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ABSTRACT

Deconvolution and the Magnetic Pair Distribution Function

Kane Fanning
Department of Physics and Astronomy, BYU

Bachelor of Science

The potential utility of using the mathematical operation of deconvolution to improve the res-
olution of the magnetic pair distribution function produced from neutron scattering data is investi-
gated. A standard deconvolution algorithm found in the Python library SciPy shows encouraging
results, but introduces artifacts that are difficult to remove. Modeling the convolution inherent in
the magnetic pair distribution function as matrix multiplication and then using the Moore-Penrose
pseudoinverse to simulate deconvolution is also explored. We conclude that deconvolution holds
significant promise as a method for increasing the resolution of experimentally determined mag-
netic pair distribution functions.

Keywords: magnetic pair distribution function, pair distribution function, convolution, deconvolu-
tion
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Chapter 1

Introduction

1.1 Atomic and Magnetic Structure

Understanding the properties of a given material depends critically on understanding the atomic

structure of that material and, in many cases, its magnetic structure. Atomic structure refers to

the physical location of atoms relative to each other in a material. Magnetic structure refers to

the relative location, strength, and orientation of magnetic moments in a material. Determining

these structures for an unknown or new material is an important step in the development of tech-

nologically relevant materials, and thus developing methods that can more quickly and accurately

determine the atomic or magnetic structure of a material is a valuable pursuit.

Several crystallographic methods exist for determining the arrangement of atoms in a mate-

rial. X-ray diffraction, for example, involves directing a beam of X-rays at a material, measuring

how they diffract, and then comparing the measured diffraction pattern with diffraction patterns

calculated from known, candidate crystal structures. One can then iteratively adjust the candidate

crystal structure until one is found that produces a diffraction pattern similar to the measured one.

Standard X-ray diffraction, then, produces a diffraction pattern for a material—the distribution of
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2 Chapter 1 Introduction

scattered photons as a function of angle. If the material has a well-ordered crystal structure, the

scattered intensity is very strong at certain angles, resulting in sharp peaks in the diffraction pattern

called Bragg peaks. These peaks correspond to angles that satisfy Bragg’s law and result in coher-

ent scattering from the material. This provides information about the average crystalline structure

of a material, like how far apart two adjacent layers in the crystal are. Because small breaks in the

average structure of a material do not cause coherent scattering, they do not produce Bragg peaks

and are very difficult to detect in the diffraction patterns produced by traditional X-ray diffraction.

A similar effect is observed in the different diffraction patterns produced by light impinging on

two narrow slits versus many narrow slits. As the number of slits increases from two, the intensity

of the principle maximum increases and its width decreases relative to the principle maximum pro-

duced in the two slit diffraction pattern, similar to a Bragg peak becoming very sharp as millions

of uniform crystal layers all diffract the impinging X-rays in the same manner. Thus while X-ray

diffraction is extremely useful for many applications, additional methods are needed to more accu-

rately characterize the short-range breaks in the average structure of a material. More information

about X-ray diffraction can be found in the textbooks (Massa 2004) and (Clegg 2015).

1.2 Atomic and Magnetic Pair Distribution Function

The pair distribution function (PDF) provides information about the arrangement of atoms over

short distances, and is very effective for studying local breaks in the average structure of a material.

More specifically, the pair distribution function maps linear distances to a value proportional to the

likelihood of finding two atoms separated by that distance. For example, in Figure 1.1, the PDF

has spikes in the blue and red regions, as the likelihood of finding an atom a distance r away from

the center green atom is very high when r is the in the red and blue regions.

While closely related to X-ray diffraction, PDF analysis makes use of both Bragg scattering
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Figure 1.1 A simplified depiction of a material and its pair distribution function. The
horizontal axis is distance, often measured in angstroms, and the vertical axis is a dimen-
sionless quantity proportional to the likelihood of finding a pair of atoms separated by a
distance r. The green atom in the center is taken to be the origin, with distances measured
radially outwards. For this material, as we move away from the green atom, we are very
likely to find another atom in the blue or red region, and thus the pair distribution function
has spikes in those regions of r. Source: https://www.globalsino.com/EM/image2/3097.
GIF

from the average crystallographic structure and diffuse scattering from local deviations from the

average structure, and as a result provides more information about the short-range structure of a

material. More information about pair distribution function analysis can be found in the article

(Petkov 2012) and its references, and in the textbook (Egami 2003).

The magnetic pair distribution function (mPDF) is similar to the atomic pair distribution func-

tion, but provides information about how likely two magnetic moments are to be separated by a

given distance and what their relative orientation is. Because the magnetic moments in a material

are produced by the atoms, there is a large degree of correlation between a material’s atomic and

magnetic PDFs. The magnetic pair distribution function, however, provides orientational informa-

tion that is not present in the atomic PDF—a positive spike in the mPDF at distance r indicates a

https://www.globalsino.com/EM/image2/3097.GIF
https://www.globalsino.com/EM/image2/3097.GIF
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high likelihood of finding two magnetic moments separated by a distance r aligned ferromagneti-

cally (i.e. parallel), while a negative peak at r indicates a high likelihood of finding two magnetic

moments separated by a distance r aligned antiferromagnetically (i.e. antiparallel).

Both the PDF and mPDF are produced by taking the Fourier transform of data gathered in scat-

tering experiments. The PDF can be produced from data gathered in X-ray or neutron scattering

experiments, while the mPDF can be produced exclusively from data gathered in neutron scatter-

ing experiments. The neutron’s neutral electric charge but nonzero magnetic moment makes it an

effective probe for determining the magnetic structure of a material.

1.3 Convolution and Deconvolution

Convolution is a mathematical operation that, in informal terms, describes how the shape of one

function is modified by the shape of another. In the continuous case, the convolution of two

functions f and g is given by

( f ∗g)(t) =
∫ ∞

−∞
f (τ)g(t − τ)dτ, (1.1)

while in the discrete case, the convolution of two vectors f and g is given by

(f∗g)[n] =
∞

∑
m=−∞

f[m]g[n−m]. (1.2)

One might think of convolution as a "blending" of two functions (Weisstein 2022a), or an

operation that describes how the shape of one function affects the shape of another. If one of these

functions is Gaussian or Gaussian-like, the original signal is often "broadened" and "smoothed," as

illustrated in Figure 1.2. Deconvolution is the inverse operation of convolution. Convolution and

deconvolution are commonly used in many areas, including signal processing, where the output of

an instrument is often described as the convolution of the true signal and the instrument’s impulse

response, and image processing, where the image captured by a sensor is the convolution between
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Figure 1.2 An example of the convolution of two functions. On the left, the signal is a
simple square pulse; on the right is a more complicated sum of step functions. In both
cases the impulse response (or the function the signal is convolved with) is a Gaussian
impulse with variance 1.

the point sources of light and the sensor’s point-spread function. In these and other applications,

deconvolution is used to try to recover the true signal from the measured signal. While technically

an "ill-posed problem (Weisstein 2022b)," in many cases deconvolution is a simple and reliable

tool. For example, when the measured signal and the convolving function (i.e. impulse response

function, point-spread function, etc.) are both precisely known and with a high enough signal to

noise ratio, the true signal is obtained by deconvolving the measured signal with the convolving

function. In practice, however, the deconvolution of two functions is usually calculated using

several Fourier and inverse Fourier transforms, which can fail to produce meaningful results if the

measured signal’s signal-to-noise ratio is too low, or if other requirements for stability are not met.

It is for this reason that, while simple in theory, obtaining the original signal from the convoluted

signal and the convolving function is often difficult or impossible.
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1.4 Deconvolution and the Magnetic Pair Distribution Func-

tion

The resolution of the mPDF pattern obtained from a given magnetic material is limited by that

material’s magnetic form factor. The magnetic form factor for a given material describes how the

magnetic scattering is suppressed at large scattering angles, and is a result of the finite spatial ex-

tent of the wave functions of the unpaired electrons that are doing the scattering. More detailed

information about the theory of magnetic form factors can be found in (Zaliznyak & Lee 2005).

For our purposes, it is enough to know that the magnetic form factor causes the magnetic scattering

intensity to get exponentially smaller as the scattering angle increases and introduces a "broaden-

ing" or "smoothing out" effect to the mPDF. An example of this broadening effect is given by the

blue curve in Figure 1.3.

Figure 1.3 An example of what a "true" mPDF (red) and "measured" mPDF (blue) might
look like, in this case calculated for MnO. The goal of this research is to produce the red
curve from the blue curve by twice deconvolving the blue curve with the Fourier transform
of the magnetic form factor. Source: https://doi.org/10.1107/S205327331500306X

https://doi.org/10.1107/S205327331500306X
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More explicitly, if I(Q) is the scattering intensity measured by the detectors in an experiment,

then

S(Q) =
I(Q)

f (Q)2 , (1.3)

where S(Q) is the magnetic structure factor, f (Q) is the magnetic form factor of the given material,

and Q is the domain coordinate in reciprocal space, which is related to the scattering angle. The

magnetic structure factor is important in that the true magnetic pair distribution function for a

material is given by the Fourier transform of it, F{S(Q)}.

To calculate F{S(Q)}, one might simply divide the observed intensity I(Q) by the square

of a material’s approximate magnetic form factor and take the Fourier transform, as suggested

by equation (1.3). However, because the magnetic form factor is typically very small beyond

approximately 5 Å−1, dividing by the square of it can introduce distortions and amplify noise

(Frandsen & Billinge 2016). To avoid this, we can first compute the Fourier transform of S(Q)

multiplied by the form factor squared,

F{S(Q) · f (Q)2}= F{I(Q)}. (1.4)

Recalling that the convolution theorem states that pointwise multiplication in Fourier space is

equivalent to convolution in real space, we can rewrite equation (1.4) as

F{S(Q)}∗F{ f (Q)}∗F{ f (Q)}= F{I(Q)}, (1.5)

where ∗ represents the mathematical operation of convolution. If we can then twice deconvolve

both sides of equation (1.5) with F{ f (Q)}, or equivalently deconvolve once with the new quantity

[F{ f (Q)}∗F{ f (Q)}] , we will have then obtained the desired quantity F{S(Q)} without ever

dividing by the square of the magnetic form factor.

The goal of this research, then, is to explore deconvolution as an alternative method of approx-

imating the true mPDF (red curve in Figure 1.3) from the measured mPDF collected in a neutron
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scattering experiment (blue curve in Figure 1.3), with the hope of producing a new, reliable, and

rapid method that does not involve dividing by the square of the magnetic form factor.



Chapter 2

Methods

2.1 Use of Simulated Data

In order to more rapidly determine the potential utility of deconvolution, all investigation was

performed using a single simulated data set–data that was calculated analytically using a computer,

rather than experimentally collected. Because deconvolution is especially sensitive to a signal’s

signal-to-noise ratio, using experimentally collected data could lead to errors and difficulties that

obscure the effectiveness of the deconvolution algorithm being tested. To avoid this and other

potential issues, the data used in this investigation was created from calculations of the magnetic

pair distribution function for a known material, MnO. In other words, we explicitly calculated

what the mPDF would be for MnO using its known lattice structure and other parameters. In this

sense, our simulated data provides an exact target to compare against—the "true" mPDF. The red

curve in Figure 1.3 is the true mPDF for MnO. The approximate magnetic form factor of MnO

is also known, and can thus be convolved twice with the true mPDF to produce an mPDF similar

to what an actual neutron scattering experiment on MnO would yield. This double convolution of

the true mPDF with the approximate magnetic form factor can be referred to as the "measured"

9
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mPDF, and for MnO, is given by the blue curve in Figure 1.3. The benefit of using simulated data

is that this measured mPDF has no noise, which would certainly be present in experimental data.

Thus our simulated data provides both a true mPDF to compare our results against, and a noiseless

curve simulating the type of data that would be gathered in a real-world experiment, which we can

attempt to deconvolve. If the various deconvolution algorithms employed succeed in producing a

curve close to the true mPDF, then deconvolution may be a viable method for approximating the

true mPDF from experimental data.

When testing some deconvolution algorithms, the magnetic form factor of the material was of-

ten assumed to be Gaussian. Most materials have a magnetic form factor that is well approximated

by a sum of Gaussians, so this approximation is reasonable and adequate for our purposes.

2.2 Determining Success or Failure of Algorithms

Our experimental method consisted primarily of developing and running various deconvolution al-

gorithms on the measured mPDF and visually comparing the results to the true mPDF. Algorithms

would then be tweaked until the deconvolved mPDF most resembled the true mPDF. Smoothing

functions or peak-sharpening algorithms were also used post-deconvolution to get the deconvolved

mPDF closer to the true mPDF.

Visual similarity was judged primarily based on the alignment of peaks between the decon-

volved and true mPDF. While more exact error metrics will certainly be needed in the future, in

this preliminary stage, visual comparison is more than adequate for determining the feasibility of

a method, and whether or not it merits further pursuit.
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2.3 Solution Methods Investigated

Several standard deconvolution algorithms were used and investigated. Matlab’s deconv function

and SciPy’s scipy.signal.deconvolve method are effectively the same algorithm and were the

first algorithms explored. Both make use of long division to find the deconvolution of two vectors

and are commonly used in many signal-processing applications.

In addition to standard deconvolution algorithms, a matrix multiplication method was also

explored. One-dimensional convolution can be modeled as a linear matrix equation of the form

Ax = b, (2.1)

where x is a the true mPDF (a vector of length n), b is the broadened experimentally measured

mPDF (a vector of length n), and A is an n× n matrix that simulates the effect of convolving the

true mPDF with the Fourier transform of the magnetic form factor twice. Written in this form, the

task of discovering the true mPDF x consists of solving a linear matrix equation, for which many

methods exist, rather than performing numeric deconvolution. That is, given the form of equation

(2.1), computing the true mPDF consists of calculating A−1 such that

x = A−1b.

The first task is to construct a matrix A that accurately replicates the "smoothing out" effect that

the magnetic form factor has on the true mPDF. One possibility is a row-stochastic matrix with a

Toeplitz interior, a simple example of which might look like

1 0 0 0 0 0

0.2 0.6 0.2 0 0 0

0 0.2 0.6 0.2 0 0

0 0 0.2 0.6 0.2 0

0 0 0 0.2 0.6 0.2

0 0 0 0 0 1


. (2.2)
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In this case, the endpoints of whatever signal is multiplied by this matrix are fixed, while each inte-

rior point pi is given by pi = 0.2(pi−1)+0.6(pi)+0.2(pi+1). To accurately model the smoothing

effect the magnetic form factor has on the mPDF, a more complicated matrix is needed, as well as

a way to reliably produce this matrix for an arbitrary material based only on a priori knowledge

of its chemical composition. One way to do this is to use an approximation of the magnetic form

factor to construct the rows of the matrix A, such as

⟨ jo(s)⟩= Ae−as2
+Be−bs2

+Ce−cs2
+D, (2.3)

with coefficients experimentally determined and accessible at (Brown 1997).

Construction of A using the Fourier transform of the squared magnetic form factor is necessary

to apply this method to experimental data, but because our simulated data includes the true mPDF

x, the concept can be tested on an A matrix constructed using a single Gaussian, rather than the

sum in equation (2.3).
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Results

3.1 SciPy

Attempting to deconvolve our simulated data with the Fourier transform of an (approximate)

squared magnetic form factor using SciPy’s scipy.signal.deconvolve produced results close

to the true mPDF, but with unusual artifacts. One common artifact can be seen in Figure 3.1, in

which deconvolution of the measured mPDF with the magnetic form factor produced periodic, ex-

tremely high-amplitude spikes. In between the spikes, the agreement between the true mPDF and

the approximation of it produced by scipy.signal.deconvolve is high.

Because the spikes are so periodic, they should be easily detectable, and a rudimentary smooth-

ing algorithm was developed to remove them. In brief, this algorithm progressively takes a fixed-

length subsample from the deconvoluted curve and calculates the standard deviation of that sub-

sample. In regions where the standard deviation is above a certain threshold value (e.g. due to

a large spike in the deconvoluted signal), the subsample is replaced with an interpolation extend-

ing from a few points before the beginning of the subsample to a few points after the end of

the subsample. The algorithm can iterate several times with different standard deviation thresh-

13
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Figure 3.1 An example of one type of artifact seen while using scipy.signal.deconvolve.
The upper panel features the true mPDF for MnO in red and the measured mPDF in blue,
both computed using simulated data. The lower panel features the same true mPDF in
red, but in blue is now the measured mPDF twice deconvolved with the Fourier transform
of the magnetic form factor. In between the large, periodic spikes, the agreement between
the true mPDF and the deconvolved approximation of it is quite high.

olds depending on the iteration. The subsample length can also be tuned, and the type of in-

terpolation can be adjusted (linear, quadratic, cubic, etc.). The interpolation is performed using

scipy.interpolate.interp1d.

The approximation of the true mPDF produced by scipy.signal.deconvolve and smoothed

using the described algorithm is compared to the true mPDF in Figure 3.2. Nearly all the spikes

are removed, with only a few low-amplitude spikes remaining for low r values. The agreement

over the rest of the domain is significant but imperfect, with a few sharp jumps and other artifacts
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Figure 3.2 A comparison of the true mPDF to the smoothed, deconvoluted approximation
to it.

remaining. Despite the remaining spikes, fewer discontinuities and sharp artifacts seem present in

lower r values than higher r values. It is likely that both the small spikes at low r values and the

too-sharp peaks at larger r values could be removed with a more robust smoothing algorithm.

3.2 Approximating Convolution with Matrix Multiplication

Modeling convolution as a linear matrix equation and solving for the true mPDF using the Moore-

Penrose pseudoinverse yielded promising results. The left panel of Figure 3.3 contains the true

mPDF x, the measured mPDF b, and the approximation of the measured mPDF Ax, where the rows

of A are created using a Gaussian with standard deviation tuned to best approximate the measured

mPDF. (With experimental data, the matrix A would have to be created using only knowledge

of the magnetic form factor, as there is no true mPDF available to multiply by A and judge the

accuracy.) The agreement between the blue and gold curves in the left panel confirms that the

measured mPDF can be very accurately approximated with matrix multiplication.

The right panel of Figure 3.3 includes the true mPDF, the measured mPDF, and the approxima-

tion of the true mPDF A+b, where A+ is the Moore-Penrose pseudoinverse (Moore 1920; Penrose
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Figure 3.3 The left panel contains the true mPDF x, the measured mPDF b, and the ap-
proximation of the measured mPDF Ax, where A is constructed using a Gaussian tuned to
best match the measured mPDF. Despite not using the magnetic form factor to create the
matrix A, the agreement between the measured mPDF and its approximation is excellent.
The right panel contains the true mPDF, the measured mPDF, and the approximation of
the mPDF A+b, where A+ is the Moore-Penrose pseudoinverse of A (constructed only
with singular values greater than 0.1).

1955). This approximation of the true mPDF captures most all of the significant features of the

true mPDF, and seems to do slightly better at larger values of r, in contrast to our results using

scipy.signal.deconvolve and our smoothing algorithm (Figure 3.2). In Figure 3.3, the pseu-

doinverse was calculated using only singular values greater than one tenth of the largest singular

value, with all other singular values set to zero.
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Conclusions

Deconvolution certainly holds promise as an alternative method for producing the magnetic pair

distribution function from neutron scattering data. SciPy’s standard deconvolution algorithm seems

to work well, but introduces artifacts that are difficult to predict and require lengthy manual re-

moval that is often very finicky. Developing an automated method that accepts neutron scattering

data for an arbitrary material and reliably returns the mPDF using this deconvolution algorithms

will require significant amounts of further work, but seems possible.

Casting the problem as a linear matrix equation is perhaps the avenue most worth further con-

sideration, primarily because solving linear matrix equations is a well-researched problem, and a

method that would work well to solve our problem likely already exists. Our preliminary results

are encouraging, with the main challenge being producing a matrix that will accurately approxi-

mate the double convolution of the true mPDF with the Fourier transform of the magnetic form

factor. In this exploration, we had the benefit of possessing the true mPDF to test the accuracy of

our matrix on, but in a real experiment we will have to produce a similar matrix without being able

to compare it. However, once the matrix is created, this method seems more reliable and produces

far fewer inexplicable artifacts than scipy.signal.deconvolve. For this reason, this method

could lend itself better to automation.

17



18 Chapter 4 Conclusions

The greatest challenge yet to be faced is likely applying any of these methods to actual exper-

imental data. All of the methods explored here become less robust in the presence of noise. Even

working with noiseless data, artifacts have been introduced that are difficult to explain and remove;

these difficulties are sure to increase with any decrease in the signal to noise ratio.
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