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ABSTRACT

Design of Simple Aircraft and
Visualization of Fluid Velocity and Vorticity

Gregory Devenport
Department of Physics and Astronomy, BYU

Bachelor of Science

The design process for a simple radio controlled (RC) airplane with high lift is presented.
The lift-to-drag ratio of the designed aircraft is measured experimentally and is compared to the
lift-to-drag ratio calculated using computational tools Xflr5, and FLOWUnsteady [1]. To augment
FLOWUnsteady simulations of a wind harvesting aircraft, a successful coding method is presented
to allow visualization of the vorticity and velocity of air near the turbine blades.
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Chapter 1

Introduction

The use of aircraft is critical to our lives today. Aircraft are used for a variety of purposes including

passenger and cargo transport, defense, advertising, and recreation. Current research seeks to

expand the use of aircraft to areas such as urban transportation, and even wind energy harvesting [2].

This report examines some of the basic aerodynamic principles that affect the take off and

landing distance of an airplane and details the process to design a simple RC airplane with a short

take off and landing distance. It also describes an analysis of the aircraft using computational tools

Xflr5 and FLOWUnsteady, and compares these computational results to experimental data for the

same aircraft.

This report also outlines a research opportunity working with a PhD student on wind turbine

placement optimization for the Makani M600 Energy Kite. Code was developed to aid in viewing

flow characteristics around the windcraft to help with turbine placement optimization and to create

images for use in papers.
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Chapter 2

Aircraft Design Project

Many factors influence the takeoff and landing distance of an airplane, but two significant factors

are the aircraft weight and the ratio of the lift to drag forces on the aircraft. While the original design

goal for the project was to minimize takeoff and landing distance, it was decided that experimentally

measuring this would introduce non-aerodynamic factors such as runway composition and pilot

skill. To place more emphasis on aerodynamics, the design goal was modified to maximize the lift

to drag ratio, or glide ratio. Increasing lift lowers the stall speed of the aircraft. This means the

airplane can reach takeoff speed sooner, therefore reducing the takeoff distance. With a lowered

stall speed, the aircraft can also touch down at a slower speed which reduces the landing roll of the

aircraft.

The design process began with identifying several characteristics that would contribute to a high

glide ratio such as airfoil shape, wing span and sizing, and aircraft weight. These characteristics are

described below.

2



2.1 Design 3

2.1 Design

2.1.1 Airfoil Shape

To increase lift, an airfoil with camber and a large chord length is desirable. High lift airfoils are

usually thin and long with a lot of camber. Airfoils were designed in two batches. The first batch

were designed with the only goal being to maximize the airfoil coefficient of lift, cl . One of the first

designs in shown in figure 2.1.

Figure 2.1 First round airfoil profile.

The general results of these first airfoils were large lift coefficients, but the pitching moment

coefficient values, cm were significantly greater than for commonly used airfoils. Figure 2.2 shows

the cl and cm plots corresponding to the airfoil in figure 2.1. The RC plane was to be constructed

from insulation foam so a thin airfoil also presented structural concerns. Ultimately these airfoils

were abandoned due to the stability and structural concerns. The second batch of airfoils were

modeled after Clark Y and sailplane foils. The Clark Y airfoil is commonly used in RC planes,

and sailplanes are designed to stay in the air for a long time without power so they have very large

glide ratios. These characteristics made both airfoils a good starting place for airfoil design. The

general shapes of these airfoils were modified until it seemed that the airfoil was stable but also
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Figure 2.2 First round airfoil cl and cm.

produced a lot of lift. The airfoil that was ultimately selected is shown in figure 2.3 with its cm and

cl plots shown in figure 2.4. Its positive camber gives a large amount of lift, but the airfoil remains

relatively stable. Its thickness also allows it to be cut from foam.

Figure 2.3 Second round airfoil profile.



2.1 Design 5

Figure 2.4 Second round cl and cm.

2.1.2 Wing Design

To increase the glide ratio, a large wingspan was desirable. This decreases induced drag while

increasing lift. However, a large wingspan poses a structural problem especially for a wing built of

foam as the bending moment at the root can be large. A wingspan was chosen that would provide

a lot of lift while not breaking at the root due to bending stress. The original wing design had

a root chord of 9.5cm but this was doubled to make the wing more rigid for construction. This

increased the wing area which was found to increase lift and lower the stall speed of the aircraft

despite a small increase in drag. Doubling the chord length also increased the wing thickness which

decreased the bending stress in the wing.

To improve the lateral stability of the aircraft, the wing was given 2◦ dihedral. This remained

constant in the computational analyses but the aircraft that was built had a highly flexible wing

that bent significantly when in flight. This increased the effective dihedral as shown in figure 2.5.

Increasing the dihedral caused the plane to be very laterally stable, but lowered the glide ratio, as

the vertical component of lift was decreased and the drag was increased.

The main wing was twisted at the tip so the control surfaces wouldn’t stall before the inboard
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Figure 2.5 Extra dihedral in wing while in flight.

wing, allowing for control even during a stall. The entire wing was also twisted to increase the glide

ratio at level flight. Shown in figure 2.6 is the glide ratio plotted against the angle of attack. The

max glide ratio occurs around 7◦ so the entire wing was twisted 5◦ to increase the glide ratio at level

flight. The wing was not twisted to the angle of attack corresponding to max glide ratio because this

is near the stall angle of attack for the wing and the ability to climb by increasing the angle of attack

was needed for flight.

Figure 2.6 Untwisted wing L/D.
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2.1.3 Plane Dimensions

The final plane design, excluding the fuselage, is shown in figure 2.7 with the various dimensions

tabulated in table 2.1. No rigorous analysis was performed to select the size of the horizontal and

vertical stabilizer, but stabilizers were sized according to statistical values [3]. The total area of

the horizontal stabilizer was chosen to be about 20% of the main wing area. The total area of the

vertical stabilizer was chosen to be about 10% of the main wing area. These values were found to

be standard for rough tail sizing. The vertical and horizontal stabilizers use a NACA 0012 as their

airfoil. The total mass of the plane was 515 grams and the completed plane is shown in figure 2.8

with some internal electronics not shown.

Figure 2.7 Final plane design.

2.2 Analysis

Analysis of the plane was performed using FLOWUnsteady and Xflr5. Xflr5 was used to perform

stability analysis and to find the angle of attack corresponding to a high glide ratio as discussed

before. FLOWUnsteady was used as a comparison against Xflr5, but was primarily used to prepare

for future research, as research in the lab often involves using FLOWUnsteady. FLOWUnsteady

treats a wing as a flat plate, discounting the wing’s airfoil profile. So, to more accurately compare

the FLOWUnsteady analysis to the Xflr5 analysis, a second Xflr5 analysis was performed with all
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Figure 2.8 Finished RC plane.

Main Wing Horizontal Stabilizer Vertical Stabilizer

Span 150 cm 17 cm 24 cm

Root Chord 19 cm 10 cm 10 cm

Tip Chord 6.5 cm 8 cm 6 cm

Root Twist 5◦ -1.5◦ 0◦

Tip Twist 1◦ -1.5◦ 0◦

Sweep 7◦ 5◦ 14◦

Table 2.1 Plane dimensions.

airfoils replaced by a NACA 0003 airfoil which is nearly a flat plate. Analyses were then performed

to compare aircraft glide ratios. Each plane had the exact same dimensions, twist, sweep, and

dihedral. The values of CD and CL from these analyses are shown in figure 2.9. It was found that for

the three analyses the CL data was nearly identical, with the original Xflr5 plane data slightly higher.

This is to be expected as the camber of the wings increases the amount of lift produced. The CD

data for each analysis differed greatly, with the FLOWUnsteady values significantly smaller than

both other analyses. The FLOWUnsteady values are on average 14% of the original Xflr5 plane
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values and 11% of the Xflr5 flat plate airfoil values. The Xflr5 flat plate airfoil data is similar to the

original Xflr5 plane data until at an angle of attack of 3◦ it increases very quickly. One reason for

the FLOWUnsteady data being smaller than both Xflr5 data is that FLOWUnsteady only calculates

induced drag and does not include parasitic drag due to friction and pressure. Assuming parasitic

drag is roughly equal to induced drag, the data is still smaller than expected. The reason for this

error is not known, but could be due to the setup of the simulation.

Figure 2.9 CL and CD comparison.

Based on these analyses FLOWUnsteady predicted the glide ratio to be 120.1, the Xflr5 flat

plate analysis predicted a glide ratio of 10, and Xflr5 analysis using the designed airfoil predicted

a glide ratio of 18.25. The FLOWUnsteady prediction is high, likely due to FLOWUnsteady not

including parasitic drag as discussed before. Using the previous assumption relating induced and

parasitic drag, FLOWUnsteady with estimated CD corrections predicts a glide ratio of 60 which

is still extremely high. Comparing these predictions to the experimental data shown below, the

analysis in Xflr5 using the designed foil was the most accurate.
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Throwing Height(ft) Glide Distance (ft) Glide Ratio

6 148 24.7 ± 2.1

6 172 28.7 ± 2.4

6 113 18.8 ± 1.6

6 142 23.7 ± 2.0

Table 2.2 Experimental glide ratio.

2.3 Flight

The glide ratio can be determined experimentally by measuring the horizontal distance traveled,

x, and the corresponding loss of altitude, y. As shown in equation 2.1 the glide ratio is found by

dividing the horizontal distance traveled by the altitude loss.

L
D

=
x
y

(2.1)

Experimental data was taken at Rock Canyon park. The plane was thrown from a measured

height of 6 ft and the horizontal distance traveled before touching the ground was measured. The

collected data from four test throws is shown in table 2.2. The glide ratio was determined by

using equation 2.1. The uncertainty, ∆y, in the throwing height was estimated to be 0.5 ft, and the

uncertainty, ∆x, in the horizontal distance traveled was estimated to be 2 ft. The total uncertainty in

the glide ratio is then given by equation 2.2.

σ =

√(
∆x
y

)2

+

(
x ∆y
y2

)2

(2.2)

Averaging the experimental values, the glide ratio of the plane is 24.0 ±2.0 which is higher than

the predicted values from both Xflr5 analyses, and significantly lower than the predicted value from

FLOWUnsteady. While the FLOWUnsteady data for CL seems to be accurate, as mentioned before
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the CD data is in question. The aircraft performed well and the goal of producing an airplane with a

high glide ratio was accomplished. Videos of glide tests and flights can be found in appendix A.



Chapter 3

Flow Visualization Using FLOWUnsteady

The use of FLOWUnsteady in aircraft analysis led to a research opportunity working with a PhD

student on wind turbine placement optimization for the Makani M600 Energy Kite, referred to as a

windcraft in this report. An image of the windcraft is shown in figure 3.1. The research involved

Figure 3.1 Windcraft in simulation.

using FLOWUnsteady to simulate the windcraft’s behavior in flight with the purpose of optimizing

12
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Figure 3.2 Isosurface of vorticity.

the placement of the turbines for electric power production [5]. To aid in the optimization, and to

create images for future papers, the PhD student wanted to visualize the behavior of the airflow,

specifically the velocity and vorticity, near the windcraft turbines. Vorticity is a measure of the

rotational characteristics of a flow, and was visualized as an isosurface, which shows a surface with

constant value, in this case vorticity. As a visual example, figure 3.2 shows an isosurface for a

specified value of vorticity around a propeller.

A FLOWUnsteady simulation calculates velocity and vorticity, however these values are only

computed at aircraft surfaces such as wings, turbine blades, and propellers. While this is useful,

flow characteristics needed to be visualized at locations other than the windcraft surfaces. Code

to accomplish this already existed but the existing method was not documented. This project

was performed to develop and document a method for determining fluid velocity and vorticity

everywhere inside a defined volume using the output of an existing FLOWUnsteady simulation. It

is important to note that the purpose of the code was to produce a correct qualitative description of

the flow, rather than to calculate exact numerical values of fluid characteristics, although this may

be a result.
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3.1 Coding Method

FLOWUnsteady uses the vortex particle method to numerically solve the Navier-Stokes equations,

providing velocity and vorticity information about the flow [4]. For each simulation time step, a

certain number of particles are shed from aircraft surfaces. The particles’ location, vortex strength,

and size are used to calculate flow characteristics.

The code was developed by solving a series of problems. After a discussion about the general

process with the writer of the existing code, it was determined that the main problems to solve

were recreating the simulation particle field, calculating the velocity and vorticity based on the

particle field, and exporting the velocity and vorticity data in a format that could be viewed in the

visualization application ParaView. After working through each of these problems, and much trial

and error, a working method was developed and documented.

To calculate flow characteristics everywhere inside a defined volume, the simulation particle

field must first be recreated using the output files from a FLOWUnsteady simulation. For a given

time step, needed particle data is read in from the simulation output file. Each particle is recreated

with a position, vortex strength, and smoothing radius. The smoothing radius defines a distance

over which the vortex influence of the particle decreases so the velocity doesn’t go infinite as the

radial distance from the particle goes to zero. A fluid domain grid is created to which velocity and

vorticity solutions will be added later. The grid will eventually become a data set with velocity and

vorticity defined at regularly spaced nodes.

A particle field of test particles is created to be used as points to calculate the velocity and

vorticity. These particles are placed at the same locations as the fluid domain grid nodes. For these

particles, small values for the vortex strength and smoothing radius are used so the particles do not

significantly affect the velocity and vorticity solutions.

A function is called to calculate the interaction between the simulation particle field and the test

particle field. The use of this function was copied from the existing code. The velocity and vorticity
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induced by the simulation particles on the test particles is stored in the respective test particles. By

iterating through each test particle, the velocity and vorticity throughout the volume is extracted.

These values are then added to the fluid domain grid which can be saved as a VTK file to be viewed

in ParaView.

This process is repeated for the desired number of time steps. Simulations can be viewed in

ParaView, and by importing the fluid domain grid VTK files, velocity and vorticity inside the desired

volume can be viewed as the aircraft simulation is played.

3.2 Validation of Code

As previously stated, the code was developed to provide an accurate but qualitative representation

of the flow. The numerical values calculated may be correct, but the development and validation

were only concerned with correct general visual behavior. A few simple test cases were used to

validate as well as debug the code. The first test was using a hovering propeller. The vorticity in the

vicinity of a propeller should be high at the propeller tips. Figure 3.3 shows a slice of the vorticity

profile. As can be seen, the vorticity is strongest at the propeller tips as expected.

The second test case used was the velocity profile behind a set of wind turbine blades. The

air velocity behind turbine blades will be slower than the free stream velocity of the incoming

air because the turbine extracts energy from the air, thus reducing the kinetic energy of the air.

Figure 3.4 shows a slice of the velocity profile, taken slightly behind the turbine blades. The air

surrounding the turbine blades is of uniform velocity, and the air directly behind the turbine blades

has varying, but lower velocity.

The third test case used was a comparison of the velocity at the wing and pylon surfaces to the

velocity near both surfaces. As FLOWUnsteady correctly calculates the velocity at the wing and

pylon surfaces, a comparison very near these would provide a good test case. As figure 3.5 shows,
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Figure 3.3 Propeller in hover.

Figure 3.4 Front view of four wind turbines.
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Figure 3.5 Wing and pylon velocity profile.

the velocity near the pylon and wing matches closely with the velocity at the surface of the pylon

and wing. FLOWUnsteady calculates the velocity at surfaces in a specified number of panels and

reports the velocity of each panel as an average of the velocity along that panel. For example, the

pylon in figure 3.5 has 6 panels and the velocity of each panel is an average. This could explain the

slight difference between the velocity at the surfaces and the nearby velocity.

The success of these three test cases confirmed the code was correctly modeling the flow

properties and could be qualitatively used to aid in the windcraft study.

3.3 Windcraft Curved Path

The code was developed under the assumption that the windcraft was stationary, so the defined

volume to calculate velocity and vorticity inside was also stationary. However, the actual movement

of the windcraft is circular so the code needed to be modified so that the velocity and vorticity could

be calculated as the windcraft moved. The only needed change was to move the volume in which

velocity and vorticity were calculated. Using the velocity of the windcraft and the radius of its
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path, the defined volume is set to move with the windcraft. The center of the calculation volume

is defined by the user, and for each time step, the bounds are defined based on the location of this

center.

3.4 Documentation

Following the completion of the validation cases and the added functionality for a moving calculation

volume, a document was created for the PhD student describing how to use FLOWUnsteady to

create velocity profiles and vorticity isosurfaces. As part of the motivation for this project was

a lack of available documentation, the document helped fill this gap. It provides a step by step

guide outlining the code process and using ParaView to view the results. The document is found in

appendix C.



Chapter 4

Conclusion

The aircraft built had a glide ratio higher than expected, and performed well in flight. One limitation

of the design project was that the various design decisions were made after only a few iterations.

For example, to maximize the glide ratio, various parameters were changed such as twist, wingspan,

and chord length until the glide ratio seemed to be maximized. For future work, using a computer

optimization to make the various design considerations could yield a design with an even higher

glide ratio. Structural improvements could also be made. The wings bent up a lot which increased

the airplane stability, but also decreased the vertical lift and produced a lot of bending stress in the

wings.

The coding project produced a method for visualizing fluid velocity and vorticity near windcraft

turbines with the potential for the method to be easily adapted to other simulations run using

FLOWUnsteady. A simple guide was produced that details the coding process and the method for

creating velocity profiles and vorticity isosurfaces. The coding method produced accurate results,

but the method could be improved to run faster as the process detailed in section 3.1 can take a long

time to run for many particles.

19



Appendix A

Aircraft Videos

Glide Test Videos

Glide Test 1

Glide Test 2

Flight Videos

Flight 1

Flight 2
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Appendix B

Visualization Code

View the code and simple animations on GitHub here.

1 # Isosurface Creation
2 # Author: Greg Devenport
3 # Date: April 20, 2021
4 # This code creates the files necessary for isosurface creation and velocity

visualization in ParaView.
5
6 using GeometricTools
7 using LinearAlgebra
8 using FLOWVPM
9

10 vpm = FLOWVPM;
11 gt = GeometricTools;
12 UJ = vpm.UJ_direct;
13
14 # Use create_iso_stationary for stationary case.
15 # Use create_iso_circular for curved path case.
16 # Straight path case to be added in the future if needed.
17
18 """
19 create_iso_stationary(file_start, file_end, freestream, data_path,

pfield_file_name, save_path, vtk_save_name, verbose, center,
dimensions, divisions)

20 For use when vehicle is stationary (turbines, propeller in hover, etc.)
21 Inputs are
22
23 'file_start' an int representing the file number start.
24 'file_end' an int representing the file number end.

21
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22

25 'freestream' which is a vector containing the freestream components used
in the simulation,

26 'data_path' which is a string where the h5 files are contained,
27 'pfield_file_name' a string specifying the pfield name, usually sim_pfield
28 'save_path' which is a string where you want to store the pfield and/or

vtk files,
29 'vtk_save_name' which is a string of the vtk file save names,
30 'verbose' which is a bool, setting to true will cause many lines of text

to be printed as you monitor the code progress.
31 'center' a vector of the origin of the fluid domain.
32 'dimensions' a vector specifying the x,y,z dimensions of the fluid domain.
33 'divisions' a vector specifying the number of divisions in the fluid

domain in the x,y,z planes.
34 """
35 function create_iso_stationary(;
36 file_start=file_start,
37 file_end=file_end,
38 freestream=freestream,
39 data_path=data_path,
40 pfield_file_name=pfield_file_name,
41 save_path=save_path,
42 vtk_save_name=vtk_save_name,
43 verbose=verbose,
44 center=center,
45 dimensions=dimensions,
46 divisions=divisions,
47 )
48
49 @time begin
50 #-------------------------------------------------------------------

Extract initial parameters
-------------------------------------------------

51 # Extract the length of each side of the fluid domain.
52 x_length = dimensions[1];
53 y_length = dimensions[2];
54 z_length = dimensions[3];
55
56 for i in file_start:file_end
57 # --------------------------------------------------------------

Create Fluid Domain
------------------------------------------------------

58
59 # Define the two sets of coordinates needed to define the fluid

domain.
60 x1 = center[1] - x_length/2;
61 x2 = center[1] + x_length/2;
62 y1 = center[2] - y_length/2;
63 y2 = center[2] + y_length/2;
64 z1 = center[3] + z_length/2;
65 z2 = center[3] - z_length/2;
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66
67 # Create fluid domain grid. 'divisions' defines the number of

nodes in the grid. Number of nodes is (divisions[1]+1)*(
divisions[2]+1)*(divisions[3])

68 fdom = gt.Grid([min(x1,x2),min(y1,y2),min(z1,z2)],[max(x1,x2),max(
y1,y2),max(z1,z2)],convert(Array{Int64,1}, divisions))

69
70 if verbose println("Creating Isosurface for file $i") end
71
72
73 # Read in the pfield data from the h5 file.
74 X, Gamma, Sigma , lengthX = readh5("$pfield_file_name.$i.h5",

data_path);
75
76 if verbose println("Building particle field...number of particles:

$lengthX") end
77
78 # --------------------------------------------------------Create

Particle Field
----------------------------------------------------

79 # Initialize both particle fields.
80
81 # Pfield from h5 file is recreated here, it will be just as it was

in the simulation.
82 pfield_from_h5_file = vpm.ParticleField(lengthX);
83
84 # Pfield with test particles corresponding to the nodes of the

fluid domain.
85 pfield_for_fluid_domain = vpm.ParticleField(fdom.nnodes + 1);
86
87 # Add probes to the particle field at the nodes of the grid. Use

small values of gamma and sigma.
88 for i in 1:fdom.nnodes
89 Xprobe = gt.get_node(fdom, i)
90 vpm.add_particle(pfield_for_fluid_domain, Xprobe, 1e-10*ones

(3), 0.01)
91 end
92
93 # Recreate the pfield from the simulation.
94 # It should be noted that the [x,y,z] data are arranged with x,y,z

as rows and the various particles as columns.
95 # The same is true of the Gamma data.
96 for i in 1:lengthX
97 vpm.add_particle(pfield_from_h5_file, X[:,i], Gamma[:,i],

Sigma[i])
98 end
99

100 # --------------------------------------------------------
Calculate Vorticity and Velocity
------------------------------------------
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101 if verbose println("Calculating vorticity and velocity...");
println("\t Resetting particle field...") end

102
103 # The pfields must be reset each iteration so that the velocities

do not continue to add on top of eachother.
104 vpm._reset_particles(pfield_for_fluid_domain)
105 vpm._reset_particles(pfield_from_h5_file)
106
107 if verbose println("\t Calculating particle on particle

interations...") end
108
109 # Calculate the particle on particle interations.
110 UJ(pfield_from_h5_file,pfield_for_fluid_domain)
111
112 if verbose println("\t Calculating velocity...") end
113
114 # Extract the velocity at each node on the fluid grid.
115 Us = [vpm.get_U(P)+freestream for P in vpm.iterate(

pfield_for_fluid_domain)]
116
117 if verbose println("\t Calculating vorticity...\n") end
118
119 # Extract the vorticity at each node on the fluid grid.
120 Ws = [vpm.get_W(P) for P in vpm.iterate(pfield_for_fluid_domain)]
121
122 # --------------------------------------------------------Add

Solutions to Fluid Domain
---------------------------------------------

123 # Add the velocity (Us) and vorticity (Ws) data to the fluid
domain.

124 gt.add_field(fdom, "U", "vector", Us, "node")
125 gt.add_field(fdom, "W", "vector", Ws, "node")
126
127 # Generate the file number to match the input h5 file. Output in

.%4d format (0001, 0010, 0100, 1000).
128 if i < 10
129 file_number = "000$i";
130 elseif i < 100
131 file_number = "00$i";
132 elseif i < 1000
133 file_number = "0$i";
134 else
135 file_number = "$i";
136 end
137
138 # --------------------------------------------------------Save VTK

Files
-----------------------------------------------------------

139 # Save the grid as a VTK file.
140 gt.save(fdom,"$save_path$vtk_save_name";num=i)
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141
142 end
143 end
144 end
145
146
147 """
148 create_iso_circular(file_start, file_end, freestream, data_path,

pfield_file_name, save_path, vtk_save_name, verbose,
149 circular, center, dimensions, v_vehicle, divisions, t_total,

rotation_center)
150 For use when vehicle moves in circular path (windcraft, etc.)
151 Inputs are
152 'file_start' an int representing the file number start.
153 'file_end' an int representing the file number end.
154 'freestream' which is a vector containing the freestream components used

in the simulation,
155 'data_path' which is a string where the h5 files are contained,
156 'pfield_file_name' a string specifying the pfield name, usually "

sim_pfield"
157 'save_path' which is a string where you want to store the pfield and/or

vtk files,
158 'vtk_save_name' which is a string of the vtk file save names,
159 'verbose' which is a bool, setting to true will cause many lines of text

to be printed as you monitor the code progress.
160 'circular' a bool set to true if the simulation involves a circular path.
161 'center' a vector of the origin of the fluid domain.
162 'dimensions' a vector specifying the x,y,z dimensions of the fluid domain.
163 'v_vehicle' is the velocity of the vehicle.
164 'divisions' a vector specifying the number of divisions in the fluid

domain in the x,y,z planes.
165 't_total' the total time the simulation ran for.
166 'rotation_center' a vector specifying the point around which the vehicle

moves about.
167 """
168 function create_iso_circular(;
169 file_start=file_start,
170 file_end=file_end,
171 freestream=freestream,
172 data_path=data_path,
173 pfield_file_name=pfield_file_name,
174 save_path=save_path,
175 vtk_save_name=vtk_save_name,
176 verbose=verbose,
177 center=center,
178 dimensions=dimensions,
179 v_vehicle=v_vehicle,
180 divisions=divisions,
181 t_total=t_total,
182 rotation_center=rotation_center
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183 )
184 #-------------------------------------------------------Initial

calculations for circular path--------------------------------------
185 #####
186 # All circular path code is fairly new and may have issues. Initial

results seem correct however.
187 #####
188 @time begin
189 # Extract the length of each side of the fluid domain.
190 x_length = dimensions[1];
191 y_length = dimensions[2];
192 z_length = dimensions[3];
193
194 # Change this if circular path is in a different plane. This is

currently set for y/z plane.
195 r = sqrt((center[2]-rotation_center[2])^2 + (center[3]-rotation_center

[3])^2);
196
197 # Calculate the total number of steps, most likely the same as

file_end.
198 n_steps = file_end - file_start;
199
200
201 for i in file_start:file_end
202
203 #--------------------------------------------------------Define

parameters for circular path
----------------------------------------

204 # This is the real time used to ensure the circular path of the
fluid domain matches the circular path of the vehicle in the
simulation.

205 t = i*(t_total/n_steps)
206
207 # So far this only works for a circular path in a plane (x/y, x/z,

y/z) and not in three dimensions.
208 # Change z1, z2, y1, y2 to the appropriate variables so the

circular path is in the desired plane.
209 z1 = rotation_center[3] + r*cos(t*v_vehicle/r) - z_length/2 +

center[3];
210 z2 = rotation_center[3] + r*cos(t*v_vehicle/r) + z_length/2 +

center[3];
211 y1 = rotation_center[2] + r*sin(t*v_vehicle/r) + y_length/2 +

center[2];
212 y2 = rotation_center[2] + r*sin(t*v_vehicle/r) - y_length/2 +

center[2];
213
214 # These are constant during the circular path.
215 x1 = rotation_center[1] - x_length/2 + center[1];
216 x2 = rotation_center[1] + x_length/2 + center[1];
217
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218 # Define the bounds of the fluid domain.
219 circle_path_coordinates = [[min(x1,x2),min(y1,y2),min(z1,z2)],[max

(x1,x2),max(y1,y2),max(z1,z2)]]
220
221 # --------------------------------------------------------Create

Fluid Domain
------------------------------------------------------

222 # Create fluid domain grid. 'divisions' defines the number of
nodes in the grid. Number of nodes is (divisions[1]+1)*(
divisions[2]+1)*(divisions[3])

223 fdom = gt.Grid(circle_path_coordinates[1],circle_path_coordinates
[2],convert(Array{Int64,1}, divisions))

224
225 # Print file number code is running on.
226 if verbose println("Creating Isosurface for file $i") end
227
228 X, Gamma, Sigma , lengthX = readh5("$pfield_file_name.$i.h5",

data_path);
229
230 if verbose println("Building particle field...number of particles:

$lengthX") end
231
232 # --------------------------------------------------------Create

Particle Field
----------------------------------------------------

233 # Initialize both particle fields.
234
235 # Pfield from h5 file is recreated here, it will be just as it was

in the simulation.
236 pfield_from_h5_file = vpm.ParticleField(lengthX);
237
238 # Pfield with test particles corresponding to the nodes of the

fluid domain.
239 pfield_for_fluid_domain = vpm.ParticleField(fdom.nnodes + 1);
240
241 # Add probes to the particle field at the nodes of the grid. Use

small values of gamma and sigma.
242 for i in 1:fdom.nnodes
243 Xprobe = gt.get_node(fdom, i)
244 vpm.add_particle(pfield_for_fluid_domain, Xprobe, 1e-10*ones

(3), 0.01)
245 end
246
247 # Recreate the pfield from the simulation.
248 # It should be noted that the [x,y,z] data are arranged with x,y,z

as rows and the various particles as columns.
249 # The same is true of the Gamma data.
250 for i in 1:lengthX
251 vpm.add_particle(pfield_from_h5_file, X[:,i], Gamma[:,i],

Sigma[i])
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252 end
253
254 # --------------------------------------------------------

Calculate Vorticity and Velocity
------------------------------------------

255 if verbose println("Calculating vorticity and velocity...");
println("\t Resetting particle field...") end

256
257 # The pfields must be reset each iteration so that the velocities

do not continue to add on top of eachother.
258 vpm._reset_particles(pfield_for_fluid_domain)
259 vpm._reset_particles(pfield_from_h5_file)
260
261 if verbose println("\t Calculating particle on particle

interations...") end
262
263 # Calculate the particle on particle interations.
264 UJ(pfield_from_h5_file,pfield_for_fluid_domain)
265
266 if verbose println("\t Calculating velocity...") end
267
268 # Extract the velocity at each node on the fluid grid.
269 Us = [vpm.get_U(P)+freestream for P in vpm.iterate(

pfield_for_fluid_domain)]
270
271 if verbose println("\t Calculating vorticity...\n") end
272
273 # Extract the vorticity at each node on the fluid grid.
274 Ws = [vpm.get_W(P) for P in vpm.iterate(pfield_for_fluid_domain)]
275
276 # --------------------------------------------------------Add

Solutions to Fluid Domain
---------------------------------------------

277 # Add the velocity (Us) and vorticity (Ws) data to the fluid
domain.

278 gt.add_field(fdom, "U", "vector", Us, "node")
279 gt.add_field(fdom, "W", "vector", Ws, "node")
280
281 # Generate the file number to match the input h5 file. Output in

.%4d format (0001, 0010, 0100, 1000).
282 if i < 10
283 file_number = "000$i";
284 elseif i < 100
285 file_number = "00$i";
286 elseif i < 1000
287 file_number = "0$i";
288 else
289 file_number = "$i";
290 end
291
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292 # --------------------------------------------------------Save VTK
Files
-----------------------------------------------------------

293 # Save the grid as a VTK file.
294 gt.save(fdom,"$save_path$vtk_save_name";num=i)
295 end
296 end
297 end
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Vorticity and Velocity Visualization

Greg Devenport

April 22, 2021

1 Vorticity Isosurface and Velocity Profile Creation

Vorticity isosurfaces and velocity profiles from FLOW Unsteady simulations can be visualized in ParaView
after extracting the needed data from the simulation particle field. Code that does this can be found here.
The basic steps the code takes are as follows. (For a more detailed description of the steps, see code
documentation)

- For a given time step, read in the needed data (position, gamma, sigma) from the simulation particle
field h5 file.

- Using this data, recreate the particle field as would be found in the simulation.

- Create a fluid domain grid to which velocity and vorticity solutions will be added later.

- Create a particle field of test particles to be used as probing points. Use small values of gamma and
sigma so the particles do not affect the velocity and vorticity solutions. This test particle field will
have the same number of particles as nodes in the fluid domain grid and each particle corresponds to
a node in the fluid domain grid.

- Calculate how the simulation particle field interacts with the test particle field.

- Probe each particle in the test particle field and extract the velocity and vorticity.

- Add the calculated velocity and vorticity vectors to the corresponding fluid domain grid node.

- Export the fluid domain with the velocity and vorticity solutions as a vtk file.

- Repeat the above process for the desired number of time steps.

2 ParaView

- In ParaView, open the vtk files produced by the code, as well as any other files for visualization (wings,
rotors, etc.).

2.1 Velocity Profile

- To view the velocity, change the coloring of the fluid domain from ”Solid Color” to ”U”.

- If desired extract a specific component from the fluid domain vtk file by applying the calculator filter.
(mag(U), U X, etc.)

- A slice filter can be applied to the fluid domain or calculator filter to achieve the result as shown in
figure 1. The velocity profile is shown with the wing and pylon showing the velocity calculated in the
FLOW Unsteady simulation.

Figure 1: Velocity slice perpendicular to windcraft blades

1
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2.2 Vorticity Isosurfaces

- Isosurfaces require scalar values. Use the calculator filter to extract scalar values from the fluid domain
(mag(W), W X, etc.).

- Apply a contour filter to the calculator filter and set the desired value range for the isosurfaces (an
example is shown in figure 2).

- The above process can also be used to create velocity isosurfaces.

Figure 2: Vorticity isosurfaces trailing from turbine blades

2.3 Curved Path Velocity Slice

For the case of a windcraft traveling in a circular path, the fluid domain grid needs to travel with the
windcraft. With a few more inputs than the stationary case, the above code can achieve this. Once the
vtk files have been created, perform the following steps for the slice to move with constant orientation with
respect to the vehicle. These steps may need to be slightly modified depending on the simulation orientation.

- Perform the same steps as in 2.1, to create the desired velocity slice for the starting time.

- Go to the last desired time step. The slice will have moved and its orientation with respect to the
vehicle will be different.

- Change the ”Origin” and ”Normal” parameters in the slice filter until the slice again has the desired
orientation.

- As shown in figure 3, use the drop down next to the blue plus sign to select the name of the slice. In
the drop down to the right of that, select ”Normal(1)”. Click the plus sign to add this.

- Double click anywhere on ”Slice1 - Slice Type - Normal(1)” to adjust the values at the beginning and
end of the animation sequence. The end Normal(1) value should be changed to the value just used to
adjust the slice orientation, and the beginning Normal(1) value should be changed to the value used
to originally orient the slice. The rotation of Normal(1) will be interpolated using the starting and
ending values provided.

- Repeat this process with other ”Normal” and ”Origin” components as needed.

- The slice will now transform in time and space as the simulation vehicle moves.

- Depending on how much the vehicle moves, multiple interpolation points may need to be added between
the first and last time step to ensure the transformation happens correctly.

Figure 3: Animation view in ParaView
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