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ABSTRACT

Temperature Relaxation and Magnetically Suppressed Expansion in Strongly
Coupled Ultracold Neutral Plasmas

Robert Tucker Sprenkle
Department of Physics and Astronomy, BYU

Doctor of Philosophy

Ultracold neutral plasmas provide a platform for studying transport properties in an idealized
environment. In this dissertation, transport properties in a Ca+/Yb+ dual species ultracold neutral
plasma and a Ca+ magnetized ultracold neutral plasma are studied. In dual species plasmas, we study
ion-ion temperature relaxation. We compare measured relaxation rates with atomistic simulations
and a range of popular theories. Our work validates the assumptions and capabilities of molecular
dynamic simulations and invalidates theoretical models in this regime. This work illustrates an
approach for precision determinations of detailed material properties in Coulomb mixtures across
a wide range of conditions. We also study plasma expansion in single species plasma in the
presence of a strong uniform magnetic field. We find that the asymptotic expansion velocity falls
exponentially with magnetic field strength, which disagrees with a previously published ambipolar
diffusion model. In the parallel direction, plasma expansion is driven by electron pressure. However,
in the perpendicular direction, no plasma expansion is observed at large magnetic field strengths.

Keywords: energy transport, ultracold neutral plasma, magnetized plasma, strong coupling, energy
relaxation, self-similar expansion, ambipolar diffusion
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Chapter 1

Introduction

Ultracold neutral plasmas (UNPs) are useful tools in understanding transport properties of strongly

coupled systems in an ideal environment. It has been shown that UNPs and high energy-density

plasma (HEDP) share dynamic properties [1] when the one component Yukawa potential [2, 3]

is appropriate. Accurately modeling HEDPs requires detailed and reliable models of collective

phenomena such as continuum depression heating [4], turbulence and mixing [5–7], diffusion [8, 9],

viscosity [10], thermal decoupling [11] and many other physical processes [1, 12]. In this work, we

study ion-ion thermal relaxation of a Ca+/Yb+ dual-species UNP and expansion of a magnetized

Ca+ UNP.

Plasmas can be characterized using two dimensionless parameters. The first is the ratio of the

nearest-neighbor electric potential energy to the average kinetic energy of the plasma. This is called

the coupling parameter,

Γ =
e2

4πε0aws

1
kBTi

, (1.1)

where aws = (3/4πn)1/3 is the Wigner-Seitz radius, n is the density of the plasma, kB is Boltzmann’s

constant, ε0 is the vacuum permittivity constant and Ti is the ion temperature of the plasma. For the

1
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Figure 1.1 This figure shows the many plasmas that exist and how they compare in density
and temperature to other plasma. The red line indicates when the coupling parameter Γ = 1.
[Figure credit to Contemporary Physics Education Project - www.CPEPphysics.org]

experiments discussed in this dissertation Γ≈ 2. The red line in Fig. 1.1 [13] shows the dividing

line for strongly and weakly coupled plasmas, where Γ = 1.

The second dimensionless parameter is the inverse scaled screening length, κ ,

κ =
aws

λD
. (1.2)

From this equation we find that κ ∝ n1/6/T 1/2
e . Larger values of κ correspond to larger screening

strengths, effectively reducing the influence of nearest neighbor collisions.
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Figure 1.2 a) Shows the overlap between HEDPs and UNPs in coupling strength and
screening strength parameter space. b) Demonstrates the temperature and density scaling
of between HEDPs and UNPs at similar coupling strength. [Figure from [1] under creative
commons license attribution 4.0 international (CC BY 4.0). No changes to the figures have
been made]

The inverse scaled screening length, κ and the coupling parameter, Γ, are used to characterize

collective phenomena that occur in plasma’s. HEDPs and UNPs exist under vastly different

temperature and density conditions. Typical densities for HEDPs exist at densities in excess of

1023 cm−3 and temperature on the order of 104 K. UNPs exist in the opposite extreme where

densities are typically 109 cm−3 with temperatures around 1 K. These two seemingly different types

of plasmas both overlap in a Γ and κ parameter space, as seen in Fig. 1.2. When both overlap

in the same Γ-κ space, the underlying dynamics that drive transport are modeled using the same

one-component Yukawa Potential [1].

The high optical opacity and short dynamic time scales in HEDPs pose challenges to experi-

mentally measuring transport properties with high fidelity. For this reason, HEDP heavily rely on

molecular dynamics (MD) simulations [14] and plasma models [15, 16] to understand transport in

these complex systems. UNPs have the advantage of being 12 orders of magnitude below solid

density with a temperature on the order of a Kelvin, resulting in accessible real-time plasma dynamic
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measurements [1]. Transport properties in this environment are measured directly and can be used

to verify current models and MD simulations [17–19].

In an ideal environment, where no external fields or forces exist, we have measured energy

relaxation in a dual species UNP [17] as seen in Chapter 2. Transport properties are sensitive to

external electric and magnetic fields, UNP provide an advantage for precise control over the electric

and magnetic fields present in the plasma. In HEDP, large current densities are formed due to

very high plasma densities. These current densities create strong internal magnetic fields that can

significantly change transport properties. These large intrinsic magnetic fields make it difficult to

measuring magnetized transport properties in high density plasma. In the case of UNP, the low

plasma density cannot supply enough current density to create a large internal magnetic field. Again,

making UNP ideal for studying transport properties in a magnetized UNP where the magnetic field

is precisely known and controlled.

Magnetized transport properties is a growing field of research [20–29]. In HEDPs, magnetized

transport property studies include anisotropic thermal conductivity [30] and reverse shock formation

[31]. Similar experiments are performed using UNPs, these include thermal conductivity [32],

diffusion [33], strong coupling enhancement [34], and various others [35–37].

In an UNP the electrons are much more easily magnetized than the ions. The magnetization is

characterized by the magnetization parameter,

αs =
Ωcs

νss
, (1.3)

where Ωcs is the cyclotron frequency of a species, s,

Ωcs =
eB
ms

(1.4)

and νss is the collision frequency as given by the plasma formulary [38].

When the magnetization parameter from Eq. refmagparam is αs > 1 then the respective

plasma species in magnetized. In the case of our plasma, the electrons become magnetized when
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B > 0.0028 T. The Ca+ ions are magnetized when B > 0.82 T. UNP expansion is driven by the

electron pressure [39, 40], by magnetizing the electrons the ion expansion is suppressed. In this

work, we study plasma expansion in the limit that the electrons are magnetized, but the ions are not.

In Chapter 2 we report the first measurements of the ion-ion temperature relaxation rate using

a strongly-coupled dual-species UNP [19]. This system allows precise control of the ion mass

ratio and plasma stoichiometry. We show that within the experimental uncertainties, the measured

temperature relaxation rates match the results of classical MD simulations.

In Chapter 3 we study expansion of a Ca+ UNP in the presence of a strong uniform magnetic

field. We explore a magnetic field strength regime of B = 0→ 0.123 T, spanning a magnetization

parameter for the electron and ions of αi = 0→ 0.15 and αe = 0→ 45 respectively. We measure

the transverse and parallel expansion of an UNP and compare the experimental data to an ambipolar

diffusion model developed by Zhang et al [33]. In the non-magnetized case, we compare our data to

a self similar expansion model [39, 40].



Chapter 2

Temperature Relaxation in Strongly

Coupled Binary Ionic Mixtures

2.1 Introduction

Advancing the frontier of dense plasma science requires a deep understanding of plasma processes

in extreme and transient conditions. Accurately modeling high energy-density plasmas (HEDP)

requires detailed and reliable models of collective phenomena such as continuum depression

heating [4], turbulence and mixing [5–7], diffusion [8, 9], viscosity [10], and many other physical

processes [1, 12]. These transport processes are critical components of modeling codes for laser-

driven plasmas [41] and stellar atmospheres [42, 43].

Predicting transport coefficients in plasmas dominated by strong dynamical collision processes

remains an unresolved issue [18]. Plasmas are considered strongly coupled when the ion coupling

parameter Γ, defined as the ratio of the nearest-neighbor electrical potential energy to the average

kinetic energy, is larger than 1. For plasma mixtures, the coupling parameter of species α is defined

6



2.1 Introduction 7

as,

Γα =
(Zαe)2

4πε0aws

1
kBTα

, (2.1)

where Zα is the ion charge number, Tα is the temperature, and aws = (3/(4πntot))
1/3 is the average

distance between ions, ntot = ∑α nα is the total ion density. Strongly coupled plasmas are char-

acterized by large-angle scattering with tight particle correlations and dynamical screening. The

characteristic time scales for collisions and collective mode periods overlap, clouding the otherwise

clear separation that typically simplifies theoretical models.

The challenge in plasma theory is that when Γ ≥ 1, standard kinetic and hydrodynamic ap-

proximations are not entirely appropriate. For example, cross-sections in the Boltzmann equation

accurately describe transport in plasmas characterized by binary ionic collisions [44]. In strongly-

coupled plasmas, binary collisions are important, but they do not exclusively describe all the ion-ion

interactions. Conversely, dielectric functions in the Lenard-Balescu equation appropriately describe

transport when collisions are characterized by weak many-body scattering events [45, 46]. When

neither of these two limits is realized, hybrid models are required [47]. One approach is to build the

many-body screening into an effective potential and to use it when computing cross-sections, thereby

capturing the strengths of both limits [44, 48, 49]. Carefully designed and accurately diagnosed

laboratory experiments are required to test the reliability of these hybrid approaches [19]. One such

experiment is presented in this paper.

Because most plasmas are created out of equilibrium, understanding temperature relaxation is

critical for modeling the evolution of multi-temperature HEDPs [50–55]. Temperature relaxation

has been studied extensively for electron-ion systems [45, 46, 56–63]. However, most plasma

theories are tailored for the case of widely disparate mass (electrons and a single ion species). These

theories have been compared to molecular dynamics (MD) simulations with varying degrees of

success [58, 63]. However, explicit electron-ion MD simulations often rely on quantum statistical

potentials [64, 65] which may only be valid in thermodynamic equilibrium [57]. This complicates
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comparisons of MD simulations with theory, because disagreements can be attributed to uncertainties

in the interaction potentials instead of theoretical models.

At a fundamental level, it is appropriate to ask when and if a two-temperature system can form.

Simply mixing hot and cold particles together may result in a non-Maxwellian velocity distribu-

tion function, in which no true “temperature” is defined. In mixtures of particles with different

masses, it is possible for each mass species to have an independently defined Maxwellian velocity

distribution and, therefore, temperature. When the species’ temperatures evolve slowly enough

that the Maxwellian distributions are maintained, temperature relaxation becomes a meaningful

concept. Electron-ion plasmas [50,59,66,67] and electron-hole plasmas [68–70] are binary systems

in which two temperatures are well established. However, understanding the basic physics of

temperature relaxation therefore requires the ability to vary the mass ratio and to cleanly measure

the time-evolving temperatures.

Ultracold neutral plasmas (UNPs) provide an idealized platform for measuring plasma transport

properties [1, 71–74]. Recent laboratory experiments have shown UNPs to be effective HEDP

simulators over a limited range of parameters [1, 19, 75–81]. Both UNPs and HEDPs can be

described using dimensionless parameters. One of them is Γ, which involves ratios of temperature,

charge, and density. Another is the Knudsen number, which involves a ratio of the ion mean free

path divided by the characteristic length scale. The values of these dimensionless parameters are

similar in both HEDPs and UNPs [82]. Therefore, UNP experiments can probe some interaction

physics relevant to HEDP systems.

UNPs are strongly-coupled, non-degenerate, quasi-homogeneous, quasi-steady-state plasmas in

which the charge state is well-known. The initial electron temperature is independent of the ion tem-

perature, and it is chosen with sub-percent accuracy. The time-evolving temperatures and densities

of each ion species are readily and simultaneously determined using identical techniques for each

species. Furthermore, the equation of state for the electrons is well known, dramatically reducing
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the complexity of interpreting experimental data and applying plasma models [83]. As HEDP

simulators, UNPs test collision physics without the complications of high density, inaccessibly short

time scales, high transient pressures, quantum potentials, and extreme optical opacity.

In this paper, we report the first measurements of the ion-ion temperature relaxation rate using

a strongly-coupled dual-species UNP [19]. This system allows precise control of the ion mass

ratio and plasma stoichiometry. We show that within the experimental uncertainties, the measured

temperature relaxation rates match the results of classical MD simulations. The same sign of charge

removes ambiguities in the choice of the ion-ion interaction potential. We compare rates extracted

from these simulations with theoretical predictions in the few cases where the mass ratio dependence

can be readily identified. We find reasonably good agreement with a recent model based on an

effective Boltzmann equation [44]. Deviations are likely attributable to coupled modes [18].

2.2 Results

2.2.1 Dual-Species Ultracold Neutral Plasma

The central region of the dual-species UNP can be modeled as a homogeneous plasma mixture. Our

dual-species UNP is formed by photo-ionizing laser-cooled Ca and Yb atoms in a magneto-optical

trap (MOT) [1, 19]. The spatial density profile of the trapped neutral atoms is approximately

spherically symmetric and Gaussian. To a good approximation, the spatial density profile is

described by the function n = n0 exp
[
−r2/(2σ2

0 )
]
. In our experiments, the initial rms sizes of the

Ca and Yb atomic clouds σ0 ranges from 300 to 1000 µm. The peak density n0 of Ca and Yb ranges

from 0.1 to 3.0×1010 cm−3, depending on the MOT parameters. The temperature of the neutral

atoms in the trap is around 0.002 K.

The ionization process uses ns-duration laser pulses to ionize Ca and Yb atoms at threshold, as

described in the Methods section. This produces a very cold, metastable, out-of-equilibrium plasma
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with separate temperatures for the electrons and each ion species. The electron temperature is

determined by the photoionization laser wavelengths. However, the ion temperatures are determined

by their mutual interaction after ionization. Typical values are Te ranging from 10 to 1000 K and Ti

in the range of 1 to 2 K, depending on the initial plasma density.

The density evolution in our dual-species UNP is shown in Fig. 2.1. For this measurement,

the initial rms size of the neutral Ca atomic cloud (σ0 = 0.76 mm) was chosen to be larger than

the Yb atomic cloud (σ0 = 0.44 mm). The peak plasma densities are nCa
0 = 1.4×1010 cm−3 and

nYb
0 = 2.7× 1010 cm−3. The ions are singly-ionized (Z = 1) and the electron temperature is 96

K. As the plasma evolves, the larger mass and higher density of the Yb+ ions (mYb = 174 a.m.u.)

prevents the central portion of the Ca+ ion density distribution (mCa = 40 a.m.u) from expanding.

This “frictional” confinement of the Ca+ ions occurs because the two species are strongly coupled

together where the Yb+ density is high.

As the plasma expands, the consequences of this confinement become apparent. Where the Yb+

density gradient is high, the lighter Ca+ ions are accelerated radially outward. In the cold plasma

approximation, the momentum equation for a mixture of ions can be written as,

∂uα

∂ t
=−kBTe

mα

∇ne

ne
− ∑

β 6=α

ν
m
αβ

(
uα −uβ

)
, (2.2)

where νm
αβ

is the momentum relaxation collision frequency and uα is the hydrodynamic velocity

of ion species α = {Ca,Yb}. Details for these equations are given in the Methods section. Some

of the Ca+ ions find themselves between distant, hotter electrons and the heavier Yb+ ions. The

νm
αβ

collision frequency is lower in this region because the Yb + density is lower, decreasing the

friction on the Ca+ relative to the center of the plasma. These Ca+ ions are accelerated outwards

more quickly than the ones that are frictionally confined in the center of the Yb+ distribution. Over

time, the Ca+ distribution becomes spatially bi-modal as shown in the top row of Fig. 2.1.

The bottom row of Fig. 2.1 plots uz, the z-component of uα , for both Ca+ and Yb+ near the

center of the plasma at y = 0. From very early times in the plasma evolution, the hydrodynamic
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Figure 2.1 Expansion dynamics for a dual-species Ca+/Yb+ UNP. The top two rows
show a vertical cut through the spatial density profile in the center of the plasma. The top
row shows the Ca+ density profile and the middle row shows the Yb+ density profile. The
bottom row shows uz(z), the z-component of the hydrodynamic velocity uα at the time
labeled in the figure. The frictional confinement of the Ca+ ions and also the demonstrated
hydrodynamic flow locking justify a uniform-density MD simulation as described in the
text.
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velocity fields match. Frictional confinement of Ca+ by the heavy Yb+ ions flattens the velocity

gradient in the center of the plasma for the first few microseconds. In the center of the plasma,

collisions cause uα −uβ ≈ 0.

This observed flow-locking suggests that it is appropriate to model the central region of the

plasma as a homogeneous system with zero expansion velocity [84]. Note that this is no longer

true at 5 µs. The density variations in our plasmas are not greater than ±10% when considering

spatial regions r < σ0/2 and for times t < 0.3(σ0/vexp) where vexp is a characteristic expansion

velocity [84]. For the plasmas considered in this paper, vexp is dominated by the heavy Yb+ ions

and is typically vexp = (kBTe/mYb)
1/2 = 67 m/s. For initial rms Yb+ plasma sizes of σ0 = 0.72 and

0.38 mm, for example, evolution times up to 3.2 and 1.7 µs, respectively, are appropriate for the

homogeneous plasma model.

In the present work, we will focus on the temperature evolution in the center of the dual-

species UNP. Because of the Ca+ and Yb+ mass difference, the initial temperatures of the two ion

species are not equal. The heating process which occurs immediately after the plasma is generated

asymmetrically deposits kinetic energy into the low-mass Ca+ ions.

2.2.2 Two-Temperature Plasmas

The two-temperature nature of the plasma arises naturally because of the mass difference between

the ion species. Although the ions initially retain the mK temperatures of the neutral atom cloud,

the ion velocity distributions rapidly broaden as individual ions respond to the sudden appearance

of neighboring ions [85]. One way to understand the ion response is to consider the time-evolving

pair distribution function, g(r, t). The pair distribution function indicates the probability density of

finding a neighboring ion at some distance r at the time t. In the neutral atom cloud with essentially

no interparticle interactions, g(r, t) is constant everywhere and equal to 1. After ionization, as

ions push neighboring ions away, the pair distribution function goes to zero near r = 0. Excess
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electrical potential energy is converted to kinetic energy in this process, dramatically increasing the

ion temperature [86, 87]. This process is called disorder-induced heating (DIH).

In a dual-species DIH process, the lower mass ions reach a higher temperature. The average

kinetic energy of each species of ions in the plasma can be written as

kBTα(t) =
mα

3Nα

Nα

∑
i=1

v2
i (t), (2.3)

where the index i indicates the particle of ion species α . We propagate the velocity in time using

an Euler step, v2
i (t) = [~vi(0)+~ai(0)t]2 = v2

i (0)+ 2~vi(0) ·~ai(0)t + ai(0)2t2. In a uniform plasma

with no spatial order and no bulk flow, the dot product~vi(0) ·~ai(0) averages to zero and Eq. (2.3)

simplifies to

kBTα(t) =
mα

3Nα

Nα

∑
i=1

[
v2

i (0)+ai(0)2t2]
= kBTα(0)+

t2

3Nαmα

Nα

∑
i=1

F2
i (0), (2.4)

where we have used Newton’s second law for the force magnitude Fi. This force is due to the

electrostatic interaction and is mass independent. As Eq. (2.4) shows, the smaller mass will reach a

higher temperature in the DIH process when the DIH timescale is faster than the thermal relaxation

rate.

2.2.3 Molecular Dynamic Simulations

To gain greater insight into plasma dynamics, we perform molecular dynamics (MD) simulations.

These are carried out using the Sarkas package, a pure python open-source molecular dynamics

code for non-ideal plasma simulations [88]. UNPs are modeled as a collection of ions interacting

via the screened Coulomb (Yukawa) potential,

U(ri j) =
ZiZ je2

4πε0

1
ri j

e−ri j/λTF . (2.5)
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where i, j label the ions in the simulation and ri j their distance. The electrons are not explicitly

simulated, but their effect is incorporated in the screening length, λTF, which is calculated from the

electron density and temperature.

Typical MD simulation results are shown in Fig. 2.2. The temperature of each species is

calculated using Eq. (2.3). The plot clearly shows DIH as the temperature rises during the first few

hundred ns. The Ca+ temperature is higher than the Yb+ temperature as predicted in Eq. (2.4).

After the first few µs, the two temperatures approach equilibrium.

Because UNPs are created out of equilibrium [85], we need to establish that the temperature

is well-defined according to statistical mechanics. We do this by comparing the ion velocity

distributions to a Maxwellian distribution, M (v), for each species. We use an analysis based on

the Hermite expansion of distributions to quantify the deviations from a Maxwellian [89, 90]. The

expansion reads as,

f (v, t) = M (v) ∑
n=0

1
n!

an(t)Hn(v), (2.6)

where Hn(v) are the probabilistic Hermite polynomials of order n. In the case of a Maxwellian

distribution the Hermite coefficients, an will all vanish except for a0 = 1.

The result of this Hermite analysis is shown in Fig. 2.3. The top panels show time evolution plots

of the Hermite expansion coefficients, |a2/2| and a4/4! . The bottom panels quantify the deviations

from a Maxwellian distribution. Panel (c) shows the percentage deviations of the Maxwellian rms

width obtained from Eq. (2.6) and MD rms velocity. Panel (d) show the percentage of ions that lie

outside a Maxwellian distribution. After ∼ 1 µs, the two temperature system is well established.

The fraction of ions that lie outside a Maxwellian distribution, calculated by fitting the MD velocity

distribution to a normalized Gaussian and then integrating the absolute value of the difference, is

only 2% after 1 µs.
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Figure 2.2 Temperature evolution of Ca+/Yb+ mixture from MD simulation with Ca+ and
Yb+ densities of 4.3×109 cm−3 and 1.3×1010 cm−3, respectively. For this simulation
κ = 0.395, Te = 100 K, ne = 1.73×1010 cm−3. Tavg is calculated from Eq. (2.10), ΓYb,Ca
from Eq. (2.1) and g from Eq. (2.19). The oscillations in the temperature during the first
0.5 µs are kinetic energy oscillations initiated during the DIH process [see Refs. [84]
and [86]].
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Figure 2.3 Time evolution of a) |a2/2| Hermite coefficient, b) a4/4! Hermite coefficient,
c) percentage deviations of the Maxwellian rms width obtained from Eq. (2.6) and MD rms
velocity, d) percentage of non-Maxwellian ions. Simulation parameters nY b

0 = 1.9×109

cm−3, nCa
0 = 3.4×109 cm−3, Te = 100 K, κ = 0.38.

2.2.4 Theoretical Considerations

For the purpose of generalizing these experimental and simulation findings, we consider temperature

thermalization using three different plasma theories. For high temperature, low density plasmas,

these theories all agree. However, as the plasmas become colder and/or denser, theoretical predic-

tions diverge. The divergence is entirely due to the treatment of collisions when the plasmas become

strongly coupled.

In a spatially homogeneous plasma with two ion species, collisional temperature relaxation [91]

is described as
dTα

dt
=−ναβ (Tα −Tβ ), (2.7)
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where α,β refer to different ion species. The collision frequency ναβ depends critically on

temperature, density, and charge. In general, the collision frequencies can be represented as

ναβ = nβ ΦS , (2.8)

where

Φ =

(
ZαZβ e2

4πε0

)2 √mαmβ

(mα +mβ )
3/2

(
1

kBTavg

)3/2

, (2.9)

and

Tavg =
mαTβ +mβ Tα

mα +mβ

, (2.10)

and S is a model-dependent collisional integral.

We have formulated three theoretical models with increasing fidelity to reveal their physics

sensitivities in the plasma regime of our experimental and simulation results. In particular, our

plasmas are strongly coupled and have mass ratios much closer to unity than the electron-ion mass

ratio.

Model 1

Our first model for S in Eq. (2.8) is based on the well known NRL Plasma Formulary result [see

pp. 33-34 of Ref. [38]]. The NRL model is obtained from the Fokker-Planck equation that contains

the well known Coulomb Logarithm (CL). In our plasmas, the NRL formulation for S is negative

and cannot be used directly, indicating that strong scattering and screening is present, obviating

the use of straight-line trajectories and standard Debye-Hückel screening models. To account for

stronger scattering events, we extend the NRL straight-line-trajectory approximation to hyperbolic

trajectories [56], here using cutoffs as in NRL,

S (1) =
1
2

ln

[
1+
(

bmax

bmin

)2
]
, (2.11)

where

bmax =

(
1

λ 2
1
+

1
λ 2

2

)−1/2

, (2.12)
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bmin =

(
Z1Z2e2

4πε0

)
1

kBTavg
. (2.13)

Equation (2.11) always yields a positive definite result and gives the NRL result in the limit of large

values.

Model 2

Our second model addresses strong correlations by modifying the screening length to be consistent

with the effective screening length of an ionic transport model [44]. In contrast to the screening

length in Eq.(2.12), we consider an alternate screening length that includes electron screening and a

correction for strong ion coupling. Choosing bmax to have the form

λeff =

[
1

λ 2
TF

+
2

∑
α=1

1
λ 2

α +a2
ws/xα

]−1/2

, (2.14)

guarantees that the screening length does not vanish at low temperature, but rather approaches the

(species dependent) interparticle spacing through the factor a2
ws/xα (see Methods). The choice of

this functional form that includes aws guarantees that the implied functional form of the binary

interaction is consistent with numerical results in the strongly coupled regime [44]. The parameter

λTF is the Thomas-Fermi length calculated from the electron temperature, Te, and density, ne, see

Eq. (23) in Ref. [44] and represents electron screening. Note that Eq. (2.14) gives a positive definite

value even at zero temperature. Our second model is then

ν
(2)
i j = n jΦS (2), (2.15)

S (2) =
1
2

ln

[
1+
(

2λeff

bmin

)2
]
. (2.16)

This model, when compared with the first, reveals the importance of strong interparticle correlations

through Eq. (2.14).
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Model 3

Our third model arises from the Chapman-Enskog expansion of the Boltzmann equation, using

an effective screened interaction to numerically obtain a cross-section [44]. As such, consistent

trajectories are included. There is no limit on the strength of scattering, and cutoffs are not needed.

Through a Bhatnagar-Gross-Krook approach [91], the relevant collisional frequency can be

identified to be

ν
(3)
i j = n jΦS (3), (2.17)

S (3) =
128
3

√
π

23/2 K11(g), (2.18)

where g is the thermally-averaged ion-ion Coulomb coupling factor,

g =

(
Z1Z2e2

4πε0

)
1

kBTavg

1
λeff

. (2.19)

Typical values in our experiments and MD simulations are g > 1 (see Fig. 2.2). The collision

integral K11(g) is calculated from

K11(g) =


−1

4 ln
(
∑

5
k akgk) g < 1

b0+b1 lng+b2 ln2 g
1+b3g+b4g g > 1

(2.20)

where a1 = 1.4660, a2 =−1.7836, a3 = 1.4313, a4 =−0.55833, a5 = 0.061162, b0 = 0.081033,

b1 =−0.091336, b2 = 0.051760, b3 =−0.50026, b4 = 0.17044.

2.2.5 Comparison of Experiment, Simulation, and Theory

In Fig. 2.4 we plot the Ca+ and Yb+ ion temperatures and temperature differences from both

the experiment and the MD simulations. For lower density plasmas in Fig. 2.4a, the laboratory

temperature measurements and MD simulations agree well. For the higher density plasmas in

Fig. 2.4b, the temperatures exhibit a systematic departure from the MD simulations. However,
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the temperature difference plotted in Fig. 2.4d shows excellent agreement between the laboratory

measurements and MD simulations. Given the velocity flow locking shown in Fig. 2.1 and also the

dramatic flattening of the velocity gradient, we conclude that the hydrodynamic expansion has a

negligible effect on the temperature measurements and the temperature difference, especially for

t < 1.5 µs. The disagreement in Fig. 2.4b may also be attributable to ion acoustic wave heating [75].

The small, dense neutral atom cloud from which the plasmas in Fig. 2.4b are derived expands for a

short period of time before ionization, which likely allows density imperfections to persist.

In Fig. 2.5 we compare MD results with the theoretical predictions presented above. The three

models can be compared with MD results only after each species has reached a Maxwellian velocity

distribution. As presented above, the two species can be considered to be Maxwellian after t ∼ 1µs.

As stated previously, the progression of models begins with standard plasma theory that incorporates

physically motivated ion trajectories, Eqs. (2.8)-(2.13) [56]. This is plotted as a dotted blue line,

and it indicates a serious deficiency of standard plasma theory. This is expected since this model,

Eq. (2.11), uses the ion Debye length as the maximum length scale.

The next level of improvement, Model 2, provides a correction for strong coupling when

the Debye length becomes unphysically small, Eqs. (2.15)-(2.16). This is plotted as a dash-dot

orange line. This strong coupling correction brings the theory closer to the simulations, but still

underpredicts the relaxation rates.

Our best model, Model 3, is based on an effective potential in a Boltzmann description,

Eqs. (2.17)-(2.19), which includes velocity dependent strong scattering. This is plotted as a

dashed green line in Fig. 2.5. This incorporates strong scattering in a self-consistent way, reducing

the ambiguity in choosing ad hoc cut off parameters inherent in a Coulomb logarithm approach.

Nonetheless, this model predicts temperature relaxation rates somewhat faster than the MD result.

This is surprising given the previously demonstrated accuracy of this model in reproducing experi-
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Figure 2.4 Temperature vs. time for two UNP configurations. a) TCa (black), and TYb
(blue). For this plot, the initial peak densities and rms sizes are nCa

0 = 3.4× 109 cm−3,
σCa

0 = 0.57 mm, nYb
0 = 1.9× 109 cm−3, σYb

0 = 0.72 mm. Circles show temperatures
extracted from laboratory data. Solid lines show MD data. c) and d) Temperature difference,
TCa - TYb. Circles show laboratory data with their 1σ estimated uncertainty. Solid lines
show MD data. The gray shaded area represents the estimated 1σ uncertainties in the decay
rate extracted from the laboratory data. Panels b) and d) show the same analysis for a higher
density plasma with nCa

0 = 4.3×109 cm−3, σCa
0 = 0.53 mm, and nYb

0 = 1.3×1010 cm−3,
σYb

0 = 0.38 mm. For all of this data, the electron temperature is 96 K.
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Figure 2.5 Semilog plot of the temperature difference TCa−TYb compared with tempera-
ture relaxation models. Model 1 dotted blue line, Eqs. (2.8) - (2.13), Model 2 dash-dot or-
ange line, Eqs. (2.15) - (2.16), Model 3 dashed green line, Eqs. (2.17) - (2.18) for the same
systems as in Fig. 2.4. Simulation parameters Te = 100 K, a) κ = 0.38, nY b

0 = 1.9×109

cm−3, nCa
0 = 3.4×109 cm−3, b) κ = 0.46, nY b

0 = 1.3×1010 cm−3, nCa
0 = 4.3×109 cm−3.

The systematic improvement of the models compared to the MD simulation is clearly
shown.
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mental data and MD simulations of momentum transfer, joule heating, diffusion, viscosity, thermal

conductivity, etc. [1, 19, 44].

This overprediction may be due to errors in the effective potential, non-binary collisions, or

coupled modes [61,62,92,93]. The influence of the coupled mode can be identified when examining

the dielectric response function ε(k,ω) of a binary plasma mixture. In the case of a binary ionic

mixture, the temperature relaxation equation for species 1 is [18]

dT1

dt
=

∫∫ dk dω

3n1π3 k2
(

U12(k,ω)

|ε(k,ω)|

)2{
T1 Im [Π21A∗22] Im χ̂

(0)
11

−T2 Im [Π∗12A11] Im χ̂
(0)
22

}
. (2.21)

With the exchange 1→ 2 we obtain the equation for species 2. In the above equation U12(k,ω)

is the Fourier transform of the Yukawa interaction between the two ion species, χ̂0
α(k,ω) is the

external response function of species α , Aαβ = δαβ −Ũαβ Παβ (kω), and the elements of the matrix

Π(kω) are defined by,

Πσσ ′(k,ω) = χ
(0)
σ (k,ω)[1−Gσσ ′(k,ω)], (2.22)

where χ
(0)
σ (k,ω) is the free particle polarizability and Gσσ ′(kω) is the local field correction. The

three models described above neglect the frequency dependence of ε(k,ω) and consider only

the static version U12(k)/ε(k,0). This effective interaction is then used to inform the Coulomb

logarithm in a Fokker-Planck approach (Model 1 and Model 2) or the cross-section in a Boltzmann

equation (Model 3). It is worth noting that Eq. (2.21), which describes the interaction of classical

ions, has wide applicability to most non-ideal plasmas, with transferability guaranteed through the

choice of the most appropriate pair interaction [94].

In general, the effective interaction is time and frequency dependent. The electron-ion and

ion-ion dynamics need to be considered when extending plasma models to include coupled modes.

Some of these processes harden the ion-ion potential, while others soften it. Future work is needed

in this direction.
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2.3 Discussion

We demonstrate that dual-species UNPs provide a new platform for studying ion transport properties

in a two-temperature system. We characterized the approach to equilibrium using a Hermite

expansion, which reveals when a relaxing system can be safely treated as a “two-temperature"

system. This powerful approach facilitates comparison of data with quasi-equilibrium theories.

We present the first measurement of ion-ion temperature relaxation rates in a strongly coupled

binary ionic mixture. Using a single diagnostic method, we directly measure the ion temperatures

without inference through, for example, an equation of state. This shows the remarkable capability

for UNPs to investigate component physics across coupling regimes, simulating some aspects of,

e.g. HEDP, plasma mixtures, and liquid metal alloys.

We show that our MD simulations of temperature relaxation agree with experimental measure-

ments. This reinforces the fact that the Yukawa potential, Eq. (2.5), accurately describes ion-ion

interaction in dual-species UNP mixtures. This further confirms the ability of our MD simulations

to capture a very complex relaxation process. This confidence, in turn, allows us to employ the MD

as a surrogate for information that the experiment cannot provide, as the Hermite coefficients. These

observations reinforce the importance of having MD as an integral part of experimental workflows.

We compare the simulated relaxation rates with three popular temperature relaxation theories of

varying fidelity. The closest theory is based on solving the Boltzmann equation using an effective

potential. The variance between this theory and the MD simulations is likely caused by coupled

modes, an effect that is omitted from the theory by design. Future work could explore the influence

of coupled modes on ion transport. Incorporating coupled modes into the Boltzmann solutions

could also prove fruitful for ion transport in the regime of relatively small mass ratios.
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2.4 Methods

Experimental details

We use resonant two stage photo-ionization to ionize 100% of Ca atoms and up to 60% of Yb atoms.

The wavelengths are shown in Fig. 2.6. The ionization pulses are offset by 40 ns to prevent the

Ca ionization pulses from ionizing the Yb atoms. Otherwise, cross-ionization between the two

plasmas would confound the electron temperature, as shown in Fig. 2.7. The electron temperature is

determined by the photon energy of the ionizing pulse above the ionization threshold, and Te = 96 K

in these experiments. The initial plasma densities are controlled by expanding the neutral atom

cloud prior to ionization, also illustrated in Fig. 2.7. The Ca and Yb atom clouds expand for different

lengths of time up to 2 ms, allowing independent control of the relative densities of each species.

The process of loading the neutral atom trap, expanding the neutral atom clouds, and generating the

plasma takes several ms and the process is repeated at a rate of 10 Hz.

The Ca+ and Yb+ velocity distributions are measured using laser-induced-fluorescence. Probe

laser beams at 393 (Ca+) and 369 nm (Yb+) are overlapped using a dichroic mirror and then

coupled into a single mode polarization maintaining optical fiber. The fiber output is collimated

with a Gaussian waist of 3.9 mm and then cylindrically focused ( fcyl = 350 mm) to a rms thickness

of 0.15 mm to illuminate a sheet of ions in the center of the plasma [84] (see Fig. 2.8. The probe

laser beam intensities are typically 10 to 20% of the saturation intensity.

For long interrogation times, t > 1 µs, optical pumping is potentially problematic. For the 393

nm transition in Ca+, lasers at 854 and 850 nm could be used to prevent optical pumping into

the metastable 2D states [95]. Throughout these experiments, we use a laser at 854 nm to prevent

optical decay into the 3d 2D5/2 level. We initially also used a laser at 850 nm to prevent decay into

the 3d 2D3/2 level. However, we found that including this laser did not change the measurement

results. In later experiments, the 850 nm laser was not used.
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Figure 2.6 Atomic energy levels and laser wavelengths used in this experiment. Blue
arrows in a) and b) indicate the lasers used for ionizing Ca and Yb, respectively. The
electron energy is given by the difference between the ionization limit and the laser photon
energy. c) and d) show levels used in Ca+ and Yb+ spectroscopy, respectively. The
blue arrows indicate the laser driven transitions, while the red dashed arrows indicate the
spontaneous emission with the associated branching fractions. In this experiment, we use
a Ti:sapphire laser to repump the 854 nm transition in Ca+. Repumping the transition at
850 nm does not change the measured results. We do not repump the 935 nm transition in
Yb+.
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Figure 2.7 Timing diagram for density selection and plasma creation, where a step-up
indicates turning on and a step-down indicates turning off the indicated quantity. The Ca
and Yb neutral atom clouds are expanded for ∆tCa and ∆tYb to obtain the desired densities,
typical expansion times range between 0.5 ms and 2 ms. The pulse delay for the ionization
pulses is 40 ns to eliminate cross ionization to preserve the known electron temperature
of the plasma. Otherwise, the Ca+ ionization pulses would also ionize the Yb atoms and
produce a very high electron temperature. Due to the large ion mass, the Yb+ plasma does
not expand on this 40 ns timescale. Data plotted in previous figures also have this 40 ns
delay. Its influence is imperceptible in the data. The MOT magnetic field is turned off
∆tB = 500 µs prior to ionization.
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We further verify that optical pumping is a negligible source of error in both Ca+ and Yb+

by turning the probe laser beams on for short periods of time and delaying the turn-on time for

up to 10 µs. We find that for our probe laser intensities, there is no difference between these

measurements and those derived from leaving the probe lasers on all of the time.

Details of the laser-induced fluorescence measurement process are given in Fig. 2.8. With the

probe laser frequencies at a particular offset from resonance, we collect fluorescence as a function

of time after the plasma is created. Fluorescence measurements from up to 100 identical plasmas

are averaged at a given frequency of the probe lasers. The probe laser frequency is changed, and the

measurement process is repeated. Using 11 different probe laser frequency offsets, we sample the

ion velocity distributions, using the Doppler shift to convert frequency offset to ion velocity. The

data is post-processed so that at a given time after ionization, the fluorescence signal as a function

of frequency is fit to a Voigt profile, and the rms Gaussian width, vα,th, is used as a fit parameter.

This is used to determine the ion temperature, Tα . Using the ICCD camera allows us to collect

fluorescence averaged over a particular time. Typical averaging times are 50 to 500 ns, usually 10%

of the delay time, depending on the ion dynamics under consideration.

Derivation of the fluid expansion model

We model the UNP as a three-species plasma composed of electrons and two ionic species. The

species momentum equations are obtained from the velocity moments of the underlying kinetic

description and are given by

nα

∂uα

∂ t
+nαuα ·∇uα +

1
mα

∇pα −
Fα

mα

nα = Cα , (2.23)

where α = {e,Ca,Yb}. Apart from the time derivative, this model describes advection, pressure

forces, external and internal forces, and collisions. Approximations relevant to our ultracold plasma

experimental conditions can be made, and include steady state electrons (∂ue/∂ t ≈ 0 on the ion
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Figure 2.8 Experimental details for fluorescence detection from Ca+ and Yb+ ions. a)
Schematic diagram of the optical system used for fluorescence detection. The plasma is
illuminated by cylindrically focused laser light. Laser-induced fluorescence is collected
using an f/2 1:1 imaging system. For PMT measurements, the plasma is imaged onto a
φ = 250 µm aperture, enabling measurements of the central portion of the plasma. Spectral
filters in front of the PMTs allow simultaneous measurements of fluorescence from both
Ca+ and Yb+ ions. A spectral filter is also used before the ICCD camera. b) Typical
laser-induced fluorescence PMT signals for Ca+. c) A representation of Ca+ laser-induced
fluorescence measurements vs. time as a function of probe laser frequency detuning. The
blue plane cutting through the data at 1 µs is used to extract the fluorescence vs. probe
laser frequency detuning at a particular time. d) Typical Ca+ fluorescence ICCD camera
image when Yb+ ions are present after a time-evolution of 5 µs. Camera measurements
give spatial information at a particular time after ionization.
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time scales of interest here), small velocities among all species (uα ·∇uα ≈ 0), vanishing pressure

for the (ultracold) ions (pCa, pYb ≈ 0), internal electrostatic forces and a friction term between ionic

species. With these approximations, Eqs. (2.23) become,

∇Pe = neFe, (2.24)

∂u1

∂ t
=

F1

m1
−ν

m
12(u1−u2), (2.25)

∂u2

∂ t
=

F2

m2
−ν

m
21(u2−u1), (2.26)

where the subscripts 1 = Ca and 2 = Yb. These equations are coupled to the species continuity

equations and a Poisson equation for the electric fields. Assuming the electrons are isothermal and

Z = 1, we obtain,

∂u1

∂ t
=−kBTe

m1

∇ne

ne
−ν

m
12(u1−u2), (2.27)

∂u2

∂ t
=−kBTe

m2

∇ne

ne
−ν

m
21(u2−u1). (2.28)

Simulation details

MD simulations are performed for a binary ionic mixture of Yb+ and Ca+ ions with a uniform

spatial density. The two ion species interact via the screened Coulomb (Yukawa) potential

U(ri j) =
ZiZ je2

4πε0

1
ri j

e−ri j/λTF ,

where i, j label the ions in the simulation, ri j their distance, and λTF is the Thomas-Fermi length

obtained from the surrounding electrons [44, 96]. The electrons are not explicitly simulated, but

their effect is incorporated in the screening length λTF which is calculated from the electron density,

ne = nCa+ +nYb+ , and temperature Te. For temperature and densities considered here, the electrons

are non-degenerate and λTF is equal to the Debye length of the electrons.
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The simulations use periodic boundary conditions. While the experiments necessarily have open

boundary conditions, the MD simulations are an appropriate representation of the middle of the

plasma, as mentioned previously.

MD simulations are performed using Sarkas, a pure python open-source molecular dynamics

code for non-ideal plasmas [88]. We use N = 50000 total ions, with Ca/Yb number ratios matching

those of the experiments and ZCa+ = ZYb+ = 1. The initial positions of the ions are randomly

distributed along the three axes of the simulation box. The initial velocities are chosen from a

normal distribution centered at zero with an initial width v(0)α,rms =
√

kBT0/mα with T0 = 0.002 K.

Particle positions and velocities are integrated using the standard velocity Verlet algorithm. The

timestep, ∆t, was chosen such that ωp∆t ∼ 0.002, where ω2
p = ω2

Ca +ω2
Yb is the sum of the plasma

frequencies of each ion species (see the Theoretical details’ section for definitions). The timestep

and total number of particles were varied and chosen to give converged results.

The potential energy and forces are calculated using a highly efficient Particle-Particle Particle-

Mesh algorithm [97]. This algorithm is more reliable than the minimum image convention when

the screening parameter κ = aws/λTF < 1.

For each experimental condition, five non-equilibrium simulations with different initial condi-

tions were performed on an Intel Core i7-8700K and 48 GB of RAM. Typical runtime for a single

simulation run was ∼ 20 hours.

Following the experiments, in the first 40 ns of the simulation Ca atoms are neutral, i.e. their

charge number, ZCa = 0, while Yb+ ions carry a charge ZYb+ = 1. In this way, only the Yb+ ions

interact with each other and do not interact with Ca atoms. For t ≥ 40 ns the charge number of

Ca atoms is changed to 1 and the screening length λTF is updated. This leads to a larger screening

parameter κ due to the increased electron density. In this work, the electron temperature is Te = 96

K and the densities range from ne = 1.9×109 cm−3 to 1.3×1010 cm−3, leading to final values of

the screening parameter κ ∼ 0.37−0.46. In this range, three-body recombination is negligible [98].
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We performed more simulations without the initial time delay of 40 ns and found no difference

in the results. A back-of-the-envelope calculation shows that the averaged displacement of the Yb+

ions in the first 40 ns is ∼ 100 nm, hence, not a significant change over the length scales of the

system.

Comparison of experiment and simulations

To enforce compatibility in comparing the MD data to the experiment, the MD velocity distribution

is convolved with a Lorentzian distribution and then fit to a Voigt profile with the Gaussian width as

a fit parameter. This slightly underestimates the average ion kinetic energy during the DIH phase

because of slight departures from a Maxwellian velocity distribution (see Fig. 2.3). Experimentally,

we have access to the ion velocity distribution through the fluorescence signal. This signal is

necessarily a convolution of the velocity distribution with the natural lineshape of the atomic

transition. The half-width at half-maximum of the (Lorentzian) Ca+ 393 nm transition is 11.5

MHz [99]. This corresponds to a velocity of 4.5 m/s. This is small compared to the post-DIH

(Gaussian) rms velocity of 20 m/s for Ca+ ions at a temperature of 2 K. Convolving the MD velocity

distribution and fitting to a Voigt profile reduces the ion temperature by a few percent during the

DIH phase, as illustrated in Fig. 5 of Ref. [84].

Theoretical details

The models consider a spatially homogeneous plasma composed of two ion species with different

masses, mα , different number densities, nα , and charge numbers, Zα . The surrounding negative

electronic background is at temperature Te and density ne = Z1n1 +Z2n2. The Wigner-Seitz radius

is defined from the total ion number density, a3
ws = 3/(4πntot), ntot = n1 +n2. The concentration

of each ion species is xα = nα/ntot. The electron density ne = ntot when Z1 = Z2 = 1, as is true

for our UNPs. The ion Debye length of species α is λ 2
α = ε0kBTα/(nα(Zαe)2). The ion plasma
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frequency of species α is ω2
α = (Zαe)2nα/(ε0mα). The total ion plasma frequency is ω2

p = ∑α ω2
α .

The ion thermal speed of species α is given by vα,th =
√

kBTα/mα . Typical equilibrium values in

our experiments are Γα = 3, as shown in Fig. 2.2.
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Chapter 3

Ultracold Neutral Plasma Expansion in a

Strong Uniform Magnetic Field

3.1 Introduction

Ultracold neutral plasmas (UNPs) are useful tools in understanding transport properties of strongly

coupled systems in an ideal environment. It has been shown that UNPs and high energy-density

plasma (HEDP) share dynamic properties [1] when the one component Yukawa potential [2, 3]

is appropriate. Accurately modeling HEDPs requires detailed and reliable models of collective

phenomena such as continuum depression heating [4], turbulence and mixing [5–7], diffusion [8, 9],

viscosity [10], thermal decoupling [11] and many other physical processes [1, 12]. The high optical

opacity and short dynamic time scales in HEDPs pose challenges to experimentally measuring

transport properties with high fidelity. For this reason, HEDP heavily rely on molecular dynamics

(MD) simulations [14] and plasma models [15,16] to understand transport in these complex systems.

UNPs have the advantage of being 12 orders of magnitude below solid density with a temperature on

the order of a Kelvin, resulting in accessible real-time plasma dynamic measurements [1]. Transport

34
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properties in this environment are measured directly and can be used to verify current models and

MD simulations [17–19].

There is a growing interest in magnetized transport properties in the plasma physics community

[20–29]. In HEDPs such interests include anisotropic thermal conductivity [30] and reverse shock

formation [31]. Similar experiments are performed using UNPs, these include thermal conductivity

[32], diffusion [33], strong coupling enhancement [34], and various other studies [35–37]. It has

been demonstrated by Gorman et al. [100] that the presence of a static quadruple magnetic field

along with traditional magneto-optical trap (MOT) fields can be used to confine a strongly coupled

Strontium plasma. The development of experimental UNPs provides a platform for studying

magnetized plasma transport properties in these strongly coupled systems.

In this work, we present a new method for measuring plasma expansion in a uniform magnetic

field using circularly polarized state-selective laser induced fluorescence. The presence of the

magnetic field opens pathways to numerous Zeeman split dark states, including an aggressive

optically dark ground state that complicates the time resolved spectroscopy considerably. Laser

induced fluorescence has the advantage of obtaining real time temperature measurements at a

localized point within the plasma [17] as well as precision size measurements through optically

filtered imaging. This work allows for the capability of measuring magnetized transport properties

of single and dual species plasma in a strong uniform magnetic field up to 0.2 T. Possible magnetized

plasma experiments include diffusion, viscosity, thermal conductivity, ion-ion energy relaxation and

disorder induced heating suppression.

A recent publication by Zhang et al. [33], showed that the transverse plasma expansion is

suppressed in a magnetic field. In their work, they measured the plasma expansion by accelerating

the ions towards a position-sensitive detector using an electric field. The element Xe was used, and

they measured the expansion of the plasma at magnetic field strength up to 70 Gauss. They claimed

that the expansion velocity scales as B−1/2 and can be accurately modeled using ambipolar diffusion.
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Figure 3.1 Relevant Energy level and timing diagrams. a) Energy leave diagram of the
optimal fluorescent transition and the available dark states depending upon laser beam
polarity. Other excitation states allow for an aggressive dark ground state due to the Zeeman
splitting of the ground state. b) Energy level diagram for two stage photoionization. In
this work, we drive the 1S0 → 1P1(m j = 0) → continuum transitions using a 423 nm
and 390 nm pulses. The energy of the 390 nm pulse laser over the continuum sets the
plasma electron temperature. c) Timing diagram for the experimental process. The MOT
laser beams are turned off ∆tCa = 600 µs prior to ionization. The MOT magnetic field is
turned off 600 µs prior to ionization. A short time later, the magnetic field for the plasma
is turned on 500 µs prior to ionization. this gives time for the field to ramp up to a constant
magnetic field strength. At time t = 0 the plasma is ionized and a short time, ∆tion, later
the probe laser is turned on, and the camera is pulsed on for 100-200 ns. Values of the
Landé g-factor come from Refs. [101, 102] and [103].
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We perform a similar experiment using laser induced fluorescence to observe the transverse and

parallel expansion of the plasma in the presence of a strong uniform magnetic field up to 0.12 T

or 1200 Gauss. Contrary to the finding by Zhang et al., we find that ambipolar diffusion fails to

model magnetized and non-magnetized UNP expansion. We find that the expansion velocity scales

as the exponential of the magnetic field. Mathematically, at low magnetic fields, B < 100G, the

exponential and power law models are indistinguishable. At large magnetic fields, the exponential

relation is in better agreement with experimental data.

Unfortunately, at this time, no analytic solution has been derived for describing diffusion in a

UNP in the presence of a magnetic field. In our plasma, the electrons are strongly magnetized, but

the ions are not. The magnetization is characterized by the magnetization parameter,

αs =
Ωcs

νss
(3.1)

where Ωcs is the cyclotron frequency of species s and νss is the intra-species collision frequency, as

given by the plasma formulary [38]. For electrons, νee ' νei. The Larmor radius, rL, defines the

orbit of the species in a magnetic field,

rL =
msv⊥

eB
, (3.2)

where ms is the species mass, B is the magnitude of the magnetic field, e is the fundamental unit of

charge and v⊥ is the perpendicular thermal velocity,

v2
⊥ =

2
3

kBTs0

ms
, (3.3)

where kB is Boltzmann’s constant and Ts0 is the species initial temperature. When the electron

Larmor radius is equal to the electron Debye length,

λD =

√
ε0kBTe0

n0e2 , (3.4)

we find the characteristic magnetic field strength,

B0 =

√
2
3

men0

ε0
, (3.5)
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where ε0 is the vacuum permittivity and n0 is the initial peak density. When B = B0 The magnetiza-

tion parameters are αe = 5.14 and αi = 0.017.

In this work, we explore a magnetic field strength regime of B = 0→ 0.123 T, spanning a

magnetization parameter for the electron and ions of αi = 0→ 0.15 and αe = 0→ 45 respectively.

We measure the transverse and parallel expansion of an UNP and compare the experimental data

to an ambipolar diffusion model developed by Zhang et al. [33]. In the non-magnetized case, we

compare our data to a self similar expansion model [39, 40].

3.2 Methods

Approximately 3 million neutral Ca atoms are trapped in a MOT using 423 nm laser beams [17, 19].

The Ca+ plasma is formed by ionizing 80% of the Ca atoms via two color resonant photoionization

using 5 ns laser pulses at 423 nm and 390 nm, as shown in Fig. 3.1b. The photon energy of the 390

nm laser above the ionization limit controls the electron temperature, Te. In this work, Te = 96 K.

This ensures there is no significant three-body recombination. The density and size of the plasma is

obtained using resonant absorption imaging of the neutral atom cloud, scaled using the ionization

fraction and the ratio of the neutral atom cloud size and the initial plasma size. In this work, the

initial plasma size and density is σ0 = 400±20 µm and n0 = 3.4±0.2 ×1015 m−3 respectively.

A constant, uniform magnetic field is made using Helmholtz coils separated by 11 mm within

the vacuum chamber. The coils are wrapped onto a stainless steel spool that is mounted to an

internal imaging optical system, as shown in Fig. 3.2a. The spool is cut to eliminate eddy currents

when the magnetic field changes. The stainless steel housing is grounded to suppress any electric

fields arising from the potential difference between the coils. Currents ranging up to 150 A are

supplied to the coils to produce magnetic field strengths up to 0.2 T. The current turns on 500 µs

prior to ionization to allow the magnetic field to approach a steady state value. During this time, the
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Figure 3.2 Magnetic field construction and techniques used for data collection. a) Shows
the dimension of the magnetic field coil housing and how it is implemented into our optical
system inside the vacuum chamber. 19 turns are achieved in the top and bottom coils. The
coils are centered with the trapping center. b) The fluorescence from the plasma is detected
using an optically filtered PMT and ICCD camera. c) Typical signal received from PMT,
used to extract the magnetic field strength. d) Typical signal from ICCD camera, provides
spatial resolution of the plasma at a specific time.
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MOT laser beams and MOT magnetic field are turned off and the neutral atom cloud freely expands.

The neutral atom cloud expansion is not influenced by the applied magnetic field. This expansion

gives time for density variations in the atomic cloud to dissipate, providing a smooth Gaussian

profile at the time of photoionization. Once the atoms are ionized, the magnetic field remains on for

≈ 50 µs before turning off. This is repeated at a rate of 10 Hz as shown in Fig. 3.1c.

The Ca+ plasma is observed using laser-induced fluorescence. The entire plasma is illuminated

by a 393 nm circularly-polarized probe laser beam. The probe laser beam propagates parallel to

the magnetic field direction. The RMS width of the probe laser beam is 1620±90 µm. Circularly

polarized light state selectively drives the Zeeman split 2S1/2→ 2P3/2 transitions. The fluorescence

from the plasma is imaged onto a 393 nm optically filtered ICCD Camera and PMT using a 1:1

imaging system, as shown in Fig. 3.2b. The plasma fluorescence is measured at 11 different probe

laser frequency detunings relative to the atomic transition, ranging from ±200 MHz from resonance

in 40 MHz steps.

The Zeeman splitting of the energy levels in this work are well within the linear regime for the

applied magnetic fields. The energy splitting can be calculated as,

∆E = µBgLm jB (3.6)

where µB is the Bohr magneton, g is the Landé-gL factor [101–103] and m j is the magnetic angular

momentum quantum number.

The introduction of a magnetic field complicates the atomic spectroscopy and requires additional

considerations when measuring the plasma size and expansion rates. The Zeeman splitting of the

excited and ground states of Ca+ opens a pathway to an aggressive optically dark ground-state.

To eliminate the dark ground state, circularly polarized light is used to drive the nearly closed

2S1/2(m j = ±1/2)→ 2P3/2(m j = ±3/2) transitions. In our measurements we use either σ+ or

σ− light, depending on convenience for locking to the frequency comb. Even with this optical

cycling, there is a small probability that ions in the 2P3/2(m j =±3/2) will fall into optically dark D
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states. In previous work, these dark states where optically pumped back into the excited states to

allow for long measurement times [1, 19]. With a magnetic field this no longer becomes feasible

because the two previously available dark states, 2D5/2 and 2D3/2, split into 5, after selection rule

considerations, as shown in Fig. 3.1a. To avoid this, the probe laser is turned on at some time ∆t

after plasma formation and observed by the ICCD camera for 100-200 ns, as shown in Fig. 3.1c.

3.3 Analysis

In this work, the plasma fluorescence is collected using both an ICCD camera and a PMT. The PMT

collects spatially averaged resolved fluorescence as a function of time, while the ICCD camera

collects spatially resolved measurements at a specific time. The magnitude of the magnetic field is

determined using spectroscopy. We measure the frequency of 2S1/2(m j = 1/2)→2 P3/2(m j = 3/2)

transition with and without the magnetic field. The difference is directly proportional to the

field strength B. Referring to Fig. 3.1a, the frequency difference can be written as ∆E(B) =

±14.00 GHz/T×B.

Camera images are taken at 11 laser frequency as described above at times t = 0.1, 1, 2, 5, 10,

20 µs for each magnetic field strength. These images are used to extract expansion of the plasma

transverse and parallel to the magnetic field, as shown in Fig. 3.3 and 3.4. From this data the

expansion velocity and expansion rate are also determined, as shown in Fig. 3.5 and 3.6 respectively.

The expansion rate in previous work has proved to be a useful parameter for quantifying flow

locking of binary ionic mixtures [17]. In this work, it is used to further validate the self similar

expansion model and provide insight into possible heating of the electrons parallel to the magnetic

field, as shown in Fig. 3.5c.

The size of the plasma in the y-direction is determined by integrating the fluorescence images

over all laser detunings [see panels a) and d) in Figs. 3.3 and 3.4] and then integrating along the
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Figure 3.3 Data analysis with no magnetic field. a),d) Sum of camera images at all laser
frequency detunings at times t = 0.1 µs and t = 10 µs after ionization. b),e) Horizontal
projection of figure a) and d) fit to a Gaussian to extract plasma size. c),f) Vertical
projection of each laser detuning image. At early times the signal is summed up and fit to
a Gaussian while at later times the peak is extracted at each laser detuning and then the
peaks are fit to a Gaussian to extract plasma size parallel to the magnetic field.

z-direction. The resulting density profile is shown in panel b) of Figs. 3.3 and 3.4. Fitting these

profiles to a Gaussian function gives σ⊥(t). The probe laser propagates parallel to the magnetic

field axis, the z-axis. The fluorescence from transitions between all allowed Zeeman levels results

in the same plasma width. The widths are corrected slightly by taking into account the fluorescing

laser beam profile.

The analysis for plasma expansion parallel to the magnetic field is more involved. For moderate

values of the magnetic field, the Zeeman splitting is comparable to or less than the Doppler width

of the atomic transition. For higher values of the magnetic field, the Zeeman splitting exceeds



3.3 Analysis 43

Figure 3.4 Data analysis with B = 0.0203 T. a),d) Sum of camera images at all laser
frequency detunings at times t = 0.1 µs and t = 10 µs after ionization. b),e) Horizontal
projection of figure a) and d) fit to a Gaussian to extract plasma size. Clear suppression is
observed when comparing against Fig. 3.3. c),f) Vertical projection of each laser detuning
image. At early times the signal is summed up and fit to a Gaussian while at later times
the peak is extracted by fitting to a 3 Gaussian profile to account for other transitions at
each laser detuning and then the m j =±3/2 peaks are fit to a Gaussian to extract plasma
size. No observed change in parallel expansion when comparing against Fig. 3.3
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our laser scanning range. This is why the plasma fluorescence signals in Figs. 3.3d) and 3.4d)

are somewhat rectangular. Ions located above and below the observed fluorescence region have a

projected velocity, vz, outside the scanning range of the probe laser beam and therefore are invisible.

To obtain σ‖, each fluorescence image is summed in the y-direction and fit to a line profile

consisting of a sum of three Gaussian functions. This accounts for fluorescence from 2S1/2(m j =

±1/2)→ 2P3/2(m j =±3/2), 2S1/2(m j =∓1/2)→ 2P3/2(m j =±1/2) and 2S1/2(m j =∓1/2)→
2P3/2(m j =∓3/2) transitions. The last transition is visible because the laser beam polarization is

not purely circular. Other Zeeman transitions may be present in the signal, but their contributions

are negligible.

From the three Gaussian fit, the 2S1/2(m j = ±1/2)→ 2P3/2(m j = ±3/2) peak location and

amplitude is extracted, as shown in Figs. 3.3f) and 3.4f). The peaks location and fitted peak

amplitude at each laser detuning are then fit to a single Gaussian envelope to extract the plasma size

parallel to the magnetic field, σ‖, as shown in Figs. 3.3f) and 3.4f).

The spatial location of the m j = 3/2 peaks, as shown in Fig. 3.4f), are then used to calculate the

expansion rate parallel to the magnetic field. For a given value of the magnetic field, Doppler shift

maps the spatial location of the transition frequency, as measured using the camera, onto an ion

velocity. Multiplying the laser frequency detuning from resonance by the wavelength of light, 393

nm, gives the velocity of the ions parallel to the laser propagation. When comparing fluorescence

images from two different probe laser frequencies, the product of the laser wavelength and the

frequency difference divided by the spatial shift between images gives

duz/dz = λ∆ν/∆z (3.7)

where uz is the hydrodynamic flow velocity. This can be compared to the self similar expansion

model for the expansion rate, as seen in Fig. 3.5. The expansion rate with no magnetic field is given
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by the spatial derivative of the flow velocity,

d
dz

uz(z, t) =
t
τ
(1+ t2/τ

2), (3.8)

where flow velocity is given by the convective derivative of the plasma size evolution from the self

similar expansion model [39, 40],

σ
2(t) = σ

2
0 (1+ t2/τ

2), (3.9)

where τ is the characteristic expansion time [40].

τ
2 =

miσ
2
0

kB(Te0 +Ti0)
, (3.10)

and Ti0 is the initial ion temperature. It is shown in Fig. 3.5a and 3.5b, that with no magnetic

field our Ca+ UNP follows the self similar expansion model in both the transverse and parallel

direction. Once a magnetic field is applied to the system, the symmetry assumed in deriving the

above solutions is no longer valid. A new treatment is required. We compare our results with an

ambipolar diffusion model and the self similar expansion model, as given in sections 3.4 and 3.5

respectively.

3.4 Ambipolar Diffusion Model

In the work by Zhang et al. [33] an ambipolar diffusion model is used to model transverse plasma

expansion in the presence of a weak magnetic field, up to 70 Gauss (0.007 T). The diffusion equation

in the presence of a uniform magnetic field in 1D-cylindrical coordinates is given by

∂n
∂ t

=
1
r

∂

∂ r
rD⊥

∂n
∂ r
−Floss(n, t), (3.11)

where n is the density profile of the plasma. In this work, a similar model is used with an improved

diffusion coefficient and compared with transverse plasma expansion in the presence of a strong
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Figure 3.5 Comparing self similar expansion to experimental data. a),b) Transverse and
parallel RMS size of the plasma as a function of time at various magnetic field strengths
respectively. The dashed black line is comparing the known self similar expansion model to
the B = 0 magnetic field plasma expansion (blue). c) The parallel flow velocity expansion
rate as a function of time at various magnetic field strengths. The data is compared to the
self similar expansion model prediction for B = 0.
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Figure 3.6 Comparing models to experimental data. a) Ambipolar diffusion model pre-
diction for transverse RMS size of the plasma as a function of time at various magnetic
field strengths. The derivative as a function of magnetic field strength is highly dependent
upon the time at which you apply the derivative. The solid vertical line illustrate the
time at which the derivative is the best fit to the experimental data. b) The asymptotic
expansion velocity as a function of magnetic field strength. The vertical line is the value
of the magnetic field when the Debye length is equal to the Larmor radius. The result
are compared to ambipolar diffusion (dashed green) evaluated at t = 1.61 µs, B−1/2 fit
(blue dotted) and an exponential fit (black dashed) where we find that the fit parameters
are equivalent to dσ⊥

dt = σ0
τ

e−2B/B0 . The agreement between the ambipolar diffusion model
and the experimental data is purely coincidental.
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uniform magnetic field, up to 0.123 T. The diffusion coefficient perpendicular to the magnetic field

is given by [104]

D⊥ = D0
ν2

ei

ν2
ei +Ω2

ce
, (3.12)

where D0 = kBTe/meνei is the diffusion coefficient with no magnetic field and νei is the electron-ion

collision frequency [38]. Notice that in the limit Ωce � νei then we get exactly the diffusion

coefficient of Zhang et al.

The loss term Floss(n, t), in Eq. (3.11) accounts for density losses due to expansion parallel to

the magnetic field. As shown in Fig. 3.5b, the expansion parallel to the magnetic field is unaffected

and follows the known self similar expansion model [39, 40]. The loss term is then appropriately

chosen to follow the self similar expansion model for no magnetic field,

Floss(n, t) = n
t

τ2 (1+ t2/τ2)
. (3.13)

We solve Eq. (3.11). numerically. The equation is discretized in space using a second order

centered finite difference method, which is numerically integrated using the method of lines [105]

with the implicit Runge-Kutta (Radau) method.

The numerical solutions of n(r, t) are fit to a Gaussian profile to yield the rms plasma width as a

function of time, σ⊥(t), as shown in Fig. 3.6a. It is clear that the ambipolar diffusion model predicts

functions σ⊥(t) that are inconsistent with the experimental data for all values of the magnetic field

[Fig. 3.5a)].

The time derivative of predicted value σ⊥(t) from the ambipolar diffusion model is compared

to experimental results in Fig. 3.6b), where we use the experimental data of Fig. 3.5a). Because

the predicted value of σ⊥(t) depends on time, the derivative must be evaluated at a specific time.

We note that there is no apriori “best choice” for such a time. The best fit to the data was found

by evaluating the derivative at t = 1.61 µs. Choosing a different time would result in a model

prediction that deviates significantly from the experimental results. The match of dσ⊥(t)/dt to the

experimental data at t = 1.61 µs therefore appears to be accidental and not physical.



3.5 Self Similar Plasma Expansion Model 49

3.5 Self Similar Plasma Expansion Model

Mora developed a self similar model for plasma expansion into a vacuum [39,106]. In this model he

assumes self similar expansion, quasinuetrality and spatial temperature invariance. Here we apply

his work to our UNP.

Starting with the equation of motion for species, s we get

∂us(r, t)
∂ t

=−us(r, t) ·∇us(r, t)−
kBTs

ms

1
ns

∇ns(r, t)

+
qs

ms
[E(r, t)+us(r, t)×B] (3.14)

where us is the flow velocity and E is the electric field.

Considering the case of no magnetic field, we neglect the ion pressure term, as it is much smaller

than the electric field term. The equations of motion for the electrons and ions then become

∂ui

∂ t
+ui

∂ui

∂ r
=− e

mi

∂Φ

∂ r
(3.15)

∂ue

∂ t
+ue

∂ue

∂ r
=

e
me

∂Φ

∂ r
− kB

mene

∂

∂ r
(neTe) (3.16)

where we have rewritten E =−∇Φ in terms of the potential Φ.

In the self similar plasma expansion model we assume quasineutrality, ne = ni, ue = ui and a

self similar expansion,

n(x, t) = n0
σ0

σ(t)
e
−r2

2σ(t)2 , (3.17)

applying the above assumption, the adiabatic equation of state and plugging Eq. (3.17) into Eq.

3.15 and 3.16 one recovers Eq. (3.9) and 3.10, with the exception that Ti0 = 0. This is compared to

our experimental data in both the parallel and transverse direction, as seen in Fig. 3.5a and 3.5b. We

see that the self similar expansion model is an exact solution to UNP expansion in the case of no

magnetic field, while the diffusion model fails.



3.5 Self Similar Plasma Expansion Model 50

Note that the governing dynamics in the diffusion model is governed by collisions, while the

self similar expansion model has no collisions. suggesting that the expansion is a collisionless

expansion.

In the case of large magnetic field the equations of motion, in cylindrical coordinates, for the

electrons become

∂ur,e

∂ t
+ur,e

∂ur,e

∂ r
−

u2
θ ,e

r
= −kBTe

me

1
ne

∂ne

∂ r
+

e
me

∂Φ

∂ r
−ωceuθ ,e +neνei (ur,i−ur,e) ,(3.18)

∂uθ ,e

∂ t
+ur,e

∂uθ ,e

∂ r
+

uθ ,eur,e

r
= ωceur,e +neνei

(
uθ ,i−uθ ,e

)
, (3.19)

∂uz,e

∂ t
+uz,e

∂uz,e

∂ z
= −kBTe

me

1
ne

∂ne

∂ z
+

e
me

∂Φ

∂ z
, (3.20)

and for the ions

∂ur,i

∂ t
+ur,i

∂ur,i

∂ r
−

u2
θ ,i

r
= −kBTi

mi

1
ni

∂ni

∂ r
− e

mi

∂Φ

∂ r
+niνie (ur,e−ur,i) , (3.21)

∂uθ ,i

∂ t
+ur,i

∂uθ ,i

∂ r
+

uθ ,iur,i

r
= niνie

(
uθ ,e−uθ ,i

)
, (3.22)

∂uz,i

∂ t
+uz,i

∂uz,i

∂ z
= − e

mi

∂Φ

∂ z
. (3.23)

These equations are augmented by continuity equations for each species and the Poisson equation.

In the above equations we have assumed that there is no angular dependence in each component

of the flow velocities, i.e. uα,s(r,θ ,z, t) = uα,s(r,z, t) where α = r,θ ,z, and no z dependence for

the perpendicular components, i.e. uθ ,s(r,z, t) = uθ ,s(r, t), ur,s(r,z, t) = ur,s(r, t), as indicated by the

cylindrical symmetry of the problem. Furthermore, we assume the absence of collisions in the ẑ

direction and no radial dependence of the ẑ velocity component, i.e. uz,s(r,z, t) = uz,s(z, t). This

leads to a collisionless model in the ẑ direction.

However, we note that in the presence of a magnetic field, the ion pressure term and e-i collisions

in the plane perpendicular to B cannot be ignored due to the small Larmor radius of the electrons.

This electron radial confinement reduces the strength of the electric field in the radial direction, thus

the ion pressure term is no longer negligible compared to the electric field.
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3.6 Discussion

We have developed a new method for measuring UNP expansion in a strong, uniform magnetic

field. High precision laser spectroscopy and optically filtered fluorescent imaging allow for direct

measurements of UNP size, temperature and magnetic field strength.

The plasma expansion parallel to the magnetic field is found to be unaffected by the strong

uniform magnetic field and follows the self similar plasma expansion model exactly. Perpendicular

to the magnetic field, we can control the expansion velocity by varying the magnetic field strength.

In the classical diffusion problem, the known solution for radial expansion goes as
√

t. This

relationship can be softened by including non-linear effect, as we have done above, but it can not

be corrected to the extent of predicting ballistic expansion. In the known self similar expansion

model [39, 40] the plasma expansion becomes ballistic in nature. This can be seen explicitly in

Fig. 3.5a and Eq. (3.9). This ballistic expansion is observed experimentally for both the magnetized

and non-magnetized cases.

In the case of zero magnetic field, the self similar expansion model [39, 40] is in perfect

agreement to our experimental data. We also find that in the presence of a magnetic field, the

expansion parallel to the field follows the self similar expansion model. Unfortunately, there is no

extension of this model to account for magnetic fields. Possible extensions of this model could be

applied to provide a more accurate representation of perpendicular plasma expansion in a uniform

magnetic field.

We compare our data with an ambipolar diffusion model [33] and find that it fails to describe the

expansion evolution of the plasma even when an exact solution is known. We therefore considered

an alternate model that predicts an exponential relation between expansion velocity and magnetic

field strength. The inset of Fig. 3.6, which is log-linear, reveals the superior performance of the

exponential model. We note that the exponential decay scale is very closely given by B0, defined in
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Eq. (3.5); thus, we find that
dσ⊥
dt

=
σ0

τ
e−2 B

B0 . (3.24)

Because of the limitations of our dataset, this relationship could be a coincidence: future experiments

should verify the result for different plasma densities.

The experimental methods used in this work allow for measuring magnetized transport properties

within an UNP, such as thermal conductivity, diffusion, disorder induced heating suppression and

temperature relaxation.
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Chapter 4

Methods

4.1 Introduction

The purpose of this chapter is to provide more information on techniques, process’s and general

information used in this work.

4.2 Laser Induced Fluorescence

Ca and Yb are both alkali-earth elements, which means that both have two valence electrons.

When the atom is ionized, one electron is ejected from the atom, leaving an ion with a single

valence electron. The remaining valence electron in the ions makes them particularly interesting

for studying transport properties. The remaining valence electron can be excited for observing the

ions using laser induced fluorescence, providing the possibility to get both spatial and time resolved

measurements.

Fluorescence comes from the spontaneous emission of a photon from the decay of an electron

to a lower energy level. When the electron is excited into the excited state using a resonant laser

beam, then it is called laser induced fluorescence. The energy required to excite the electron into an

53
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Figure 4.1 This diagram illustrates the allowed transitions. The green dashed lines show
the allowed excitation and decay between the 2S1/2 and 2P3/2 states. The red dashed lines
show the allowed decay from the 2P3/2 state to the 2D3/2 state. The blue dashed lines show
the allowed decay from the 2P3/2 state to the 2D5/2 state.

excited state is equal to the energy difference between the initial state (usually the ground state) and

the excited state. When the energy of the photons in the laser beam equals the excitation energy of

the electron, then the laser frequency is in resonance with the atomic transition.

The electron absorbs a resonant photon from the laser beam and is excited into an excited state.

When the laser beam is applied to an atomic cloud, then each atom will absorb a photon and the

electron will then spontaneously decay back into the ground state. The photons that are emitted

radiate in a dipole radiation pattern.

The fluorescence from neutral atoms is created by driving the 1S0 → 1P1 transition using a laser

at 423 nm for Ca and 399 nm for Yb. The Ca+ ions are fluoresced by driving the 2S1/2 → 2P3/2
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Figure 4.2 This diagram illustrates the allowed transitions. The green dashed lines show
the allowed excitation and decay between the 2S1/2 and 2P1/2 states. The red dashed lines
show the allowed decay from the 2P1/2 state to the 2D3/2 state. In this case, the 2D5/2 state
is not an allowed transition because of the ∆l =±1 selection rule.

transition using a laser at 393 nm. Likewise, for Yb+ ions, a 369 nm laser is used to drive the

2S1/2 → 2P1/2 transition, as seen in Fig. 2.6 and Fig. 3.1b.

In the presented work, only the fluorescence from the Ca+ plasma is influenced by external

magnetic fields, Chapter 3. When a magnetic field is applied, the energy levels become Zeeman

shifted, as described in Section 4.8. The splitting is linearly dependent on the magnitude of the

magnetic field. For the desired Zeeman split 2S1/2(m j =±1/2)→ 2P3/2(m j =±3/2) transition,

we find that the required change in laser frequency is ∆ν =±1.4×104B MHz/T. This transition

was chosen because the Zeeman split energy level structure allows for a recycling transition.
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Figure 4.3 Energy level diagram for the relevant energy levels in Ca+. The red dashed
lines the allowed excitations using right-handed circular polarization. The blue dashed
lines are the allowed excitations using left-handed circular polarization. The relevant
allowed decay paths are illustrated in Fig. 3.1a
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The allowed transitions for both the Zeeman split 2S1/2→ 2P1/2 and 2S1/2→ 2P3/2 transition

are shown in Fig. 4.2 and Fig. 4.1 respectively. The allowed transitions are determined using the

following selection rules

∆l =±1 (4.1)

∆m j = 0,±1 (4.2)

(4.3)

The excitation transition is restricted by introducing either right or left-handed circularly polarized

light σ±, as shown in Fig. 4.3. The selection rules associated with circular polarization become,

σ+→ ∆m j =+1 (4.4)

σ−→ ∆m j =−1 (4.5)

It can be seen from Fig. 4.3 that by choosing the 2S1/2→ 2P1/2 transition, there is no way to

eliminate the aggressive dark ground state. For this reason, 2S1/2→ 2P3/2 transition is chosen. Using

circularly polarized light, we can excite the 2S1/2(m j =±1/2)→ 2P3/2(m j =±3/2) transition and

ensure that the excited electron falls back into the birth ground state or one of the weaker dark states.

The allowed dark states transitions are shown in Fig. 3.1a. More information on dark states can be

found in Section 4.7.

4.3 Magneto Optical Trap

The 1997 Nobel Prize in physics was awarded to William Phillips, Steven Chu and Claude Cohen-

Tannoudji "for development of methods to cool and trap atoms with laser light" [107]. Today, this is

known as a Magneto Optical Trap (MOT) [107]. Since then, MOT’s have been adopted by many

areas of research. A few examples include atomic physics [108], plasma physics [17] and ultracold

chemistry [109]. A MOT takes advantage of state selective radiation from the Zeeman split energy



4.3 Magneto Optical Trap 58

Figure 4.4 Shows the magnetic field strength, Bz, along the z axis due to the quadrupole
magnetic field produced by anti-Helmholtz coils.

levels of an atom in the presence of a quadrupole magnetic field. In this work, we are able to

simultaneously trap upwards of 10 million Ca and Yb neutral atoms using this technique.

A quadrupole magnetic field is realized using anti-Helmholtz coils. Anti-Helmholtz coils are

a set of two counter propagating current carrying coils displaced by a distance equal to the coil

radius. Using Biot-Savart’s law, Eq. 4.29, the magnitude of the magnetic field along the z-axis is

determined, as shown in Fig. 4.4. At the origin the magnitude of the magnetic field is zero, B = 0 T,

and increases in both the ẑ and −ẑ direction.

In the limit that the displacement from the origin is small compared to the radius of the coils,

the magnetic field increases linearly in the radial direction r̂ from the trap center. In our case, the

magnetic field coils are displaced by approximately 6.7 cm from center to center. A typical trapped

neutral atom cloud has a rms width of 300 µm. The relatively small plasma size in comparison

to the coil displacement ensures we are well within the linear regime for the radial magnetic field

strength.
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Figure 4.5 Illustrates Zeeman energy level splitting of the neutral atoms in the presence
of an anti-Helmholtz magnetic field. ∆ν = 54 MHz is the laser detuning from resonance
used in order to obtain state selective radiation pressure on the atoms

The anti-Helmholtz coils provide a magnetic gradient of ∆B = 100 Gauss/cm in the center of our

MOT. This gradient creates a Zeeman splitting in the atoms that is proportional to the displacement

from the center of the trap, similar to equation 4.17,

∆E = µBm jg∆Brr̂, (4.6)

where ∆E is the energy splitting, m j is the total angular momentum quantum number and g is the

Lande g-factor given by equation 4.18. The Bohr magneton, µB = eh̄/2me, is given in terms of

physical constants, Where e and me are the electron charge and mass respectively and h̄ is Planck’s

constant. The energy splitting as a function of displacement is illustrated in Fig. 4.5.

In the case of both Ca and Yb, the transition used to trap the atoms is the 1S0→1 P1 transition,

as shown in Fig. 2.6. The symmetry between the Ca and Yb energy levels ensure that the energy

splitting is identical. The splitting of the energy levels introduces a m j state selection rule, ∆m =±1.
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Applying circularly polarized light in either the positive or negative sense forces the selection rule

to σ+→ ∆m j = +1. The MOT using this principle in order to provide state selective radiation

pressure on the atoms.

Six counter propagating laser beams with opposing circular polarization are used along the three

Cartesian axes through the trap center. The laser beams are detuned from resonance by 54 MHz,

allowing only the atoms at a certain distance from trap center to be in resonance with the laser beam,

illustrated in Fig. 4.5. This geometric configuration of the detuned laser beams along with the

quadrupole magnetic field provide state selective radiation pressure on the atoms in the -r̂ direction.

Atoms are supplied to the MOT through an atomic beam. In order to trap the neutral atoms in the

MOT, the optical forces must overcome the kinetic energy of the atoms in the atomic beam. We can

think about this in terms of the recoil velocity from the photon and the thermal velocity of the atoms.

Recoil velocity, which is the change in velocity of the atom due to the absorption and emission of a

photon, can be found from conservation of momentum, at best vrecoil = 2h/mλ ≈ 0.05 m/s. The

atoms thermal velocity is given by vth =
√

kBT/mi ≈ 300 m/s. In order to rectify this discrepancy,

a slowing laser beam is used to reduce the kinetic energy of the atoms prior to the atoms reaching

the MOT. For more information on the atomic beam and slowing laser beam, see section 4.4.

4.4 Slower Beam and Atomic Beam

An atomic beam is used to supply atoms to the MOT. The optical forces of the MOT are not

sufficient to trap the vast majority of atoms from the atomic beam. Only the slow moving atoms

have a kinetic energy low enough to be trapped. The number of atoms trapped is increased by

introducing a laser beam to slow down the atoms in the atomic beam prior to entering the trapping

fields of the MOT. The atomic beam is supplied by heating up pure Ca and Yb ingots to 500 C

and 430 C respectively [110], as shown in Fig. 4.6A). A honeycomb structure of micro tubes are
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Figure 4.6 A) The atomic beam is created through collimation of the atoms so that only a
directional velocity is selected. These atoms are then slowed by means of Doppler cooling.
B) Illustrates the process of Doppler cooling. The atoms that are Doppler shifted above
resonance will absorb photons from the slower beam. The photon can then radiate in any
direction. On average, the atom will emit the photon in the opposite direction resulting in
a momentum transfer that slows the atom down, as indicated by the magnitude of the red
arrows.

used to preferentially select only the atoms that radiated parallel to the micro tubes. The atoms

that pass though the micro tubes make up the atomic beam with a Maxwell-Boltzmann temperature

distribution peaked at 500 C and 430 C for Ca and Yb respectively.

A counter propagating laser beam 250 MHz detuned from resonance is used to slow down the

atoms in the atomic beam. Laser cooling takes advantage of the Doppler effect and the fringing

fields of the anti-Helmholtz magnetic field.

When an atom is in motion, then the observed frequency of a photon by the atom is Doppler

shifted. For this reason the slowing laser beam is detuned from resonance by 250 MHz so that

higher velocity atoms are in resonance with the laser beam. When these atoms absorb a photon

from the counter propagating laser beam, the spontaneously emitted photon is randomly radiated,
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resulting in a slowing of the atom’s velocity proportional to the photon’s momentum, as seen in Fig.

4.6B). This can be quantified using conservation of momentum. In the best case scenario, where the

absorbed photon and emitted photon are exactly opposite in direction then,

h
λ
+mvi = mv f −

h
λ

(4.7)

∆v = 2
h

mλ
, (4.8)

where h is Planck’s constant, m is the mass of the atom and λ is the laser wavelength.

The Doppler cooling only works until the atoms are Doppler shifted out of resonance with the

laser beam. This is where the fringing magnetic field from the MOT helps to further cool the atoms.

As the atoms approach the MOT, the magnetic field varies. This change is the magnetic field allows

for the atoms to be Zeeman shifted into resonance with the slowing laser beam to even further cool

the atoms. For more information on how Zeeman splitting works, see section 4.8. By cooling the

atoms, we are able to trap upwards of 10 million atoms in the MOT at a density of 1×1010 cm−3.

4.5 Absorption Imaging and Plasma Size

Absorption imaging uses laser induced fluorescence, as described in Section 4.2, to measure the

trapped neutral atom cloud size and density. Unlike laser induced fluorescence imaging, absorption

imaging measures the loss of laser light due to absorption though a medium. The absorption of light

provides information about the density and size of the neutral atom cloud.

A weak laser beam on resonance illuminates the neutral atoms within the MOT. The atoms

absorb the photons and emit them in a dipole radiation pattern, resulting in a reduction in the laser

power in the area of the laser profile that is incident with the neutral atoms. A camera is used to

observe the laser profile and quantify the size and density of the plasma. Four images are taken,

the first is a background image with no neutral atom cloud or laser beam , Fdark. The second is an

image of neutral atom cloud, FMOT . Third, is the laser profile, Flaserm and the last image is of the
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Figure 4.7 Demonstrates pictorially how the absorption measurement is taken, analogous
to Eq. 4.9. Image Fabs: absorption of the MOT. Image FMOT : fluorescence of the MOT.
Image Flaser: laser beam profile. Image Fdark: background.

laser profile in the presence of the neutral atom cloud, Fabs. The images are then used to find the

percentage of photons absorbed,

100
(

1− Fabs−FMOT

Flaser−Fdark

)
= Absorption %, (4.9)

this is visualized in Fig. 4.7.

Using Beer’s Law, we determine the peak density,

dI
dz

=−Iσn (4.10)

where I is the intensity of the laser beam, n is the density profile of the neutral atom cloud and the

absorption cross-section for resonant light is σ = 3λ 2/2π . Assuming a Gaussian density profile
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with an rms width of r0 and peak density n0, we can write,

ln
(

I f

I0

)
=
∫
−σn0 exp

(
−z2/2r2

0
)
dz. (4.11)

In this equation I0 is the intensity of the laser beam prior to interacting with the neutral atoms and

I f is the intensity of the laser beam after interacting with the neutral atom. Solving for the peak

density, n0, we get

n0 =
1

σr0
√

2π
ln
(

I0

I f

)
. (4.12)

Using r0 as a fit parameter of the absorption image to a two-dimensional Gaussian, we find the size

and density of the neutral atom cloud. A typical size and density for our trapped neutral atoms are

300 µm and 1×1010 cm−3 respectively.

If the density and/or size of the neutral atom cloud is large enough, then all photons that pass

through the neutral atom cloud are absorbed. Under these circumstances, the density cannot be

found using resonant absorption imaging. When this occurs, off resonance absorption imaging is

required. The laser beam frequency is detuned until there is observable transmission of the laser

beam through the center of the neutral atom cloud. The density is then determined using the same

process as described above, but by taking into account the laser frequency detuning of the laser

beam in the absorption cross-section. The absorption cross-section is then given by,

σ =
3λ 2

2π

1
1+(2∆/Γ)2 , (4.13)

where ∆ is the detuning from resonance, λ is the wavelength and Γ is the natural line width, for Ca

Γ = 35 MHz, and for Yb Γ = 28 MHz.

Depending upon the experiment, the initial size of the neutral atom cloud and plasma may not

be the same size. In both works presented, the atomic clouds are allowed to expand for some time

prior to ionization, as shown in Fig. 2.7 3.1c. At ionization, upwards of 100% of Ca and 70% of Yb

atoms are ionized. Because of this, the density determined by absorption imaging is not the same as

the plasma density.
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The plasma density is found by measuring the ionization fraction of the neutral atom cloud. An

optically filtered PMT and is used to measure the fluorescence from the neutral atom cloud through

the ionization process. The ionization fraction, IF , is given by

IF =
S f −SBk

Si−SBk
, (4.14)

Where S f is the fluorescence signal of the neutral atoms after ionization. Si is the fluorescence signal

prior to ionization, and SBk is the background signal with no neutral atoms present. In the case of

no neutral atom expansion, the plasma density is found by multiplying the ionization fraction to

the neutral atom cloud density, which has been previously determined through absorption imaging.

When the neutral atom cloud is allowed to expand prior to ionization, then the initial plasma size is

needed.

The plasma size is determined by imaging the plasma onto the optically filtered ICCD camera.

The fluorescence is fit to a Gaussian to determine the rms size. The ratio between the neutral atom

cloud size and the plasma size is then used to find the plasma density,

np = nMOT IF
(

σp

σMOT

)3

. (4.15)

Where spherical symmetry is assumed. nMOT is the density of the neutral atom cloud from absorption

imaging, σMOT and σp are the neutral atom cloud size and plasma size, respectively.

4.6 Photo-Ionization and Electron Temperature

A two stage photo ionization process is used to ionize the neutral atom clouds of both Ca and Yb

atoms. The pulses are generated from two high-powered Nd:YAG pulse lasers. In both the Ca and

Yb case, the second harmonic is used for pulse amplification of the excited state laser, while the

third harmonic is used to pump the ionization pulse dye laser cavity.

The neutral atom energy level structures for Ca and Yb are nearly identical, as seen in Fig. 2.6a

and Fig. 2.6b. In the case of Ca, 423 nm and 390 nm pulses are used to excite the atoms from
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the 4s2 1S0→ 4s2 1P1 and ionize from the 4s2 1P1 state respectively. Likewise for Yb, 399 nm

and 394 nm pulses are used to excite the atoms from the 6s2 1S0→ 6s6p 1P1 and ionize from the

6s6p 1P1 state respectively.

The energy of the ionization laser pulse determines the amount of energy that is given to the

ejected electrons at the time of plasma formation, as show in Fig. 2.6a, Fig. 2.6b. In this work,

we have precise control over the ionization pulse wavelength to within 1 cm−1. The energy of the

ejected electrons, ∆E, sets the initial electron temperature of the plasma,

Te(0) =
2
3

∆E
kB

=
2
3

hc
kB

(
1

λPulse
− 1

λIL

)
(4.16)

where h is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant and 1/λPulse and

1/λIL are the ionization pulse laser wavenumber and ionization limit wavenumber respectively. The

electron temperature drives the expansion of the plasma, for more detail see section 4.15.

One thing to consider is the effect of the magnetic field on the electron temperature. In Section

4.8, it explains the effect of a magnetic field on energy levels of both atoms and ions. In Fig. 3.1b,

the energy level diagram for the two stage photo ionization process of Ca is given. When a magnetic

field is applied, the energy levels of Ca are Zeeman split and can be calculated using Eq. 4.17 and

4.18. In the ground state, 4s2 1S0, the total angular momentum quantum number is J = 0, resulting

in m j = 0. By inspection of Eq. 4.17 there is no Zeeman splitting of the ground state.

In the excited state, 4s2 1P1, J = 1 resulting in one magnetically unperturbed state, m j = 0 and

two Zeeman shifted states, m j = ±1. Using Eq. 4.18, we find that the Lande g-factor for these

energy levels is g = 0.99986 and the change in wavenumber, ∆E =±0.934 B cm−1/T, as shown

in Fig. 3.1b. Where B is the magnitude of the magnetic field. It is clear to see that by driving the

4s2 1S0→ 4s2 1P1 m j = 0, no states are perturbed due to the magnetic field, meaning there will be

no change in the electron temperature.
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It is also helpful to note that by drive the 4s2 1S0→ 4s2 1P1 m j =±1 transition, the change in

the electron temperature would only be ∆Te = 0.18 K at B = 0.2 T. Where B = 0.2 T is the highest

magnetic field strength achievable, see section 4.12. In a typical experiment, we set the electron

temperature in the range of 50 K to 250 K. A variance of ∆Te = 0.18 K is negligible.

4.7 Dark States

Dark states are metastable energy levels that are an alternative decay route to the ground state from

an excited state. There are many examples of dark states, as can be seen in Fig. 2.6 and Fig. 3.1a.

They are coined dark states because if an electron falls into one of these states, it becomes invisible

to the probe laser beam, resulting in a decrease in the fluorescence signal.

We measure the expansion of the plasma using laser induced fluorescence, as described in

Section 4.2. As long as the electrons fall back into the respective ground states, they can continue

to be excited by the probe laser beam. In Ca+, the ions are excited to the 2P3/2 state. From the

2P3/2 state the ions will fall to either the ground state, 2S1/2, or to the 2D5/2, 2D3/2 dark states. The

probability of the electron to fall into each of these states, also known as the branching fraction, are

93.56%, 5.87% and 0.66% respectively [111].

The ions that end up in the 2D5/2 and 2D3/2 dark states in Ca+ are excited back into the 2P3/2

state using 850 nm and 854 nm laser beams, as shown in Fig. 2.6c. This ensures that the signal does

not decay throughout the measurement period of the experiment. For Yb+, there is only one dark

state, 5d 2D3/2, with a branching fraction of 0.5% [112]. Similar to Ca+, the Yb+ dark state can

be optically pumped using a laser beam at 935 nm. The relevant states and respective branching

fractions for Ca+ and Yb+ are shown in Fig. 2.6c and Fig. 2.6d.

When an external magnetic field is present, the energy levels become Zeeman split, as described

in Section 4.8. In a magnetized Ca+ plasma, the 2 dark states split into 10, as seen in Fig. 4.3. After
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taking into account selection rules, as described in Section 4.2, 5 dark states are possible decay

paths, as seen in Fig. 3.1a.

There are two possible solutions to this problem. The first would be to have 5 lasers to optically

pump out of each of the respective dark states. Although there are many reasons as to why this is

not a feasible solution such as unnecessary complexity, it is not financially feasible at this time. The

second solution is to pulse on the probe laser for a short period of time.

Pulsing of the probe laser ensures that during the observation period, optically dark states have a

negligible effect on the fluorescence signal. It is shown in Fig. 3.1c that the probe laser and camera

are turned on at the same time. The camera collects fluorescence for 100-200 ns and then stops the

collection. This technique was used to collect the data in Chapter 3.

4.8 Zeeman Splitting

Each atomic and ionic species has a very distinct energy level structure that splits when a magnetic

field is present. This energy splitting due to the magnetic field is called Zeeman splitting, given by

∆E = µBgm jB, (4.17)

where ∆E is the energy splitting, B is the magnetic field and m j is the magnetic angular momentum

quantum number. The Bohr Magneton, µB = eh̄/2me, is given in terms of physical constant, where

e and me are the electron charge and mass respectively and h̄ is Planck’s constant. Finally, g is the

Lande g-factor,

g = gl
j( j+1)− s(s+1)+ l(l +1)

2 j( j+1)
+gs

j( j+1)+ s(s+1)− l(l +1)
2 j( j+1)

, (4.18)

where s, l, j are the principal quantum numbers for the spin, orbital angular momentum and total

angular momentum respectively. The spin and angular momentum g-factors are given by gs =

2.002319 and, gl = 1−1/M respectively, where M is the ratio of the nuclear mass to the electron
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mass. In the case of 40Ca, gl = 1−me/40mp = 0.999986, with mp being the proton mass, for Yb

we get gl = 0.999997.

Zeeman splitting effects both the neutral atom and ion energy levels. When the magnetic field is

strong enough this energy splitting becomes significant. In this work our magnetic field strengths

are well within the linear regime for Zeeman splitting and so quadratic terms are neglected.

4.9 Probe Laser Characteristics

In the work presented in Chapter 2 we used a Gaussian profile laser beam cylindrically focused into

a sheet at the point of the plasma. The motivation behind this was to reach a width of 300 µs and

not be limited by diffraction as we would by illuminating a slit, where the diffraction is strongly

dependent upon the slit width, d,

sin(θ) = nλ/d, (4.19)

with n being the diffraction order and λ the wavelength. On the other hand, using a cylindrically

focused laser beam presented its own challenges.

Considering the geometric limitations of slit and lens placement, if we approximate our wave-

length to be λ = 400 nm and the distance from the slit to the plasma as 0.5 m then the first order

diffraction peak is at 390 µm from the center of the laser beam. This more than triples the size of

the beam at the location of the ions. By replacing the slit with a f = 300 mm cylindrical lens we

can achieve a smaller laser beam sheet thickness and the same, if not better, angular spread.

The cylindrical focused laser beam comes with its own problems. The size of the laser beam at

the location of the ions is not well known, causing uncertainty in the laser intensity. Under or over

estimating the laser intensity causes an artificial increase or decrease, respectively, in the measured

ion velocity and temperature, see section 4.14 for more details. Another drawback is that because

it is a focused laser beam, the projected ion velocity will be in the k̂ direction and not exactly in
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the ẑ direction, which is assumed in the analysis. Although this effect may be small, it could cause

significant problems when a magnetic field is present.

We can quantify the angular contribution to the measured ion velocity as follows. A Gaussian

beam incident through a cylindrical lens can be characterized in a functional form of the rms width,

σ(z) = σ0(1− z/ f ) (4.20)

where f is the focal length of the lens and z is the distance from the lens. The angle of the ray is

then dependent upon the size of the laser beam. We can take this a little further and calculate the

angle of the ray incident with an ion in the plasma. We will start by defining the origin at the center

of the plasma and the displacement of the lens as z0. As shown in Fig.4.8, the laser beam propagates

in the s coordinate, focuses in the y coordinate and remains collimated in the x coordinate. The laser

profile of a cylindrically focused laser is

Glaser(x,y) =
1

σ2
0 (1− z/ f )2π

e
− y2

2σ2
0 (1−z/ f )2 e

− x2

2σ2
0 (4.21)

where σ0 is the rms width of the Gaussian beam before the cylindrical lens. If you follow a single

ray as the laser propagates in the z direction, the argument in the exponential remains a constant.

Using the z and y location of the ion, (yion,zion), we can find the starting location of the ray at the

point of the lens,(y0,z0),

y2
ion

2σ2
0 (1− (z0− zion)/ f )2 =

y2
0

2σ2
0 (1− (z0− z0)/ f )2

y0 =
yion

(1− (z0− zion)/ f )
.

Here we have let x = 0, since the angle is x invariant, and shifted the distribution to account for the

origin being at the center of the plasma. Since we are only interested in the angle θ we can see from

Fig. 4.8 b.),

tanθ =
y0

f

=
yion

( f − (z0− zion))
,
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Figure 4.8 a.) Illustration of a Gaussian laser beam being cylindrically focused through
the plasma, scale is 10:1 in z:y-axis. b.) Diagram for calculating the angle of a ray of light
from the focused laser beam incident with an ion in the plasma. f is the focal length of the
cylindrical lens, zIon and yIon is the position of the ion, z0 is the distance from the lens to
the center of the plasma. y0 is the position of the incident photon at the lens.
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which gives the incident angle of the light on the ion as,

θ = arctan
(

yion

( f − (z0− zion))

)
. (4.22)

With the angle of the ray of light incident on each ion we can take the measured ion velocity and

project it in the ẑ direction. In the worst case scenario we let yion = 1 mm, f = 300 mm, z = 0.5

mm and zion = 1 mm, which gives θ = 0.29 rad and a vẑ velocity of 0.958|v|, resulting in an ≈ 5%

increase in the measured velocity.

The development of the new optical system, as given in Section 4.10, provides a way to

eliminate the limitations and uncertainties that are present in the cylindrically focused probe laser

beam method. By using the 1:1 optical system, the incident laser beam will retain the same size and

divergence. This is no surprise, the magic comes when placing a slit less than the focal length away

from the optical system, as seen in Fig. 4.9. The slit will be imaged after the focus a distance equal

to the displacement of the slit from the focus, a = b as detailed in Section 4.10. By choosing the

focal length appropriately, the image of the slit can be placed at the trap center inside the chamber.

The zero order beam will be collimated, and the higher order diffraction will be imaged back onto

itself.

The new probe laser imaging system provides a number of advantages. First, it creates a

collimated and diffraction eliminated image of a slit at the center of the plasma. Second, it allows

us to know the intensity of the laser beam by measuring it outside the vacuum chamber. Third, the

maximum angle of the first order diffraction is given by Eq. 4.19 which is considerably smaller

than Eq. 4.22. This system can be used in many future experiments for observing a small slice of

the plasma or the slit can be removed as was done in Chapter 3.
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Figure 4.9 Ray trace diagram for a 1:1 telescope. The red arrow is the object being imaged,
the black points are the location of the focus, f is the focal length of the identical lenses. a
and b are the distances of the object and image from the focus, respectively. It is found
that in the case of a 1:1 telescope a = b.

4.10 Imaging Optics

In this work, I developed a new optical imaging system that has been adopted in our experiment to

guarantee one to one imaging. This new system is used for imaging the absorption of the neutral

atom cloud, the imaging of the plasma onto the ICCD camera and the imaging of the probe laser onto

the plasma. The new imaging technique has greatly improved the reproducibility of our experiments

and provides consistent agreement between systems, such as MOT size between absorption imaging

and ICCD Camera, as well as velocity and temperature measurements between PMT and ICCD

camera. This technique was not developed until after the work in Chapter 2.

When imaging the trapped neutral atoms or plasma, it is important to know the magnification of

the image onto the camera. In general, one to one magnification is desired. In the past, this was

achieved by placing a lens 2 f away from the object and placing the face of the camera 2 f away

from the lens. Where f is the focal length of the lens. This provides 1:1 imaging of the object,

assuming perfect placement. In our specific case, it is very hard to know the exact position of

the neutral atoms or plasma because it is inside the vacuum chamber. Although the errors are not

assumed to be large, it has proven to provide a lot of uncertainty and inconstancy in determining the

size and density of the neutral atoms and plasma.
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For this reason, a new optical system was developed to guarantee 1:1 imaging. Two identical

lenses are used and mounted at a fixed 2 f apart, creating a 1:1 telescope, as seen in Fig. 4.9. When

this is done, magic happens and the object’s position does not need to be well known. Let’s start

by building our optical system using an ABCD matrix. We will let the object be a distance a away

from the focus of the first lens. The distance between the two lenses is 2 f and the location of the

image in b away from the focus of the last lens.

1 f −b

0 1


︸ ︷︷ ︸
Image location

 1 0

−1/ f 1


︸ ︷︷ ︸

Second Lens

Distance Between Lenses︷ ︸︸ ︷1 2 f

0 1


 1 0

−1/ f 1


︸ ︷︷ ︸

Fist Lens

1 f −a

0 1


︸ ︷︷ ︸
Object Location

=

−1 b−a

0 −1


(4.23)

We can see from matrix position A and C, the spatial and angular magnification are -1. Which

means that we have 1:1 imaging, as expected. Matrix position C tells us that there is no additional

focusing of the ray bundle from the optical system. Doing a ray trace of Eq. 4.23 we findyi

θi

=

−1 b−a

0 −1


yo

θo

 (4.24)

=

−yo +(b−a)θo

θo

 , (4.25)

where yo is the object height, θo is the object ray angle. Likewise, yi is the image height, θo is the

image ray angle. We already know that the spatial and angular magnification is -1, which means that

yo =−yi and θo =−θi. Consequently, (b−a)θo = 0, and since θo cannot be restricted to θo = 0,

we find that a = b.

This is a remarkable result. This tells us that if the object is within ± f of the focal length of the

lens, then exact 1:1 imaging can be achieved simply by placing the detector the distance a away

from the focus on the opposing side of the optical system. This is used for imaging the neutral atom
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cloud and plasma. Since the location of the atoms or ions is no longer important, we just ensure

that the lenses are exactly spaced. Placing the camera such that the image is in focus guarantees 1:1

imaging without knowing exactly where the plasma or neutral atom cloud are. This also provides a

clever way of achieving diffraction eliminated imaging of a slit onto the plasma, as described in

Section 4.9.

4.11 Probe Laser Intensity

The intensity of the probe laser is not uniform. It is a Gaussian laser beam with an rms width of

σ = 1.46 mm. We measure the power of the beam centered through a 1/8 in diameter aperture

(3.175 mm). Given the rms width and the aperture size, we find that there is a 45% power difference

between the peak and the edge of the distribution. The average intensity, Iavg, across the region

is Iavg = Power/Area. The power is measured using a power meter and the area is given by the

aperture size. Ultimately what we care about is the peak intensity, which is represented as the

amplitude in the Gaussian laser profile,

I(r) = Ipeake−r2/2σ2
. (4.26)

Integrating both sides over the area of the aperture yields the measured intensity from the power

meter,

Iavg =
Ipeak

πa2

∫ 2π

0

∫ a

0
e−r2/2σ2

rdrdφ , (4.27)

resulting in a peak intensity of,

Ipeak = 1.325Iavg. (4.28)

The peak intensity along with the known Gaussian laser beam profile can then be used to more

accurately model the spatial temperature of the plasma using the ICCD camera. For more details,

please see section 4.14.



4.12 Magnetic Field Coils 76

4.12 Magnetic Field Coils

A Helmholtz coil configuration is used to supply a strong, uniform magnetic field. The magnetic

field can be calculated along the z axis using Biot-Savart’s law,

Bz(z) =
µINr2

0
2

(
1(

r2
0 +(z− z0)2

)3/2 +
1(

r2
0 +(z+ z0)2

)3/2

)
ẑ (4.29)

where µ0 is the vacuum permeability, I is the electrical current, N is the number of turns in a coil,

r0 and z0 are the radius and displacement of the coil respectively. From the above equation, we can

see that the magnetic field, Bz, linearly depends on the current and number of turns.

The limitations of the magnetic field strength come from voltage and current limits, ohmic

heating, and geometrical restrictions. A 15kW power supply is used to provide upwards of 250 A at

a max voltage of 60 V. Whether we are voltage or current limited will be dependent upon the wire

used in the Helmholtz coils. Using Ohms law,

V = IR, (4.30)

where V , I, R are the voltage, current and resistance respectively, we can find an upper limit to the

allowed resistance as 60 V/250 A = 0.24 Ω.

Copper wires have a resistivity of ρ = 1.68×10−8 Ωm. The resistance of a given wire is given

by the following relation,

R = ρl/A, (4.31)

where l and A are the length and cross-sectional area of the wire, respectively.

We need to also consider the power dissipated by the wire. This is important for two reasons,

the current needs to be able to pass without compromising the vacuum pressure or the electrical

circuit. The power, P, dissipated from an Ohmic wire is

P = I2R. (4.32)
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From this and Eq. 4.31, it is clear to see the strong limitation in the size of the wire due to the

current. As an example, a 22 AWG copper wire is rated for 10 A of continuous current within a

vacuum chamber. The resistance is 23 Ω/km, if the wire is 1 m long then the power dissipated is

2.3 W. Pushing 250 A would exceed the rated limit by a factor of 625. This would mean that to

appropriately choose a wire size for our desired current we would need a wire diameter of about

2 cm. This wire diameter is far from feasible for our vacuum application.

The way around the rated wire size is to pulse on the current for a short period of time. If the

current is pulsed on for only half of a second every second, then the power dissipated would be

reduced by a factor of 2, which decreases the required wire diameter by a factor of
√

2. This can

be quantified by introducing a duty cycle for power dissipation, given by the ratio of the effective

power to the rated power,

D =
I2

I2
rated

νrep∆t, (4.33)

where Irated is the current rating of the wire and I is the applied current. ∆t is the pulse width and

νrep is the repetition rate. If D is less than 1 then we are within the rated specifications for the given

wire.

In our experiment, achievable rep rates range from νrep = 1− 10 Hz. Likewise, the desired

pulse width is ∆t = 500 µs, as detailed in Section 4.13 and shown in Fig. 3.1c. It is important to

note that the main source of heat dissipation is usually due to conduction with air. In a vacuum,

conduction is no longer a source of heat dissipation, and the main source becomes radiation. In our

case, the wires we have chosen are rated for vacuum use. Since we are coiling our wire, the amount

of heat dissipated due to radiation is also decreased, resulting in approximately a 1/3 reduction in

the rated current. On the other, the rated current of a wire is usually given as the minimum direct

current required to raise the temperature of the wire from roughly 22 C to 30 C. In our application

the only limitation from heating up the wire hotter is out gassing, which compromises the vacuum

pressure. As a rule of thumb, we will take 2/3 of the rated current as the limit.
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Figure 4.10 CAD drawing of the assembled coils, coil housing and optical system

Considering all this, using Eq. 4.31 and Eq. 4.32, the maximum current at 250 A becomes an

effective I = 5.6−17.7 A. In return this puts lower limits on the wire diameter of 0.8−2.6 mm,

dependent upon the repetition rate.

The final major limitation to consider is the geometric restrictions from the vacuum chamber

and the laser beams. As shown in Fig. 4.10, the Helmholtz coils attach to the 4 rods that are used to

mount and place the lenses for imaging the plasma. This optical system, which is described in more

detail is section 4.10, slides in through a 2.75 in conflat flange, with an inner diameter of 34 mm. As

shown in Fig. 4.11, the 4 rods are symmetrically placed where the inner facing surfaces are 18.3 mm

apart. This provides a geometrical ceiling for the coils of 9.15 mm from the center of the chamber.

The geometric floor of the coils is found by considering the MOT laser beams, which have a rms

width of σ = 1.5 mm. The geometric propagation of these beams are described in Section 4.3.

To ensure no clipping of the laser beam a 10 mm gap is required, also requiring a floor or 5

mm from the center of the chamber. This also tells us the minimum inner coil radius, or 5 mm.

From the inner diameter of the conflat flange and the coil ceiling, we find that the maximum outer

coil radius is 15.5 mm. After taking into account machining limitations for constructing the coil

housing, we illustrate the optimal Helmholtz coils using a commercially available 18 AWG wire

(1 mm diameter) in Fig. 4.11.

After considering all the limitations, a maximum magnetic field strength can be approximated.

In the final build, 19 turns in each coil was achieved. Using a slightly modified version of Eq.4.29

to account for each turn’s position, we find a maximum achievable magnetic field strength of 0.31 T
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Figure 4.11 CAD drawing of the mounted coils and coil housing.

at the origin. The magnetic field along the z-axis is shown in Fig. 4.12. Due to the limitations in

building the coils, a small gradient does exist in both the z and r directions. Experimentally the

maximum applied current is found to be I = 150 A.

Using I = 150 A, and z = r = 1 mm for the worst case scenario we find,

∆Bz = 0.0013 T → 18 MHz (4.34)

∆Br = 0.0054 T → 76 MHz, (4.35)

where the probe laser transition 2S1/2 m j = 1/2 → 2P3/2 m j = 3/2 is used to find the frequency,

as given in Section 4.2. The change in magnetic field was calculated by Dr. Ross Spencer using an

integration of the Biot-Savart law based on the spiral wound wires. He found a 1.4% variation in

the total magnitude of B inside a 1 mm cube at trap center.

A strong uniform magnetic field is essential in order to measure suppression or enhancement of

transport properties, and it is the motivation for the work done in Chapter 3. Extra precautions are

taken in order to shield any unwanted electric fields. The entire vacuum chamber is grounded to

shield any electric fields originating from outside the vacuum chamber. Likewise, the coil housing
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Figure 4.12 Theoretical magnetic field strength along the z axis. The measured experi-
mental maximum is found to be 0.32 T, the actual is 0.2 T

units are grounded to the vacuum chamber to shield out any electric fields generated from the

electrical potential difference between magnetic field coils.

4.13 Switch Circuit for Turning on/off B-Field

In this work we designed a switch to turn on and off the strong uniform magnetic field in under

500 µs. The magnetic field coils create a strong inductive load in the circuit. When a sudden change

of current occurs the inductive load resists the change in current, causing large back EMF voltage

spikes,

E =−L
dI
dt

. (4.36)

Where L is the inductance of the coils, given by

L =
µ0AN2

l
(4.37)

where A, l are the area and length of the coils and N is the number of turns. Given the size of the

coils found in Section 4.12, we find that L1 ≈ 100 µH, labeled in Fig. 4.13. Which gives a back
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Figure 4.13 Diagram for the electrical circuit used to turn on and off the magnetic field
applied to the plasma. D, represents electrical diode, all diodes in the system are rated for
a continuous 300 A. Likewise, R, represents resistor and each resistor in the circuit is a 1
Ω resistor. Rv is for varistor, and S is the IGBT switch. Again, all varistors and switches
are identical. The magnetic field coils are labeled as, L1 and the inductive resistor used as
an intermediate current ramping stage is L2.

EMF of E ≈−33 V. This voltage spike is not large enough on average to cause any damage to our

switches or other components of the circuit. At early times, when the current change is the steepest,

this value could much higher. A protective circuit is used to suppress the EMF voltage spike and

reduce ring down time.

In an LR circuit, the ramp up and down time is given by the time constant τ = L/R. The

resistance in the coils is about 0.09 Ω, which means that our time constant is τ = 0.9 ms. This is far

too long given the requirement that the current needs to ramp from 0 to 150 A in 500 µs. This is

done by building an almost identical circuit in parallel as an intermittent ramp up stage, as seen

in Fig. 4.13. The difference between the L1 and L2 circuit is the duty cycle and inductance. The

inductor, L2, is a large solenoid made from 14 AWG wire. The diameter of the solenoid is 2 in and
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contains approximately 200 turns. Using Eq. 4.37, we find that L2 = 300 µH. The number of turns

is chosen such that the total resistance in both L! and L2 are equal, about 0.09 Ω.

The current rating for a 14 AWG copper wire at 75 C is 20 A. The power dissipated assuming

continuous current is,

P = I2R. (4.38)

Letting I = 150 A and R = 0.09 Ω, we get P = 2025 W. The Power rating of the wire is only

P = 36 W. This discrepancy is reconciled by only pulsing on the current for 20 ms at 10 Hz,

reducing the dissipated power to 405 W. This is still a factor of 10 larger than the power rating of the

wire. For this reason the L2 inductor is water cooled, the solenoid sits inside a large sealed stainless

steel cylinder that has water continuously flowing through it. Since we are unable to have current

passing through the L2 inductor continuously, an additional short circuit stage for ramping up the

current is added.

In order to operate the power supply at constant current, the current must be able to flow

continuously. For this reason, there are 3 stages for ramping up the current for creating a constant,

uniform magnetic field across the plasma. The first stage is the short circuit. This allows us to set

the desired current. In a way, this is the idle stage. When we want to ramp up the current, we open

switch 2 and then 15 µs later close switch 3. This redirects the current from the short circuit to the

L2 inductor. Because of the resistance difference between the two paths, the power supply has to

supply more voltage in order to reach the desired current. It takes about 20 ms to reach a steady

state current. After 20 ms, switch 1 is opened and 15 µs later switch 2 is closed, redirecting the

current into the magnetic field coils, L1. If the resistance in L2 and L1 are the same, then the current

rapidly ramps up to a constant current in 500 µs. The timing of the switches is detailed in Fig. 4.14.

The inductor L2 is specifically designed to match the resistance in L1. Since the resistance is the

same, when the current is switched over, the power supply does not need to discharge or charge
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Figure 4.14 The black line indicates when the short circuit is turned off and back on. The
blue line indicates when the L2 inductor circuit is turned on and off. This circuit is only on
for 20 ms. giving it enough to ramp to a maximum constant current. The red line indicates
when the magnetic field coils are turned on and off. The coils take about 500 µs to ramp
up to a constant current. At that time, the plasma is ionized and measured prior to the
magnetic field coils turning off. The 15 µs overlap is in place to give time for the switches
to respond to the electrical pulse which tells the switch to open or close. Turn on time is 5
µs and the turn-off time is 10 µs for the switches. For this reason, there is a 15 µs overlap
to ensure current is always flowing.

up the capacitors to accommodate the change in resistance. The fast feedback of the power supply

competes with the inductor, allowing for a turn on time of 500 µs.

In the case that the resistance in L1 and L2 do not match, the current would initially rapidly

increase but then slowly linearly increase or decrease to the set current value. The slow increase or

decrease comes from the charging or discharging of the capacitors to account for the increase or

decrease in resistance, respectively. The rate of reaching a constant current when the resistances do

not match is 20 ms.

4.14 General Data Analysis

Laser induced fluorescence, as described in Section 4.2, is used to fluoresce the ions in the plasma.

The fluorescence is collected using optically filtered photo-multiplying tubes (PMT) and an ICCD

Camera. The PMT is used to collect time resolved measurements of the plasma. The Camera is
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Figure 4.15 Each laser frequency detuning probes a different spatial region of the plasma.
The probe laser observes the ẑ projected velocity of the plasma. When the probe laser
is detuned in the positive sense, then ions with a z velocity that are Doppler shifted into
resonance and propagate in the same direction as the laser beam are fluoresced. as shown
in the first figure. On resonance, we observe the ions in the center of the plasma with no z
velocity. Likewise, we see the same effect if negatively detuned.

used to collect spatially resolved images of the plasma at a specific time. Both detectors are used in

our analysis of UNPs.

Fluorescence from the plasma is collected at 11 laser frequency detunings, ranging from ±200

MHz in 40 MHz steps. This can be seen in Fig. 2.8b and Fig. 3.2c for PMT data, and in Fig. 4.15

for camera data. The fluorescence from the PMT is compiled into a three-dimensional plot where

the x-axis is laser frequency detuning, the y-axis is time and the z-axis is the fluorescence, as shown

in Fig. 2.8c. A slice of the data at each time step is then fit to a Voigt profile, as shown in Fig. 4.16,

where the rms frequency, νrms, is used as a fit parameter,

V (ν) =
∫

L(ν−ν
′)G(ν ′)dν

′. (4.39)

In this equation L and G are the Lorentzian and Gaussian profiles respectively, given by

L(ν) =
γ

π

√
1+ Iprobe

Isat

ν2 + γ2
(

1+ Iprobe
Isat

) (4.40)
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Figure 4.16 The comparison of the experimental data against a fitted Voigt profile.

and

G(ν) =
1√

2πνrms
exp
(
ν

2/2ν
2
rms
)
, (4.41)

where ν is the laser frequency detuning from resonance, γ is the natural linewidth, Iprobe is the

probe laser intensity, Isat is the saturation intensity and νrms is the rms frequency. The rms velocity

of the ions is,

vrms = νrmsλ , (4.42)

where λ is the wavelength of the probe laser used to fluoresce the ions.

In this work we are interested in temperature, size and magnetic field strength. The temperature

is found from the fitted rms frequency, using Eq, 4.42 to get

kBT = miv2
rms, (4.43)
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where kB is Boltzmann’s constant and mi is the ion mass. The magnetic field strength is fond using

the fitted center frequency of the Zeeman split energy level, as described in Section 3.3. The size is

determined from the camera measurements.

The camera data is analyzed in a very similar way. Each pixel has fluorescence vs detuning

from the 11 laser frequency detuning images. Just like in the PMT case, it is fit to a Voigt profile

and the same steps are taken to find the temperature of the plasma at a specific location and time in

the plasma. The size of the plasma can be determined in the vertical and horizontal direction, as

described in Section 3.3.

4.15 Self Similar Expansion Model

A self similar expansion model developed by Mora [39] is an exact solution to UNP expansion in

the case of no magnetic fields. We start with the equations of motion for the ions and electrons.

∂~ve

∂ t
+(~ve ·∇)~ve =

e
me

(
∇Φ−~ve×~B

)
− kB

mene
∇(neTe) (4.44)

∂~vi

∂ t
+(~vi ·∇)~vi =−

e
mi

(
∇Φ−~vi×~B

)
− kB

mini
∇(niTi) (4.45)

Where kB is Boltzmann’s constant, ns is the number density, ms is the mass of the species, vs is the

velocity, B is the magnetic field, ∇Φ is the electric field, Ts is the species temperature and e is the

fundamental unit of charge.

We will start by assuming the case of no magnetic field, B = 0, our equations of motion then

become
∂~ve

∂ t
+(~ve ·∇)~ve =

e
me

∇Φ− kB

mene
∇(neTe) (4.46)

∂~vi

∂ t
+(~vi ·∇)~vi =−

e
mi

∇Φ− kB

mini
∇(niTi). (4.47)
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In an UNP, the number of ions and electron are the same and their opposing charge help shield

internal electric fields. This behavior is known as quasinutrality. The density profile for both the

ions and electrons are the same, ni = ne. Likewise, because of the shielding that occurs in the

plasma the ions and electrons are flow locked, vi = ve.

In the work by Mora, he assumes that the ion pressure term is much smaller than the electric

field term. In the case of UNP expansion, the ion temperature is very low, making this a reasonable

approximation. Including these assumptions into our equations of motion and subtracting the two

equations give,
e

me
∇Φ− kB

mene
∇(neTe) =

e
mi

∇Φ. (4.48)

Solving for the electric field, ∇Φ, we find(
1− me

mi

)
∇Φ =

kB

ene
∇(neTe). (4.49)

Since mi� mi, this simplifies to

∇Φ =
kB

ene
∇(neTe). (4.50)

Plugging this into Eq. 4.47 with the pressure term neglected gives,

∂~vi

∂ t
+(~vi ·∇)~vi =−

kB

mine
∇(neTe). (4.51)

At this point it is appropriate to think about the initial stage of the plasma. We set the electron

temperature of the plasma from the ionization pulses, this gives a spatially invariant temperature.

If we assume this invariance continues for the life of the plasma, which turns out to be a good

approximation, then we get
∂~vi

∂ t
+(~vi ·∇)~vi =−

kBTe

mine
∇ne. (4.52)

The initial density profile of our plasma is given by

ni(x, t = 0) = ni0 exp
(
−x2/2σ

2
0
)

(4.53)
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If we assume a self similar expansion then we can write the time dependent density as

ni(~r, t) = n0
σ0

σ(t)
exp
[
−x2 + y2 + z2

2σ2(t)

]
(4.54)

plugging this into the continuity equation

∂ni

∂ t
+∇ · (ni~vi) = 0 (4.55)

and after some algebra we get

2x2

σ2(t)
∂σ(t)

∂ t
− 2xvx

σ(t)
+

dvx

dx

+
2y2

σ2(t)
∂σ(t)

∂ t
−

2yvy

σ(t)
+

dvy

dy

+
2z2

σ2(t)
∂σ(t)

∂ t
− 2zvz

σ(t)
+

dvz

dz

=3
∂σ(t)

∂ t
.

Suggestively this means that each axis is independent, which would be expected for a self similar

expansion as we can write as

∂σ(t)
∂ t

=
2x2

σ2(t)
∂σ(t)

∂ t
− 2xvx

σ(t)
+

dvx

dx
∂σ(t)

∂ t
=

2y2

σ2(t)
∂σ(t)

∂ t
−

2yvy

σ(t)
+

dvy

dy
∂σ(t)

∂ t
=

2z2

σ2(t)
∂σ(t)

∂ t
− 2zvz

σ(t)
+

dvz

dz

noticing they are the same equations, we will rewrite this for convenience as

∂σ(t)
∂ t

=
2r2

σ2(t)
∂σ(t)

∂ t
− 2rv

σ(t)
+

dv
dr

,

solving the differential equation yields,

vi = r
d
dt

lnσ(t). (4.56)
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Now that we have an equation for the velocity of the ions we can plug this into the ion equation of

motion to get,

r
d2

dt2 lnσ(t)+ r
(

d
dt

lnσ(t)
)2

=− e
mi

kBTe

ni

d
dz

ni (4.57)

plugging in the functional form of the density,

d2

dt2 lnσ(t)+
(

d
dt

lnσ(t)
)2

=
ekBTe

miσ2(t)
, (4.58)

simplify the derivatives,

d2

dt2 σ(t) =
ekBTe

miσ(t)
. (4.59)

In order to solve this differential equation for our system we assume an adiabatic electron tempera-

ture evolution,
1

Te(t)
dTe(t)

dt
=− 1

σ(t)
dσ(t)

dt
(4.60)

Solving for σ(t) and Te yields,

σ
2(t) = σ

2
0 (1+ t2/τ

2), (4.61)

and

Te(t) = Te0
1

(1+ t2/τ2)
, (4.62)

where the sound speed or characteristic expansion time is given by

τ
2 =

miσ
2
0

kBTe0
. (4.63)

This treatment has been shown to be an exact solution to UNP expansion. It could be that this

same treatment could be used in the case with a magnetic field to accurately predict the effect of a

magnetic field on UNP plasma expansion. Unfortunately, the magnetic field puts limits on the fluid

treatment, which adds in collisional effects and coupling between the radial and angular velocity

components. Although an analytic solution does not seem probable, a numerical solution could be

developed.



4.16 Ambipolar Diffusion 90

4.16 Ambipolar Diffusion

Ambipolar diffusion is a collisional model that is used to describe the diffusion of a gas. In a UNP

the plasma is quasineutral, meaning the density profile for the electrons and ions are equal, causing

no net charge. In the past, ambipolar diffusion has been used to describe the expansion of a UNP.

In this work, we model our plasma using ambipolar diffusion and find that it fails to model UNP

expansion both with and without a magnetic field present.

We will start by defining the diffusion equation we wish to solve.

∂n
∂ t

=
1
r

∂

∂ r
rD⊥

∂n
∂ r
−Floss (4.64)

The loss term, Floss, is a cosmetic term to make sure the density decays as expected from the ẑ

expansion. From the results found in Chapter 3, we know that the loss term will scale as the self

similar expansion model with no magnetic field, as detailed in Section 4.15. The expansion of the

plasma is given in Eq. 4.61, plugging this into Eq. 4.54 and take the time derivative we find,

∂n
∂ t

=
1
r

∂

∂ r
rD⊥

∂n
∂ r
−n

t
τ2(1+ t2/τ2)

, (4.65)

where D⊥ is the diffusion coefficient perpendicular to the magnetic field. From Bittencourt [104]

the diffusion coefficient in a uniform magnetic field is,

D⊥ = D0
ν2

ei

ν2
ei +Ω2

ce
, (4.66)

where Ωce = eB/me is the electron cyclotron frequency and νei is the electron-ion collision frequency

as given in the plasma formulary [38]. The diffusion coefficient with no magnetic field, D0, is given

by

D0 =
kBTe

meνei
. (4.67)

The diffusion equation is then rewritten to be unitless for computational purposes. We do this

by letting ñ = n
n0

, r̃ = r
σ0

, t̃ = t
τ
, plugging these in we get

n0

τ

∂ ñ
∂ t̃

=
n0

σ2
0

1
r̃

∂

∂ r̃
r̃D⊥

∂ ñ
∂ r̃
−n0ñ

t̃
τ(1+ t̃2)

. (4.68)
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From here we can simplify by multiply both side by τ/n0, this allows us to write the diffusion

equation as follows,
∂ ñ
∂ t̃

=
1
r̃

∂

∂ r̃
r̃D̃⊥

∂ ñ
∂ r̃
−n

t̃
(1+ t̃2)

, (4.69)

where the unitless diffusion coefficient is found to be D̃⊥ = D⊥τ/σ2
0 .

We solve the diffusion equation using a time implicit Radua method along with a numerical

technique called the method of lines. [105]. This is done by rewriting our PDE as a system of

ODE’s discretized in space. We will do this one step at a time, first by writing this in terms of first

and second order derivatives,

∂ ñ
∂ t̃

= D̃⊥
∂ 2ñ
∂ r̃2 +

(
∂ D̃⊥
∂ r̃

)(
∂ ñ
∂ r̃

)
+ D̃⊥

1
r̃

∂ ñ
∂ r̃
−n

t̃
(1+ t̃2)

(4.70)

We then discretize the above solution in space using a second order centered finite difference

method,

∂ ñ j

∂ t̃
=D̃ j

(
ñ j+1−2ñ j + ñ j−1

∆r2

)
+

(
D̃ j+1− D̃ j−1

2∆r

)(
ñ j+1− ñ j−1

2∆r

)
+ D̃ j

1
r j

(
ñ j+1− ñ j−1

2∆r

)
−n j

t̃
(1+ t̃2)

, (4.71)

where the perpendicular subscripts have been removed from the diffusion coefficient. Equation 4.71

is the time integrated ODE at each grip point in the method of lines, see code in Appendix A. The

results of this model can be found in Chapter 3.



Chapter 5

Conclusion

In this work, we developed two new experiments for measuring transport properties in strongly

coupled UNPs. In the first, we developed the first dual species UNP and studied ion-ion thermal

relaxation between a Ca+ and Yb+ plasma’s. Second, we developed an experiment capable of

achieving a 0.2 T uniform magnetic field across our plasma. In this work, we studied plasma

expansion as a function of magnetic field strength.

We demonstrate that dual-species UNPs provide a new platform for studying ion transport

properties in a two-temperature system. We present the first measurement of ion-ion temperature

relaxation rates in a strongly coupled binary ionic mixture. We directly measure the ion temperatures

and show that our MD simulations of temperature relaxation agree with experimental measurements.

This reinforces the fact that the Yukawa potential, Eq. (2.5), accurately describes ion-ion interaction

in dual-species UNP mixtures. This further confirms the ability of our MD simulations to capture a

very complex relaxation process.

We compare the simulated relaxation rates with three popular temperature relaxation theories of

varying fidelity. The closest theory is based on solving the Boltzmann equation using an effective

potential. The variance between this theory and the MD simulations is likely caused by coupled

modes, an effect that is omitted from the theory by design. Future work could explore the influence
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of coupled modes on ion transport. Incorporating coupled modes into the Boltzmann solutions

could also prove fruitful for ion transport in the regime of relatively small mass ratios.

We have developed a new method for measuring UNP expansion in a strong, uniform magnetic

field. High precision laser spectroscopy and optically filtered fluorescent imaging allow for direct

measurements of UNP size, temperature and magnetic field strength.

The plasma expansion parallel to the magnetic field is found to be unaffected by the strong

uniform magnetic field and follows the self similar plasma expansion model exactly. Perpendicular

to the magnetic field, we can control the expansion velocity by varying the magnetic field strength.

We compare our data with an ambipolar diffusion model [33] and find that it fails to describe the

expansion evolution of the plasma even when an exact solution is known. We therefore considered

an alternate model that predicts an exponential relation between expansion velocity and magnetic

field strength. We note that the exponential decay scale is very closely given by B0, defined in Eq.

3.5; thus, we find that
dσ⊥
dt

=
σ0

τ
e−2 B

B0 . (5.1)

Because of the limitations of our data set, this relationship could be a coincidence: future experi-

ments should verify the result for different plasma densities. The experimental methods used in

this work allow for measuring magnetized transport properties within an UNP, such as thermal

conductivity, diffusion, disorder induced heating suppression and temperature relaxation.



Appendix A

Ambipolar Diffusion Code

Listing A.1 Python Code for Ambipolar Diffusion

from I P y t h o n import g e t _ i p y t h o n

g e t _ i p y t h o n ( ) . magic ( ' r e s e t − s f ' )

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

from s c i p y . i n t e g r a t e import s o l v e _ i v p

import s c i p y . o p t i m i z e as o p t i m i z a t i o n

import s c i p y . i o a s s i o

from s c i p y . i o import l oadma t

p l t . c l o s e ( ' a l l ' ) ;

# #############################################################################

###−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−D i f f u s i o n −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−###

# #############################################################################

BB = np . l i n s p a c e ( 1 , 1 2 5 0 , 1 2 5 0 ) * 1 e −4

Te0 = 96
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s igma0 = 400 e −6

kb = 1 .380649 e −23

mp = 1.67262158 e −27

Wavelength = 393*1 e −9

c = 299792458

e = 1 .602 e −19

e0 = 8 .854 e −12

me = 9 .10 9 e −31

mi = 40*mp

n0 = 3 e15

t a u = np . s q r t ( mi* sigma0 **2 / kb / Te0 )

tmax = 20e −6/ t a u

xmax = 10

dx = 0 . 1

x = ( np . l i n s p a c e ( −xmax , xmax , i n t (2* xmax / dx +1) )+ dx / 2 ) [ : − 1 ]

n = np . exp ( − x * * 2 / 2 )

dnd t = np . z e r o s ( [ l e n ( x ) ] )

Te0 = 96

tmax = 20e −6/ t a u

t ime = [ 0 , tmax ]

f i n e _ t i m e = np . l i n s p a c e ( 0 , tmax , 1 0 0 )

NN = np . z e r o s ( [ l e n ( f i n e _ t i m e ) ] )

Sigma = np . z e r o s ( [ l e n ( f i n e _ t i m e ) , l e n (BB ) ] )

dSigmadt = np . z e r o s ( [ l e n ( f i n e _ t i m e ) −1 , l e n (BB ) ] )

f o r q in range ( l e n (BB ) ) :



96

B = BB[ q ]

omega = B* e / me

def D i f f u s i o n ( t , n ) :

kL = −(n [1] − n [ 2 ] ) * 2 / ( dx * ( n [ 1 ] + n [ 2 ] ) )

kR = −( n [ −2] − n [ − 3 ] ) * 2 / ( dx * ( n [ −2]+ n [ − 3 ] ) )

n [ 0 ] = n [ 1 ] * np . exp ( −kL*dx )

n [ −1] = n [ −2]* np . exp ( −kR*dx )

Te = Te0 / ( 1 + t **2)

CLambda = 23−np . l o g ( ( np . abs ( n )* n0 / 1 e6 ) * * ( 1 / 2 ) *

( Te *8 .6173281 e − 5 ) * * ( − 3 / 2 ) )

nue = 2 . 9 1 e −6*( Te * 8 .6173281 e − 5 ) * * ( − 3 / 2 ) * np . abs ( n )*

n0*CLambda / 1 e6

D = kb*Te / me / nue * ( 1 / ( 1 + omega **2 / nue * * 2 ) ) * t a u / s igma0 **2

# p r i n t ( t )

f o r j in range ( 1 , i n t (2* xmax / dx − 1 ) ) :

dDdr = (D[ j +1] −D[ j − 1 ] ) / 2 / dx

dndr = ( n [ j +1] −n [ j − 1 ] ) / 2 / dx

d2ndr2 = ( n [ j +1] − 2*n [ j ] + n [ j − 1 ] ) / dx **2

z l o s s = n [ j ]* t / ( 1 + t **2)

dnd t [ j ] = D[ j ]* d2ndr2 + dDdr* dndr + D[ j ]* dndr / ( x [ j ] ) − z l o s s

re turn dnd t

t ime = [ 0 , tmax ]

f i n e _ t i m e = np . l i n s p a c e ( 0 , tmax , 1 0 0 )

s o l = s o l v e _ i v p ( D i f f u s i o n , t ime , n , method = ' Radau ' , t _ e v a l = f i n e _ t i m e )
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def G a u s s i a n ( x , x0 , wx , a0 ) :

re turn a0 * np . exp ( −( x−x0 ) * * 2 / 2 / wx**2)

f o r i in range ( l e n ( s o l . y [ 0 , : ] ) ) :

popt , pcov = o p t i m i z a t i o n . c u r v e _ f i t ( Gauss ian , x , s o l . y [ : , i ] ,

maxfev = 10000)

Sigma [ i , q ] = pop t [ 1 ]

dSigmadt [ : , q ] = ( Sigma [ 1 : , q ] − Sigma [ : − 1 , q ] ) / ( f i n e _ t i m e [1] − f i n e _ t i m e [ 0 ] )

p l t . f i g u r e ( 3 )

p l t . p l o t ( f i n e _ t i m e , Sigma )

p l t . t i t l e ( 'my work ' )

p l t . f i g u r e ( )

p l t . p l o t ( f i n e _ t i m e ,NN)

p l t . f i g u r e ( )

p l t . p l o t ( f i n e _ t i m e [ : − 1 ] , dSigmadt [ : , q ] )

p l t . f i g u r e ( )

p l t . p l o t ( x , s o l . y [ : , 0 ] )

p l t . p l o t ( x , n , ' k−− ' )

p l t . p l o t ( x , s o l . y [ : , 1 0 ] )

p l t . p l o t ( x , s o l . y [ : , 2 0 ] )

p l t . p l o t ( x , s o l . y [ : , 5 0 ] )

p l t . p l o t ( x , s o l . y [ : , 9 9 ] )
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