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ABSTRACT

Efficacy of Enforced Parsimony on a Machine Learning Model of Gravity

Joseph Ehlert
Department of Physics and Astronomy, BYU

Bachelor of Science

Many machine learning models are often overly complicated and require simplification, making
it difficult to use them to discover fundamental physical laws. We examine the role of parsimony
in the scientific process using a 14-parameter, model of gravity created by the SirIsaac algorithm,
an S-Systems model. S-Systems, a universal function approximator for dynamical systems, are an
interesting case study because they include true gravity, i.e., the inverse square law, as a special
case. We explore the question whether model reduction methods can find true gravity as an
optimal approximation to the machine-learned SirIsaac model. We use the Manifold Boundary
Approximation Method (MBAM) as a parameter reduction algorithm. MBAM is a computational
approach based on the information geometry of the model. We found that MBAM produces a
reduced model of SirIsaac that accurately describes the four orbits of Newtonian gravity (circular,
elliptical, parabolic, and hyperbolic). The final reduced model is different than Newtonian gravity,
although the two reduction paths share four limits. By using two subsets (bound and unbound orbits,
respectively) of the data, we identified, via MBAM, a model that accurately fit each subset. We find
that all the limits necessary for Newtonian gravity appear in at least one of the reduction paths of
the bound and unbound orbits.

Keywords: machine learning, information geometry, model manifold, sloppy model, SirIsaac
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Chapter 1

Introduction

1.1 Motivation

Science, physics in particular, has long adhered to the reductionist hypothesis, meaning that the

physical world is controlled by the same set of fundamental laws and that understanding those

laws will help physicists create a Theory of Everything [1], [2]. This hypothesis is one reason that

physicists break matter into smaller and smaller parts - to understand how the smallest constituents

of matter behave to build a coherent Theory of Everything. Earlier scientists, especially those

in the 20th century, used reductionist thinking to produce many scientific laws, such as quantum

mechanics [2]. In contrast, Nobel Laureate Phil Anderson [1] argues that although the sciences can

be described using a hierarchy of complexity, each level of complexity is more than just an applied

version of the less complex and more fundamental previous level. Each stage of the hierarchy

needs new laws and concepts that require creative scientific input. Laughlin and Pines [2] similarly

argue that the reductionist hypothesis has peaked as a primary guiding principle of science. Rather,

physics will be guided by understanding the connections and different properties between different

levels of complexity, dubbed "the study of complex adaptive matter" [2].

1
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The study of complex adaptive matter requires the marriage of theoretical physics with com-

putational methods. Theory is important in physics because it allows extrapolation and physical

interpretation. In recent years, new computational modeling algorithms have enabled discoveries

in many fields of physics; however, these new modeling algorithms have created a disconnect

between the physical theory and the computational model [3]. This disconnect necessitates different

algorithms for physics and other scientific modeling that can assist in creating and even form

theories. Such a computer-based scientist could help drive the study of complex adaptive matter by

engaging in the scientific method, including experimenting, collecting data, modeling, theorizing,

and advising potential future experiments.

We focus on the modeling portion of a computer-based scientist using machine learning. Ma-

chine learning constitutes algorithms that learn relationships between input data and output data.

Recent increases in computing speed and power have enabled the widespread use of machine

learning in science. Scientists have been successful in using machine learning to model many

topics, including speech recognition [4] and cancer prediction [5]. Using symbolic regression, a

type of machine learning algorithm, physicists found some success in reproducing Hamiltonian

mechanics [6]. Machine learning provides a powerful modeling tool for a future computer-based

scientist, because it does not use extensive a priori knowledge to find a relationship.

Despite the successes of machine learning, it still has several issues, especially in the context of

a computer-based theorist. I will highlight two of these issues. First, models created by machine

learning algorithms tend to be sloppy, i.e., a model whose behavior is determined by relatively few

parameter combinations [7]. I will call this problem the sloppiness problem. Model sloppiness

implies overparameterization, or using too many parameters. Although overparameterization is

closely related to sloppiness, they are separate concepts; whereas overparameterization is more

parameters than needed, sloppy models have only a few parameters that determine the behavior of

the model and the other parameters have little effect. Second, machine learning models are often
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difficult to physically interpret, meaning that the parameters fail to have physical meaning. I will

call this problem the interpretability problem. Interpretability, or the ability to interpret the meaning

of a parameter and the model as a whole, is not only a problem in physics machine learning, but

also in machine learning in general [8]. This problem is magnified in physics because physicists

often want model parameters to have physical meaning that relate to the real world.

To solve these two problems, we turn to a guiding principle in the scientific method: parsimony.

Scientists follow Occam’s Razor, i.e., given two theories, all other things being equal, the simpler of

the two is more likely to be true [9]. One prominent example of Occam’s Razor at work in science is

the transition from the Ptolemaic system to the Newtonian system. The Ptolemaic system supposed

that the earth was the stationary center of the universe and that all celestial bodies moved around

the earth in epicyclic orbits. When a new inconsistency was discovered with planetary motion,

astronomers would add another epicycle to the orbit of a planet to match the data. In the Newtonian

system, the sun is the center of the solar system and orbits of all the planets are ellipses, rather than

epicycles. The Newtonian system explained planetary motion just as well as the Ptolemaic system,

but because it was simpler, it was gradually accepted by the scientific community. It later turned out

that the Newtonian system could also predict the parabolic and hyperbolic trajectories of celestial

bodies. Because simplicity has played a role in the human scientific method, parsimony and model

reduction may be able to solve the sloppiness and interpretability problems.

We examine the impact of parsimony by systematically reducing a machine learned, gravity-

based model into its simplest form in an attempt to reestablish Newton’s law of gravity. Reestablish-

ing a physical law could help us begin to answer several questions: how does simplicity relate to the

scientific process and what are the limits of simplicity as a guiding principle in a computer-based

scientist? With this motivation in mind, I will explain Newtonian Gravity in Section 1.2. I will then

explain the machine-learning algorithm, named SirIsaac, in Section 1.3. Finally, I will describe the

specific set of research questions we investigated in Section 1.4.



1.2 Newtonian Gravity 4

1.2 Newtonian Gravity

Newtonian gravity refers to the two-body problem and provides a simple case for machine learning

to reproduce for several reasons. First, Newtonian gravity is a well understood system - it has

been studied for several hundred years. Second, Newtonian gravity is a relatively simple dynamic

system - it can be described by a single second order differential equation. Third, we already know

the answer, making it easy to check if we are correct. If machine learning and model reduction

techniques can identify Newtonian gravity, then other, more complex physical laws may also be

discovered using similar methods.

Since computers usually solve only first-order differential equations, we need to split the

one second-order differential equation into two first-order differential equations. The following

derivation of Newtonian gravity is taken from [10]. For a mass, m, in orbit around another mass, M,

such that M ≫ m, distance r is given by

d2r
dt2 =

h2

r3 − GM
r2 , (1.1)

where h = (v0 · θ̂)r0 is the specific angular momentum, v0 is the initial velocity, r0 is the initial

distance, θ̂ is the unit vector perpendicular to the line between the two masses and G is the

gravitational constant. By measuring the distance in units of GM
v2

0
, measuring the time in units of GM

v3
0

,

and setting the initial velocity parallel to θ̂ , we obtain

d2r
dt2 =

1
r2

(
r2

0
r
−1

)
. (1.2)

Rewriting this as two first-order differential equations, the dynamics become
dr
dt

= χ −1

dχ

dt
= r2

0r−3 − r−2,

(1.3)

where χ = dr
dt + 1. These unit conventions will be used throughout this thesis. This version of

Newtonian gravity I will refer to as true gravity for the remainder of my thesis. In the next section, I

will explain SirIsaac and point out its important features.
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Parameter SirIsaac value True gravity value

α1 0.0332082 1

β1 0.0507828 1

g11 0.0490472 0

h11 0.0463394 0

g10 3.42771 0

h10 2.93633 0

g12 7.3715 1

h12 4.92514 0

β2 0.994249 1

g22 0.0144952 0

g20 0.651365 -2

h20 4.28848 0

g21 3.43506 3

h21 1.59462 2

Table 1.1 Original parameter values as fit by SirIsaac. The SirIsaac equations are found in
Eq. (1.4).

1.3 SirIsaac

Daniels and Nemenman [10] created SirIsaac, an S-Systems class algorithm. S-Systems are a

class of models that act as universal function generator for dynamical systems, meaning that it can

approximate a model for any system described by differential equations. The SirIsaac algorithm

walks through a hierarchy of differential models, starting with the simplest (least parameters) and

working its way to the most complex (most parameters). For further specifics on the SirIsaac

algorithm, see [10].
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Daniels and Nemenman created gravitational data for SirIsaac using Eq. (1.3) and adding

random noise to the data to imitate real world data [10]. The dynamic model created is given by,

dr
dt

= α1rg10
initr

g11Xg12
2 −β1rh10

initr
h11X−h12

2

dX2

dt
= r−g20

init r−g21X−g22
2 −β2r−h20

init r−h21,

(1.4)

where rinit is the initial condition of the radius, r is the radius, X2 is an unobserved state variable

for the second order equation and the remaining fourteen symbols are parameters, whose values

are found in Table 1.1. From here on, Eq. (1.4) will be referred to as SirIsaac. It is important to

note that true gravity, Eq. (1.3) is a special case of SirIsaac, Eq. (1.4). This fact means that with

parameters set to certain values, found in the right column of Table 1.1, SirIsaac will have the same

equation of true gravity.

1.4 Research Question

We explore the role of simplicity in the scientific process using the Manifold Boundary Approxima-

tion Method (MBAM) applied to a model of gravity learned by the SirIsaac algorithm [11]. Since

parsimony plays an important role in the scientific reasoning of humans, we conjecture that simple

models may be important for a computer-based scientist. We begin from an overparameterized,

machine-learned SirIsaac. This model captures the behavior of the two-body gravity problem and

contains, as a special, simplified case, true gravity. Here, true gravity refers to the inverse square

law derived by the human Sir Isaac Newton. True gravity can derived by setting to zero a handful of

parameters in the computer-generated SirIsaac model. We then ask: Can MBAM systematically

reduce SirIsaac into true gravity by setting these parameters to zero? If we do not recover true

gravity, what does an MBAM-reduced SirIsaac look like and how similar is it to true gravity? Is the

reduced SirIsaac simpler (fewer parameters) or more complex (more parameters) than true gravity?

Additionally, we explore the role that different types of data play in the modeling processes.
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Scientists never have all possible data at their disposal. Indeed, the human Newton derived the

inverse square law from data for near-earth trajectories and for the orbit of Mars. However, the

inverse square law accurately models other qualitatively distinct types of behaviors, including the

parabolic and hyperbolic orbits of comets. Similarly, we generate data from four qualitatively

distinct types of orbits: circular, elliptical, parabolic, and hyperbolic. We then consider the data

from bound orbits (circular and elliptical) and unbound orbits (parabolic and hyperbolic), each in

isolation. We then use MBAM to reduce SirIsaac into models constrained by data from only the

bound and unbound orbits, respectively. How do these two models relate to true gravity and to the

MBAM-reduced SirIsaac? How are the details of the reduction process of all four models different?

How are they the same?



Chapter 2

Methods

In this section, I will introduce the general methods used to approach the research question.

Section 2.1 will discuss the concepts necessary to perform model reduction using MBAM. Then, I

will show in Section 2.2 what the data looks like and how we split the data into subsets.

2.1 Manifold Boundary Approximation Method

We use MBAM as the model reduction technique to answer our research question. The discussion

in Section 2.1 comes from the discussion in [12]. MBAM is a model reduction technique that

relies on the geometry of the model to reduce parameters one at a time. Three things are necessary

for MBAM [12]: (1) a collection of data, denoted by {ym}M
m=1, where M is the number of data

points, and m gives a specific data point; (2) a family of models to make predictions, denoted by

{ fm(θ)}M
m=1; (3) a metric for comparing the model predictions to the data, or cost. To illustrate key

ideas about MBAM throughout this section, we have devised a 2-parameter toy model given by

f (t;θ) =
1

t2 +θ1t +θ2
, (2.1)

8
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where f is the model, t is the independent variable, θ represents a vector of parameters, [θ1,θ2]
T ,

and T represents transpose. Although many models, especially machine learning models, have

many more parameters and predictions, a simple model with fewer parameters and predictions is

ideal for visualizing each step in the MBAM process. We will predict using this model at three time

points, t = [1.0,2.0,3.0], while the data is given by ym = [1/3,1/7,1/13]T .

2.1.1 Cost and Cost Surfaces

The metric for comparing the model predictions and data is referred to as the cost. The cost can

take on a variety of options, but it is most often computed as the weighted least squares:

C(θ) =
1
2

M

∑
m=1

rm(θ)
2 (2.2)

where rm are the residuals, given by

rm(θ) =
ym − fm(θ)

σm
, (2.3)

where the residuals depend on the inverse weight σm. The best fit of the model is a vector, denoted

θ ∗, and defined as the point with the lowest cost, i.e., the best fit is found by minimizing the cost

with respect to θ . The concept of best fit is illustrated in Fig. 2.1. The lines that lie closer to the

data points have a lower cost and are therefore considered better fit.

As an important side note, we have restricted θi ≥ 0 in Eq. (2.1). Enforcing a positive parameter

is a common physical constraint on parameter values. Enforcing positive parameter values suggests

log transforming parameters, since logarithms have a strictly positive domain. Throughout the

remainder of this section, all values of θ are assumed to be log-transformed.

The cost surface is the generalization of the cost for a single set of parameters of a model. Every

θ vector has a cost associated with it. The cost surface is the result of plotting the cost at many

points as we systematically vary θ across its domain. Since a cost surface is plotted in parameter
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Figure 2.1 Various fits for the time series data, ym, for the toy model in Eq. (2.1). The
black dots are the data points with error bars. Each line represents a different value of the
parameters, θ . By varying θ , we observe a variety of model predictions with different
costs. The cost is lower the closer the line is to the data, therefore, the black line is the
best fit. Note that the parameter values in the legend are log-transformed, meaning that
negative numbers are associated with approaching 0 and positive numbers are associated
with approaching infinity. Figure extracted with permission from [12].
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space, creating a cost surface requires the same number of dimensions as there are parameters in the

model. The cost surface for the toy model is shown in Fig. 2.2. We can visually associate the best

fit prediction with the place of lowest cost on the cost surface. However, the model in Eq. (2.1) is

sloppy, meaning that it is insensitive to coordinated variations in some parameter directions. The

key way to identify sloppy models from the cost surface is by the aspect ratio of the cost canyons;

when the cost surface forms long, thin canyons, the model is sloppy, and when the cost surface

forms a bowl-like structure, the model is not sloppy. The canyons of low cost indicate that the

predictions of the model change minimally as we vary parameters in a parallel direction to the

canyon. Conversely, a small change in the data in the prediction space could inadvertently lead to a

large change in best fit parameter values. For example, reviewing Fig. 2.1, if y at t = 1.0 increased

slightly, the blue line may fit much better than the black line, yet the parameters of the blue line

(θ = [0.5,−3.0]T ) are not close to the parameters of the black line ((θ = [0.0,0.0]T ). Therefore, a

small amount of noisiness or uncertainty in the data can lead to a large amount of uncertainty in

the best fit parameters. Finding parameter combinations with large uncertainty is central to model

reduction with MBAM. Parameter combinations with large uncertainty are called unidentifiable

parameter combinations because the predictions will look the same even as we adjust parameters

parallel to the cost canyons.

2.1.2 Fisher Information Matrix

To quantify the uncertainty of θ ∗, we use a linear approximation of the cost surface in the vicinity

of the best fit. First, we linearize the residuals around θ ∗:

rm(θ)≈ rm(θ
∗)+

∂ rm

∂θ
(θ −θ

∗). (2.4)
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Figure 2.2 The cost surface of the toy model, Eq. (2.1). We created the plot by varying
both log(θ1) (x-axis) and log(θ2) (y-axis) between −5 and 5. Darker colors represent
lower cost, meaning that the darkest point is the point of best fit. Each colored dot is
associated with the prediction line of the same color in Fig. 2.1. This shows again that
the black dot (represented by the black line in Fig. 2.1) is the best fit at (0,0). It is also
significant to note there exist canyons of low cost that extend from the point of best fit.
Figure extracted with permission from [12].
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Since the cost is at a minimum at the best fit, we know that ∇C = 0 at θ ∗, where ∇ is the gradient.

By substituting Eq. (2.4) into the cost function Eq. (2.2) and using the fact that ∇C = 0, we obtain

C(θ)≈C(θ ∗)+
1
2
(θ −θ

∗)T (JT J)(θ −θ
∗), (2.5)

where we have introduced the Jacobian of the residual function, J, and T is again the transpose. The

Jacobian is defined in Eq. (2.6) and is evaluated at θ ∗,

Jm,n =
∂ rm

∂θn
=− 1

σm

∂ fm

∂θn
. (2.6)

The quantity JT J found in Eq. (2.5) is an important statistical quantity known as the Fisher Informa-

tion Matrix (FIM):

I = JT J. (2.7)

The inverse of the FIM is the covariance matrix of parameter uncertainty, giving a quantification of

the parameter uncertainty.

The FIM also describes the local geometry of the cost surface, as shown in Fig. 2.3. Local cost

contours form ellipses that can be described by the FIM. The diagonals describe the change in cost

to each parameter individually. The cost contour ellipses are aligned with the eigenvectors of the

FIM, with an aspect ratio given by the square root of the ratio of eigenvalues (λ ). Long directions

in the ellipse are parallel to eigenvectors with small eigenvalues. The parameter combinations with

small eigenvalues will have greater uncertainty, and therefore carry less information about the data.

In addition, the projection of the ellipses onto the axes estimates the uncertainty of a parameter,

given by the diagonals of the inverse FIM. The directions with small eigenvalues of the FIM are

also useful for isolating the unidentifiable parameter combinations.

2.1.3 Model Manifolds

The cost surface and FIM help us determine the best fit and quantify the parameter uncertainty, but

we can also understand the model using a high-dimensional model manifold. The model manifold is
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Figure 2.3 The local geometry of the cost surface of the best fit described by the Fisher
Information Matrix for Eq. (2.1). Local cost contours are described by ellipses. −→v i and
λi represent the eigenvector and eigenvalue, respectively, of the FIM. They describe the
direction of the major axes and aspect ratio of the cost contour ellipses. The diagonals of
the FIM represent the change in cost of each parameter individually, and the diagonals of
the inverse FIM are used to calculate the uncertainty for each parameter. Figure extracted
with permission from [12].
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constructed by mapping all possible parameter values to their predictions in data space. This process

creates a surface in data space that is the set of all possible predictions called a model manifold.

The axes for a model manifold are the value of the model at every time point in the data - for the toy

model, with three time points, there would be three dimensions, each with associated with the value

of the model at the respective time. Since distance in data space corresponds to cost, the best fit is

the point on the model manifold closest to the data and, conversely, the farther from the data, the

higher the cost. The model manifold of the toy model, Eq. (2.1), is found in Fig. 2.4. The model

manifold of the toy model is a two dimensional surface in three dimensional space because there

are two parameters and we predict at three time points.

Notice in Fig. 2.4 that the manifold is bounded by two one-dimensional segments. These

boundaries suggest that even though parameter space extends to infinity, there is a finite limit to

possible predictions, i.e., infinite distances in parameter space are mapped to a finite distance on the

model manifold. This phenomena explains why canyons appear in the cost surface: as parameter

values change an infinite amount, the distance from the best fit remains unchanged on the model

manifold. Therefore, the boundaries have a corresponding unidentifiable parameter combinations.

The bounded segments are a manifold of co-dimension one, meaning that a 1-D line can intersect

the boundary; in a higher-dimensional model, the same rule of co-dimensions applies - a boundary

of co-dimension one is a surface with one dimension less than the manifold itself. The distance

between the best fit and each boundary informs the cost associated with taking the limit associated

with that boundary. The distance between the best fit and each boundary creates a hierarchy of costs

associated with each limit, with the closest boundaries corresponding to the least change in cost,

and the farthest boundary corresponding to the greatest change in cost. In order to reduce the model

using MBAM, we take the limit associated with the closest boundary.

We use geodesics to find the unidentifiable parameter combinations associated with each

boundary. A geodesic is the generalization of a straight line on a curved surface, i.e., a distance
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Figure 2.4 Model manifold of the toy model. Every point in parameter space is associated
with a set of predictions in data space. The axes are the values of the model at three time
points, where f is given by Eq. (??). The colored dots correspond to the models found in
Fig. 2.1, Fig. 2.2 and Fig. 2.5, and correspond to various parameter values. There are two
geodesics (dashed and solid lines) calculated that radiate outward from the best fit. Figure
extracted with permission from [12].
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minimizing curve on a specific surface. [13] A geodesic is calculated by solving the geodesic

equation,
∂ 2θ i

∂τ2 =−∑
j,k

Γ
i
jk

∂θ j

∂τ

∂θ k

∂τ
, (2.8)

where

Γ
i
jk = ∑

l,m
(I−1)il ∂ym

∂θ l
∂ 2ym

∂θ j∂θ k (2.9)

are the Christoffel symbols, I is the FIM, θ are the parameters, and τ is the arclength of the

geodesic along the model manifold. We solve the geodesic equation numerically as an initial value

problem, where the initial conditions are given by the best fit and the initial direction is given by an

eigenvector, starting with the sloppiest one. We use the toy model to illustrate geodesics: Fig. 2.4

shows the model manifold with two geodesics through the best fit and Fig. 2.5 shows the cost

surface with the same two geodesics through the best fit, in addition to the two eigenvectors used as

the initial direction. Note that while the geodesics remain mostly straight on the model manifold in

data space, they change direction in parameter space to align with the cost canyons or unidentifiable

parameter combinations. From the cost surface, we can see that either θ1 → 0 or θ2 → 0 at the end

of the geodesic. By comparing the cost surface with the model manifold picture, we can deduce that

θ1 → 0 corresponds with the upper boundary of the model manifold because three geodesics end at

that boundary in both the cost surface and the model manifold. The comparison also implies that

θ2 → 0 corresponds with the lower boundary. These limits indicate the unidentifiable parameter

combinations, and, by comparing the arclength of the geodesic on the model manifold, called τ in

Eq. (2.8), we can isolate the best approximation of the model.

With a more complex model, like the 14-parameter SirIsaac, isolating the unidentifiable pa-

rameter combinations visually becomes impossible. Complex models, therefore, necessitate the

use of the geodesic for selecting the unidentifiable parameter combinations. In addition, for the

simple model with two parameters, the unidentifiable parameters consisted of only one parameter

going to 0; in more complex examples, unidentifiable parameter combinations are often coordinated
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Figure 2.5 Cost surface of the toy model with geodesics. The red arrows indicate the
directions of the eigenvectors of the FIM. Two geodesics (dashed and solid purple lines)
radiating outward from the best fit, corresponding to those in Fig. 2.4, are also shown.
Figure extracted with permission from [12].



2.1 Manifold Boundary Approximation Method 19

combinations of parameters, i.e., multiple parameters are limited on one boundary of the model

manifold. A geodesic can identify all parameters associated with a manifold boundary, and find an

identifiable reparameterization of the model.

2.1.4 Hasse Diagrams

The Hasse diagram is a diagram that shows the limits associated with unidentifiable parameter

combinations, mapping the reduction path of MBAM. The reduction path refers to the set of limits

found by MBAM to reduce a model. A Hasse diagram for the toy model is found in Fig. 2.6. Every

node of the Hasse diagram represents a different model with the number of parameters given on

the left. The first node, or the top node, represents the original model, found in Eq. (2.1). Since

two limits were identified with geodesics (θ1 → 0, θ2 → 0), there are two possible reductions paths

shown by arrows labeled with the accompanying unidentifiable parameter combination. The next

level of limits would reduce the original model to zero parameters and is also shown in the Hasse

diagram. A reduction path is constructed by following the limits found by MBAM and mapping

those limits onto the Hasse diagram. Although I have shown all possible reduction paths in the toy

model Hasse diagram, to simplify the diagrams, the Hasse diagram will show only the reduction

path taken by MBAM, rather than all possible paths.

2.1.5 MBAM as an Iterative Process

Using the computational methods described above, I will now describe how MBAM works as a

reduction method. MBAM is an iterative process that systematically approximates a model one

unidentifiable parameter combination at a time. First, we find the best fit of the model using a

Levenberg-Marquardt algorithm and check that the model approximates the data well. [14] The

exact workings of the Levenberg-Marquardt are beyond the scope of this thesis, but it is an optimized

algorithm for fitting data with complex cost surfaces. Once we have the best fit, we solve several
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Figure 2.6 Hasse Diagram for the toy model. A Hasse diagram demonstrates the model
reductions found using MBAM. Each node represents a model with the number of param-
eters given on the left. The top node represents the full, original model and each arrow
represents a reduction, labelled with the corresponding limit, therefore the farther down
you go in a Hasse diagram, the simpler the model is.

geodesics to find several unidentifiable parameter combinations. We select the unidentifiable

parameter combination with the smallest τ , the distance from the best fit on the model manifold,

and take the associated limit to reduce the model. By taking this limit, our new, reduced model

manifold becomes the co-dimension one manifold associated the bounded segment of the original

model manifold. Using the reduced model and its manifold, we repeat the process of finding the

best fit of the reduced model, calculating several geodesics, isolating and taking the limit of the

closest unidentifiable parameter combination until the geodesic no longer finds an unidentifiable

parameter combination or until the best fit no longer approximates the data well. We used MBAM

to find and document a reduction path of SirIsaac.
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2.2 Understanding the Data

There are four regimes of orbits in the two-body problem: circular, elliptical, parabolic, and

hyperbolic. Each orbit results from different initial conditions. In the setup of SirIsaac, we fit

the data to the radius, i.e., the radius is the quantity of interest. In Fig 2.7, we see the data split

into the four orbits: the blue line is the original SirIsaac model (Eq. (1.4)) and the orange line is

true gravity, Eq. (1.3). The two models are near perfect replicas in the elliptical, parabolic and

hyperbolic regimes, but appear to be quite different in the circular regime; note that the scaling

changes on each y-axis, and that the SirIsaac data are within the error bars of true Gravity. Notice

that there are two general types of orbits: bound orbits, with a definitive minimum and maximum

radius, and unbound orbits, without a maximum. The bound type includes circular and elliptical

orbits and the unbound includes parabolic and hyperbolic. We performed MBAM on three sets of

data: all, bound orbits only, and unbound orbits only.

We used the original SirIsaac data (the blue line in Fig. 2.7) when fitting the reduced models.

SirIsaac was originally fit using true gravity with noise added in to replicate the noisiness of data

in real data measurements. Since using true gravity implies a priori knowledge about Newtonian

gravity, the original SirIsaac data provided the most natural way to fit the data during MBAM.
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Figure 2.7 Data of original SirIsaac and true gravity for all four orbits. The blue line is
SirIsaac and the orange line is true gravity. Bound orbits (circular and elliptical) are found
on top, and unbound orbits (parabolic and hyperbolic) are found on the bottom. The y-axis
is the distance, r, and the x-axis is time, both in arbitrary units. Notice that each regime
has a different scale in both the horizontal and vertical axes. Although the circular orbit of
SirIsaac and true gravity appear to be quite different, the scale in the y-axis is so narrow
that the circular orbits fall well within the error bars.



Chapter 3

Results and Discussion

Using MBAM, we obtained several different reduced models of SirIsaac, which are presented in

this section. First, I will show how to reduce from SirIsaac to true gravity. I will demonstrate how

the reduced models succeed and fail to predict the radius of the orbit. Then, I will compare the

true gravity reduction with reduced models obtained using all all orbits, bound orbits, and then

unbound orbits. Then I will draw several conclusions and pose further research questions that could

be considered.

3.1 True Gravity Reduction

The reduction from SirIsaac to true gravity is shown in Fig. 3.1. There are seven reductions required

to get to true gravity from SirIsaac. The Hasse diagram shows these seven steps, from SirIsaac

at the top node, to the reduced model, i.e., true gravity, as the last node. The true gravity model

contains seven, nonzero parameters. Since the reduction path was done analytically, the order of

reductions is not significant. We will compare the reduction paths found by MBAM for all, bound,

and unbound orbits to the reduction path of true gravity.

23
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Figure 3.1 Hasse Diagram of true gravity. The full SirIsaac model is the top node with
fourteen parameters, and the final node is the model for true gravity with seven parameters.
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3.2 Fitting Reduced Models

Figure 3.2 shows the fit of the reduced all data model in comparison to SirIsaac and true gravity. In

general, SirIsaac tracks closer to true gravity than the reduced model, but, in the circular regime,

the reduced model performs significantly better. One reason for this is that models with more

parameters tend to over fit the data used to create the model. SirIsaac was created using messy data

with twice as many parameters as necessary, therefore causing an over fit problem that is especially

obvious in the circular regime. With fewer parameters, the reduced model catches only the most

important behavior in the circular regime, i.e., keeping the orbit as close to constant as possible.

The reduced model for both unbound and bound is two 4-parameter models. Fit for the reduced,

4-parameter model for the bound orbits is found in Fig. 3.3. In the elliptical orbit, much the same

as the all data reduced model, the reduced bound model follows both the SirIsaac and true gravity

data closely. In the circular regime, the radius continues growing throughout the range of time and

looks like it will continue growing forever. Within the range of the data though, the predictions

from the bound model are still within or close to the error bars of the SirIsaac data. Because of

the uncertainty in the data over this range, the fit is still optimized for this specific set of data. The

unbound model is also four parameters and traces out the data well, as shown in Fig. 3.4. Both

unbound orbits demonstrate no significant deviations from either SirIsaac or true gravity. The one

feature that the unbound model fails to reproduce is the bump in radius when r is less than 10, but

even after a long time, the reduced model still closely approximates true gravity.

A phase space plot provides another way to compare the behavior of the reduced models to

true gravity. The phase space plots for true gravity and the three reduced models (all, bound, and

unbound orbits) are found in Fig. 3.5. Since the models contain a factor of r0 that determines

the shape of the orbit, it is necessary to create four phase space plots for each model to compare

behaviors. This phase space plot uses r̈, the acceleration, as the vertical component of a vector and

(̇r), the velocity, as the horizontal component of a vector. The x-axis corresponds to the position
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Figure 3.2 Fit of SirIsaac (blue), true gravity (orange), and the reduced all data model
(green). SirIsaac does not match the true gravity perfectly, especially in the circular
regime. While SirIsaac performs better than the reduced model at replicating the behavior
of gravity in the elliptical, parabolic and hyperbolic regimes, the reduced model has
significant improvement in the circular regime.
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Figure 3.3 Fit of SirIsaac (blue), true gravity (orange), and the reduced bound model
(green). Similar to Fig. 3.2, the predictions in the elliptical regime follow the same shape
and amplitude of both the SirIsaac data and true gravity. However, in the circular regime,
the reduced model takes on another behavior - it gradually increases throughout the data
range without reaching a clear inflection point.

Figure 3.4 Fit of SirIsaac (blue), true gravity (orange), and the reduced unbound model
(green). The reduced model does an excellent job reproducing both the parabolic and
hyperbolic data. The only feature the model fails to reproduce is the slight bump in the
data when r is small, i.e., less than 10.
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and the y-axis to the velocity.

Comparing the phase space plots of the same orbital regime informs how each model succeeds

in reproducing the gravitational data and how the model’s behavior differs from other models.

Naturally, for the bound model, the unbound phase space plots, since the obits weren’t fit on, do

not match true gravity. The same goes for the bound orbits in the unbound model. In the circular

regime, the all model forms a different shape of orbit than true gravity, yet at there is a point that

has a circular orbit, near (1,0). The bound model, instead of producing an orbit, makes the velocity

go to 0 when in the circular regime. However, with slight perturbation of the velocity, the radius

continues to grow without slowing down. This plot explains the instability seen in 3.3 - the radius

will steady and slowly increase forever, because of the instability in the velocity. The elliptical

phase space plots, barring the unbound model, all appear to work by a similar mechanism to true

gravity. The parabolic orbit is well-reproduced by the all model, yet the unbound model looks

entirely different than expected from true gravity. The same is also true of the hyperbolic plots.

The unbound model’s phase plots shows totally different behavior than true gravity or the all data

model, which both have similar phase space plots. Rather, the phase space plots of the unbound

model indicate that for positive perturbations of the velocity, the radius will grow quickly. If there is

a negative perturbation, the radius will flow toward zero.

3.3 Reduction Path Comparison

Fig. 3.6 presents a comparison of true gravity and MBAM reduction paths. It also introduces the

concept of the supremum model, which is the simplest model in common between two or more

reduction paths. [15] There are four common reductions between the true gravity and MBAM,

meaning that the 10-parameter model is the supremum model for these two reduction paths. The

reduction paths branch and true gravity has three more reductions and MBAM identifies five more
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Figure 3.5 Phase space plots of all models for all regimes. Since the model depends on
the r0 or the initial condition of r, each orbit needs its own phase space plots. These phase
space plots have r (position) on the x-axis and ṙ (velocity) on the y-axis. The horizontal
component of a vector is ṙ and the vertical component is r̈ (acceleration). The all data
reduced model accurately reproduces the behavior in all four regimes, although the circular
regime’s orbit is a different shape than true gravity. The bound model shows instability in
the circular regime, but in the elliptical regime, looks almost identical to the true gravity.
The black boxed areas indicate nonsensical areas because the data from those orbits was
not used in generating the model. The parabolic and hyperbolic phase space plots for the
unbound model also do not match true gravity.
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reductions following the split. Although the order is important for MBAM-reduced models, we

focus on the path taken rather than each individual step when computing the distance between the

two models. For the specific order of limits, see Appendix A. In the seventh reduction, the limit

forced a reparameterization so that new parameters appear as combinations of other parameters.

The MBAM-reduced model maintains accuracy even with fewer parameters than true gravity. The

distance between the all data model and true gravity is eight steps. The final reduced model of

MBAM has two fewer parameters than the true gravity reduction and the reduction path of MBAM

finds several unique limits that true gravity did not have.

We combine all four reduction paths into one Hasse diagram in Fig 3.7. All four reduction

paths have the same four limits that led to the supremum model of true gravity and the all data

model. From there, there are three limits required to reach true gravity, shown in the Hasse diagram

as a green arrow (h20 → 0) and a blue arrow (h10 → 0 and g10 → 0). Neither of these arrows are

found in the reduction path of the all data model, yet the green arrow limit is found in the bound

reduction path and the blue arrow is found in the unbound reduction path. This fact indicates that

all the necessary limits for true gravity are found in the reduction paths of the unbound and bound

models. By clever combination of the two reduction paths, we could potentially recreate true gravity,

although we would have to help deliberately assist MBAM in its process. The red arrow in the Hasse

diagram (g20 → 0) appears in each of the three reduction paths for the MBAM-reduced models,

yet it does not appear in true gravity. Lastly, it is fascinating that there is a simpler model than

true gravity that accurately reproduces the phenomena of gravity - the all data model only has five

parameters versus the seven in true gravity. Despite this further simplicity, aspects of gravitational

interaction are lost and the beauty of true gravity encourages it’s use.
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Figure 3.6 Hasse diagram of true gravity and MBAM reduction of SirIsaac. The black
nodes represent models that are common to both the true gravity and MBAM reduction
paths. There are four common reductions through the ten-parameter model. The red
represents models that are only found in the MBAM reduction path and green represents
models only found in the true gravity reduction path. The 10-parameter model is the
supremum model for the all data and true gravity reduction paths. The fully reduced
models are eight steps apart.
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Figure 3.7 Hasse diagram of true gravity, all data model, bound model, and unbound
model. Arrows that are the same color and same direction represent the same limit or
series of limits. For example, red arrows, generally pointed at 45 degrees down to the left
represent the limit g20 → 0. The nodes nearest the bottom of the diagram are the fully
reduced models. Notice that all the limits necessary to get to true gravity are present in the
bound reduction path, the unbound reduction path or both.
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3.4 Conclusion

While MBAM was able to bring SirIsaac closer to true gravity, MBAM still failed to reproduce

Newton’s law of gravity. However, there is still methods of splitting data and reparametrizing the

model that could be experimented with to try to help machine learning reproduce fundamental laws.

For example, the coefficients of SirIsaac (α1,β1, and β2) are currently enforced to fall between 0

and infinity, as per the problem formulation. These could be reparametrized to enforce them to fall

between 1 and infinity, which means we are adding 1 as a limit to these specific parameters. By

doing so, we would slightly change the number of parameters in true gravity, but 1 seems to be a

much more natural parameter for a coefficient than 0. Although this adjustment requires some a

priori knowledge, it could provide additional insight into answering how machine learning can help

discover fundamental laws.

SirIsaac also revealed an important fact about the topology of models created with S-systems:

their domain is naturally positive, from 0 to infinity. When the parameters were allowed to explore

the full parameter space, only two reductions were found using MBAM before they all disappeared.

By enforcing 0 as a limit in SirIsaac, MBAM identified many reductions that barely affected the

accuracy of the predictions. In the future, it is important to remember that S-systems models, and

maybe many other machine learning models, should enforce positive domains.

By comparing of the fit plots, phase space plots, and the Hasse diagram, we see that parsimony

is not everything. Despite the simplicity of the bound and unbound models and their accuracy in

fit, the phase space plots show that the models are not stable. The five parameter all model though

manages to be stable while also reproducing the behavior throughout all four orbits. Although

simplicity has driven physics discoveries in the past, it is important to understand that simplicity

alone is not enough. Data drives machine learning and all of the data is often necessary to make

good predictions using machine learning, which would explain why the all model fits the behavior

of gravity better than the bound and unbound when considering the phase space portraits. Including
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more data adds inherent cost to reducing the number of parameters.

Since this project was motivated in part by the future creation of a computer-based scientist,

one natural next step would be to pursue the automation of this system, from using the SirIsaac

algorithm on a dynamical system, to reducing the model with MBAM. Even though the final result

didn’t match up perfectly with true gravity, the MBAM-reduced SirIsaac did a remarkable job

fitting data with a simple model. Future work could also include fitting with more data, specifically

including more orbits to fit on. We only used one example from each orbit type - what would

happen if we doubled or tripled the number of orbits we fit on? The increased number of orbits, and

therefore data points, may increase the number of parameters, but also draw the fully simplified

model closer to true gravity. In addition, because all of the limits for true gravity were found

between the bound and unbound models, there may be a clever way to split the data and then

recombine the models produced that results in the rediscovery of Newtonian gravity. If we iterate

over this model several times, can we gradually draw closer to Newtonian gravity [9]? Finally,

parsimony, or at least this brand of it, did not provide enough to rediscover Newtonian gravity - we,

as humans, have followed Occam’s Razor in science, but it appears that machine learning needs

more. What other principles have we used to conduct the scientific method that could be applied to

machine learning? Dirac [16] has suggested that a principle of beauty is another guiding principle in

physics. Can we find a way to quantify mathematical beauty in machine learning to take advantage

of this principle?



Appendix A

Reduction Order

The order of reductions found by MBAM for each of the models is found in Table A.1. The order is

significant because the first reductions likely affect the predictions the least, and the later predictions

affect the predictions the most. The order of true gravity reduction is not significant because that is

an analytical, rather than an MBAM, reduction path.

The equations for each of the fully simplified models can be found below. True gravity is the

same as Eq. (1.3), with 7 parameters:

dr
dt

= χ −1

dχ

dt
= r2

0r−3 − r−2.

(A.1)

The 5 parameter all data model:

dr
dt

= rh10
initc1 log(X2)

dX2

dt
= r−g21 −β2r−h20

init .

(A.2)

The 4-parameter bound model:

dr
dt

= rh10
initc1 log(X2)

dX2

dt
= r−g21 −β2.

(A.3)
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Num. Parameters True gravity All data Bound Unbound

13 g10 → 0 h11 → 0 g11 → 0 g22 → 0

12 g11 → 0 g22 → 0 h11 → 0 g20 → 0

11 h10 → 0 g20 → 0 g20 → 0 h11 → 0

10 h11 → 0 h12 → 0 h21 → 0 h12 → 0

9 h12 → 0 g11 → 0 h20 → 0 h10 → 0

8 g22 → 0 h21 → 0 g22 → 0 β1 → 0

7 h20 → 0 α1,β1 → ∞,g12 → 0 h12 → 0 g10 → 0

6 c2 → 0 α1,β1 → ∞,g12 → 0 g11 → 0

5 c3 → 0 c2 → 0 g12 → ∞,h20 → 0

4 c3 → 0 c2 → 0

Table A.1 Parameter reduction order. Unlike the Hasse diagram, this reduction order is
given in the order that it occurred using MBAM. Only the order of true gravity is not
significant, because it was taken analytically. The number of parameters column is the
number of parameters after the respective limit has been taken
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The 4-parameter unbound model:

dr
dt

= α1 exp(c1z)

dz
dt

=−r−g21c3 exp(r)+ log(rinit).

(A.4)



Bibliography

[1] P. W. Anderson, “More Is Different,” Science 177, 393–396 (1972).

[2] R. B. Laughlin and D. Pines, “The Theory of Everything,” Proceedings of the National

Academy of Sciences 97, 28–31 (2000).

[3] J. P. Crutchfield, “The dreams of theory,” WIREs Computational Statistics 6, 75–79 (2014).

[4] L. Deng and X. Li, “Machine Learning Paradigms for Speech Recognition: An Overview,”

IEEE Transactions on Audio, Speech, and Language Processing 21, 1060–1089 (2013).

[5] J. A. Cruz and D. S. Wishart, “Applications of Machine Learning in Cancer Prediction and

Prognosis,” Cancer Informatics 2 (2006).

[6] S. Sun, R. Ouyang, B. Zhang, and T.-Y. Zhang, “Data-driven discovery of formulas by

symbolic regression,” MRS Bulletin 44, 559–564 (2019).

[7] M. K. Transtrum, B. B. Machta, K. S. Brown, B. C. Daniels, C. R. Myers, and J. P. Sethna,

“Perspective: Sloppiness and emergent theories in physics, biology, and beyond,” The Journal

of Chemical Physics 143, 010901 (2015).

[8] W. Pan and C. Zhang, “The Definitions of Interpretability and Learning of Interpretable

Models,”, 2021.

38



BIBLIOGRAPHY 39

[9] G. E. P. Box, “Science and Statistics,” Journal of the American Statistical Association 71,

791–799 (1976).

[10] B. C. Daniels and I. Nemenman, “Automated adaptive inference of phenomenological dynami-

cal models,” Nature Communications 6 (2015).

[11] M. K. Transtrum and P. Qiu, “Model Reduction by Manifold Boundaries,” Phys. Rev. Lett.

113 (2014).

[12] Y. Kurniawan, C. L. Petrie, K. J. Williams, M. K. Transtrum, E. B. Tadmor, R. S. Elliott,

D. S. Karls, and M. Wen, “Bayesian, Frequentist, and Information Geometry approaches to

parametric uncertainty quantification of classical empirical interatomic potentials,”, 2021.

[13] M. K. Transtrum and P. Qiu, “Model Reduction by Manifold Boundaries,” Phys. Rev. Lett.

113, 098701 (2014).

[14] M. K. Transtrum and J. P. Sethna, “Improvements to the Levenberg-Marquardt algorithm for

nonlinear least-squares minimization,”, 2012.

[15] C. Petrie, C. Anderson, C. Maekawa, T. Maekawa, and M. K. Transtrum, “The supremum

principle selects simple, transferable models,”, 2021.

[16] P. A. M. Dirac, “XI.—The Relation between Mathematics and Physics,” Proceedings of the

Royal Society of Edinburgh 59, 122–129 (1940).



Index

SirIsaac, 5

Best fit, 9

Computer-based scientist, 2
Cost, 9
Cost surface, 9

Dynamical systems, 5

Fisher Information Matrix (FIM), 13

Geodesic, 15

Hasse diagram, 19

Interpretability, 3

Jacobian, 13

Levenberg-Marquardt, 19
Log transformation, 9

Machine Learning, 2
Manifold Boundary Approximation Method (MBAM),

8
necessary elements of, 8

Model manifold, 13

Newtonian gravity, 4

Occam’s Razor, 3
Overparameterization, 2

Parameter restriction, 9
Parsimony, 3

Reduction path, 19
Reductionist hypothesis, 1

Residuals, 9

S-Systems, 5
Sloppy, 2
Sloppy model, 11
Study of complex adaptive matter, 1
Supremum model, 28
Symbolic regression, 2

True gravity, 4

Unidentifiable parameter combinations, 11

Weighted least squares, 9

40


	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Newtonian Gravity
	1.3 SirIsaac
	1.4 Research Question

	2 Methods
	2.1 Manifold Boundary Approximation Method
	2.1.1 Cost and Cost Surfaces
	2.1.2 Fisher Information Matrix
	2.1.3 Model Manifolds
	2.1.4 Hasse Diagrams
	2.1.5 MBAM as an Iterative Process

	2.2 Understanding the Data

	3 Results and Discussion
	3.1 True Gravity Reduction
	3.2 Fitting Reduced Models
	3.3 Reduction Path Comparison
	3.4 Conclusion

	Appendix A Reduction Order
	Bibliography
	Index

