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ABSTRACT 
 

Modeling Continental-Scale Outdoor Environmental  
Sound Levels with Limited Data  

 
Katrina Lynn Pedersen 

Department of Physics and Astronomy, BYU 
Doctor of Philosophy 

 
 Modeling outdoor acoustic environments is a challenging problem because outdoor 
acoustic environments are the combination of diverse sources and propagation effects, including 
barriers to propagation such as buildings or vegetation.  Outdoor acoustic environments are most 
commonly modeled on small geographic scales (e.g., within a single city).  Extending modeling 
efforts to continental scales is particularly challenging due to an increase in the variety of 
geographic environments.  Furthermore, acoustic data on which to train and validate models are 
expensive to collect and therefore relatively limited.  It is unclear how models trained on this 
limited acoustic data will perform across continental-scales, which likely contain unique 
geographic regions which are not represented in the training data. 
 
 In this dissertation, we consider the problem of continental-scale outdoor environmental 
sound level modeling using the contiguous United States for our area of study.  We use 
supervised machine learning methods to produce models of various acoustic metrics and 
unsupervised learning methods to study the natural structures in geospatial data.  We present a 
validation study of two continental-scale models which demonstrates that there is a need for 
better uncertainty quantification and tools to guide data collection.  Using ensemble models, we 
investigate methods for quantifying uncertainty in continental-scale models.  We also study 
methods of improving model accuracy, including dimensionality reduction, and explore the 
feasibility of predicting hourly spectral levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: sound level models, geospatial modeling, machine learning, ensemble models, 
uncertainty quantification, GIS, environmental noise, validation  
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Chapter 1 
 
 
Introduction 
 
1.1  Motivation 

Outdoor acoustic environments are the result of diverse sources and complex propagation effects 

within a geographic area.  Possible acoustic sources include traffic noise, the electrical hum of 

generators, bird song, rivers, and human conversation, while propagation effects include barriers 

to propagation such as buildings or vegetation and their absorptive and reflective properties.  

Modeling outdoor acoustic environments is therefore challenging because it requires knowledge 

of all physical contributions to the acoustic environment.  Additionally, complete 

characterization of an acoustic environment over different times and frequency bands requires 

further knowledge of the temporal and spectral dependence and effects of contributing factors to 

an acoustic environment.  Modeling outdoor acoustic environments across large geographic 

scales (i.e., continental scales) faces further challenges due to the wide range of possible 
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environmental conditions.  However, continental-scale modeling of outdoor acoustic 

environments has potentially broad applications. 

 Accurate characterization of outdoor acoustic environments, particularly in areas with 

significant environmental noise (i.e., unwanted sound due to anthropogenic, or human, activity), 

may benefit public health studies and have implications for social justice (e.g., community noise 

ordinances).  Environmental noise is correlated with depression and anxiety [2, 3], increased 

cardiovascular risk [4-8], increased risk of breast cancer [9], annoyance[10], sleep disturbance 

[10, 11], hearing loss [11], and more in humans.  It is estimated that environmental noise 

exposure causes 12,000 premature deaths and contributes to 48,000 new cases of ischemic heart 

disease per year in the European territory [12].  Indeed, environmental noise has been called ‘the 

new secondhand smoke’ [11].  On the other hand, natural acoustic environments have been 

linked to physiological and psychological benefits in humans [13].  Therefore, accurate modeling 

of outdoor environmental sound levels may also have commercial applications for real estate and 

urban development [14, 15]. 

 Environmental noise has also been linked to changes in animal behavior and species 

interactions, particularly in animals that utilize auditory signals.  Many mammals, birds, 

amphibians, and insects use sound for tasks including antipredator defense [16], reproduction, 

and communication.  Although the impact of environmental noise on wildlife is unclear, 

environmental noise has been indicated as a causal factor for changes in avian behavior and 

community diversity [17, 18], marine life[19], and anurans (i.e., frogs and toads) [20, 21].  

Accurate characterization of outdoor acoustic environments, especially for areas in which 

environmental noise is prevalent, may improve studies of the relationship between environmental 
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noise and changes in animal behavior and species interactions, as well as have implications for 

wildlife policy and management. 

1.2  Continental-scale environmental sound level modeling 

Remote sensing has greatly increased the amount of geospatial data available, much of which is 

applicable to environmental sound modeling.  In a foundational study, Mennitt et al. [1, 22, 23] 

used machine learning to relate geospatial features and acoustic metrics to produce continental-

scale sound maps.  Note that the only publicly available continental-scale sound map to our 

knowledge is generated using methods described by Mennitt et al. and made publicly available 

through the National Park Service [1, 24].  Elsewhere, machine learning and/or land-use 

regression models have been used to map noise in urban areas on smaller geographic scales [25-

27].  These modeling efforts, both for continental-scale and smaller geographic scales, utilize 

geospatial data to predict statistical summaries of acoustic environments, therefore 

circumventing the need for detailed, physical modeling through the use of data-driven 

approaches.  As geospatial data have become more widely available and improved in accuracy 

and precision, many problems, such as environmental sound level modeling, have become more 

feasible. 

 In this dissertation, we build upon the foundation laid by Mennitt et al. to research 

continental-scale outdoor environmental sound modeling.  We implement supervised machine 

learning models trained on geospatial data and measured acoustic data from training sites 

throughout the contiguous United States to create continental-scale models of outdoor 

environmental sound levels at a 270-m spatial resolution.   

 Acoustic environments are described by various acoustic metrics, including statistical 

time-exceeded levels (LNN) which correspond to the sound pressure level exceeded NN% of the 
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time (for a given day, night, hour, or season).  Levels may also be described as a function of 

frequency (e.g., levels at one-third octave frequency bands), and different weightings may be 

applied to levels as a function of frequency.  For example, the A-weighting is meant to better 

quantify sound as perceived by humans.  In this dissertation, we present models for the summer 

daytime A-weighted L50 levels (i.e., median summer daytime A-weighted levels) and summer 

hourly L50 one-third octave band levels (i.e., median summer levels as a function of hour and 

frequency).  The L50 is a reasonable statistical time-exceeded level to start with because it is a 

good descriptor of typical sound levels.  However, future work could utilize the same methods 

described in this dissertation for prediction of other acoustic metrics, such as the L10 or L90, 

which correspond to the sound pressure level exceeded ten percent of the time and ninety percent 

of the time, respectively.  L10 levels are often used in traffic noise studies and are good indicators 

of loud, intermittent events while L90 levels describe background or ambient levels and may be 

more useful for studies of noise pollution. 

 One challenge of this data-driven approach is that acoustic training data are relatively 

limited (approximately 500 unique geographic sites) due to the high costs associated with 

collecting high-fidelity acoustic data.  Many of the more dramatic successes of machine learning 

are known to require millions of training instances [28, 29]; therefore, it is unclear how model 

performance will transfer to continental-scales, given the limited training data.   

 In particular, traditional validation metrics estimate model accuracy for inputs that are 

statistically similar to the training data.  However, the training data (composed of only ~500 

unique geographic sites) are unlikely to be statistically similar to or representative of the 110 

million sites in the contiguous United States for which model predictions are made.  (Note that 

the number of sites in the contiguous United States is a result of sampling with a 270-m spatial 
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resolution.)  Indeed, a clustering analysis indicated the distribution of training data is 

significantly different from that of the contiguous United States [30].  Therefore, traditional 

validation metrics are likely overly optimistic and insufficient for estimating expected predictive 

error for predictions in the contiguous United States.  This motivates the need for quantitative 

estimates of model transferability, i.e., ability of a model to accurately make predictions for 

novel inputs that are statistically different from the training set.  In this dissertation, we research 

optimal methods for modeling continental-scale outdoor sound levels as well as improving 

model performance.  We also research methods of estimating uncertainty for model predictions 

in locations atypical of training data (i.e., model transferability).   

1.3  Organization 

Chapter 2 is a manuscript to be submitted as an Express Letter in the Journal of Acoustical 

Society of America.  In it, we present a validation study of two continental-scale models of the 

summer daytime A-weighted L50, an acoustic metric that describes the median sound pressure 

level during an average day in summer, for the contiguous United States.  More specifically, we 

validate the National Park Service published sound map and an ensemble model map created by 

us in a natural environment, in an urban environment, and on a holdout set of 25 sites.  We 

observe significant differences between the two models’ predictions as well as large errors at 

many holdout validation sites.  These discrepancies are much larger than those estimated from 

statistical validation metrics such as leave-one-out.  We attribute them to having limited training 

data which force models to extrapolate to make predictions when geospatial inputs are not 

similar to those in the training data.  These results motivate some skepticism of the accuracy of 

continental-scale sound models as well as motivate further efforts in improving model 

predictions and their corresponding uncertainty estimates, which we explore in subsequent 
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chapters.  Indeed, we caution against using continental-scale sound level predictions without a 

thorough consideration for the possibly uncertainty in such predictions. 

 Chapter 3 is a manuscript to be submitted in the Journal of Acoustical Society of 

America.  In Chapter 3, we investigate estimation of model transferability, or predictive error, 

within the contiguous United States, inspired by techniques from the uncertainty quantification 

community.  Uncertainty quantification has existed as long as probability and statistics and is the 

science of identifying, quantifying, and reducing uncertainty in model predictions [31].  There 

are two main types of uncertainty: aleatoric and epistemic uncertainty [31].  Aleatoric 

uncertainty, or statistical uncertainty, is inherent to a problem, and hence cannot be reduced [31].  

Epistemic, or systematic, uncertainty in a model arises from incomplete knowledge or missing 

physics and can be reduced through improved modeling methods [31].  Following Kennedy et al. 

[32], uncertainty types may be further refined into six classes: parameter uncertainty, model 

inadequacy, residual variability, parametric variability, observation error, and code uncertainty.  

Of these six quantities, we focus on quantifying model inadequacy (also called structural 

uncertainty) in Chapter 3. 

 Structural uncertainty, or uncertainty in the form of the model due to limited knowledge 

of the true underlying mechanisms of data generation, is only one of six classes of uncertainty; 

however, we anticipate that is it one of the primary sources of uncertainty for continental-scale 

environmental sound level modeling.  Each of the six models comprising the ensemble is from a 

different model class, so the range of predictions within the ensemble provides some measure of 

the structural uncertainty.  The median predicted level from the six models is used for ensemble 

model predictions and the standard deviation of the ensemble model’s predictions as a surrogate 

estimate of the accuracy of ensemble model predictions.  Although estimates of structural 
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uncertainty are relatively low for much of the contiguous United States with mean and median 

levels of 3.5 and 2.9 dBA, respectively, 6.2% of sites have an uncertainty greater than 6 dBA.  

The mean uncertainty of these sites (i.e., sites with uncertainties greater than 6 dBA) is about 

12.6 dBA, which corresponds to a change in perceived loudness by more than a factor of two.  

Additionally, structural uncertainty estimates only indicate minimum levels of uncertainty 

because we only quantify one source of uncertainty.  Future work may include quantifying 

additional sources of uncertainty, such as uncertainty associated with measuring the geospatial or 

acoustic data. 

 In Chapter 4, we present the results of training two large ensemble models for the 

prediction of summer hourly spectra.  Ensembles are composed of 100 models for a specific 

model class trained of different bootstrap subsets of the data.  Similar to ensembles in Chapter 3, 

these ensembles quantify the epistemic uncertainty.  However, they utilize bootstrap samples 

rather than different model classes to generate diversity within the ensembles.  In contrast to 

previous chapters, this chapter examines the results of environmental sound level predictions 

which vary with time of day and frequency band.  We show predicted and measured levels at 

three training data sites characterized by road traffic noise and insect and bird activity.  

Predictions indicate that ensemble models are able to predict physical-looking spectra, however 

additional data are likely required for improving model accuracy and reducing uncertainty in 

model predictions. 

 Chapter 5 is a manuscript to be submitted in the Journal of Acoustical Society of 

America.  Chapter 5 investigates methods for feature selection to improve model accuracy, 

uncertainty estimates, and model interpretability.  Following an initial screening, 120 geospatial 

features are reduced to a set of 51 features.  Then, we employ four different methods for further 
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feature reduction.  Interestingly, the different methods all reduce the number of geospatial 

features to 15 without significant degradation in model predictive error.  However, differences in 

feature subsets and their corresponding ensemble predictions demonstrate that results of feature 

selection are sensitive to details of the problem formulation.  These results motivate the need for 

more sophisticated dimensionality reduction techniques.  We explore one such method, manifold 

learning using diffusion maps, in Chapter 7. 

 Chapter 6 is a manuscript to be submitted to Applied Geography.  In Chapter 6, we 

discuss the results of a clustering analysis of 51 geospatial features, selected and scaled for the 

purpose of modeling environmental sound levels, over the contiguous United States.  Due to how 

the geospatial features were selected and scaled, it is possible that different clusters may 

correspond to different acoustic environments.  We observe that largescale patterns of vegetation 

are influential in the cluster model, possibly indicating that different types of vegetation 

correspond to different acoustic environments.  This indicates that, to the extent acoustic 

environments vary with vegetation type, they are in principle resolvable by geospatial data.  

Possible applications of the clustering analysis are discussed, including applications in public 

health and ecology and for environmental sound modeling. 

 Chapter 7 explores the use of diffusion maps for dimensionality reduction.  Findings from 

Chapter 5 illustrate that feature selection results are sensitive to details of the problem 

formulation.  However, feature reduction is still an important problem.  Unlike feature selection 

methods, which attempt only to identify a reduced set of features, diffusion maps utilize 

nonlinear relationships between features to identify a reduced set of coordinates.  Chapter 7 

discusses the application and advantages of diffusion maps for dimensionality reduction of the 

CONUS geospatial data.  In particular, results may aid in identifying optimal locations for 
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acoustic data collection as well as provide a means of making environmental sound level 

predictions for regions outside of CONUS. 

 Finally, we present concluding thoughts and suggestions for future work in Chapter 8.  

Although continental-scale sound modeling has potentially broad applications, this dissertation 

demonstrates that the technology is limited by the amount of available acoustic data leading to 

large uncertainties in predicted sound levels.  We strongly caution against using such models 

without accounting for uncertainty in model predictions.  Future work may include identifying 

optimal methods for acoustic data collection as well as incorporating physics-based modeling 

approaches, both of which have the potential to improve model accuracy and uncertainty 

estimates. 

 



 

*Chapter 2 is a manuscript to be submitted as an Express Letter in the Journal of Acoustical 
Society of America.   
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2.1  Abstract  

Modeling acoustic environments is a challenging problem.  This paper reports on a validation 

study of two continental-scale machine learning models using summer daytime A-weighted L50 

as a validation metric.  The first model was developed by the National Park Service while the 

second was developed by the present authors.  Validation errors greater than 20 dBA are 

observed.  Large errors are attributed to limited acoustic training data.  Validation environments 

are geospatially dissimilar to training sites, requiring models to extrapolate beyond their training 

sets.  Results motivate further work in optimal data collection and uncertainty quantification.  
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2.2  Introduction 

Modeling environmental sound levels is challenging because ambient sound is the accumulation 

of many effects, including diverse sources, barriers to propagation, etc., and can vary with time 

of day or season.  Accurate characterization of acoustic environments has potentially broad 

applications, and recent data-driven approaches have led to continental-scale models that 

circumvent the need for detailed, physical modeling.  However, environmental sound level 

modeling on continental scales is still in its relatively early phases of development. 

 This paper presents a validation study of two continental-scale sound maps of the 

summer daytime A-weighted L50.  In Section 2.3 we summarize the models and present a 

comparison of their predictions for the Contiguous United States (CONUS).  Sections 2.4 and 

2.5 validate both models in a natural environment (a region in Grand Teton National Park) and 

an urban environment (Washington, D.C.), respectively.  Section 2.6 evaluates both models' 

performance on a holdout validation set and Section 2.7 gives concluding remarks. 

 Significantly, this study demonstrates that the models may disagree both with each other 

and with holdout acoustic measurements by more than 20 dBA.  We attribute these large errors 

to the limited acoustic data available for training.  Indeed, both models were trained on data from 

fewer than 500 geographically unique sites, which are likely not representative of all geospatial 

environments of interest within CONUS.  In other words, validation environments are often 

geospatially dissimilar to all available training environments.  When models make predictions at 

these unrepresented sites, they necessarily extrapolate into unsampled domains, referred to as 

“extrapolation regions” below.  For data-driven approaches that do not incorporate any physical 

insight, it is difficult to identify the relationship between geospatial features and sound levels in 

extrapolation regions, leading to inaccurate model predictions. 
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2.3  Comparison of models on CONUS-scale predictions 

The National Park Service (NPS) map of predicted summer daytime A-weighted L50 levels is the 

only publicly available continental-scale sound map [1, 24] to our knowledge.  It has been used 

in fields such as public health [11, 33-35], landscape ecology and urban planning [36-38], 

ecology [39, 40], and aviation [41].  The NPS model was constructed using machine learning 

techniques and a training data set consisting of both acoustic and geospatial data.  The acoustic 

data are comprised of acoustic measurements from 492 unique sites, 333 of which were located 

in quiet, uninhabited areas within national parks and 159 of which came from urban areas [1].  

These acoustic data were combined with 45 geospatial layers at a 270-m spatial resolution for 

CONUS in a random forest algorithm to predict the summer daytime A-weighted L50 [1].  The 

reported Leave-One-Out (LOO) cross-validation Root-Mean-Square Error (RMSE) and Median 

Absolute Deviation (MAD) for the seasonal A-weighted L50 were 4.40 and 2.29 dBA, 

respectively [1].  The discrepancy between these two error metrics was attributed to outliers in 

the training data set.  Readers interested in learning more about various validation metrics (e.g., 

holdout validation and LOO cross-validation) are referred to [42]. 

 Similar to the NPS sound map, we utilize a training data set of acoustic measurements 

and geospatial layers to develop supervised learning algorithms.  We use acoustic measurements 

from 496 unique sites (327 natural and 169 urban) and geospatial data consisting of 51 layers at 

270-m resolution that were manually scaled for environmental sound-level modeling (see 

Appendix A for further information).  Our approach uses of an ensemble of six different 

supervised machine learning models (gradient boosted regression trees, neural networks, k-

nearest neighbors, support vector machines, kernel ridge regression, and Gaussian process 

regression).   This ensemble approach allows us to assess predictive performance for a broader 
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range of machine learning models.  Each model class is trained independently, and the median 

prediction from the ensemble is taken as the ensemble prediction.  Hyperparameters are tuned to 

 
Figure 2.1 CONUS summer daytime A-weighted L50 sound level predictions from the NPS 
model (top left) and the ensemble model (top right).  The difference between the two CONUS 
map predictions (i.e., ensemble model predictions minus the NPS predictions) is on the bottom.  
Two areas of large differences are outlined.  The color axis was constrained to +/- 8 dBA on the 
difference map, although differences were as large as 21 dBA.  
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minimize the LOO cross-validation MAD using the tree-structure Parzen estimator approach 

implemented in the Python library hyperopt [43, 44].  The LOO cross-validation RMSE and 

MAD for the ensemble model are 5.79 and 3.49 dBA, respectively.  Due to differences in the 

training data (including acoustic data, geospatial layers, and scaling methods), these values are 

not directly comparable to those of the NPS model. 

 Figure 2.1 shows summer daytime A-weighted L50 CONUS predictions for the NPS 

model (top left) and the ensemble model (top right), and the difference between the two model 

predictions (bottom) in decibels. Despite large differences in certain areas (e.g., western Texas 

and New York City), the mean and median absolute differences are 2.07 and 1.64 dBA, 

respectively, indicating relative agreement between the two models for a large portion of 

CONUS.  Indeed, the mean and median differences between the two models is smaller than the 

LOO RMSE and MAD cross-validation errors for either model.  However, the maximum 

difference between the two maps is 21.30 dBA, which corresponds to a factor of more than four 

in increased loudness.   

 Areas of large differences likely correspond to extrapolation regions for either one or 

both of the models.  For example, the Great Salt Lake in Utah (outlined on the difference map), 

which is a geographically unique region, distinct from any training site for the ensemble model 

(i.e., in an extrapolation region), is an area of large discrepancy between the two models.  Much 

of western Texas extending into eastern New Mexico (outlined on the difference map) may also 

be in the extrapolation region of both models as neither model contains training data from that 

area.  Considering smaller geographic regions in CONUS, particularly where training data are 

available, provides additional insight regarding model similarities, difference, and overall 

validation, as we show in subsequent sections. 
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2.4  Natural environment validation: Grand Teton National Park 

Figure 2.2 shows the NPS predictions (2.2a) and ensemble model predictions (2.2b) for the 

summer daytime A-weighted L50 in an area of Grand Teton National Park.  Training sites for the 

ensemble model (24 in this region) are marked by small circles and colored according to 

measured levels.  The difference between the two maps (ensemble minus the NPS map) is shown 

in the Figure 2.2c.  Figure 2.2d shows a histogram of residuals (observed sound level minus 

model predictions) overlaid with Probability Density Functions (PDFs) for training sites 

estimated using Matlab’s ksdensity function.  Note that model residuals are calculated using 

measured levels at each of the 24 available training sites and predicted values at the nearest 270-

m raster site.  We note that both the NPS and ensemble models have significant training data (at 

least 27 sites) within Teton County (i.e., the county containing this region), suggesting sites 

within this region are less likely to be in extrapolation regions of either model. 

 Although overall predicted levels are similar in this region, there are areas in which the 

difference map is saturated and the models differ by more than 8 dBA (i.e., up to 13.4 dBA).  We 

note that the appearance of plus marks on the ensemble map (and therefore on the difference 

map) is a result of including land cover geospatial layers as features (i.e., the land cover maps 

also have plus-mark shapes).  Interestingly, although both maps use geospatial layers with the 

same 270-m spatial resolution, the ensemble map shows greater variability over smaller spatial 

scales while the NPS map appears smoother; however, it is unknown how smooth the ‘true’ 

sound map is.  Additionally, the NPS predictions are significantly higher than measured levels in 

the northern half of the map.  This is evident in the residuals and is reflected in the summary 

error metrics at measured sites described in Table 2.1.
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 For this region, residuals for both models are centered around zero with the standard 

deviations of the ensemble model residuals being lower.  Note that the errors reported for the 

Figure 2.2 Summer daytime A-weighted L50 sound level predictions from the NPS model (a) 
and the ensemble model (b) for an area in Grand Teton National Park.  Training sites for the 
ensemble model are marked by small circles and colored according to measured levels.  The 
difference between the two map predictions (i.e., ensemble model predictions minus the NPS 
predictions) is shown in (c).  A histogram and estimated PDFs of residuals at training sites 
included in the ensemble model's training data set are shown in (d). 
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ensemble model are fitting errors; therefore, we expect these to be small.  The NPS errors are 

larger, but still relatively small.  Given that most training sites (333 of 492) for the NPS model 

are from national parks and at least 27 training sites are within Teton County, we expect that 

these validation sites are not in extrapolation regions.  Indeed, it is possible that some of these 

sites were used as training sites in the NPS model.   

 
Table 2.1 RMSE and MAD values for the NPS model and the ensemble model for sites in Grand 
Teton National Park indicated by the circles in Figures 2.2a and 2.2b. 

Model RMSE, dBA MAD, dBA 
NPS Model 6.8 3.0 
Ensemble Model 2.3 0.6 

 
 
2.5  Urban environment validation: Washington, D.C. 

One of the most striking areas on the CONUS difference map (Figure 2.1, bottom) is the 

Washington, D.C. area.  It is also an area from which a significant fraction of the urban training 

data (30 sites) for the ensemble model was drawn.  This makes it a useful area for validation of 

the NPS model as well as to study how nearby training data affects model accuracy.  Figure 2.3 

shows the NPS predictions (2.3a) and ensemble model predictions (2.3b).  Training sites for the 

ensemble model are marked by small circles and colored according to measured sound levels.  

The scale on the difference map (Figure 2.3c) was extended from that used in Figure 2.1 to 

provide more detail.  A histogram of residuals overlaid with estimated PDFs for 30 training sites 

used in the ensemble model from this area is shown in Figure 2.3d. 
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 Table 2.2 summarizes the model errors on the 30 measured sites.  Importantly, the 

residuals for the ensemble model are fitting errors (because the 30 measured sites were included 

Figure 2.3 Summer daytime A-weighted L50 sound level predictions from the NPS model (a) 
and the ensemble model (b) in the Washington, D.C. area.  Training sites for the ensemble model 
are marked by small circles and colored according to measured levels.  The difference between 
the two map predictions (i.e., ensemble model predictions minus the NPS predictions) is shown 
in (c).  A histogram and estimated PDFs of residuals at training sites included only in the 
ensemble model's training data set are shown in (d). 
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in the ensemble model training data) while those of the NPS model are holdout validation errors 

(because the 30 measured sites were not included in the NPS training data).  As such, residuals 

for the ensemble model are relatively low, centered around zero, and comparable to the LOO 

validation estimates.  However, holdout errors for the NPS model are much larger than its 

reported LOO metrics.  Indeed, it is clear from Figure 2.3 that the NPS map systematically 

underpredicts much of the D.C. area, predicting levels more than 20 dBA lower than measured 

values at some sites. 

 
Table 2.2 Holdout validation RMSE and MAD for the NPS model and fit RMSE and MAD for 
the ensemble model in Washington, D.C. indicated by circles in Figure 2.3. 

Model RMSE, dBA MAD, dBA 
NPS Model 10.4 7.8 
Ensemble Model 2.6 1.3 

 

 We attribute the large holdout errors in the NPS model to the limited (159 sites) urban 

data on which it was trained.  Although the ensemble model only included training data from 169 

urban sites; these included 30 sites from the D.C. area.  Thus while much of the D.C. area is an 

extrapolation region for the NPS model, that is not the case for ensemble model.  One would 

reasonably expect similar errors in the ensemble model for urban environments that are 

uncharacteristic of its training set.  In any case, the contrast in performance of the NPS model 

between the Grand Teton National Park and D.C. area, together with the better agreement of the 

two models in Grand Teton National Park highlights how more representative samples in 

training data improve prediction accuracy. 

2.6  Final holdout validation for both models 

Lastly, we investigate the performance of both models on a holdout validation set of 25 sites.  

This differs from the analyses in Sections 2.4 and 2.5 because neither models’ training data 
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contained these sites.  Twelve validation sites were near Los Angeles International Airport 

(LAX), five were near Long Beach Airport (LGB), three were close to rivers in Utah (UT), and 

five were in a rural region of Wyoming (WY).  The training data for the ensemble model does 

not include sites near airports or close to rivers, so we expect many of these sites to be in the 

extrapolation regime of one or both models.  Summary holdout validation errors for each region 

and all regions combined are reported in Table 2.3.  The number in parentheses next to each 

region indicates the number of validation sites for that region. 

 
Table 2.3 Holdout validation RMSE and MAD for the NPS model and the ensemble model at 25 
validation sites (12 near LAX, 5 near LGB, 3 in UT, and 5 in WY) for the summer daytime A-
weighted L50. 
  RMSE/MAD, dBA  
Model All (25) LAX (12) LGB (5) UT (3) WY (5) 
NPS Model 10.6/6.1 6.7/6.3 8.5/4.6 24.6/29.2 4.0/3.8 
Ensemble Model 10.4/4.4 6.4/3.7 7.9/5.9 24.8/28.2 4.0/2.8 

 
 
 The RMSE and MAD holdout validation errors using all 25 sites are significantly greater 

than LOO errors for both models, with the exception of the ensemble model LOO MAD, which 

is relatively close to the ensemble model holdout MAD.  Both models perform well at validation 

sites in Wyoming, which are likely similar to training data from natural environments.  On the 

other hand, both models perform poorly at validation sites near rivers in Utah where validation 

errors are close to 30 dBA at some sites.  This helps account for the difference between the 

holdout RMSE and MAD when using all 25 sites.  It is interesting that the worst case error in this 

relatively small validation sample, is larger than the worst case discrepancy between the two 

models in all of CONUS.  Indeed, the strong agreement between the two models over much of 

CONUS may be a result of shared training data (particularly within national parks), and not 

indicative of a higher confidence in predictions. 
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2.7  Conclusion 

In this paper, we have reported a validation study of predictions for the summer daytime A-

weighted L50 from the NPS published sound map [1, 24] and an ensemble model described in 

this paper.  Both models were produced using supervised machine learning techniques; however, 

differences in the training data between the two models allowed us to assess how nearby training 

data affect model accuracy.  A comparison of model predictions for the contiguous United 

States, validation studies in a natural environment (part of Grand Teton National Park) and an 

urban environment (the Washington, D.C. area), and a holdout validation on both models were 

performed.  Results demonstrate that there are significant differences (greater than 20 dBA) 

between the two models' predictions and even larger errors at many holdout validation sites.  

These discrepancies are much larger than the leave-one-out statistical metrics reported for either 

model. 

 We attribute large errors to the limited acoustic data available for training that sparsely 

sample the space of geospatial features.  In cases of large errors, we have argued that the 

validation environments are geospatially dissimilar to all training environments used to create the 

model.  Indeed, both models were trained on data from fewer than 500 unique geographic sites; it 

is unlikely that these sites are representative of all geographic environments of interest within 

CONUS.  Without incorporating any a priori physics, data-driven approaches are only reliable 

when they interpolate observed data.  Yet, when models make predictions at these unrepresented 

sites they necessarily venture into unsampled, extrapolation regions, leading to inaccurate model 

predictions.  This situation results in dramatically different predictions between the two models 

as well as large errors in predicted levels at many validation sites. 
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 These results motivate several areas of future research.  First, additional acoustic data, 

particularly at more diverse training sites, would improve the predictive performance of models.  

We have found that validation errors are significantly smaller when they are made at sites 

characteristic of training data.  However, acoustic data are expensive to collect, requiring several 

days of recording for each site, so optimal data collection strategies should be used to help 

mitigate these costs.  Second, there is a need for better uncertainty quantification of 

environmental sound level predictions, particularly in regions that are atypical of the training 

data.  Uncertainty estimates of continental-scale environmental sound level predictions should be 

acknowledged and clearly communicated.  Because the distribution of training data is non-

representative of CONUS, we have seen that traditional statistical metrics, such as leave-one-out 

errors, are typically poor estimates of actual model error.  Therefore, more sophisticated 

uncertainty quantification techniques are necessary to assess the reliability of a model for a 

particular application.  At present, we caution against using any continental-scale sound level 

predictions or research dependent upon such predictions without a thorough consideration of the 

possible uncertainty in a region of interest. 
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3.1  Abstract  

An ensemble of six machine learning models has been used previously to predict ambient sound 

levels throughout the contiguous United States [Pedersen et al., 2018].  The ensemble model was 

generated from 117 geospatial features and a training data set of 596 geographically unique sites.  

Various acoustic metrics, such as overall daytime L50 levels and one-third octave frequency band 

levels, were obtained at the training sites.  Maps showing the ensemble model predictions and 

ensemble standard deviations, which are a surrogate for the structural uncertainty, highlight the 

advantages of an ensemble model as well as some challenges of machine learning in the limited-
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data regime.  Results motivate a need for accurate uncertainty quantification techniques for 

environmental sound level modeling.  The statistical advantages and limitations of using an 

ensemble of machine learning models, particularly for limited data sets, are discussed. 

3.2  Introduction 

3.2.1  Environmental sound level modeling 

An outdoor acoustic environment is a collection of all the ambient sounds in a geographic area.  

Modeling outdoor acoustic environments is a challenging problem because ambient sound is the 

accumulation of many effects, including diverse sources, barriers to propagation, etc., and can 

vary with time of day or season.  However, accurate characterization of a region’s acoustic 

environment has potentially broad applications.   

 The study of natural acoustic environments has been led by the National Park Service 

(NPS) through the Natural Sounds and Night Skies Division, charged with the protection and 

restoration of the national parks [45, 46].  The natural acoustic environment is an important part 

of a visitor’s experience [13, 46, 47] that may be negatively impacted by unnatural contributions 

such as recreational motorized noise [48].   

 Accurate characterization of outdoor acoustic environments is also important for fields 

such as ecology and public health. Acoustic environments play an integral role in a species’ 

habitat, particularly for animals that respond to sound such as birds [17, 49-51], marine life [52-

56], and anurans (i.e., frogs and toads) [57].  Additionally, in areas dominated by anthropogenic 

sources, sound levels correlate with depression and anxiety [2], as well as hypertension [6-8].  

An accurate environmental sound level model may also hold commercial applications for real 

estate and urban development and have implications for social justice [15, 58, 59].  However, 
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accurate environmental sound level modeling for any location requires physical knowledge of 

the possible sound sources and barriers to sound propagation. 

 Remote sensing has greatly increased the amount of geospatial data available.  These data 

may be useful in predicting characteristics of outdoor acoustic environments through methods 

such as land-use regression models [27] or machine learning [1, 22, 23].  However, there are 

various sources of uncertainty in the modeling process, including uncertainty in geospatial and 

acoustic measurements and uncertainty in the appropriate model structure or form.  Geospatial 

and acoustic data will always have some error or uncertainty, which will propagate through the 

modeling process and affect the uncertainty in model predictions.  Additionally, it is generally 

not clear what the relationship between individual geospatial layers and acoustic outputs should 

be, creating uncertainty in determining an appropriate model structure.  Uncertainty in the model 

structure is magnified by the fact that the availability of high-quality acoustic data is low, putting 

outdoor environmental sound level modeling in the limited-data regime.  Hence, although remote 

sensing has made environmental sound level modeling possible on larger geographic scales, 

caution should be taken to understand possible sources of model uncertainty. 

3.2.2  Previous work 

Previously, Mennitt et al. [1, 22, 23] used machine learning to relate geospatial features and 

acoustic metrics to produce continental-scale sound maps.  Elsewhere, linear and nonlinear land-

use regression models have been used to map urban environmental noise on smaller geographic 

scales [27].  Both of these efforts utilize geospatial data to predict information characterizing 

outdoor acoustic environments.  As geospatial data have become more widely available and 

improved in accuracy and precision, many problems, such as environmental sound level 
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modeling, have become more feasible.  However, environmental sound level modeling on 

continental scales is still in its relatively early phases of development. 

 Much of the pioneering work in continental-scale environmental sound level modeling 

has been performed by Mennitt et al. [1, 22, 23]  Their data set contains both acoustic and 

geospatial data.  The acoustic data consists of acoustic measurements from 492 unique sites, 333 

of which were located in quiet uninhabited areas within national parks and 159 of which came 

from urban areas.  Note that acoustic data acquisition is a time consuming and expensive 

process.  The acoustic data were collected by the NPS and airport noise monitoring systems [60] 

and they provide summary acoustic metrics, such as the summer daytime L50, for all 492 training 

sites. In addition to acoustic data at specified training sites, data for 115 geospatial layers at a 

270-m spatial resolution for the Contiguous United States (CONUS) were used [1]. 

 Mennitt et al. applied random forest algorithms to the acoustic and geospatial data to 

predict various summary acoustic metrics, such as NN% time-exceeded levels (LNN ; e.g., L50 

and L90) and the equivalent sound level (Leq) [1, 22, 23].  Their methods for generating 

predictions of the summer daytime L50 are summarized here.  Note that their predictions are 

publicly available [24].  All available L50 measurements from all seasons (995 measurements in 

total) were included in the training data set and model inputs were used to indicate the 

corresponding season of the measurement.  After construction of the training data set, feature 

reduction was performed to obtain a reduced set of 45 features.  The Leave-One-Out (LOO) 

cross-validation error was then calculated by leaving out all data for a given site, training a 

random forest model on the remaining data, and calculating the residual for the site that was 

removed.  The reported LOO cross-validation Root-Mean-Square Error (RMSE) and Median 

Absolute Deviation (MAD) for the seasonal A-weighted L50 were 4.40 and 2.29 dB, respectively 



3.2  Introduction 

27 
 

[1].  The discrepancy between these two error metrics was attributed to outliers in the training 

data set.  Additionally, the authors caution that sound levels at the quietest and loudest sites are 

over- and underestimated respectively, which is likely a result of how random forest models are 

constructed [1, 23].  Accuracy of predictions is also lower for extreme or unusual acoustic 

environments [1]. 

 Traditional validation metrics, such as LOO, estimate model accuracy for inputs that are 

statistically similar to the training set.  Compared to other validation methods (such as 10-fold or 

holdout validation), LOO cross-validation is better suited to limited data sets because it makes 

maximal use of the available data.  LOO has a computational disadvantage in that it requires 

training the model many times (i.e., once per data point); however, when data are limited this is a 

reasonable trade-off.  Additionally, for limited data sets, as is presently the case for 

environmental sound level modeling, each data point may contain unique information about the 

input/output relationship.  Randomly omitting instances from the training set to use for testing 

results in a high probability of leaving out information that is important for a predictive model.  

In this case, the testing error will vary greatly depending on the random subset selected for 

training and testing. 

 Estimating expected predictive error becomes more challenging when the model is to 

make predictions on data that are statistically different from the training set.  In this case, 

validation methods, including LOO cross-validation, will give overly optimistic error measures 

for sites that are geospatially (and therefore statistically) different from those in the training data 

set.  The training data set used in previous work [1] consists of 492 unique sites, and it is unclear 

to what extent these sites are representative of the geospatial conditions throughout CONUS.  

Furthermore, with so few training sites, it is probable that the training data are insufficient to 
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represent much of CONUS.  Hence, the LOO cross-validation measures reported in [1] likely 

provide overly optimistic error estimates.  Indeed, we saw this to be true in Chapter 2 of this 

dissertation.  This motivates the need for a more quantitative estimate of the model 

transferability, i.e., ability of a model to accurately make predictions for novel inputs that are 

statistically different from the training set.  Transferability estimation is an important, open 

problem in machine learning [61].  In this paper, we approach the problem of estimating 

transferability of machine-learned environmental sound level models using an ensemble of 

different learning algorithms. 

3.2.3  Paper overview 

In this study, a single function was chosen from each of six classes of machine learning models.  

Models from each model class were trained to predict ambient sound levels throughout CONUS.  

The best model from each class was selected (as measured by the LOO cross-validation error) 

and their acoustic predictions on new spatial, temporal, and frequency domains were considered.  

Results presented in this paper are limited to varying spatial domains for the summer daytime 

L50.   

 The range of predictions from the ensemble of models serves as a surrogate for the 

accuracy of a single model.  Because our ensemble consists of the single best model from each 

machine learning class, we interpret this range as a measure of the structural uncertainty, i.e., the 

uncertainty due exclusively to differences in functional forms.  Predictions for which the range 

of ensemble predictions is large correspond to greater structural uncertainty.  The ensemble not 

only provides a method of quantifying structural uncertainty, but also aids in directing further 

data collection and management efforts.  
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 A qualitative analysis of ensemble model predictions and structural uncertainty for 

CONUS, Asheville (North Carolina), and Iowa manifests both the importance of uncertainty 

quantification estimates and advantages of an ensemble model in different types of geospatial 

regions.  These analyses demonstrate that continent-scale environmental sound level models are 

currently in the limited-data regime and, as such, have limited transferability.  Hence, as 

demonstrated here, it is critical that sound level predictions be accompanied with careful 

uncertainty estimates that go beyond the traditional LOO metric.  One substantial method to 

predict structural uncertainty is documented below. 

3.3  Methods 

3.3.1  Data sets 

We developed an ensemble of machine learning models using a database of geospatial and 

acoustic data points.  The geospatial database contains CONUS layers for 117 geospatial features 

(see Table A.1 in Appendix A; removing AviationNoise, PopDensity, and RoadNoise from the 

list of 120 geospatial features) from the NPS Natural Sounds and Night Skies and Inventory and 

Monitoring Divisions database [62, 63].  All 117 geospatial features were used in this paper.  

The geospatial features can be classified into six categories: topography, climate, land cover, 

hydrology, anthropogenic, and position.  Many of these layers are the same as those considered 

or used by Mennitt et al.  Our modeling efforts are ongoing, both because the theory of data-

driven predictive modeling with limited data is immature and acoustic data are continuously 

collected.  Hence, the modeling results presented here are subject to future refinements.  

 The acoustic database contains measurements from 596 distinct training sites, which are 

compiled from multiple sources including Blue Ridge Research and Consulting, LLC’s internal 

acoustic data, the NPS database [62, 63] , and a 1974 Environmental Protection Agency study 
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[64] .  (Note that the number of training sites differs from the number reported previously in [65] 

due to ambiguities in counting the same site at various times.)  The acoustic measurements from 

each site are summarized on a seasonal basis using several statistical measures including the L50, 

L90, and Leq.  Note, measurement data during all four seasons are not available at every site.  

Therefore, model results presented here are for summer acoustic metrics, as the largest number 

of acoustic training sites (496 for time-exceeded levels) contain summer data.  Hence, training 

data were only composed of summer data.  Data from other seasons may be utilized in future 

work.  

 The raw acoustic measurement data are the result of considerable effort in terms of 

number of recorded hours.  However, the summary statistics that compose the acoustic database 

are actually a very limited data set.  Our training set consists of only a few hundred instances, 

while many of the more dramatic successes of machine learning are known to require millions of 

training instances [28, 29].  Although the formalism of machine learning can be applied to our 

data set, it is unclear whether the predictions will be accurate away from training sites.  In this 

limited-data regime, statistical validation measures (such as LOO) do not reflect the actual 

confidence we have in model predictions, and more sophisticated model-driven, physics-guided 

uncertainty quantification techniques are needed. 

3.3.2  Machine learning overview 

We implemented a computational pipeline to facilitate the machine learning process [65].  This 

pipeline enables us to explore different validation metrics and a wide variety of machine learning 

models.  We explored six machine learning model classes: gradient boosted regression trees, 

neural networks, k-nearest neighbors, support vector machines, kernel ridge regression, and 

Gaussian process regression.  To compare initial model performance, LOO cross-validation was 
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used to calculate the RMSE and MAD for each model.  Hyperparameters were optimized for 

each model class using a grid search to minimize the LOO MAD cross-validation error.  

 A comparison of the prediction errors from the six model classes showed that the 

residuals given by the LOO cross-validation errors are non-Gaussian and the MAD is typically 

about half the value of the RMSE [65].  The difference between the MAD and RMSE is 

explained by the existence of large outliers in LOO cross-validation residuals.  Similar results are 

reported by Mennitt et al. [1, 23]  Because the MAD and RMSE of the LOO cross-validation 

errors are comparable between model classes and the difference in errors is statistically 

indistinguishable [65], each of the model classes gives an adequate fit to the available training 

data.   

 Using an ensemble of the models, defined as the median predicted value of the six 

optimized models (one from each model class), reduces the model’s sensitivity to outliers.  

Additionally, the ensemble model predictions appear more physically accurate in the 

extrapolation regimes.  However, without any way of estimating model transferability in these 

extrapolation regimes, prediction accuracy is undetermined. 

3.3.3  Uncertainty quantification 

A central question in machine learning is the problem of model validation.  (We direct the reader 

to Evaluating learning algorithms: A classification perspective [42] for further explanation of 

validation methods in machine learning than what is provided in this paper.)  Traditional 

validation metrics estimate model accuracy for inputs that are statistically similar to the training 

set.  Most often, validation is performed on a subset of the available data using methods such as 

LOO or k-fold cross-validation, or holdout validation.  A broader question, and our primary 
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focus, is that of transferability, or the ability of a model to accurately make predictions for novel 

inputs that are statistically different from the training set.   

 Our approach to estimating model transferability, or predictive error, was inspired by 

techniques from the uncertainty quantification community.  Uncertainty quantification has 

existed as long as probability and statistics and is the science of identifying, quantifying, and 

reducing uncertainty when predicting quantities of interest [31].  More recently, an 

interdisciplinary community has emerged to systematize the study of issues related to 

uncertainty, with particular relevance for estimating transferability in machine learning.  In the 

broadest sense, there are two main types of uncertainty: aleatoric and epistemic uncertainty [31].  

Aleatoric uncertainty, or statistical uncertainty, is inherent to a problem, and hence cannot be 

reduced and is generally represented in terms of probabilities [31].  For environmental sound 

level modeling, many sources of aleatoric uncertainty are associated with measuring the 

geospatial or acoustic data that make up the training and input data sets.  Epistemic, or 

systematic, uncertainty originates from an incomplete knowledge or missing physics in a model 

and can be reduced through better modeling methods [31].  

 Following Kennedy et al. [32], uncertainty types may be further refined into six classes: 

parameter uncertainty, model inadequacy, residual variability, parametric variability, observation 

error, and code uncertainty.  Of these six sources, this study is primarily interested in model 

inadequacy.  Model inadequacy, or structural uncertainty, originates from uncertainty in the form 

of the model due to limited knowledge of the true underlying mechanisms that generate the data 

[32].  We anticipate that structural uncertainty, as measured by the standard deviation in 

ensemble model predictions in this work, is one of the primary sources of uncertainty for 

geospatial sounds level modeling.   
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 Because we use a data-driven, machine learning approach, our model necessarily omits 

potentially relevant physics.  In our case, this is not just a practical convenience; indeed, many 

physical principles relevant to ambient sound levels are unknown.  Although machine learning 

methods are applicable to describing complex behaviors in which the underlying physical 

principles are unknown, success often hinges on the availability of large data sets on which to 

train the model.  In the limited-data regime, a large portion of the uncertainty in model 

predictions is likely due to epistemic, rather than aleatoric, uncertainty.  Furthermore, assessing 

the accuracy, precision, and transferability of the learned models is often not straightforward.  

 To make these ideas more concrete, consider the following problem formulation.  

Training data comes from a “true” (but unknown) generating function.  Ideally, one would like to 

learn this generating function out of a candidate set, but in practice there are many different 

functions consistent with the available measurements.  The set of functions consistent with the 

training data (i.e., the set of functions that fit the data equally well) form an equivalence class.  

Although each of these functions is consistent with the training data, they may disagree in their 

predictions under novel conditions.  We lack confidence in our model’s predictions because we 

do not know which model from the equivalence class is correct.  Therefore, our goal is to 

characterize the range of predictions in this equivalence class of functions.   

 A benefit of using an ensemble model is that it provides some measure of uncertainty 

when the individual models must extrapolate outside their training regime.  Although individual 

model predictions may look reasonable, they generally provide no measure of confidence to their 

predictions for input values that are statistically different from the training set.  In contrast, the 

range of predictions within the ensemble provides an estimate of the expected uncertainty.   
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 The standard deviation of the ensemble model’s predictions is used here as a measure of 

uncertainty since the variation among ensemble members is a surrogate estimate of the accuracy.  

Because our ensemble was generated from the single optimal model in each class, this 

uncertainty estimate quantifies the variability due to the functional form of the model, i.e., the 

structural uncertainty. The confidence intervals provided by the standard deviation of ensemble 

predictions are similar to those generated by a Gaussian process regression model, which also 

uses an ensemble of models, or functions. 

3.4  Results 

We analyze ensemble model behavior for three different areas of analysis; namely, CONUS, 

Iowa, and the Asheville, North Carolina area.  These studies focus primarily on understanding 

how geospatial layers affect the ensemble model.  Results highlight advantages and limitations of 

an ensemble model in the limited-data regime and help identify possible ways of improving the 

model. 

3.4.1  CONUS 

Figure 3.1 shows ensemble model predictions, i.e., the median predicted levels from the six 

machine learning models, of the summer daytime L50 for CONUS.  Figure 3.2 shows an estimate 

of the uncertainty, i.e., the standard deviation, associated with these predictions.  Training sites 

are indicated by small circles, which are colored according to measured levels in Figure 3.1 and 

colored black in Figure 3.2.  The mean and median uncertainty across CONUS are 

approximately 3.54 and 2.86 dBA, respectively.  Only slightly more than 6.2% of sites have an 



3.4  Results 

35 
 

uncertainty greater than 6 dBA, saturating the limits in Figure 3.2.  However, the mean 

uncertainty of these sites is about 12.6 dBA. 

 

Figure 3.1  Ensemble model predictions for the A-weighted summer daytime L50 for CONUS. 
 

 It is important to recognize that the uncertainty estimates shown in Figure 3.2 are the 

standard deviation in the predicted dBA values, but they do not represent confidence intervals for 

model predictions because we are only quantifying one source of uncertainty, i.e., model 

inadequacy or structural uncertainty.  In other words, relatively large uncertainty values indicate  

greater uncertainty in model predictions, but the actual level of uncertainty is still unclear.  In 

part, this is due to the fact that the structural uncertainty is primarily an estimate of the epistemic 

uncertainty, and gives no indication of the aleatoric uncertainty.  Additionally, although we 

anticipate the structural uncertainty comprises a large portion of the total epistemic uncertainty, 
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there are other sources of epistemic uncertainty not considered here.  For example, the geospatial 

database may be insufficient for predicting acoustic environments for some parts of CONUS.  

Hence, the standard deviation indicates a minimum level of confidence in model predictions, but 

does not provide rigorous confidence interval measures.  These uncertainty estimates do strongly 

encourage caution when applying sound level model predictions for further studies, such as 

measuring correlations between high sound levels and ecological trends.  More specifically, 

studies utilizing outdoor environmental sound level model predictions should be especially 

careful when looking at trends that rely on differences in sound levels of only a few dBA.   

 

Figure 3.2  Estimated structural uncertainty, as measured by the standard deviation of ensemble 
model predictions, for the A-weighted summer daytime L50 for CONUS.  Color bar limits were 
truncated at 6 dBA. 
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Figure 3.3  Histograms of the standard deviation of ensemble model predictions for CONUS 
data and the training data (when performing a LOO analysis) for the A-weighted summer 
daytime L50. 
 

 Some areas of high structural uncertainty in Figure 3.2 can be associated with specific 

geospatial features.  For example, the large circular regions in northwestern Texas and eastern 

Montana are due to the VIIRS layers, which measure the upward radiance at night, at the 69,120-

m spatial resolution.  Additionally, the odd rectangular shape in southern New Mexico and areas 

of high uncertainty in southeastern California, southern Nevada (northwest of Las Vegas), and 

southeastern Idaho (west of Rexburg) all correlate with several of the land use layers, including 

the institutional layers.  Relatively few training sites are from areas of large institutional land 

use, which could account for the large uncertainties in these regions.  Potential errors in the 

geospatial layers or acoustic data may also contribute to large uncertainties in model predictions.  

 Comparing the distribution of structural uncertainty for CONUS to that of the training 

sites when using LOO cross-validation can provide further insight into the uncertainty in model 

predictions.  Figure 3.3 shows histograms of the ensemble standard deviation for the predictions 

at the training sites (when they are removed from the training data set) and CONUS data.  Notice 
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that the mean structural uncertainty is clearly lower for the training sites than for all of CONUS.  

This is because the training sites are not drawn from the same geospatial distribution as the 

CONUS data.  Hence, sites that are geospatially different from those in the training data set are 

likely the greatest source of high structural uncertainty.  Note that the ability to estimate the 

structural uncertainty for model predictions is a benefit to ensemble modeling; indeed, it is 

necessary to investigate the uncertainty in model predictions.   

 A qualitative analysis of Figure 3.1 indicates that sites on the eastern half of the map are 

generally louder than those on the western half.  Because machine learning methods are data-

driven and therefore search for and utilize patterns and correlations in the training data, it is 

possible that this is in part due to a biased training data set.  More specifically, many of the 

training sites in national parks are located in western CONUS while many urban training sites 

are in eastern CONUS.  Although eastern CONUS is more heavily populated on average, it is 

possible that predictions for much of eastern CONUS are higher than they otherwise would be 

due to correlations in the training data set between geospatial features and sound levels that are a 

result of working with limited data.  Indeed, the map of standard deviations in ensemble model 

predictions (see Figure 3.2) indicates greater structural uncertainty for much of eastern CONUS. 

3.4.2  Iowa 

Although CONUS maps may be useful for looking at large-scale spatial patterns in model 

behavior, more local studies, particularly of the structural uncertainty, provide additional insight 

into understanding model performance.  Figure 3.4 shows the structural uncertainty for the state 

of Iowa.  Note that the color bar was not truncated here and the coloring up to 6 dBA is 

consistent with Figure 3.2.  Additionally, note that no training sites are in Iowa and Iowa is 

geospatially dissimilar from the training data.  In general, uncertainty in model predictions is  
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Figure 3.4  Estimated structural uncertainty, as measured by the standard deviation of ensemble 
model predictions, for the A-weighted summer daytime L50 for Iowa.  The color bar was not 
truncated and the coloring up to 6 dBA is consistent with Figure 3.2. 

 

 

Figure 3.5  The degree of human modification from pasture land use (as a percentage) for Iowa.  
This geospatial feature is one of the inputs to the ensemble model. 

 

relatively high (greater than 4 dBA) in Iowa, but tends to be low along rivers and in developed 

areas.  The areas of highest uncertainty correlate most strongly with the pasture land use layer 

(with a 200 m area of analysis), which is shown in Figure 3.5.  There is only one training site  
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with any pasture land use component at the 200 m area of analysis, so it is unsurprising that the 

uncertainty is high for areas with a large amount of pasture land use.  This suggests that areas 

with high pasture land use may be good candidates for future acoustic data collection.  More 

generally, areas of high structural uncertainty are often good candidates for future data 

collection.  

 Although the pasture land use layer can account for the areas of largest uncertainty in 

Iowa, it does not explain why Iowa in general has large structural uncertainty compared to other 

areas in CONUS.  The cropland land use geospatial layers may be the cause of this since these 

layers have relatively large values for much of Iowa and are poorly represented in the training 

data set.  In particular, only seven training sites, or less than 2% of training data, have any 

cropland land use at the 200 m area of analysis, and only two of these sites have more than 20% 

cropland land use.  Additionally, only fourteen sites have more than 10% cropland land use at the 

5000 m area of analysis.  Hence, areas of high cropland land use may also be good candidates for 

future acoustic data collection. 

 Although it is possible to identify the geospatial features correlated with large 

uncertainties, targeted acoustic data collection based on these geospatial features may not be the 

only method for reducing uncertainty.  Future work will include physics-guided feature reduction 

to identify and remove irrelevant features that are under-sampled in the training set (and thus 

lead to high uncertainties), but that are also unlikely to improve predictive performance.  For 

example, large uncertainties in Figure 3.2 are associated with the VIIRS layers for the 69,120 m 

area of analysis.  These layers are unlikely to provide useful information to the model because 

they have unphysical (annular) shapes and are averaged over large spatial areas.  So, we will 

likely remove these layers in future work.  For the case of the VIIRS layers (at the 69,120 m area 
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of analysis), it is unlikely they would correlate with sound levels even if sufficient training data 

were present.  Outside of the limited-data regime, models would be less likely to identify such 

features as having an effect on environmental sound level predictions.  

 On the other hand, when uncertainty is associated with geospatial features that likely 

have a causal relationship to the acoustic environment (or are correlated in useful ways), we plan 

to use targeted acoustic data collection.  More specifically, geospatial features that are poorly 

represented in the training data set but may have a physical or useful relationship with the 

acoustic environment, such as pasture and cropland land use, can direct future acoustic data 

collection.  Because few training sites have cropland or pasture land use, we plan to take data at 

sites that have significant cropland or pasture land use.  Ideally, the geospatial features in the 

training data set would be statistically similar to those for which predictions are made (e.g., 

CONUS).  Uncertainty in ensemble model predictions can help identify areas where they are not. 

3.4.3  Asheville, North Carolina 

Unlike Iowa, for which we have no training sites, Asheville, North Carolina is a relatively well-

sampled geographic area.  Figure 3.6 shows the structural uncertainty for the Asheville area.  

Black circles indicate the location of training sites.  Note that structural uncertainty is fairly low 

near Asheville, with a few exceptions.  Many of the areas with higher uncertainty in Asheville, 

such as the Biltmore Estate in the middle of the map, are correlated with the timber land use 

layers.  Timber land use is another geospatial layer that is poorly represented in the training data, 

so it is unsurprising that it correlates with areas of higher structural uncertainty.  Additionally, 

the area of high uncertainty along the road (Interstate 26) in southern Asheville corresponds to 

the Asheville Regional Airport.  Since the airport is relatively small, and the training data set 
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does not contain many sites near airports, it is unsurprising that the model has higher uncertainty 

there.   

 

Figure 3.6  Estimated structural uncertainty, as measured by the standard deviation of ensemble 
model predictions, for the A-weighted summer daytime L50 for Asheville, North Carolina. 
 

 Despite these areas of higher uncertainty, ensemble model uncertainty is relatively low 

for much of Asheville.  Recall that this does not necessarily indicate that model accuracy is high.  

However, the low uncertainty in the Asheville area suggests that machine learning methods may 

be successfully applied to the environmental sound level modeling problem when enough 

training data are present. 

3.5  Conclusion and future work 

Continental-scale environmental sound level modeling is challenging, but holds many potential 

applications in areas such as ecology and public health.  However, environmental sound level 
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modeling is also in its relatively early phases of development, so it is unclear how best to 

approach this problem.  We used a computational pipeline to facilitate the development of 

models from six different machine learning algorithms: gradient boosted regression trees, neural 

networks, k-nearest neighbors, support vector machines, kernel ridge regression, and Gaussian 

process regression.  One model from each of the six model classes was combined into an 

ensemble of machine learning models that made predictions of ambient sound levels and 

corresponding uncertainty estimates for sites within the contiguous United States.   

 From the uncertainty estimates, which we interpret as measures of the structural 

uncertainty (i.e., the uncertainty due exclusively to differences in functional forms), we found 

that the mean and median uncertainty across CONUS are approximately 3.54 and 2.86 dBA, 

respectively.  Note that these uncertainties indicate a minimum level of confidence and low 

uncertainties do not guarantee high accuracy.  For these reasons, the use of outdoor 

environmental sound level model predictions should always be in conjunction with prediction 

uncertainties.  Additionally, our results indicate that conclusions drawn from continental-scale 

models that rely on differences of 3 dBA or less are unjustified.  Applying sound level model 

predictions to ecological, public health, noise pollution, and other studies should be done 

carefully and take into account uncertainty estimates.  Users of sound level model predictions 

should evaluate whether the geospatial inputs and acoustic training data are appropriate for their 

desired application.  For example, an environmental sound level model trained only on National 

Park Service data is likely not appropriate for use in urban environments, even if structural 

uncertainty estimates are low.   

 Beyond estimating model accuracy, an ensemble model may help guide feature reduction 

strategies.  Environmental sound level models that are produced using machine learning methods 
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identify correlated, but not necessarily causal, features.  Many of these correlations may only be 

present due to limited training data.  Geospatial features that correlate with areas of high 

uncertainty may be good candidates for removal if they have a non-causal relationship with the 

acoustic environment and are unlikely to correlate in useful ways given sufficient training data.  

It is likely advantageous to remove such features to aid the model in identifying more causal 

relationships.  However, it may be reasonable to keep a non-causal feature if there is no better 

feature available to represent or correlate with certain contributions to the acoustic environment.  

Note that removing geospatial features will likely decrease the estimated structural uncertainty in 

some areas while increasing it in others.  In general, however, we anticipate that removing 

features will cause a decrease in the structural uncertainty because a smaller number of features 

will produce a smaller space of possible model structures (assuming there is not a significant 

change in model hyperparameters).  Hence, we advise against comparing levels of measured 

uncertainty for feature data sets of different sizes.  

 In addition to aiding feature reduction strategies, uncertainty estimates can also guide 

future acoustic data collection efforts.  Presumably many sites with large uncertainties have 

geospatial features that are underrepresented in the training set.  Consequently, uncertainty 

measures can help identify ways in which training data are not statistically representative of 

areas for which predictions are made.  Targeted acoustic data collection to improve the statistical 

similarity between the training data and data for predictions will likely aid the ensemble model in 

learning relationships between geospatial features and the acoustic environment.  Hence, we 

anticipate that targeted acoustic data collection will not only reduce ensemble uncertainty at sites 

for which data are collected, but also for geospatially similar sites.  Since acoustic data collection 
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is an expensive and time-consuming task, it is extremely advantageous to use targeted, rather 

than random, data collection techniques.  

 This study motivates several future research directions for improving the uncertainty 

quantification of outdoor environmental sound level predictions.  Our ensemble model quantified 

structural uncertainty, i.e., uncertainty due to the functional form of the model.  However, more 

extensive ensembles could be generated to account for other sources of uncertainty or further 

evaluation of structural uncertainty.  Recall that the geospatial and acoustic data are not free from 

error and may contribute significantly to the uncertainty in model predictions.  In this regard, the 

uncertainty estimates reported here are conservative.   

 Environmental sound level modeling is an important acoustical question with potentially 

broad applications.  However, the limitations of the available data demand sophisticated 

uncertainty quantification tools in order to assess model transferability and improve predictive 

performance for sites dissimilar from the training set.  Uncertainty quantification methods will 

play an important role in guiding future feature reduction, data collection and management, and 

model selection. 
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Chapter 4 
 
 
Environmental sound level modeling of 
summer hourly spectra 
 
4.1  Introduction 

In Chapters 2 and 3, supervised machine learning models were trained for the prediction of the 

summer daytime A-weighted L50 (i.e., the summer daytime median A-weighted sound pressure 

level).  In this chapter, we present results of training models to predict summer hourly spectra.  

We use model inputs to specify the hour and frequency band for a given training instance.  Large 

ensembles of gradient boosted regression trees and k-nearest neighbors models are constructed 

using bootstrap subsets of the training data and an analysis of leave-one-out predictions for three 

sites is presented. 

4.1.1  Previous work 

Previously, Mennitt et al. [23] trained individual models for the prediction of L10, L50, and L90 

one-third octave band daytime levels for any day during the year.  In other words, different 
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models were trained for the prediction of each one-third octave band (e.g., separate models were 

trained for the prediction of L10 200 Hz one-third octave band daytime levels and L10 250 Hz one 

third-octave band daytime levels).  We remind the reader that the L10, L50, and L90 are statistical 

time-exceeded levels corresponding to the sound pressure level exceeded 10 percent of the time, 

50 percent of the time, and 90 percent of the time, respectively.  Model inputs were used to 

specify the day of the year corresponding to measured/predicted levels.  We are unaware of any 

other data-driven models for the purpose of predicting both temporal and spectral variation 

across geographic regions. 

4.1.2  Motivation 

In contrast to environmental sound level predictions from Chapters 2 and 3, summer hourly 

spectra predictions provide a greater degree of temporal and spectral resolution.  Applications of 

models trained to predict summer hourly spectral levels are similar to those for the summer 

daytime A-weighted L50.  However, spectral and hourly information provides additional insight 

into which acoustic sources and/or propagation effects dominate within an acoustic environment.  

For example, large levels of high-frequency noise may often be caused by bird or insect activity, 

particularly in the evening and early morning. 

 Without spectral and hourly information, it is difficult to conclude much about the 

dominant contributions to overall sound pressure levels.  An analysis of environmental sound 

models for the prediction of hourly spectra may therefore provide insight into which acoustic 

sources/mechanisms are well understood by models and which are not.  Targeted acoustic data 

collection may then be used to gather data which characterize sources/mechanisms which are 

poorly understood by models. 
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4.1.3  Chapter outline 

In Section 2 of this chapter, we describe the data set and modeling methods used to train 

environmental sound level models of summer hourly spectra.  Section 3 describes summary 

statistical measures of model performance and presents an analysis of the leave-one-out 

predictions for three training sites.  Leave-one-out predictions are realistic and we observe that 

models predict the appropriate spectral shape at some sites, despite differences in measured and 

predicted levels.  Models struggle to identify locations at which bird/insect contribute to 

environmental sound levels.  However, it is possible geospatial data do not contain sufficient 

information to determine locations of bird/insect activity.  Despite these challenges, results 

indicate supervised machine learning methods may be successful if sufficient training data are 

obtained.  Section 4 summarizes results and suggests future work. 

4.2  Methods 

4.2.1  Data sets 

We use the set of scaled 51 geospatial features described in Appendix A.  Additional model 

inputs specify the frequency band and time corresponding to a given instance.  For example, 𝑓𝑓 

denotes the frequency bands and takes on values from 6.3 Hz to 20,000 Hz, which we transform 

using the logarithm (base 10).  Because temporal variations are cyclic, they are treated 

differently.  If ℎ denotes the daily hour, it takes on integer values from 0 to 23.  Ideally, however, 

hours 0 and 23 should be near one another.  We therefore use ℎ𝑥𝑥 =  sin �2𝜋𝜋ℎ
24
� and ℎ𝑦𝑦 =

cos �2𝜋𝜋ℎ
24
� as two inputs to the model, rather than the hour ℎ.  We then augment the model to take 

(𝑓𝑓,ℎ𝑥𝑥 ,ℎ𝑦𝑦) as inputs in addition to the geospatial layers described in previous chapters.  All three 

of these inputs are scaled using a min-max scaler, which scales data to between zero and one and 
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preserves the shape of the data distribution.  Unlike models trained by Mennitt et al. [23] for 

daytime spectra, we do not train separate models for different one-third octave frequency bands.  

This allows models to potentially make use of correlations between different frequency bands. 

 Acoustic training data are composed of measured summer hourly L50 one-third octave 

bands (6.3 Hz-20 kHz) from 341 geographically unique sites.  We manually cleaned acoustic 

data to remove data contaminated by wind noise and/or noise floor effects.  Figure 4.1 shows an 

example of data that were remove due to wind noise contamination at lower frequencies and 

instrumentation noise floor at higher frequencies.  Data from 55 sites were completely removed 

from the training data while data from many of the 341 remaining sites were partially removed.  

Therefore, different sites may contain data at different one-third octave frequency bands.  

Training data are composed of approximately 236,820 instances with each training instance 

corresponding to a specific location, hour, and frequency band. 

 

Figure 4.1  Example spectrum characterized by wind noise at low frequencies and 
instrumentation noise floor at higher frequencies.  Data from this site were removed from the 
training data. 
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4.2.2  Ensemble models 

One advantage of ensemble models is that they provide a range of predicted values from which 

uncertainty in model predictions can be estimated and from which the true value likely lies.  In 

this chapter, we make use of ensemble models to predict summer hourly L50 spectra.  Unlike the 

ensemble models described in Chapters 2 and 3, we use ensembles trained on 100 different 

bootstrap samples for two different model classes: Gradient Boosted Regression trees (GBR) and 

K-nearest Neighbors (KN).  In contrast to ensembles composed of models from different model 

classes, which identify representational, or structural, uncertainty in model predictions, these 

bootstrap ensembles quantify uncertainty arising from computational and statistical uncertainties.  

We only use two of the six model classes used in the ensemble models from Chapters 2 and 3 

due to computational limits and time constraints.  GBR ensemble members were each trained for 

approximately six days on 24 cores using 64 GB of RAM, and KN ensemble members were each 

trained for approximately six hours on 24 cores using 32 GB of RAM.  Training ensemble 

members from the other model classes using hyperparameter search techniques similar to those 

used for the ensemble of six models and the larger GBR and KN ensembles described here 

would take significantly longer (i.e., multiple months) or have higher memory requirements (i.e., 

greater than 128 GB RAM).   

 Despite only using two model classes, the range of predictions between the GBR and KN 

ensembles will still provide some indication of the structural uncertainty of model predictions.  

Note that model inputs determining frequency and hour were multiplied by a factor of 20 for the 

KN ensemble to help models identify dominant contributions for the prediction multiple acoustic 

metrics (i.e., multiple hours and one-third octave bands). 
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 Hyperparameters for all models are tuned to minimize the Leave-One-Site-Out (LOSO) 

cross-validation Median Absolute Deviation (MAD) using the tree-structure Parzen estimator 

approach implemented in the Python library hyperopt [43, 44].  Note that LOSO predictions are 

calculated by leaving out all data for given a training site, training a model on the remaining 

data, and making predictions for all instances corresponding to the given training site.  Ensemble 

LOSO predictions are made in a similar manner.  Because ensemble members are trained on 

bootstrap subsets of the data however, predictions of some ensemble members will not change 

when a given training site is removed.  More specifically, ensemble members whose training 

data did not originally contain the site being removed will not change. 

4.3  Results 

4.3.1  Summary error metrics 

Fit and LOSO Root-Mean-Square Error (RMSE) and MAD for the GBR and KN ensembles are 

reported in Table 4.1.  Although the KN ensemble has lower fit errors and slightly higher LOSO 

errors, the two ensemble models both perform reasonably on training data.  To better understand 

what the models have learned, we look at LOO predictions at training sites. 

 
Table 4.1  Fit and LOSO cross-validation RMSE and MAD for the GBR and KN ensemble 
models for the prediction of summer hourly L50 spectra. 
Model Fit RMSE/MAD, dBZ LOSO RMSE/MAD, dBZ 
GBR Ensemble Model 2.4/0.6 6.6/3.5 
KN Ensemble Model 1.1/0.0 7.0/3.7 

 
 
4.3.2  LOSO predictions: traffic noise 

Figure 4.2 shows measured levels (dashed lines) and LOSO ensemble model predictions (solid 

lines) for the GBR (left) and KN (right) ensembles in 6-hour periods for a training site in 

Alexandria, Virginia near Washington D.C.  Metadata indicate that traffic noise is the dominant 
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acoustic source for this site.  Levels are colored according to their corresponding hours.  Going 

from bottom to top, the 6-hour periods are midnight to 6 a.m. (bottom), 6 a.m. to noon, noon to 6 

p.m., and 6 p.m. to midnight (top).  Note that ensemble predictions are median predicted values.   

 Although models do not predict peak levels of traffic noise, LOSO predictions are close 

to measured levels and spectral shapes are in fairly good agreement.  Indeed, LOSO predictions 

still identify two peaks—one near 63 Hz and a slightly lower peak near 1 kHz—which have 

previously been observed as characteristic of traffic noise in cities [66].  LOSO predictions show 

that models predict higher, but more consistent levels during daytime hours and quieter levels at 

night.  GBR and KN ensemble LOSO predictions are similar, suggesting structural uncertainty 

may be low for this site.  The training data set contains similar data near roads in and around 

Washington, D.C., so it would not be surprising if structural uncertainty is low here.   

 It is difficult to visualize hourly spectra predictions and the spread of ensemble model 

predictions simultaneously.  However, the spread of ensemble member predictions may provide 

insights into model learning.  Figure 4.3 shows the standard deviation in fit (top) and LOSO 

(bottom) predictions as a function of hour (horizontal-axis) and frequency (vertical-axis) for the 

GBR (left) and KN (right) ensembles.  Interestingly, uncertainty in both fit and LOSO 

predictions is largest for high frequencies.  This may be due to differing instrumentation noise 

floors at different training sites.  Although data were cleaned to minimize contamination due to 

wind noise and noise floor effects, these effects are still present in the training data to limited 

degrees. 
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Figure 4.2  Hourly spectra measured levels (dashed lines) and LOSO predictions (solid lines) 
from an ensemble of GBR models (left) and KN models (right) for a site with significant traffic 
noise.  Predictions are shown for 6-hour periods.  From bottom to top these periods are: midnight 
to 6 a.m. (bottom), 6 a.m. to noon, noon to 6 p.m., and 6 p.m. to midnight (top). 
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Figure 4.3  Standard deviation of ensemble model fit (top) and LOSO (bottom) predictions for 
the GBR (left) and KN (right) ensembles for a site with significant traffic noise.  The horizontal 
and vertical axes indicate different hours and frequency bands, respectively. 
 
 
4.3.3  LOSO predictions: insect noise  

We show LOSO hourly L50 spectra predictions and the corresponding standard deviation in 

ensemble members for a different training site in Figures 4.4 and 4.5, respectively.  Figures 4.4 

and 4.4 have the same formatting as Figures 4.2 and 4.3.  The training site used for validation in 

Figures 4.4 and 4.5 has significant insect noise as night, distant road noise, and occasional 

indirect overflights.  It is located in Fletcher, near Asheville, North Carolina.  Figure 4.4 shows 

that the KN ensemble tends to overpredict levels while the GBR ensemble does a fairly good job 

of predicting levels close to measured values.  Note that the standard deviation of LOSO 
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Figure 4.4  Hourly spectra measured levels (dashed lines) and LOSO predictions (solid lines) 
from an ensemble of GBR models (left) and KN models (right) for a training site with significant 
insect noise.  Predictions are shown for 6-hour periods.  From bottom to top these periods are: 
midnight to 6 a.m. (bottom), 6 a.m. to noon, noon to 6 p.m., and 6 p.m. to midnight (top). 
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predictions for the KN ensemble (see Figure 4.4) is in general larger than that of the GBR 

ensemble, particularly from 160 – 1250 Hz. 

 

Figure 4.5  Standard deviation of ensemble model fit (top) and LOSO (bottom) predictions for 
the GBR (left) and KN (right) ensembles for a site with significant insect noise.  The horizontal 
and vertical axes indicate different hours and frequency bands, respectively. 
 
 
 Figure 4.4 shows that insect noise at night covers a relatively wide range of one-third 

octave bands and reaches up to 40-50 dBZ.  Both ensembles fail to predict levels of that 

magnitude.  However, ensembles do predict a small spike near 5 kHz for some evening and 

nighttime hours.  Interestingly, Figure 4.5 indicates that the uncertainty in fit predictions is larger 

at high frequencies than for LOSO predictions.  This is likely due to similar sites in the training 

data that do not have insect noise.  Therefore, when this somewhat atypical site is removed, 

uncertainty is lower because the model is unaware that similar sites may exhibit this amount of 
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insect activity.  The ensemble is overly confident because there are not enough training instances 

to capture the true variability in the data.  This emphasizes the need for more data to improve 

model predictions and uncertainty estimates.  Indeed, more training data may either help teach 

the model where and when increased insect noise is likely to occur or teach the model how 

confident it should be in predicting insect activity (or a lack thereof).   

4.3.4  LOSO predictions: traffic and bird noise 

Figures 4.6 and 4.7 show LOSO hourly L50 spectra predictions and corresponding standard 

deviations for the GBR and KN ensemble models for a site in Asheville, North Carolina with 

constant road noise, occasional direct overflights, and bird sounds.  (Figures 4.6 and 4.7 are 

again formatted the same as Figures 4.2 and 4.3.)  Figure 4.6 demonstrates that both models’ 

LOSO predictions are close to measured levels.  Even when predicted and measured levels 

disagree, much of the predicted spectral shape is accurate, particularly for traffic noise (i.e., at 

frequencies lower than about 1 kHz).   

 Models struggle more to predict bird noise (near 5 kHz).  However, the models predict 

levels at 5 kHz quite well, and have higher errors and standard deviations (see Figure 4.7) at 

frequencies just below 5 kHz as well as above 10 kHz.  This may be due to the contribution of 

insect noise at other sites such as the one described in Subsection 4.3.3.  The high standard 

deviation shown in Figure 4.7 for some of the higher-frequency one-third octave bands is 

encouraging because it accurately identifies regions of relatively poor model accuracy. 
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Figure 4.6  Hourly spectra measured levels (dashed lines) and LOSO predictions (solid lines) 
from an ensemble of GBR models (left) and KN models (right) for a training site with road and 
bird noise.  Predictions are shown for 6-hour periods.  From bottom to top these periods are: 
midnight to 6 a.m. (bottom), 6 a.m. to noon, noon to 6 p.m., and 6 p.m. to midnight (top). 
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4.4.  Conclusion 

In this chapter, we discuss methods for training ensemble models for the prediction of summer 

hourly L50 spectra.  In particular, we generate two ensembles of gradient boosted regression trees 

and k-nearest neighbors models trained on bootstrap subsets of the training data.  We presented 

figures showing the leave-one-site-out hourly L50 spectra predictions and standard deviation in 

ensemble model fit and leave-one-site-out predictions for three training sites.  One training site 

had significant road traffic noise, another had significant insect noise, and the third had road 

traffic and bird noise. 

Figure 4.7  Standard deviation of ensemble model fit (top) and LOSO (bottom) predictions for 
the GBR (left) and KN (right) ensembles for a site with road and bird noise.  The horizontal and 
vertical axes indicate different hours and frequency bands, respectively. 



4.4.  Conclusion 

60 
 

 Leave-one-site-out predictions for all three training sites demonstrate that both ensembles 

have learned some relationships between geospatial data and summer hourly L50 spectra.  

Although spectral predictions may not always match predicted levels, the shape of the spectra is 

often in agreement with measured spectra; however, we observed that models struggle to identify 

when and to what extend insect and possibly bird noise is present.  This may be due to 

inadequate training data or an inadequacy of the geospatial data to determine when insect/bird 

noise is likely present.  The standard deviation of ensemble members is often useful in 

identifying predictions of higher uncertainty.  However, we caution that this may not the case in 

extrapolation regions (i.e., geospatial regions not represented in the training data) because 

training data do not exist to either confirm or contradict model predictions in such regions. 

 Overall, the relative success of ensemble models for leave-one-site-out predictions of the 

summer hourly L50 spectra indicates supervised machine learning techniques may be successful 

for the prediction of acoustic metrics corresponding to different seasons, hours, one-third octave 

bands, exceedance levels, etc. if sufficient training data are available.  The three sites shown in 

this chapter are likely similar to other sites in the training data.  Indeed, the training data contain 

significant sites in both the Washington, D.C. and Asheville, North Carolina areas.   

 Therefore, future work includes applying the ensemble models described in this chapter 

to validation sites, which may be uncharacteristic of the training data.  Additionally, constructing 

ensemble models from other model classes may help quantify structural uncertainty in predicted 

levels.  Lastly, incorporating physics-based modeling for acoustic sources for which physical 

models exist (e.g., road traffic noise) may improve model accuracy near such sources. 

 



 

*Chapter 5 is a manuscript to be submitted in the Journal of Acoustical Society of America.   
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5.1  Abstract  

Modeling environmental sound levels is challenging because they are the accumulation of all 

sounds in a geographic area and therefore depend upon a large number of geospatial features.  In 

previous work, an ensemble of machine learning models was used to predict and estimate 

prediction uncertainty for environmental sound levels in the contiguous United States using a 

training set composed of 117 geospatial layers and acoustic data from 496 geographic sites 

[Pedersen et al., 2018].  To improve model accuracy, uncertainty estimates, and model 

interpretability, feature selection is performed on a set 120 geospatial features.  An initial 

screening based on factors, such as data quality and correlations between features, reduces the set 
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to 51 features.  Four different feature importance metrics are then utilized for further feature 

selection.  Leave-one-out median absolute deviation cross-validation errors suggest that the 

number of geospatial features can be reduced to 15 without significant degradation of the 

model’s predictive error.  However, ensemble predictions demonstrate that results of feature 

selection are unstable to variations in details of the problem formulation, and therefore, should 

elicit some skepticism.  Results suggest that more sophisticated dimensionality reduction 

techniques are necessary. 

5.2  Introduction 

5.2.1  Geospatial acoustics 

Accurate modeling of environmental sound levels has many potential applications.  In particular, 

accurate prediction of environmental sound levels may aid the National Park Service (NPS) in 

their charge to protect and restore natural acoustic environments within parks [45, 46].   

Ecologists study the effects of environmental noise on animal behavior [50, 51, 53, 54, 56], 

especially for animals that respond to sound such as birds [17, 49-51], marine life [52-56], and 

anurans (i.e., frogs and toads) [57].  Additionally, public health studies have found that increased 

noise may be associated with changes in blood pressure, heart rate, and stress [6, 8] as well as 

mental health [67], cognitive function [68], and mental illnesses, such as depression and anxiety 

[2].  Accurate modeling of environmental sound levels may aid ecologists and public health 

workers in further identifying relationships between ecological and public health trends, 

respectively, and environmental noise.  Accurate environmental sound modeling may also have 

applications in real estate, urban planning, and social justice.   

 Modeling of environmental sound levels is difficult due to the multitude of possible 

acoustic sources, propagation effects, etc.  Remote sensing has increased the amount of 
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geospatial data available for modeling, but these data are not free from error and may not always 

contain sufficient information to characterize an acoustic environment.  Additionally, acoustic 

data are expensive to obtain and therefore relatively limited.  Although some initial results are 

promising [1, 22, 23, 27, 65, 69], the problem is bottlenecked by limited data, making accurate 

environmental sound level modeling and model validation studies more challenging. 

 In previous work we used machine learning techniques to identify underrepresented areas 

for acoustic data collection [30, 65] and began to quantify uncertainty in model predictions in 

extrapolation regions [65].  In this paper, we explore feature selection methods in hopes of 

improving model accuracy, uncertainty estimates, and model interpretability. 

5.2.2  Feature selection 

Dimensionality reduction, or the process of reducing the number of features in a data set, has 

several benefits for machine learning such as minimizing the curse of dimensionality, improving 

model interpretability, decreasing computational and data requirements, and reducing 

uncertainty.  The curse of dimensionality refers to challenges that occur when analyzing data in 

high-dimensional spaces, which do not occur in low-dimensional spaces [70].  Although data 

may be dense in low-dimensional spaces, data become more sparse as the number of dimensions 

(or features) increases.  Machine learning identifies patterns and trends in data, so problems have 

higher data requirements in high-dimensional spaces.  Since acoustic data are limited, it is likely 

that the sparsity of data is a challenge for environmental acoustic modeling and contributes to 

large errors and uncertainties reported in Chapters 2 and 3. 

 In the limited-data regime, there are additional benefits to dimensionality reduction.  For 

example, models are more sensitive to noise when data are limited, so removing geospatial data 

that have large errors may improve model accuracy and uncertainty estimates.  Another potential 
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challenge of modeling limited data is that models may be prone to use correlated, rather than 

causal, geospatial features for predictions.  Although this is desirable when the correlation 

extends to the extrapolation regime, with limited data machine learning can latch onto spurious 

correlations that limit transferability.  Furthermore, when both a causal and correlated feature 

exist in the data set, it is beneficial to use the causal feature which will likely generalize better in 

extrapolation regions. 

 Dimensionality reduction can be divided into two types: feature extraction and feature 

selection [71].  Feature extraction methods, such as manifold learning, transform feature vectors 

into a lower dimensional space without losing information.  In contrast, feature selection 

methods identify a subset of the original features.  Feature extraction methods have the benefit 

that they can identify lower dimensional lossless representations; however, they lose physical 

interpretability.  As an initial investigation into dimensionality reduction for environmental 

sound modeling, this work focuses on feature selection. 

5.2.3  Previous work 

Mennitt et al. [1, 22, 23, 69] have performed much of the pioneering work in continental-scale 

environmental sound level modeling, particularly for the Contiguous United States (CONUS).  

They used a training data set of geospatial and acoustic data to predict ambient outdoor sound 

levels in CONUS using random forest models.  Mennitt et al. [1] performed feature selection by 

first removing features with high Pearson correlation coefficients.  They then removed features 

one at a time, using the out-of-bag error due to permuting features to measure relative feature 

importance and removing the least important feature each iteration.  The optimal number of 

features was determined by calculating the Leave-One-Out (LOO) Root-Mean-Square Error 

(RMSE) for all feature subsets and identifying the subset with the lowest LOO RMSE.  After 
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identifying the reduced feature set that minimized the LOO RMSE using default 

hyperparameters, five random forest hyperparameters were tuned.  Mennitt et al. noted that 

although this process may not produce the best feature subset, it is computationally tractable. 

 Previous work done by both Mennitt et al. [1, 22, 23, 69] and the present authors [65] 

utilized LOO cross-validation to measure model performance.  The LOO cross-validation error is 

computed by removing each site from the training data (one at a time), training a model on the 

remaining data, and then calculating the residual for the corresponding site.  The LOO RMSE is 

the RMSE of all residuals.  Although LOO cross-validation is more computationally expensive 

than other validation metrics, it is often more appropriate for small data sets, particularly when 

each training site may provide unique information to the model.  Additionally, since data are 

limited, the computational costs of computing LOO cross-validation errors are not unreasonably 

large.  However, using the LOO cross-validation to estimate model performance for 

extrapolation regions is not advisable. 

 The LOO cross-validation error is a traditional validation metric, and therefore assumes 

new input data are drawn from the same distribution as the training data.  For the case of 

geospatial environmental acoustic modeling, this is unlikely to be true due to both limited 

acoustic data and a biased distribution of acoustic data.  For example, many training sites (65%) 

are from national parks; however, national parks comprise only a small percent of total CONUS 

land area.  Hence, LOO errors are not likely to be a good estimate of model uncertainty for much 

of CONUS.  The problem of estimating model transferability, or the ability of a model to make 

accurate predictions for data statistically different from the training data, is an open area of 

research. 



5.2  Introduction 

66 
 

 In previous work, we took steps to address the problem of model transferability for 

ambient acoustic environments by quantifying model structural uncertainty [65].  More 

precisely, we constructed an ensemble of six different machine learning models, each from a 

different model class: Gradient Boosted Regression trees (GBRs), Neural Networks (NNs), K-

Nearest Neighbors (KNN), Support Vector Machines (SVMs), Kernel Ridge Regression (KRR), 

and Gaussian Process Regression (GPR).  Model hyperparameters were tuned to minimize the 

LOO Median Absolute Deviation (MAD).  Although LOO validation metrics are not good 

indicators of model transferability, they are computationally tractable and can indicate model 

accuracy on data drawn from a similar distribution as the training data.  Hence, in the absence of 

more acoustic training data, it is reasonable to select model hyperparameters which minimize the 

LOO MAD.  All six models had comparable LOO MAD errors. 

 The median of the ensemble model predictions was used to make environmental sound 

level predictions for CONUS.  Additionally, the use of an ensemble model provided some 

measure of model transferability via the standard deviation of ensemble predictions, which was 

used as a surrogate for the structural uncertainty.  There are many sources of uncertainty in the 

modeling process, including structural uncertainty, or model inadequacy, which arises due to 

lack of knowledge of the true generating function from which data are drawn [32].  Therefore, 

ensemble standard deviations do not correspond to rigorous confidence intervals; rather, they 

represent a minimum level of uncertainty.  

 In addition to aiding in quantifying model transferability, ensemble structural uncertainty 

estimates may help identify areas for model improvement.  For example, areas of high structural 

uncertainty are likely good candidates for future acoustic data collection.  Geospatial features 

that correlate with areas of large uncertainty are likely underrepresented in the training data and 
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may also guide acoustic data collection efforts.  However, geospatial features which correlate 

with areas of large uncertainty and which are unlikely to provide useful information about the 

acoustic environment are good candidates for removal. 

5.2.4  Paper overview 

In this paper, we extend our ensemble approach to environmental sound modeling and explore 

feature selection as a method to improve model accuracy, uncertainty estimates, and model 

interpretability. 

 Previously, 117 geospatial features were included in the modeling process (see Chapter 

3).  Here we start with a set of 120 geospatial features and manually remove 69 features due to 

large errors or uncertainties, significant correlations with other features, poor documentation, or 

the expected lack of a predictive relationship to the acoustic environment (e.g., latitude and 

longitude). 

 With the remaining 51 features, we then compare four feature selection methods.  Each 

method identifies a reduced set of 15 features.  These reduced sets give ensemble LOO MAD 

errors similar to those of all 51 features.  Finally, we use an ensemble approach to calculate 

environmental sound level predictions in CONUS from the reduced-order models.  Our results 

show that the predictions of the reduced-order models depend strongly upon details in the 

problem formulation, including the feature importance metric.  This analysis indicates more 

sophisticated dimensionality reduction techniques are required. 

5.3  Methods 

5.3.1  Data sets 

Data used in the modeling process were composed of both geospatial and acoustic data.  The 

initial set of geospatial data contained 120 geospatial features described in Table A.1 of 
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Appendix A.  Acoustic data for the summer daytime A-weighted L50 were obtained for 496 

unique sites.  These acoustic data and the geospatial data corresponding to the training sites are 

used to train the supervised machine learning models.  For further explanation of the geospatial 

and acoustic data, we refer the reader to Appendix A. 

5.3.2  Initial reduction to 51 features and feature scaling 

Prior to utilizing the four feature importance metrics for feature selection, a quality review was 

performed for the existing 120 geospatial features.  Feature processing, areas of analyses, sources 

of error, correlations with other features, and possible correlations to ambient sound levels were 

considered.  Features were removed if they had large errors or uncertainties, significant 

correlations with other features, poor documentation, or expected lack of physical effect on the 

acoustic environment (e.g., latitude and longitude).  A summary of the removed features is given 

below.  The feature names are described in Table A.1 and the reduced set of 51 features is listed 

in Table A.2 of Appendix A.  For convenience, we repeat Table A.2 here as Table 5.1. 

 
Table 5.1  Subset of 51 geospatial layers used for environmental sound level modeling and 
feature selection in this paper. 

Barren (200 m) DistCoast Herbaceous (5 km) Slope 
Barren (5 km) DistMilitary MilitarySum (40 km) TdewAvgSummer 
Cultivated (200 m) DistRailroads MixedForest (200 m) TdewAvgWinter 
Cultivated (5 km) DistRoadsAll MixedForest (5 km) TMaxSummer 
Deciduous (200 m) DistRoadsMaj PopDensity TMaxWinter 
Deciduous (5 km) DistStreamO1 PPTSummer TMinSummer 
Developed (200 m) DistStreamO3 PPTWinter TMinWinter 
Developed (5 km) DistStreamO4 RddAll VIIRSMean (270 m) 
DistAirpHeli Elevation RddAll (5 km) Water (200 m) 
DistAirpHigh Evergreen (200 m) RddMajor Water (5 km) 
DistAirpLow Evergreen (5 km) RddMajor (5 km) Wetlands (200 m) 
DistAirpMod FlightFreq (25 km) Shrubland (200 m) Wetlands (5 km) 
DistAirpMoto Herbaceous (200 m) Shrubland (5 km)  
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 All land use features were removed due to possible errors in the layers, significant 

correlation with many of the land cover layers, and poor documentation.  Many land use layers 

had sharp, unphysical discontinuities, which may be due to errors in the layers.  For example, the 

Cropland layers had some unphysical looking discontinuities in south eastern North Dakota.  All 

VIIRS layers, except the VIIRS mean upward radiance at night layer with a 270 m area of 

analysis, were removed due to large correlations with each other.  The annual precipitation, 

minimum and maximum temperatures, and dew points were removed due to high correlations 

with the corresponding summer and winter layers.  The RoadNoise and AviationNoise layers 

were removed because both are discontinuous for values below 35 dB.  The forest land cover 

layer was omitted because the forest land cover layer is further divided into deciduous, mixed, 

and evergreen forest layers, which are included in the subset of 51 features.  The DistWaterBody 

and PhyiscalAccess layers were removed due to concerns about errors in the layers.  More 

specifically, some parts of rivers appear to be classified as bodies of water while other do not, 

and some values in the layer, particularly in California, Nevada, and Arizona, appear suspicious.  

The PhysicalAccess layer, on the other hand, had some extremely large unphysical values.  The 

DistAirpSea layer was removed due to high correlations with the other DistAirp features.  Lastly, 

Latitude and Longitude were removed since they should generally not have a physical effect on 

the acoustic environment. 

 In addition to reducing the feature set to 51 features, we rescaled geospatial features 

based on physical arguments.  We scaled most features (i.e., all that do not depend on distance) 

based on their distribution within CONUS as opposed to their distributions in the training data.  

For these features, we use min-max scaling, which scales data to be between zero and one and 

preserves the shape of the data distribution.  For some feature vector 𝑥𝑥, the scaled vector would 
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be given by: 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

  where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 are the minimum and maximum values 

of the feature 𝑥𝑥, respectively.  For geospatial features that rely on distances however, such as 

DistAirpHigh and DistCoast, we use an arctangent function to scale data to be between zero and 

one: 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2
𝜋𝜋

arctan 𝑥𝑥
𝑥𝑥0

  where 𝑥𝑥0 varies for different features and determines how quickly the 

function approaches one.  Arctangent functions were selected for scaling of distance-dependent 

features because it is expected that after the distance exceeds some threshold, the feature's effect 

upon the ambient sound levels will not change.  For example, after reaching 40 km from the 

nearest road, it is unlikely that the distance to the road will provide relevant information for 

environmental sound level predictions.  Note that there is some ambiguity in the choice of 

appropriate distance thresholds (𝑥𝑥0) and further refinements to scaling methods may be 

considered in the future.  However, these scaling methods are an improvement to those used in 

Chapter 3. 

5.3.3  Feature importance metrics 

All feature importance metrics have pros and cons—some of which are described here—and 

there is no single ‘best’ way to calculate feature importance.  Previously, Mennitt et al. used the 

change in out-of-bag error due to permuting feature values in random forest models to estimate 

feature importance [23].  One disadvantage of permutation methods is that they often force 

models to focus on extrapolation regimes that may not correspond to allowed areas of the feature 

space [72].  Additionally, feature importance metrics, including permutation methods, tend to 

over-emphasize correlated features [73].  To investigate the stability of feature selection results 

for different feature importance metrics, we compare four different feature importance metrics: 

namely, Gini importance, Gini importance with a correlation penalty, neural network weights, 

and expert intuition. 
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 The Gini importance metric, or mean decrease impurity, is a common feature importance 

measure for random forest or GBR models.  The Gini importance for a given feature is 

calculated using the error reduction and number of instances split at each node corresponding to 

that feature.  Although we do not provide an explanation of how to compute the Gini importance 

here, the interested reader is referred to [74, 75] for further details.  The Gini importance is fast 

to calculate, but it is often biased in favor of features with higher cardinality or variability [76].  

Additionally, the Gini importance has sometimes been shown to be biased towards correlated 

features [73].  For further information regarding the pros and cons of feature importance metrics 

for decision tree models, including the Gini importance and permutation method used in [23], the 

interested reader is referred to [77, 78]. 

 To reduce bias due to correlations among features, we also calculated the Gini 

importance with a correlation penalty.  After the calculation of the Gini importance for a given 

GBR model, we iterated through all features.  For each feature xi the most strongly correlated 

feature xcorr was identified.  If the given feature xi had a higher Gini importance than the 

correlated feature xcorr, the Gini importance was unchanged.  Otherwise, the Gini importance was 

decreased by a factor of (1 − corr𝑚𝑚𝑚𝑚𝑚𝑚) where corr𝑚𝑚𝑚𝑚𝑚𝑚 is the correlation corresponding to the 

maximally correlated feature xcorr.  If two features are almost identical, this metric will strongly 

penalize the feature with the lower Gini importance, giving it an importance score near zero, 

while leaving the Gini importance of the other feature unchanged.  This feature importance 

metric has similar pros and cons to the original Gini importance metric, but penalizes correlated 

features. 

 The third feature importance metric is determined using the trained NN weights.  There is 

no standard way to measure feature importance in a NN, but many methods have been suggested 
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[79].  We quantified the NN feature importance by first identifying all paths from an input 

feature to the output, and calculating the product of all weights along each path.  Then, for each 

feature, the absolute value of all paths originating at that feature were summed together.  Finally, 

these sums were normalized and the results were used as a feature importance measure.  For the 

case of zero hidden layers, the feature importance was determined by the magnitude of the 

weights from the input features to the output. 

 The last feature importance metric was purely subjective.  An expert familiar with 

environmental acoustic modeling used maps of the geospatial features, information about their 

processing methods, areas of analysis, correlations to other features, etc., to select which features 

would be most important for determining environmental sound levels in CONUS. 

5.3.4  Feature selection process 

After reducing the geospatial feature set from 120 to 51 features, we tuned model 

hyperparameters for the six supervised machine learning model classes (GBRs, NNs, KNN, 

SVMs, KRR, and GPR) to minimize the LOO MAD.  Model hyperparameters are settings that a 

user selects for the learning process, such as the learning rate or activation function in a neural 

network.  We used the tree-structured Parzen estimator approach implemented in hyperopt [43, 

44], a Python library for automatic hyperparameter tuning, to determine appropriate 

hyperparameters.  This approach tunes hyperparameters with minimal supervision so that we can 

periodically retune hyperparameters at different stages of feature selection.  Hyperparameter 

search spaces were adjusted occasionally to account for varying feature subsets. 

 After tuning hyperparameters to minimize the LOO MAD and training all six members of 

the ensemble for the 51-feature model, we applied the four feature importance metrics described 

in the previous subsection to remove one feature at a time.  For each metric, feature importance 
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was calculated and the least important feature was removed to create four different feature 

subsets of size 50.  All six model classes were retrained (using the hyperparameters identified 

from the 51-feature model) and the LOO MAD was calculated for all 24 models (6 models per 

subset of 50 features).  At this point, there were four ensembles, each corresponding to a feature 

importance metric.  For each ensemble, the corresponding feature importance metric was used to 

identify and then remove the least important feature again.  This process was repeated every time 

a feature was removed. 

 Varying the number of geospatial features will change the optimal hyperparameters.  

Model hyperparameter tuning was performed at 51, 40, 30, 20, 15, 10, 5, 4, 3, 2, and 1 feature(s). 

5.4  Results 

5.4.1  Stability of feature selection results 

Prior to examining the results of feature selection, it is beneficial to briefly explore the stability 

of results to changes in the problem formulation.  Recall that the first two feature importance 

metrics are dependent upon the trained GBR model, the third metric is dependent upon the 

trained NN model, and the last metric is independent of all models and training data. 

 Since the Gini importance, Gini importance with correlation penalty, and importance 

calculated from the neural network weights all rely on trained models, varying hyperparameters 

affects feature importance estimates and the feature subsets identified by these metrics.  Indeed, a 

comparison of the reduced feature sets generated using model hyperparameters tuned fewer 

times shows that results for these three data-driven feature importance metrics are sensitive to 

how often hyperparameters are tuned.  For example, the top 15 ranked feature subsets vary both 

in features and rankings when hyperparameters are only tuned at 51 and 40 features rather than at 

51, 40, 30, 20, and 15 features.  For both the Gini importance and Gini importance with 
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correlation penalty, 11 of the top 15 features are the same.  For the importance calculated from 

neural network weights, only seven of the top 15 features are the same however.  Therefore, 

tuning hyperparameters more often would result in different feature rankings and subsets. 

 There is also a certain amount of randomness in tuning hyperparameters and training 

models.  Hence, there is some randomness in determining feature importance estimates for the 

three data-driven metrics.  We found that both changing the random seed used to sample the 

hyperparameter spaces as well as making small changes to the hyperparameter search spaces 

resulted in different optimal hyperparameters and feature rankings. 

 Additionally, in the limited-data regime, the three quantitative methods are biased by the 

distribution of training data, and are therefore likely to select features that correlate with 

environmental sound levels in the training data, regardless of whether or not those correlations 

hold true for most of CONUS.  More particularly, we found that when Longitude was added to 

the set of 51 geospatial features and hyperparameters were tuned for that set of 52 features, both 

model predictions and feature rankings changed.  Note that longitude is strongly correlated 

(Pearson correlation coefficient of 0.59) with the training data due to sampling bias.  The 

maximum, mean, and median absolute differences of ensemble model predictions in CONUS for 

the summer daytime A-weighted L50 for the sets of 51 and 52 features were 11.1, 0.9, and 0.7 

dBA, respectively.  Moreover, Longitude was ranked in the top 11 features for all three metrics 

when using hyperparameters tuned for the set of 52 features. 

 Despite, the sensitivity of the data-driven feature importance metrics to relatively small 

changes in the problem formulation, a comparison of feature selection results can help determine 

appropriate methods for dimensionality reduction for environmental sound level modeling.  

Since the last feature importance metric (i.e., expert intuition) does not rely upon trained models 
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or the training data, it provides an interesting contrast to the other three data-driven methods of 

computing feature importance. 

5.4.2  Changes in the LOO MAD error 

Figure 5.1 shows the LOO MAD vs. the number of features for each of the four feature 

importance metrics and the six models that compose the ensemble model.  All models were 

trained to predict the summer daytime A-weighted L50.  Figure 5.2 similarly shows the LOO 

 

Figure 5.1  LOO MAD errors for the summer daytime A-weighted L50 as a function of the 
number of features.  Model hyperparameters were tuned at 51, 40, 30, 20, 15, 10, 5, 4, 3, 2, and 1 
feature(s). 
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MAD for the ensemble models, which are determined by the median prediction of all six 

members.  Recall that hyperparameters were tuned at 51, 40, 30, 20, 15, 10, 5, 4, 3, 2, and 1 

feature(s).  All four feature importance metrics perform similarly, especially for larger feature 

sets.  It is interesting that the number of features can be reduced significantly from the 51 initial 

features without much change to the LOO MAD.  However, recall that the LOO MAD is a 

traditional validation metric.  So, although models may perform well on the training data, LOO 

MAD makes no guarantees to how the models will generalize to data drawn from a different 

distribution (i.e., CONUS). 

 To further investigate the models generated during feature selection, we analyzed the 

reduced feature sets of 15 features and their corresponding CONUS ensemble predictions.  We 

selected feature subsets of size 15 because all four ensembles had relatively low LOO MAD 

values there (likely in part due to hyperparameter tuning) and LOO MAD errors tended to start 

increasing as features continued to be removed. 

 

Figure 5.2  LOO MAD ensemble errors for the four metrics of determining feature importance 
as a function of the number of features.  All models were trained to predict the summer daytime 
A-weighted L50 and ensemble predictions were determined by the median predicted level of the 
six ensemble members. 
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5.4.3  Comparison of top 15 features 

Table 5.2 lists the top fifteen features identified by the four feature importance metrics in order 

of importance.  (The features in the bottom row would have been removed next and the features 

on the top row were the last remaining features used to train the 1-feature models.)  Interestingly, 

all four feature subsets include a feature that gives information about the distance to the nearest 

road, the distance to the nearest stream, and the amount of evergreen land cover.  Three of the 

four subsets also include information about the mean upward radiance at night (VIIRS layer), 

road density, and the amount of shrubland and herbaceous land cover.  It is unsurprising that all 

feature subsets include features that describe the distance to the nearest road, since road noise is 

likely a significant source of noise in urban areas.  Likewise, features describing the distance to 

the nearest stream and the type of land cover are likely some of the most important features for 

the prediction of ambient sound levels in natural environments.  Hence, the feature lists are not 

unreasonable. 

 Despite the similarities in the feature subsets, there are many significant differences.  

Each of the four subsets contains at least five unique feature layers, with the subset 

corresponding to the Gini importance with a correlation penalty containing the most (eight) 

unique layers.  The subset corresponding to the Gini importance metric only contains one land 

cover feature while the three other subsets contain five to seven land cover features each.  

Additionally, the expert clearly favors land cover layers with a 200 m area of analysis while the 

Gini importance with a correlation penalty favors land cover layers with a 5000 m area of 

analysis.  Given the many differences between the reduced feature sets, it is interesting that they 

all give comparable ensemble LOO MAD errors.  This is likely due in part to limited training 
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data and correlations among the geospatial features.  Further information regarding model 

behavior can be gained by looking at ensemble predictions. 

 
Table 5.2  Top fifteen features identified by various feature importance metrics (re-ranking after 
removing each lowest-ranked feature using the 15-, 10-, 5-, 4-, 3-, and 2-feature tuned models). 

Gini Metric Gini Metric with 
Correlation Penalty 

Neural Network 
Weights 

Expert Intuition 

TdewAvgSummer VIIRSMean (270 m) TMinWinter VIIRSMean (270 m) 
VIIRSMean (270 m) DistCoast Water (5 km) RddAll 
Slope DistRoadsMaj Barren (5 km) DistRoadsMaj 
DistRoadsMaj Shrubland (5 km) RddAll (5 km) DistStreamO3 
DistStreamO3 PopDensity Evergreen (5 km) FlightFreq (25 km) 
Evergreen (5 km) Slope DistRoadsMaj PopDensity 
DistMilitary DistMilitary Developed (200 m) DistRailroads 
PPTWinter TMaxWinter Barren (200 m) Cultivated (200 m) 
DistStreamO1 DistStreamO3 RddAll Deciduous (200 m) 
Elevation Wetlands (5 km) DistStreamO1 Wetlands (200 m) 
RddAll (5 km) Evergreen (5 km) DistAirpMoto Herbaceous (200 m) 
DistAirpLow DistRoadsAll Shrubland (200 m) Shrubland (200 m) 
DistAirpHeli Herbaceous (5 km) FlightFreq (25 km) Evergreen (200 m) 
PPTSummer TMaxSummer DistStreamO4 Developed (200 m) 
DistAirpMoto Deciduous (5 km) Herbaceous (200 m) TdewAvgSummer 

 

 Figure 5.3 shows the ensemble predictions for the summer daytime A-weighted L50 for 

the 15-feature reduced feature sets corresponding to the features listed in Table 5.2.  Training 

sites are indicated by small circles and colored according to measured levels.  Even though the 

four 15-feature ensemble models give similar LOO MAD error measures, CONUS ensemble 

predictions vary significantly among the four ensembles.  To emphasize this, the spread of 

ensemble model predictions for all four feature importance metrics and all sites in CONUS is 

plotted in a histogram in Figure 5.4.  The spread of ensemble predictions has a mean, median, 

and maximum of 6.9, 6.5, and 29.8 dBA, respectively.  Note that a difference of 6 dBA 

corresponds to a doubling of sounds pressure level, so these differences in the CONUS 
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predictions are not small.  These results emphasize that the LOO MAD is not a reliable indicator 

of model accuracy in the extrapolation regime. 

 

Figure 5.3  CONUS ensemble predictions of the summer daytime A-weighted L50 for models 
trained using the top 15 features identified from four different feature importance metrics.  
Training sites are indicated by small circles and are colored according to measured levels. 
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Figure 5.4  Histogram of the spread of CONUS ensemble predictions of the summer daytime A-
weighted L50 for models trained using the top 15 features identified from four different feature 
importance metrics. 
 

 More generally, results suggest it is not beneficial to compare traditional validation 

errors, such as LOO MAD, for ensemble models generated from different feature subsets 

because they do not describe model accuracy in extrapolation regions.  This points to the need 

for better dimensionality reduction methods, which do not rely on the model's predictive 

performance.  Rather, dimensionality reduction techniques that attempt to characterize intrinsic 

dimensions of the data may be better suited to environmental acoustic modeling.  Such feature 

extraction techniques are unsupervised and therefore do not rely on supervised machine learning 

models, hyperparameter optimization, validation error metrics, etc.  Additionally, they can utilize 

information from all geospatial features while still reducing the dimensionality of feature space. 

 In Chapter 3, we quantified structural uncertainty of ensemble model predictions using 

the standard deviation of ensemble models.  We do not include any maps of the estimated 

structural uncertainty in this paper because a comparison of these maps does not provide further 

insight into identifying appropriate feature selection methods or guiding acoustic data collection.  
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In particular, since acoustic training data are limited, training data are sparse in feature space.  

Removing features will change which regions of feature space are sparse, therefore also 

changing which points in CONUS are in the extrapolation regime.  This in turn changes which 

points in CONUS are likely to have larger structural uncertainties and are therefore good 

candidates for acoustic data collection.  Indeed, ensemble models trained on the four subsets of 

15 features produce different estimates of structural uncertainty, indicating acoustic data should 

be collected in different locations for different models.  In general, comparing structural 

uncertainty estimates for different feature subsets will not provide easily interpretable results 

since the feature subsets correspond to different feature spaces in which different regions are 

sparse. 

 Despite similar LOO MAD errors from the selected feature subsets of 15 geospatial 

features, there is notable disparity between the four feature subsets and their corresponding 

ensemble predictions in CONUS.  This demonstrates that feature selection results are sensitive 

not only to the details of hyperparameter tuning (e.g., the size of the search space and frequency 

of hyperparameter tuning), but also to the choice of feature importance metric. 

5.5  Conclusion and future work 

Environmental sound level modeling is an important but challenging problem with various 

potential applications, including aiding the preservation of natural acoustic environments within 

national parks and informing ecological and public health studies.  In this paper we explored the 

viability of dimensionality reduction via feature selection for environmental sound level 

modeling in attempts to improve model accuracy, uncertainty estimates, and model 

interpretability and decrease computational requirements.   
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 A feature set of 120 geospatial features was reduced to a set of 51 geospatial features by 

removing features with large errors or uncertainties, significant correlations with other features, 

poor documentation, or lack of physical effect on environmental sound levels.  Following the 

reduction to 51 features, we further reduced features using four feature importance metrics; 

namely, Gini importance, Gini importance with a correlation penalty, neural network weights, 

and expert intuition.  Feature selection was performed iteratively by training an ensemble model, 

determining the least important feature, as measured by each of the four feature importance 

metrics, and removing that feature.  Hyperparameters were tuned occasionally to minimize the 

leave-one-out median absolute deviation.  All models were trained to predict the summer 

daytime A-weighted L50. 

 Leave-one-out median absolute deviation measures indicated that the cardinality of 

feature space could be reduced to 15 using all four feature importance metrics before error 

started to increase noticeably.  The four feature sets were significantly different (i.e., they did not 

generally contain the same geospatial features).  Additionally, ensemble model predictions for 

the contiguous United States indicated large variability in extrapolation regions among the four 

models.  More specifically, the spread between the four ensemble models of predicted summer 

daytime A-weighted L50 levels in the contiguous United States had a mean, median, and 

maximum of 6.9, 6.5, and 29.8 dBA, respectively. 

 These results further demonstrate that traditional validation metrics, such as the leave-

one-out median absolute deviation are poor indicators of model transferability as discussed in 

Chapters 2 and 3.  Additionally, results show that feature selection is strongly dependent upon 

the feature importance metric.  An investigation of the stability of feature selection results also 

showed that reduced feature sets are sensitive to details of the problem formulation.  In 
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particular, results are sensitive to the frequency of hyperparameter tuning, the hyperparameter 

search space, and the random seed used to identify optimal hyperparameters.  This should be 

cause for suspicion of feature selection for the problem of environmental sound level modeling. 

Indeed; since the results of feature selection are unstable to variations in details of the problem 

formulation, they should not be taken seriously.  This motivates the need for more sophisticated 

dimensionality reduction techniques.  In particular, feature extraction methods that describe the 

intrinsic dimensionality of the data and do not rely on a model may be better suited to 

environmental sound level modeling. 
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6.1  Abstract 

Outdoor acoustic environments have a complex relationship with biotic and abiotic features.  

Acoustic environments influenced by anthropogenic activity are of particular interest because 

ambient noise may negatively affect humans and wildlife.  Therefore, characterization of 

different outdoor acoustic environments, particularly those in which ambient noise dominates, 

may hold value in various scientific fields including public health and ecology.  This paper 
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investigates outdoor sound levels in the continental United States via a k-means clustering model 

that generated eight clusters using 51 geospatial layers, selected and scaled to describe outdoor 

acoustic environments.  Cluster maps are shown and a subclustering analysis is presented in 

which each of the original eight clusters is further divided into two clusters.  Clusters and 

subclusters describe different sound level clusters that may be linked to human or wildlife 

behavior or health outcomes. 

6.2  Introduction 

Overall outdoor sound levels in an area are influenced by anthropogenic and natural factors; 

likewise, outdoor sound levels affect both human and animal life.  In particular, ambient noise, 

or unwanted outdoor sound due to anthropogenic activity, may negatively affect human and 

animal life.  Conversely, the preservation of natural soundscapes enhances visitor experiences 

and helps mitigate anthropogenic effects upon animal life in protected areas (e.g., national parks) 

[13, 80]. 

 Anthropogenic factors, including urban areas, transportation features/corridors (e.g., 

railways, airports, etc.), military bases, and energy development operations have all been linked 

to high levels of ambient noise [81-85].  Different anthropogenic features/activities may also 

impose additive and potentially interactive effects on overall sound levels.  Despite the influence 

of anthropogenic activities on outdoor sound levels, their effects on largescale patterns of 

ambient noise are still in development. 

 Ambient noise can impact human health and well-being and studying noise in the context 

of public health is timely [86].  Ambient noise may be considered ‘the new secondhand smoke’ 

for millions of people, disrupting sleep, impacting hearing loss, and causing cardiovascular 

disease related to stress (e.g., high-blood pressure) [11, 87].  Further, higher noise levels can 
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negatively impact human creativity [88], depression [3], and impair cognition in children [89].  

Additionally, there is evidence that noise exposure may vary between different racial/ethnic and 

socioeconomic groups, possibly contributing to health inequalities [33].  In short, ambient noise 

is a biological stressor and public health hazard [87]. 

 Ambient noise may also influence animal life and species interactions, especially for 

animals that utilize auditory signals.  Many mammals, birds, amphibians, and insects use sound 

for an important life characteristic, such as antipredator defense or navigation [16], and some 

species are wholly reliant upon sound for reproduction (e.g., frogs, toads, birds, some ungulates). 

For species that rely upon sound, competing sounds (e.g., anthropogenic noise) can have varying 

levels of impact [90-97].  For example, ambient noise has been indicated as a causal factor for 

changes in avian behavior and community diversity [17, 18], marine life [19], and anurans (i.e., 

frogs and toads) [20, 21]. 

 Organisms may have an ecological effect on shaping the acoustic landscape.  Many 

invertebrate and vertebrate species use extensive acoustic displays that periodically influence 

outdoor sound levels.  For example, the mating calls of cicadas occur in intense pulses that can 

persist over several weeks [98, 99].  While not as long in duration, the ‘avian dawn chorus’, 

created as multiple species of breeding birds vocalize at dawn (and sometimes at dusk), can 

result in marked sound levels [100, 101].  These acoustic displays are relatively short in duration, 

however, primarily occurring during reproductive events.  In contrast, vegetation may contribute 

more to overall outdoor sound levels than animals; not by generating sound, but rather by 

attenuating or diffusing sound [102-104].   

 This paper examines outdoor sound levels throughout the continental United States 

(CONUS) using 51 biotic and abiotic geospatial layers and k-means clustering to map specific 
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clusters of sound.  It is based on the working hypothesis that outdoor sound levels are influenced 

by anthropogenic activity, landscape structure, landscape characteristics, land use, land cover, 

climatological, and geophysical variables.  The paper does not link outdoor sound levels to 

human or ecosystem health; rather, it maps sound level clusters that may ultimately be linked to 

human health outcomes or ecological effects. 

6.3  Methods 

6.3.1  Geospatial layers 

A set of 51 geospatial raster layers, each with a 270-meter spatial resolution, were obtained from 

the National Park Service Natural Sounds and Night Skies and Inventory and Monitoring 

Divisions database [24, 62].  These layers can be classified into five categories: topography, 

climate, land cover and land use, hydrology, and anthropogenic.  A detailed description of each 

layer is given in Appendix A.   

 Prior to use in clustering, data were scaled to prevent biases in clustering due to 

variations in the range of values in different layers.  In particular, layers that do not vary with 

distance (from some acoustic source) were scaled using min-max scaling, which scales data to be 

between zero and one while preserving the shape of the data distribution.  For geospatial features 

that rely on distance (e.g., DistCoast, DistAirpHigh), an arc tangent function was used to scale 

data to be between zero and one.  An arc tangent function was applied to distance-dependent 

features to emphasize changes in distance close to points of interest (e.g., the coast, airports).   

6.3.2  K-means clustering 

K-means clustering is an unsupervised machine learning algorithm which clusters data into k 

clusters.  More specifically, the algorithm first randomly selects k samples from the data set to 

initialize the k cluster centroids.  Each data point is then assigned to the cluster corresponding to 
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the closest centroid as measured by the Euclidean distance.  Centroid locations are then updated 

to correspond to the mean of all data points in the corresponding cluster.  The process of 

assigning data points to the nearest cluster centroid and adjusting centroid locations is repeated 

until cluster centroids are stable.  Hence, k-means clustering attempts to identify natural clusters 

in the data [105].  We used k-means clustering as implemented in the Python library scikit-learn 

[106]. 

 One challenge of k-means clustering is determining the appropriate number of clusters k 

such that data are classified meaningfully and descriptively.  Two common methods for 

determining the appropriate number of clusters are silhouette analysis and elbow analysis.  

Silhouette analysis is performed by calculating the average silhouette score for k-means 

clustering models trained using various values of k and selecting the model with the highest 

score.  The silhouette score is a measure of how similar points within the same cluster are and 

how dissimilar points from different clusters are [107].  The silhouette score ranges from –1 to 1, 

where 1 represents perfectly clustered data and –1 represents poorly clustered data.  

 Similar to the silhouette analysis, elbow analysis requires training multiple k-means 

clustering models for different values of k.  Elbow analysis uses the distortion (i.e., the sum of 

squares distance between the data and its nearest cluster) to identify an appropriate number of 

clusters.  The distortion is a monotonic decreasing function and the optimal number of clusters is 

the point where adding another cluster to the model begins to only marginally reduce the 

distortion [108].  This happens at the “elbow” in a plot of the distortion.  We use silhouette and 

elbow analyses to identify the appropriate number of clusters k for a set of 51 geospatial layers 

over CONUS. 
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6.3.3  Subclustering 

To further examine the geospatial data and their clusters, we perform a clustering analysis on 

each of the initial k clusters.  Silhouette analysis is used to identify an appropriate number of 

subclusters for each cluster.  For all clusters, the optimal number of subclusters is determined to 

be two.  Note that the silhouette score cannot be calculated for a single cluster, so silhouette 

analysis cannot indicate whether a single cluster (i.e., no subclustering) should be preferred.   

 Therefore, to determine if subclustering into two subclusters is beneficial for any 

individual cluster, the estimated probability densities of the distance (as measured by the 

Euclidean norm) between instances within each subcluster and the corresponding initial cluster 

centroid were plotted.  These plots were overlaid with similar plots using the identified 

subcluster centroids (rather than the initial cluster centroid).  This was done for each cluster to 

compare the results of subclustering into two subclusters and performing no subclustering.  

These distributions can be seen in Appendix B, Figures B.1-B.8.  For the case in which adding a 

second centroid (i.e., subclustering into two clusters) significantly moved both distributions to 

the left, it is more likely that subclustering is beneficial for further describing the data.  Marginal 

shifts indicate that subclustering made only minor improvements in accurately clustering the data 

at the cost of simplicity in the model.   

 In this paper, we present results of performing subclustering for all clusters into two 

subclusters, independent of the changes in the distributions of the distance to centroids shown in 

Figures B.1-B.8.  Depending on the desired application of clustering results, subclustering may 

prove useful even when the results of subclustering do not immediately indicate improved 

clustering.  Although we do not discuss which cases of subclustering appear most beneficial, the 

interested reader is referred to Appendix B for further subclustering results.  
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6.4  Results and discussion 

6.4.1  Determining the number of clusters 

The results of performing silhouette and elbow analyses on the 51 geospatial layers are shown on 

the left and right of Figure 6.1, respectively.  Recall that a higher average silhouette score is 

indicative of better clustering, so the silhouette analysis identifies eight clusters as the optimal 

number.  The results of the elbow analysis are more challenging to interpret because identifying 

the “elbow” in the plot (i.e., the location at which adding another cluster begins to only 

marginally reduce the distortion) is somewhat subjective.  However, the “elbow” appears to be 

around seven or nine clusters.  Given the subjective nature of determining the location of the 

“elbow,” we give more weight to the results of the silhouette analysis.  Therefore, we use eight 

as the optimal number of clusters since both silhouette and elbow analyses indicate this is a 

reasonable choice. 

 

Figure 6.1  Silhouette (left) and elbow (right) analyses showing the average silhouette score and 
average inertia, respectively, as the number of clusters is varied. 
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6.4.2  Eight-cluster model 

Letting k equal eight, k-means clustering was applied to the 51 geospatial layers for all of 

CONUS using a 270-meter spatial resolution.  Each cluster is assigned a color and a map of the 

resulting clusters is shown in Figure 6.2. 

 

Figure 6.2  CONUS cluster assignments after clustering 51 geospatial features with a 270-meter 
spatial resolution. 
 
 
 Each of the eight clusters is impacted by several variables.  Table 6.1 shows the top three 

distinct/unique correlated geospatial variables as ranked by the magnitude of the Pearson 

correlation coefficient.  Correlation coefficients for each cluster were calculated using the scaled 

geospatial layers and Boolean values to denote whether a site resided within the given cluster.  
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Note that for geospatial variables corresponding to multiple layers due to differing areas of 

analysis, only the largest magnitude correlation among all layers is reported.   

 Some trends are immediately apparent in the eight-cluster map.  Cluster one is influenced 

by water and is prevalent along the coasts and larger bodies of water – e.g., the Great Salt Lake.  

Cluster two represents evergreen forests and areas with higher degrees of slope.  Cluster three is 

impacted by winter dew point temperatures and wetlands – thus representing relatively humid 

areas.  Herbaceous vegetation and low amounts of winter precipitation are represented in cluster 

four throughout the northern and southern plains.  Cluster five represents both deciduous and 

mixed forest environments while cluster six’s most important variable is cultivated (crop) land.  

Cluster seven is heavily influenced by developed or urban areas.  Finally, cluster eight represents 

shrubland and low summer precipitation and low summer dew point average temperature. 

 
Table 6.1.  Top three distinct/unique correlated geospatial variables ranked by magnitude for 
each cluster. 
Cluster Number Rank 1 Rank 2 Rank 3 
1 Water (0.91) DistCoast (-0.44) DistRoadsAll (0.35) 
2 Evergreen (0.78) Slope (0.46) TMinSummer (-0.46) 
3 TdewAvgWinter (0.50) Wetlands (0.49) TMinWinter (0.42) 
4 Herbaceous (0.88) PPTWinter (-0.28) DistAirpHigh (0.28) 
5 Deciduous (0.84) MixedForest (0.29) PPTSummer (0.27) 
6 Cultivated (0.89) Shrubland (-0.32) DistRailroads (-0.29) 
7 Developed (0.76) RddMajor (0.70) RddAll (0.67) 
8 Shrubland (0.90) PPTSummer (-0.49) TdewAvgSummer (-0.44) 

 

 Seven of the eight clusters’ most impactful variables are land cover related and five of 

those seven are strongly correlated with vegetation. This may signify that land cover (especially 

vegetation) is the most important variable with regard to outdoor sound levels.  The only cluster 

with a non-land cover variable ranked as the most important variable was cluster three (winter 

dew point average temperature ranked only slightly higher than wetlands land cover).  However, 
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other variables, such as dew point temperature and precipitation are also important in the cluster 

analysis (Table 6.1). 

 

Figure 6.3  Cluster assignments in the Great Lakes region and North East as a result of 
clustering 51 geospatial features with a 270-meter spatial resolution. 
 
 
 Figure 6.3 shows a zoomed-in cluster map of the Great Lakes region and North East.  The 

upper Midwest and northeastern United States are dominated by clusters five, six, and seven.  

Cluster five is heavily impacted by deciduous forest and cluster six is mostly influenced by 

cultivated (crop) land.  The large urban/suburban areas of Chicago, Detroit, Minneapolis, 

Boston, New York City, etc. are in cluster seven, which is most strongly affected by developed 

land cover.   

 Figure 6.4 shows zoomed-in cluster maps of Utah (left) and the eastern/southeastern 

coastal plains (right).  The west/southwest region of the United States is primarily represented by 

clusters eight and two, which are most strongly correlated with shrubland and evergreen land 
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cover, respectively.  Much of the eastern/southeastern coastal plains are represented by cluster 

three, which is positively related to average winter dew point temperatures and wetlands.  

Deciduous forests are evident in cluster five throughout much of the Piedmont and Appalachian 

Mountains.  In both Utah and the eastern/southeastern coastal plains, urban/suburban areas are 

well-mapped in cluster seven.  In particular, the developed northern Virginia-Washington DC-

Baltimore-Philadelphia corridor is striking. 

 

Figure 6.4  Cluster assignments in Utah (left) and along the eastern/southeastern coastal plains 
(right) as a result of clustering 51 geospatial features with a 270-meter spatial resolution. 
 
 
6.4.3  Subclustering 

Each of the initial eight clusters was further divided into two subclusters.  We refer to the first 

and second subcluster for each cluster by the corresponding cluster number and a letter, “a” for 
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the first subcluster and “b” for the second subcluster.  For example, subclusters 8a and 8b are the 

subclusters corresponding to cluster eight (colored brown in maps above).  For simplicity, we 

will refer to the model which subclusters each of the original eight clusters into two subclusters 

as the 16-subcluster model.  A CONUS map of the subclusters is given in Figure 6.5 (see Figure 

B.9 for individual CONUS subcluster maps).  The first color for each subcluster, corresponding 

to all “a” subclusters, is the same as the initial cluster color.  The second color for each 

subcluster, corresponding to all “b” subclusters, is a lighter shade of each initial cluster color. 

 

Figure 6.5  CONUS subcluster assignments after clustering each cluster from the 8-cluster 
model into two subclusters. 
 
 
 The 8-cluster and 16-subcluster models are overall similar in identifying influential 

environmental factors underlying the model predictions (see Tables 6.1 and 6.2).  Note that 



6.4  Results and discussion 

96 
 

rankings in Table 6.2 were calculated in a similar manner to those in Table 6.1.  Some of the 

largest observable differences between the 8-cluster and 16-subcluster models are the further 

distinction of clusters three, seven, and eight.  In the 16-subcluster model, predominant wetland 

areas within cluster three are more clearly separated from the rest of the coastal plains.  

Subclustering also helps differentiate between two densities of urban activity (subclusters 7a and 

7b).  In the 8-cluster model, the deserts of the western United States are represented well by 

cluster eight.  In the 16-subcluster model however, cluster eight subclusters distinguish between 

the cold (subcluster 8b) and hot (subcluster 8a) deserts of the western United States. 

 
Table 6.2  Top three distinct/unique correlated geospatial variables ranked by magnitude for 
each subcluster. 
Subcluster 
Number 

Rank 1 Rank 2 Rank 3 

1a Water (0.70) DistCoast (-0.58) DistRoadsAll (0.34) 
1b Water (0.60) DistRoadsAll (0.14) TMaxWinter (-0.08) 
2a Evergreen (0.78) Slope (0.38) TMinSummer (-0.34) 
2b Elevation (0.31) Evergreen (0.30) TMinSummer (-0.29) 
3a TdewAvgWinter (0.43) TMaxWinter (0.37) TMinWinter (0.37) 
3b Wetlands (0.79) PPTSummer (0.27) TdewAvgWinter (0.23) 
4a Herbaceous (0.57) DistMilitary (-0.18) TMaxSummer (0.15) 
4b Herbaceous (0.63) DistAirpHigh (0.31) TMinWinter (-0.27) 
5a Deciduous (0.78) PPTSummer (0.25) FlightFreq_25km (0.25) 
5b MixedForest (0.39) Deciduous (0.29) TMaxWinter (-0.27) 
6a Cultivated (0.65) DistAirpHeli (-0.28) Elevation (-0.27) 
6b Cultivated (0.53) TMinWinter (-0.31) TMaxWinter (-0.27) 
7a Developed (0.44) RddAll (0.31) RddMajor (0.30) 
7b RddMajor (0.74) Developed (0.74) RddAll (0.67) 
8a Shrubland (0.59) TMaxSummer (0.41) TMaxWinter (0.36) 
8b Shrubland (0.62) TdewAvgSummer (-0.48) Elevation (0.45) 

 

6.4.4  Applications 

The ability to map and determine characteristics of sound has many potential applications.  

Geographic models of environmental sound levels may utilize clustering results to identify areas 

that may have similar acoustic characteristics across large geographic scales.  For data-driven 
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environmental sound models which rely on acoustic measurements, clustering may also help 

identify optimal locations for further acoustic data collection.   

 Characterization of acoustic environments has applications in the study of human and 

animal health and behavior.  Although there are many sources of natural sound, ambient noise 

often results in much higher sound pressure levels and can have harmful effects on human health 

[86] and wildlife [96].  However, the relationship between different acoustic environments and 

their effects upon humans and wildlife is still under investigation; indeed, it has only recently 

been found that noise may affect wildlife [109]. 

 This research could help inform public health studies by aiding in determining 

correlations between human health and acoustic environments.  Additionally, this research could 

help wildlife policy and management – including identifying suitable wildlife corridors and 

examining how ambient noise impacts both aquatic and terrestrial animal habitats as many 

species experience anthropogenically driven habitat changes [109].  Further, the methods used 

and maps generated in this study may enable large-scale studies on the effect of noise on racial 

and ethnic diversity, socioeconomic disparity, animal communication, distribution, and other 

topics. 

6.4.5  Limitations 

The 51 geospatial layers and scaling of layers were selected with the goal of distinguishing 

different acoustic environments.  However, it is likely that there are acoustic sources, 

propagation effects, etc., which are not well-represented in the geospatial data.  Additionally, it is 

possible that some acoustic effects are not well-represented in clusters due to trends in a larger 

number of geospatial layers, which dominate clustering assignments.  We also note that the 
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spatial resolution (270 meters) makes cluster maps ineffective at investigating local (i.e., over 

small spatial regions; e.g., <1km) acoustic clusters. 

6.5  Conclusion 

Largescale patterns of vegetation are influential in the 8-cluster CONUS model; five out of the 

possible eight clusters in the CONUS model are strongly correlated with vegetation.  These 

results present two interesting thoughts: (1) vegetation plays a large role in outdoor sound levels 

even across large expanses of terrain (e.g., CONUS) and (2) outdoor sound levels are influenced 

by the type of vegetation present.  This indicates that, to the extent acoustic environments vary 

with vegetation type, they are in principle resolvable by geospatial data.  Each of the five clusters 

that have a strong correlation with vegetation are best represented by a different type of 

vegetation community.  These unique vegetation communities also likely correspond to unique 

animal communities, which may in part, contribute to sound levels (e.g., wetlands).  Taken 

together, our findings highlight the potential importance of the acoustic properties of unique 

biotic communities (plants and animals) and should be considered in future largescale models of 

outdoor sound. 

 As apparent with clusters six and seven, anthropogenic features (e.g., cultivation and 

urban land development) play a role in landscape level outdoor sound clusters.  However, the 

way in which anthropogenic features influence outdoor sound levels varies across spatial scales.  

For example, urban and suburban areas (cluster seven) demonstrate a concentrated effect on 

outdoor sound clusters, whereas cultivated areas (cluster six) have a much broader effect on 

outdoor sound clusters that occurs over large expanses (e.g., much of the Midwest).  

Interestingly, we also notice that cultivated lands are moderately correlated with the distance to 

the nearest airport or heliport – indicating that in the absence of ‘natural’ vegetation other factors 
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are more important.  Humans have an influential role on ecosystems and it is not surprising that 

anthropogenic features may impose additive effects on outdoor sound levels across landscapes. 

 The outdoor sound level clusters presented in this paper may inform studies of ambient 

noise and its effect upon human and animal life and behavior.  Indeed, we anticipate that 

different outdoor acoustic environments may correlate with trends in public health and ecology.  

As human populations grow, ambient noise is likely to increase in some manner, whether that be 

in sound level or spatial extent or both.  Therefore, it is important to study both the relationship 

between ambient noise and biotic life and the underlying mechanisms that determine outdoor 

acoustic environments.   
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Chapter 7 
 
 
Manifold learning of geospatial data via 
diffusion maps 
 
7.1  Introduction 

As discussed in Chapter 5 of this dissertation, feature selection results for environmental sound 

level modeling are sensitive to details of the problem formulation (e.g., the feature importance 

metric and hyperparameter search space).  However, dimensionality reduction minimizes the 

curse of dimensionality and decreases computational and data requirements.  Unstable feature 

selection results suggest more sophisticated dimensionality reduction techniques are needed.  In 

particular, this chapter investigates the application of manifold learning techniques via diffusion 

maps [110] for dimensionality reduction of the geospatial data. 

7.1.1  Manifold learning 

In mathematics, a manifold is a topological space that is locally isomorphic to Euclidean 

space.  Formally, this means that there exists a bijective function that maps points in the space 
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onto a set of real numbers known as coordinates.  A good mental model of a manifold is that of a 

curved surface embedded in a higher-dimensional space.  For example, each point on the surface 

of a sphere can be uniquely identified by a pair of real numbers, which means that the surface of 

the sphere forms a two-dimensional manifold embedded in the larger three-dimensional space. 

 In manifold learning, it is assumed that data are drawn from a manifold (and possibly 

corrupted by noise).  The goal is to identify coordinates to describe points on the manifold from 

which the data were sampled.  This process can identify potentially complex, nonlinear 

relationships among features.  Importantly, manifold learning performs dimensionality reduction 

on a data set while preserving the intrinsic geometric relationships between neighboring 

points.  Manifold learning is similar to principal component analysis in many ways.  The former, 

however, is able to explicitly learn nonlinear spaces, while principal component analysis finds 

the projection onto the optimal linear spaces.  Due to high correlations between geospatial 

features in the geospatial database, it is natural to assume that the geospatial data are constrained 

to lie on a low-dimensional manifold embedded in the full-featured space.   

7.1.2  Additional advantages of manifold learning 

In addition to minimizing the curse of dimensionality and reducing computational and data 

requirements, performing dimensionality reduction via manifold learning may improve optimal 

experimental design procedures and allow for transferability of models trained only on data from 

the Contiguous United States (CONUS), or CONUS-based models, to regions Outside of the 

Contiguous United States (OCONUS). 

 Clustering methods have been used previously to identify optimal locations for further 

acoustic data collection [30].  Somewhat like clustering, the manifold coordinates identify spatially 

separated locations with similar geospatial features.  However, the manifold learning approach has 
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several advantages over previous clustering analyses.  In particular, clustering requires the 

selection of an appropriate number of clusters, which is often subjective.  Additionally, clustering 

identifies a discrete number of clusters and pigeon-holes each location into exactly one cluster 

while manifold coordinates allow for the possibility of smooth transitions between points without 

forcing points to be categorized as a single type. 

 Manifold coordinates may also enable OCONUS predictions of environmental sound 

levels using CONUS-based sound level models.  One of the primary challenges of producing 

OCONUS predictions is that different geospatial data are available in different regions, 

preventing direct use of CONUS-based models for many OCONUS regions.  Unlike previous 

feature selection which identified a minimal set of bare features, the manifold coordinates 

are nonlinear combinations of geospatial features.  Machine learning models may be trained on 

these manifold coordinates to produce environmental sound level models.  Although OCONUS 

regions may not have the same available geospatial data as in CONUS, we need only identify the 

underlying manifold coordinates of the OCONUS data to then apply CONUS-based models.   

 More specifically, we can utilize the shared bare geospatial layers of CONUS and 

OCONUS regions to train machine learning models to map subsets of bare geospatial layers into 

manifold coordinates.  The final model for OCONUS regions will therefore consist of a two-

stage process: first, a subset of geospatial features is mapped into manifold coordinates, and then 

the manifold coordinates are used to predict ambient sound.  In this way, models of 

environmental sound levels may be extended to OCONUS regions in which only a limited subset 

of geospatial features are available.  In practice, any subset of features that map injectively into 

the manifold coordinates can be used as a reduced feature set.  As we consider strategies for 
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OCONUS geospatial database development, a strategy based on manifold learning will provide 

maximum flexibility in reducing high-correlated features with low effective dimensionality.  

7.1.3  Challenges 

There are several potential challenges to performing manifold learning on the CONUS geospatial 

database.  For example, manifold learning is often computationally intensive; therefore, it is not 

possible to perform manifold learning on all of CONUS.  Hence, manifold learning will only be 

performed on a subset of CONUS data.  Care should be taken to downsample in a way that does 

not introduce bias. 

 Geospatial data also presents interesting challenges.  In particular, if we consider 

geospatial data drawn from a very small geographic region, it should always appear two-

dimensional because it can be mapped to latitude and longitude.  However, on larger scales, 

latitude and longitude will not be manifold coordinates because points that are geographically 

separated may have very similar geospatial features. As a rough mental model, the data should 

be approximately a two-dimensional surface that intersects itself in potentially complicated 

ways.  

 In mathematical language, geospatial data are drawn from an immersion rather than 

a manifold.  (An immersion is similar to a manifold except that it could possibly self-intersect.  A 

figure-eight is an example of a one-dimensional immersion, whereas a circle is a one-

dimensional manifold.)  We believe self-intersections to be important for two related reasons.  

First, self-intersections are the mathematical reason for needing more features in a predictive 

model.  Next, for the case of geospatial data, self-intersections occur when geographically 

separated sites have identical geospatial features.  For example, sites in distant cities may have 

the same geospatial features, and by extension (one hopes), similar acoustic environments.  
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Indeed, at a more fundamental level, this is the reason we expect continental-scale models to be 

possible. 

 When applied to data drawn from immersions, manifold learning will learn the effective 

dimensionality of the minimal manifold into which the immersion can be embedded.  We 

therefore expect the data to exhibit interesting dependence on the scale of the geographic region 

from which it was drawn.  Understanding this scale-dependence will be important both as we 

continue to collect data across CONUS and as we consider OCONUS predictions on even larger 

scales.  

7.1.4  Chapter outline 

Section 2 of this chapter describes the selection of CONUS geospatial data for diffusion maps.  

This includes the selection of geospatial features and downsampled sites in CONUS.  In Section 

3, diffusion maps are applied to CONUS geospatial data and we perform some initial analyses on 

the diffusion coordinates.  Section 4 gives concluding remarks and suggests possible future 

work. 

7.2  Determining data for diffusion maps 

We decided to use the set of 51 geospatial features described in Appendix A, as this set of 

features was selected by a human expert to provide maximal information while minimizing error.  

Features were removed from the initial set of 120 due to large errors or uncertainties, 

redundancies or large correlations with layers in the set of 51, poor documentation and metadata, 

or expected lack of physical effect on the soundscape.  Geospatial features were scaled based on 

all CONUS data (rather than training data) for each layer.  Scaling methods are described in 

more detail in Table 7.1. 
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Table 7.1 Features and scaling methods selected for the application of diffusion maps to 
CONUS geospatial data. 

Feature Scaling 
Elevation Min-max 
Slope Min-max 
PPTSummer Min-max 
PPTWinter Min-max 
TMaxSummer Min-max 
TMaxWinter Min-max 
TMinSummer Min-max 
TMinWinter Min-max 
TdewAvgSummer Min-max 
TdewAvgWinter Min-max 
Barren (200 m, 5 km)  Min-max 
Cultivated (200 m, 5 km) Min-max 
Deciduous (200 m, 5 km) Min-max 
Developed (200 m, 5 km) Min-max 
Evergreen (200 m, 5 km) Min-max 
Herbaceous (200 m, 5 km) Min-max 
MixedForest (200 m, 5 km) Min-max 
Shrubland (200 m, 5 km) Min-max 
Water (200 m, 5 km) Min-max 
Wetlands (200 m, 5 km) Min-max 
DistCoast 2

𝜋𝜋
arctan (

𝑥𝑥
8

) 
DistStream (O1, O3, O4) 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
DistAirpHeli 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
DistAirpHigh 2

𝜋𝜋
arctan (

𝑥𝑥
4

) 
DistAirpLow 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
DistAirpMod 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
DistAirpMoto 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
DistMilitary 2

𝜋𝜋
arctan (

𝑥𝑥
4

) 
DistRailroads 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
DistRoadsAll 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
DistRoadsMaj 2

𝜋𝜋
arctan (

𝑥𝑥
2

) 
FlightFreq Min-max 
MilitarySum Min-max 
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RddAll (Point, 5 km) Min-max 
RddMajor (Point, 5 km) Min-max 
PopDensity Min-max 
VIIRSMean (270 m) Min-max 

 
 
 Ideally, we would apply diffusion maps to geospatial data with a 270-m spatial resolution 

(i.e., the highest spatial resolution available).  However, computational constraints prevent us 

from applying diffusion maps to all geospatial data in CONUS.  Preliminary benchmarks 

suggested we could calculate diffusion maps for approximately 75,000 sites (or ~0.07% of 

CONUS).  Therefore, we needed to determine an appropriate sample of CONUS data on which 

to apply diffusion maps.  In particular, we wanted to identify a sample of CONUS data that 

would produce an embedding (or diffusion coordinates) similar to that of the true embedding 

(i.e., the embedding produced using all 270-m CONUS data). 

 We performed numerical experiments on downsampled regions in Utah and found that 

the results of diffusion mapping were generally robust to downsampling when data were sampled 

randomly and equally from each subcluster.  (Subclusters are described in Chapter 6 of this 

dissertation.)  In other words, simple random sampling of an equal number of sites from each 

subcluster resulted in consistent diffusion maps for large and small sampled percentages (i.e., 

down to 0.07%) of sites.  These results suggest that applying diffusion maps with this sampling 

method to 0.07% of CONUS data should give a good approximation to the true embedding. 

7.3  Diffusion maps of CONUS data 

We randomly sampled the same number of sites (approximately 4,530) from each of the 16 

subclusters described in Chapter 6 and applied diffusion maps to the corresponding geospatial 

data (51 scaled geospatial features).  The total number of sites sampled was 72,538 (close to 

0.066% of CONUS).  The Nyström extension for out-of-sample points was used to estimate 
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diffusion coordinates for all sites not initially used to generate the mapping [111].  The Nyström 

extension uses the similarity between out-of-sample input data points and training data points to 

estimate the diffusion coordinates for the out-of-sample points. 

 A CONUS map of the first diffusion coordinate is shown in Figure 7.1.  Visually, the first 

diffusion coordinate is similar to the predicted summer daytime A-weighted L50.  The correlation 

coefficient between the first diffusion coordinate and summer daytime A-weighted L50 predicted 

by the ensemble model using the set of 51 scaled geospatial features is 0.876.  This correlation 

coefficient is greater than the correlation between the first diffusion coordinate and any 

individual geospatial feature in the set of 51 scaled features.  This result suggests that the first 

diffusion coordinate describes trends in the geospatial data that correlate with sound levels.  

Additionally, the high correlation between the first coordinate and sound level predictions 

indicates that only a small number of diffusion coordinates may be needed for environmental 

sound level modeling. 

 We calculated the correlation coefficients between the 51 scaled geospatial features and 

each of the first 20 diffusion coordinates.  Table 7.2 shows the 15 geospatial features most 

strongly correlated with the first diffusion coordinate.  All of the top 15 correlated features have 

relatively strong magnitudes of correlation (i.e., greater than 0.5).  This result indicates that the 

first diffusion coordinate describes dominant trends in the data, as expected.  The mix of natural 

and anthropogenic features in Table 7.2 demonstrates that the first diffusion coordinate identifies 

both natural and anthropogenic trends.  In general, the other diffusion coordinates have fewer 

strongly correlated geospatial features because they describe regions of smaller variance in the 

underlying manifold. 
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Figure 7.1  CONUS map of the first diffusion coordinate. 
 
 
Table 7.2  Table of the top 15 correlated geospatial features with the first diffusion coordinate. 

Geospatial Feature Correlation 
TdewAvgSummer 0.761 
Elevation -0.749 
Shrubland_5000m -0.713 
PPTSummer 0.707 
DistAirpHeli -0.686 
Shrubland_200m -0.672 
DistAirpMoto -0.635 
DistRailroads -0.624 
DistAirpMod -0.612 
Developed_5000m 0.571 
RddAll_5000m 0.540 
FlightFreq_25km 0.535 
DistAirpHigh -0.524 
DistAirpLow -0.519 
RddMajor_5000m 0.517 
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 We also compared the distributions of training data values and CONUS values for the 

first 20 diffusion coordinates.  Figure 7.2 shows the distributions of training data values and 

CONUS values for the first diffusion coordinate.  Although the distributions are different, they 

are more similar than many of the distributions between individual geospatial features in 

CONUS and the training data.  The third and fourth diffusion coordinates show similar 

agreement between CONUS and training data distributions to the first coordinate.  However, the 

histograms for the other diffusion coordinates show even closer agreement between the 

distributions of CONUS and training data.  These results suggest that diffusion coordinates 

describe the relationship between training points and prediction sites in CONUS better than the 

geospatial features. 

 

 
Figure 7.2  Histogram comparing the distributions of values for the first diffusion coordinate in 
CONUS and the training data. 
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7.4  Concluding remarks and future work 

There are many questions regarding the best use of diffusion coordinates for environmental 

sound level modeling.  For example, it is unclear how many diffusion coordinates should be 

used; although, we anticipate the optimal number of diffusion coordinates is likely small (i.e., 

close to 15) because of the results of Chapter 5.  Additionally, it is possible that the use of 

diffusion coordinates (and the number of diffusion coordinates used) may change trends in 

model predictions as well as estimates of model uncertainty.  Because diffusion coordinates 

attempt to describe the underlying manifold from which data are drawn, a study of changes in 

model behavior and uncertainty estimates may yield physically meaningful results, which can 

guide further improvements in the modeling approach and data collection methods.   

 We expect that in addition to minimizing the curse of dimensionality and reducing 

computational requirements, CONUS diffusion coordinates may help identify optimal locations 

for data collection.  Because diffusion coordinates minimize redundancies among features, 

diffusion coordinates may be more effective at identifying geospatial regions which are poorly 

represented in the training data.  Diffusion coordinates may also be used to measure the 

similarity between geographically distinct sites as well as indicate densely populated areas of the 

model manifold. 

 The ability to apply CONUS-based models to OCONUS regions through the use of 

diffusion coordinates is exciting and may have potentially broad implications.  Indeed, the 

application of CONUS-based models to OCONUS regions not only has implications for 

environmental sound modeling, but also for the study of model transferability in machine/deep 

learning.  For environmental sound modeling, validation studies of CONUS-based model 

transferability to OCONUS regions may help distinguish between acoustic trends which either 



7.4  Concluding remarks and future work 

111 
 

persist across or are unique to certain continents or regions.  The success (or failure) of CONUS-

based models in OCONUS regions will also have implications for the success of model 

transferability with limited training data. 
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Chapter 8 
 
 
Conclusion 
 
Modeling outdoor acoustic environments on continental scales is a challenging problem with 

broad potential applications in areas such as public health, social justice, and ecology.  In this 

dissertation, we implemented supervised machine learning models trained on geospatial layers 

and acoustic data to predict different acoustic metrics across the contiguous United States.  Many 

challenges of continental-scale environmental sound modeling stem from limited availability of 

acoustic measurements on which to train supervised machine learning algorithms.  Within this 

data-limited regime, models are forced to make predictions in extrapolation regions (i.e., areas of 

feature space poorly represented by the training data) for which traditional validation metrics do 

not apply.  Therefore, leave-one-out cross-validation predicts overly optimistic expected errors. 

 Indeed, we observe that leave-one-out cross-validation is a poor indicator of model 

accuracy across continental-scales.  This motivates better uncertainty quantification of model 

predictions.  We use ensemble models to improve uncertainty estimates; however, we do not 
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quantify all sources of uncertainty and therefore, present only minimum estimates of uncertainty.  

More specifically, we use an ensemble of models from different machine learning classes to 

estimate the structural uncertainty in model predictions.  Additionally, we utilize bootstrap 

sampling to better estimate uncertainty due to computational and statistical uncertainties.  We 

emphasize that these minimal uncertainty estimates do not account for all sources of uncertainty 

(e.g., we do not quantify uncertainty due to errors in geospatial layers or measured acoustic data) 

and strongly caution the use of environmental sound level model predictions without a thorough 

consideration of uncertainty estimates.   

 However, evaluation of model predictions for the summer daytime A-weighted L50 and 

summer hourly spectra indicate that models have learned some relationships between geospatial 

data and the acoustic environment.  We observe that leave-one-out predictions for the summer 

hourly spectra are realistic and often have the same spectral shape as measured levels, even if 

overall levels do not agree.  Although models struggle to identify locations for which bird and/or 

insect contributions should be present, geospatial data may not provide sufficient detail and 

resolution for accurate modeling of bird/insect activity.  The relative success of models for leave-

one-out predictions of different hours and frequency bands indicates that supervised machine 

learning methods may be successful if sufficient training data are obtained.  Much of the training 

data are obtained from similar environments, which may explain the relative success of models 

for leave-one-out cross-validation. 

 In this dissertation, we also investigated methods of dimensionality reduction for the 

geospatial data.  We found that feature selection results were unstable to changes in the problem 

formulation, suggesting more sophisticated methods of dimensionality reduction were required.  

In particular, we used diffusion maps to identify a reduced set of coordinates by which the 



7.4  Concluding remarks and future work 

114 
 

geospatial data can be described.  These reduced coordinates provide a means of making 

predictions for regions outside of the contiguous United States as well as identifying 

undersampled geospatial environments. 

 Future work may include training environmental sound level models on diffusion 

coordinates and applying and validating models in regions outside the contiguous United States.  

Additionally, identifying optimal methods for acoustic data collection as well as incorporating 

physics-based modeling approaches may improve model accuracy and uncertainty estimates.  

Indeed, validating models on measured and physics-based model outputs will likely identify 

geospatial regions in which models struggle, and which are therefore good candidates for 

acoustic data collection.  It is possible that such methods will also identify potential geospatial 

information that may benefit models.  Indeed, it is unlikely the geospatial data are sufficient to 

accurately characterize all acoustic environments.  Therefore, additional geospatial layers may be 

needed for accurate modeling within such environments. 

 In conclusion, continental-scale environmental sound level modeling is a challenging 

problem with broad potential applications.  Many challenges are a result of limited acoustic data 

on which to train machine learning models, which force models to extrapolate when making 

predictions on large geographic scales.   We have laid the foundation for uncertainty 

quantification in continental-scale environmental sound level models using two types of 

ensembles.  We have also shown that feature selection techniques are not appropriate for sound 

level models, and have suggested an alternative dimensionality reduction method.   

 The results of the validation studies and uncertainty estimates reported in this dissertation 

are deeply concerning and bring into question the validity of studies dependent upon the 

accuracy of the NPS published sound level map [24].  Despite concerns for the accuracy of 
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continental-scale sound level predictions, this dissertation also demonstrates that models may 

perform well when training data are well-sampled for a geographic region or geospatial 

environment.  Therefore, we expect that continental-scale environmental sound level models 

may achieve relatively high accuracy in most geospatial environments given sufficient 

representative training data. 
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Appendix A 
 
 
Geospatial and acoustic database 
 
A.1  Geospatial data 

Data from 120 geospatial layers for the contiguous United States were considered for ensemble 

models (see Table A.1).  We note that many of the layers considered are the same as those 

considered or used by Mennitt et al. [1]  Additionally, Table A.1 is organized in the same manner 

as Table 1 of [1] to facilitate comparisons between geospatial layers considered for Mennitt et 

al.’s model and the ensemble model.  The geospatial layers all have a 270-m spatial resolution 

and can be categorized into one of six categories: topography, climate, land cover, hydrology, 

anthropogenic, and position.   

 All geospatial data were obtained from the National Park Service Natural Sounds and 

Night Skies and Inventory and Monitoring Divisions database [62, 63] with the exception of the 

AviationNoise and RoadNoise layers which were obtained from the U.S. Department of 

Transportation’s Bureau of Transportation Statistics [112]. 
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Table A.1  Geospatial layers for the contiguous United States, their area of analysis, description, 
and units.  This table follows the same organization of Table 1 from [1]. 

Variable Area of 
Analysis 

Description Units 

Topography    
    Elevation Point Digital elevation, height above sea level m 
    Slope Point Rate of change of elevation Degrees 
Climate    
    PPTSummer Point 10-year average summer precipitation mm 
    PPTWinter Point 10-year average winter precipitation mm 
    PPTAnnual Point 10-year average yearly precipitation mm 
    TMaxSummer Point 10-year average summer maximum 

temperature 
°C 

    TMaxWinter Point 10-year average winter maximum 
temperature 

°C 

    TMaxAnnual Point 10-year average yearly maximum 
temperature 

°C 

    TMinSummer Point 10-year average summer minimum 
temperature 

°C 

    TMinWinter Point 10-year average winter minimum 
temperature 

°C 

    TMinAnnual Point 10-year average yearly minimum 
temperature 

°C 

    TdewAvgSummer Point 10-year average summer minimum dew 
point 

°C 

    TdewAvgWinter Point 10-year average winter maximum dew point °C 
    TdewAvgAnnual Point 10-year average yearly minimum dew point °C 
Land Cover    
    Barren 200 m, 5 km Proportion of barren land cover % 
    Cultivated 200 m, 5 km Proportion of cultivated land cover % 
    Deciduous 200 m, 5 km Proportion of deciduous forest land cover % 
    Developed 200 m, 5 km Proportion of developed land cover % 
    Evergreen 200 m, 5 km Proportion of evergreen forest land cover % 
    Forest 200 m, 5 km Proportion of forest land cover % 
    Herbaceous 200 m, 5 km Proportion of herbaceous land cover % 
    MixedForest 200 m, 5 km Proportion of mixed forest land cover % 
    Shrubland 200 m, 5 km Proportion of shrubland land cover % 
    Water 200 m, 5 km Proportion of water (only) land cover % 
    Wetlands 200 m, 5 km Proportion of wetlands land cover % 
Hydrology    
    DistCoast Point Distance to nearest coastline m 
    DistStreamO Point Distance to nearest stream with Strahler 

order greater than 1, 3, or 4 
m 

    DistWaterBody Point Distance to nearest body of water m 
Anthropogenic    
    AviationNoise Point Aviation model noise dB 
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    Built 200 m, 5 km Degree of human modification from built 
land use 

Ratio 

    Commercial 200 m, 5 km Degree of human modification from 
commercial land use 

Ratio 

    Cropland 200 m, 5 km Degree of human modification from 
cropland land use 

Ratio 

    DistAirpHeli Point Distance to nearest heliport m 
    DistAirpHigh Point Distance to nearest high-volume airport m 
    DistAirpLow Point Distance to nearest low-volume airport m 
    DistAirpMod Point Distance to nearest moderate-volume airport m 
    DistAirpMoto Point Distance to nearest motorized airport m 
    DistAirpSea Point Distance to nearest seaplane airport m 
    DistMilitary Point Distance to nearest military flight path m 
    DistRailroads Point Distance to nearest rail line m 
    DistRoadsAll Point Distance to nearest road (all roads) m 
    DistRoadsMaj Point Distance to nearest road (major roads) m 
    Extractive 200 m, 5 km Degree of human modification from 

extractive land use 
Ratio 

    ExurbanHigh 200 m, 5 km Degree of human modification from high 
exurban land use 

Ratio 

    ExurbanLow 200 m, 5 km Degree of human modification from low 
exurban land use 

Ratio 

    FlightFreq 25 km Total weekly flight observations Count 
    Grazing 200 m, 5 km Degree of human modification from grazing 

land use 
Ratio 

    Industrial 200 m, 5 km Degree of human modification from 
industrial land use 

Ratio 

    Institutional 200 m, 5 km Degree of human modification from 
institutional land use 

Ratio 

    MilitarySum 40 km Sum of designated military flight paths Count 
    Mining 200 m, 5 km Degree of human modification from mining 

land use 
Ratio 

    Park 200 m, 5 km Degree of human modification from park 
land use 

Ratio 

    Pasture 200 m, 5 km Degree of human modification from pasture 
land use 

Ratio 

    PhysicalAccess Point Travel time given transportation 
infrastructure and off-trail permeability 

Ratio 

    PopDensity Point 2015 estimated population density data persons/
km2 

    RddAll Point, 5 km Road density, sum of road lengths (all roads) 
divided by area of interest 

km/km2 

    RddMajor Point, 5 km Road density, sum of road lengths (major 
roads only) divided by area of interest 

km/km2 

    RecCon 200 m, 5 km Degree of human modification from 
recreation-conservation land use 

Ratio 
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    RoadNoise Point Department of Transportation road model 
noise 

dB 

    Suburban 200 m, 5 km Degree of human modification from 
suburban land use 

Ratio 

    Timber 200 m, 5 km Degree of human modification from timber 
land use 

Ratio 

    Transportation 200 m, 5 km Degree of human modification from 
transportation land use 

Ratio 

    UrbanHigh 200 m, 5 km Degree of human modification from high 
urban land use 

Ratio 

    UrbanLow 200 m, 5 km Degree of human modification from low 
urban land use 

Ratio 

    VIIRS 270 m, 1080 
m, 4320 m, 
17280 m, 
69120 m 

Maximum, mean, and minimum upward 
radiance at night 

nW/cm2/
sr 

    WaterHum 200 m, 5 km Degree of human modification from water 
land use 

Ratio 

    WaterNat 200 m, 5 km Degree of human modification from natural 
water land use 

Ratio 

    Wet 200 m, 5 km Degree of human modification from wet 
land use 

Ratio 

Position    
    Latitude Point Latitude value of raster cell in decimal 

degrees 
Degrees 

    Longitude Point Longitude value of raster cell in decimal 
degrees 

Degrees 

 
 
 Following a quality review of these 120 layers, a reduced set of 51 geospatial layers were 

selected for environmental sound level modeling (see Table A.2).  Features were removed due to 

large errors or uncertainties, significant correlations with other features, poor documentation, or 

the expected lack of a predictive relationship to the acoustic environment (e.g., latitude and 

longitude).   
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Table A.2  Subset of 51 geospatial layers used for environmental sound level modeling. 

Barren (200 m) DistCoast Herbaceous (5 km) Slope 
Barren (5 km) DistMilitary MilitarySum (40 km) TdewAvgSummer 
Cultivated (200 m) DistRailroads MixedForest (200 m) TdewAvgWinter 
Cultivated (5 km) DistRoadsAll MixedForest (5 km) TMaxSummer 
Deciduous (200 m) DistRoadsMaj PopDensity TMaxWinter 
Deciduous (5 km) DistStreamO1 PPTSummer TMinSummer 
Developed (200 m) DistStreamO3 PPTWinter TMinWinter 
Developed (5 km) DistStreamO4 RddAll VIIRSMean (270 m) 
DistAirpHeli Elevation RddAll (5 km) Water (200 m) 
DistAirpHigh Evergreen (200 m) RddMajor Water (5 km) 
DistAirpLow Evergreen (5 km) RddMajor (5 km) Wetlands (200 m) 
DistAirpMod FlightFreq (25 km) Shrubland (200 m) Wetlands (5 km) 
DistAirpMoto Herbaceous (200 m) Shrubland (5 km)  

 
 
A.2  Acoustic data 

The acoustic data contain acoustic measurements of the summer daytime A-weighted L50 from 

492 geographically unique sites.  Data are compiled from multiple sources including Blue Ridge 

Research and Consulting, LLC's internal acoustic data, the NPS acoustic database [62, 63], and a 

1974 Environmental Protection Agency study [64].  Note that only summer daytime and hourly 

acoustic data were utilized in this dissertation (i.e., data from other seasons/times were not used). 
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Appendix B 
 
Additional figures for subclustering analysis 
 
B.1  Silhouette scores and distances to centroids 

This section provides figures of silhouette analyses for each cluster from the 8-cluster model 

described in Chapter 6 (Figures B.1-B.8; left).  Additionally, the estimated probability densities 

of the distance (as measured by the Euclidean norm) between instances within each subcluster 

and the correspond initial cluster centroid are plotted.  These estimated probability densities are 

overlaid with similar plots using the identified subcluster centroids (rather than the initial cluster 

centroid; Figures B.1-B.8; right).  These figures may help determine if subclustering into two 

subclusters is beneficial for a given application and cluster.  In particular, when adding a second 

centroid (i.e., subclustering into two clusters) significantly moves both distance distributions to 

the left, it is more likely that subclustering is beneficial for further describing the data.   

 Lastly, we plot individual maps of subcluster assignments in the contiguous United States 

for each of the original eight clusters (Figure B.9). 
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Figure B.1  Left: average silhouette scores as Cluster 1 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 1a and 1b to Cluster 1’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 
 
 

 

Figure B.2  Left: average silhouette scores as Cluster 2 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 2a and 2b to Cluster 2’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 
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Figure B.3  Left: average silhouette scores as Cluster 3 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 3a and 3b to Cluster 3’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 
 
 

 

Figure B.4  Left: average silhouette scores as Cluster 4 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 4a and 4b to Cluster 4’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 
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Figure B.5  Left: average silhouette scores as Cluster 5 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 5a and 5b to Cluster 5’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 
 
 

 

Figure B.6  Left: average silhouette scores as Cluster 6 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 6a and 6b to Cluster 6’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 
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Figure B.7  Left: average silhouette scores as Cluster 7 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 7a and 7b to Cluster 7’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 
 
 

 

Figure B.8  Left: average silhouette scores as Cluster 8 is subclustered.  Right: estimated 
probability density of the distance from data within subclusters 8a and 8b to Cluster 8’s centroid 
(dashed lines) and their corresponding subcluster centroids (solid lines). 



B.1  Silhouette scores and distances to centroids 

126 
 

 

Figure B.9  CONUS maps of two subclusters for each of the original eight clusters.
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