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ABSTRACT 

Dynamics of Spinning Three-Body Gravitational Systems using the Post-Newtonian 

Approximation 

Paul Argyle 

Department of Physics and Astronomy 

Bachelor of Science 

We use the post-Newtonian approximation of general relativity to study three-body 

systems composed of pulsars and rotating black holes. We numerically solve the post-Newtonian 

equations of motion to two and a half order with the inclusion of spin coupling terms to leading 

order. We study the effects of spin on the Kozai mechanism. Spin coupling can alter the 

frequency of the Kozai mechanism and introduce new patterns of oscillations in compact 

systems. The amplitude and period of Kozai oscillations decrease with separation distance when 

the objects are sufficiently close that relativistic effects dominate. Simulations show spin effects 

can alter the merge time of binary black holes. We calculate gravitational waves produced by 

three-body systems. 
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1 Introduction 
1.1 The Three-Body Problem 

The gravitational three-body problem consists of solving for the motion of three masses 

under the influence of their mutual gravitational interaction. The three-body problem has no 

general analytic solution in terms of elementary functions, and in general must be solved 

numerically [1]. Physicists have been studying the gravitational three-body problem since the 

time of Newton. Most of these studies used Newton’s law of Gravitation. The Newtonian 

gravitational three-body problem is known to be chaotic and exhibits a variety of nonlinear 

effects. Newton’s law of gravitation is accurate for systems with weak gravity but breaks down 

for systems with strong gravity. In strong gravity systems, Einstein’s theory of general relativity 

must be used. 

There are several important applications of the relativistic gravitational three-body 

problem. One example is triplet systems of pulsars and white dwarfs. Radio signals from a pulsar 

orbiting two white dwarfs were observed by an international group of astronomers in 2014 [2]. 

Comparing observations from such systems with predictions of general relativity could be a new 

test of general relativity. Three-body interactions can also cause binary black holes to merge 

faster [3,4]. One way this can occur is through a three-body orbital resonance known as the 

Kozai mechanism. We study this three-body interaction numerically. Instead of solving the full 

Einstein equations directly, we obtain equations of motion by adding perturbations to the 

Newtonian Hamiltonian in a method called post-Newtonian approximation. 
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outa  

1.2 Kozai Mechanism 

The Kozai Mechanism is an orbital resonance occurring in hierarchical triplet systems. 

Hierarchical triplet systems consist of two close orbiting masses with a third mass orbiting these 

objects from much farther away. A hierarchal triplet system is depicted in Fig. 1.1. The orbit 

consisting of the two close masses is called the inner binary. The tertiary mass and the center of 

mass of the inner binary comprise the outer binary. The minor radius of the outer binary is much 

larger than the radius of the inner binary  out ina a . The outer object perturbs the inner orbit 

over the course of several orbital periods. This causes oscillations between the eccentricity of the 

inner binary and relative inclination between the orbits known as the Kozai mechanism. The 

Kozai mechanism has been studied using Newtonian mechanics and various approximations of 

general relativity [5]. We study the Kozai mechanism using the post-Newtonian approximation, 

including spin coupling effects.

 

 

Fig 1.1 Depiction of a hierarchical three-body system. The inner binary is composed of two 
closely orbiting masses 1m  and 2m . The outer binary consists of a tertiary mass 3m and the 
center of mass of the inner binary. The minor radius of the outer binary is much larger than 
the radius of the inner binary out ina a . 
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1.3 Spin Coupling in General Relativity 

The gravitational field in general relativity couples to all forms of energy including an 

object’s rotational kinetic energy. A rotating mass will drag the spacetime around it. In 1963 Roy 

Kerr discovered an exact solution to the Einstein equations for the case of an axially symmetric 

rotating black hole. The Kerr solution shows there is a fundamental limit on a black hole’s spin 

angular momentum1.  In units where 1G =  and 1c =  this maximum value is the black hole’s 

mass squared 2
MaxS M= .  Radio and optical observations have found evidence for black holes 

with spin angular momentum greater than 80% this maximum value [6]. 

In this work we are interested in studying spin effects on orbital dynamics. Spin angular 

momentum can affect orbital mechanics in several ways. The objects’ spin angular momenta will 

couple with their orbital angular momentum. The spin angular momenta of different objects will 

couple. Deformation in the objects themselves due to their spin will also affect the gravitational 

field. We incorporate all these effects in our three-body simulations. 

1.4 Three-Body Effects on Black Hole Mergers 

In addition to spin effects, gravitational waves can play a role in systems with strong 

gravity. Gravitational waves are transverse waves in spacetime that propagate at the speed of 

 

 

1 The Kerr solution predicts that black holes with spin angular momenta 2S M>  will have a 
space-time singularity not enclosed by an event horizon. This is a naked singularity. In what is 
often referred to as the “cosmic censorship hypothesis” this is believed to be impossible. 
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light. They are produced by accelerating masses. Gravitational waves can cause black hole 

binaries to merge. As black holes in a close binary orbit about their center of mass they will lose 

energy to gravitational waves. This causes the separation distance to decrease and the orbital 

velocity to increase. Eventually this process can cause the binary to merge. This can take 

millions to billions of years depending on the initial separation and masses of the binary [7]. 

  The waveforms from many of these events have been detected by LIGO (Laser 

Interferometer Gravitational Wave Observatory).  By comparing these measurements with 

predictions from general relativity, the masses of the merging black holes can be deduced.  Many 

of the black holes observed by LIGO have masses greater than 65 M


with the most massive 

black hole observed to date weighing in at about 142 M


. Stellar evolution models suggest that 

black holes with masses greater than about 65 M


should not be able to form from the collapse 

of a star.  It is predicted that near the end of their life, supermassive stars with masses greater 

than 65 M


 will undergo a pair-instability supernova. In a pair-instability supernova, energetic 

atomic nuclei and gamma rays produce electrons and positrons that temporarily reduce the 

internal pressure supporting the star from gravitational collapse. This leads to a partial collapse 

and subsequent thermonuclear explosion that blows the star apart without leaving any stellar 

remnant behind. Thus, to align our understanding of stellar evolution with LIGO data, 

researchers have explored alternatives to stellar collapse to explain these higher mass black 

holes. 

 The leading explanation for the formation of black holes with masses greater than 65 M


 

is formation through dynamical merger events. However, there could a potential problem with 

this explanation. The time it takes an isolated binary black hole system to merge has been studied 
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[7]. Given the time it takes for isolated black hole binaries to merge and the current age of the 

universe, estimates have shown that it is unlikely LIGO would have observed so many black 

holes that are too massive to form through stellar evolution [8,9,10]. To provide an explanation, 

researchers have explored the effect multibody interactions have on the time it takes black holes 

to merge. It has been shown that the Kozai mechanism can decrease this merge time significantly 

[3,4]. However, this analysis was limited to systems in which the objects were not spinning.  We 

do three-body simulations to study any potential effects spin coupling has on the Kozai 

mechanism and merge times of binary black holes. 

1.5 Overview 

In this work, we used the post-Newtonian approximation to study three-body systems 

composed of black holes and neutron stars. We numerically solve the post-Newtonian equations 

of motion to two and a half order with the inclusion of spin coupling terms to leading order. We 

analyze the effects of spin on the Kozai mechanism. We simulate merging binary black holes 

perturbed by a distant third mass. We calculate the gravitational waveforms produced by 

hierarchal triplet systems. Our methods are discussed in Chapter 2 and our results are presented 

in Chapter 3. 
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2 Methods 
In this chapter we discuss our methods. A description of the post-Newtonian approximation 

and the Hamiltonian used in this work is given. Initial conditions used in our simulations are 

provided. Numerical methods used to solve the post-Newtonian equations are discussed. We 

describe the methods used to test our numeric solutions for the post-Newtonian equations at each 

order. Our method for calculating gravitational wave signals is discussed. 

2.1 Post-Newtonian Approximation 

The full Einstein equations of general relativity are nonlinear, partial differential 

equations. Solving these equations directly for three-body systems would be computationally 

expensive. Therefore, we use an alternative method, the post-Newtonian approximation. The 

post-Newtonian approximation consists of adding perturbations to the Newtonian Hamiltonian to 

correct for deviations from Einstein’s equations. This expansion is valid when the relative 

velocity of the objects is not a significant fraction of the speed of light ( )2v 1c   and the 

Newtonian potential is not too large 2 1GM rc  . The Hamiltonian used in this work is   

 21 2 2.5
LO LO LO

N PN PN PN SO SaSb S
H H H H H H H H= + + + + + + . (2.1) 

The first term NH is the Newtonian Hamiltonian. All subsequent terms are corrections to 

Newtonian gravity from general relativity. The first and second order corrections ( 1PNH  and 

2PNH ) alter the energy and trajectories of each mass, but still describe conservative systems. The 

two and a half order correction 2.5PNH  includes energy dissipation due to gravitational waves. 

The last three terms in Eq. (2.1) account for spin coupling effects to leading order. Specifically,
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LO
SOH accounts for coupling between the spin and orbital angular momentum of the objects, 

a b

LO
S SH

describes coupling between the spin angular momenta of different objects, and 2
LO
S

H accounts for 

effects caused by the deformation of objects due to their rotation. These corrections are given in 

Appendix A.  One goal of this project is to study the dynamics of hierarchal three-body systems 

at varying orders in the post-Newtonian Hamiltonian. 

With the Hamiltonian given by Eq. (2.1), the equations of motion are obtained through 

Hamilton’s equation with an addition to account for spin effects,                                                             

                                                                             

d H
dt

d H
dt

d H
dt

∂
=
∂

∂
= −

∂

∂
= ×
∂

a

a

a

a

a
a

a

X
P

P
P

S S
S

                                                                (2.2) 

where aX , aP , and aS denote the position, conjugate momentum, and spin angular momentum of 

mass a  respectively. The derivatives of the Hamiltonian in these equations are taken 

symbolically in Mathematica and the equations of motion are exported as optimized Fortran 

code. This code is included as a subroutine to solve the equations numerically in Julia. 

2.2 Initial Conditions and Parameters 

In this work, we study the Kozai mechanism and other nonlinear effects in hierarchal 

three-body systems. Hierarchal three-body systems can be treated as two effective one-body 

problems corresponding to the inner and outer binaries. It is convenient to specify these orbits in 

terms of Keplerian Orbital elements. The orbits for inner and outer binaries are specified in terms 

of their minor radius a , eccentricity e , inclination i , longitude of the ascending node Ω , 



 

  

 

16 

argument of periastron ω , and mean anomaly M . A description of these orbital elements as well 

as relations for converting between orbital elements and Cartesian coordinates is given in 

Appendix B. 

 For all our simulations, the inclination of the outer binary is 0outi =  . The longitude of the 

ascending node Ω  is initially 0 for both inner and outer orbits. The mean anomaly M is set as 

0  and 20  for inner and outer orbits respectively. The models we simulate are given in Table 

2.1. The PNN model consists of three equal mass pulsars. In the PNIB the inner binary consists 

of equal mass pulsars and the tertiary object is an intermediate mass black hole. In the PBIB 

model the inner binary consists of a neutron star and solar mass black hole, while the tertiary 

object is an intermediate mass black hole.  In the PNB1 model the inner binary consists of a solar 

mass black hole and a pulsar, while another pulsar is the tertiary mass. The PNB2 model consists 

of the same objects as the PNB1 model, but the solar mass black hole is the outer mass. All 

masses in Table 2.1 are expressed in solar masses M


. The initial conditions are specified in 

terms of Keplerian elements and converted to Cartesian coordinates for the simulations. 

 
Table 2.1 Tabulates masses in solar mass, inner minor radius ina , ratio of outer to inner 
radius /out ina a  , eccentricity of the inner binary ine , eccentricity of the outer binary oute , and 
relative inclination reli (in degrees) for each simulation model. 
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2.3 Numerical Methods and Tests 

2.3.1 Integration Method and Units 

The equations of motion in Eq. (2.2) are solved numerically using Julia. This program 

calls a Fortran subroutine for evaluating time derivatives at each step. We use Julia’s Vern9 

integrator with a relative and absolute error of 1210− . Vern9 is a ninth order Runga-Kutta method 

utilizing adaptive step sizes. Adaptive step sizes are important in our simulations where systems 

may transition between quasi periodic motion and chaos. Simulations are run on Brigham Young 

University’s Mary-lou supercomputer. 

 We use geometric units for our simulations, where 1G =  and 1c = . In these units the 

magnitude of the spin angular momentum of each object can be expressed in terms of it’s mass 

2
a amχ=aS ,where ( )0,1aχ ∈ . The unitless parameter aχ is defined such that 1aχ = denotes the 

object is maximally spinning. After performing simulations in geometric units the results are 

converted to SI units by multiplying the positions and time intervals by the scaling factors 

2/R GM c=  and 3/T GM c= where M denotes a mass scaling factor. We set this to one solar 

mass M


. In this paper, after the mass values have been specified, all spin magnitudes are 

expressed in terms of aχ . 

2.3.2 Testing First and Second Order Post-Newtonian Equations 

The Hamiltonian given in Appendix A is very complicated. Thus, we needed to test that 

the equations of motion in the code were inputted correctly and solved accurately at each order. 

At first and second post-Newtonian order, initial conditions for a binary system can be derived 
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that lead to circular orbits. We integrate the equations with these initial conditions and observe a 

constant separation distance. The process used to derive circular initial conditions for first and 

second post-Newtonian order is as follows. Given an initial radius 0R  we set 0 0φ =  and 0 0θ = , 

where 0R , 0 0φ = , 0 0θ =  are the spherical coordinates of the binary in the one-body frame. We 

then require the radial component of the conjugate momentum vanish (0) 0rp = . Finally, we 

require rp and θ  initially vanish.  By Hamilton’s equations 

                                                       
( )

( )

0
0

0
0

0

0.

r
Hp
r

H
pθ

θ

∂ = − = ∂ 

 ∂
= − = ∂ 





                                                      (2.3) 

These equations are solved numerically to obtain initial values for pθ and pφ . The equations of 

motion Eq. (2.2) were integrated with these circular initial conditions. Both masses were one 

solar mass and the initial separation was 500 km.  The simulation was run for 10,000 orbits. The 

maximum relative error in the separation distance was less than 910−  for both first and second 

order simulations. The three-body code was used for these simulations with the third body 

sufficiently far away that it didn’t affect the solution. 

2.3.3 Testing 2.5 Order and Spin Coupling Post-Newtonian Equations 

For two and a half post-Newtonian order there are no initial conditions that lead to stable 

circular orbits. This is because gravitational waves will slowly radiate away the energy of a 

binary system causing the objects to in-spiral until they merge. In the case of a binary with the 

circular initial conditions described in Sec. 2.3.2, the separation distance as a function of time 

predicted by theory is given by 
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                                                             0
0

( ) ,tR t R
t

τ
τ
 −

=  − 
                                                      (2.4) 

where 0R is the separation distance at some initial time 0t . The characteristic timeτ  is given by  

                                                              
( )

5 4
0

23
1 2

5
256

c R
G m m

τ
µ

=
+

                                         (2.5) 

where ( )1 2 1 2/m m m mµ = + is the reduced mass. Figure 2.1 shows close agreement between a 

simulated in-spiral and the prediction made by theory. The coordinate time is not Lorentz 

invariant and was scaled by a constant to make the fit. 

 

Fig. 2.1 Separation distance between two bodies satisfying the initially circular conditions 
described in Sec. 2.3.2. Each mass was one solar mass with an initial separation distance of 500 
km. Simulation results are shown in blue and theoretical prediction Eq. (2.4) is shown in red. 

 

 There are no analytic solutions to the post-Newtonian equations to compare with when 

spin coupling terms are included. However previous work has been done performing simulations 

with post-Newtonian equations including spin coupling [11]. The post-Newtonian equations 
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were solved including terms through second order and leading order spin coupling terms for two-

body systems. Our integrator replicated the trajectories in their paper.  An example is given in 

Fig. 2.2. 

 

Fig. 2.2 Two-body simulation with spin coupling replicating the second figure in [11]. Each 
mass was 10 M



 with an initial eccentricity of 0.9e = and pericenter radius of 3.7pr = . 
Distances are measured in terms of the total mass in geometric units. Each body was maximally 
spinning with spins ( ) 2

1 11/ 2,0,1/ 2S m= and ( ) 2
2 21/ 2,0, 3 / 2S m= .This plot is the 

trajectory in the one-body frame. 

 

2.4 Gravitational Waves 

2.4.1 Quadrupole Theory of Gravitational Waves 

 In addition to calculating the trajectories of masses in three-body systems, we calculate 

the gravitational waves produced by these systems to quadrupole order [12]. In this section we 
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present our methods for calculating these waveforms. All mathematical expressions in this 

section are given in geometric units, where 1G =  and 1c = . We calculate the gravitational waves 

propagating in a direction denoted by ˆ
r

=
xn  where x is the observation point and r = x . We 

calculate the projector ,ij klΛ  defined as 

 ,
1
2ij kl ik jl ij klP P P PΛ = −     (2.6) 

where  ij ij i jP n nδ= − and in denotes the thi  spatial component of n̂ . The quadrupole moment ijQ  
for a system of point masses is defined by 

 2
, ,

1
3ij v i v j v ij v

v
Q m x x δ = − 

 
∑ x . (2.7) 

The indices i and j denote spatial components while the index v is used to sum over all masses. 

The quadrupole formula for the gravitational wave signal is 

 
2

, 2

2 ˆ( , ) ( ) ( )TT kl
ij ij kl

d Qh t t r
r dt

= = Λ −x n . (2.8) 

Summation over the k  and l  indices is implied by the Einstein summation convention. The 

tensor given by Eq.(2.8) has nine components, but only two degrees of freedom. These can be 

conveniently extracted by introducing two unit vectors p̂ and q̂  that are orthogonal to the 

propagation direction n̂ ,and to each other. The tensor TT
ijh is decomposed into two independent 

“cross” and “plus” polarizations  

 ( )( )TT
ij i j i j i j i jh h p p q q h p q q p+ ×= − + + . (2.9) 

Equation (2.8) does not include spin effects in the gravitational waves. 
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2.4.2 Numeric Implementation and Testing 

 We calculate the gravitational wave signal given by Eq.(2.8) numerically for three-body 

systems. We solve the post-Newtonian equations of motion Eq.(2.2) in Julia and save the 

position, velocity, and acceleration at each time step. We substitute these the quantities into the 

analytic expression of the quadrupole moment 
2

2
klQ

t
∂
∂

to calculate the tensor TT
ijh . This tensor is 

calculated in cartesian coordinates and then converted to the basis  p̂ , q̂ , and n̂  to extract the 

polarizations h+  and h× . The waveforms fall off with the distance to the observer r . For our 

calculations we set this to unity in simulation units ( 1, 1,M 1G c= = =


). 

 The polarizations h+  and h× can be calculated exactly for the case of a binary in a circular 

orbit moving under Newtonian gravity [12]. In this case the gravitational waves emitted parallel 

to the orbital angular momentum are 

 
( ) ( )

( ) ( )

2

2

4( ) cos 2 ( )

4( ) sin 2 ( ) ,

h t R t r
r

h t R t r
r

µ

µ

+

×

= Ω Ω −

= Ω Ω −
 (2.10) 

where ( )1 2 1 2/m m m mµ = + is the reduced mass, 1 2
3

m m
R
+

Ω = is the orbital frequency and R is 

the separation distance of the binary. Figure 2.3 shows close agreement between a numerically 

calculated waveform and Eq.(2.10) . The Newtonian Hamiltonian was used for the simulation.  
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Fig. 2.2 The h+ and h× polarizations of gravitation waves emitted from a binary in a circular 
orbit. The initial separation distance was 1 (au)R = and each object was one solar mass. Each 
plot shows close agreement between numeric simulation in blue and Eq.(2.10) in red. The 
Newtonian Hamiltonian was used for the numerical simulation.  
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3 Results and Conclusions 
In this chapter we discuss our results from simulating the post-Newtonian three-body 

problem. We show representative examples of our simulations from the models tabulated in 

Table 2.1. We focus on simulations of compact systems, where relativistic effects play the 

largest role.  Simulation results show that spin coupling effects can alter Kozai oscillations. The 

spin angular momentum of each object is constant in magnitude, but changes orientation. We 

also discuss how the dynamics of the Kozai mechanism change with post-Newtonian Order. We 

characterize how the Kozai mechanism varies with separation distance.  We give examples in 

which spin effects alter the merge time of black holes and neutron stars. We show simulation 

examples of gravitational waves radiated from a hierarchal triplet system. Applications of this 

research will be discussed. 

3.1  Spin Angular Momentum Coupling  

3.1.1  Spin Effects on Kozai Mechanism 

We solved the post-Newtonian equations with spin coupling terms included to leading 

order as described in Sec. 2.4 of chapter 2.  The spin coupling terms are higher order in v / c  and 

spin effects can often be neglected2. However, when analyzing compact, massive systems, spin 

 

 

2 The leading order spin-orbit coupling terms are of order ( )3v c . The other spin terms in our 

Hamiltonian are of order ( )4v c . 
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coupling can have a significant effect on long term orbital resonances such as the Kozai 

mechanism. 

Simulation results from the PBIB, PNIB, and PNN models are shown in Fig. 3.1. The 

rows from the top down correspond to simulations of the PBIB, PNIB, and PNN models, 

respectfully. The eccentricity of the inner binary averaged over an orbital period is shown. The 

left column contrasts Kozai oscillations for the case in which none of the objects were spinning 

and the case where both masses of the inner binary were maximally spinning ( 1 2 1χ χ= = ) with 

their spin angular momentum parallel and in the orbital plane. The right column depicts 

simulations with the same initial conditions and parameters, but the spin angular momenta of the 

masses in the inner binary are oriented perpendicular to the orbital plane. 

 Figure 3.1 shows several effects spin coupling can have on the Kozai mechanism. In the 

PBIB model the spin effects cause an increase in the frequency of Kozai oscillations while the 

amplitude is nearly constant. In both the PNIB and PNN models, spin effects introduce new 

irregularities in the frequency and amplitude of Kozai oscillations. The PNN model doesn’t have 

steady KL oscillations, even in the absence of spin. This is because the inner binary is 

sufficiently compact that energy dissipation due to gravitational waves and other relativistic 

effects plays a more dominant role.  



 

  

 

26 

 

Fig. 3.1 The eccentricity of the inner binary averaged over an orbital period. The rows from the 
top down correspond to simulations of the PBIB, PNIB, and PNN models respectfully. The left 
column contrast Kozai oscillations for the case in which none of the objects were spinning and 
the case where both masses of the inner binary were maximally spinning with their spin 
angular momentum parallel, lying in the orbital plane. The right column shows simulations 
with the same initial conditions and parameters, but the spin angular momenta of the masses in 
the inner binary are oriented perpendicular to the orbital plane.  
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3.1.2 Evolution of Spin Angular Momenta 

The magnitude of the spin angular momentum of each mass is a conserved quantity in the 

post-Newtonian Hamiltonian, with spin terms included to leading order [11]. However, our 

simulations show that the orientation of the object’s spin angular momenta is not constant. 

Simulation results showing the time evolution of the spin angular momentum for PBIB, PNIB, 

and PNN models are shown in Fig.3.2.  The rows correspond to the PNN, PNIB, and PBIB 

models respectfully. In each simulation all three masses were initially maximally spinning (

1 2 3 1χ χ χ= = = ) with each mass’s spin vector initially oriented parallel to its orbital angular 

momentum. The spin angular momenta of each mass are represented as tracing out trajectories 

on the surface of a sphere with radius 1χ = . During the integration time shown for each 

simulation, the inner binary undergoes many orbits. The inner binary undergoes 3,300 orbits in 

the PNN simulation, 2,700 orbits in the PNIB simulation, and 32,500 orbits in the PBIB 

simulation. In each case the spin angular momentum of each object evolves on a timescale longer 

than an orbital period. In each simulation, the trajectories traced out by the spin angular momenta 

of the inner masses are nearly identical. This is even true for the PBIB model where the inner 

binary is not composed of equal mass objects. 
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Fig. 3.2 Evolution of the spin angular momentum for each mass in the PNN, PNIB 
and PBIB models. In all simulations each mass was maximally spinning with its spin 
angular momentum parallel to its orbital angular momentum. The spin angular 
momenta of each mass are constant in magnitude but vary in orientation. The spin 
angular momenta are represented as tracing out trajectories on the surface of a 
sphere with radius 1χ = .  In each model the spin angular momentum of each mass 
evolves on a timescale longer than orbital period. 
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3.2 Comparing Post-Newtonian Orders 

Our simulations show Kozai oscillations occur through two and a half order in the post-

Newtonian expansion in all models shown in Table 2.1. The amplitude and frequency of these 

oscillations vary with post-Newtonian order. Simulation results from the PNN, PNIB, and PBIB 

models at varying post-Newtonian order are shown in Fig. 3.3. The first and second order terms 

describe conservative systems. We find the Kozai mechanism can exhibit steady state 

oscillations at first and second order. However, at two and a half order, emission of gravitational 

waves causes Kozai oscillations to vary in frequency and amplitude over time. Eventually 

gravitational waves will drive the objects of the inner binary sufficiently close together that 

relativistic effects dominate over the Kozai mechanism. 

 Fig. 3.3 Eccentricity of the inner binary averaged over each orbital period at varying post-
Newtonian orders in the PBIB, PNIB and PNN models. 

PNN Model 

PNIB Model PBIB Model 
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3.3 Radial Dependence 

Our simulations show that Kozai oscillations decrease in amplitude as the objects get 

closer together and relativistic effects dominate. We also find the orbital period of Kozai 

oscillations increase with separation distance. The amplitude and period of the oscillations in the 

average eccentricity of the inner binary for the PNN model are shown in Fig. 3.4.  

 

Fig. 3.4  (a) Amplitude of averaged eccentricity of the inner binary for PNN model at varying 
inner minor radius  ina . Results from solving the post-Newtonian equations at second order are 
plotted. 
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Fig. 3.4  (b)  Period of Kozai oscillations for PNN model at varying inner minor radius ina . 
Results from solving the post-Newtonian equations at second order are plotted. 

 

3.4 Spin Effects on Merge Times 

In this section we give examples of simulation results to show the potential for spin 

coupling effects to alter the time it takes black holes to merge within a hierarchal triplet system. 

The separation distance of the inner binary averaged over an orbital period for a system in the 

PNB2 model is given in Fig. 3.5. The blue curve shows a simulation result in which all three 

bodies are not spinning. The red curve shows results of a simulation in which only one mass of 

the inner binary was spinning with magnitude 2 1χ =  , and initially oriented in the orbital plane. 

In the simulation with spin the inner binary merges at 73% the time of the simulation without 

spin. 
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Fig. 3.5 The separation distance of the inner binary averaged over an orbital period for a system 
in the PNB2 model is given in Fig. 3.5. The blue curve shows a simulation result in which all 
three bodies were not spinning. The red curve shows results of a simulation in which only one 
mass of the inner binary was spinning with magnitude 2 1χ =  and initially oriented in the orbital 
plane. In the simulation with spin the inner binary merges at 73% the time of the simulation 
without spin. 

 The averaged separation distance of the inner binary for simulations in the PNB1 model 

is given in Fig. 3.6. The blue curve is the result of a simulation in which none of the objects were 

spinning. The red curve is the result of a simulation in which only the tertiary mass was spinning 

with magnitude 3 1χ =  initially oriented perpendicular to the orbital plane. In this case spin 

caused the objects to merge slower by a factor of 2.1. 
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Fig. 3.6 The averaged separation distance of the inner binary for simulations in the PNB1 model. 
The blue curve is the result of a simulation in which none of the objects were spinning. The red 
curve is the result of a simulation in which only the tertiary mass was spinning with magnitude   
initially oriented perpendicular to the orbital plane. In this case spin caused the objects to merge 
slower by a factor of 2.1. 

 

3.5 Gravitational Wave Simulations 

We computed gravitational wave forms at quadrupole order as discussed in Sec. 2.4.  

These waveforms are represented in terms of two independent polarizations h+  and h× . Here we 

give examples from simulating the PNN model. Figure 3.7 shows gravitational waves produced 

in the PNN model (Left) and a system with the same masses and initial conditions, but with the 

third body removed (Right). Figure 3.7 shows the components of gravitational waves 

propagating perpendicular to the orbital plane of the outer binary in the PNN model. Each 

simulation is plotted for 26 seconds, during which time the separation distance of the inner 
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binary in the PNN model decreases to 95% of its initial value and the separation distance in the 

two-body simulation decreases to 96% its initial value.  In both simulations the gravitational 

waves oscillate at a frequency of about twice the orbital frequency. Interactions with the third 

body introduce oscillations at an additional, lower frequency in the PNN model that is not 

present in the two-body simulation. 

 

  

The gravitational waves that are detectable by LIGO result from the last few orbits before a 

binary composed of black holes or neutron stars merge. Figure 3.8 shows the gravitational waves 

leading up to the merger event for the same systems as in Fig. 3.7.  We see that while three-body 

PNN Model 2-Body Simulation 

Fig. 3.7 Gravitational waves produced in the PNN model (Left) and a system with the same 
masses and initial conditions, but with the third body removed (Right). In both simulations 
the gravitational waves oscillate at a frequency of about twice the orbital frequency. 
Interactions with the third body introduce oscillations at an additional, lower frequency that is 
not present in the two-body simulation. 
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interactions play a major role when the objects are about 5,000 km apart (Fig 3.7), they have 

little effect on the final signal shown in Fig. 3.8.  

 

 

 

 

 

PNN Model 2-Body Simulation 

Fig. 3.8 Gravitational waves produced in the PNN model (Left) and a system with the same 
masses and initial conditions, but with the third body removed (Right). The final signal 
before the objects merge is shown. 
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3.6 Conclusion 

In this work we used the post-Newtonian approximation of Einstein’s equations of 

general relativity to study the Kozai mechanism. The Kozai mechanism is an orbital resonance 

occurring in hierarchal three-body systems characterized by long term oscillations between the 

eccentricity of the inner binary and relative inclination. We simulated this effect for systems 

composed of pulsars and black holes. We found that coupling between the spin angular momenta 

of the objects can alter Kozai oscillations. The spin angular momenta of the objects remain 

constant in magnitude but change orientation. Predictions of both the trajectories of the masses, 

and orientation of the spin angular momenta would be relevant when comparing observations of 

triplet pulsar systems with predictions from general relativity. Such a study would be a new test 

of general relativity.  

We simulated the Kozai mechanism at different post-Newtonian orders. The inclusion of 

two and half order post-Newtonian terms causes variations from the steady state Kozai 

oscillations possible at lower orders. We also find that the amplitude and period of Kozai 

oscillations decrease with separation distance when the objects are sufficiently close that 

relativistic effects dominate.  Additionally, we simulated black hole and neutron star mergers in 

hierarchal triplet systems. We found evidence for cases in which spin effects altered the merger 

time of the inner binary. Our code could be used to conduct further research on this topic. 

Simulations could investigate which parameters play an important role in spin effecting merge 

times. More runs may determine if spin can have a significant effect on merge times when the 

initial separation distances are large. We also calculated gravitational waves radiated from 

hierarchal triplet systems. We found the tertiary mass could induce oscillations at an additional, 
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lower frequency, but this effect was diminished when the inner binary was sufficiently close to 

merging. Future research could determine possible effects three-body interactions may have on 

the gravitational waves observed by LIGO.  
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Appendix A 
Post Newtonian Hamiltonian 

In this appendix we give the post-Newtonian Hamiltonian we used to derive the equations 

of motion for three-body systems.  The Hamiltonian consists of the Newtonian Hamiltonian 

NH  with additional perturbations to correct for deviations from Einstein’s equations. The 

Hamiltonian used in this work is 

21 2 2.5 .LO LO LO
N PN PN PN SO SaSb S

H H H H H H H H= + + + + + +                  (A.1) 

The equations of motion are then obtained through Hamilton’s equations with an addition to 

account for spin effects, 

          

.

d H
dt

d H
dt

d H
dt

∂
=
∂

∂
= −

∂

∂
= ×
∂

a

a

a

a

a
a

a

X
P

P
P

S S
S

                 (A.2) 

The Hamiltonian is expressed in units where 1G =  and 1c = . The Newtonian Hamiltonian is 

  .                                     (A.3) 

Where  ap , am  are the linear momentum and mass for object a and abr  is the distance between 

am and bm . The 1st order correction is  
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,    (A.4) 

where abn  is the unit vector pointing from am  to  bm .The second order correction is 

. 

The post-Newtonian Hamiltonian at two and a half order accounts for effects due to gravitational 

waves. This correction is given by 

(A.5) 
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The quantities ( )(4) ,ij a a t′ ′χ x p and ( )(4) ,ij a a tχ x p  are defined by  

 

 

These expressions depend on the derivatives of the position and momenta. These are 

approximated using the 1st order Hamiltonian 1PNH  

. 

The spin coupling corrections are  

 ( )2

31 2LO b
SO a ab a b

a b a ab a

mH
r m≠

 
= × ⋅ − 

 
∑∑ S n p p ,          (A.11) 

.(A.6) 

.(A.7) 

.(A.8) 

(A.9) 
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 ( )( ) ( )3

1 3
2a b

LO
S S a ab b ab a b

a b a ab

H
r≠

= ⋅ ⋅ − ⋅  ∑∑ S n S n S S , (A.12) 

( )( ) ( )2 3 3
2

LO b
a ab b ab a aS

a b a a ab

mH
m r≠

= ⋅ ⋅ − ⋅  ∑∑ S n S n S S .    (A.13) 

The correction LO
SOH  accounts for spin-orbit coupling, 

a b

LO
S SH accounts for coupling between the 

spin angular momenta of different objects and 2
a

LO
S

H  is a correction accounting for gravitational 

effects caused by deformations in the objects due to their spin. 
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Appendix B 
Orbital Elements Definitions 

 In this work we specify our initial conditions in terms of Keplerian orbital elements. 

Orbital elements allow us to specify the initial conditions of a binary in a way that makes 

information of the shape, size, and orientation of the orbit apparent. The orbits for inner and 

outer binaries are specified in terms of their minor radius a , eccentricity e , inclination i , 

longitude of the ascending node Ω , argument of periastron ω , and mean anomaly M . Several 

of these orbital elements are depicted in Fig. B.1. Orbital elements describe a binary in an 

elliptical orbit. While the orbits in our post-Newtonian simulations are not exactly elliptical, we 

find orbital elements are still the most useful way to specify our initial conditions. The 

inclination i is the angle the orbit makes with respect to a reference plane. The longitude of the 

ascending node Ω  is the angle the orbit makes about an axis perpendicular to the reference plane 

with respect to some reference direction. Orbital nodes are the points where the orbit intersects 

the reference plane. The argument of periastron ω  is the angle the major axis of the orbit makes 

about an axis perpendicular to the orbital plane, measured with respect to an orbital node.  The 

true anomaly f is the angle the orbiting bodies make with respect to an orbital node. The mean 

anomaly M  is calculated from the true anomaly f  and eccentricity e  

  
2 21 sin 1 sinarctan .

cos 1 cos
e f e e fM

e f e f

 − −
= −  + + 

        (B.1)  
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Fig. B.1 Depiction of Keplerian orbital elements 

 

Conversion from Orbital Elements to Cartesian Coordinates 

 We specify our initial conditions in terms of orbital elements and then convert to 

Cartesian coordinates for our simulations. Here we discuss the process for converting from 

orbital elements to Cartesian coordinates. First, we calculate the eccentric anomaly u  from the 

mean anomaly M  by solving the following equation using Newton’s method 

    sinM u e u= −         (B.2) 

The true anomaly f  is then calculated using 

 
2sin( ) 1arctan

cos
u ef

u e

 −
=   − 

. (B.3) 
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We then calculate the polar coordinates of the orbit using 

 
( )21

1 cos
a e

r
e f
−

=
−

 (B.4) 

 ( )arctan tan cosf iφ ω= Ω+ +    (B.5) 

 ( )arccos sin sinf iθ ω= +   . (B.6) 

We then calculate the velocity of an orbiting body using 

 rr g f= 

  (B.7) 

 g fθθ =   (B.8) 

 g fφφ =  , (B.9) 

where rg , gθ , gφ , and f are given by 

 
( )
( )

2

2

1 sin

1 cosr

a e e f
g

e f

−
=

+
 (B.10) 

 ( )1 cos sin
sin

g f iθ ω
θ

= − +  (B.11) 

 ( ) ( )
2

2

coscos
cos

ig
fφ φ

ω
= −Ω

+
 (B.12) 

 
( ) ( )222

2 1 1

sinr

f Gm
r a g rg r gθ φθ

 ′= − 
  + +

 , (B.13) 
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where m′ is the total mass of the binary. For the inner binary 1 2m m m′ = +  and for the outer 

binary 1 2 3m m m m′ = + + . We then convert these spherical coordinates in the one-body frame to 

Cartesian coordinates in the three-body frame. 

Converting Cartesian Coordinates to Orbital Elements 

After solving the post-Newtonian equations in cartesian coordinates we convert back to orbital 

elements. The semimajor axis a is calculated 

 
2
Gma

E
′

= − , (B.14) 

where m′  is the total mass of the binary and E is the Newtonian energy per mass given by 

 21 v
2

GmE
r
′

= − ,  (B.15) 

where v and r are the orbital velocity and position. The inclination i , eccentricity e , and 

ascending node Ω  are given below 

 ( )
arccos zi

 ×
=   × 

r v
r v

 (B.16) 

 1e
aGm
×

= −
′

r v
 (B.17) 

 
( )( )
( )

arccos x
 × ×

Ω =  
 × × 

n r v
n r v

. (B.18) 
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Subscripts are used to denote vector components and n is the unit vector perpendicular to the x-y 
plane. The argument of periastron ω is obtained as follows. First, the true anomaly f  is given 
by 

 
( )21

arccos
a e r

f
er

 − −
 =
 
 

 (B.19) 

The angle from the ascending nodeθ  is calculated 

 cos sinarccos x y
r

θ Ω+ Ω =  
 

. (B.20) 

The argument of periastron is  

 fω θ= − . (B.21) 
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