance aircraft will allow for further understanding of these complex noise mechanisms,

which can inform future jet noise reduction studies.

In recent years, several measurements have been taken of full-scale military aircraft operating at

various engine powers. [54, 55, 114] Subsequent analyses of these datasets show phenomena that

are not often reproduced at laboratory scales, such as the presence of spatiospectral lobes [105].

Spatiospectral lobes are local maxima in the space-frequency domain, which manifests itself either

as multiple peaks in a spectrum measured at a single location, or multiple maxima in the levels when

plotting a single frequency across space. These spatiospectral lobes have been seen in measurements

of aircraft with round [55, 114] and rectangular [60, 83] nozzles operating with and without the

addition of afterburner.

The layout of the remainder of the paper is as follows. First, Section 4.3 discusses the measure-

ment procedure, microphone arrangement, and data acquisition systems used. Sections 4.4, 4.5, and

4.6 discuss measurements of the near-field Imaging array, the influence of the ground reflection on

off-ground measurements, and measurements by the far-field arrays. Overall sound pressure levels

(OASPL) under and around the aircraft and spatial maps of select one third octave band levels are

included in the Appendix.
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4.3 Measurement Description

4.3.1 Measurement Procedure

The measurement was conducted early in the morning on August 18th, 2019 at Holloman Air Force

Base in New Mexico. The aircraft was tied-down to a concrete run-up pad which extended 12.2 m

(40 ft) to either side of the aircraft and far downstream. The origin of the coordinate system used is

directly under the nozzle exit on the ground, with the positive x-direction downstream of the nozzle,

negative x-direction upstream towards the nose of the aircraft, positive y-direction on the array side

(port side of the aircraft), and positive z-direction as the height above ground. The nozzle center

was approximately 1.65 m (65′′) above the ground, though this varied slightly (±5 cm) throughout

the test as the pitch of the aircraft compensated for the changes in engine power. A microphone

array reference point (MARP) located 13′ downstream of the nozzle was established to determine

angles, θ , relative to the jet inlet with 0° pointing upstream towards the nose of the aircraft and 180°

pointing downstream along the jet centerline.

The aircraft was cycled through various engine conditions multiple times, pausing at each

condition for at least enough time for each data acquisition system to record for 30 seconds. An

ambient measurement was first taken before startup, then the auxiliary power unit startup sequence

initiated and ran until fully prepped for engine startup. The engine was then started and ran at idle.

Then, the engine was run at N2 values of 75%, 82%, 88%, at full military power, and then with

afterburner. After 30 seconds at afterburner, it was brought down to idle for a few minutes, then the

cycle from 72% N2 to afterburner was repeated and finally powered down. This complete sequence

was repeated two additional times, giving at least six measurements of each test point. For the

purposes of this paper, results from 82%, 88%, Military power, and Afterburner will be shown.
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4.3.2 Microphone Arrangement

Over 200 microphones were organized into various arrays from the immediate vicinity of the aircraft

out to 229 m (750′), as shown in Fig. 4.1. Eleven locations under and around the aircraft were

measured using a set of four low-sensitivity GRAS 40BG 1/4′′ pressure microphones on tripods

which were moved between measurements to cover all the locations (numbered orange circles).

Four low-sensitivity GRAS 40BH 1/4′′ pressure microphones were placed approximately parallel to

the shear layer of the jet and taped to the ground. Farther out, a 120-channel array (referred to as the

“Imaging array”) of GRAS 46BD and 46BG 1/4′′ pressure microphones were taped to the ground,

ranging from x = −15.2 m (50′) to x = 53.0 m (−174′) (gray circles in Fig. 4.1b). Downstream

of the nozzle, the array was linear, starting at y = 17′ and extending aft approximately parallel to

the shear layer. Upstream, the array linearly increased in y for several feet then extended upstream

parallel to the jet centerline. The inter-element spacing of the array varied based on predicted peak

frequencies of the aeroacoustic noise, such that the spacing was smaller towards the sideline of the

jet where higher frequency components were predicted to dominate and larger in the aft, where the

louder, lower frequency components were predicted to dominate. On the concrete run-up pad was

also a line array 7.62 m (25′) parallel to the jet centerline, which spanned from x =−21.34 m to

x = 18.29 m (light green circles in Fig. 4.1b). Special low-sensitivity GRAS 40BE-S2 free-field

microphones, which have been used on previous measurements of high-performance aircraft [54]

were mounted on tripods 1.52 m (5′) off the ground.

Beyond the run-up pad, there were five microphone arc arrays centered around the MARP with

radii of 19.1 m, 38.1 m, 76.2 m, 152 m, and 229 m (63′, 125′, 250′, 500′, and 750′), corresponding

to dark blue, red, green, purple, and yellow circles in Fig. 4.1a. The 19.1 m and 38.1 m (63′ and

125′) arcs consisted of GRAS 40BE-S2 microphones, whereas the remaining arcs used 1/4′′ GRAS

40BE and 46BD microphones, all of which which were mounted 1.52 m (5′) off the ground. The

19.1 m, 38.1 m, and 76.2 m (63′, 125′, and 250′) arrays ranged from 30° to 160° in 10° intervals,
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Figure 4.1 Measurement schematic of the T-X for the a) far-field microphone arcs and
b) near-field microphone arrays. Angles are defined relative to the jet inlet and centered
about the microphone array reference point (MARP) with solid and dashed lines every
30° and 10°, respectively. Though the array was physically placed on the port side of the
aircraft, it is shown mirrored in this figure for plotting convenience.

with additional locations in 5° increments from 110° to 160° for the 76.2 m (250′) arc. Additional

arc arrays at 152 m and 229 m (500′ and 750′) are more sparse with locations at 40°, 90°, 110°,

120°, 130°, 135°, 140°, 150°, and 160°. At these two outer arcs, the terrain became significantly

more uneven and overgrown with brush, sometimes as tall as the mounted microphone height.

Other than the aforementioned arrays, additional measurements were taken to investigate the

effect of microphone height on the measured sound field and the influence of the ground reflection

on the perception of crackle. Two such setups on the concrete run-up pad were placed at 130° and

150° and included GRAS 1/8′′ 40DD microphones mounted on the ground as well as at 2.54, 7.62,
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Figure 4.2 Images of T-X measurement layout at Holloman Air Force Base, New Mexico:
a) tied-down aircraft with 38.1 and 19.2 m (125′ and 63′) arcs and maintainer mics visible,
b) imaging ground array and maintainer mics facing downstream, c) 130° crackle station
facing a loudspeaker located at the MARP, d) Imaging array data acquisition unit, and e)
Kestrel weather station located at 57.2 m (187.5′) along the 70° radial.

and 15.24 cm (1′′, 3′′, and 6′′) heights, with GRAS 1/4′′ 46BD microphones at 0.305 and 1.52 m

(1′ and 5′) heights. These locations are shown as the light blue dots on Fig. 4.1b).

4.3.3 Data Acquisition

The microphones comprising the Imaging array and the near-field line connected to a large National

Instruments PXIe 24-bit system populated with 449x series 16-ch cards and 4462 4-ch cards. To

simplify cabling, 4X infiniband cables were used to run from the acquisition system to the arrays

and custom infiniband to BNC breakout boxes attached to connect the individual channels to the

infiniband cable. The system provided 4mA constant current power to the prepolarized microphones,

and was able to sample all 120+ channels at a 204.8 kHz sample rate over a ±10V range. The PXIe
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chasis was controlled by a NI-8354 server with two internal and one external solid state drives for

data storage.

The 7.62 m (25′) line array as well as the 19.1 m, 38.1 m, and 76.2 m arc arrays and the

roving maintainer microphones were run via BNC and Infiniband cable to a National Instruments

PXIe-1062Q chasis with 4496 and 4497 cards, as well as an 8840 Quad Core Controller. The 100+

channels were intended to be sampled at 204.8 kHz as well, though limited hard-drive write speeds

required that the sample rate be changed to 96 kHz partway through the test. A 4mA constant

current power supply over ±10V input range was used for this acquisition system as well. The

controller was operated via remote desktop connection from a laptop to manage the recording

process.

The microphone height study on the run-up pad were connected via Infiniband cable to a third

PXIe chasis loaded with two 6-ch 24-bit National Instruments PXIe-4480 cards. This was controlled

by a laptop via expresscard that sampled the twelve channels at 1.024 MHz over a ±10V range with

capacity for 10mA constant current power.

To avoid excessive cable runs to the 152 m and 229 m arc arrays, the 18 channels were collected

using seven individual data acquisition systems placed in the field near their respective microphones.

They were comprised of National Instruments 9250 2-channel cards mounted onto 9174 cDAQ 4-

slot USB chassis, which were plugged into small tablet PCs. The fixed ±5 V, 2 mA data acquisition

systems, computers, and IRIG-B timeclocks were all powered by MAXOAK lithium-ion batteries,

creating a compact, portable data acquisition unit. Each tablet PC also connected via Bluetooth to

Kestrel 4500 weather meters, which simultaneously recorded ambient weather data.

The total of 10 independent data acquisition systems used IRIG-B GPS timeclocks to allow

for post-process synchronization of the recordings. All the systems were managed using the

custom Acoustic Field Recorder (AFR) software developed by Brigham Young University and

Blue Ridge Research and Consulting LLC. This robust software has been used on previous jet
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noise measurements [54, 55], measurements of weapon noise [115], rocket launches and test

firings [116, 117] and sonic booms, and is designed for efficient configuration, rapid deployment,

and highly scalable systems. It includes options for both level and time-based triggering, and allows

for real-time monitoring of levels, spectra, and other statistics.

4.3.4 Weather

In addition to acoustic data, several weather stations, such as the one pictured in Fig. 4.2e, recorded

the ambient temperature, relative humidity, and wind speed over the course of the measurement.

The measurement was conducted early in the morning (5-7 am local time) to avoid high wind speeds.

The temperature and relative humidity varied from 19.9 - 25.8 °C, 21.9 - 31.9 %, while the average

wind speed was 1.9 kts over the course of the measurement.

4.4 Near-field

Pressure measurements along the Imaging array give a detailed look into the geometric near field

of the noise produced by the aircraft. Figure 4.3 shows the OASPL and skewness of the pressure

derivative, Sk{∂ p/∂ t}, measured along the array for each measurement for four engine conditions.

The Sk{∂ p/∂ t}is a statistical measure of the pressure waveform and is indicative of the perception

of “crackle”, an annoying component of jet noise which has been under investigation in recent

years [118–122].

The variance between measurements is minimal upstream of x = 25, though towards the end

of the array it becomes large, with pairs of measurements clustering together separate from others.

As stated in section 4.3.1, the aircraft powered on, cycled through engine conditions twice, then

powered off again. Additional analysis of the exact operating parameters of the engine as well as

variance of the weather conditions is needed to understand why individual power cycles would
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Figure 4.3 a) Overall sound pressure level and b) Sk{∂ p/∂ t} values calculated along the
Imaging array for each measurement at four engine conditions

cluster the way they did. For the purposes of this paper, however, all subsequent figures will display

the mean of the statistical quantities over the 6 runs.

Figure 4.4 shows the spectra (from 0 to 2000 Hz) recorded at each microphone along the 120-

channel Imaging array arranged by the x-coordinate of the measurement position. The squared

pressures of the spectra are averaged over the 6 runs, and the entire plot is normalized to its peak

value for each engine condition to share a common color scale. The engine power and maximum

SPL is recorded in the upper right corner of each pane. Colors change in 1 dB increments with

contour lines every 6 dB. As has been shown in previous measurements of other high-performance

military aircraft, this measurement contains spatiospectral lobes, or local maxima and minima in

the space-frequency domain plotted in Fig. 4.4. There is a definite change of structure as engine

power is increased among the intermediate conditions, in this case from 82% N2 to 88% N2, where

additional high-frequency spatiospectral lobes appear upstream of the main radiation lobe. This

mirrors the pattern in the OASPL seen in Fig. 4.3, where there is a large increase in the forward

portion of the OASPL between 5 and 10 m downstream.

Generally, the spectra follow classical trends in jet noise, with broad spectra towards the sideline

and more peaked spectra towards the aft, with the addition of broadband shock associated noise,

BBSAN, radiating in the forward direction at the higher engine powers. However, at all engine
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Figure 4.4 Spectra as a function of x-coordinate along the Imaging array for four engine
conditions

powers significant deviations from this norm appear in the aft radiation, where multiple peaks in the

spectra are seen. The spatiospectral shapes seen in Fig. 4.4 are qualitatively similar to those seen in

a similar measurement taken of an F-35B [105, 123].

4.5 Influence of the ground

The Near-field measurements discussed in the previous section were all located on the ground,

while the mid to far-field measurements were all taken at a height of 5′. A first order estimate of the

effect of the ground would be a perfect pressure doubling, representing an increase in the OASPL

by 6 dB. The measured difference in OASPL between co-located ground and 5′ microphones are

given in Table 4.1, which shows for two different angles the mean and standard deviations of the

OASPL differences for the four engine conditions. The OASPL is greater at the ground, though the



4.5 Influence of the ground 80

difference is as low as 1.1 dB for Afterburner at the 150° location and as much as 4.4 dB at the 88%

N2 condition at the 130° location.

Comparison of the ground and 5′ spectra at these different conditions and locations sheds insight

into the variance of the OASPL differences. Figure 4.5 shows the spectra at these locations (arbitrary

amplitude, offset for clarity) and engine conditions. The solid lines are the spectra measured at the

ground and dashed lines measured at 5′. The largest differences in OASPL between the ground and

aerial microphones is where the ground reflection null appears at the peak in the spectrum. Because

of the frequency-dependant and ambiguous source geometry, very deep nulls are not seen in the

ground reflection spectra for many configurations, resulting in much smaller than expected OASPL

reductions in the aerial microphones.

Table 4.1 Average OASPL difference between co-located microphone at ground and 5′

heigths for the two Crackle Study measurement locations, denoted by angle, and standard
deviations averaged across six runs.

Angle 82% N2 88% N2 MIL AB

130° 3.0±0.2 4.4±0.3 4.4±0.1 4.2±0.1

150° 1.3±0.2 2.2±0.4 1.7±0.2 1.1±0.2
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Figure 4.5 PSD for two heights at two engine conditions at two locations. Solid lines
denote ground microphone and dashed lines are 5′ off the ground.

4.6 Far-field

The remainder of the presented results were measured 5′ off the ground in the mid to far-field of

the aircraft, starting with the 25′ foul line and including the 19.1, 38.1, 76.2, 152, and 229 meter

arc arrays. First, two-dimensional maps of the OASPL are generated by interpolating between the

measurement points. Figure 4.6 shows the OASPL measured at four engine conditions, normalized

to their respective maximum OASPL as displayed in the title. Measurement points are represented

by white dots, and major contour lines are drawn every 6 dB below the maximum with minor

contour lines every 3 dB. Consistent with other aircraft measurements, the OASPL increases and

the directivity peak shifts towards the sideline with increase in engine condition, with a peak near

150° for 82% N2 and shifting to 120° for Afterburner.

Another visualization of the data gathered along the arcs is shown in Fig. 4.7. Each column of

plots contains the OASPL (top) and the corresponding Sk{∂ p/∂ t} (bottom) for a given arc. The

horizontal axis is the inlet angle, θ , relative to the MARP. The lines show the mean value across

the six measurement repetitions and the error bars represent the minimum and maximum recorded
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Figure 4.6 OASPL 5 feet off the ground in the mid to far field of the aircraft, interpolated
between measurement points.

values. Each separate engine condition is represented by a different color, all on the same scale.

The variability across measurements for the OASPL and the Sk{∂ p/∂ t} is very low for the 19, 38,

and 76 m arcs (noticeably lower than the near-field measurements) but increases for the 152 and

229 m arcs, suggesting that that is where meteorological and terrain effects become important to the

propagation.

The directivity trends are easier to compare across engine conditions in Fig. 4.7. Comparisons

of the top and bottom rows of Fig. 4.7 show that the Sk{∂ p/∂ t} and the OASPL generally follow

similar trends, except for 82% N2 in Fig. 4.7f) where the Sk{∂ p/∂ t} peaks towards the sideline of

the jet. For the OASPL, the peak directivity shifts upstream and broadens with engine condition

for each arc, though the broadening and upstream shift is less pronounced at the 152 and 229
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Figure 4.7 OASPL directivities for a) 19 m, b) 38 m, c) 76 m, d) 152 m, and e) 229 m arcs
and Sk{∂ p/∂ t} directivities for f) 19 m, g) 38 m, h) 76 m, i) 152 m, and j) 229 m arcs.
Averages across six runs are shown with error bars denoting the minimum and maximum
values across the runs.

m arcs. For any given location, the OASPL increases with engine power, but at some far aft

locations, the Sk{∂ p/∂ t} is greater at Military power than at Afterburner. This is partially due

to the Sk{∂ p/∂ t} peak being more broad at the 19, 38, and 76 m arcs for Military power than at

Afterburner.

4.7 Conclusions

In this paper, we have reported on an extensive measurement of the noise emissions of a T-7A-

installed GE F404 engine at four engine conditions. Over 200 microphones were used to capture

levels, spectra, and statistical information in the near and far fields. The measurement design



4.7 Conclusions 84

and procedures are discussed. Overall repeatability across the six run-ups measured is good, but

differences increase at far aft angles. Whether these differences are caused by variations in engine

performance or propagation environment remains the subject of future work.

Aside from a prior F-35 static measurement in 2013, this is the most extensive run-up measure-

ment of a military jet aircraft. Beyond far-field directivity analyses, the 120-microphone near-field

array offers numerous possibilities for performing similar field and source-related analyses as

those performed on previous aircraft. These analyses include spectral decompositions by noise

source type, obtaining correlation and coherence functions, deriving source characteristics through

holography and beamforming techniques, and reduced-order modeling using wavepackets. Use of

similar analysis techniques on the T-7A will allow comparisons against other supersonic jet aircraft.

Additionally, the fact that F404 engine nozzles have been used in jet numerical modeling and labo-

ratory experiments allows opportunity to make further comparisons and validate the performance of

large-eddy simulations and lab-scale rigs.

Appendix

4.7.1 Octave Band spatial maps
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Figure 4.8 Sound pressure level 5′ off the ground for the 125 Hz octave band

Figure 4.9 Sound pressure level 5′ off the ground for the 250 Hz octave band
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Figure 4.10 Sound pressure level 5′ off the ground for the 500 Hz octave band
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Chapter 5

Coherence-based Analysis of a Simulated

Highly Heated Laboratory-scale Jet

This work has been published as “Coherence Analysis of the Noise from a Simulated Highly Heated

Laboratory-Scale Jet” Kevin M. Leete, Kent L. Gee, Junhui Liu, and Alan T. Wall AIAA Journal

2020 58:8, 3426-3435. I hereby confirm that the use of this article is compliant with all publishing

agreements.

5.1 Abstract

Measurements of full-scale, high-performance military aircraft reveal phenomena that are not

widely seen at laboratory scales. However, recent modifications to large eddy simulation (LES)

methods allow for simulations of jets operating at a high temperature ratio, in a similar regime

as military aircraft operating at afterburner. This work applies coherence analyses that have

been previously used to study the jet noise field produced by military aircraft to the LES of a

highly-heated, laboratory-scale jet. The coherence of the complex pressures along a near-field line

approximately parallel to the shear layer as well as along the nozzle lipline shows evidence of

88
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distinct noise production mechanisms which transfer information differently from the flow to the

field. A phenomenological comparison between the LES and measurements of an afterburning F-35

aircraft is then made. Though the LES is not run at the exact same conditions as the aircraft and

does not reproduce all of the phenomena present in the aircraft’s jet noise field, differences between

noise production mechanisms observed in the LES may describe some of the spatiospectral lobe

phenomena observed in the measurements of the F-35.

5.2 Introduction

The primary source of noise from high-performance military aircraft is the turbulent mixing of the

jet exhaust with the ambient air. The complex nature of this sound source results in noise radiated

to the aft of the aircraft that has spatially-dependent characteristics: the aft radiation has significant

spatial coherence and a peaked spectrum while the radiation more towards the sideline has a broader

spectrum with low coherence. Because these two main field regions were found to be consistent

between many laboratory-scale jets of different shapes, sizes and speeds, Tam et al. [8] were able to

generate similarity spectra fitted to the shape of the measured spectra in the two regions.

To connect the far-field acoustics to the measured jet flow, two-point correlation techniques have

been used on laboratory-scale jets [13–15, 124]. This, along with the development of visualization

methods [11, 12] of the flow, led to the understanding that the two field regions are attributed to

two general noise production mechanisms, fine-scale turbulent structures and large-scale turbulent

structures. Fine-scale turbulent structures are understood as small eddies or other perturbations in the

mixing region of the flow, which exert an effective turbulence pressure on their surroundings [9, 16].

Large-scale turbulence structures are understood as Kelvin-Helmholtz instability waves generated

in the shear layer of the jet at the nozzle [17], which grow as they move downstream. A useful

framework for understanding the time-harmonic radiation of the coherent structures is in terms of
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a wavepacket model–which has a growth, saturation, and decay of amplitude over space as well

as a phase relationship [34]. If the phase velocity across the wavepacket is supersonic compared

to ambient conditions, sound is radiated efficiently to the far-field at an angle related to the phase

velocity. If the phase velocity is subsonic, the finite size of the wavepacket causes wavenumber

leakage, ultimately resulting in only portions of the energy being radiated to the far field.

A difficulty in understanding jet noise has appeared when recent measurement of three different

military aircraft [54, 55, 114] showed deviations from the two-source model in the aft radiation of

the jet noise. Neilsen et al. [57,58] and Tam et al. [114] observed errors in similarity spectra fits due

to the measurements of the aircraft containing multiple peaks in the spectra of the aft radiation. To

investigate the multiple peaks in the spectra of the F-35 [55], Leete et al. [105] used multisource

statistically optimized near-field acoustical holography to reconstruct the pressure field surrounding

the aircraft. They found that the region of maximum radiation can be represented as a superposition

of several “spatiospectral” lobes. Spatiospectral lobes are local maxima in the space-frequency

domain, where the spectra from multiple measurements across space are plotted side by side.

Subsets of this phenomena are observed as a dual-peaked spectrum at a single microphone location

in the field (such as observed by Refs. [57, 114]) or a split directivity pattern in space at a single

frequency. The relative amplitudes and spatiospectral slopes of the multiple lobes, which can vary

greatly with engine condition, determine the directivity and peak frequency(ies) of the jet noise.

Some evidence for these multiple spatiospectral lobes are observed even in engine powers as low as

25% engine thrust request (ETR) for the F-35 [105].

Correlation and coherence analysis applied to field measurements of military aircraft [60, 61]

have been useful in characterizing the spatiospectral lobes. Harker et al. [60] showed that the signals

recorded in the region of maximum OASPL of a rectangular-nozzled afterburning aircraft have

significant correlation with two different time delays, implying that there are two sets of waves

with different phase speeds propagating across the array, resulting in different far-field directivities.
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For the F-35, Swift et al. [61] showed that the lobes in the spatiospectral domain are mutually

incoherent, and there is a measurable coherence between the BBSAN radiating upstream with the

spatiospectral content in the aft radiation.

There have been limited reported observations of what could be considered spatiospectral

lobes in measurements of laboratory-scale jets. Seiner et al. [125] reported multiple peaks in the

directivity in the OASPL as well as at specific Strouhal numbers in Figs. 13 & 17 for a jet of

total temperature ratio of 5.4. Another example is seen in the right pane of Fig. 7 of Ref. [87],

where a spatiospectral map of the sound pressure levels measured at a dense array parallel to the jet

centerline show maxima and minima. It is unknown if the phenomenon has gone largely unreported

because laboratory-scale jets do not operate at the conditions required to produce the lobes (high

temperature, Mach number, complicated nozzle geometry, etc.) or because many experiments do

not sufficiently resolve the spatiospectral domain to observe it.

Large-eddy simulations (LES) of turbulent jets afford the opportunity to produce a finely-

sampled spatiospectral domain in the radiated noise as well as simultaneous details about the

flow. Efforts in the field over many years have allowed for the increasing accuracy in noise

predictions [126, 127]. Within this large body of simulation work, a focus on the use of the

simulations to gain insight on noise source mechanisms is abundant. This is generally accomplished

by using various decomposition methods [26] to search for coherent wavepacket-like structures,

whose radiation can then be interpreted more readily. Some of these methods include data-driven

decompositions, such as the field into acoustic, hydrodynamic, and thermal modes using Doak’s

momentum potential theory [27], the spectral proper orthogonal decomposition (SPOD) [31], and

dynamic mode decomposition [32]. Additionally, operator-based analysis such as global linear

stability analysis [29] and resolvent analysis [30, 33] can add information about cause and effect

relationships within the flow and between the flow and acoustic radiation.
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Adaptation of LES to accurately represent conditions of full-scale military aircraft is an on-

going challenge. Liu et al. [39, 40, 91] adapted the Naval Research Laboratory’s Jet Noise Re-

duction, JENRE®, finite-element LES solver to simulate temperatures similar to conditions of

high-performance military aircraft at afterburner. Spatiospectral domain analysis of the aft radi-

ation shows a smooth transition from high-frequency components peaking with a directivity at

at jet inlet angle of about 115°, to lower-frequency content with a farther aft directivity of about

140° [39]. Based on instantaneous pressure maps of the field, they identify the higher-frequency,

upstream content as Mach wave radiation due to its plane-wave like, unidirectional behavior. The

lower frequency content which radiates at larger aft angles has a more stochastic radiation pattern

with a less defined directivity, which they describe as large-scale turbulent structure noise. This

distinction between Mach wave radiation and large scale-turbulent structure noise is new because

often those terms are used interchangeably. Although these LES of jet noise with temperature ratio

of 7 remain unvalidated due to lack of experimental data at that temperature, other LES studies at

that temperature ratio report similar findings [41, 42].

Another example of multiple different source mechanisms contributing to the aft radiation in

jet noise is found in the SPOD and resolvent analysis undertaken by Scmidt et al. [31]. They

showed the shape and location of modes at frequencies where the field energy is dominated by

low-rank behavior. In general, these were shown to fall into two categories: Kelvin-Helmholtz

type and Orr [128] type. Kelvin-Helmholtz type wavepacket structures are present in the shear

region starting near the nozzle exit and have a high phase velocity, while Orr-type wavepackets are

present after the end of the potential core spread over a larger region with a lower phase velocity.

With these observations of Scmidt et al. [31] and Liu et al. [39] it then becomes a question of if

these source mechanisms are responsible for the spatiospectal lobe behaviour of full-scale military

aircraft operating at afterburner.
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Since flow measurements are not available for operating military aircraft, flow decomposition

techniques to understand source phenomena are not possible, and thus a more roundabout method

is needed to understand potential acoustic sources. The goal of this paper is to apply coherence

analysis methods previously used to characterize the noise fields of high-performance military

aircraft at afterburner [60, 61] to the large-eddy simulations of a laboratory-scale jet operating

at a temperature ratio of 7 [39] to understand if the high temperature in the LES can produce

spatiospectral lobe content. Of particular interest is the separation of the field and the flow into

different regions, the characterization of their properties, then using the coherence between the flow

and the field to understand possible noise production mechanisms. Then, spectral and coherence

data from an F-35 [55, 61] jet noise field are phenomenologically compared to the LES for potential

explanations of the spatiospectral lobe phenomena observed in that aircraft.

5.3 LES of the highly-heated laboratory-scale jet

The LES data set used in this work is provided by Liu et al. [39, 40, 91], which used the Jet

Engine Noise Reduction (JENRE®) solver to calculate the heated flow passing through a conver-

gent/divergent nozzle. The JENRE® solver uses a monotonically-integrated LES approach with a

flux-corrected transport algorithm [129] and explicit Taylor-Galerkin scheme. Tetrahedral meshes

were use to implement the complicated nozzle geometry, which had a nozzle exit diameter, D, of

2.868", a design Mach number of 1.5 and fully-expanded pressure ratio of 3.7. The thermodynamic

quantities in the flow region were calculated out to a conical surface outside of the main flow,

then the far-field pressures were predicted using the Ffowcs Williams and Hawkings integration

method [130]. Cell sizes about D/286 are used near the nozzle lip which gradually increase to

around D/20 near the Ffowcs Williams and Hawkings integration surface. Specifics of the choice

of integration surface and grid resolutions can be found in Ref. [131].
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Figure 5.1 Left: Nozzle geometry. Right: representative pressure field of LES simulation.
Solid lines show the FWHS.

The simulation was run at a nozzle pressure ratio of 4, a temperature ratio of 7, and a Mach

number (referenced to the ambient condition) of 3.38, resulting in an underexpanded, shock

containing jet with a temperature in the same regime as high-performance military aircraft operating

at afterburner [132]. A method for calculating the temperature-dependent specific heat ratio was

incorporated, which was found to match well with NIST databases for air under these conditions

(see Fig. 2 of Ref. [39]). Time records of the LES simulation were split into 97 blocks and a Fourier

transform applied to each block to give a complex pressure spectrum with a frequency spacing

of about 150 Hz. Since the accuracy of the coherence calculation is dependent on the number of

simulated measurement blocks and the frequency spacing in the spectra is dependent on the length

of each block, it was necessary to run this simulation for much longer than generally is sufficient

for analyses of LES. The total temporal duration of the simulation was 0.326 s, which covers 5260

convective time units (D/UJ). The nozzle geometry and a representative pressure field at the test

condition used in this study can be seen in Fig. 5.1. Superimposed on the instantaneous pressure

map of Fig. 5.1 is the location of the FWHS (solid black lines).
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Figure 5.2 Left: Schematic of the nozzle exit location, the two simulated measurement
arrays used in this paper, the FWHS, and the approximate location of the potential core.
Right: The Mach number (M) and jet velocity ratio (U/U j) along the jet centerline. The
red and blue diamonds show the locations of the end of the potential and supersonic cores
respectively.

Figure 5.2 includes a schematic of the simulation with the nozzle exit, the Ffowcs Williams-

Hawkings integration surface (FWHS), and two simulated arrays where the field was sampled. All

lengths are nondimensionalized by the exit diameter, D, with the flow in the positive x direction

and the origin at the center of the nozzle exit. The flow field was sampled along the nozzle

lipline of the jet from the nozzle exit to x/D = 25. The acoustic field was sampled along the line

y/D = 1
6x/D+10, from x/D =−10 to x/D = 40. The right panel of Fig. 5.2 shows the local Mach

number of the fluid along the jet centerline (blue) and the ratio of the fluid velocity, U , to the jet

velocity, U j (red). The end of the potential core is estimated as x/D = 7.2, where U/U j ≈ 0.95

(dashed line) and is marked with a red diamond. The end of the supersonic core is located at

x/D = 12.67, where M = 1 and is marked with a blue diamond.

The normalized sound pressure levels along the field array are pictured in the left pane of Fig.

5.3. The spectra from each simulated array point between 0 and 7 kHz is shown. On the left,

upstream of the nozzle exit, broadband shock-associated noise (BBSAN) is seen starting at about

3.5 kHz and shifting up in frequency to 7 kHz at about x/D = 5. Overall levels are the highest
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between 5 D and 30 D where the directional portion of the turbulent mixing noise is present. From

x/D = 5 to x/D ≈ 9, the peak frequency of the spectrum decreases approximately as 1/x, while

from x/D ≈ 9 to the end of the array the peak frequency decreases approximately as 1/x2. The

far-field peak in the OASPL is at an inlet angle of 115°.

Work to use LES to predict radiated jet noise fields at these extreme temperatures is ongoing

[41, 42, 133]. Because of lack of laboratory-scale experimental data at these high temperatures,

direct validation of the simulation at a temperature ratio of 7 has not been completed. However,

the LES methodology has been validated up to a temperature ratio of 3 (similar to Military aircraft

operating at full power without afterburner) [39], and the peak directivity angle of the aft radiation

(115°) agrees well with a predicted value of 112° based on Tam’s vortex sheet model for Mach wave

radiation [134]. Additionally, Chen and Mihaescu [42] in their simulations of jets at a temperature

ratio of 7 show spatiospectral trends in the far-field which qualitatively match those seen here.

5.4 Coherence Analysis

5.4.1 Coherence function

The frequency-dependent coherence function, γ2( f ), is a frequency-domain analog of the correlation

function, and is defined as

γ
2( f ) =

|Gxy( f )|2

Gxx( f )Gyy( f )
, (5.1)

where Gxx and Gyy are the autospectra of arbitrary signals x and y and Gxy is their cross spectrum.

The coherence is restricted to range 0 ≤ γ2 ≤ 1, where a value of one signifies that all of the

time-averaged energy in y is linearly related to the energy in x at that frequency, and a value of zero

means there is no relation. For two measurement arrays, x and y, the complex pressures are arranged

into m×n (m being the number of elements in the array and n the number of blocks) matrices Px

and Py. A coherence matrix, ΓΓΓ
2( f ) whose entries are the γ2( f ) between all combinations of points
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on two measurement arrays is calculated by

ΓΓΓ
2( f ) =

|PxPH
y |2

diag(PxPH
x )diag(PyPH

y )
H , (5.2)

where diag(·) signifies extracting the main diagonal of the argument matrix as a column vector, and

the magnitude squared (| · |2) and division operations are done element-wise. The ith row of ΓΓΓ
2( f )

is the coherence between the element xi and all of the y j’s, and the reverse is true for the columns.

If x and y is the same array, ΓΓΓ
2( f ) is symmetric, square, and the values along the diagonal are unity.

In Bendat and Piersol [135], equation (9.82) gives the normalized random error of the coherence

calculation, ε[γ2], which is reproduced here as Eq. 5.3,

ε[γ2]≈
√

2(1− γ2)
√

n
√

γ2
. (5.3)

The error is a function of the calculated coherence itself as well as the inverse square root of the

number of blocks, n. For the number of blocks used in this study, a coherence estimation of less

than γ2 = 0.02 results in a ε[γ2] value greater than 1, meaning the true coherence could be in fact,

zero. This gives a practical lower limit to the possible values of γ2 obtainable in this study, and all

plots are limited to show values above this threshold.

A valuable measure of coherence that is often used is the coherence length, Lγ2 , which in this

work is calculated as the distance between two points along an array in which the γ2 drops from

unity to 0.5. The concept of coherence lengths have been useful for wavepacket models [35, 136] to

construct equivalent acoustic sources for jet noise. For comparison across multiple frequencies, Lγ2

is normalized by the acoustic wavelength as was done by Swift et a. [61]. If Lγ2/λ is small such

that γ2 decays rapidly over space, it is often necessary to interpolate the calculation of γ2 between

array points to reach an estimation of the true value of Lγ2 .
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Figure 5.3 Normalized SPL and coherence lengths along the simulated field array between
0 and 7 kHz.

5.4.2 Field Coherence

The coherence matrix of a measurement array in the vicinity of a jet gives insight into the jet noise

field properties. Since ΓΓΓ
2( f ) is a large matrix for each frequency, it is difficult to concisely visualize

trends across frequencies. The coherence length, Lγ2 , then becomes a useful visualization tool. If

Lγ2 is calculated in a single direction, it allows for a single value to be plotted for each frequency

and array position, which can then be displayed in a single figure. Figure 5.3 shows the normalized

sound pressure levels along the field array and the corresponding upstream (−x direction) Lγ2/λ .

The plot is saturated to black at 4 or when there were not enough upstream microphones in the

array to mark a drop in coherence to 0.5. The dashed line marks the level contour 6 dB down from

the maximum and is repeated on the plot of the upstream coherence lengths for reference. This

spatiospectral region is referred to as the region of maximum radiation in this work.

In Fig. 5.3, the largest values of Lγ2/λ are found aft of x/D = 30, which appears to be due to the

array being large compared to the aeroacoustic source, causing the propagating acoustic waves to

impinge at grazing incidence. When this occurs, the coherence along subsequent points in the array
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are large, as the information in the field is transported along the array. Upstream of x/D = 0, Lγ2/λ

is large in the 3-5 kHz band where the BBSAN signature is seen and increases towards the edge

of the array. Coherence lengths are the lowest at about x/D = 10, where the radiation towards the

sideline is broadband. In the maximum radiation region coherence lengths generally stay between

1-2 wavelengths. At 0.5-1.5 kHz, there is a general increase in Lγ2/λ downstream of 20 D which

continues to the end of the array. As frequency drops to zero and wavelengths become very large

compared to the dimensions of the jet flow, normalized coherence lengths naturally drop to zero.

Though Lγ2 serves as a useful glance at the entire field in one plot, the full story of the field

is only told by analysis of ΓΓΓ
2( f ). A single column of ΓΓΓ

2( f ) can be extracted for each frequency

and compiled to create a coherence spectra of the array to the reference point corresponding to the

chosen column. Parts a)-d) of Fig. 5.4 display the coherence spectrum of the array with respect to

four reference points located at x/D = 2.5, 4.5, 12.5, and 24 respectively. These points were chosen

to represent phenomenological trends observed as the coherence was examined for all points along

the array. The vertical dotted lines represent the location of the reference, and their color matches

the four asterisks marked on the field array in Fig. 5.2. The coherence spectrum in Fig. 5.4 a) uses a

reference chosen where the BBSAN signature is observed in Fig. 5.3. Faint traces of coherence can

be seen between the reference point and 10 D downstream between 4 and 6 kHz. This faint trace of

coherence is in the frequency range where the BBSAN level is the largest at the reference. Figure

5.4 b) shows the coherence spectrum with a reference point chosen where the coherence lengths in

Fig. 5.3 were the lowest, just upstream of the region of maximum radiation. The coherence is small

across all but the lowest frequencies.

Figure 5.4 c) shows the coherence of the array with a reference located in the maximum radiation

region. The coherence is generally larger than seen in parts a) and b) as well as over a larger spatial

extent, as is seen by the increase in L2
γ/λ in Fig. 5.3. What is unseen in Fig. 5.3 is that in the region

of maximum radiation, a single point in space contains frequency information that is coherent with
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the upstream BBSAN signature. Coherence between the BBSAN and the region of maximum

radiation implies that either the BBSAN source is propagating downstream into the region of

maximum radiation as well as upstream, or the source mechanisms (BBSAN source and the source

contributing the region of maximum radiation) are not independent. An example of the sources

not being independent could be if the actuation of the shock cells by instability waves [19] were

to transfer some of the shock fluctuation information to the acoustic field via their Mach wave

radiation. The coherence alone cannot distinguish between these two possible explanations. Swift

et al. [61] shows a similar pattern with their coherence analysis of the F-35.

Part d) of Fig. 5.4 shows that as the reference point is moved farther downstream, the coherence

of the field increases with a larger increase in the 0.5 to 1.5 kHz range. Even though the reference is

not completely removed from the region of maximum radiation, any evidence of coherence with

the BBSAN disappears. It is possible this is caused by some change in the source mechanism

responsible for the radiation to the field in that direction, though there is some common coherence

between parts c) and d) below 1 kHz. The coherence for frequencies above 1 kHz begin to saturate

downstream of 25 D.

These observations of the field coherence allow for the separation of the field into four regions:

1. Region where the BBSAN signature dominates. The frequency-dependent signature peaks at a

lower frequency upstream and shifts to higher frequency towards the sideline. Underneath the

BBSAN there is uncorrelated noise present, so the coherence drops outside of the frequency

band where the BBSAN peaks.

2. Region of low coherence, upstream of the contribution of the aft radiation and downstream of

the BBSAN component.

3. The portion of the region of maximum radiation that shows traces of coherence with the

BBSAN in region 1.
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4. The portion of the region of maximum radiation where the coherence with region 1 disappears

until the end of the array.

Regions 1, 3, and 4 as identified by the field coherence can be qualitatively observed in

the instantaneous pressure map of Fig. 5.1. Upstream radiation not originating from the nozzle

exit is seen characteristic of BBSAN. Highly directional, plane-like propagation of the waves

originating from the plume upstream of the supersonic core are reminiscent of Mach wave radiation.

Downstream of that, however, the radiated field looks significantly different. This observation

motivates section 5.4.4, which uses the coherence between the pressures on the field array and

the flow pressures along the nozzle lipline to identify source regions responsible for each of these

identified field regions.

Figure 5.4 Coherence of the field array with four different reference points along it:
x/D = 2.5, 4.5, 12.5, and 24. The colored dotted lines represent the reference locations
and correspond to the colored asterisks on Fig. 5.2.

5.4.3 Flow Coherence

The advantage of investigating LES as opposed to full-scale aircraft is that flow velocities and

pressures are known. Thus, the same coherence analysis that was performed on the field can be

repeated for the pressures along the nozzle lipline. Figure 5.5 shows the normalized sound pressure

levels (left) as well as the normalized upstream coherence lengths (right) along the nozzle lipline.



5.4 Coherence Analysis 102

Figure 5.5 Level and normalized coherence lengths of the pressures along the nozzle
lipline.

The wavelength used for normalization is the acoustic wavelength calculated using the local sound

speed, c =
√

γRT , where γ and T are respectively the ratio of specific heats and temperature, both

of which vary with location, and R is the specific gas constant for air. The maximum levels along

the lipline in Fig. 5.5 are between 3-15 D downstream of the nozzle. Downstream of 15 D, levels

decrease at all frequencies, with the lowest frequencies decaying the slowest. At frequencies below

3.5 kHz and between 3 and 10 D, there are vertical stripes in the level that appear to be due to the

influence of the shock cells seen in the fluctuations in Fig. 5.2. Coherence lengths start small at

the nozzle exit and quickly increase as the reference is moved downstream, with larger normalized

coherence lengths at high frequency. From 3 to 10 D, the coherence lengths are shortened at

frequencies below 4 kHz. This is in the same region that vertical striations are visible in the level

and where shock cells are present.
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5.4.4 Coherence Between the Flow and the Field

Though coherence does not necessarily imply a cause and effect relationship, coherence between

quantities in the flow and in the field show where similar information is included. First, ΓΓΓ
2( f ) is

calculated between the sampled nozzle lipline positions and the field array. Each column (or row)

of ΓΓΓ
2( f ) then represents the coherence between a single reference on one array to the entirety of

the other. To gain an idea of where the information in the field originates in the flow, for each

point along the field array, the frequency-averaged coherence was calculated with the pressures

along the nozzle lipline. Each colored line in Figure 5.6 a) is the frequency-averaged coherence

with respect to a particular reference point along the field array, the position of which is indicated

by the color bar. For upstream references in the field (dark blues), the average coherence is low,

with a small rise above the noise floor between x/D = 5 and 10 along the lipline. For references

between x/D = 5 and 20 on the field array (light blues, teals, greens, and yellows) the coherence

peaks, shifts downstream, and decays; all while maintaining a similar width. For references beyond

x/D = 20 along the field array, the coherence peak widens, lowers in amplitude, and settles around

x/D = 15 along the nozzle lip.

To visualize this transfer of information from the flow pressures to the field pressures, Fig. 5.6 b)

shows a schematic of the jet with lines traced from points along the field array to the corresponding

points on the nozzle lipline where the frequency-averaged coherence (plotted in part a)) peaks.

Because the curves in Fig. 5.6 a) are quite noisy, they were each smoothed and fit to a sum of two

Gaussians, and the peak of the fitted curve was used. The peak of the coherence between field region

1 and the nozzle lipline falls between x/D = 6 and x/D = 7.2. The region of maximum radiation,

which in Fig. 5.3 is seen as between 10 < x/D < 30 on the field array, shares information with the

flow region 5 < x/D < 14.5. Aft of the region of maximum radiation (x/D >30, the red lines), the

peak of the coherence all originates from a compact region around x/D = 15 along the nozzle lipline,

though as seen in Fig. 5.6 a) the relatively low coherence persists over a large area surrounding
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Figure 5.6 Part a) The frequency-averaged coherence between a reference point along
the field array (indicated by color) and sampled points along the nozzle lipline. Part b)
Lines traced between points along the field array and the corresponding point of maximum
frequency-averaged coherence along the nozzle lipline.

that point. Region 2 in the field is characterized by low field coherence, and subsequently has low

coherence between the field and the nozzle lipline and does not have a traceable corresponding flow

region. Its influence is seen as extra disorder in the traced lines in the transition from region 1 to

region 3.

The cyan, green, and yellow lines in part b) of Fig. 5.6 all share a similar slope and do not cross,

suggesting that the radiation is superdirectional in that portion of the field. In conjunction with the

coherence lengths observed in Figs. 5.5 and 5.3, the source could be described as a multiplicity

of spatially-ordered, overlapping source regions (not unlike wavepackets) each with some sort

of self-coherent phase relationship causing directional radiation (e. g. Mach wave radiation) that
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propagates to the field. Beyond the end of the supersonic core, however, the qualitative nature in

the transfer of information from near to far field changes. The entirety of the field array beyond

x/D = 30 contains information from an extended region centered around x/D = 15 (just beyond

the end of the supersonic core) along the lipline. It appears that the nature of the sound radiating

from this region of the nozzle lipline switches to be more omnidirectional, instead of the highly

directional radiation seen farther upstream. This switch explains why the aft portion of the field

array has an increase in coherence as seen in Figs. 5.3 and 5.4. Omnidirectional radiation combined

with the angle of the field array results in a small angle of incidence of the sound field at the far aft

locations.

Based on Fig. 5.6, there appears to be three important regions in the flow:

1. Potential core region, where both the BBSAN and the directional, aft radiation are originating.

2. Region downstream of the potential core but upstream of the end of the supersonic core,

where unidirectional radiation dominates.

3. Region downstream of the supersonic core.

To look for phenomenological differences in these regions of the flow, three references were

chosen along the nozzle lipline with which to calculate the coherence spectrum with the field array.

The first two were chosen as where the field array references for parts c) and d) of Fig. 5.4 trace

back to the nozzle lipline via the analysis in Fig. 5.6 (x/D = 6.7 and 11.1, respectively). The

third reference is where the farthest aft point on the field array traces back to the nozzle lipline,

x/D = 14.1. Figure 5.7 shows the coherence spectrum of the field array with these three reference

points along the nozzle lipline, with the 6 dB-down region of the levels as displayed in Fig. 5.3 for

scale.

Figure 5.7 a) shows the coherence between x/D = 6.7 on the nozzle lipline, representing flow

region 1 and the entirety of the field array. This position in the flow transmits information to the
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Figure 5.7 Coherence between select points along the nozzle lipline (marked on Fig. 5.2
by the hollow squares) and the field array.

acoustic field both upstream as BBSAN and downstream to the region of maximum radiation as

Mach wave radiation. The transmitted information to the region of maximum radiation seems to

segment itself into spatiospectral minima and maxima, with individual frequency bins dropping

to low levels in the region. This is the first hint of spatiospectral lobe separation in the region of

maximum radiation seen in this data set. Part b) shows the coherence spectrum of the field array

with x/D = 11.1 at the nozzle lipline, which is a point between the end of the potential core and the

end of the supersonic core, outside of the influence of shock cells. All evidence of coherence with

the BBSAN region upstream disappears and the spatiospectral region with appreciable coherence

fills out the region of maximum radiation that is not covered in part a), with the addition of some

low-frequency content. Part c) uses a reference at x/D = 14.1, which seems to influence the field

in a different way than parts a) and b). The coherence consists of low frequencies (predominantly

under 2 kHz) and is spread over a larger spatial region in the field. It does overlap with some

of the low frequency portion of part b), which suggests a gradual transition between the source

mechanism responsible for the unidirectional radiation in parts a) and b) to this qualitatively different

phenomenon in part c). This gradual transition between source mechanisms is supported by the

red lines in the frequency-averaged coherence in part a) of Fig. 5.6. References at the end of the
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field array contain information from an extended region along the nozzle lip – on the order of ten

diameters wide.

The qualitative difference between the radiation originating upstream of and downstream of the

supersonic core is easily described with the wavepacket analogy for jet noise [34]. If a wavepacket-

type source description is used and is situated sufficiently upstream of the end of the supersonic

core, then the phase relationship of the coherent wavepacket would likely be supersonic, which

results in efficient, directional Mach wave radiation. As the jet velocity decelerates with distance

from the nozzle exit, however, the effective convective velocity decreases to subsonic, causing the

phase speed of their wavepacket representation to be subsonic as well, resulting in only a portion of

their wavenumber spectrum radiating efficiently with a more omnidirectional directivity.

5.4.5 Coherence Analysis Summary

Combining the observations of the field, flow, and flow-to-field coherence calculations leads to a

combination of four possible noise mechanisms in this simulation of a highly-heated laboratory-scale

jet.

1. BBSAN

2. Fine-scale turbulent structure noise

3. Mach wave radiation from large scale turbulent structures

4. Large-scale turbulent structure noise

The BBSAN component is a well-documented and understood phenomenon which radiates

primarily upstream (field region 1), though this work shows that portions of the aft radiation

(field region 3) is coherent with the BBSAN. It is unknown if this is because the BBSAN radiates

downstream as well as upstream, or if the large-scale turbulent structures which actuate the shock
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cells imprint the shock cell information into the far-field via their Mach wave radiation. Fine-scale

turbulent structure noise is present as a background to the BBSAN components and dominant just

upstream of the region of maximum radiation (field region 2). Mach wave radiation of large-scale

turbulent structures is seen as nearly unidirectional radiation originating from the flow upstream of

the end of the supersonic core (flow regions 1 and 2) and radiating to the upstream portion of the

region of maximum radiation (field region 3). A qualitative description of this source mechanism is

of spatially-ordered, partially-overlapping wavepackets on the order of a few diameters in width

with supersonic phase velocity. Though each wavepacket would be self coherent, coherence lengths

are small (as seen in Fig. 5.5) because they are spatially compact.

The final noise mechanism discussed in this paper originates from the region of the flow which

is centered around the end of the supersonic core (region 3), but which extends both upstream into

region 2 and even farther downstream. It contributes to the latter half of the region of maximum

radiation all the way to the end of the field array (field region 4) and is comprised of low-frequency

components, primarily under 2 kHz or a Strouhal number of about 0.12. A wavepacket description

would be a set of spatially large, self coherent but mutually incoherent wavepackets which overlap,

resulting in nonzero coherence lengths because of their size. Here, it is simply called large-scale

turbulent structure noise, similarly to previous work on this data set [40] and other works which use

LES to simulate high-temperature jets [42].

The two different source phenomena responsible for the aft radiation as seen in this work are

remarkably similar to the results of Schmidt et al. [31], which analyzed LES of subsonic and

supersonic cold jets using SPOD and resolvent analysis. They found that the SPOD and resolvent

modes take on wavepacket shapes which are qualitatively similar to the two source mechanisms

described here, and are dubbed Kelvin-Helmholtz type or Orr-type. The Kelvin-Helmholtz type

wavepackets originate along the upstream shear layer and are responsible for the majority of the

radiation, while the Orr-type wavepackets are primarily active downstream of the potential core at
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lower frequencies. The Orr-type modes are not low-rank, but are extended over a region and require

many overlapping suboptimal modes to predict the overall response. The physical mechanism

attributed to these modes is the Orr mechanism [128]. The characterization of this superposition of

overlapping self-coherent modes to produce the field is important to linear analyses [30], which

have had difficulty reproducing the far aft, low-frequency radiation. Adding coherence decay to

wavepacket models [136] to the nominally coherent linear analyses is required to match the radiated

field at large aft angles and low frequencies.

Table 5.1 Summary of the jet noise components observed by the coherence analysis and
their estimated regions along the nozzle lipline and field arrays.

Noise Component Flow extent Field extent

BBSAN 6 < x/D < 7.2 x/D < 2

Fine-scale turbulent structure noise - 2 < x/D < 5

Mach wave radiation x/D < 12.67 5 < x/D < 25

Large-scale turbulent structure noise 7.2 < x/D < 20 20 < x/D

5.5 Comparison to the F-35B

High-fidelity measurements of the jet noise produced by military aircraft have been achieved in

recent years [54, 55]. Analyses of near-field measurements of the noise from a tied-down F-35B

aircraft have shown significant deviation from the traditional two-source model [61, 105], and are

phenomenologically compared to the LES of the highly-heated jet here.

The measurement of the F-35B was performed at Edwards Air Force Base in 2013 [55]. The

aircraft was tied down to a concrete run-up pad and its engine cycled from 13% engine thrust request

(ETR) up through 150% ETR. Engine powers greater than 100% ETR are due to the addition of

afterburner. The nozzle of the engine was 2.0 m from the ground and had a nominal 1 m diameter,
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though the exact nozzle diameter changed with engine condition. The origin of the coordinate

system used in this study is at the nozzle exit with the jet plume faced down the positive x-axis. The

y-axis is the distance from the jet centerline and the z-axis is the height above the ground. The array

was laid out to the left side of the aircraft as shown in Ref. [55], though for convenience it is mirrored

to show it on the right side of the aircraft. This study focuses on a 32 m long, 71-element (0.45 m

inter-element spacing) linear ground array placed approximately parallel to the shear layer, which is

shown in Fig. 5.8. The recorded 30-second time waveforms (204.8 kHz sampling frequency) were

split into multiple blocks with a 50% overlap, windowed with a Hann function, then the Fourier

transform was applied to each block. Swift et al. [61] analyzed the full, high-resolution data set.

For this work, to be able to compare more closely with the LES of the heated laboratory-scale jet,

the block size was adjusted to give a frequency resolution of 15 Hz and only 97 blocks were used.

Figure 5.8 Schematic of the linear ground array used to measure the jet noise field of the
F-35B.

The temperature ratio in the LES analyzed in this study was chosen to be similar to a tactical

aircraft operating at afterburner, so the 150% ETR case of the F-35B measurement is studied here.

The only attempt to scale either data set for comparison was the normalization of levels and choice

of frequency range and resolution. The normalized spectrum measured along the array is displayed
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Figure 5.9 Normalized SPL and coherence lengths measured by the array in Fig. 5.8 while
the F-35B aircraft was operating at 150% ETR.

in the left pane of Fig. 5.9. BBSAN is seen upstream starting at 350 Hz, increasing to 700 Hz at

x = 5 m. The directional portion of the turbulent mixing noise dominates from 5-30 m downstream.

The calculated upstream coherence lengths for the F-35B measurement were first shown in

Ref. [61] and are repeated here in Fig. 5.9 (though this study uses a coarser frequency resolution for

comparison to the LES). The coherence lengths are large upstream in the 300-600 Hz band due to

the presence of BBSAN, become uniformly smaller in the region dominated by sideline radiation

and increase again in the region of maximum radiation. Aft of the region of maximum radiation,

at high frequencies at the end of the array, the frequencies above 350 Hz begin to saturate, likely

due to the array measuring a progressive wave field since it is large compared to the aeroacoustic

sources. A striking feature of Fig. 5.9 is the oscillation in the level and the coherence length in the

region of maximum radiation. This oscillation in the region of maximum radiation can modulate

the level on the order of 5 dB and double the value of Lγ2/λ . The oscillations in the spatiospectral

domain are called spatiospectral lobes. These spatiospectral lobes were investigated more in depth

by Refs. [36, 61, 105]. They represent either a dual peak in the frequency spectrum at a single

measurement location or a split directivity pattern in the field at a single frequency.
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Despite the fact that the operating conditions and nozzle geometries of this LES data set and the

F-35 are not the same, general comparisons of the levels and coherence lengths are still favorable.

All the coherence length trends appear to hold generally, except that Lγ2/λ is slightly larger for the

LES than for the F-35. The largest difference is, of course, the spatiospectral lobe content in the

F-35. It is unknown at this point why the LES does not contain this phenomenon. In Fig. 5.3, the

coherence lengths inside and just aft of the region of maximum radiation above 2 kHz are about

the same, in Fig. 5.9 for the F-35 the coherence lengths are larger at the spatiospectral lobe peaks,

almost as if an additional coherent noise source were superimposed on top of the general field.

However, the horizontal portion of the farthest aft lobe of the F-35 matches the low-frequency, aft

frequency content seen in the LES.

Since the F-35 measurement did not include flow measurements of the flow, other studies have

used acoustic inverse methods in an attempt to identify source regions for the noise measured along

this array. Leete et al. [105] (Chapter 2) used an advanced acoustical holography technique to

reconstruct the acoustic field of the F-35 from this same data set from the nozzle lipline out to a large

area surrounding the aircraft. Though limited to frequencies below 400 Hz, they were able to trace

individual spatiospectral lobes to their apparent origins along the jet centerline. The low-frequency,

far aft spatiospectral lobe was traced to a source location downstream of x/D = 12, while the next

two lowest lobes were traced to the an upstream region between x/D = 5 and x/D = 10. The

low-frequency lobe also had an appreciably shallower directivity than the two higher lobes. When

compared with the current work, the lowest frequency, farthest-aft lobe could be identified as

large-scale turbulent structure type radiation while the higher-frequency lobes could be identified as

Mach wave radiation.
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5.6 Conclusions

Level and coherence analyses of the simulated noise from a highly-heated jet leads to the identi-

fication of distinct regions of interest in the flow and in the field. Field region 1 is characterized

by the presence of BBSAN, where the spatially-dependent self-coherent spectra appears upstream.

The BBSAN information originates from the nozzle lipline in flow region 1, which is upstream of

the end of the potential core. Field region 2 is the region of low coherence towards the sideline of

the jet, just upstream of the region of maximum radiation. Field region 3 is the upstream portion

of the region of maximum radiation. It is self-coherent and partially coherent with the BBSAN

upstream. It originates from flow region 1 as well as flow region 2, which is between the end of the

potential and supersonic cores. Field region 4 begins with the low-frequency portion of the region

of maximum radiation and extends downstream to the end of the array, and contains information

from flow region 2 as well as region 3, which is downstream of the supersonic core.

Analysis of the transfer of information between the nozzle lipline and the field array illuminates

four different potential noise mechanisms at play in this jet. Broadband shock-associated noise,

fine-scale turbulent structure noise, Mach wave radiation of large-scale turbulent structures, and

large-scale turbulent structure noise. Traditionally, the directional radiation in the aft direction has

been attributed solely to the Mach wave radiation of large-scale turbulent structures. It is seen with

this LES that the large-scale turbulent structure noise originating from the supersonic portion of

the flow transmits its energy more efficiently to the field in the characteristic unidirectional pattern

associated with Mach wave radiation. However, as the jet velocity decreases with distance from the

nozzle, a qualitatively new noise source begins to appear where the frequency content shifts lower

and the directivity becomes more omnidirectional. This noise source is centered just downstream of

the end of the supersonic core, though it is on the order of 10 diameters wide.

Though the idea of multiple noise production mechanisms contributing to the aft radiation is

heartening for understanding the spatiospectral lobes measured in the F-35 field, the observations of
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the LES only show a smooth transition from one noise production mechanism to another, which

does not generate a split directivity in the field or a dual peak in the spectrum. However, previous

work [61, 105] has shown qualitative similarities between the farthest aft lobe of the F-35 with the

Large-scale turbulent structure noise observed in this study and the coherence calculated between

a point in the flow where shock cells are present does split the Mach wave radiation component

into what looks like spatiospectral lobe shapes. At this point, bringing LES of a laboratory-scale

jet to high temperatures (designed to be in the same regime as high-performance military aircraft

operating at afterburner) does not account for all of the spatiospectral lobe content that is observed in

the F-35. Additional laboratory-scale tests or LES operating at even more realistic high-performance

military aircraft conditions are needed to fully understand the spatiospectral characteristics of the

F-35.
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Chapter 6

Holography and Acoustic Intensity

Analyses of the Simulated Jet

6.1 Introduction

Since the beginnings of jet noise research more than a half-century ago, an ongoing problem has

been to understand the origin of the jet noise source. A variety of methods have played a role

in experimentally deriving the locus of acoustic energy in jets over many years. Some of these

include measurements using acoustical mirrors [99], ray-traced measurements of acoustical intensity

[103, 137], phased arrays including near-field acoustical holography [79, 83, 138] and beamforming

[65, 70, 72, 74, 75], and correlations between the measured flow and fields [13–15, 23, 86, 139].

Additionally, numerical simulations [126, 127] allow for entire flow field decomposition techniques

[26, 27, 31, 32], linear stability analyses [29], and resolvent analysis [30, 33], which give insight

into noise source mechanisms and source locations. Generally, for supersonic jets the noise can

be separated into components such as broadband shock associated noise, screech, large-scale
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turbulence structure noise, fine-scale turbulence structure noise, and Mach wave radiation. All these

components have unique source localizations based on the operating conditions of the jet.

Parallel to the investigations of jet noise source phenomena, research done to understand the

noise generated by rockets on liftoff have focused on semi-empirical methods. NASA SP-8072 [43]

provides normalized spectra, estimates of axial distributions of overall sound power, and sound

source position as a function of frequency, which were generated using laboratory-scale supersonic

jet and full-scale rocket data [44, 45]. The document presents a method to apply these generalized

spectra by scaling to the specific test at hand to create an equivalent source model of the jet noise,

consisting of a distribution of sources along the jet centerline. The strength of these sources is related

to the mechanical power of the jet through an assumed acoustic efficiency of about 0.5%. Since then,

several studies focused on adapting these empirical relations so that they match more recent data as

they became available [46–48], often tuning the definitions of characteristic lengths [49], as well as

including the integration of computational schemes [50, 51] for generation and propagation of the

sound field. Recent work [52] has shown that a plotting error propagated in the NASA SP-8072

document has led to an understanding in the rocket noise community that the main source of noise

is the subsonic portion of the flow [46], while in the jet noise community it is understood that the

main acoustic power originates between the potential and supersonic cores [45].

Of interest to this work is the recent measurement and analysis of high-performance military

aircraft, which may provide a link between the supersonic jet noise research and rocket noise

research. Inverse methods such as beamforming [75] and near-field acoustical holography [83, 138]

have been successful in reconstructing the jet noise field over a large area from limited measurements.

Wall et al. [83] applied multisource statistically optimized near-field acoustical holography (M-

SONAH) to a scan-based, two-dimensional measurement hologram of a rectangular-nozzled aircraft

and Leete [138] used the same method applied to a ground-based linear array to reconstruct the field

of a round-nozzled aircraft. For both cases, they provide estimations of the acoustically relevant
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source region by reconstructing the field along the nozzle lipline. The main locus of the energy

along the lipline is found to decrease in width and shift upstream towards the nozzle as frequency

is increased. Additionally, discrete lobes in the spatiospectral domain are present, reflective of

the multiple spatiospectral lobes observed in the field of both those aircraft. These time-harmonic

pressures along the nozzle lipline can be thought of as describing the aeroacoustic noise source

pertinent to the near- and far-field radiation, because they contain all the information needed to

reproduce the field. What is unknown, however, is whether these pressures are representative of

actual measurements of acoustic variables along the nozzle lipline, because measurements of flow

variables of these military aircraft are unavailable.

Advancements in numerical simulations of jets have allowed for increasingly accurate reproduc-

tions of the aeroacoustic flow field [126,127] and now provide an opportunity to use inverse methods

that are generally applied to laboratory and full-scale measurements to the simulated dataset [140].

The purpose of the current work is as follows: to sample the numerically generated acoustic field

as if it were measured in a field test, apply statistically optimized near-field acoustical holography

(SONAH), then evaluate the accuracy of the SONAH reconstructions against the simulations. The

finely sampled pressure and particle velocity fields of the numerical simulation allow for calculations

such as the vector intensity, and to test the ability of the holography technique to reproduce the

pressure, particle velocity, and acoustic intensity in the field and within the plume. Using the

acoustic intensity from the simulations and the holographic reconstructions, the overall sound power

of the simulated jet, the acoustic efficiency, and the axial distribution of sound power are calculated.

6.2 Large Eddy Simulations

The LES dataset used in this work is provided by Liu et al. [39, 40, 91], which used the Jet

Engine Noise Reduction (JENRE®) solver to calculate the heated flow passing through a conver-
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gent/divergent nozzle. The JENRE® solver uses a monotonically-integrated LES approach with a

flux-corrected transport algorithm [129] and explicit Taylor-Galerkin scheme. Tetrahedral meshes

were used to implement the complicated nozzle geometry, which had a nozzle exit diameter, D, of

2.868", a design Mach number of 1.5 and fully expanded pressure ratio of 3.7. The thermodynamic

quantities in the flow region were calculated out to a conical surface outside of the main flow, then

the far-field pressures were predicted using the Ffowcs Williams and Hawkings (FW-H) integration

method [130]. Cell sizes about D/286 are used near the nozzle that gradually increase to around

D/20 near the FW-H integration surface (FWHS). Specifics of the choice of integration surface and

grid resolutions can be found in Ref. [131].

The simulation was run at a nozzle pressure ratio of four and a temperature ratio of seven,

resulting in an underexpanded, shock-containing jet with a temperature in the same regime as

high-performance military aircraft operating at afterburner [132]. A method for calculating the

temperature-dependent specific heat ratio was incorporated, which was found to match well with

NIST databases for air under these conditions (see Fig. 2 of [39]). Time records of the LES

simulation were split into 97 blocks and a Fourier transform applied to each block to give a complex

pressure spectrum with a frequency spacing of about 150 Hz. The total temporal duration of the

simulation was 0.326 s, which covers 5260 convective time units (D/U j, the nozzle diameter divided

by the fully expanded jet velocity).

The fluctuating component of pressure and particle velocity generated by the LES are sampled

along three simulated arrays: along the jet centerline and the nozzle lipline, sampled from the nozzle

exit to x/D = 25 in increments of x/D = 0.2 and along the FWHS on the line y/D = 1
6x/D+1.5

sampled from x/D = 0 to x/D = 25 in x/D increments of 0.1. The acoustic pressures generated

from the FW-H integration are then sampled along three simulated arrays in the field. The first,

which is the Hologram, is parallel to the FWHS and is described by the equation y/D = 1
6x/D+10,

with x/D sampled in increments of 0.1 from x/D =−10 to x/D = 40. This array is expanded by
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Figure 6.1 Sampled arrays in the near field: Jet lipline, FWHS, and Hologram. Dashed
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Figure 6.2 Additional sampled arrays, Hologram, 40D Line, and 100D Arc.

rotating it around the x-axis in 20° increments to make a set of 18 finely sampled lines. Another

is a single line above the x-axis extending from x/D =−40 to x/D = 65 at y = 0 and z/D = 40 in

steps of 0.1 diameters. The last is a far-field arc with radius of 100 D, spanning jet inlet angles (θ )

of 45° to 165° in 1° increments, which is rotated about the x- axis in 22.5° increments to make a
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surface covering the angular range of interest. Figure 6.1 contains a two-dimensional plot of the

location of the nozzle, the sampled arrays along the lipline, FWHS, and Hologram, while Fig. 6.2

shows a three dimensional plot of the expanded Hologram, the 40D Line, and 100D Arc.

The local Mach number of the fluid along the jet centerline (solid) and the ratio of the axial

fluid velocity, U , to the fully-expanded jet velocity, U j (dashed) is plotted in Fig. 6.3. The end of

the potential core (Lc) is estimated as x/D = 7.2, where U/U j ≈ 0.95 and is marked with a square.

The end of the supersonic core (Ls) is located at x/D = 12.7, where M = 1 and is marked with a

blue diamond.
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Figure 6.3 The Mach number (solid) and jet velocity ratio (dashed) along the jet centerline,
with the locations of Lc (square) and Ls (diamond).

The frequency-dependent complex pressure (p) and particle velocities (u) shown in this work are

the outputs of the discrete Fourier transform, scaled to give the correct single-sided power spectrum

(in Pa2) when the modulus squared is averaged over measurement blocks. Sound pressure levels
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(SPL) are referenced to 20 µPa. The turbulence kinetic energy per unit mass (TKE) is one half

times the sum of the power spectra of the three Cartesian components of the particle velocity.

TKE =
1
2
(|ux|2 + |uy|2 + |uz|2), (6.1)

and is displayed as a level referenced to 50 nm/s (the choice of reference for a sound velocity level)

in this work.

6.3 Intensity and Power

The instantaneous acoustic intensity is the product of the pressure and particle velocity fluctuations

at a given point in space. The time-averaged intensity (also called the active intensity) describes the

net flow of energy carried by the propagating acoustic wave and can be calculated in the frequency

domain [141] by

~I( f ,~r) = Re{Gp~u( f ,~r)}, (6.2)

where Gp~u( f ,~r) is the single-sided cross spectrum between the pressure and particle velocity. The

sound intensity level (SIL) is referenced to 1 pW/m2, so that it is identical to the SPL in the case of

plane and spherical wave propagation.

The total sound power (Wa) of a source can be calculated by defining a closed surface, S,

surrounding it and integrating the intensity flowing out of that surface,

Wa =
∫

S
~I(~r) · d~n, (6.3)

where~n is the normal vector of the surface pointed outward. Computation of Wa is made simple when

the integration surface is situated in the far field, such that the acoustic field can be approximated

as locally planar. Then, for reasonably chosen surfaces the dot product in Eq. 6.3 reduces to
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multiplication of the intensity magnitude with the corresponding area of the surface element, and

the intensity vector magnitude is approximated by the autospectrum of the pressure (Gpp( f ,~r)),

|~I( f ,~r)| ≈
Gpp( f ,~r)

ρ0c
. (6.4)

The single-sided autospectra of the pressures and particle velocities are estimated by averaging the

magnitude of the Fourier transform over the 97 measurement blocks. The cross-spectra between the

pressure and particle velocities are estimated by the block average of the product of the complex

pressures with the conjugate of the complex velocity.

The acoustic efficiency (ε) of a jet is the ratio of radiated acoustic power, Wa, to the total

mechanical power of the jet, Wm. The mechanical power is determined by the kinetic energy density

(1
2ρU2) of the exhaust multiplied by the flow rate (π(D

2 )
2U) at the nozzle exit. Since the axial

velocity and the density change over the nozzle exit plane (especially because the underexpanded

condition of the jet caused shocks in the nozzle), the average kinetic energy density is calculated

over the exit plane from the average of the densities and axial velocities. The mechanical power is

then calculated by

Wm =

(
1
2

ρaveU2
ave

)(
π

(
D
2

)2

Uave

)
, (6.5)

and the subsequent acoustic efficiency

ε =
Wa

Wm
=

8Wa

πD2ρaveU3
ave

. (6.6)

The mechanical power thus calculated for this jet is Wm = 736.9 kW.

6.4 Holography Method

The holography method used in this work is called statistically optimized near-field acoustical

holography (SONAH), which was developed by Steiner and Hald [93] to overcome limitations
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of Fourier-based holography in requiring a measurement much larger than the size of the source.

Section 6.4.1 discusses the basic formulation of the technique to estimate the pressures of a coherent

field, Sec. 6.4.2 discusses how the formulation is altered to estimate the particle velocity fluctuations,

and Sec. 6.4.3 discusses application to the partially-coherent jet noise field of the LES.

6.4.1 SONAH formulation

Statistically optimized near-field acoustical holography can be thought of as a two-step process: 1)

an equivalent wave model (EWM) is fit to a hologram surface, h, and 2) evaluated at a reconstruction

surface, q. The EWM used in this study is a set of m cylindrical basis functions, Ψ(~r), where

Ψl,kx(~r)≡
H1

l (krr)
H1

l (krr0)
eilφ eikxx,r ≥ r0 (6.7)

and r, φ , and x are the radial, azimuthal, and axial spatial components of~r. H1
l is the lth-order Hankel

function of the first kind; i is the imaginary unit, r0 is some small reference radius (traditionally

the assumed source radius [96]), and kx and kr are the axial and radial wavenumbers, respectively.

For this study, only l = 0 wavefunctions were used for consistency with previous work on military

aircraft [83,138]. The number of wavefunctions, m, is therefore only dependent on the number of kx

values used. The kx values for this study were regularly spaced between − π

dx and π

dx , in steps of 2π

8∆x

with dx as the interelement spacing of the array in x and ∆x is the total span of the array in x. This

simulates an aperture eight times larger than what was measured, which was necessary to eliminate

wraparound errors within the aperture investigated in this work. The radial wavenumbers are

kr =


√

k2− k2
x for |k| ≥ |kx|,

i
√

k2
x − k2 for |k|< |kx|,

(6.8)

where k = ω

c is the acoustic wavenumber, ω is the angular frequency, and c is the speed of sound.

This choice for wave function and definition of k implies a time harmonicity of e−iωt .
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For a hologram measurement of nh sample points, the EWM evaluated at that location is

constructed into a matrix A where the i jth element of A is the ith wavefunction evaluated at the jth

point

Ai j = Ψkxi(~r j), (6.9)

where the size of A is m by nh. A similar matrix, ααα , is generated in the same way, but with the

EWM evaluated at the reconstruction surface. This matrix then has the same number of rows as A,

but with columns equal to the number of points at which to reconstruct, nq.

At this point, the SONAH process [93] calculates the column vector of pressures at q, pq, from

the column vector of pressures on h, ph,

pT
q = pT

h RAHAAH
ααα, (6.10)

where the superscript T is the transpose, H is the Hermitian transpose, and RAHA is the regularized

inverse of AHA. Regularization is performed using a modified Tikhonov filter with the generalized

cross validation procedure for the selection of the regularization parameter as outlined in Ref. [97].

Since the matrix ααα is simply the set of chosen wavefunctions evaluated at q, all the preceding

multiplications in Eq. 6.10 can be combined to represent the transpose of the column vector of

coefficients corresponding to those wavefunctions (cT). Thus, Eq. 6.10 can be simplified to

pT
q = cT

ααα. (6.11)

6.4.2 Particle velocity

It is a straightforward procedure to use the EWM to reconstruct the three components of particle

velocity in addition to the pressures at the desired location. Following the process outlined in [142],
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the particle velocity of acoustic waves in a source-free medium is related to the pressure via Euler’s

equation for a linearized acoustic process,

~u(~r) =− i
ωρ0

∇p(~r), (6.12)

for an e−iwt time harmonic wave where ω and ρ0 are the angular frequency of interest and the

ambient density of the medium, respectively. Applying Eq. 6.12 to Eq. 6.10, the matrix of velocity

vectors at the reconstruction surface,~uq is calculated by

~uT
q = pT

h RAHAAH(
−i

ωρ0
)∇ααα, (6.13)

since the ααα matrix is the only variable that depends on the reconstruction location where the gradient

is taken. The gradient of the ααα matrix is constructed by evaluating the gradient of the pressure

wavefunctions at each reconstruction location. The analytic solutions for the three components of

the gradient in cylindrical coordinates are

∇rΨl,kx(~r) =
l
r H1

l (krr)− krH1
l+1(krr)

H1
l (krr0)

eilφ eikxx, (6.14)

∇φ Ψl,kx(~r) =
il
r

Ψl,kx(~r), (6.15)

and

∇xΨl,kx(~r) = ikxΨl,kx(~r). (6.16)

It is convenient to define new matrices corresponding to each velocity component,

αααr =
−i

ωρ0
∇rααα, (6.17)

αααφ =
−i

ωρ0
∇φ ααα, (6.18)

and

αααx =
−i

ωρ0
∇xααα (6.19)
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so that Eq. 6.13 simplifies to the same form of Eq. 6.11 for each component of~uq:

urq = cT
αααr, (6.20)

uφq = cT
αααφ , (6.21)

and

uxq = cT
αααx. (6.22)

Note that for the axisymmetric assumption (l = 0) made in this work, the φ component of the

gradient in Eq. 6.15, and the subsequent uφq in Eq. 6.21, are identically zero for any choice of q.

6.4.3 Application to LES

A fundamental assumption of SONAH is that the field at each frequency is a solution to the

homogeneous Helmholtz equation, meaning that the field is coherent and contains no acoustic

sources in the region between the hologram and the reconstruction location. It is well known that

the jet noise field is not self-coherent, so care must be taken to extract self-coherent partial fields,

apply the holography process to each partial field individually, then sum the partial fields together at

the reconstruction location to arrive at a final answer. The partial field extraction is accomplished

through spectral proper orthogonal decomposition [143]. A data matrix is constructed where the

i jth element is the complex pressure measured for the jth block at the ith measurement point along

the array, then this matrix is multiplied by its Hermitian transpose to generate the cross spectral

matrix (CSM) of the array. The singular value decomposition of the CSM is then used to obtain the

partial fields, which are simply each singular vector scaled by the square root of its corresponding

singular value.

For the current experiment, each simulated array in use contains many more elements than

there are measurement blocks, so the rank of the CSM (and therefore the number of physically
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meaningful partial fields) is limited to the number of blocks, which is 97. Each of the 97 partial

fields has a unique shape, though a common trend of these decompositions is that the partial field

shapes are reminiscent of modes on a string, where the first has a single antinode at the point of

maximum SPL, the second has two antinodes to the sides of the maximum, the third has three

straddling the two from the second field, and so on. This causes the higher-order partial fields to

have large amplitudes at the edges of the array relative to their peak.

To minimize wavenumber leakage caused by abrupt changes at the edges of the array, each partial

field is extended two acoustic wavelengths in both directions using analytic continuation [144], then

windowed with a Tukey window to enforce a graceful taper to zero. For this paper, the vectors ph

and pq used in equation 6.10 are populated by the complex pressures at a particular partial field

after this extension has been applied.

The bulk of the computation time at each frequency is spent in the regularization and inversion

of the matrix AHA, whose size is nh by nh. To reduce the size, the hologram can be resampled so

that the interelement spacing is larger, as long as spatial aliasing is avoided at that frequency. For

this experiment, the array was decimated to an interelement spacing so that there were three points

per wavelength, with a minimum of 97 elements to preserve the rank of the CSM.

Azimuthal considerations

Previous work investigating the field produced by military aircraft [83,138] has shown that imposing

an azimuthal assumption by only including the zeroth-order Hankel functions in the EWM still

allows for accurate reconstructions of the level of the sound field over the azimuthal aperture

of the corresponding measurements. The axisymmetric EWM used in SONAH reconstructions,

however, do not accurately represesent the coherence properties in the azimuthal direction. Leete

et al. [145] measured the coherence angle (the angle over which the the coherence between two

points reliably stayed over 0.5) and compared to predictions based on M-SONAH reconstructions.
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The axisymmetric wavefunctions in the EWM predict unit coherence in the azimuthal direction, (a

coherence angle of 360 degrees) while the measured values remained at least as large as 20 degrees

below 400 Hz (two times the peak frequency of that jet).

For laboratory-scale jets, the acoustic field from jets with circular nozzles have been found

to be axisymmetric in level [146]. For the circular nozzle of this simulation then, the most

important consideration for accurate holographic reconstructions of the field would be the ability

to replicate the coherence properties in the azimuthal direction. Though not displayed here,

preliminary investigation of the coherence angles were found to be on the order of those found in the

military aircraft field in Ref. [145]. Therefore, holographic reconstructions in this study using the

axisymmetric EWM are expected to be accurate in level, though only faithfully reproduce coherence

properties within a finite, frequency-dependant azimuthal range of the hologram. Additional

investigation of the azimuthal limitations of the axisymmetric EWM is needed.

6.5 Results

This section discusses the similarity of the holographic reconstruction of the pressure, particle

velocity, and acoustic intensity to the LES.

6.5.1 EWM fit

The Hologram array was designed to be large enough to cover the pertinent energy that radiates to

the field, densely sampled to eliminate spatial aliasing, and emulate the locations of measurements

near high-performance military aircraft [89,138]. To test the ability of the EWM to fit the simulated

data, the holography procedure is completed where the reconstructed location is at the Hologram

itself, being the theoretical best-case scenario for the field to be accurately reconstructed.
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Figure 6.4 (a) Sound Pressure level along the Hologram and (b) error of the reconstructions
as a function of distance from the nozzle in diameters and Strouhal number.

Figure 6.4(a) shows the spectra along the Hologram (red line in Fig. 6.1) as a function of

normalized downstream distance, the color representing the narrowband SPL. The frequencies

are expressed in terms of Strouhal number, which for this work is calculated as Sr = f D/Uave.

Figure 6.4(b) shows the difference between the reconstructed level and the level from part (a).

Reconstruction errors are essentially zero over the frequency band and spatial aperture of interest,

except at edge points, where error can creep up to 1 dB. This shows that the chosen EWM is

able to fit the simulations well along the array and the regularization process is not too aggressive.

This EWM is now used to reconstruct the pressure and velocity fields at location other than the

Hologram.
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6.5.2 Far-field Reconstructions

Sound pressure level and reconstruction accuracy at the 100D Arc in the far field (yellow lines in

Fig. 6.2) are displayed in Fig. 6.5, displaying the SPL as a function of Sr and the angle from the −x

axis to each position along the arc (θ ). Less than 1 dB error for the majority of the spatiospectral

domain is observed, except at Sr < 0.06 and aft of 155°. Underestimation in the far aft is due to

windowing of the pressures outside of the hologram to zero as discussed in Sec. 6.4.3.
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Figure 6.5 (a) Pressures along the far-field arc and (b) error in the reconstruction as a
function of jet inlet angle (θ ) and Strouhal number.

6.5.3 FWHS Reconstructions

Reconstructing the field inside the hologram at the FWHS, Fig. 6.6 shows the pressures generated

by the LES in part (a) and reconstruction errors in part (b) in the same format as Figs. 6.4. The
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reconstructions are accurate to within 2 dB error in most of the frequency and spatial range shown,

though with large errors at the lowest frequencies and near the nozzle exit. Overestimations of the

field by about 6 dB are found at Sr > 1 for x/D > Ls.
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Figure 6.6 (a) Pressures along the FWHS and (b) error in the reconstruction as a function
of distance from the nozzle in diameters and Strouhal number.

The LES-generated data contain velocities as well as pressures along the FWHS, so the TKE

reconstructed at the FWHS array is compared to the simulation in Fig. 6.7. Errors are similar to

those of Fig. 6.6, though with slightly larger amplitudes and the addition of large underestimations

of the field far downstream. These underestimations in the far aft region indicate that the Hologram

was not quite large enough to fully capture the aperture necessary to reconstruct the energy over

this sampled array.

The SIL calculated along the FWHS array are displayed in Fig. 6.8. The similarity of the SIL

and SPLs of the LES over most of the spectrum indicates that nearly plane-wave propagation is
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Figure 6.7 (a) TKE along the FWHS and (b) error in the reconstruction as a function of
distance from the nozzle in diameters and Strouhal number.

present. Generally, the SPL, TKE, and SIL are overestimated by NAH in areas where amplitudes

are low: by the nozzle exit at low frequency and far aft at high frequency. Low-frequency levels

are underestimated downstream of the nozzle, and the TKE is underestimated at the far aft edge of

the array at all frequencies. Since the pressures along the FWHS are the output from the LES, it is

unclear if the error in the reconstruction at low frequencies is due to the holography process or if

this low-frequency information was not transferred to the Hologram from the FWHS in the FW-H

integration step. As the errors are low at the Hologram in Fig. 6.4, the latter is suspected to be the

case, indicating that the low-frequency energy along the FWHS is hydrodynamic in nature.
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Figure 6.8 (a) Intensity magnitude along the FWHS and (b) error in the reconstruction as
a function of distance from the nozzle in diameters and Strouhal number.

6.5.4 Lipline Reconstructions

Reconstructions along the nozzle lipline (black line in Fig. 6.1) are undertaken to test the application

of holography within the jet plume. Figure 6.9 a) shows the LES-generated pressures sampled

along the nozzle lipline, Fig. 6.10 a) shows the TKE, and Fig. 6.11 a) the acoustic intensity. Unlike

previous figures, these show the reconstructions in part (b) and the errors of the reconstructions in

part (c) to demonstrate the differences in spectral shape of the reconstructions from the benchmark.

To separate errors in the level of the spectra from misrepresentations of the shape of the spectra, the

color map in part (c) of each figure is chosen such that white, instead of representing zero error,

now represents an offset in the error, calculated as the mean error in the region 3 dB down from the

maximum level.
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The pressure reconstructions in Fig. 6.9 b) follow the relative shape of the spectra well, though

with a general underestimation of the energy by about 4 dB. After adjustment for this offset, errors

in the main lobe are within about 2 dB. Large errors occur outside of this main locus of energy,

however, which are truncated by the range of the color bar so details in the main radiation region

can be seen. The TKE reconstructions in part (b) of Fig. 6.10 show a spectral shape similar to

the pressure reconstructions, while the data in part (a) of Fig. 6.10 peak at lower frequencies than

the pressure and have a steeper roll-off at high frequency. In part (c), the TKE reconstructions

are shown to underestimate the flow by 26 dB, which is set to white. The deviations from the -26

dB offset are from the misrepresentation of the spectral shape, overestimation of the field near the

nozzle exit (the LES fluctuations go to zero at the nozzle exit, but the holographic reconstructions

do not), and severe underestimations of the field at low frequencies and aft of the main radiation

lobe.

The holographic reconstruction of the pressure and velocity is not expected to match the actual

LES-generated data. The EWM used in the holography method represents waves emanating from a

small cylindrical surface which contains all the pertinent sources; the only situation in which the

pressures along the nozzle lipline would match the reconstructions is if all the acoustic sources

were located within a similar cylinder whose surface is on the lipline. Additionally, the velocity

and pressure fluctuations generated by the LES are not correlated with the sound radiated to the

far-field hologram, from which the EWM is derived. An ongoing research problem is to identify the

components of the pressures and velocities which do correspond to the far-field acoustics, such as

the application of Doak’s momentum potential theory [28] or other flow field decompositions [26].

The quantitative agreement of reconstructions of the SIL along the nozzle lipline in Fig. 6.11

suggest that the holography technique is representing the acoustically relevant component of the

pressure and particle velocity fluctuations in the flow. However, the axisymmetric nature of the

EWM used forces the vector intensity to be pointed radially outward from the jet centerline, while
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Figure 6.9 (a) LES Pressures, (b) reconstructed pressures, and (c) error in the reconstruc-
tion along the nozzle lipline as a function of distance from the nozzle in diameters and
Strouhal number. The color bar is centered at an offset of -4 dB.

the directions of the calculated intensity vectors (not shown here) are pointed in seemingly random

directions at this sampled array. Since jet noise sources are usually thought of as a volumetric

distribution throughout the plume, it is likely that the holographic reconstructions would more

closely resemble an integration of the sources over the volume within the cylinder of the nozzle

lipline. This line of comparison is recommended for future work. The fact that the reconstructed
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Figure 6.10 (a) LES TKE, (b) reconstructed TKE, and (c) error in the reconstruction as a
function of distance from the nozzle in diameters and Strouhal number. The color bar is
centered at an offset of -26 dB.

acoustic intensity matches the acoustic intensity magnitude at all is heartening, suggesting that the

simple calculation of Eq. 6.2 can be applied to LES or measured data of laboratory jets in the future

to investigate its ability to isolate the acoustically-relevant components of the jet flow.
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Figure 6.11 (a) LES intensity magnitude, (b) reconstructed intensity magnitude, and (c)
error in the reconstruction on the nozzle lipline as a function of distance from the nozzle in
diameters and Strouhal number. The color bar is centered at an offset of -4 dB.

6.6 Analysis

Prior works have used pressure fluctuations along the nozzle lipline as a representation of an

equivalent acoustic source distribution which represents the field [36, 138]. From Figs. 6.9 and 6.11

it appears that holographic reconstructions at the lipline of the are a fair representation of the shape
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of the LES-generated pressures and acoustic intensities. The open question, then, is whether these

distributions are accurate representation of the actual locus of acoustic source power.

To characterize the acoustic power of the jet, Eq. 6.3 is applied along the FWHS from the LES

directly and at other near and far field surfaces using the holographic reconstructions of the vector

intensity. Axial distributions of sound power are also developed by raytracing the intensity vectors

to the jet centerline.

6.6.1 Sound Power

Calculations of Wa can be achieved with direct application of Eq. 6.3 if the dataset in question has

both pressure and particle velocity sampled in sufficient density on a surface surrounding the jet. For

each of the sampled arrays mentioned in Section 6.2, the calculation of overall sound power level

is completed using the LES data directly where both pressure and particle velocities are available

and from the holographic reconstructions elsewhere. The process is then repeated using Eq. 6.4 to

estimate the intensity magnitude and assuming the vector is perpendicular to the sampled surface.

Table 6.1 shows the overall sound power level calculated in each of these situations, with the left

column denoting the array used to calculate the sound power and the four remaining columns

whether the LES data or holographic reconstructions were used along with the method of calculating

the vector intensity.

For the extended Hologram and 100D Arcs where there is azimuthal information, the calculation

is done twice, once using a single array which is rotated around the x-axis, and once with the

full array. The addition of more azimuthal coverage changed the calculation of the overall sound

power level by less than 0.01 dB, confirming the axisymmetry of the levels of the jet noise in this

simulation.

The only significant deviation in sound power calculation is noticed when the autospectrum of the

pressures is used to estimate the vector intensity magnitude along the FWHS, which overestimates
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Table 6.1 Overall sound power level (dB re 1 pW) calculated from various arrays.

LES Holography

Re{Gpu} Gpp/(ρ0c) Re{Gpu} Gpp/(ρ0c)

FWHS 160.6 161.8 159.2 161.4

Hologram - 160.5 160.3 161.5

40D Line - 160.4 160.2 161.0

100D Arc - 160.5 160.2 160.5

EWM source - - 160.3 161.8

the overall sound power. The overestimation is a combination of two phenomena: 1) using Gpp

instead of Gpu to calculate the acoustic intensity does not filter out the low-frequency hydrodynamic

components which do not propagate to the far field and 2) the actual intensity vectors are not

perpendicular to the surface represented by the array. In the far-field, however, deviations are

remarkably small, signifying that the overall sound power level is a relatively forgiving calculation.

To view the spectral distribution of sound power, the sound power spectral density in Watts per

Strouhal number (W/Sr) are displayed as a level referenced to 1 pW in Fig. 6.12. Each line represents

the calculation using the pressures and particle velocities of the holographic reconstructions, except

for the red line, which uses the LES data directly. The only significant difference between these

curves are that all the holography-based calculations slightly underestimate the calculations direct

from the LES, while using the assumptions of Eq. 6.4 on the FWHS overestimates the levels.

The sound power calculated for this simulated jet (corresponding to the level of 160.6 dB

reported in table 6.1) is 11.5 kW, which results in an acoustic efficiency (η) calculation of 1.56 %.

This percentage is larger than is recommended by NASA SP-8072, which uses 1% as a conservative

upper bound. It is possible that η of this jet is augmented due to its underexpanded nature, where

shocks within the nozzle cause a reduction in mechanical power calculated at the nozzle exit.
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Figure 6.12 Sound power spectral density (W/Sr) level (dB re 1 pW) calculated by
integration over various surfaces.

6.6.2 Axial Distribution of Sound Power

Sound power calculations for the entire jet are helpful in describing its overall acoustical efficiency,

though information about the origin of this noise can lend insight into noise generation mechanisms

within the plume. Equation 6.3 is interpreted as calculating the energy flux through an enclosing

surface, which, in practice, is discretized into a finite number of patches, each represented by a

measurement point. Therefore, the dot product of the intensity vector with the normal vector of

each patch is the power contribution from that patch. The origin of this small portion of the overall

power can be found by raytracing the intensity vector at that patch back to the jet centerline. Figure

6.13 shows a schematic of this process on the FWHS superimposed on a snapshot of the pressure

fluctuations calculated by the LES. The red arrow represents the the calculated intensity vector

at a particular sampled location and the black arrow the normal vector to the surface, with the

insert showing a zoomed in version of the point in question. The red dashed lines represents the
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calculation of the source location for this particular patch’s worth of power. The dotted black line

represents the assumption of the source location if the intensity vector is not actually known and its

vector magnitude needs to be estimated using Eq. 6.4. The red and black dashed lines would be

identical if the integration surface was chosen to be parallel to the acoustic wavefronts.

0 2 4 6 8 10 12
x/D

0

2

4

y/
D

Figure 6.13 Schematic of raytracing procedure overlayed on a snapshot of the instanta-
neous pressures generated by the LES.

When this raytracing is completed for all the patches over the enclosing surface S, it results in

a list of origins for all the individual patches with their contributing power values. These can be

binned into a histogram to create a distribution of the source sound power along the jet centerline,

so that integration of the distribution results in the total sound power. Figure 6.14 shows the results

of this raytracing for holographic reconstructions of the vector intensity along the 100D Arc, the

Hologram, the direct computation of the vector intensity along the FWHS from the LES, and

repeated using just the squared pressures along the FWHS.

An additional method of determining the source sound power is calculated and added as the

cyan line in Figs. 6.12 and 6.14 and as the last row of Table 6.1. The EWM used in Eq. 6.7 is

equivalent to a radially vibrating cylinder of radius r0 located along the jet centerline, with arbitrary
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Figure 6.14 Sound power per diameter along the jet centerline, raytraced from various
field arrays and calculated from SONAH reconstructions on a cylinder of radius r0 (cyan).
The dashed and dotted lines represent Lc and Ls, respectively.

axial phase relationship. Reconstructing the vector intensity field at r0 can then directly compute

the sound power generated by this cylinder as a function of x. This results in an approximation of

the axial distribution of source power along the jet centerline because the radius is very small (0.5

mm in this case).

To look at ray-traced source distributions as a function of frequency, Fig. 6.15 shows the sound

power spectral density level traced back to each 1
2D bin along the jet centerline from (a) the LES on

the FWHS and (b) the holographic reconstructions to the 100D Arc. The green dashed and dotted

lines on Figs. 6.14 and 6.15 represent Lc and Ls, respectively.

Both Figs. 6.14 and 6.15 show a trend in the localization of the sound power depending on the

placement of the array. The calculation of the axial source distribution from the FWHS and the

cylinder of the EWM are broad, and the rise on the upstream side match the linear rise in sound

power observed in Ref. [45]. Though the far-field estimations integrate to the same overall sound
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Figure 6.15 Sound power spectral density (W/Sr) level (dB re 1 pW). For the power traced
back to 1

2D bins along the jet centerline, the dashed and dotted lines represent Lc and Ls,
respectively.

power level as those derived from the FWHS, they concentrate the energy into a more compact

source that is highly frequency dependent. This result suggests that if the correlated nature of

the source is not incorporated in the equivalent source model (e.g., the distributed uncorrelated

monopole source suggested by NASA SP-8072), then different source distributions would need to

be used depending on whether the source model is used to represent the near field or the far field.

Differences in source power localization may change the interpretation of which region of the

jet is contributing most to the acoustic power [52]. Table 6.2 shows the percent of Wa that originates

from the potential core (x < Lc), between the potential and supersonic cores (Lc < x < Ls), and the

subsonic portion of the flow (Ls < x). Even with the differences between the distribution calculated

from the 100D Arc and the FWHS, the physical interpretation remains the same, with the vast

majority of the power split between the potential core region and the region between Lc and Ls.
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If, however, the direction of the intensity vectors are estimated as perpendicular to the integration

surface, the amount of power localized to the subsonic portion of the flow is doubled. In conjunction

with the results of Chapter 5, this suggests that one would overestimate the contribution to the field

from the large-scale turbulent structure noise generated in the region around Ls and underestimate

the contribution from the Mach wave radiation.

Table 6.2 Percent of Wa originating from upstream, between, and downstream of the
potential (Lc) and supersonic (Ls) cores

x < Lc Lc < x < Ls Ls < x

100D Arc 52 % 45 % 3 %

Hologram 54 % 42 % 4 %

FWHS Gpu 53 % 40 % 7 %

FWHS Gpp 37 % 43 % 20 %

Source Holography 51 % 39 % 10 %

6.7 Conclusions and Recommendations

Statistically optimized near-field acoustical holography has successfully reconstructed the noise

produced by a LES of a highly heated laboratory-scale jet. The pressure reconstructions match

the near and far fields with minimal error in the measurement aperture but underestimate the

pressure fluctuations along the nozzle lipline by 4 dB. The particle velocity and vector intensity

reconstructions match the LES at the FWHS, and though reconstructions inside the plume at the

nozzle lipline severely underestimate the velocity fluctuations, the vector intensity magnitudes are

only underestimated by the same factor as the pressure reconstructions. The fact that the pressure

and intensity fluctuations underestimate the LES-generated values by the same amount suggest that

the correct phase relationship between the pressure and particle velocity are maintained and the
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holography process is extracting acoustically relevant pressures and particle velocity components of

the flow.

Acoustic intensity reconstructions in the field allow for predictions of the sound power level of

the jet. With knowledge of the mechanical power of the simulation, an acoustic efficiency of 1.56%

is calculated. The axisymmetric nature of the jet in level allows for axisymmetric assumptions in the

calculation of the sound power. Further simplification of the the sound power calculation by using

the squared pressure instead of the full pressure and particle velocity calculations are suitable, even

in the geometric near-field (with overestimations of the overall level of as little as 1 dB). However,

using the squared pressures in the near field does not accurately localize the source distribution of

sound power, shifting it a few diameters aft in this case. The calculation of acoustic efficiency is

more sensitive than the calculation of sound power level. For example, an increase of sound power

level by 1 dB increases the calculated acoustic efficiency to about 1.9%.

This calculation of the acoustic efficiency of a jet could be easily applied to any simulated

jet database that includes the density and velocity at the nozzle exit and the pressure and particle

velocities along a Rayleigh or FW-H type surface. If axisymmetry is assumed, a single sampled line

can be used as well. Using a simple tool such as the acoustic efficiency of the jet may be valuable

for evaluation of noise reduction technologies to isolate whether the noise reduction is due to a

fundamental change in radiation characteristics, or if simply the thrust of the jet is being controlled

to reduce the radiated noise. Though the acoustical efficiency calculated for this particular jet is

larger than that assumed of rockets, the data point provided by this jet is a single one over a large

domain. It would be to the benefit of the rocket and jet noise communities to report their calculations

of acoustic efficiency so more robust investigation of this space can be accomplished.

Raytracing the vector intensity back to the jet centerline, the axial power per unit length is

derived, which shows most of the energy originating from upstream of Lc, similar to experiments

of other heated laboratory scale jets [147]. The strong Mach waves generated by the supersonic
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portion of the jet are likely the reason, as they dominate in this region [92]. The sound power source

distributions depend on whether the vector intensity is calculated in the near or far field, with the

apparent source distribution becoming more compact and peaked when tracing from the far-field.

The theory of Nagamatsu and Horvay [45] for a linear increase in sound power from the nozzle

exit to the peak of the power distribution matches well for the distributions derived in the near

field. Estimations of the axial distribution of sound power by use of the squared pressures is not

encouraged, as it will shift the apparent jet noise source downstream.

Estimations of the source sound power can also be directly calculated from the holography

process, by reconstructing the pressures and particle velocities to the small reference radius of the

EWM. This calculates an equivalent vibrating cylinder that reproduces the jet noise field, and whose

sound power closely resembles the intensity raytracing of the LES generated intensity vectors.

The frequency-dependent source power of part (a) of Fig. 6.15 is similar in shape to the pressure

and intensity reconstructions along the nozzle lipline of Figs. 6.9 and 6.11, suggesting that the

pressure disturbances in the flow are more closely correlated to the far-field acoustics than the

velocity fluctuations [148]. This striking similarity between the shape of the source power and the

pressure reconstructions along the lipline suggest that they may be interchangeable. More direct

investigations within the flow pressures, perhaps as a function of radius, could be employed to

investigate further. Holography is found to be a robust tool in calculating frequency-dependent

source sound powers for jet noise, with estimations of the axial distribution of source power

mirroring those calculated directly from the LES. Past successful implementations at the laboratory

and full scales to reconstruct the acoustic field [79,84,138] suggests that holography can be a viable

alternative to calculating axial distributions of sound power if direct measurements using acoustic

intensity probes or other methods are unfeasible.
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Conclusions

This compilation of investigations has provided important insight into the fields generated by

high-performance military aircraft and a simulated highly heated laboratory-scale jet. Comparisons

between the two illuminate aspects of the jet noise field that are still not understood and accounted

for in modelling efforts. Validation of holography on the LES dataset provides encouraging results

that holography may be a valid method of extracting the acoustically relevant pressure and velocity

perturbations in the flow, as well as a practical tool for calculation of sound power distributions of

military aircraft or other high-velocity flows. These conclusions lead to an enhanced understanding

of the jet noise source of high-temperature and high-velocity jets.

7.1 Military Aircraft Field

It has become increasingly clear that the sound field produced by military aircraft does not match the

previously established two-source model [8]. Both the F-35 and T-7A aircraft discussed here contain

multiple peaks in the aft spectra, which, as seen in Figs. 2.3, 2.7, and 4.4, are better characterized

as spatiospectral lobes. Dense measurements of the near field show upwards of five spatiospectral

lobes present in the F-35 and potentially more in the T-7A. The lobes are slanted, with the peak

147
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frequency increasing with downstream distance, consistent with the observation that the spatial

directivity of the lobes shift aft with increasing frequency.

The measurement of multiple engine powers shows that the shift in directivity towards the

sideline is mainly driven by the increase in the number of lobes and the larger relative amplitudes of

the upstream lobes compared to the downstream ones. This is most clearly seen in the jump between

intermediate conditions; between 50% ETR and 75% ETR for the F-35 and between 83% N2 and

88% N2 for the T-7A. Additionally, each lobe becomes more spatially compact with increase in

engine power, with a smaller deviation in spatial directivity as frequency is increased, exemplified

by the difference in the top and bottom plots in the rightmost columns of Figs. 4.4 and 2.3.

Though the shape and relative amplitudes of the lobes change with engine power, the spatiospec-

tral location of the lobes remain fairly constant. Qualitative comparison of the lobe structure of the

F-35 and T-7A shows that there is likely a scaling that would collapse the two aircraft spectra on

top of each other.

The application of M-SONAH on the F-35 field extends the dense sampling of the near-field

array into the far field, mapping the spatiospectral lobe trends across space. Figure 2.12 displays the

trends of the lobes as a function of frequency and engine power; how each individual lobe shifts

aft with increase in frequency while new lobes appear upstream to take their place. As engine

power is increased, the forward-most lobe increases in its relative contribution to the field, causing

the overall directivity at that frequency to shift towards the sideline. The source regions of the

lobes are investigated in Fig. 2.9 by reconstructing the field along the nozzle lipline and Fig. 2.13,

which traces the peak of each lobe to the jet centerline. The lowest-frequency lobe originates far

downstream, while the second and third originate from similar locations further upstream, but

several diameters aft of the nozzle.
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7.2 LES Sound Field

Treatment of the LES database as if it were a measurement similar to the F-35 and T-7A has

incentivized the use of coherence and NAH analyses, as opposed to more complicated full-field

decomposition analyses that have been trending in jet noise research. The coherence of the field

was calculated, which showed four distinct regions dominated by different radiation mechanisms:

BBSAN, fine-scale turbulent structure noise, Mach wave radiation, and low-frequency aft radiation.

Splitting the aft radiation into two regions based on their coherence properties follows observations

of qualitative differences in the propagation of the waves in these regions [40, 41]. Quantitatively,

these two aft regions are divided based on the presence of coherence with the upstream-radiating

BBSAN.

Calculation of the coherence between the flow pressures sampled along the nozzle lipline and

the acoustic pressures in the field show how information is transferred from the plume to the field.

BBSAN is seen to originate in the potential core where shock cells are present, Mach wave radiation

is seen to originate from the supersonic portion of the flow (x/D< Ls), and the far-aft, low-frequency

information is seen originating just aft of Ls. The Mach wave radiation, which dominates over a

large portion of the array, appears to translate information laterally, with spatially ordered packets

of coherence lined up one after another along the lipline, beaming at a nearly constant angle to the

field. Alternately, the low-frequency, far-aft radiation originates from an extended region around the

end of the supersonic core and radiates over a large area less directionally.

The far aft radiation is therefore interpreted as large-scale turbulent structure noise, where the

pressures caused by the structures create a coherent wavepacket over a finite area, causing the broad

wavenumber spectrum to radiate some portion of their energy, even if the peak energy is subsonic.

This causes less directional radiation, and as the acoustic field is sampled farther and farther aft

beyond the end of the plume localizes the noise to this same region, instead of shifting source

regions correspondingly far aft of the supersonic core.
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The holography analysis in Chapter 6 shows that the vast majority of the radiated acoustic

energy is due to the efficient Mach wave radiation in the supersonic portion of the flow, contrary

to conclusions made by Sutherland et al. [46] and interpretation of the axial power per unit length

of NASA SP-8072 [43]. Pressure reconstructions along the nozzle lipline follow the sound power

reconstructions in terms of shape, which adds value to the lipline reconstructions of the F-35 in Fig.

2.9 as well as previous investigations of the jet noise source [36].

7.3 Holography Performance and Significance

Near-field acoustical holography provides a physics-based extrapolation of the measured field and

allows for a more detailed investigation of the spatiospectral lobe phenomenon than measurement

alone. Chapters 2 and 3 discuss the holographic reconstructions of the field of the F-35. The

holography process is found to accurately represent the field within the aperture of the array, with

an extended region where errors are found to be less than 2 dB. There exists some discrepancy

between the ground interference effects observed in the measurement and predicted by the M-

SONAH formulation, with reconstructions estimating the location of the interference null correctly

towards the sideline but overestimating its depth. In the region of maximum radiation in the aft,

well-defined nulls do not seem to appear in the spectra at all, though the holographic reconstructions

predict something between that of cylindrically and spherically propagating waves. The M-SONAH

procedure, therefore, does not completely capture the ground interference effects of the F-35

measurement, attesting to the extended, volumetric, and partially coherent nature of the jet noise

source. For future extensions of the M-SONAH process to higher frequencies, more extensive

investigations of the ground interference effects will be needed.

The SONAH algorithm is successfully applied to the LES in Chapter 6, with a number of notable

improvements over the work in Chapters 2 and 3. First, the formulation from Ref. [142] was applied,
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so that particle velocity fluctuations in addition to the pressures are reconstructed. Second, the

aperture extension protocol was changed. Instead of the brute force method of Chapter 2 where

the aperture of the hologram was extended large distances to either side of the array, the aperture

extension in Chapter 6 was incorporated into the formulation of the EWM. By choosing a finer

resolution of axial wavenumbers used in the EWM, the same effect as extending the aperture by a

large number of points (compare sections 2.4.3 and 6.4.3) was achieved. This allowes for faster

computation times and leaves less room for artifacts of the aperture extension to corrupt the data at

the array edges.

Because pressure and particle velocities are now available from the holographic reconstructions,

the acoustic intensity can be calculated as well. Chapter 6 investigates the overall sound power as

well as axial distribution of sound power along the jet centerline from raytracing the intensity vectors.

The overall levels match those derived directly from the LES vector intensity at the FWHS and

from the squared pressures in the far-field, showing consistency with the FW-H integration method

used to generate the pressures at the hologram. The interpretation of the reconstructions inside the

flow along the nozzle lipline still remain somewhat ambiguous: the reconstructed pressures and

reconstructed vector intensities are underestimated by about 4 dB and the TKE are underestimated

by 26 dB. It is well understood that not all the pressure and velocity fluctuations are related to the

far-field radiation, so underestimations are expected. However, the exact meaning of these specific

offset values is elusive; the fact that the vector intensity magnitude calculations from the LES along

the lipline agree fairly well is heartening, though more analytical work is needed to understand the

effects of the axisymmetric assumptions on the holography inside the flow and the applicability of

vector intensity calculations in a vortical, nonlinear flow.

The axial sound power distributions, however, do fit the overall shape of the lipline intensity

magnitude and pressure fluctuations, suggesting that previous methods of obtaining sound source

distributions by decomposing reconstructed pressures along the nozzle lipline are valid [36]. Spatial
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integration of the sound power distributions shows that the majority (upwards of 90%) of the sound

power is generated by radiation originating from the supersonic portion of the flow, with an almost

half-and-half split of that energy coming from the potential core or between the potential and

supersonic cores in the case of the LES. The coherence analysis of Chapter 5 shows this energetic

portion of the flow to be dominated by Mach wave radiation.

7.4 Contributions

This works supplies significant new evidence for the presence of spatiospectral lobes in the aft radia-

tion of high-performance military aircraft and, in conjunction with the LES, allows for explanations

for part of the phenomenon.

The addition of the T-7A dataset to the growing number of measurements of military aircraft

continues to show that the spatiospectral lobes are an important aspect of jet noise produced by

high-performance military aircraft. Similar to previous aircraft measurements, considerable effort

was put into organizing the collected data into a single package and writing functions where the

waveforms corresponding to a particular channel or array of channels can be loaded easily. This has

allowed, and will continue to allow, for ease of data analysis on this dataset for many students for

years to come.

Though prior publication of parts of the F-35 dataset has been done, Chapter 2 represents the

first peer-reviewed publication to explicitly examine in detail the spatiospectral lobes of the F-35.

Preliminary investigation of the noise source region of each of the individual lobes is completed,

though the limitation of not knowing specific jet flow data, such as Mach number or the length of the

potential or supersonic cores of the jet at the various engine conditions halts further understanding.

The largest contribution of this work (and simultaneously, its greatest limitation) to the under-

standing of jet noise is the comparison of the F-35 and T-7A aircraft to LES of a highly heated
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supersonic laboratory-scale jet. The qualitative comparisons provided herein allow for a broader

description of the aft radiation of jet noise, but because of the lack of information of the military

aircraft’s exhaust, direct comparison between the F-35, the T-7A and LES cannot be done to

conclusively verify these claims.

7.4.1 Source Narrative

The traditional description of supersonic flow exiting a nozzle is described thusly: flow exits the

nozzle uniformly, with Kelvin-Helmholtz type perturbations originating at the nozzle lip growing as

they are convected downstream. At some point, the turbulent shear layer grows on the boundary

of the jet until the uniform flow is completely overtaken, marking the end of the potential core.

The turbulent interaction of these eddies causes extensive mixing and the traditional turbulence

cascade transfers this energy from large to smaller and smaller scales until they are dissipated at the

Kolmogorov scale. The velocity thus decreases until reaching ambient conditions, with the point

where the velocity is no longer supersonic being called the end of the supersonic core. When the

jet is operated under nonideal conditions, shock cells appear in the flow, generally only seen in the

potential core region.

The fine-scale turbulent structures throughout the flow radiate high-frequency noise nearly

omnidirectionally, and are found throughout the plume, which dominates towards the sideline. The

large-scale turbulent structures, as they convect downstream, create pressure fluctuations that are

coherent over a large area, which generates directional radiation pointed towards the aft. As these

structures pass through the shock cells, the actuated shock cells generate BBSAN that primarily

radiates upstream.

The addition of the current work is the expansion of this understanding for highly heated

laboratory-scale jets and military aircraft. With the extreme temperatures and velocities present,

the phase relationship of the coherent structures upstream of the supersonic core (and particularly
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of the potential core) are supersonic, creating efficient Mach wave radiation. As the phase speed

decreases as the flow slows down, the peak frequency of the Mach wave radiation decreases until

the phase relationship of the correlated pressures becomes subsonic, generally near the end of

the supersonic core. At this point, though the peak of the wavenumber spectrum of the coherent

pressures is subsonic, since it is of finite width there are still significant portions of the energy that

are supersonic. This causes less efficient, more omnidirectional radiation from an extended area.

The characterization of these two regions and radiation types are shown in the coherence

analysis of Fig. 5.7. The frequency-averaged coherent envelopes upstream of the potential core

are spatially ordered and partially overlapping, with the directional radiation creating parallel rays

or quasi plane-wave like radiation in this region. Farther aft, the frequency-averaged coherence

becomes markedly smaller, but spread over a broader spatial range. This suggests a multiplicity of

overlapping, inefficiently radiating wavepackets in the region around the end of the supersonic core.

7.4.2 Potential Causes of the Spatiospectral Lobes

The difference between the highly efficient Mach wave radiation originating from the supersonic

portion of the flow and the less efficient radiation from the subsonic portion of the flow describe

the underlying pattern of the radiation in the spatiospectral domain. As seen in the LES, the field

has a smooth transition from one mechanism to the other, creating the overall “L” or “backwards

J” signature seen in Fig. 6.4, as well as in the F-35 and T-7A measurements in Figs. 2.3 and 4.4.

The foot of the “L” (or in the case of the F-35, lobe 1) is then interpreted as the radiation from the

subsonic wavepackets centered along the end of the supersonic core and the shaft of the “L” (or

lobes 2-5 in the F-35) is due to the Mach wave radiation from supersonic wavepackets lining the

shear layer from the nozzle exit on down.

Recent decomposition work [31] has shown a similar description of the jet noise field in unheated

subsonic and supersonic jets. The fields from several simulated jets were decomposed using SPOD
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and resolvent analysis, finding differences between the noise generation mechanisms in the potential

core and the developed jet downstream.Schmidt et al. [31] describe the two noise production

mechanisms (and corresponding wavepacket types) as Kelvin-Helmholtz instability waves and

Orr waves. Kelvin-Helmholtz instabilities in the potential core region along the shear layer are

generally accepted as the mechanism that generates the large-scale turbulent structures in subsonic

and supersonic jets. Qualitative similarity between the wavepacket shapes educed in Ref. [31] and

the coherent envelopes in Chapter 5 suggest that the large-scale turbulent structure noise, or the foot

of the “L”, is due to the Orr mechanism.

However, the additional diagonal streaks that splits the smoothly-varying field exemplified by

the LES into the discrete lobes exemplified by the F-35 and T-7A measurements remain unexplained.

The shaft of the “L” is only observed to be segmented into spatiospectral lobes in the LES when

the coherence is calculated between a point on the nozzle lipline where shock cells are present to

the field, in the same region where coherence between the BBSAN and the aft radiation is found,

suggesting that shock cells are a potential candidate for this undiagnosed phenomenon.

Because of the observed relationship between the spatiospectral lobes and the potential core

region where shocks are observed, these spatiospectral lobes may also be related to recent derivations

of “trapped” waves in the potential core of jets [149,150], which have been measured in the extreme

near field of laboratory-scale jets [23].

7.5 Future work

Though hypotheses are presented to explain the difference between the two sections of the “L”

shape, there still is no explanation of lobing behavior of the Mach wave radiation, other than it

may be related to the presence of shock cells. A fundamental limitation to this work is the fact that



7.5 Future work 156

flow parameters are not available for military aircraft jets so publicly released LES have not been

generated using the same parameters for comparison.

The introduction of the T-7A database provides the perfect pivoting point for a robust inves-

tigation of the spatiospectral lobes. Due to the training purpose of the aircraft and its use of the

F-404 engine (which has been widely used by multiple governments for many years) disclosure of

nozzle geometry and operating conditions are in the works. This allows for LES similar to those

that were undertaken in Chapters 5 and 6 to be repeated with the exact nozzle geometry and exit

conditions for the T-7A at the various engine powers. Not only will this provide for validation

of the LES methodology (which, as of yet, has not been reproduced at the laboratory scale) but

reproduction (or not) of the multiple lobes in the LES will allow for targeted investigations of the

necessary parameters to reproduce this phenomenon. Such investigations could include the addition

of a ground reflecting plane, a more realistic representation of the gas mixture in the exhaust, or

inclusions of additional turbomachinery components upstream of the nozzle.

All of the conclusions in this work can then be rigorously explored. Wavepacket decompositions,

holographic reconstructions, and coherence analyses of the LES can be undertaken to validate the

differences between the supersonic and subsonic portions of the flow. Direct investigation of the

Orr mechanism using stability analyses like in Ref. [128] is possible. If an idealized LES with the

same parameters as the T-7A still does not reproduce the additional spatiospectral lobes within the

Mach wave radiation, then differences between the simulations and full-scale aircraft measurements

can be systematically explored to find the true cause.

If large-eddy simulations are successful in reproducing the spatiospectral lobe phenomenon,

additional analyses can be undertaken to understand their properties. For example, knowledge

of the directivity of the individual lobes can be connected to the convective Mach number of the

flow region where they are originating. These convective Mach numbers could then be compared

against various Mach number estimates that can be calculated from the LES flow. One promising
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observation was made by Oertel [151, 152] (and further discussed by Tam and Hu [153]) that

suggests the existence of multiple types of waves present in the flow with differing Mach numbers.

With the flow and extreme near-field data available from the LES, comparisons of the spatiospectral

lobes can be made to other potentially related phenomena such as trapped waves [23, 149, 150],

where quasi-periodic structures in the spatiospectral domain have been observed in laboratory-scale

jet measurements.

Along with understanding the physics of the spatiospectral lobe phenomenon, if LES simulations

are deemed to be sufficiently accurate, this may eliminate the need for future measurement of military

aircraft for environmental and community impact assessment altogether. Axial distributions of

sound power or other reduced-order models of the jet noise may be derived, and a representation of

the noise generated by the T-7A at all engine powers can be created. A database of jet noise models

for many aircraft could eventually lead to a more complete understanding of scaling laws as has

been done for subsonic jets.

Investigations of military aircraft jet noise are almost always limited by the lack of disclosure

of pertinent flow variables. This work, however, has taken what is available from various datasets

and has been able to draw significant conclusions about the spatiospectral lobe phenomenon and

laid the groundwork for the next step of military aircraft research. Using the techniques and

work provided herein as a starting point, development of a joint full-scale measurement and LES

simulation analysis of the T-7A aircraft can begin. Quantitative, direct understanding of the as-yet

undiagnosed reason for spatiospectral lobing in the Mach wave radiation of military aircraft can

now be investigated.



Appendix A

List of Files Used to Generate Figures

This Appendix is a list of MATLAB scripts which were used to generate the results in this disser-

tation. The file structure relates to the Department of Physics and Astronomy’s Git server (AKA

“Pulsar”).

Figure # .m file location

2.1 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure1.m

2.2 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure27.m

2.3 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure11.m

2.4 BYU Acoustics/Jet Noise/Holography/AIAA2018/new figures for review/

PartialFieldDecompositions.m

2.5 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure21.m

2.6 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure20.m

2.7-8 BYU Acoustics/Jet Noise/Holography/AIAA2018/new figures for review/

spatiospectralmap38marc.m
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Figure # .m file location

2.9 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure23.m

2.10 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure25.m

2.11 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure26.m

2.12 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure20.m

2.13 BYU Acoustics/Jet Noise/Holography/AIAA2018/figure24.m

3.1 BYU Acoustics/Jet Noise/Holography/JASA f35 holography/figure1.m

3.2 BYU Acoustics/Jet Noise/Holography/JASA f35 holography/figure2.m

3.3 BYU Acoustics/Jet Noise/Holography/JASA f35 holography/figure5.m

3.4 BYU Acoustics/Jet Noise/Holography/JASA f35 holography/figure12.m

3.5 BYU Acoustics/Jet Noise/Holography/JASA f35 holography/figure9.m

3.6 BYU Acoustics/Jet Noise/Holography/JASA f35 holography/figure8.m

3.7 BYU Acoustics/Jet Noise/Holography/JASA f35 holography/figure13.m

4.1 BYU Acoustics/Jet Noise/T-7A/Aaron/T7A_Plotting_MeasurementSchematic.m

4.3 BYU Acoustics/Jet Noise/T-7A/Aaron/T7A_Plotting_dSk_OASPL_Imaging.m

4.4 BYU Acoustics/Jet Noise/T-7A/Kevin/Script3.m

4.5 BYU Acoustics/Jet Noise/T-7A/Aaron/T7A_Plotting_ground_vs_aerial_spectra.m

4.6, 8-10 BYU Acoustics/Jet Noise/T-7A/reeses-stuff/Interpolation_plotting.m

4.7 BYU Acoustics/Jet Noise/T-7A/Aaron/T7A_Plotting_dSk_OASPL_Arcs.m

5.2 kleete/NumericalDataAnalysis/coherence/figure17.m

5.3 kleete/NumericalDataAnalysis/coherence/figure3.m

5.4 kleete/NumericalDataAnalysis/coherence/figure14.m

5.5 kleete/NumericalDataAnalysis/coherence/figure15.m

5.6 kleete/NumericalDataAnalysis/coherence/figure20.m
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Figure # .m file location

5.7 kleete/NumericalDataAnalysis/coherence/figure5.m

5.8 kleete/NumericalDataAnalysis/coherence/figure21.m

5.9 kleete/NumericalDataAnalysis/coherence/figure6.m

6.1 kleete/NumericalDataAnalysis/Holography/Script29.m

6.2 kleete/NumericalDataAnalysis/Holography/Script29.m

6.3 kleete/NumericalDataAnalysis/Holography/Script30.m

6.4-6.11 kleete/NumericalDataAnalysis/Holography/Script31.m

6.12, 6.14, 6.15 kleete/NumericalDataAnalysis/Holography/Script28.m

6.13 kleete/NumericalDataAnalysis/Holography/Script33.m
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