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ABSTRACT 
 

MILCDock: Machine Learning-Enhanced Consensus Docking for 
 Virtual Screening in Drug Discovery 

 
Connor J. Morris 

Department of Physics and Astronomy, BYU 
Bachelor of Science 

 

Molecular docking tools are regularly used to computationally identify new drug molecules 
in virtual screening for drug discovery. However, docking tools suffer from inaccurate scoring 
functions with widely varying performance on different proteins. To enable more accurate ranking 
of active over inactive ligands in virtual screening, we created a machine learning consensus 
docking tool, MILCDock, that uses predictions from five traditional molecular docking tools to 
predict the probability a ligand binds to a protein. MILCDock was trained and tested on data from 
both the DUD-E and LIT-PCBA docking datasets and shows improved performance over 
traditional molecular docking tools and other consensus docking methods on the DUD-E dataset. 
LIT-PCBA targets proved to be difficult for all methods tested. We also find that DUD-E data, 
though biased, can be effective in training machine learning tools if care is taken to avoid DUD-
E’s biases during training. Improved docking datasets with more diverse data and improved 
docking methods are needed to further improve consensus docking performance.  
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Chapter 1 
 
Introduction 
 
The exponentially increasing cost of discovering new drugs [1] suggests that drug discovery 

methods must continue to be improved. Molecular docking tools are one commonly used 

computational drug discovery tool [2]. These tools are regularly used in drug discovery to screen 

libraries of millions [3] to billions [4] of small molecules (also known as ligands) against target 

proteins in a process called virtual screening [5-8]. They predict the binding pose and affinity of 

the protein-ligand complex and are designed to be computationally efficient for screening of large 

compound libraries [2, 9-11]. The affinity score of each ligand can be used to rank-order a library 

of compounds to predict in silico which ones are most likely to bind to the target protein and 

become an effective drug. Virtual screening methods can increase the efficiency of drug discovery 

pipelines by reducing the number of experimental tests that must be done to find promising drug 

candidates.  

Despite the great potential molecular docking tools have to reduce drug discovery costs, 

accurate differentiation between active and inactive ligands is a difficult task [12-14]. Docking 

tools often rank ligands inaccurately in virtual screening and their performance can vary widely 

across different protein targets, making it difficult to predict a priori whether a docking tool will 

perform well on a new virtual screening target [15].  
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Consensus docking is one method that can improve the accuracy of docking scoring 

functions [2, 9, 10]. Consensus docking incorporates docking scores from multiple  

scoring functions that use different methods to generate docking scores. This allows scoring 

functions that perform well on certain systems to compensate for weaker scoring functions, 

creating a consensus score that is more accurate and robust to varying systems [16]. Consensus 

methods were first proposed in 1999 [17] and have since been the focus of many studies. Clark et 

al. found that combining four scoring functions into a single score outperformed individual tools 

[18], Palacio-Rodriguez et al. combined results from multiple scoring functions using exponential 

consensus ranking to outperform traditional consensus methods [19], and Pedretti et al. used 

Enrichment Factor Optimization to create target-specific linear combinations of up to three scoring 

functions [20]. Other groups have used pose consensus, or selecting only docking poses that were 

predicted by multiple docking programs, to reduce the false positive rate of virtual screens. 

Houston et al. found that accepting only poses with less than 2 Å root-mean-square-deviation 

(RMSD) from poses generated by other docking programs increased pose accuracy and reduced 

the false positive rate [21]. Gimeno et al. used pose consensus to predict potential inhibitors of the 

SARS CoV-2 main protease [22]. 

Recently, machine learning (ML) emerged as an alternative method for combining results 

from multiple docking tools in consensus docking. ML methods rely on datasets like DUD[23], 

DUD-E [24], MUV[25], PDBbind[26], and LIT-PCBA[27] for training and testing. These datasets 

consist of protein targets associated with libraries of small molecules that are labelled as active, 

decoy, or inactive against that protein. Active molecules are experimentally verified molecules 

that bind to the protein, inactive molecules are experimentally verified molecules that do not bind 
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to the protein, and decoys are computationally generated molecules that probably do not bind to 

the protein but are not experimentally verified.  

Several groups have used these datasets to train ML consensus methods. Erickson et al. 

used gradient boosting to train an ensemble of decision tree classifiers on 21 targets from the DUD-

E database and found that it outperformed non-ML methods on each considered target [16]. Perez-

Castillo et al. used a genetic algorithm to find the combination of scoring function components 

that maximizes performance [28]. Wang et al. used random forests to train an improved scoring 

function based on 20 descriptors in addition to an Autodock Vina score [29]. Ye et al. trained 

target-specific scoring functions on eight diverse DUD-E targets using XGBoost, which suggested 

improved results over classical scoring functions and some machine learning-based scoring 

functions [30].   

Many ML methods suffer from exclusive training and testing on the DUD-E dataset[16, 

28, 30] which has been shown to be biased [31] and not realistic for virtual screening applications 

[27]. The bias in DUD-E originates in the decoy molecule generation. ML methods like 

convolutional neural networks trained on ligand structures and molecular properties have learned 

to differentiate between active and decoy ligands simply by memorizing ligand structures rather 

than by predicting protein-ligand interactions [31-33]. The binding affinity of DUD-E active 

ligands and the ratio of actives to decoys also differs from real virtual screening scenarios. 

Therefore, a high performance on the DUD-E dataset alone does not qualify a method as useful 

for virtual screening [27].  

LIT-PCBA is a dataset that can overcome the DUD-E bias [27]. It contains only 15 targets, 

compared to 102 in DUD-E, but its ligand libraries were experimentally verified to follow an 
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affinity distribution and active-to-decoy ratio that is similar to real virtual screening. This suggests 

that virtual screening tests on LIT-PCBA are more reliable than tests on the DUD-E dataset alone.  

Here, we present a machine learning consensus docking method that is trained and tested 

on data from DUD-E and LIT-PCBA. This method uses docking scores and RMSD measurements 

between poses from five molecular docking tools to predict the probability of ligand binding. 

Using only outputs from diverse docking scoring functions and pose sampling methods allows the 

model to learn without seeing the specific ligand descriptors that form the root cause of the DUD-

E bias. We find that our method significantly outperforms traditional docking tools and classical 

machine learning methods on the DUD-E dataset, and sets a benchmark for other docking methods 

on the LIT-PCBA dataset.  
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Chapter 2 
 
Methods 
 
 
The machine learning consensus (MILC) docking method uses a multi-layer perceptron (MLP) to 

combine binding affinity and pose predictions from five traditional molecular docking tools (see 

Fig. 2.1). This section describes the datasets and docking methods used to generate training data, 

the training method for the machine learning model, and the metrics used to evaluate performance. 

 

Figure 2.1 Visualization of data flow in Machine Learning Consensus Docking. A receptor (protease Renin) 
and a database of ligands (from DUD-E) are passed through five docking tools. Top right histogram shows the 
separation in distributions for docking scores between actives (orange) and decoys (blue) as predicted by the 
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single docking tool LeDock. A total of 52 feature (37 directly from tools, 15 pairwise RMSD values of 
predicted poses) is combined and passed through an ensemble machine learning model to predict the MILC 
score. Lower right histogram shows the separation of distributions as predicted by MILC for the same test 
case. 
 

2.1  Receptor and Ligand Databases 

The DUD-E database contains 102 protein targets, each paired with an average of 224 

experimentally verified active ligands and 50 decoy ligands per active. The decoy ligands are not 

experimentally verified and were generated to be physically similar but topologically different 

from the active molecules[31].  

LIT-PCBA contains 15 protein targets, each paired with an average of 669 active and 

187,000 inactive ligands. Inactive LIT-PCBA ligands are experimentally verified. LIT-PCBA 

was created to be unbiased, largely in response to bias that exists in other docking datasets like 

DUD-E[31].  

 Of the 102 DUD-E protein targets available, 86 were selected for use in this project. The 

remaining targets were excluded since they seemed non-ideal for the docking tools we used (i.e. 

metal ions or other ligands near the binding site). Two DUD-E targets failed at some point while 

docking with each of the five docking tools and were excluded from use in machine learning 

training and testing, leaving 84 total targets from the DUD-E database. All 15 LIT-PCBA targets 

were used in this project. In total, we docked over 3.8 million unique protein-ligand pairs across 

both the DUD-E and LIT-PCBA datasets using five docking tools, resulting in nearly 20 million 

docking simulations done in preparation for machine learning training and testing.  
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2.2  Docking 

Five docking tools were used to dock active and decoy ligands from DUD-E[24] and LIT-

PCBA[27] to their respective protein targets: Autodock Vina [34], Autodock4 [35], PLANTS 

[36], rDock [37], and LeDock [38]. Custom scripts were written for all five docking tools to run 

with the same command and input files. Binding sites for all programs were automatically 

generated by creating a box around the crystal ligand structures provided with each target that 

was at least 25 Å in each dimension. For docking tools that use spherical binding sites as input 

(rDock and Plants), a similarly sized sphere was generated instead. Further details about 

individual docking tools follow.  

 

Autodock Vina version 1.1.2 

Receptor files were prepared by manually converting histidine residue names to Amber format, 

then using prepare_receptor4.py from AutoDockTools to convert to pdbqt format. Ligand files 

were prepared using the prepare_ligand4.py script from AutoDockTools. The exhaustiveness 

parameter was left at its default, 8, and num_modes was set to 20. Vina uses an 

empirical/knowledge-based scoring function.  

 

Autodock4 version 4.2.6 

Docking grids were prepared using prepare_gpf4.py from AutoDockTools and the autogrid4 

executable file. Receptor and ligand files were prepared using prepare_receptor4.py and 

prepare_ligand4.py, respectively, from AutoDockTools. Since Autodock4 outputs many 
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intermediate scores from its docking calculations in addition to a final docking score, many of 

these intermediate scores were included in machine learning input vectors. Autodock4 uses an 

empirical/knowledge-based scoring function.  

 

PLANTS version 1.2 

 Receptor files were prepared with SPORES version 1.3, using the 'complete' running mode. In 

the configuration file, 'chemplp' was used for the scoring function setting, with 'speed1' for the 

search speed. For the clustering algorithm, ‘cluster_structures’ was set to 20, and ‘cluster_rmsd’ 

set to 2.0. Since PLANTS outputs many intermediate scores from its docking calculations in 

addition to a final docking score, many of these intermediate scores were included in machine 

learning input vectors. PLANTS uses an empirical scoring function. 

 

rDock version 2013.1 

Receptor files were converted to MOL2 format and ligand files were converted to SD format 

using OpenBabel[39]. Docking cavities were mapped using the rbcavity executable file, using 

the two sphere method, with small sphere radius of 1.5 Å and large sphere radius of 4.0 Å. The 

scoring function used was RbtCavityGridSF with WEIGHT 1.0, RMAX 0.1, and QUADRATIC 

FALSE. Docking was performed using the rbdock executable and default options for free 

docking. Since rDock outputs many intermediate scores from its scoring function, intermolecular 

scores and normalized scores were used as inputs into the machine learning model in addition to 

its final score. rDock uses an empirical/force field-based scoring function.  

 

LeDock version 1.0 
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Receptor files were prepared by converting histidine and zinc residue names to CHARMM 

format, then running the lepro executable on them. LeDock uses an empirical/force field-based 

scoring function.  

 

 

2.3  Creation of Train/Validation/Test Split  

Basic MLP: To construct a train/validation/test split, a BLAST search [40] was used to find 

the pairwise alignment similarities of all protein targets in the dataset, resulting in a 99 x 99 matrix. 

Spectral clustering was then used on the pairwise similarity matrix to create 10 clusters, each 

containing a set of protein targets. Protein targets that were clustered together are more similar to 

each other than to proteins in other clusters. The clusters were then merged to create splits that 

placed ~50% of the targets in the train set, ~25% in the validation set, and ~25% in the test set, 

with similar percentages of DUD-E and LIT-PCBA targets in each. These proportionally large 

validation and test splits were chosen due to the low number of unique targets to allow more 

accurate testing. 

Ensemble MLP: After the hyperparameter search, to train on a larger dataset, train and 

validation targets were combined into one set. Spectral clustering was again used to create 30 

clusters from this combined set, followed by cluster merging, to obtain 8 sets with ~10 targets in 

each. These folds were used for the multi-fold ensemble training described in section 2.6. 

 

2.4  Inputs 

Input vectors for machine learning were created by extracting docking pose and binding affinity 

information from docking output files using custom scripts. A total of 52 features were used in 
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each input vector to describe the protein-ligand interaction. 37 of those features were derived from 

docking tool energy score predictions and 15 were derived from RMSD calculations between poses 

generated by the docking tools, inspired by Ref. [21]. 

        For each docking tool, the best energy score, the average of the top three energy scores, and 

the range of the top three energy scores were included as features. Intermediate score values were 

also extracted from Autodock4, PLANTS, and rDock outputs and included in the input vector. For 

the RMSD-based features, the RMSD between the top scoring pose from each docking tool and 

the average RMSD between the top 3 scoring poses of each tool were included. A small fraction 

of the total docked ligands produced errors during creation of machine learning input vectors. 

These ligands were excluded from any downstream application in machine learning training, 

testing, results, etc.  

 

2.5  Class Balancing  

Significant class imbalance exists in both the DUD-E and LIT-PCBA datasets. There are nearly 

3.8 million decoys in the combined DUD-E+LIT-PCBA dataset, compared to only 41,420 active 

ligands. Furthermore, there are nearly 350,000 total ligands associated with FEN1, the target with 

the most ligands, compared to 688 ligands associated with fgfr1, the target with the fewest ligands. 

To train the models with equal weighting of actives and decoys as well as equal weight per target, 

ligands underwent two steps of oversampling. First, actives were oversampled to be approximately 

equal in number to the decoys for each target. Second, all actives and decoys for each target were 

oversampled to be approximately equal in number to the total number of ligands for the target with 

the most ligands. 
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2.6  Model Selection  

We compared five consensus methods on the validation dataset: a naïve consensus method, three 

classical machine learning methods (XGBoost, Random Forest, and Naïve Bayes classifier), and 

an MLP. 

        The naïve consensus method was used as baseline, non-ML consensus method to compare 

against. This method created z-scores from each traditional docking tool by subtracting the mean 

and dividing by the standard deviation of the top docking score for each ligand in the training set. 

The final naïve consensus score was obtained by summing the five z-scores. 

        XGBoost, Random Forest, and Naïve Bayes classifiers were all trained using default 

parameters on the associated tools in the scikit-learn python library. The training dataset was 

reduced to have a maximum of 80,000 decoy ligands associated with each target while training 

these methods to enable the entire dataset to fit in computer memory at the same time. XGBoost 

performed the best on the validation dataset of these methods, so only XGBoost results are reported 

on the test set to represent the best of the classical ML methods.  

        The MLP was created using a binary cross-entropy loss function. To find the optimal 

hyperparameters, we trained many different versions of the MLP with different layer dimensions, 

dropout, weight decay, activation functions, and weight gain. The model that performed best 

according to the average BEDROC score on the validation set was selected as the best MLP and 

then evaluated on the test set (see Chapter 3).  

        To increase the amount of data used to train the MLP, an ensemble model was also created 

using k-fold cross validation on the combined train/validation set described in section 2.3. The 

final scores generated by the ensemble model are combinations of 8 different MLPs, each trained 

on different subsets of the combined train/validation set. 
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2.7  Evaluation  

Prediction performance was evaluated using the enrichment factor (EF), BEDROC[41], and area 

under the receiver operating characteristic curve (AUC) scores. 

        EF considers only the top x% of ranked ligands and gives a score based on how “enriched” 

with active ligands that subset is. The equation for calculating EF for the top 1% of the database 

is given in Eq. (2.1). In Eq. (2.1), A represents the number of active ligands, and N represents the 

total number of ligands (including both actives and decoys). The subscripts top1 and dataset 

indicate whether to count those ligands from only the top 1% of ranked ligands, or to count ligands 

from the entire dataset. All EF scores in this paper represent EF of the top 1% of the dataset. An 

EF of 2 means that the top 1% of ranked ligands contain 2 times more actives than would appear 

in a random ordering. 

                                                            (
஺೟೚೛భ

ே೟೚೛భ
)/(

஺೏ೌ೟ೌೞ೐೟

ே೏ೌ೟ೌೞ೐೟
)                                                        (2.1) 

        AUC measures a method’s ability to accurately rank active ligands over decoys across the 

entire dataset, as opposed to EF that looks only at the top 1% of the ranked poses. It is bounded 

between 0 and 1 with a score of 0.5 corresponding to random sorting and scores greater than 0.5 

being better than random. AUC is useful as an orthogonal metric to EF to see how a method 

performs across the entire dataset, since EF scores can be volatile if the active-decoy ratio is very 

low for a specific target.  

        BEDROC is like AUC in that it is bounded between 0 and 1, but it is modified for the early 

enrichment problem, where actives sorted early on in the database are given higher weight. Since 

BEDROC emphasizes ligands found earlier in the dataset, its scores tend to follow the same trends 

as EF scores. BEDROC has a parameter, α, that modifies how much weight is given to early active 
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ligands. This value is set to α=160.9 to correspond to an EF at 1% for all BEDROC scores in this 

paper.  
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Chapter 3 
 
Results and Discussion 
 
 
Figure 3.1 shows the average performance of our multi-layer perceptron (MLP) methods compared 

to traditional docking and other consensus methods across test targets from both the DUD-E and 

LIT-PCBA datasets. On average, the MLP methods significantly outperform the traditional 

docking tools, XGBoost, and Naïve Consensus methods at enriching the number of actives in the 

top 1% of the dataset.  

 

Figure 3.1 Bar chart of average enrichment factor (EF) of the top 1% of ranked poses for docking tools and consensus 
methods on a test set of four LIT-PCBA and twenty DUD-E receptors. Multi-layer Perceptron (MLP) methods achieve 
the best results. 
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More detailed results are shown in Table 3.1. On the DUD-E data, the Ensemble MLP 

and MLP perform best with average EFs of 19.81 and 18.96, respectively. This means the MLP 

methods on average sort approximately 19 times more actives into the top 1% of the dataset than 

would be there if the dataset were randomly sorted. The MLP methods clearly outperform both 

the traditional docking methods and the other consensus methods on the DUD-E dataset, with the 

next-best average EF being the Naïve Consensus score of 15.34. The AUC scores (see Table 

A.1) show similar trends for DUD-E targets. 

Table 3.1 Detailed results for all docking tools and consensus methods on test targets from LIT-PCBA and DUD-E 
databases, as measured by enrichment factor (EF). Bolded values indicate the best score in each row. For tables 
summarizing AUC scores, see Appendix A.  

LIT-PCBA EF Scores 

Targets Vina rDock Plants LeDock AutoDock4 
Naïve 

Consensus 
XGBoost MLP 

Ensemble 
MLP 

ADRB2 0.00 0.00 0.00 0.00 0.00 0.00 5.88 11.77 5.88 

ALDH1 1.73 1.70 1.66 1.62 2.11 2.05 1.42 0.80 0.91 

GBA 4.91 3.07 4.91 1.84 5.52 5.52 3.07 4.91 6.14 

IDH1 2.56 2.56 2.56 5.13 0.00 5.13 5.13 0.00 2.56 

LIT-PCBA-MEAN 2.30 1.83 2.28 2.15 1.91 3.18 3.87 4.37 3.87 

LIT-PCBA STD 2.04 1.35 2.05 2.15 2.61 2.63 2.03 5.38 2.56 

DUD-E EF Scores 

Targets Vina rDock Plants LeDock AutoDock4 
Naïve 

Consensus 
XGBoost MLP 

Ensemble 
MLP 

adrb2 2.75 0.69 16.76 4.82 9.41 6.89 15.84 22.95 24.79 

csf1r 1.76 5.62 5.97 14.40 2.46 15.46 8.78 11.59 11.94 

egfr 4.73 0.36 12.72 20.60 5.33 16.24 12.48 19.99 18.90 

fak1 18.45 0.00 15.82 10.54 1.76 13.18 12.30 12.30 22.84 

fgfr1 1.02 1.53 1.02 1.53 1.53 2.55 1.53 0.51 0.51 

glcm 0.00 0.00 13.09 1.64 0.00 0.65 7.20 5.24 9.16 

hmdh 3.75 1.71 13.98 6.48 4.09 8.87 16.71 22.85 23.19 

igf1r 13.30 0.44 15.96 20.84 11.97 24.39 15.96 24.83 21.73 
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jak2 15.78 0.00 11.18 15.12 5.92 15.12 13.81 21.04 23.01 

kpcb 17.49 4.07 16.67 14.23 17.89 26.84 23.99 30.50 30.50 

lck 7.92 1.61 1.47 12.90 13.05 18.91 13.19 24.48 25.36 

mapk2 8.31 0.00 7.33 4.89 3.91 12.22 16.62 19.55 24.93 

met 12.02 0.41 11.19 37.30 16.58 33.57 25.28 36.89 39.79 

mk14 5.03 0.87 0.22 2.73 2.62 4.70 3.83 7.43 6.67 

plk1 1.30 22.67 14.25 20.08 3.24 26.56 9.72 22.02 19.43 

pur2 2.00 8.00 14.50 14.00 14.00 14.50 14.50 14.50 14.50 

reni 1.84 0.00 10.25 0.26 8.15 5.78 14.20 18.67 16.56 

src 4.48 0.48 0.36 4.48 3.87 6.53 5.93 15.24 14.03 

tgfr1 9.79 0.36 2.18 12.69 5.44 10.15 7.25 11.97 11.60 

vgfr2 15.19 0.67 3.67 12.19 2.50 12.52 2.50 9.18 10.02 

wee1 44.96 16.95 46.43 44.96 45.69 46.43 46.43 46.43 46.43 

DUD-E MEAN 9.14 3.16 11.19 13.18 8.54 15.34 13.72 18.96 19.81 

DUDE STD 10.11 5.97 9.99 11.34 9.97 11.13 9.74 10.63 10.71 

Overall EF Scores 

Targets Vina rDock Plants LeDock AutoDock4 
Naïve 

Consensus 
XGBoost MLP 

Ensemble 
MLP 

OVERALL MEAN 8.04 2.95 9.77 11.41 7.48 13.39 12.14 16.63 17.26 

OVERALL STD 9.61 5.50 9.74 11.17 9.48 11.17 9.65 11.29 11.49 

 

The LIT-PCBA test results, however, are more nuanced. According to EF (Table 3.1), the 

MLP does best on average, with the Ensemble MLP and XGBoost close behind. But the AUC 

scores (Table A.1) tell a different story. Vina, Autodock4, and the MLP all rank at the top with 

approximately the same AUC score on average, with the Ensemble MLP being one of the worst 

performing methods. This result is surprising, considering that the MLP methods perform better 

according to the EF metric.  
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A closer investigation of the EF metric on LIT-PCBA targets reveals that the very small 

active-to-inactive ratio on several LIT-PCBA targets makes the EF metric highly volatile. For 

example, on ADRB2, there are only 17 active ligands compared to 301808 inactive ligands. If 

virtual screening sorts even a single active ligand into the top 1% of the dataset, the EF factor 

will jump from 0.0 to 5.88. This can create high variance in the results based on potential random 

sorting of a single active in the top 1% of the dataset. Thus, on targets with a very low active-to-

inactive ratio, it is important to qualify EF results with AUC results, which measure a method’s 

ability to sort a dataset better than random across the entire dataset. GBA, IDH1, and ADRB2 

targets from the LIT-PCBA test set all have less than a 0.1% active-inactive ratio, and thus are 

subject to volatility in their EF scores. The average performance of the MLP according to both 

the EF and AUC metrics suggests that the MLP, which outperforms traditional docking tools on 

the DUD-E dataset, only performs approximately as well as the best individual docking tools and 

the other consensus methods on the LIT-PCBA dataset on average. When looking at robustness 

to different targets, XGBoost seems to be the most consistent since it has no EF scores of less 

than 1 and it has the lowest standard deviation on its AUC scores. The small target sample size 

and the volatility of the EF metric, however, make it difficult to choose a clear best method on 

the LIT-PCBA data. The overall poor performance of all methods here may indicate that general 

docking tools must be further improved before any consensus method is able to perform highly 

on LIT-PCBA targets.  

Table 3.2 Comparison of Ensemble MLP models trained and tested on different combinations of the DUD-E and 
LIT-PCBA datasets. Numbers shown are average EF scores on the associated test set. Rows correspond to test sets, 
columns to training sets. 

 DUD-E – Train LIT-PCBA – Train DUD-E + LIT-PCBA – Train 

DUD-E – Test 19.48 2.01 19.81 

LIT-PCBA – Test 5.13 2.26 3.87 

DUD-E + LIT-PCBA – Test  17.19 2.05 17.26 
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Table 3.2 compares models trained and tested on DUD-E alone, LIT-PCBA alone, and 

the DUD-E+LIT-PCBA combined dataset. In terms of EF score, the model trained on the 

combined DUD-E and LIT-PCBA training sets achieves best performance on DUD-E and the 

combined test set while the model trained on only DUD-E achieves best performance on the 

LIT-PCBA test set. By the AUC metric, the model trained only on DUD-E achieves best 

performance on all test sets (Table A.2). This suggests that including LIT-PCBA in the training 

dataset offers little to no benefit in the final trained model. This is surprising, since LIT-PCBA 

contains a different ligand potency distribution than DUD-E, so it is natural to expect that 

training on LIT-PCBA targets would improve performance on other LIT-PCBA targets. Two 

factors that may contribute to the irrelevance of training on LIT-PCBA data are: 1) the low 

number of LIT-PCBA targets compared to the number of DUD-E targets, which may have made 

their contribution to the overall network training negligible; and 2) the general low performance 

of docking tools on LIT-PCBA targets, which may have made it difficult for the network to learn 

anything meaningful from the LIT-PCBA data.  

A direct comparison of our MLP methods with other published ML consensus methods is 

difficult since training and test sets are often not made available. We therefore trained models 

comparable to the naïve consensus method by Clark et al[18], the boosting method by Ericksen 

et al[16], and the random forests method by Wang et al[29] on the same dataset as the MLP. Our 

method is closest to a combination of the work by Ericksen et al and Wang et al. Like Ericksen 

et al, our method is a machine-learning based consensus docking method and, like Wang et al, it 

learns on multiple features extracted from the docking programs.  

To our knowledge, our work is the first to employ machine learning consensus docking 

over both docking score and pose RMSD features extracted from multiple docking programs, the 
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first to use an MLP, and the first consensus docking method to train or test on the more 

challenging LIT-PCBA dataset. It avoids DUD-E’s biases in its training, clearly outperforms 

other methods on a DUD-E test set, and provides a baseline for improving virtual screening 

methods on the LIT-PCBA test set.  

3.1 Conclusion 

Docking plays an important role in large-scale library screens for drug discovery. Individual 

docking tools have strengths and weaknesses that result from differences in their scoring 

functions. Consensus-based methods allow more robust prediction of binding affinities and better 

separation of active from inactive molecules. From all tested consensus methods, our MLP 

methods performed best on the DUD-E test set, while yielding results comparable to other 

traditional and consensus docking methods on the LIT-PCBA test set. The ability of the 

consensus methods to perform well on LIT-PCBA seems to be limited by the lack of diversity in 

targets for training, and the poor performance of traditional docking tools this database. As 

individual docking tools improve and as datasets evolve to better represent virtual screening 

scenarios, consensus docking methods will likewise become more robust and  accurate. 
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Appendix A 
 
Additional Results 
 
Table A.1 AUC scores of different docking methods on the DUD-E and LIT-PCBA datasets. 
 

LIT-PCBA AUC Scores 

Targets Vina rDock Plants LeDock AutoDock4 
Naïve 

Consensus 
XGBoost MLP 

Ensemble 

MLP 

ADRB2 0.347 0.400 0.381 0.403 0.389 0.296 0.492 0.443 0.418 

ALDH1 0.589 0.608 0.566 0.584 0.624 0.615 0.543 0.498 0.522 

GBA 0.645 0.554 0.635 0.635 0.651 0.686 0.652 0.675 0.618 

IDH1 0.681 0.430 0.392 0.554 0.593 0.562 0.547 0.638 0.563 

LIT-PCBA-MEAN 0.565 0.498 0.494 0.544 0.564 0.540 0.559 0.564 0.531 

LIT-PCBA STD 0.151 0.099 0.127 0.100 0.119 0.170 0.067 0.111 0.084 

DUD-E AUC Scores 

Targets Vina rDock Plants LeDock AutoDock4 
Naïve 

Consensus 
XGBoost MLP 

Ensemble 

MLP 

adrb2 0.676 0.530 0.835 0.595 0.679 0.709 0.809 0.879 0.875 

csf1r 0.681 0.711 0.448 0.803 0.643 0.777 0.609 0.646 0.646 

egfr 0.628 0.672 0.647 0.812 0.575 0.755 0.650 0.752 0.741 

fak1 0.796 0.759 0.725 0.799 0.487 0.835 0.745 0.828 0.770 

fgfr1 0.561 0.488 0.495 0.549 0.535 0.535 0.521 0.543 0.514 
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glcm 0.472 0.454 0.826 0.707 0.509 0.658 0.857 0.901 0.888 

hmdh 0.750 0.468 0.794 0.529 0.767 0.718 0.823 0.796 0.767 

igf1r 0.839 0.686 0.667 0.836 0.762 0.880 0.689 0.838 0.817 

jak2 0.761 0.711 0.785 0.816 0.529 0.783 0.811 0.902 0.874 

kpcb 0.722 0.675 0.683 0.733 0.722 0.779 0.875 0.923 0.930 

lck 0.769 0.718 0.579 0.818 0.733 0.838 0.723 0.857 0.828 

mapk2 0.791 0.746 0.762 0.704 0.722 0.780 0.803 0.905 0.886 

met 0.804 0.764 0.803 0.866 0.747 0.883 0.835 0.899 0.901 

mk14 0.710 0.439 0.441 0.756 0.596 0.682 0.577 0.634 0.534 

plk1 0.591 0.695 0.789 0.842 0.531 0.768 0.716 0.826 0.805 

pur2 0.903 0.789 0.995 0.977 0.997 0.997 0.963 0.999 0.997 

reni 0.608 0.314 0.852 0.604 0.361 0.494 0.902 0.947 0.951 

src 0.662 0.620 0.525 0.771 0.599 0.736 0.623 0.763 0.717 

tgfr1 0.885 0.570 0.731 0.870 0.723 0.863 0.666 0.871 0.763 

vgfr2 0.749 0.628 0.600 0.832 0.668 0.774 0.547 0.777 0.623 

wee1 0.957 0.969 0.978 0.959 0.956 0.989 0.981 0.991 0.989 

DUD-E MEAN 0.729 0.638 0.712 0.770 0.659 0.773 0.749 0.832 0.801 

DUDE STD 0.119 0.149 0.157 0.121 0.151 0.123 0.133 0.117 0.137 

Overall AUC Scores 

Targets Vina rDock Plants LeDock AutoDock4 
Naïve 

Consensus 
XGBoost MLP 

Ensemble 

MLP 

OVERALL MEAN 0.703 0.616 0.677 0.734 0.644 0.736 0.718 0.789 0.758 

OVERALL STD 0.136 0.150 0.171 0.144 0.148 0.154 0.143 0.151 0.163 
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Table A.2 Comparison of Ensemble MLP models trained and tested on different combinations of the DUD-E and 
LIT-PCBA datasets. Numbers shown are average AUC scores on the associated test set. Rows correspond to test 
sets, columns to training sets. 

 DUD-E – Train LIT-PCBA – Train DUD-E + LIT-PCBA – Train 

DUD-E – Test .848 .569 .832 

LIT-PCBA – Test .583 .533 .564 

DUD-E + LIT-PCBA – Test  .806 .563 .789 
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