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ABSTRACT

Development and Characterization of an Underwater Acoustics Laboratory
Via in situ Impedance Boundary Measurements

Cameron Taylor Vongsawad
Department of Physics and Astronomy, BYU

Master of Science

Modeling underwater acoustic propagation comes with a variety of challenges due to the need
for proper characterization of the environmental conditions. These conditions include changing and
complex water properties as well as boundary conditions. The BYU underwater acoustics open-air
tank test-bed and measurement chain were developed to study underwater acoustic propagation
within a controlled environment. This lab was also developed to provide ways to test and validate
ocean acoustics models and machine learning algorithms without the high cost associated with
obtaining open-ocean measurements. However, tank measurements require characterization of
boundary conditions associated with the walls of the tank which create lateral reflections not
present in an open ocean. The characterization of BYU’s underwater acoustic tank included
measuring the calibrated impulse response of the tank through frequency deconvolution of swept-
sine signals to determine the frequency-dependent reverberation time through reverse Schroeder
integration. The reverberation time allows for calculating the frequency dependent spatially averaged
acoustic absorption coefficient of the tank enclosure boundaries using methods common to room
acoustics and also yield insights into the Schroeder frequency limit of the tank. Time-of-arrival
measurements are used to validate models for quantifying the speed of sound in the water. The
acoustic characterization was validated by comparison with predicted values and also applied
to measurements in the tank lined with anechoic panels to reduce lateral reflections. An initial
investigation into effective tank models evaluated the idealized rigid-wall and pressure-release
water-air boundary model, a finite-impedance boundary model applying the measured acoustic
boundary absorption and a benchmark open ocean model, known as ORCA, to determine potential
tank model candidates. This study demonstrates the efficacy of the methodology for underwater
acoustic tank characterization, provides a frequency dependent acoustic boundary evaluation from
5-500 kHz, and provides an initial comparison of tank models with applied characterization.

Keywords: acoustic, anechoic panels, boundary absorption, characterization, deconvolution, finite-
impedance boundary, in situ calibration, lab design, normal-mode waveguide modeling, reverber-
ation time, Schroeder frequency, through the sensor, ultrasonic acoustic propagation, underwater
acoustics, water tank
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Chapter 1

Introduction

1.1 Motivation

Sound navigation ranging (SONAR) has evolved much since its development during World War II.

Safely navigating the ocean environment, obstacles, other submarines, and ships remains a difficult

task for submarine SONAR technicians who strive to see through hearing. Analysis of what is

heard through the multitude of on-board sensors has inherent uncertainty. Active SONAR relies on

listening to echoes of pings. The time delays between the echoes allow one to compute the direction

and distance from an object, with limited information about the environment, range and depth.

Active SONAR is also used to scan an area of the seafloor and map out reflective interfaces in

the seafloor. One method is through the use of side-scan SONAR on a research vessel. A conical or

fan-shaped beam is swept across the seafloor as the ship moves along different paths. The echoes

collected by the side-scan SONAR can then be used to estimate the structure of the seafloor. A

schematic of this process using a towed side-scan SONAR array is shown in Fig. 1.1 [1]. The depth

at which the side-scan SONAR penetrates the seafloor depends on the frequency and level of the

signals used. Typically side-scan SONAR is very loud and time consuming, so only small portions

1



1.1 Motivation 2

Figure 1.1 Illustration of how side-scan SONAR from a towed side-scan SONAR array
works. The conical or fan-shaped beams are directed to the seafloor and the echoes are
processed to identify the types of materials. Retrieved from Wikimedia commons.

of the seafloor can be mapped in this manner. Another method uses an echo sounder for sub-bottom

profiling, but again the time and costs involved limit the amount of the seafloor that can be scanned.
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Although active SONAR is one way to use sound to probe the ocean environment, the required

high sound levels do not allow this to be done with any degree of stealth. The stealthy way to use

sound in the ocean is called passive SONAR. Passive SONAR seeks to "see" by only listening to

ocean sounds. Passive SONAR can be used for detecting, locating, and tracking sound sources

and used to estimate properties of the ocean environment. Advantages to passive SONAR include

increased stealth and reducing overall noise pollution in the ocean [2].

The challenges of passive SONAR center on significant refraction as the sound propagates

in the water and complicated interactions with the seabed. The challenges are different based

on two major categories: shallow ocean environments (depth < 200m, encompassing about 5%

of the world’s oceans) and deep ocean environments (depth > 200m). In either realm of ocean

environments, Snell’s law dictates that sound paths in the water vary significantly due to depth-

dependent changes in the temperature, salinity, and ambient pressure that influence the speed of

sound [3]. Shallow ocean environments especially experience dramatic variations due to warming

and cooling temperatures, which shift by latitude, season, or current weather conditions [4]. This

variability leads to a depth-dependent temperature gradient which means sound speed profiles differ

in specific environments for underwater acoustics. Further complications with sound speed arise

with refraction, absorption, and reflection effects caused by the complicated boundary conditions

due to characteristics of seabed layering. Because these environmental properties affect sound

propagation, uncertainty in environment properties make it difficult to localize and classify sources

of sound. These refractive effects and other complexities of an ocean environment complicate

modeling underwater sound propagation in the shallow ocean and the detection, localization, and

tracking of sound sources.

The field of work that concentrates on using passive SONAR to determine seafloor properties is

called geoacoustic inversion. Geoacoustic inversions are based on a model of the sound propagation,

i.e., a computer model that numerically solves the the wave equation accounting for refraction,
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reflection, and transmission. The models require a set of parameters that contain acoustically

relevant properties of the environment. An acousto-elastic parameterization is one where each

depth is defined by compressional sound speed, compressional attenuation and density. Most of

the commonly used open-ocean models are formulated in cylindrical coordinates (range, depth,

and angle) with assumed azimuthal symmetry (no angular dependence), which makes them two-

dimensional models: modeling the sound propagation in a vertical-horizontal plane. Some of the

common approaches to modeling include ray-tracing, normal-mode formulation, parabolic equation

solvers, and wavenumber integration. Many of these models are open-source and are available at

the Ocean Acoustics Library (https://oalib-acoustics.org/).

Optimal ways to use passive SONAR and employ geoacoustic inversions have been researched

for many decades. Increased computational capacity and advanced algorithms developed over

the past decade, in particular, have now made it possible to pursue a different approach to source

detection, localization, and tracking, and estimating properties of the ocean environment through the

use of machine learning. The primary advantage to deploying machine learning in ocean acoustics

is the potential for real-time applications. Traditional geoacoustic inversions require a tremendous

amount of modeling across the parameter space (often through the use of Markov Chain Monte

Carlo Sampling) as the model-data mismatch is minimized for each new data sample before an

answer can be obtained. With machine learning, the computationally extensive modeling and

training can be completed once before an experiment or mission begins. The trained model can

then be applied to each measured sample to obtain real-time predictions.

While machine learning algorithms are already being used in many fields and aspects of our

daily lives, applications to ocean acoustics are complicated by one main problem: the lack of

labeled field data. Most machine learning for computer vision, speech processing, and other tasks is

accomplished by supervised training. Supervised learning requires the training data be labeled with

the correct values the algorithm is trying to learn to predict. In ocean acoustics, the plethora of data

https://oalib-acoustics.org/
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recorded over the decades is not labeled. In particular, the correct parameterization of the seafloor at

the location the data were recorded is not known. The lack of labeled data in ocean acoustics has led

BYU’s underwater acoustic research group to pursue a supervised machine learning model trained

on data simulated with open-ocean models and known parameterizations of the ocean environment.

One potential approach is to train the model on this synthetic data and then refine the model

using a small set of labeled measured data. Significant testing is needed to determine how this

refinement learning approach can be applied in ocean acoustics. To accommodate this research and

further development of machine learning in ocean acoustics, the underwater acoustics lab at BYU

was created which can obtain sets of labelled data in a controlled environment for understanding

this refinement learning approach.

Efforts to create this lab began in 2019. A Defense University Research Instrumentation Program

(DURIP) grant was received to allow for the equipment to be purchased. The work contained in this

thesis describes the setup of the lab and initial work to characterize sound propagation in the water

tank particularly related to boundary characterization which is fundamental to the development

of water tank propagation models. Initial efforts to develop a model that describes the sound

propagation in the tank are described, which may be used to obtain synthetic training data and

explore refinement learning in the future. This work has laid the foundation for the underwater

acoustics lab at BYU to be a valuable research tool for years to come.

1.2 Background

Underwater acoustic propagation is challenging to model due to the need to account for a wide

variety of fluid and boundary properties. A laboratory environment can be used to reduce these

challenges because it provides opportunities to control experimental conditions. Controlled water

tank measurements are commonly used for validating measurement techniques, propagation models,
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and recently machine learning propagation models [5–11]. However, a controlled tank also brings

about challenges not seen in the open-ocean. Many scaled ocean models have been evaluated in

tanks [6–8, 12, 13] much smaller or much larger in size than BYU’s, and a scaled tank model that

can be used for effectively modeling sound propagation in BYU’s acrylic water tank is required to

continue this work.

Etter [14] gives a comprehensive review of other common open-ocean models, but ORCA will

be used as the benchmark for this thesis.ORCA is an open-ocean model [15] considered to provide

a good approximation of open-ocean sound propagation [16]. ORCA is a range-independent,

normal-mode model that assumes azimuthal symmetry and computes the frequency response of

the water waveguide with a depth-dependent sound speed and horizontally stratified seabed. The

validity of the frequency response depends on how well the parameterization of the acoustical

properties of the environment match reality. ORCA is highly robust accounting for a wide range of

real world characteristics such as leaky boundaries (surface and floor) and has low computational

costs. ORCA has recently been used by BYU’s underwater acoustic research group to effectively

simulate data samples for training a Convolutional Neural Network (CNN) for finding seabed type

and range for pressure time series data from explosive sources [17] and spectral density levels from

a towed tonal source [18], and seabed classification from surface ship spectrograms [19] along with

finding ship track parameters [20].

Similar to an open-ocean environment, the rectangular parallelepiped BYU open-air acoustic

water tank contains a water waveguide bounded by a pressure-release water-air surface and a floor

with a finite impedance boundary. Unlike the open-ocean, the tank also includes acoustically

reflective side walls. Time-gating a signal is a common method of applying consideration to wall

reflections [12], but this solution is not perfect. To reduce these lateral reflections, anechoic panels

can be used along the walls. Part of this work is to assess the efficacy of anechoic panels improving

tank models relative to open-ocean models.



1.2 Background 7

The major benefits of tank measurements are the reduction of measurement costs [9,21], as well

as improved environmental control [22]. The high economic and temporal costs associated with

open-ocean measurements can be reduced with effective tank measurement if the tank can function

as an effective scaled model of ocean sound propagation. Further, the tank allows for control of

environmental parameters that greatly affect the sound speed of the water such as temperature,

salinity and seabed type. This aspect may allow evaluating the above mentioned CNN’s ability to

perform under sound speed variability. Our lab’s goal is to use the tank to improve understanding of

acoustic ocean propagation.

The purpose of this thesis is to characterize the tank boundaries in order to evaluate common

models for effectively modeling acoustic propagation in the tank. Many tanks have been character-

ized using the reverberation method [10, 23–26], but few have applied this estimated absorption to

model sound propagation in the tank. Understanding the acoustic boundary conditions of the tank is

necessary for developing a more precise modal propagation model. With measured characteriza-

tion of the frequency-dependent absorption of the tank boundaries, a finite-impedance boundary

model may be used instead of an idealized rigid-boundary, pressure-release boundary, or assumed

impedance boundary model which may allow for the evaluation and development of an underwater

acoustic measurement tank.

The classic reverberation method used in room acoustics has been modified to evaluate the

additional accounting of propagation absorption. This characterization of the tank may be performed

in situ to model the tank with acrylic boundaries, partial anechoic boundaries, as well as any other

boundary such as artificial seabeds to be applied in the future. An effective tank model, especially

when anechoic paneling is applied to significantly reduce side wall reflections, can lead to the

development of improved open-ocean modeling capabilities within a tank environment.
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1.3 Thesis Overview

This thesis presents research characterizing BYU’s underwater acoustic measurement tank and

provides initial analyses of the effectiveness of various tank models. These tank models and the

open-ocean model ORCA are compared to responses obtained from measurements with and without

the anechoic panels to determine if the side wall reflections are sufficiently reduced that the tank can

act as a scale-mode ocean. for modeling a scaled open-ocean relative to the ORCA model. Chapter 2

provides a look into how the experimental setup has been developed from the ground up for general

underwater acoustic measurements in the tank. Chapter 3 details the measurement and calibration

process, the theory of data processing for acoustic characterization, as well as an overview of the

models which require acoustic characterization and their potential benefits for this research. Chapter

4 details the experimental results evaluating the boundary characterization of the water tank and

investigates how applying these boundary conditions to various models influences model-measures

comparisons. Chapter 5 summarizes the main conclusions from the research presented in this thesis,

and a summary of additional future work is given. Appendix A details the data collected and used

for this thesis for future reference. Appendix B documents the algorithms developed to process the

data effectively. Appendix C presents the current laboratory documentation manual for continued

student learning and effective transfer of knowledge. This includes a more detailed description of

equipment, functionality and maintenance in the laboratory.



Chapter 2

Experimental Setup

2.1 Introduction

The Underwater Acoustics Laboratory at Brigham Young University facilitates student research

in underwater acoustics. Each component has been chosen and designed for a high level of safety,

automation, and reliability. These features give students the opportunity to learn to perform effective

measurements and data analysis. The system opens opportunities for new research in underwater

acoustics.

Obtaining large open-water data sets for underwater acoustics research and validating mea-

surements [6, 11, 26] has high economic and temporal costs. A laboratory system saves on those

costs [21], especially for researchers without ease of access to large bodies of water [22, 27]. When

scaled measurements are acceptable, the water tank is useful to collect large data sets. Open-water

tests are often noisy and unpredictable with changing environmental conditions. The tank allows

for better control of the environment [22]. Automation allows data to be collected quickly and

efficiently, while maintaining high precision.

9
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Figure 2.1 BYU’s underwater acoustics laboratory with acrylic water tank and robotic
positioning system.

This chapter provides details about the tank, signal transmission and recording, automated

positioning, and how to validate the measurement chain. A discussion of how this design maintains

potential for a wide variety of underwater acoustic laboratory measurements is also given.

2.2 Water Tank

The open-air water tank seen in Fig. 2.1 was made by Engineering Laboratory Design Inc. (Lake

City, Minnesota, USA) and is made of scratch resistant acrylic panels, solvent welded together,

with a steel frame on adjustable leveling pads. The tank material, acrylic, was chosen for its visual

transparency and non-corrosive nature. Acrylic also has an acoustic impedance which is closer to
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that of water, thus, reducing reflections more than common tank materials such as steel, concrete,

iron or glass [21, 23, 28, 29].

The side walls can be lined with attenuating material as seen in Fig. 2.3 (see Fig. 2.2 for

comparison with the tank without panels) to further reduce acoustic reflections and the reverberation

time. The attenuating material from Precision Acoustics was chosen to reduce side-wall reflections

especially for ultrasonic frequencies. The 50 mm thick, 60 cm tall, square Apltile SF5048 panels

advertise an echo reduction greater than 30 dB for the recommended frequency band of 20-200 kHz.

This reduction improves the ability to model an open-water environment within the tank by avoiding

extra unwanted superposition due to side wall reflections. An investigation into the broadband

response of the panels is discussed in Sec. 3.1.4, and the results of this investigation are given in

Sec. 4.3.

The tank’s dimensions were chosen to allow scaled acoustical measurements, similar to those

described in Refs. [6–8, 21, 26, 30] and designed to be large enough for varied applications as well

as maximize usable laboratory space. The 3.66 m long by 1.22 m wide rectangular tank has a

maximum water depth of 0.92 m, corresponding to a maximum fill volume of 4077.6 L.

A valve is located in one corner of the bottom sheet of acrylic to allow ease of both draining and

filling without the mess, with a direct line split to either a drain or water faucet. The valve can be

capped with a flat acrylic insert to eliminate unnecessary scattering. The insert has an embedded

iron piece for easy removal with a magnet. Tap water is used to fill the tank, with the water level

replenished using distilled water as gradual evaporation occurs in order to maintain control over the

water properties and thus the speed of sound. Distilled water replaces the evaporated water without

introducing increased calcium hardness or other changes to water properties. Since distilled water

is mineral depleted, the tank is never filled entirely with distilled water which is highly corrosive,

especially to metals such as those associated with the body of some underwater transducers and the

transducer mounts. A four-stage debubbler and filtration system was developed by John Ellsworth
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Figure 2.2 View of the BYU acoustic water tank with bare acrylic walls and floor clearly
visible alongside the UR10e robot arm positioning system.
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Figure 2.3 View inside BYU’s underwater acoustic tank where the left side walls are lined
with a blue acoustic attentuating Apltile SF5048 material from Precision Acoustics. This
lining is optimized for low-frequency ultrasonic test tanks. The acrylic back wall and floor
of the tank can be seen unlined. Also pictured is a pool speaker used for demonstrating
principles of underwater acoustics in the audible range.
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to maintain the water quality along with chemical treatment when needed. This filtration system

was designed to also manage saltwater and work with various added seabed materials. For more

details on maintaining the tank, including chemical treatment, see Appendix C.1.1.

2.3 Underwater Positioning System

A simple, safe and reliable 3-dimensional positioning system is achieved with robotic arms and

custom software developed in LabVIEW to automate the process.

2.3.1 Robotic Positioning

Two UR10e collaborative robots from Universal-Robots (universal-robots.com) were installed, with

one on a Vention (vention.io) 7th axis extender track for increased range of motion. The robots

were chosen for their intuitive programming language, high level of programmable safety, and 0.01

mm precision. Each robot operates using six axes of motion and has a maximum physical reach

of 1.3 m. Both robots are mounted level with the top of the tank; one on a simple pedestal and the

other on the Vention 7th-axis extender track with a rack and pinion motor providing an additional

1.4 m of motion along the length of the tank. The extender track has an added positioning error of

±0.01 mm.

Transducers may be attached to the UR10e in any orientation via custom designed mounts,

referred to as tools. Staying within robot tool safety limits, the tools provide an increased reach of

0.5 m and are fitted with emergency float switches to ensure the robots, as seen in Fig. 2.4, are never

in any danger of water damage . This feature allows for more flexibility than traditional two or three

axis positioning systems while maintaining similar precision [7, 30]. As discussed in Appendix C,

smooth transducer motion and orientation control may be performed either via the robot’s native

Polyscope software or remotely through custom software developed in LabVIEW.
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Figure 2.4 UR10e robotic arm with custom tool for mounting and suspending hydrophones
within the tank. The white ring toward the top of the rod is a float sensor which when
switched will immediately terminate robot movement preventing water damage to the
robots.
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2.3.2 ESAU

Measurement automation is controlled through TCP/IP by ESAU (Easy Spectrum Acoustics Un-

derwater), a custom software was developed for robot motion control, signal generation and data

acquisition. Robot safety limits are also directly hard-coded into ESAU. User-input coordinates in

ESAU are sent to the robots and displayed in the 3D plot on ESAU’s user interface. An example of

the user-interface is shown in Fig. 2.5. Available tool positions/orientations are allowed based on

safety limits. ESAU performs an interpolation between the requested positions (Cartesian positions

or grid), and any positions outside those limits can be removed in order to scan the largest possible

range in the tank. Care has been taken in developing ESAU safety parameters to maintain consistent

orientation relative to transducer directivities throughout a motion control sequence. Individual

transducers may be selected in ESAU for precise offset positioning of source and receiver relative

to the acoustic centers of each hydrophone.

Various signals such as swept-sine waves (linearly or logarithmically frequency modulated sine

waves), pure sine waves, pulses, or custom signals may be generated in ESAU for output. Data are

acquired from hydrophones through ESAU, which saves the data and displays the time waveform or

frequency spectrum of the recorded signal for immediate evaluation. This software was developed

with the help of BYU graduate student Adam Kingsley under my direction to meet the needs of the

lab.

Further information on the safety provided by and development of the ESAU software may be

explored in Appendix C.2.

2.4 Data Acquisition System

Data acquisition and signal generation is performed using hardware from Spectrum Instrumentation

and ESAU. The data acquisition cards have a high resolution (16-bit) and are capable of a high
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Figure 2.5 User interface of ESAU (Easy Spectrum Acoustics Underwater), which is the
custom LabView software developed for signal generation (upper left, red background),
data acquisition (bottom left, blue background), and transducer positioning (right panel).
In this view, a swept-sine ultrasonic signal is generated (white line/block) as the UR10e
robots move the source and receiver positions over a large scan grid (right panel). An
example of a received signal is shown as the red line.
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sampling rate (40 MS/s). Using the Star-Hub module, the arbitrary waveform generator (AWG)

(M2p.6546-x4) and digitizer (M2p.5932-x4) cards are synchronized while housed inside an external

PCIe chassis. As implemented, this configuration allots 128 mega samples for each of the four input

and four output channels on each of two chassis, which may be daisy chained for use with larger

arrays of sources or receivers. The chassis are connected to each other and the control machine via

Thunderbolt 3 ports for speed of data transfer. ESAU saves data to the desktop computer as binary

files along with associated text files logging the measurement settings for use in later processing

code, which are discussed in Appendix B.

2.5 Measurement Chain

2.5.1 Transducers and Amplifiers

The automated measurement system can be used with a variety of transducers. Current measure-

ments are using Brüel & Kjær 8103 phase matched, Teledyne Reson TC4034 and Teledyne Reson

TC4038 reciprocal hydrophones for both transmitting and receiving due to their relatively flat

response from 4-100 kHz, 5-300 kHz and from 100-500 kHz respectively. Depending on the manu-

facturer, the receivers are connected to either Teledyne Marine Reson VP2000 EC6081 mk2 [31]

or Brüel & Kjær NEXUS type 2692-0S2 conditioning preamplifiers, whose output is sent to the

Spectrum cards.

The signal is sent from the AWG through a power amplifier (TEGAM Model 2350) to the

transmitting transducer. The TEGAM power amplifier allows a maximum of 4 Vpp input and

provides a gain of x50 V. To get a flat response, the TEGAM output may need to be passed through

a transformer fabricated to address the frequency-dependent impedance mismatch often found

between an amplifier and a piezoelectric source [22]. Each impedance-matching transformer is

specifically designed and built in order to provide the flattest response across the widest bandwidth
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Figure 2.6 Diagram of the measurement chain using the Brüel & Kjær 8103 hydrophones
as source and receiver with an impedance-matching transformer and Brüel & Kjær Nexus
type 2692-0S2 conditioning preamplifier.

for each specific transducer type. (The impedance matching transformers are not needed for

measurements below 10 kHz.)

Each transformer/transducer in the measurement chain has its own frequency response function.

The sensitivities of the transmitting and receiving transducers are known from original manufacturer

calibrations, but the sensitivity of many other components is unknown. The sensitivities of measure-

ment chain components may be accounted for through the in situ calibration measurement discussed

in Sec. 3.2.2; this method accounts for the sensitivities of all transducers, amplifiers, preamplifiers

and any other component in the measurement chain that alter the signal.

Calibration measurements are made with the source and receiver positioned close together in

order to reduce transmission loss through the water, while also accounting for phase effects. A swept-

sine, spanning the frequencies of interest, is broadcast and recorded. This calibration measurement

is needed to estimate the frequency response of the measurement chain. This through-the-sensor
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(TTS) calibration (Sec.3.2.2) incorporates the sensitivities of unknown components [7, 9, 27, 32].

The frequency response of the measurement chain is obtained from the time-gated response of the

cross correlation or by phase-corrected deconvolution [27, 33–37].

Each transducer’s custom tool mount is made of a thin aluminum rod extended from the robot

to maintain orientation of the transducers and maintain the benefit of each transducers’ mostly

omnidirectional characteristics. The custom transducer mounts allow for multiple configurations

such as source or receiver arrays and the addition of a wire thermocouple to measure temperature [11]

without significantly increased scattering near source and receiver positions.

General conditions of the tank environment are also monitored with two SensorsOne LMP

307T temperature and pressure/depth sensors from MCT RAM (mctram.com), rated for 0-86 ◦F

and up to 250 m depth positioned at either end of the tank. From these added sensors, underwater

environmental characteristics may be effectively monitored. Cables connecting transducers and

sensors to the data acquisition system run along the length of the robotic arms, through a cable

management system that provides organization and prevents tangling. Consideration has been given

to the potential need to shield cables from induced noise coming from either robot motors and

brakes or other sources of electromagnetic radiation.

2.5.2 Validation of Measurement Chain

The first step in validating the measurement chain is generating a strong signal in the water. Pure

impulses are difficult to generate consistently in underwater acoustics. Preliminary measurements

confirmed that long-duration swept-sine signals (chirps or frequency modulated signals) provide the

best Signal-To-Noise ratio (SNR) for broadband measurements [7, 27, 35, 37] compared with white

noise, pulses [10], or averaging short swept-sine signals.

To understand the transfer function and, therefore, sound propagation in the water tank, recorded

swept-sine signals over the bandwidth of interest have been processed via cross correlation or
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frequency deconvolution to obtain the impulse response of the system [33, 37–42]. This method

of frequency deconvolution is discussed further in Sec. 3.2.1. Long-duration sine waves have also

been used effectively to validate the measurement protocol within the tank at specific frequencies.

Both long-duration swept-sine signals and sine waves allow for significant energy to enter into the

tank and provide good SNR [7, 27, 35, 37] since the energy can reach steady state.

The next step in the validation process was to evaluate the effectiveness of the choice to use

acrylic walls and the impact of the Apltile SF5048 attenuating panels. Scans were performed

with and without panels, and comparisons between measurements quantify the reduction in signal

reflections and corresponding reduction in reverberation time [10, 26, 37]. Initial results from these

swept-sine measurements, performed across the tank, provided an initial validation. For positions

near the walls, the impulse response of the 100-500 kHz swept-sine signal showed a reduction of

about 8 dB comparing single-bounce reflections off the sidewalls with and without the attenuating

panels. Also observed was about a 3 dB reduction on the overall sound pressure level (OASPL) of

the time-gated first reflection. This reduction in sound energy from reflections helped to quantify

unnecessary delay between measurements. More accurate and full evaluation of the reverberant

characterization of the water tank with and without attenuating materials is discussed in Ch. 4; the

methods to determine these characteristics are discussed in Sec. 3.1.2.

2.6 Limitations and Improvements

An open-air water tank of this size has numerous potential applications, however, limitations do

exist. Because of lateral reflection, in most cases, the tank is effectively limited to time-gated,

scaled measurements. The side walls, maximum depth and robot arm reach limit the range of

source-receiver positions for potential scaled experiments [6, 7, 30]. Time-gating may be performed
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to improve upon limits due to the dimensions of the tank. Time-gating is done using arrival times

determined through time of fight by the method of images. However, in applications attempting to

model scaled open-ocean measurements, time-gating can still be limited when source or receiver

positions are too close to side walls and if early reflections from the water-air surface or "seabed"

arrive after unwanted early side wall reflections.

Potential regimes for scaled experiments are limited by the frequency response of the transducers

and dimensions of the tank in accordance with the desired scaling factor. The size of transducers,

mounts, etc. must also be considered when designing the experiment as any objects that are large

relative to the wavelength of interest become potential scatterers.

The selected anechoic or attenuating material is not perfectly anechoic at all frequencies as

would be expected, and therefore the tank cannot perfectly model a scaled, open-ocean environment.

However, the addition of attenuating panels along the side walls does increase efficiency by reducing

the needed delay between consecutive measurements. In addition, the available attenuation or

absorption may improve models for open-ocean measurements in tanks as discussed in Sec. 3.3, 3.1.4

and Ch. 5. Passive underwater attenuating lining is often optimized for ultrasonic measurements

and can be very costly, though other attenuating treatment options are available [5–7, 10, 21, 31] for

a variety of bandwidths. Multi-layered treatments, wider tanks, and active acoustic absorbers could

improve the anechoic nature of the tank but also increase overall costs.

The positioning system utilizes UR10e robots to effectively scan the majority of the tank with

any transducer orientation. Scan positions are limited less by the effective reach of the robots than

by the need to time-gate side reflections while maintaining desirable surface and floor reflections. A

tank with larger dimensions would allow for better measurements at lower frequencies and increase

potential applications but also require more creative solution for the positioning system [22, 27]

than what has been chosen here. This increased size would also require a significantly larger lab

space, which would be even more difficult to come by. The current positioning system could be
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improved by having both robots on 7th axis extender tracks potentially on a gantry system above

the tank to provide greater flexibility to reach more locations within the dimensions of the tank.

2.7 Summary

An underwater acoustic laboratory measurement system has been described with the goals of

capturing large datasets efficiently in a controlled environment while helping students develop

effective experimental research skills. High priority has been given to developing a measurement

system that is capable, reliable, easy to use, and safe. Considerations that guided the design included

the dimensions and materials of the tank, the capabilities of the data acquisition system, the precision

and automation of the positioning system, and effectiveness of the measurement chain. Potential

limitations have been discussed.

The dimensions of the tank are the primary limiting factor in what underwater acoustical

measurements can be taken effectively in the laboratory. The width of the tank determines the

effectiveness of time gating to leave only the direct path and first surface and bottom reflections.

The attenuating materials reduce reverberation time and help to reduce some limitations to the

dimensions of the tank. Though there are some limitations associated with the use of LabVIEW

controlled robotic arms as the positioning system, they offer an alternative solution to traditional

linear motion Cartesian positioning systems while allowing active control of transducer orientation

with respect to directivities and maintaining high precision motion. The custom LabVIEW software,

ESAU, was specifically developed with the idea of meeting the above concerns while maintaining

versatility in generating signals, controlling motion, and recording measurements. Many transducers

are available for tank measurements but require further consideration in order to prevent adding

acoustic scattering sources to the tank due to the transducers physical size relative to the wavelength.

Each transducer type is also optimized for specific bandwidths. Impedance matching transformers
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have been custom built in order to improve on some of these limitations by providing a flatter

response with regard to the rest of the measurement chain. These concerns determine the effective

bandwidths and need for further considerations. The data acquisition system was designed to

meet the demands of the ultrasonic bandwidths that perform best in the laboratory environment.

These systems can handle the high processing demands of this research. An understanding of

the limitations and capabilities of the measurement chain and tank environment have opened the

way for future measurement applications and a more full evaluation of the nature of acoustical

measurements in a laboratory-tank environment.



Chapter 3

Methods

3.1 Tank Measurement Considerations

The realities, considerations, limits and methodology of taking acoustical measurements in a wa-

ter tank are discussed in this section. This section includes physical limitations of acoustical

measurements in an enclosed tank environment, how time-gating is performed, and the acoustic

characterization of the tank, especially related to boundary conditions. With proper acoustic charac-

terization of the water tank, effective models for sound propagation may be developed and acoustic

tank measurements may be related to a scaled-ocean model.

3.1.1 Special Considerations and Limits

As mentioned, water tanks can be used for validating measurement techniques and propagation

models. One upcoming research plan includes gathering large data sets for the testing of machine

learning. To consider the tank as a scale-model of the ocean, with typical operating bandwidths of

100-200 Hz, frequencies are scaled by a factor of 100-1000 (10-200 kHz, for example). However,

25
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sound propagation in the tank will not be a perfect scale-model of the ocean for several reasons,

particularly when acoustic properties such as transmission loss are not scalable quantities.

3.1.2 Characterization

The primary factor limiting scaled-ocean measurements are the dimensions of the tank. The tank is

a rectangular parallelepiped with inner dimensions of 1.22 m wide by 3.66 m long by a maximum

of 0.92 m deep. The geometry of the tank, the reflections from the acrylic walls, and the water depth

dictate some properties of acoustic propagation including the Schroeder frequency, reverberation

time, and absorption.

The dimensions of the tank and the reverberation time determine the Schroeder frequency,

which dictates the cutoff frequency between the low-frequency region and the mid to high-frequency

region, which acoustically behave very differently. The low-frequency regime is where the acoustic

energy is dominated by discrete resonances. In the mid to high-frequency regime, the acoustic

energy becomes more diffuse. The Schroeder cutoff frequency for the tank was estimated as about

1000-3000 Hz dependent on the water depth, sound speed, and actual acoustic absorption of the tank

walls. This cutoff frequency is important because the acoustical measurements for a scale-model for

open-ocean sound propagation are those above the cutoff frequency, i.e., the mid-to high-frequencies.

The estimated Schroeder frequency is determined by Eq. 3.1 [43], where c is the speed of sound in

water, T60 is the estimated 60 dB reverberation time, and V is the total volume of the water tank:

fSchroeder =

√
c3T60

4ln10V
. (3.1)

To obtain the estimated Schroeder frequency, the reverberation time or T60 must first be determined

by the Norris-Eyring equation [44] modified to account for propagation absorption:

T60( f ) =
(24 ln10)V

c{−S ln [1−〈α( f )〉S]+8 αp( f )V}
, (3.2)
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where S is total surface area, 〈α( f )〉S is the frequency-dependent spatially averaged absorption

coefficient of the boundaries, and αp( f ) is the frequency-dependent absorption coefficient from

acoustic propagation through the water. The modified Norris-Eyring equation is used instead of

the Sabine-Franklin-Jaeger model, which does not perform as well for enclosures with large wall

absorption [44] as anticipated within the tank environment.

The spatially averaged absorption coefficient is typically determined experimentally as discussed

in Sec. 3.1.4, and the propagation absorption can be estimated using one of many underwater acoustic

propagation absorption models. Ainslie and McColm [45] simplified Francois and Garrison’s

[46, 47] formulation, which was developed after Fisher and Simmons [48], for acoustic propagation

absorption through water with respect to frequency ( f ) in Hz, water acidity (pH), water temperature

(T ) in ◦C, water salinity (Sal) in parts per thousand (ppt), and depth (z) in km:

αp = 0.106
f1 f 2

f 2 + f 2
1

e(pH−8)/0.56 (3.3)

+0.52
(

1+
T
43

)(
Sal
35

)
f2 f 2

f 2 + f 2
2

e−z/6

+0.00049 f 2 e−(T/27+z/17)

where,

f1 = 0.78 (Sal/35)1/2eT/26 (3.4)

f2 = 42 eT/17 (3.5)

Propagation losses are important for more precise modeling and are represented in normal-mode

models as the imaginary part of the modal eigenvalues. For this work, Ainslie and McColm’s

propagation absorption model is evaluated, in addition to a model that assumes zero absorption,

because of the simplicity of the model over others.
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Another slight limitation of using the Norris-Eyring equation (Eq. 3.2) was explained by Müller-

Trapet [36] who showed that a recording cannot simply be stopped at the end of a swept-sine signal.

In order to obtain the reverberation time, a recording must allow for a certain amount of trailing

zeros within the signal or a "stop margin" to capture sufficient high-frequency energy decay at the

end of the swept-sine signal. This "stop margin" can be calculated from the reverberation time of the

highest frequency within the swept-sine signal and ensures that ample recording time is performed

to capture the full signal appropriately. To accomplish this goal, the generated signal should contain

zeroes over this "stop margin" after the swept-sine wave signal.

Estimations of T60 and the Schroeder frequency are key to providing a starting point or bench-

mark in characterizing the tank environment. A benchmark T60 estimation is necessary to address

the semi-subjective nature of applying reverse Schroeder integration [41, 42, 49, 50] to obtain the

decay curve as discussed in Sec. 3.1.4. To obtain more precise quantities from measurements,

effective time-gating techniques are required as well as methods for obtaining an impulse response

from swept-sine signals, as explained in the following sections.

3.1.3 Time-Gating Signals in the Tank Environment

The first step in obtaining measured T60 quantities from the impulse response of the tank environment

by the process discussed in Sec. 3.1.4 is to obtain a calibrated response of the measurement chain,

which can be used to account for all frequency-dependent sensitivities and electronic effects on the

signal. The calibration measurement requires the source and receiver to be close so as to minimize

the impact of the tank environment. The calibration signal is time-gated to remove reflections

from the walls and bottom of the tank and the water surface, so as to include only effects of the

measurement chain on the response of the signal. This system response can then be accounted

for in all other recorded measurements. The motivation and methodology for this calibration are

detailed in Sec. 3.2.2. Care must be taken to time-gate the recorded signals appropriately since
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Figure 3.1 BYU’s underwater acoustic tank walls lined with blue acoustic attentuating
Apltile SF5048 material from Precision Acoustics on the side walls. This lining is opti-
mized for low-frequency ultrasonic test tanks.

acoustic reflections from the walls of the tank cannot be perfectly mitigated to match an open-ocean

environment even when reflections are reduced by a 5 cm thick anechoic (acoustic attenuating)

material placed on all the walls of the tank as seen in Fig. 3.1.

Time-gating is simply the process of truncating the signal before unwanted reflections arrive.

The time it takes for reflections to arrive may be calculated using the method of images and ray

tracing, as illustrated in Fig. 3.2. Predicting time of flight by the method of ray tracing is particularly

accurate for frequencies above the Schroeder cutoff frequency where acoustic energy behaves more

like rays and predicting arrival times of acoustic signals is most effective.

When time gating, a half-Hanning window should be applied to the recorded signal in order

to truncate the signal after the the arrival of the direct signal at td but before the arrival of the

first wall reflection at t1r. Application of a half-Hanning window prevents discontinuities within

the time-gated signal, which would cause high-frequency noise artifacts to appear as a result of

immediately truncating the signal. However, since actual measured signals may also contain a

pre-ringing artifact, the half-Hanning window used for time-gating the signal must allow for a
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Figure 3.2 Method of images used for predicting reflections via ray tracing. R represents
the receiving hydrophone position, S represents the source position and S’, S”, S”’ and S””
represent image sources from single wall reflections.

buffering time (δ t) adjusting when the windowing occurs such that the half-Hanning window is

applied at time t1r−δ t. This ensures that the windowing truncates the signal before pre-ringing

artifacts occur from the first wall reflection as seen in Fig. 3.3.

Time-gating the signal in the tank may be imperfect when used on non-impulsive signals.

However, a swept-sine wave or chirped signal may be time-gated after obtaining the impulse

response of the signal through frequency deconvolution [27,33–37], as discussed in Sec. 3.2.1 using

the codes contained in Appendix B.2.1.

3.1.4 Boundary Characterization

An important tank characteristic that is needed to model sound propagation in an environment with

finite-impedance boundary conditions is the frequency-dependent, spatially averaged boundary

absorption: 〈α( f )〉S. Unlike Li et al. [29], who measured the impedance boundary of their tank walls

via plane-wave tube measurements, the work in this thesis calculates the approximate frequency-

dependent absorption coefficient of the boundaries from the measured T60 by solving the modified

Norris-Eyring equation (Eq. 3.2) with no propagation absorption as well as evaluating the benefit
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Figure 3.3 Two recorded swept-sine signals (orange and blue line) with predicted direct
arrival td (red dashed line) and predicted first reflection t1r (green dashed line). This figure
demonstrates the importance of offering a buffer time, δ t before the time gating to truncate
before any pre-ringing artifacts of the signal seen before the green dashed line.
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of accounting for propagation absorption. When boundary treatment is added, such as the use

of the anechoic panels discussed in Sec. 3.3.5, the comparison between measured T60 values can

quantify the corresponding change in boundary absorption [10,23,26,37] and characterize boundary

materials. The technique used in ISO 354 [50] to characterize boundary absorption and often

referred to as the reverberation method for Sabine characterization used in aerial room acoustics has

been used in many test tanks [10, 23–26], though not extensively. This thesis provides an evaluation

of this method over much more than 12 source and receiver positions as is required according to

ISO 354 and further offers an initial evaluation of the application of propagation absorption, as

mentioned above, which is not commonly applied in previous studies.

The estimation of 〈α( f )〉S relies on an estimation of the T60. The T60 is obtained from the

impulse response of the tank, as discussed in Sec. 3.2. The impulse response squared, h2(t), is then

passed through a fractional octave filter [51]. Finally, Reverse Schroeder integration [49], following

the integrated impulse response method of ISO 3382-1:2009(E) [41], is performed to determine the

T60. Details of the calculations are provided in B.3.5 .

With the frequency dependent T60, a spatially averaged, frequency-dependent absorption coef-

ficient, 〈α( f )〉S, is calculated by solving Eq. 3.2. The obtained value of 〈α( f )〉S can be applied

as the finite-impedance boundary condition necessary for an effective acoustic propagation tank

model, as discussed in Sec. 3.3.

3.2 Impulse Responses Measurements in a Water Tank

Impulse response measurements in small water tanks bring a multitude of challenges to be con-

sidered, especially when striving to develop a scale model of the open ocean. Because this goal

requires special consideration of wall reflections, consideration must be given to the type of signal

used to excite the medium for measurement of the impulse response.
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Ideally, a Dirac delta function would be used as the source signal for impulse response mea-

surements. The Dirac delta function, which is infinitely narrow in time and large in amplitude,

contains energy at all frequencies; however, a perfect Dirac delta function is impossible to generate

physically. Because of this, short pulsed signals or other short impulses, such as those generated

by balloon explosions, starter pistols, electric discharge, and breaking glass, have often been used

in room or underwater acoustics. [21] Another approach utilizes the interrupted noise method to

obtain a broadband signal according to ISO3382-1:2009 [41].

ISO3382 [41, 42] and ISO354:2003 [50] state that using a deterministic signal such as a swept

sine wave to obtain an impulse response (h(t)) in room acoustics yields improved signal-to-noise

ratio (SNR) [52] after special processing of the recorded signal. With improved computational

abilities, impulse response (IR) measurements using swept sine waves in water tanks are becoming

increasingly commonplace. [28, 34] A swept sine wave consists of a sine wave with a frequency

that linearly or logarithmically increases with time, as seen in Fig. 3.4.

Several researchers have confirmed that long-duration swept-sine signals provide better SNR

for broadband measurements [7, 27, 35, 37] compared with white noise, impulses, and pulses. [10]

This high SNR is a result of generating more energy equally over all frequencies, where the

time duration determines the SNR. [35] This high SNR from long-duration swept-sine signals

is accomplished even without averaging in accordance with ISO18233/2006 [52]. The use of

long-duration swept-sine signals avoids the problems that can be caused when using multiple

averages with time invariant systems. [40] Swept-sine signals are repeatable as deterministic signals

unlike background or measurement noise, or other common signals mentioned above which are not

time-invariant.

Since swept-sine signals provide high SNR and are repeatable, they should be an effective signal

for obtaining an accurate broadband response of a water tank just as they do for room environments,

assuming post processing of the recorded signal is done according to ISO 18233:2006 [52]. Accurate
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Figure 3.4 A 0.5s swept-sine wave signal (chirp) containing frequencies 10-100Hz.
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impulse response measurements allow for determining many important acoustical characteristics of

the water tank, as well as providing an effective comparison to and evaluation of numerical models

of sound propagation in the water tank, which are needed for future research.

3.2.1 Theory

In order to process a swept-sine signal effectively, the nature of a recorded swept-sine signal in an

enclosure must be understood. An input signal g(t) in an enclosure interacts with the enclosure

environment to produce the received signal r(t). This interaction with the environment is represented

mathematically as a convolution with the impulse response h(t) of the enclosure:

r(t) = g(t)∗h(t). (3.6)

This mathematical principle is illustrated in Fig. 3.5. A swept-sine signal g(t) (Fig. 3.4) is convolved

with the impulse response h(t) of a simulated environment (Fig. 3.5a) to produce the convolved

simulated received signal r(t) (Fig. 3.5b).

In practice, the impulse response h(t) of the enclosed field is unknown and must be determined.

The classical approach to determining an unknown impulse response is accomplished with three

steps: (1) Fourier transforms on the recorded signal r(t) and the generated signal g(t) to obtain R( f )

and G( f ), respectively; (2) frequency deconvolution [27, 33–37] to obtain the frequency response

function H( f ) (FRF), and (3) an inverse Fourier transform to obtain h(t). [36,38,39] Mathematically

this approach proceeds as follows:

F{r(t)}= F{h(t)}F{g(t)} (3.7)

R( f ) = H( f )G( f ) (3.8)

R( f )
G( f )

= H( f ) (3.9)
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(a) Simulated IR

(b) Simulated Recording

Figure 3.5 Example of a convolved simulated received signal as a result of the convolution
of the swept sine signal Fig. 3.4 with the simulated impulse response in Fig. 3.5a. The
resultant simulated recorded was shifted in time in order to see the full convolution.
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Figure 3.6 Delta function as a result of the temporal inverse filter g∗(−t)∗g(t)

h(t) = F−1{H( f )} (3.10)

where F{r(t)} represents the fast Fourier transform (FFT) of r(t) and F−1{H( f )} is the inverse

fast Fourier transform (IFFT) of H( f ).

This classical approach is commonly used in analytical work. In experimental work, however,

a phase inversion from cross-correlation with the temporal inversion of the generated signal can

also be applied in order to obtain a pure delay of the impulse response with no amplitude or phase

contributions due to the excitation method thus avoiding noise more effectively: [9, 34, 35, 40]

g∗(−t)∗ r(t) = h(t)∗g∗(−t)∗g(t). (3.11)

This approach works because the inverse filter g∗(−t)∗g(t) forms the delta function [34], as seen in

Fig. 3.6 and applied in Eqs. 3.11 and 3.12 (g∗(−t) represents the conjugate of the temporal inversion

of g(t)).
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After solving for H( f ), the inverse Fourier transform yields h(t):

F−1
[

F [g∗(−t)∗ r(t)]
F [g∗(−t)∗g(t)]

]
= h(t) (3.12)

In practice, this computation is more easily accomplished numerically in the frequency domain;

this deconvolution is viewed as the ratio between the cross-spectral density (Sgr( f )) with the

auto-spectral density (Sgg( f )):

H( f ) =
G∗( f )R( f )
G∗( f )G( f )

=
Sgr( f )
Sgg( f )

, (3.13)

in which the g and r subscripts denote the generated and received signals, respectively. To avoid

division by zero, Wiener deconvolution may be used to apply a regularization function:

H( f ) =
S∗ggSgr

S2
gg +σ2

]
. (3.14)

The regularization parameter σ is proportional to the mean of the magnitude of Sgg:

σ = λ |Sgg|, (3.15)

The scaling parameter λ is chosen to keep H( f ) from growing rapidly when the auto-spectral

density Sgg is near zero.

An example of this process is now provided. A swept-sine signal r(t) was generated for 10-

100 Hz, 1-10 kHz, 10-100 kHz, and 100-500 kHz bandwidths, with and without noise using various

sampling rates. A simulated impulse response h(t) was generated by a Python function from the

scipy.signal library. The deconvolution method given in Eqs. 3.12, 3.13, 3.14 was used. The

frequency deconvolution method acting on the simulated data, r(t) in Fig. 3.5 yields the impulse

response h(t), and frequency response H( f ). The results for the 10-100 Hz band are displayed in

Fig. 3.7 as the orange dashed lines. For comparison, the impulse response and frequency response

used to create the simulated signal are also shown as blue solid lines. The impulse response

matches well, as does the frequency response over the 10-100 Hz band. However, above 125 Hz, the
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frequency response contains a ringing artifact. Additional examples are now provided to demonstrate

the capabilities of the deconvolution method at handling various bandwidths and sampling rates, as

well as induced noise.

The performance of this deconvolution method on signals in different frequency bands is

evaluated using these simulated signals. The resulting frequency and impulse responses are shown

in Figs. 3.8 and 3.9, respectively, for the 1-10 kHz band (a), 10-100 kHz band (b), and 100-500 kHz

band (c). The frequency responses obtained via deconvolution are very accurate over the band of

the generated signal. However, impulse responses for lower bands provide better agreement with

actual values with better precision of amplitude and general shape. The agreement of the impulse

response is not as good as the 10-100 Hz example in Fig. 3.7, which points to the question of how

the sampling frequency impacts this process.

For each of the simulations in Figs. 3.7, 3.8, and 3.9, the frequency bands are well under the

Nyquist limit to provide a more well-defined signal, particularly in the time domain. The impact of

sampling frequency on the 10-100 kHz band can be seen clearly in Fig. 3.10. The different rows

correspond to the impulse response (h(t)) and frequency response (H( f )) when different sampling

frequencies are used in generating the simulated signal. As expected, with increased sampling rate

typically comes increased precision. However, sampling too high decreases the precision of the

solution. This effect can be seen in the cases of the 10-100 Hz swept-sine signal sampled at 500 Hz

and at 500 kHz in Fig. 3.11: Excessively high sampling rate makes the resulting impulse response

less precise. This observation suggests there may be a limit to the degree of precision that may be

obtained. This limit is not of concern for the measurements used in this thesis.

As mentioned, this deconvolution method also handles noise quite effectively without the need

for averaging. An example of this behavior is provided in Fig. 3.12. In this case, a noisy swept sine

signal (a) is convolved with a simulated impulse response to produce the received signal (b). This

received signal is sent to through the deconvolution process to estimate the impulse response and
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(a)

(b)

Figure 3.7 Impulse response (a) and frequency response (b) for a 10-100 Hz swept-
since wave in a simulated environment obtained using the Wiener deconvolution method
described in Eqs. 3.12, 3.13, and 3.14

.
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(a) 1k-10kHz FRF

(b) 10k-100kHz FRF

(c) 100k-500kHz FRF

Figure 3.8 Deconvolved frequency responses for simulated swept-sine signal for various
bandwidths (orange) compared to the frequency response (blue) used to simulate the signal.
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(a) 1k-10kHz IR

(b) 10k-100kHz IR

(c) 100k-500kHz IR

Figure 3.9 Deconvolved impulse responses (orange) of swept-sine signals for various
frequency bands compared to the impulse response used to simulate the signal (blue).
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(a) IR w/ fs=200kHz (b) FRF w/ fs=200kHz

(c) IR w/ fs=500kHz (d) FRF w/ fs=500kHz

(e) IR w/ fs=1MHz (f) FRF w/ fs=1Mhz

Figure 3.10 Deconvolved impulse and frequency responses (IR and FRF) for a simulated
10-100 kHz swept-sine signal with various sampling rates ( fs).
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(a) IR w/ fs=500Hz (b) FRF w/ fs=500Hz

(c) IR w/ fs=500kHz (d) FRF w/ fs=500kHz

Figure 3.11 Deconvolved impulse and frequency responses for a simulated 10-100 Hz
swept-sine signal with various sampling rates ( fs). This figure demonstrates the potential
for choosing a sampling rate that is too high for precise results.
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(a) Noisy swept-sine signal (b) Simulated Recording

(c) Noisy IR (d) Noisy FRF

Figure 3.12 Deconvolved impulse and frequency responses of a noisy 10-100kHz swept-
sine signal with simulated values in blue and deconvolved values in orange.

frequency response, which are shown as orange lines in (c) and (d). Comparisons with the simulated

impulse response and frequency response (blue lines) show evidence of noise in the estimated

responses: The estimated frequency response function has noise but maintains the expected trend,

and the impulse response shows little to no obvious impact from the noise compared to the data

without noise (seen in Fig. 3.9b and 3.8b).

This method of acquiring the impulse response via frequency deconvolution of a swept-sine

signal has proven effective on simulated data and is used for determining the impulse response

and frequency response for both the in situ calibration and estimation of the combined response
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of all transducers in the measurement chain. The frequency deconvolution method is also used in

conjunction with the in situ calibration to obtain the impulse response of the tank environment at

various positions.

3.2.2 In situ Calibration

The impulse response is not solely a factor of sound propagation in the water tank. In practice, h(t)

also includes the effects of the response of the transducers, including Digital to Analog (D-A) and

Analog to Digital (A-D) components on the signal. The contribution of these components to h(t)

can ideally be accounted for by application of individual calibrated responses of each component of

the measurement chain (shown in Fig. 2.6). Alternately, the contribution of all components may

be accounted for by understanding the total through-the-sensor (TTS) response [27, 28, 30, 35, 37].

The technique for obtaining the TTS response relies on an in situ calibration to obtain h(t) for the

measurement system. The TTS response, hTTS(t), can be obtained from the calibration measurement

via the deconvolution method and then used as a filter (in deconvolution) to obtain the impulse

response corresponding to sound propagation in the water tank.

The first step to obtaining the TTS response is taking a calibration measurement, where source

and receiver are positioned close enough that transmission losses are reduced significantly and

reflections are easily removed (see Fig. 3.13). The small transmission losses during these calibration

measurements are assumed negligible in this study; however, a phase adjustment accounting for

the small propagation distance is applied. The small distance must be chosen with care because a

separation distance that is too short relative to a wavelength may introduce nearfield effects. When

appropriate, the separation distance should be chosen to be large compared to a wavelength over the

frequency bandwidth of interest. Otherwise, these potential nearfield effects must be noted.

The calibration signal is a swept-sine signal, spanning the bandwidth of interest, which is

then broadcast and recorded. This calibration measurement is interpreted through the above
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Figure 3.13 Ray paths of first side wall reflections in the water tank with source and
receiver positioned close such that propagation losses are reduced significantly. Not to
scale.

deconvolution method (described by Eqs. 3.12, 3.13, 3.14), and the resulting impulse response is

time-gated for removal of all reflections in order to estimate the response of the measurement chain.

This TTS calibration thus incorporates the unit-less sensitivities of all unknown components [7, 27].

Application of this response to a subsequent measurement yields a calibrated measured response in

Volts (which may be converted to µPa when a transducer sensitivity is applied in the preamplifier

settings or directly to the data).

The impulse response obtained through frequency deconvolution [27, 35, 37] of the calibration

measurement is time-gated using a half-Hanning window, as mentioned above in Sec. 3.1.3 but

inthis case the time is chosen to remove all reflections. The whole D-A and A-D measurement chain

frequency response HTTS( f ) can then be obtained by applying a fast Fourier transform (FFT) on the

windowed, time-gated response hTTS(t). An example of the TTS response in the frequency domain,

from a 10-100 kHz signal, is shown in Fig. 3.14. The precision of the TTS response appears to

extend beyond the bandwidth of the signal to approximately 150 kHz.

After the TTS response hTTS(t) is obtained from the calibration measurement, it can be applied to

the received signal r(t) to estimate the impulse response of the sound propagation in the environment,

h(t), may be found for subsequent measurements. The TTS response is applied as an inverse

filter [37] via the classical method as

r(t) = h(t)∗hTTS(t)∗g(t), (3.16)
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Figure 3.14 Calibration Frequency Response Function (FRF) of a 10-100 Hz swept-sine
signal.
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where g(t) is the generated signal. After a Fourier transform and rearranging, the frequency response

(also referred to as the transfer function) associated with sound propagation in the tank is

H( f ) =
R( f )

HTTS( f )G( f )
, (3.17)

or by applying Wiener deconvolution as in Eq. 3.18 in order to prevent division by zero:

H( f ) =
[HTTS( f )G( f )]∗R( f )
[HTTS( f )G( f )]2 +σ2 . (3.18)

An IFFT then yields the impulse response associated with the transfer function of the sound prop-

agation in the tank independent of the frequency response of all the components in the measurement

chain:

h(t) = F−1[H( f )]. (3.19)

Thus, the frequency-dependent calibrated water-tank response can be obtained in situ for

any source-receiver position within the tank under any propagation conditions. Since acoustic

propagation models must adjust for varying conditions such as water temperature gradients [11],

this in situ calibration and measurement method provides the ability to obtain large data sets with

full acoustic characterization within a water tank accounting for varying conditions. A full tank

acoustic propagation model may be developed from this methodology.

3.3 Water Tank Models

An effective model is required for acoustic propagation within a water tank enclosure to enable

the future work discussed in Sec. 5.1. Under consideration are classical tank models based on

idealized boundary conditions, methods that seek to improve the boundary condition of the classical

models, and two well accepted two-dimensional ocean acoustic propagation models for comparison.
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These models assume a monopole point source with point receiver and time-harmonicity. Particular

consideration is given to the importance of the impact of lining the tank with acoustically absorptive

panels (as described in Sec. 2.2), on how well the measurements match the models, and to find the

frequency band over which propagation in the tank is approximately the same as scale-model ocean

propagation.

3.3.1 Helmoltz Equation

The normal-mode eigenfunction solution for a rectangular parallelepiped enclosure satisfies the

homogeneous Helmholtz equation under time-harmonic conditions, e jωt :

∇
2 p̂(x,y,z)+ k2 p̂(x,y,z) = 0, (3.20)

where p̂ is the pressure, k is the separation constant, and x, y, and z indicate location in the tank

relative to the front, bottom corner of the tank. The k values that correspond to nontrivial solutions

to the boundary value problem are the modal eigenvalues of the system: kN = (ωN/c) = (2π fN/c),

when N corresponds to the mode number, and the fN are referred to as the eigenfrequencies.

Equation 3.20 can be written in terms of these modal eigenvalues and mode functions ΨN(x,y,z) as

∇
2
ΨN(x,y,z)+ k2

NΨN(x,y,z) = 0. (3.21)

The mode functions are orthogonal:

∫∫∫
V

ΨNΨN′dV =

 0; N 6= N′

V ΛN ; N = N′
(3.22)

Due to this orthogonality relation, where V is the volume of the tank and ΛN are the mean values of

|ΨN |2, the Green’s function for propagation between position r = (x,y,z) and r0 = (x0,y0,z0) is
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Gω(r|r0) =
−4π

V

∞

∑
N=0

ΨN(r0)ΨN(r)
(k2− k2

N)ΛN
, (3.23)

and the pressure in three-dimensional Cartesian coordinates (relative to the tank coordinates with

z = 0 m at the bottom of the tank) is proportional to the Green’s function in Eq. 3.23:

p̂(~r)≈ ÂGω(r|r0) (3.24)

with some amplitude Â.

3.3.2 Neumann & Dirichlet Boundaries

The standing wave solution or overall modal response of an enclosed sound field is a superposition

of up to eight possible traveling waves, one into each octant of the three-dimensional coordinate

system. A classical approximation used to model a six-walled parallelipiped room enclosure

assumes rigid-boundaries satisfying the homogeneous Neumann pressure boundary conditions:

The normal component of the spatial derivative of the acoustic pressure, i.e., the acoustic particle

velocity, is zero at the boundaries, but the acoustic pressure is nonzero.

Different approaches are available for developing an idealized model for the open-air water tank.

One approach is to assume the five walls are rigid with Neumann boundary conditions and treat

the water-air interface as a pressure-release boundary, corresponding to a homogeneous Dirichlet

boundary condition, where the acoustic pressure is zero but the normal component of the particle

velocity is non-zero [3]. A model for water tank enclosures may alternately use pressure-release

boundaries on all sides as in Ref. [23,29,53]. However, Li et al. [29] determined that their glass tank

boundaries could be simulated as pressure-release (Dirichlet boundaries) only when the frequency

of interest was lower than the first modal frequency. These results only represent idealized solutions

and fail to account for non-idealized impedance characteristics of real tank boundaries particularly

at higher frequencies.
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For the rigid-walled solution with a pressure-release water-air interface, the eigenvalues are

kx =
nxπ

Lx
, ky =

nyπ

Ly
, kz =

(2nz−1)π
2Lz

(3.25)

with the following associated eigenfunctions and eigenfrequencies:

ΨN = cos
(

nxπx
Lx

)
cos
(

nyπy
Ly

)
cos
(
(2nz−1)πz

2Lz

)
(3.26)

and

fN =
c
2

[(
nx

Lx

)2

+

(
ny

Ly

)2

+

(
2nz−1

2Lz

)2
] 1

2

(3.27)

for N = (nx,ny,nz) with nx,ny = 0,1,2, ... and nz = 1,2,3, ... (since the nz = 0 solution is equivalent

to the nz = 1 solution).

Or more specifically, the Green’s function for the rigid-walled rectangular parallelepiped room

with a monopole at the source position r0 = (x0,y0,z0) and a point receiver at field positions

r = (x,y,z) is

Gω(r|r0) =
−4π

V

∞

∑
nx=0

∞

∑
ny=0

∞

∑
nz=0

ΨN(x0,y0,z0)ΨN(x,y,z)
(k2− k2

N)ΛN
, (3.28)

where ΛN = 1
εnx εnyεnz

with the Neumann factor

εnx,ny =

 1; i = 0

2; i 6= 0

εnz = 2

.

The alternate assumption of a pressure-release boundary (Dirichlet) condition on all six sides is

similar but has eigenvalues kx =
nxπ

Lx
, ky =

nyπ

Ly
, kz =

nzπ
Lz

with nx,ny,nz = 1,2,3, ... and associated

eigenfunctions and eigenfrequencies of
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ΨN = sin
(

nxπx
Lx

)
sin
(

nyπy
Ly

)
sin
(

nzπz
Lz

)
(3.29)

and

fN =
c
2

[(
nx

Lx

)2

+

(
ny

Ly

)2

+

(
nz

Lz

)2
] 1

2

. (3.30)

By applying the orthogonality conditions to this solution, the Green’s function is

Gω(r|r0) =
−4π

V

∞

∑
nx=0

∞

∑
ny=0

∞

∑
nz=0

sin
(

nxπx0
Lx

)
sin
(

nyπy0
Ly

)
sin
(

nzπz0
Lz

)
sin
(

nxπx
Lx

)
sin
(

nyπy
Ly

)
sin
(

nzπz
Lz

)
(k2− k2

N)ΛN

(3.31)

where ΛN = Λnx,ny,nz =
1

εnxεnyεnz
with εi = 2.

However, since the walls of a water tank are neither perfectly rigid nor perfectly pressure-release,

these solutions are of limited use as they do not account for finite-impedance boundary conditions,

which are discussed in the Sec. 3.3.3.

3.3.3 Robin Boundary

The solution is obviously more challenging when mixed, or Robin boundary conditions exist.

For the tank, Robin boundary conditions correspond to lossy-walls or finite impedance boundary

conditions. The finite-impedance boundary approach [29,43,53] attempts to account for the specific

finite-impedance characteristics of the boundary while still assuming a pressure-release water-air

boundary at the surface for open-air water tanks. However, this approach requires accurately

measured tank wall characteristics, particularly the frequency-dependent impedance, which is in

itself dependent on the absorption of the boundary as discussed in Sec. 3.1.4.

Following the derivation in Pierce’s book [43], the homogeneous Robin-boundary condition is

∇ p̂(
⇀
rs) ·

⇀
nout =− jk

[
ρ0c

zs(
⇀
rS)

]
p̂(

⇀
rs). (3.32)
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In this equation,
⇀

nout indicates the direction perpendicular to the walls, zs, the finite impedance of

surface s, ρ0 and c are respectively the density and sound speed of the medium in the enclosure, and

k = ω/c is the acoustic wavenumber. Also, p̂ is the complex amplitude of acoustic pressure, and
⇀
rS is a vector position at the boundary surface. This boundary condition can be used to obtain a

modal model for an enclosure with walls of finite impedance zs. Using the completeness property,

an expansion can be found for p̂(
⇀
r ) in terms of the ΨN appropriate for the rigid-wall boundary

conditions case in Eq. (3.26):

p̂(~r)≈−4πÂ
∞

∑
N=0

ΨN(~r0)ΨN(~r)

V ΛN

{
k2− k2

N− jk
[

1
V ΛN

∫∫
S ΨN(~rs)

ρ0c
zs(~r)

dS
]} , (3.33)

with ΛN = Λnx,ny,nz =
1

εnxεnyεnz
and

εnx,ny =

 1; i = 0

2; i 6= 0

εnz = 2

.

This expression can be simplified to

p̂(~r)≈−4πÂ
∞

∑
N=0

ΨN(~r0)ΨN(~r)

V ΛN

{
k2− k2

N− jk
[
<α>SS

4V

]} (3.34)

by defining an effective, spatially averaged, absorption term < α >S:

< α >S S
4V

=
1

V ΛN

∫∫
S

ΨN(~rs)
ρ0c

zs(~r)
dS. (3.35)

However, this solution does not account for the thermoviscous and molecular-relaxation losses

as the wave propagates within the medium, which introduce complex eigenvalues. Even greater

accuracy may be accomplished with a model accounting for these propagation losses [45–47] using

the imaginary part of the modal eigenvalues, as discussed in Sec. 3.1.1. Because the fluid and walls
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include intrinsic damping mechanisms, the acoustic standing waves have nonzero nodes, damped

natural frequencies, and they decay over time. As the model improves to include these effects,

greater efficacy may be obtained.

As mentioned, a propagating-wave solution to account for thermoviscous and molecular relax-

ation losses within the medium introduces a complex wavenumber k̃. This complex eigenvalue can

be separated into k̃N = ω̃N
c = ωN

c + jδN
c = kN + jαN , where αN is modal absorption and δN is the

modal damping factor determined from the T60 as

δN( f ) =− ln(10−6)

2T60( f )
. (3.36)

This damping effect is approximated in the finite impedance model.

The propagation losses are further applied to our solution by calculating the spatially averaged

absorption coefficient of the walls (Eq. 3.37) using the estimated propagation losses when solving

the modified Norris-Eyring equation (Eq. 3.2) from the measured T60. The resulting spatially

averaged absorption is

< α >S= 1− exp
[

8V < α >p

S
− 24ln10

cT60

]
(3.37)

where < α >p is the propagation absorption coefficient, V is the enclosure volume, S is the total

surface area of the boundaries, c is the speed of sound, and T60 is the reverberation time.

This approximate solution can be used as a model, alongside both the Neumann & Dirichlet

models. This finite-impedance model is referred to in Ch. 4 as the "Pierce" model and is compared

alongside the model developed in Novak et al. 2018 [53], which demonstrated strong validity in

smaller tanks assuming pressure-release boundaries and applying finite-impedance to the solution.

These Cartesian models are compared to measurements in Ch. 4 and to results from open-ocean

models, such as ORCA discussed in Sec. 3.3.4.
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3.3.4 Ocean Model

The field of underwater acoustics focuses on sound-wave phenomena in the ocean and seabed.

Modeling underwater sound propagation is a large endeavor. Many of these models are open-source

and part of the Ocean Acoustics Library at https://oalib-acoustics.org . The models are grouped

according to the methodology used and the assumptions made: ray-tracing, normal-modes, parabolic

equation solver, and wavenumber integration.

The first ocean acoustics model that has been used by Dr. Neilsen’s group is called ORCA [15].

ORCA is a range-independent, normal-mode model that computes solutions to the wave equation

in cylindrical coordinates with the assumption of azimuthal symmetry (i.e., no lateral reflection).

For the specified frequency f , ORCA computes the normalized mode functions, φ̄n(z), and modal

eigenvalues, kn, as a function of frequency based on how the sound speed, density, and absorption

vary as a function of depth. A modal summation is used to obtain the Green’s function corresponding

with a point source at depth zs and range r from a receiver at depth z. This is expressed in Eq. (15)

of Westwood et al. [15] in terms of normalized mode function as

p(r,z) =
iπ
ρs

∑
n

φ̄n(zs)φ̄n(z)H
(1)
0 (knr), (3.38)

where ρs is the density at zs, and the H(1)
0 is the zeroth-order Hankel function of the first kind. When

|knr|>5, the asymptotic expression is used and the Green’s function becomes

p(r,z) =
√

2iπeiπ/4 1
ρs

∑
n

φ̄n(zs)φ̄n(z)eiknr
√

knr
, (3.39)

In this manner, ORCA can produce the frequency response of a water waveguide with depth-

dependent sound speed and a horizontally stratified seabed. The validity of the frequency response

depends on how well the parameterization of the acoustic properties of the environment match

reality. This normal-mode model is highly robust, accounting for a wide range of real world

https://oalib-acoustics.org
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characteristics such as leaky boundaries(surface and seabed) and does so with low computational

costs. The 1√
r cylindrical spreading follows a far-field approximation common in open-ocean

modeling and may not be the best representation of the zeroth-order Hankel function for this tank

where a 1
r dependence may more appropriately account for top and bottom reflection and no far-field

assumption. This idea needs to be evaluated. However, further development of the ORCA model for

the tank is beyond the scope of this thesis. ORCA is commonly used as an acceptable open-ocean

model or benchmark solution and for this reason is of interest here.

In Ch. 4, the frequency response function for a tank experiment is modeled with ORCA and

compared, alongside the finite-impedance models, to that obtained from measurements using

the methods described in Sec. 3.2.1. This comparison provides an indication of how well sound

propagation in the tank reflects the azimuthal boundary assumption often assumed in ocean acoustics

models.

3.3.5 Anechoic Lining for Improved Modeling

While ORCA and most open-ocean models assume azimuthal symmetry, the tank enclosure is

bounded by side walls. To more closely match the tank environment to an azimuthally symmetric

model, the side reflections need to be removed or attenuated. One way to remove lateral reflection

during processing is by time-gating, however this will also remove signals associated with additional

top and bottom bounces, which should be included in a scale-model ocean setup. The decision was

made to reduce the lateral reflections by lining the side walls with with the application of anechoic

panels (Apltile SF5048 acoustic attenuating material from Precision Acoustics). The side-wall

reflected acoustic energy is significantly decreased as discussed in Sec. 3.1.3 and seen in Fig. 3.1.

Further evaluation of the added absorption of the panels along with the acrylic walls was performed

with the hope that the characterization of the added wall absorption would be applied to the model

via the spatially averaged absorption and more closely match the azimuthally-symmetric open-ocean
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model represented by ORCA. This assessment of the spatially averaged absorption coefficient of

the anechoic walls of the tank follows the methods discussed above in Sec. 3.1.4 for determining

the absorption of the acrylic walls. Applying the absorption characteristics of both the acrylic and

the anechoic panels to the finite-impedance model should bring this modal model, with applied

anechoic walls, into closer agreement with the ORCA model for open-oceans. An initial assessment

of these models in comparison to the ORCA model is presented in Sec. 4.3.

3.4 Conclusion

Since measurements using a swept sine source have proven to be repeatable and provide a high SNR,

swept-sine measurements are taken for many source-receiver positions throughout the tank. The tank

dimensions limit the effective tank bandwidth to 5 kHz and above (which is well above the Schroeder

frequency for this depth of water). Hence, calculations for obtaining the frequency response or

Green’s function within the tank are done over the 10-500 kHz band. This response represents the

frequency dependent effect the tank has on acoustic propagation with sensor sensitivities accounted

for by in situ calibration techniques discussed in this Chapter. By obtaining effective acoustic

characterization of the tank, particularly of boundary absorption, effective acoustic propagation

models may be developed using finite-impedance boundary conditions. The comparison between

the ORCA-generated, normal mode model-generated and measurement-based frequency responses

discussed in Sec. 4.3, yield insights into the best manner for simulating labeled data to train machine

learning algorithms in future research.



Chapter 4

Experimental Results

The primary results for this thesis are discussed over four bandwidths of interest (5-10 kHz, 10-

50 kHz, 50-100 kHz, 100-500 kHz). For each frequency band, scans were taken with bare acrylic

tank walls and again where the side walls are treated with anechoic paneling. For each scan, a

consistent water depth of 0.5 m was maintained. Brüel & Kjær 8103 phase matched transducers

were used as both source and receiver for bandwidths under 100 kHz and Teledyne Reson TC4038

transducers were used as both source and receiver for the 100-500 kHz bandwidth. Information

about the primary datasets is provided in Appendix A.3.

The scans covered 729 different source and receiver position pairs throughout the tank environ-

ment as seen in Fig. 4.2. The (x,y,z)source positions formed an evenly spaced 3x3x3 grid from

(0.41 m,2.83 m,0.25m) to (0.81 m,2.13 m,0.35m), and receiver positions formed an evenly spaced

3x3x3 grid from (0.41 m,0.83 m,0.25m) to (0.81 m,1.83 m,0.35m). This large grid allowed for the

assessment of sound propagation throughout the tank and provided more than enough averaging to

obtain the reverberation time for characterization of the tank boundaries effectively through reverse

Schroeder integration [49] (Sec. 3.1.2) of the impulse response (Sec. 3.2.1). Results are presented

following the work flow seen in Fig. 4.1.

59
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Figure 4.1 Work flow to obtain boundary characterization results of the water tank envi-
ronment.
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Figure 4.2 Scan grid within the tank environment. Red positions represent the source
positions (using the UR10e Ægir) and green represent the receiver positions (using the
other UR10e Rán). Calibration positions are not displayed but are located in the center of
the grid at (0.6 m,2.14 m,0.25m) and (0.6 m,2.06 m,0.25m).
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4.1 Through the Sensor Response

The TTS response (Sec. 3.2.2) is obtained from a calibration measurement where tank environmental

effects are time-gated out, as discussed in Sec. 3.1.3 with the algorithm shown in Appendix B.2.1.

This process provides a frequency response representation of the measurement chain. This re-

sponse H( f ) may be used to deconvolve the effects of the measurement chain from subsequent

measurements and obtain an impulse response h(t) and frequency response H( f ) of the sound

propagation in the tank environment without the effects of all components of the measurement chain

on a measurement.

4.1.1 Calibration Measurements

Calibration measurements are taken in the manner discussed in Sec. 3.2. Examples of recorded

calibration measurements in the plain acrylic-walled tank are shown in Figs. 4.3 and 4.4 and

for the tank treated with anechoic panels in Figs. 4.5 and 4.6. Each figure displays the raw

recording of a swept-sine signal in the tank at the calibration positions (0.6 m,2.14 m,0.25m) and

(0.6 m,2.06 m,0.25m) for a 5-10 kHz, 10-50 kHz, 50-100 kHz, and 100-500 kHz swept-sine signal.

Notice the initial shape for each bandwidth is similar between the acrylic-walled and anechoic-

walled calibrations but as time goes on the shape is altered due to increased absorption of side wall

reflections. These signals are processed through frequency deconvolution into impulse response

measurements, which are then time-gated.

4.1.2 Calibrated Impulse Response

The impulse response of each calibration measurement is obtained through frequency deconvolution

according to Eq. 3.13 and 3.14 (see also Appendix B.2.3). Examples of the calculated impulse

response, h(t), are shown in Fig. 4.7 for tank calibration measurements with acrylic walls. Each
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(a) 5-10kHz Acrylic

(b) 10-50kHz Acrylic

Figure 4.3 Raw recorded time waveforms of calibration measurements by bandwidth for
tank with acrylic walls and no anechoic panels for the 5-10 kHz and 10-50 kHz bandwidths.
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(a) 50-100kHz Acrylic

(b) 100-500kHz Acrylic

Figure 4.4 Raw recorded time waveforms of calibration measurements by bandwidth
for tank with acrylic walls and no anechoic panels for the 50-100 kHz and 100-500 kHz
bandwidths.
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(a) 5-10kHz Anechoic

(b) 10-50kHz Anechoic

Figure 4.5 Raw recorded time waveforms of calibration measurements for swept-sine
signals over various frequency bands for tank with acrylic walls covered by anechoic
panels for the 5-10 kHz and 10 kHz-50 kHz bandwidths.
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(a) 50-100kHz Anechoic

(b) 100-500kHz Anechoic

Figure 4.6 Raw recorded time waveforms of calibration measurements for swept-sine
signals over for the 50-100 kHz and 100-500 kHz bands for tank with acrylic walls covered
by anechoic panels.
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impulse response is time-gated according to predicted reflection arrival times (seen as green dashed

lines in the plots) to remove reflections. The results of the time-gated impulse response should be

the same for both the acrylic-walled tank and the anechoic-walled tank. The Fourier transform of the

time-gated impulse response is the TTS frequency response HTTS( f ). (See examples in Fig. 4.8.)

These frequency responses account for the frequency-dependent effects the measurement chain has

on a signal and can be applied as a calibration through deconvolution to subsequent measurements

to obtain the transfer function, or frequency response of the sound propagation for any given

source-receiver pair positions. It is important to note that there is a significant difference between

the 100 kHz response due to the different transducers used for the 50-100 kHz and 100-500 kHz

bands (as discussed in Appendix A.3) have on the measurement chain. Therefore, these TTS

responses may be used effectively to calibrate measurements taken with those specific transducers.

The transfer function essentially defines how acoustic energy propagates in the tank environment

from a specific source to a specific receiver.

4.1.3 Tank Transfer Function

The transfer function, also known as the frequency response function H( f ) , describes the sound

propagation in the tank environment and, therefore, provides an estimate of the frequency-dependent

transmission loss (TL), or total reduction in signal intensity, of acoustic energy due to the acoustical

properties of the medium and boundaries of the enclosed environment. As an example, Figs. 4.9

and 4.10 show the impulse response, as well as the frequency response of the transfer function

with the anechoic panels lining the walls. The responses for each bandwidth were obtained from

measurements with the same source and receiver positions of (0.610 m,2.130 m,0.300 m) and

(0.610 m,1.830 m,0.300 m), respectively. The frequency response functions show large background

noise below 5 kHz and elevated levels over the signal bandwidth. The impulse responses (IR)

show peaks representing various acoustic energy reflections within the enclosure with increasing
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(a) 5-10kHz (b) 10-50kHz

(c) 50-100kHz (d) 100-500kHz

Figure 4.7 Deconvolved impulse responses of measured swept-sine calibration signals
showing predicted time of arrival for a first reflection where time-gating would occur.
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(a) 5-10kHz (b) 10-50kHz

(c) 50-100kHz (d) 100-500kHz

Figure 4.8 Frequency response of time-gated calibration measurements is the TTS response
of the measurement chain. Each TTS response is deconvolved from subsequent measured
signals to obtain a pure tank response with effects caused by the measurement chain
removed.



4.1 Through the Sensor Response 70

(a) IR 5-10kHz (b) FRF 5-10kHz

(c) IR 10-50kHz (d) FRF 10-50kHz

Figure 4.9 Deconvolved impulse and frequency responses for measured swept-sine signals
(5-10 kHz and 10-50 kHz) at source (0.610 m, 2.130 m, 0.300 m) and receiver (0.610 m,
1.830 m, 0.300 m) positions with anechoic panels lining the walls of the tank.

transmission loss. The frequency responses demonstrate the efficiency of various frequencies

propagating through the enclosure and show how certain frequencies propagate more efficiently

than others as seen by higher amplitudes peaks at those frequencies. These responses define how

acoustic energy propagates from the specific source position to the receiver position within the

environment and are key to understanding the how much energy is absorbed by the boundaries.

The effect on the response of source-receiver position is now considered for the 10-50 kHz band

for measurements taken without anechoic panels on the walls. First, the impulse and frequency

responses as the source-receiver range increases down the length of the tank are shown in Fig. 4.11.
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(a) IR 50-100kHz (b) FRF 50-100kHz

(c) IR 100-500kHz (d) FRF 100-500kHz

Figure 4.10 Deconvolved impulse and frequency responses for measured swept-sine
signals (50-100 kHz and 100-500 kHz) at source (0.610 m, 2.130 m, 0.300 m) and receiver
(0.610 m, 1.830 m, 0.300 m) positions with anechoic panels lining the walls of the tank.
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The frequency response functions look nominally similar as the source-receiver distance increases

with some slight variation by frequency. Notice a more significant DC offset seen for each impulse

response demonstrating the position dependence of the response as range increases. The changes in

the responses at different positions across the width of the tank is shown in Fig. 4.12. The three

positions correspond to positions on one side of the tank, the middle of the tank and the opposite

side. Similarly, the effect of acoustic propagation with increased depth in the tank may be assessed

in Fig. 4.13. For each of these figures, only one Cartesian dimension was varied at a time. As

mentioned, small changes can be seen in the frequency response functions, but the overall shape

remains similar. The impulse responses show a more clear position dependence within the tank

environment along with an interesting changing DC offset for some positions.

Only slight similarities, differences and trends lend themselves to understanding how sound

propagates through the tank environment from these figures alone. However, the position-dependent

frequency response of the tank estimates the TL as sound propagates and is a result of the acoustic

properties of the environment. Thus, these frequency responses allow for calculating those parame-

ters, such as acoustic absorption of the environmental boundaries. Understanding how to properly

characterize the boundary conditions of an environment allows for more effective modeling of the

environment. An initial evaluation of models with applied boundary conditions is discussed in

Sec. 4.3.

4.2 Finite-impedance modeling

An important step to enabling finite-impedance modeling is to obtain an estimate of the reverberation

time T60. According to standards ISO 354:2003 [50], ISO3382-1:2009 [41], and ISO3382-2:2008

[42], T60 should ideally be obtained from impulse response measurements at multiple random

positions within the enclosed environment. An averaged T60 is obtained by determining the decay
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11 Deconvolved impulse and frequency responses for measured 10-50 kHz swept-
sine signals at various source and receiver positions along the length of the tank. Fig. 4.11a
and 4.11b: source position (0.61 m, 2.83 m, 0.3 m) and receiver position (0.61 m, 1.83 m,
0.3 m). Fig. 4.11c and 4.11d: source position (0.61 m, 2.83 m, 0.3 m) and receiver position
(0.61 m, 1.33 m, 0.3 m). Fig. 4.11e and 4.11f: source position (0.61 m, 2.83 m, 0.3 m) and
receiver position (0.61 m, 0.83 m, 0.3 m).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12 Deconvolved impulse and frequency responses for measured 10-50 kHz
swept-sine signals at various source and receiver positions along the width of the tank.
Fig. 4.12a and 4.12b: source position (0.410 m, 2.130 m, 0.300 m) and receiver position
(0.410 m, 1.830 m, 0.300 m). Fig. 4.13c and 4.13d: source position (0.610 m, 2.130 m,
0.300 m) and receiver position (0.610 m, 1.830 m, 0.300 m). Fig. 4.12e and 4.12f: source
position (0.810 m, 2.130 m, 0.300 m) and receiver position (0.810 m, 1.830 m, 0.300 m).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13 Deconvolved impulse and frequency responses for measured 10-50 kHz
swept-sine signals at various source and receiver positions along the depth of the tank.
Fig. 4.13a and 4.13b: source position (0.610 m, 2.130 m, 0.250 m) and receiver position
(0.610 m, 1.830 m, 0.250 m). Fig. 4.13c and 4.13d: source position (0.610 m, 2.130 m,
0.300 m) and receiver position (0.610 m, 1.830 m, 0.300 m). Fig. 4.13e and 4.13f: source
position (0.610 m, 2.130 m, 0.350 m) and receiver position (0.610 m, 1.830 m, 0.350 m).
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curve of the square of the impulse response through reverse Schroeder integration [49], as discussed

in Sec. 3.1.2. As mentioned above, each scan included a total of 729 different source and receiver

position pairs to provide more than efficient averaging of measurements. Though these positions

are not exactly random, enough positions were obtained to provide more than sufficient data (The

standards require 12 random positions.) and to ensure that measurements are not confined within

zones of abnormally high or low acoustic energy due to tank modes.

The first step is to define time bounds for the integration: t (time in which the impulse response

begins) and t1(time in which the impulse response decays to the noise floor). These integration

bounds for obtaining the decay curve of the impulse response were not measured for all 729

position pairs over all eight cases (four frequency bands, with and without anechoic panels). Instead,

time bounds were individually assessed for multiple random position pairs to determine a good

estimate of the time bounds, which were then used for all 729 measurements in each frequency

band. Integration time bounds of the impulse response commonly vary from measurement to

measurement, but they generally trend toward a common value that is sufficient for calculating the

decay curve over all 729 measurements for each case. To illustrate the process, the selection of a

single measurement’s time-bounds are shown in Fig. 4.14. In part (a), the time bounds (dashed

lines) are plotted on top of the square of the impulse response on a decibel scale: 10 log10(h
2(t)).

The resultant calculated decay curve can be seen in Fig. 4.14(b). The results of reverse Schroeder

integration [49,50] on the randomly selected position pairs were compared to the estimated value of

the reverberation time by monitoring the smootheness of the resultant decay curves. Chosen time

bounds are provided in Table 4.1. The reverberation time results from reverse Schroeder integration

using these time bounds are discussed in the following sections.
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(a)

(b)

Figure 4.14 (a) Magnitude squared of the impulse response, on a decibel scale, with
the time bounds indicated by dashed lines. (b). The selected portion from (a) with the
calculated decay curve. The general linearity of the decay curve suggests some justification
for a diffuse-field assumption that is required by ISO 354.
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Table 4.1 Time bounds used for determining the decay curve for each case. Some variation
is expected between each measurement and the fact that the values for the measurements
with anechoic walls are generally different than those without anechoic walls appears to be
coincidental.

Initial Time Bound t (s) Final Time Bound t1 (s)

5-10 kHz Acrylic Walls 0.511 0.5155

10-50 kHz Acrylic Walls 0.511 0.5149

50-100 kHz Acrylic Walls 0.5103 0.514

100-500 kHz Acrylic Walls 0.6004 0.606

5-10 kHz Anechoic Walls 0.6008 0.604

10-50 kHz Anechoic Walls 0.6005 0.6025

50-100 kHz Anechoic Walls 0.6005 0.6031

100-500 kHz Anechoic Walls 0.6005 0.6035

4.2.1 Reverberation Time from Reverse Schroeder Integration

The spatially averaged reverberation times of each of eight cases are obtained via reverse Schroeder

integration [49, 50] (Sec. 3.1.2, Appendix B.3.5) and processed through a fractional octave filter

(Appendix B.2.2) to obtain 1/30th octave bands. The 1/30th octave band results are seen in Fig. 4.15.

Overall values, averaged over the four bandwidths (5-500 kHz) before applying the fractional octave

filter, are also provided. The overall reverberation time for the tank environment was originally

estimated as 10.82 ms. Using the final time bounds and reverse Schroeder integration, the average

reverberation time over the frequency band 5-500 kHz in the acrylic-walled tank is 10.49±2.55 ms

and 6.96±2.2 ms for the tank lined with anechoic panels. The anechoic panels reduce the overall

reverberation time of the tank by over 33% and work well over the advertised bandwidth (20-

200 kHz). The reduction in reverberation time corresponds with a general increase in absorption

within the tank as expected, and in practice reduces the settling time required between measurements.



4.2 Finite-impedance modeling 79

Figure 4.15 Frequency-dependent, spatially averaged reverberation time from reverse
Schroeder integration at 1/30th fractional octave bands from swept-sine signals within a
tank with (orange) and without (blue) anechoic panels on the side walls. These results
come from averaging over all 729 source-receiver pair measurements within the tank. The
overall reverberation time for the tank was estimated to be T60est = 10.82 ms which can
be compared to the median values shown in the legend. The standard deviations for the
acrylic (a) and anechoic panel (p) cases are listed in the title.

The degree to which this reduction in reverberation time improves the tank’s ability to perform as a

scale-model ocean depends on the measured panel absorption. Knowing the reverberation time, the

modified Norris-Eyring equation (Eq. 3.2) may be solved to obtain the spatially averaged absorption

of the tank boundaries (Sec. 3.1.4).

4.2.2 Approximate Spatially Averaged Absorption

The spatially averaged absorption coefficients with and without the anechoic panels are obtained

from the frequency-dependent reverberation time by solving the modified Norris-Eyring equa-
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tion (Eq.3.2) using the code in Appendix B.3.6. (The absorption of the anechoic panels could

alternatively be explored using the algorithm in Appendix B.3.7 to compare reverberation times

across measurements with added material. The results of the 1/30th octave band spatially averaged

absorption with no panels in the tank and with the assumption of zero propagation absorption are

presented in Fig. 4.16. The standard deviation across the 729 measurement locations are shown

as vertical bars. The same statistical analysis of the measurement with the anechoic panels and

is shown in Fig. 4.17. The overall absorption with the anechoic panels (0.6089) is greater than

without (0.4708) as expected: When averaged over the entire bandwidth from 5-500 kHz, the

average value is 0.77 with the panels compared to 0.47 without the panels. The absorption of the

panels is not large enough of a value to easily assume the tank may be modeled as a near open

ocean environment without (or with minimal or negligible) side wall reflections. This is because a

truly anechoic environment would assume a wall absorption of 0.99. However, this condition may

perform reasonably as an open ocean as discussed in Sec. 4.3.

The spatially averaged wall absorption curves in Figs. 4.16 and 4.17 were obtained using the

assumption that the water-surface interface is a pressure-release boundary. When accounting for the

small absorption (or small finite-impedance) of the water-air surface instead of assuming a perfectly

pressure release surface, the spatially averaged wall absorption shown as dashed lines in Fig. 4.18

are obtained and do not differ from the original ones. Thus, this small shift in the air-surface

boundary condition appears to be negligible, especially when no anechoic panels are in place.

This agreement is expected and shows the viability of using the assumption of a pressure-release

water-air surface.

The overall increase in absorption with the panels suggests that the addition of the anechoic

panels along the side walls improved the absorption of the walls of the tank significantly in the

desired ultrasonic bandwidths.
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Figure 4.16 Statistical analysis for the frequency-dependent spatially averaged absorption
coefficient calculated from the reverberation time for the tank without the anechoic panels
averaged over 729 measurements. The standard deviation is plotted suggesting reasonable
uncertainty for the calculated absorption coefficient. The median value over frequency is
plotted as a green dashed line and listed in the legend. The average overall absorption over
the full bandwidth is also shown in the legend.
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Figure 4.17 Statistical analysis for the frequency-dependent spatially averaged absorption
coefficient calculated from the reverberation time in the tank with the anechoic panels
averaged over 729 measurements. The standard deviation is plotted suggesting reasonable
uncertainty for the calculated absorption coefficient. The median value over frequency is
plotted as a green dashed line and listed in the legend. The average overall absorption over
the full bandwidth is also shown in the legend.
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Figure 4.18 Frequency-dependent spatially averaged absorption coefficient from a 1/30th
fractional octave band analysis of swept-sine signals within a tank with and without the
anechoic panels. The solid lines are from calculation that assumes a pressure-release
boundary condition at the water-air interface. The dashed lines show the absorption
obtained when the small finite-impedance of the water-air surface is included in the
calculations. These calculations assume no propagation absorption losses. The single
value overall absorption values in the legend represent the average absorption for the full
bandwidth before applying the 1/30th fractional octave band filter.
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The frequency-dependent, spatially averaged, wall absorption < α >S calculated while account-

ing for propagation absorption effects (i.e., while applying Eq. 3.3) is presented in Fig. 4.19. In

general, the absorption is reduced when a portion of the overall measured absorption is accounted for

by propagation losses as seen particularly below 50 kHz. The overall absorption of the acrylic walls

accounting for propagation absorption appears to have unexpectedly increased as seen from the

sudden spikes from 50-100 kHz. Above 135 kHz the calculated absorption of the walls accounting

for the effects of propagation losses drop well below zero unexpectedly. This suggests significantly

higher propagation absorption than wall absorption with increased frequency. However, < α >S

obtained using Eq. 3.37 and shown in Fig. 4.19 follow an unexpected trend, particularly above

135 kHz where the value drops to large negative values, it is hypothesized that potential exists

for the Ainslie and McColm [45] model to have an upper limit of precision or limitations for

small-scale measurements within tanks. This potential limit makes sense since the anechoic panels

are advertised originally as having good absorption from 20-200 kHz and the model was originally

developed and evaluated on open ocean propagation. These improbable results coupled with low

variance over 729 measurements suggest a need to further investigate other propagation models.

The spatially averaged overall absorption coefficient averaged for the four bandwidth measure-

ments from 5-500 kHz are compared to that obtained using the published impedance of acrylic in

Table 4.2. The value of specific acoustic impedance of clear acrylic of 3.26×106 Pa s/m was found

on an open-source nondestructive testing webpage (https://www.ndt.net/links/proper.htm). Using

the accepted specific acoustic impedance of water (zw = 1.5×106 Pa s/m) and of air (za = 415 Pa

s/m), the absorption coefficient of clear acrylic was estimated as 0.6302. The overall absorption (not

frequency-dependent over 5-500 kHz) coefficient for one-inch thick clear acrylic in the tank was

found to be 0.4708 without or 0.4937 with including propagation losses, and the overall absorption

coefficient of the acrylic walls lined with anechoic panels was determined to be 0.609 or 0.5789

including propagation losses. The estimated overall values are similar to the spatially averaged wall

https://www.ndt.net/links/proper.htm
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Figure 4.19 Frequency-dependent spatially averaged absorption coefficient from a 1/30th
fractional octave band analysis of swept-sine signals accounting for propagation absorption
through the water within a tank with (red) and without (orange) the anechoic panels on the
side walls. It is hypothesized that there may be an upper limit of precision for the Ainslie
and McColm model above 135 kHz where accounting for the propagation absorption
has caused both the acrylic and anechoic wall absorption to drop well below zero, which
should not be true particularly with such small propagation distances.
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absorption values over the 5-500 kHz band in Fig. 4.18. The spatially averaged absorption coeffi-

cients, < α >S, for the acrylic and anechoic boundaries are necessary parameters for developing an

acoustic propagation model with finite-impedance boundaries.

4.3 Applied Finite-impedance Boundary Model

The spatially averaged absorption coefficients are used for the finite-impedance boundary model in

Eq. 3.34 (see Appendix B.4.3). As discussed in Sec. 3.3.3, < α >S is used for defining the boundary

conditions. An example of the resulting modeled transmission loss is displayed in Fig. 4.20 for a

measurement without panels over the 10-50 kHz band. The measured and estimated absorption

values from Table 4.2 are used in the model to obtained the two modeled frequency response or

transmission loss from 10-50 kHz. The great agreement provides confirmation that calculation of

the spatially average absorption coefficient using the TTS response is consistent.

The finite-impedance model with Robin boundary conditions provides a more accurate model

than the idealized tank rigid-wall (Neumann) boundary with a pressure-release (Dirichlet) surface

model (Eq. 3.28), as illustrated in Fig. 4.21 for the tank with acrylic walls (a) as well as with anechoic

panels lining the walls (b). The Pierce finite-impedance boundary model improves agreement with

measurements compared to the idealized rigid-boundary model which is essentially noise at this

bandwidth. Decent agreement of the Pierce model is also seen with the ORCA model for both

cases. The vertical offset of the models from the measured data occurs because the source strength

is not accounted for in these models and an amplitude of 1 (corresponding to a point source) is

assumed for each model, which should account for the 20 dB offset. This evaluation constitutes an

initial comparison of models to the measured data. An extensive evaluation of or development of

the models is beyond the scope of this thesis.
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Figure 4.20 Transmission loss modeled with the Pierce finite-impedance model using
the spatially averaged absorption coefficient by fractional octave bands from swept-sine
signals within a tank with anechoic panels applied to the side walls and one obtained from
published values of the impedance of acrylic. For this case, the source was at (0.41 m,
2.13 m, 0.25 m) and the receiver at (0.41 m, 1.83 m, 0.25 m). The frequency band from
36-50 kHz has been zoomed in for comparison.
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(a) Acrylic-walled tank.

(b) Anechoic-lined tank.

Figure 4.21 Comparison of transmission loss for the idealized rigid-wall model (Sec. 3.3.2)
with the Pierce finite-impedance boundary model, ORCA model, and measured values.
A source strength of 1 is assumed for these models because this was only an initial
comparison which should account for the approximately 20 dB difference overall. Models
have the measured absorption applied.
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(a) Acrylic-walled tank.

(b) Anechoic-lined tank.

Figure 4.22 Comparison of transmission loss from the Novak finite-impedance boundary
model (Sec. 3.3.2) with the Pierce finite-impedance boundary model and measured values.
A source strength of 1 is assumed for these models because this was only an initial
comparison which should account for the approximately 20 dB difference overall. Models
have the measured absorption applied.
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(a) Acrylic-lined tank.

(b) Anechoic-lined tank.

Figure 4.23 Comparison of the transmission loss of the Pierce finite-impedance boundary
model with measured values without (a) and with (b) anechoic panels lining the tank
walls. A zero mean scaling was applied across frequency for ease of comparison. It can be
seen that the Pierce finite-impedance boundary model shows some frequency-dependent
agreement with measured results.
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(a) Acrylic Walled Tank

(b) Anechoic Walled Tank

Figure 4.24 Comparison of transmission loss from ORCA, the Pierce finite-impedance
boundary model and measured values without (a) and with (b) anechoic panels lining the
tank walls.
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Initial evaluation of the frequency response provided by impedance boundary tank models using

in situ calibrated impedance boundary characterization is seen in Fig. 4.22 for the acrylic tank

(a) as well as with the anechoic panels lining the tank walls (b). The offset is due to an assumed

model amplitude of 1 and allows for a better visual comparison of the Pierce and Novak models

with measured data. There is not clear agreement between the models and the measured data with

only acrylic walls. When the anechoic panels are applied to the walls and the models, greater

frequency-dependent agreement in the general trends of the modeled and measured transmission

losses are seen particularly below 30 kHz.

To better portray this trend, a zero mean normalization is applied to the modeled and measured

values. The results in Fig. 4.23 show some agreement between Pierce’s [43] model and measured

values especially from 25-40 kHz with anechoic panels. It is shown that the anechoic panels appear

to improve the ability of the Pierce model to represent actual tank measurements when measured

boundary impedance is applied. The potential of using the Pierce model and measurement-based

absorption coefficients to model sound propagation in the tank is compared to the modeled values

for ORCA [15] as a benchmark solution in Fig. 4.24. (This example does not have the zero-mean

applied.) The finite-impedance model (Pierce model) shows reasonable initial agreement with the

overall amplitude of the ORCA model with some similarities in shape particularly from 25-40 kHz

as seen in Figs. 4.24a and 4.24b. The Pierce finite-impedance model demonstrates initial potential

for being a good intermediary model between tank measurements and an open ocean model. These

data also demonstrate the ability of the anechoic panels in improving the models and measurements

for open ocean modeling within a tank environment as seen with improved model agreement with

anechoic panels applied to the walls seen in Fig. 4.24b. Future model-data comparisons are needed

to fine-tune the modeling of sound propagation in the tank.
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4.4 General Tank Characterization

Determining the boundary characterization from in situ calibrated tank responses provides additional

characterization of acoustic parameters within the tank. The most prominent parameters obtained

alongside the measured boundary absorption are discussed below.

4.4.1 Schroeder Frequency

The Schroeder frequency limit was estimated in Sec. 3.1.2, following Eq. 3.1, to range between 1000

Hz and 3000 Hz depending on water depth, temperature, and salinity. This limit determines cutoff

frequency for effective modal modeling of acoustic propagation within the tank. The estimated

Schroeder frequency for the parameters (water depth of 0.5 m and temperature of 20.88◦ C) of the

tank during data collection for this thesis was fSest = 1311 Hz. Through measuring the reverberation

time of the tank (Sec. 4.2.1), it was independently determined that the Schroeder frequency for the

acrylic-walled tank was 2618 Hz. The Schroeder frequency limit shifted to 2416 Hz (overall) when

the anechoic panels were applied to the walls of the tank. These values confirm that the dimensions

as well as the absorption of the tank make it qualified for the intended ultrasonic bandwidth. The

Schroeder frequency can also inform assumptions when operating with bandwidths below this

limit. The Schroeder frequency limit is also dependent on the speed of sound, which estimate was

confirmed by measurements.

4.4.2 Speed of Sound

Several equations have been proposed for calculating the speed of sound in the ocean. Since the

tank can have a maximum depth of 0.92 m and is currently filled with tap water, the primary source

of sound speed variability within the tank is the temperature of the water. The results of Garrett’s

formulation as a function of temperature are compared to two other classical models: the Medwin
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Figure 4.25 Speed of sound in water compared using three classic models. The average
tank water temperature for data collected in this thesis is shown as the dashed line, and the
speed of sound predicted by each model for the average water temperature in the tank is
given in the legend. These values are determined with the assumption of low water depth
(d) and low salinity (s), which are common for the tank environment.

model [54] and the Wilson model [55]. The effect of temperature on the sound speed in the water

according to various models is illustrated in Fig. 4.25. According to Garrett’s formulation [3]

(Eq (11.26)), the speed of sound in water for a depth of 0.25 m (average depth in a tank with 0.5 m

of water) and a low salinity of 0.03 ppt at a temperature of 20.88◦C is 1483.65 m/s, which is close

to the Medwin value and about 10 m/s higher than the Wilson value.

To further justify this sound speed approximation from Garrett’s model, measurements were

taken to determine the acoustic travel time at different distances. The measurements were compared

using a cross-correlation function to determine a time-delay vs range. The corresponding sound

speeds are shown as a function of range in Fig. 4.26. Except for a few outliers, the sound speeds
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Figure 4.26 Speed of sound in water measured in the tank through correlation of range-
dependent scans. A comparison is made to the sound speed estimated by Garrett’s model
for an average tank water temperature of 20.88◦C with low water depth and an assumed
low salinity. The measured data has an average of 1487 m/s compared to the model
estimate of 1484 m/s from Garrett’s model.

from the cross-correlation approach are within 3 m/s of the value obtained from Garrett’s model.

This comparison indicates that the estimated value based on the Garrett model may be used in the

future to adjust for variations in water temperature and salinity when processing data.

4.4.3 Tank Noise

Another important characteristic of the tank that needs to be understood is the ambient noise present

in recordings. This ambient noise profile is of interest, even though the deconvolution method
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Table 4.2 Summary of estimated and measured data for the overall bandwidth from
5-500 kHz. This table provides data for the acoustic characteristics (absorption coefficient,
reverberation time, Schroeder frequency limit, speed of sound in water) of the tank with
acrylic and anechoic boundaries.
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Figure 4.27 Raw time waveforms of the ambient noise in the tank. Ten separate ambient
measurements are plotted together.

(Sec. 3.2.1) handles noise well. A set of ambient noise measurements were taken on the 28th of

June 2021 as described in Appendix A.5. The resulting signals for ten measurements are displayed

in Fig. 4.27. These output voltages (which can be changed to acoustic pressure when a voltage

sensitivity is applied) are normally distributed over all ten measurements. The distribution for

one of the measurements is shown in Fig. 4.28. The ambient noise in the tank environment is

most prominent below the Schroeder frequency (approximately 2 kHz) as seen in Fig. 4.29. All

ten measurements appear to be fairly consistent in both frequency content as well as amplitude.

This consistency indicates that the deconvolution method (Eq.3.18) using the TTS response should

account for uncorrelated ambient noise within the tank without the need for multi-scan averaging as

discussed in Sec. 3.2.
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Figure 4.28 A histogram of the output voltages from one of the ambient measurements
reveals a normal distribution about the mean. Nine other measurements were analyzed and
shown similar normal distributions. Note the DC offset of approximately 3 mV.
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Figure 4.29 Power spectral density of the ambient noise measurements showing that
the majority of the ambient tank noise is below 2 kHz (below the Schroeder Frequency).
Ten separate ambient measurements are plotted together. The high frequency peaks are
hypothesized to be electromagnetic radiation from ambient sources such as the robotic
arms.



Chapter 5

Conclusion

The BYU underwater acoustics research laboratory has been designed and built from the ground up

as part of this thesis work with both a high level of visual aesthetic as well as functionality. The

research table was even custom designed and built to both match the aesthetic of the tank as well

as offer many benefits for researchers while taking measurements such as monitoring equipment

and maintaining effective cable management. The acoustic nature of the water tank environment

along with carefully selected anechoic panels have been evaluated and a measurement chain has

been developed and validated to provide quality acoustic measurements in a safe and user friendly

way. The measurement chain uses a robotic positioning system controlled by custom software

(ESAU) developed to precisely place transducers within the tank for measurements as well as

generate signals and collect data. Each piece of equipment has been selected to handle a wide

variety of future applications and developed to be safe and user friendly so future students may

learn to perform valuable research with ease. This functionality includes a significant amount of

automation and remote capabilities.

Beyond the development of a full measurement chain with many capabilities, procedures

have been developed and documented to care for the equipment and tank in the lab. These

procedures include the active lab documentation in Appendix C which will continue to be updated

100
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by future students to address the growing needs of the lab. Along with procedures for caring for

the lab, tools have been developed to care for the equipment. The filtration system especially was

developed in order to address the concerns of maintaining consistent control of water environmental

characteristics and avoid bubbles which may significantly impact measurements. The laboratory

has been developed and proven functional and reliable for student research purposes in underwater

acoustics.

The BYU underwater acoustics tank and measurement chain have proven their ability to allow

for effective underwater acoustic measurements particularly above the Schroeder frequency limit.

The acoustic characterization of the tank environment illustrates how acoustic energy propagates and

behaves within the tank environment over fractional octave bands within the bandwidth 5-500 kHz.

This characterization provides an opportunity to study scaled acoustic measurements in a controlled

laboratory environment and for developing a good frequency-dependent acoustic propagation model

for the tank.

An in situ calibration method, as discussed in Sec. 3.2.2, has been developed, which allows for

a systematic accounting for the frequency dependence of all transducers within the measurement

chain. The frequency dependence of the measurement chain, referred to as the through-the-sensor

(TTS) response, can then be removed from measured data via deconvolution. The deconvolution

method (Eq. 3.18) also helps to provide an accounting for uncorrelated ambient noise within the

tank without the need for multi-scan averaging. The ambient noise was shown to be most prominent

below the Schroeder frequency limit, which is well below the bandwidth of interest considered

in this thesis. The TTS response, or calibration, applied to subsequent measured data through

deconvolution gives a more precise response of the tank environment.

This more precise response of the tank on sound propagation, especially the impulse response

h(t), is required for effectively characterizing the acoustic boundary conditions of the tank. The

impulse response is used to determine the reverberation time T60 of the tank by determining the
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decay curve of h(t)2 through reverse Schroeder integration. The resultant reverberation time as

well as the measured Schroeder frequency (which is proportional to the T60 for the acrylic-walled

tank) agreed well with the predicted values. By fractional-octave band filtering, the resultant

frequency-dependent reverberation time, T60( f ), was obtained for frequencies 5-500kHz in 1/30th

octave bands.

The frequency-dependent reverberation time T60( f ) was used to estimate the frequency-dependent

spatially averaged acoustic absorption coefficient < α >S ( f ) by solving the modified Norris-Eyring

equation (Eq. 3.2) for both the acrylic-walled tank as well as the tank with anechoic panel lined

walls. This characterization helped to better quantify the particular boundary conditions of the tank

and provided a clear understanding of the benefit provided by the anechoic panels. This gives a more

precise absorption characterization over a larger bandwidth than provided by Precision Acoustics;

their information was obtained for panels with different backing (unbacked or backed by a 5mm

thick steel plate). Furthermore, the absorption characterization of the tank boundaries confirmed

the validity of the pressure-release boundary assumption for the open-air surface. However, the

validity of accounting for propagation absorption in the water with Eq. 3.3 may still be in question,

particularly above 135 kHz. The acoustic absorption is also the primary characteristic necessary for

developing analytical acoustic propagation models for the tank environment.

The spatially averaged acoustic absorption coefficient was applied to two finite-impedance

boundary models that have proven to be potential candidates for modeling the tank. The derivation

of these models follows the formulation for a rectangular parallelepiped acoustic water waveguide

by Pierce [43] and Novak [53] and provide reasonable agreement to measured data. The Pierce

model was also compared to the ORCA model in order to assess the potential for modeling a scaled

open-ocean environment within the tank and shows promise. This evaluation provides an initial

validation of potential capability of modeling sound propagation in the tank.
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5.1 Future Work

The acoustic characterization of the tank provides an understanding of the position and frequency-

dependent response, reverberation, and absorption. This method may be applied to future adaptations

of the tank environment including an evaluation of absorption from artificial seabeds applied to

the tank bottom. Measured absorption values provide an estimate of the acoustic transmission loss

and lay a strong foundation for a precise finite-impedance boundary acoustic propagation model.

Future work can expand on these initial findings through more development and evaluation of

the Novak, Pierce, and ORCA models and provide refinement to these models. Development of

the models could include exact implementation of source strength and an appropriate pressure

amplitude term as well as the evaluation of ray-tracing models. Further development could also

be made in evaluating improved acoustic propagation absorption models, that are more accurate

particularly above 100 kHz within tank environments.

The measured absorption of the anechoic panels suggests the potential for additional investiga-

tions. More absorption measurements need to be taken to improve the evaluation of the anechoic

nature of the side walls under variable conditions such as temperature. With further measurements

more precisely defined frequency bands and physical source-receiver locations at which the tank

behaves more like an open ocean with no lateral reflections may be obtained. Additional ideas for

improving the absorption of the panels include building a frame to allow additional space between

the anechoic panels and the acrylic walls, adding another absorption layering, or evaluating different

anechoic materials, such as active ultrasonic absorbers. An absorption coefficient closer to 1 should

be sought after for making a better scale-model version of open-ocean applications. The degree to

which the tank approximates an open ocean may be evaluated by further comparison with ORCA, a

well accepted ocean normal-mode model.

Another future topic of interest is the evaluation of the generalization error of machine learning

(ML) algorithms under sound speed variability in passive SONAR application as shown in Fig. 5.1.
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Figure 5.1 Flow chart laying out potential important future work involving applying the
initial findings of this thesis in the development of models for obtaining synthetic training
data. The synthetic data can be used for training machine learning models for evaluating
the generalization of the machine learning model under variable to better understand
necessary refinement training.
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This evaluation can provide a valuable assessment of the level of retraining necessary for re-

calibration of ML underwater acoustic models. This assessment is beneficial for addressing the

ever changing environmental characteristics and complex nature of the open ocean and acoustic

propagation.



Appendix A

List of Data

For organization and clarity and for future reference, a detailed list of data used for this thesis is

provided. This list includes the data which were used to generate figures, where the data can be

found, and references some of the associated code(See Appendix B) used to process said data. This

appendix does not document all that is included in the logfile documentation or the LabJournal

documents since a copy of each reside in the file for each measurement on the "W:Underwater"

shares drive. However, each measurement has a .txt log file (seen in Appendix A.1 for an example)

(following the recommendation given by Curtis [28]) that contains all information mentioned in

Sec. C.4.2 along with other measurement chain components used and their settings.

All of the raw data can be found on the shares drive in the folder W:\uw-measurements-tank,

where W: represents the shares/Acoustics/underwater drive, (organized by year and date) as well as

a backup of the specific data sets used for this thesis in W:\Vongsawad\Data.
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A.1 Log Files

The measurement parameters recorded for each individual log file contains the information seen in

the example log file below. This log file example comes from scan6 measurement taken 2021-09-27

and is provided to better understand the data that is collected in each measurement.

Log file for ID000_000.bin (Single-Precision)

09/30/21

14:36:18

Temp: 22.77 deg C

Input Device M/N: USB-TC01 S/N: 1F2CC9E

Temp: 20.52 deg C

Input Device M/N: USB-TC01 S/N: 1F2CD84

Temperature: 20.325066 deg C and Depth: 0.567989 m

Temperature: 20.244476 deg C and Depth: 0.555501 m

Card: 4

Channel: 0

Signal Configuration:

Generated Chirp (linear) from 50000.00 Hz to 100000.00 Hz chirp

Total length: 1200000 Leading 0's: 200000

Signal length: 500000 Trailing 0's: 500000
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Number of channels loaded: 1.

Loaded into channels 0.000000

.

Sampling frequency: 1000000 Hz.

Forward Step Configuration:

Number of averages: 1

Output Settings:

Reused Previously Loaded Data (T/F):

F

Card 0

Enabled: TRUE Gain: 1000 mV

Enabled: FALSE Gain: 1000 mV

Enabled: FALSE Gain: 1000 mV

Enabled: FALSE Gain: 1000 mV

Card 1

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV

Card 2

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV
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Enabled: FALSE Gain: 300 mV

Card 3

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV

Enabled: FALSE Gain: 300 mV

Input Settings:

Card 0

Enabled: TRUE Range: +/-5 V Termination: Low

Enabled: TRUE Range: +/-10 V Termination: High

Enabled: FALSE Range: +/-10 V Termination: High

Enabled: FALSE Range: +/-10 V Termination: High

Card 1

Enabled: FALSE Range: +/-10 V Termination: High

Enabled: FALSE Range: +/-10 V Termination: High

Enabled: FALSE Range: +/-10 V Termination: High

Enabled: FALSE Range: +/-10 V Termination: High

Sampling Frequency: 1000000 (Hz)

Number of samples: 1200000
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TR IR Calculation:

Focus Step Configuration:

Comments:

Source: 0.410,2.130,0.250,0.000,0.000,0.000,0.000,

0.000,0.000,0.000,0.000,0.000

Receiver: 0.410,1.830,0.250,0.000,0.000,0.000,0.000,

0.000,0.000,0.000,0.000,0.000

Water Level: 0.500000 m

Aegir Transducer: BK8103-3249189

Ran Transducer: BK8103-3249190

A.2 Simulation Data

The simulated data discussed and shown in Sec. 3.2.1 were created by algorithms developed to

provide a test case of how the frequency deconvolution performs. The algorithms developed can be

reviewed in Appendix B.2.4. These data were used in order to obtain Figures 3.11, 3.8, 3.9, 3.10,

3.4, 3.5, 3.6, 3.7, 3.12, 3.14.
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A.3 Primary Measured Data

Linear swept-sine signals were generated for bandwidths 5-10 kHz, 10-50 kHz, 50-100 kHz and

100-500 kHz and were sampled at 250 kHz, 500 kHz, 1 MHz, and 1 MHz respectively with a signal

length of 0.5 s led and followed by 0.5 s of zeros. The generated signals were output at 1 V for

each band except for the 100-500 kHz band which output at 3 V in order to obtain better SNR

(signal-to-noise-ratio). For these measurements, a Brüel & Kjær 8103 phase matched hydrophone

was used as source and receiver for each bandwidth except the 100-500 kHz band which used a

Teledyne Reson TC4038 hydrophone for both transmitting and receiving.

Scans used to characterize the acrylic walls of the tank are as follows for each band of interest.

• 5-10kHz: 2021-09-13/2021-09-14_scan2

• 10-50kHz: 2021-09-13/2021-09-15_scan7

• 50-100kHz: 2021-09-13/2021-09-15_scan9

• 100-500kHz: 2021-09-17B\2021-09-17_scan2

Scans used to characterize and evaluate the benefit of the anechoic panels within the tank are as

follows for each band of interest.

• 5-10kHz: 2021-09-27_scan3

• 10-50kHz: 2021-09-27_scan4

• 50-100kHz: 2021-09-27_scan6

• 100-500kHz: 2021-09-22_scan4
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Measurement identification numbers from the above scans used particularly for generating

results and figures in this thesis (esp. in Ch. 4) come from the following ID’s:

• ID028_000

• ID034_000

• ID084_000

• ID086_000

• ID109_000

• ID111_000

• ID112_000

• ID121_000

• ID130_000

• ID138_000

• ID140_000

• ID190_000

• ID196_000

• ID364_000

• ID373_000

• ID607_000

• ID616_000
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Reverberation time and absorption data from the full scans of 729 source-receiver positions

within the tank from 5-500 kHz were saved in .xls documents in their associated measurement

folders mentioned above. This includes statistical analysis of this data. The data files are named as

follows.

Reverberation time and absorption data for the acrylic walled tank:

• AbsorbAcrylic5k-10k.xlsx

• AbsorbAcrylic10k-50k.xlsx

• AbsorbAcrylic50k-100k.xlsx

• AbsorbAcrylic100k-500k.xlsx

Reverberation time and absorption data for the acrylic walled tank accounting for propagation

absorption:

• AbsorbAcrylicProp5k-10k.xlsx

• AbsorbAcrylicProp10k-50k.xlsx

• AbsorbAcrylicProp50k-100k.xlsx

• AbsorbAcrylicProp100k-500k.xlsx

Reverberation time and absorption data for the anechoic walled tank

• AbsorbPanels5k-10k.xlsx

• AbsorbPanels10k-50k.xlsx

• AbsorbPanels50k-100k.xlsx

• AbsorbPanels100k-500k.xlsx
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Reverberation time and absorption data for the anechoic walled tank accounting for propagation

absorption

• AbsorbPanelsProp5k-10k.xlsx

• AbsorbPanelsProp10k-50k.xlsx

• AbsorbPanelsProp50k-100k.xlsx

• AbsorbPanelsProp100k-500k.xlsx

All data contained in this section represents the bulk of the data obtained for this thesis and was

used for generating the figures found in Ch. 4.

A.4 Validating Measurements

The data used to provide Figure 3.3 comes from a measurement taken 2021-03-23 (W:\Vongsawad

\Data\2021-03-23). The particular measurement was "scan10" used to validate the time gating and

impulse response methods discussed in Sec. 3.1.3 and 3.2.1. For this measurement, the original

four anechoic panels lined the y-max side of the tank and this data was specifically collected for

evaluating the measurement methodology and data processing techniques.

A.5 Noise Measurements

Data collected to measure the ambient noise within the water tank environment were taken on

2021-06-28. The measurements specifically span scans 19-28 and can be found in the file path

W:\Vongsawad\Data\2021-06-28. These data were used in generating Figs. 4.27, 4.28, and 4.29.
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A.6 Data Confirming the Speed of Sound

Speed of sound data was collected on 2021-08-06 and is in the folder W:\Vongsawad\Data\2021-

08-06B. The measurements were taken at both a central depth and width location in the tank with

the purpose of evaluating over range in the tank. Scan1 was the particular measurement used for

this evaluation of the speed of sound and this scan was sampled at 40 MHz in order to provide

high precision when measuring such high speeds over such a small range. These data were used in

generating Fig. 4.26.



Appendix B

Python Algorithms Developed

The algorithms developed for this thesis are given below. Sections are titled for the functionality of

the algorithm, and a brief description of the use of said algorithm is provided. Algorithms are all

available in a GIT repository shared by the research group.

B.1 Loading and Parsing Data

B.1.1 Bin File Data

The first algorithm created was ESAUdata.py, which reads in the data from binary files for a scan

consisting of the generated signal, generated calibration signal, calibration recording, and four

channels of recorded data from Ch0-Ch3.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Oct 14 19:55:16 2020
4

5 This function is to load in the data from scans easily and output the desired
6 information needed. With any number of channels desired.
7

8 @author: cvongsaw

116
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9 """
10

11 def binfileload(path, IDname=None, IDnum=None, CHnum=None, N=-1, Nstart=0):
12 """
13 Loads in a bin file generated by AFR
14

15 Loads float32 single-precision, little-endian binary files without header
16 information.
17

18 This function returns NumPy datatypes, so make sure you are importing
19 NumPy in your base scripts.
20

21 Parameters
22 ----------
23 path : str
24 The path to the file, do not include trailing separator. If the next three
25 values are not input, it will assume that this is just a file you want to load.
26 IDname : str, optional
27 Root test name selected in AFR to save the files, e.g. 'ID'
28 IDnum : int, optional
29 Test number as recorded by AFR, e.g. 1
30 CHnum : int, optional
31 Channel number as recorded by AFR, e.g. 0
32 N : int, optional
33 Number of samples to read. Default is entire file.
34 Nstart: int, optional
35 Number of samples to offset from beginning of file. Default beginning.
36

37 Returns
38 -------
39 x : ndarray of float
40 The full array of data is returned
41

42 Notes
43 -------
44 Author: David Van Komen (david.vankomen@gmail.com)
45

46 Last Modified: 02/18/20
47

48 Based on: binfileload.m by Kent Gee
49 """
50 import os
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51 from pathlib import Path
52 import numpy as np
53

54 if IDname == None and CHnum == None and IDnum == None:
55 # we're going to use just the filename if it's ever not zero
56 filename = Path(path)
57 if not filename.exists():
58 raise FileNotFoundError(f"The file '{filename}'' does not exist!")
59 elif IDname != None and CHnum != None and IDnum != None:
60 # generate the filename based on input parameters
61 filename = Path(path)
62 filename = filename / f"{IDname}{IDnum:03.0f}_{CHnum:03.0f}.bin"
63 if not filename.exists():
64 raise FileNotFoundError(
65 f"The file '{str(filename)}'' governed by these inputs doesn't exist.")
66 else:
67 raise Exception(
68 "Sorry, but if you're going to use one of the optional " +
69 "filename inputs, you need to use them all.")
70

71 # open the file as our binary file type
72 with open(filename, 'rb') as binary_file:
73

74 # fix where we start reading
75 # convert Nstart to bytes instead of bits
76 Nstart = Nstart * 4
77

78 # move the binary file to where we want to start reading
79 binary_file.seek(Nstart)
80

81 # now, we get the handle for the actual data that's left
82 data = binary_file.read()
83

84 # grab the data from the buffer
85 x = np.frombuffer(data, dtype=np.float32, count=N)
86

87 binary_file.close()
88 return x
89 # end binfile load
90

91

92
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93

94 def ESAUdata(path,desire=[0],channels=[0],N = 450e3,Ncal = 450e3):
95 """
96 Parameters
97 ----------
98 path: string;
99 file path name

100 desire: list;
101 Desired scan positions to analyze. Should be input as a list of
102 ordered scans. Defaults to only the first measurements data.
103 channels: list, Optional;
104 Input channels used (channel numbers for recording data listed)
105 Default to [0], being only the first channel on the spectrum cards
106 [0,1] would represent the first two channels, [0,2] would represent
107 the first and third channel.
108 N: float, Optional;
109 Number of samples. Defaults to 450 kSamples for an fs of 150 kHz
110 and trec of 3 seconds
111 Ncal: float, Optional;
112 Number of samples in calgen.bin. Defaults to 450 kSamples for
113 an fs of 150 kHz and trec of 3 seconds
114

115 Returns
116 -------
117 gen: float;
118 generated signal for each channel outputting signal
119 calgen: float;
120 generated calibration signal when selected different from gen
121 cal: float;
122 calibration measurement for each channel receiving
123 ch0: float;
124 all recorded scans desired from ch0
125 ch1: float;
126 all recorded scans desired from ch1
127 ch2: float;
128 all recorded scans desired from ch2
129 ch3: float;
130 all recorded scans desired from ch3
131

132

133 Notes
134 -----
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135 Author: Cameron Vongsawad
136

137 Does not currently allow for taking in second chassis daisy chained to first.
138

139 Now allows for scan without a calibration measurement by checking if a
140 calibration file exists before loading cal file. Else cal = zeros and errors
141 message about missing cal measurement is printed.
142 cal file format updated from cal.bin or cal (1).bin to cal_000.bin. Allows
143 for both potential options if referring to older measurements. It also allows
144 for nonsequential channel calibration measurements.
145

146 Allows for non scan measurements and when the file does not contain
147 a generated signal file. Also allows for agenerated calibration signal
148 different than the generated signal.
149

150 No longer needs byuarglib since binfileload was copied into this file and
151 is called locally.
152

153

154 last modified 04/06/2021
155 """
156 import numpy as np
157 import os.path as check
158 import warnings
159 ##################################################
160 #load generated signal and calibration measurement
161 ##################################################
162 print('loading data...')
163

164 if N == None:
165 N = 450e3
166 if Ncal == None:
167 Ncal = 450e3
168

169 isFile_gen = check.isfile(path+ '/signal_out.bin')
170 if isFile_gen == True:
171 gen = binfileload(path + '/signal_out.bin')
172 else:
173 gen = np.empty(int(N),dtype = float)
174 print('')
175 print('Warning: No generated file found. gen = empty')
176
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177 isFile_cal = check.isfile(path+ '/calgen.bin')
178 if isFile_cal == True:
179 calgen = binfileload(path + '/calgen.bin')
180 print('')
181 print('Calibration Signal found Different from Generated Signal')
182 else:
183 calgen = np.empty(int(Ncal),dtype = float)
184 print('')
185 print('Warning: No generated calibration file found. Calibration'
186 +' performed same as gen or not at all. calgen = empty')
187

188

189 isFile0 = check.isfile(path+ '/cal_000.bin') or check.isfile(path+ '/cal.bin')
190 isFile1 = check.isfile(path+ '/cal_001.bin') or check.isfile(path+ '/cal (1).bin')
191 isFile2 = check.isfile(path+ '/cal_002.bin') or check.isfile(path+ '/cal (2).bin')
192 isFile3 = check.isfile(path+ '/cal_003.bin') or check.isfile(path+ '/cal (3).bin')
193

194 isFile = [isFile0,isFile1,isFile2,isFile3]
195

196 #load calibration file for each channel recorded into 1 of 4 columns in the
197 #array for the 4 channels allowed with the spectrum cards.
198 if isFile_cal == True:
199 cal = np.empty((len(calgen),len(isFile)),dtype = float)
200 else:
201 cal = np.empty((len(gen),len(isFile)),dtype = float)
202 #for idx,ch in enumerate(channels):
203 for idx in range(len(isFile)):
204 if isFile[idx] == True:
205 if check.isfile(path+ f'/cal_00{idx}.bin') == True:
206 cal0 = binfileload(path + f'/cal_00{idx}.bin')
207 cal[:,idx] = cal0
208 elif check.isfile(path+ f'/cal ({idx}).bin'):
209 cal0 = binfileload(path + f'/cal ({idx}).bin')
210 cal[:,idx] = cal0
211 elif check.isfile(path+ '/cal.bin') == True:
212 cal0 = binfileload(path + '/cal.bin')
213 cal[:,idx] = cal0
214 else:
215 #cal[:,ch] = np.zeros(len(gen),dtype = float)
216 print('')
217 print(f'Warning: no ch{idx} calibration file found')
218
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219 if (cal == np.empty((len(gen),4),dtype = float)) is True:
220 print('')
221 print('Warning: recording error: calibration not recorded, file is empty')
222

223

224 """
225 This is the old version of the cal file loading code. This did not allow for
226 measurements to be taken on unconsecutive channels or without first using ch0
227 if isFile0 == True:
228 if check.isfile(path+ '/cal_000.bin') == True:
229 cal0 = binfileload(path + '/cal_000.bin')
230 cal[:,0] = cal0
231 else:
232 cal0 = binfileload(path + '/cal.bin')
233 cal[:,0] = cal0
234 else:
235 cal0 = np.zeros(len(gen),dtype = float)
236 print('')
237 print('Warning: no ch0 calibration file found')
238

239 if (cal0 == np.zeros(len(gen),dtype = float)) is True:
240 print('')
241 print('Warning: recording error: calibration not recorded, file is empty')
242

243 if isFile1 == True:
244 if check.isfile(path+ '/cal_001.bin') == True:
245 cal1 = binfileload(path + '/cal_001.bin')
246 cal[:,1] = cal1
247 else:
248 cal1 = binfileload(path + '/cal (1).bin')
249 cal[:,1] = cal1
250 if isFile2 == True:
251 if check.isfile(path+ '/cal_002.bin') == True:
252 cal2 = binfileload(path + '/cal_002.bin')
253 cal[:,2] = cal2
254 else:
255 cal2 = binfileload(path + '/cal (2).bin')
256 cal[:,2] = cal2
257 if isFile3 == True:
258 if check.isfile(path+ '/cal_003.bin') == True:
259 cal3 = binfileload(path + '/cal_003.bin')
260 cal[:,3] = cal3
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261 else:
262 cal3 = binfileload(path + '/cal (3).bin')
263 cal[:,3] = cal3
264 """
265 #load all scan binfiles
266 ch0 = np.empty((len(gen),len(desire)))
267 ch1 = np.empty((len(gen),len(desire)))
268 ch2 = np.empty((len(gen),len(desire)))
269 ch3 = np.empty((len(gen),len(desire)))
270 #pull only the "desire" values and their index value from the list
271 #to populate array
272 #to view channel 0
273 if 0 in channels:
274 for idx,ich in enumerate(desire):
275 ch0[:,idx] = binfileload(path,"ID",ich,0)
276 #to view channel 1
277 if 1 in channels:
278 for idx,ich in enumerate(desire):
279 ch1[:,idx] = binfileload(path,"ID",ich,1)
280 #to view channel 2
281 if 2 in channels:
282 for idx,ich in enumerate(desire):
283 ch2[:,idx] = binfileload(path,"ID",ich,2)
284 #to view channel 3
285 if 3 in channels:
286 for idx,ich in enumerate(desire):
287 ch3[:,idx] = binfileload(path,"ID",ich,3)
288

289 return gen, calgen, cal, ch0, ch1, ch2, ch3

B.1.2 Scan Position Data

The following algorithm, ESAUpose.py, is used for reading the .txt file including all positions within

a grid scan using ESAU’s UR10e motion control feature. These positions of both Ægir and Rán

imported as a list of tuples as well as a list of range ristances between both Ægir and Rán.
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1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Oct 14 18:56:51 2020
4

5 This Function is for loading in ESAU scan positions to plot and use. It searches
6 for files called scan_positions.txt in the file path. This name convention is
7 what is used when using ESAU-Motion-UniversalRobots.
8

9 @author: cvongsaw
10 """
11

12 def ESAUpose(path,desire = [0],plot = False,Acal = (0.6,2.14,0.3),
13 Rcal = (0.6,2.06,0.3)):
14 """
15 Parameters
16 ----------
17 path: string;
18 file path name
19 desire: list;
20 desired scan positions. Should be input as a list of ordered scans
21 this defaults to the first position if not specified otherwise in
22 a list.
23 plot: Boolean {True or False}, optional;
24 Default is False which does NOT returns the individual scan plots
25 True returns individual scan plots with associated Source and
26 Receiver positions as well as range distance in meters.
27 Acal: Tuple, Optional;
28 (x,y,z) position of the AEgir calibration measurement
29 Default Acal = (0.6,2.14,0.3)
30 Rcal: Tuple, Optional;
31 (x,y,z) position of the Ran calibration measurement
32 Default Rcal = (0.6,2.06,0.3)
33 Returns
34 -------
35 A: list;
36 List of AEgir positions for each individual scan
37 R: list;
38 List of Ran positons for each individual scan
39 dd: ndarray;
40 range distance between Aegir and Ran positions for the desired
41 scan positions.
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42

43 Notes
44 -----
45 Author: Cameron Vongsawad
46

47 The code runs two options, the first for a scan with only one source and
48 receiver position (a single measurement) and the other with more than
49 one (aka an actual "scan")
50

51 The code can also check if there is a scan_positions.txt file, if there is
52 none, the code gives back zeros and a warning.
53

54 last modified 2/3/2021
55 """
56

57 import numpy as np
58 import matplotlib.pyplot as plt
59 import matplotlib.pylab as pylab
60 params = {'legend.fontsize': 24,
61 'figure.figsize': (15, 10),
62 'axes.labelsize': 28,
63 'axes.titlesize':29,
64 'axes.titleweight':'bold',
65 'xtick.labelsize':24,
66 'ytick.labelsize':24,
67 'lines.linewidth':3}
68 pylab.rcParams.update(params)
69 import os.path as check
70

71 isFile_gen = check.isfile(path+'/scan_positions.txt')
72 if isFile_gen == True:
73 print('loading scan positions...')
74 ################################################
75 #load in scan positions as A(x,y,z) and R(x,y,z)
76 ################################################
77 pos = np.loadtxt(path+'/scan_positions.txt')
78

79 ################################################
80 #Load and plot positions of a SINGLE measurement
81 #of single source & receiver positions
82 ################################################
83 if len(pos) == 24:



B.1 Loading and Parsing Data 126

84 a = (pos[0],pos[1],pos[2])
85 r = (pos[12],pos[13],pos[14])
86 A = a
87 R = r
88 ##########################################################
89 #create x,y,and z arrays of scan positions for 3D plotting
90 #and highlights positions used for a specific scan
91 ##########################################################
92 print('organizing scan positions...')
93 xA,yA,zA = np.array([]),np.array([]),np.array([])
94 xR,yR,zR = np.array([]),np.array([]),np.array([])
95

96 xA = A[0]
97 yA = A[1]
98 zA = A[2]
99 xR = R[0]

100 yR = R[1]
101 zR = R[2]
102 ##################################################################
103 #calculate all range distances for the full list of scan positions
104 ##################################################################
105 d = np.sqrt( (xA-xR)**2 + (yA-yR)**2 + (zA-zR)**2 )
106 #Plot Scan Grid
107 if plot == True:
108 print('plotting scan position...')
109 #plot scan positions
110 from mpl_toolkits import mplot3d
111 scan = plt.figure()
112 ax = plt.axes(projection ="3d")
113 ax.scatter3D(xA, yA, zA, color = "green")
114 ax.scatter3D(xR, yR, zR,color = "red")
115 ax.scatter3D(Acal[0],Acal[1],Acal[2], color = "orange",marker = "^")
116 ax.scatter3D(Rcal[0],Rcal[1],Rcal[2], color = "orange",marker = "^")
117 ax.scatter3D(A[0],A[1],A[2],color = "blue",marker = 's',
118 linewidths = 10)
119 ax.scatter3D(R[0],R[1],R[2],color = "blue",marker = 's',
120 linewidths = 10)
121 ax.set_xlabel('X (m)')
122 ax.set_ylabel('Y (m)')
123 ax.set_zlabel('Z (m)')
124 ax.set_xlim(0,1.22)
125 ax.set_ylim(0,3.66)
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126 ax.set_zlim(0,0.91)
127 ax.set_title(f'S{A}, R{R}, d={round(d,3)}m')
128 #########################################################
129 #Only save range distances for the desired scan positions
130 #########################################################
131 dd = d
132

133 return A, R, dd
134 ####################################################
135 #Load and plot positions of a scan of measurements
136 #w/ multiple source and multiple receiver positions
137 ####################################################
138 else:
139 A = []
140 a = np.zeros(3)
141 R = []
142 r = np.zeros(3)
143 for i in range(len(pos[:,0])):
144 a = (pos[i,0],pos[i,1],pos[i,2])
145 r = (pos[i,12],pos[i,13],pos[i,14])
146 A.insert(i,a)
147 R.insert(i,r)
148 ##########################################################
149 #create x,y,and z arrays of scan positions for 3D plotting
150 #and highlights positions used for a specific scan
151 ##########################################################
152 print('organizing scan positions...')
153 xA,yA,zA = np.array([]),np.array([]),np.array([])
154 xR,yR,zR = np.array([]),np.array([]),np.array([])
155 for i in range(len(A)):
156 xA = np.append(xA,A[i][0])
157 yA = np.append(yA,A[i][1])
158 zA = np.append(zA,A[i][2])
159 xR = np.append(xR,R[i][0])
160 yR = np.append(yR,R[i][1])
161 zR = np.append(zR,R[i][2])
162 ##################################################################
163 #calculate all range distances for the full list of scan positions
164 ##################################################################
165 d = np.empty(len(A))
166 for i in range(len(A)):
167 d[i] = np.sqrt( (xA[i]-xR[i])**2 + (yA[i]-yR[i])**2 +
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168 (zA[i]-zR[i])**2 )
169 #Plot Scan Grid
170 if plot == True:
171 print('plotting scan positions...')
172 for i in desire:
173 #plot scan positions
174 from mpl_toolkits import mplot3d
175 scan = plt.figure()
176 ax = plt.axes(projection ="3d")
177 ax.scatter3D(xA, yA, zA, color = "green")
178 ax.scatter3D(xR, yR, zR,color = "red")
179 ax.scatter3D(Acal[0],Acal[1],Acal[2], color = "orange",
180 marker = "^",linewidths = 4)
181 ax.scatter3D(Rcal[0],Rcal[1],Rcal[2], color = "orange",
182 marker = "^",linewidths = 4)
183 ax.scatter3D(A[i][0],A[i][1],A[i][2],color = "blue",
184 marker = 's',linewidths = 10)
185 ax.scatter3D(R[i][0],R[i][1],R[i][2],color = "blue",
186 marker = 's',linewidths = 10)
187 ax.set_xlabel('X (m)')
188 ax.set_ylabel('Y (m)')
189 ax.set_zlabel('Z (m)')
190 ax.set_xlim(0,1.22)
191 ax.set_ylim(0,3.66)
192 ax.set_zlim(0,0.91)
193 ax.set_title(f'S{A[i]}, R{R[i]}, d={round(d[i],3)}m')
194 #########################################################
195 #Only save range distances for the desired scan positions
196 #########################################################
197 dd = np.empty(len(desire))
198 for idx,i in enumerate(desire):
199 dd[idx] = d[i]
200

201 return A, R, dd
202 else:
203 print('')
204 print('Warning: no scan position file found')
205 A = [0,0,0]
206 R = [0,0,0]
207 dd = 0
208 return A, R, dd
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B.1.3 Measurement Parameter Data

The final major data loading related algorithm, readlogFile.py, was developed by Corey Dobbs

in order to read in data from .txt logfiles from each scan. This algorithm provides individual

measurement details recorded by ESAU for each measurement such as sampling rate, signal length,

signal bandwidth, water temperature, water depth, etc.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Mar 10 15:11:18 2021
4

5 @author: Corey Dobbs
6 """
7

8

9 def readLogFile(filename,location):
10 """
11 Code Description:
12 This code takes the log file output by ESAU and extracts important details.
13 Details described in Returns section.
14 The bandwidth, source and receiver positions, sampling frequency, water
15 temperature, and water depth are all printed at the end of the code.
16 Relevant variables are listed as returns.
17

18

19 Parameters
20 ----------
21 filename : String
22 The name of the file (type .txt) from which you will pull the experiment
23 parameters. Start and end with quotes.
24 Ex: 'ID001_001log.txt'
25

26 location : String
27 Directory of file that you want to pull
28 Ex: 'D:/uw-acoustics-research/uw-meas-codes/underwater-measurements/analysis/'
29 IMPORTANT: Check direction of slashes
30

31 Returns
32 -------
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33 freqMin : Float
34 The lowest frequency on the frequency range of the sweep. (Hz)
35 freqMax : Float
36 The highest frequency on the frequency range of the sweep. (Hz)
37 tempWater : Float
38 Temperature of the water at the time of measurement (degrees Celsius)
39 fs : Float
40 Sampling frequency of measurement (Hz)
41 leadingZeros : Float
42 leading zeros before the measurement starts (s)
43 signalDuration : Float
44 Length of signal (s)
45 trailingZeros : Float
46 trailing zeros after the signal has been sent (s)
47 measurementDuration : Float
48 Length of Measurement (s)
49 hWater : Float
50 Height/depth of water in tank at time of measurement, measured in meters
51 from the bottom of the tank
52 xSource : Float
53 X-position of source (m)
54 ySource : Float
55 Y-position of source (m)
56 zSource : Float
57 Z-position of source (m)
58 xRec : Float
59 X-position of receiver (m)
60 yRec : Float
61 Y-position of receiver (m)
62 zRec : Float
63 Z-position of receiver (m)
64

65 Notes
66 -------
67 Created by Corey Dobbs
68

69 Last updated 4/8/2021
70 """
71

72 #Call desired directory
73 #import sys
74 #sys.path.insert(1,location)
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75

76 mylines = []
77 with open(location+filename,"rt") as myfile:
78 for myline in myfile:
79 mylines.append(myline.rstrip('\n'))
80

81

82 #Find receiver position
83 substrR = "Receiver: "
84 for line in mylines: # string to be searched
85 index = 0 # current index: character being compared
86 prev = 0 # previous index: last character compared
87 while index < len(line): # While index has not exceeded string length,
88 # set index to first occurrence of substring
89 index = line.find(substrR, index)
90 if index == -1: # If nothing was found,
91 break # exit the while loop.
92 receiverPos = "(" + line[index+len(substrR):index+len(substrR)+17] + ")"
93

94 prev = index + len(substrR) # remember this position for next loop.
95 index += len(substrR) # increment the index by the length of substr.
96 # (Repeat until index > line length)
97

98 #Find source position
99 substrS = "Source: "

100 for line in mylines:
101 index = 0
102 prev = 0
103 while index < len(line):
104 index = line.find(substrS, index)
105 if index == -1:
106 break
107 sourcePos = "(" + line[index+len(substrS):index+len(substrS)+17] + ")"
108

109 prev = index + len(substrS)
110 index += len(substrS)
111

112

113 #Find water depth
114 substrD = "Level: "
115 for line in mylines:
116 index = 0
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117 prev = 0
118 while index < len(line):
119 index = line.find(substrD, index)
120 if index == -1:
121 break
122 waterDepth = line[index+len(substrD):index+len(substrD)+10]
123

124 prev = index + len(substrD)
125 index += len(substrD)
126

127

128 #Find sampling frequency
129 substrF = "Frequency: "
130 for line in mylines:
131 index = 0
132 prev = 0
133 while index < len(line):
134 index = line.find(substrF, index)
135 endIndex = line.find("(Hz)")
136 if index == -1:
137 break
138 samplingFreq = line[index+len(substrF):endIndex] + "Hz"
139

140 prev = index + len(substrF)
141 index += len(substrF)
142

143

144 #Find bandwidth
145 substrBmin = "from "
146 substrBmax = "to"
147 for line in mylines:
148 index = 0
149 prev = 0
150 while index < len(line):
151 index = line.find(substrBmin, index)
152 if index != 0 and index != -1:
153 endIndex = line.find('.00')
154 fmin = line[index+len(substrBmin):endIndex]
155 nextIndex = line.find(substrBmax,index)
156 endIndex2 = line.index('.00',nextIndex)
157 fmax = line[nextIndex+3:endIndex2]
158 break
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159 if index == -1:
160 break
161

162 fmin = line[index+len(substrBmin):endIndex]
163

164 prev = index + len(substrBmin)
165 index += len(substrBmin)
166 bandwidth = fmin + "-" + fmax + " Hz"
167

168 #Find water temperature
169 substrT = "Temp: "
170 for line in mylines:
171 index = 0
172 prev = 0
173 while index < len(line):
174 index = line.find(substrT, index)
175 if index == -1:
176 break
177 waterTemp = line[index+len(substrT):index+len(substrT)+8]
178

179 prev = index + len(substrT)
180 index += len(substrT)
181

182 #Find Leading 0's
183 substrLead = "Leading 0's: "
184 for line in mylines:
185 index = 0
186 prev = 0
187 while index < len(line):
188 index = line.find(substrLead, index)
189 endIndex = line.find(" Signal length:")
190 if index == -1: # If nothing was found,
191 break # exit the while loop.
192 leading = line[index+len(substrLead):endIndex]
193

194 prev = index + len(substrLead)# remember this position for next loop.
195 index += len(substrLead)# increment the index by the length of substr.
196 # (Repeat until index > line length)
197

198 #Find signal length
199 substrL = "length: "
200 for line in mylines:
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201 index = 0
202 prev = 0
203 while index < len(line):
204 index = line.find(substrL, index)
205 endIndex = line.find(" Trailing")
206 if index == -1: # If nothing was found,
207 break # exit the while loop.
208 signalLength = line[index+len(substrL):endIndex]
209

210 prev = index + len(substrL) # remember this position for next loop.
211 index += len(substrL) # increment the index by the length of substr.
212 # (Repeat until index > line length)
213

214 #Find Trailing 0's
215 substrTrail = "Trailing 0's: "
216 for line in mylines:
217 index = 0
218 prev = 0
219 while index < len(line):
220 index = line.find(substrTrail, index)
221 if index == -1: # If nothing was found,
222 break # exit the while loop.
223 # no endIndex, needs to go to the end of line
224 trailing = line[index+len(substrTrail):]
225

226 prev = index + len(substrTrail)# remember this position for next loop.
227 index += len(substrTrail)# increment the index by the length of substr.
228 # (Repeat until index > line length)
229

230 print("Bandwidth: ",bandwidth,'\n',"Water Temp: ",waterTemp,'\n',
231 "Source Position: ",sourcePos,'\n',"Receiver Position: ",receiverPos,
232 '\n',"Sampling Freq: ",samplingFreq,'\n',"Water Height: ",waterDepth)
233

234 #Convert strings to variables (floats)
235 freqMin = float(fmin)
236 freqMax = float(fmax)
237 tempWater = float(waterTemp[0:-2])
238 fs = float(samplingFreq[0:-2])
239 Ns = float(signalLength)
240 leadingZeros = float(leading)/fs
241 signalDuration = Ns/fs
242 trailingZeros = float(trailing)/fs
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243 measurementDuration = leadingZeros + signalDuration + trailingZeros
244 hWater = float(waterDepth[0:-1])
245 xSource = float(sourcePos[1:6])
246 ySource = float(sourcePos[7:12])
247 zSource = float(sourcePos[13:-1])
248 xRec = float(receiverPos[1:6])
249 yRec = float(receiverPos[7:12])
250 zRec = float(receiverPos[13:-1])
251

252 return freqMin,freqMax,tempWater,fs,leadingZeros,signalDuration,trailingZeros,\
253 measurementDuration,hWater,xSource,ySource,zSource,xRec,yRec,zRec

B.2 General Data Processing

B.2.1 Time-Gate Function

Each time-gating function, in TimeGate_UnderwaterTank.py, plays a role in predicting when sound

arrives at a receiving transducer and effectively gating the signal with a half-Hanning window in

order to remove side reflections. The first of three functions related to time-gating is the function

that actually time-gates the input signal with input predicted values, while allowing for a buffer time

δ t on the window as described in Sec. 3.1.3.

16 def gatefunc(IR,fs,tgate,leading=0.0,tb4=0.1):
17 """
18 This function takes a signal and gates out undesired signal. At time
19 "tgate" - "tb4" a hanning window will be applied that rapidly decays to
20 zero.Any signal afterwards will be replaced with zeros. If leading zeros are
21 input, then all those leading zeros will be replaced with actual zeros instead
22 of noise. If the noise needs to be kept, then you must add the
23 leading zeros to tgate before inputing it into the function and set
24 "leading" equal to 0.0. If you have leading zeros in your signal you
25 need to either add them to "tgate" or input them into "leading" or else
26 this function will not work.
27

28 Parameters
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29 ----------
30 IR: ndarray;
31 Impulse Response or time domain signal.
32 fs: float;
33 Sampling frequency of the input time domain signal. Measured in Hz.
34 leading:float, optional;
35 The leading zeros before the signal starts. Deaults to 0.0.
36 tgate: float;
37 Amount of time in seconds from the beginning of the input IR signal
38 in which the reflection of interest is arriving that needs to be
39 timegated out of the signal.
40 tb4: float, optional;
41 Defaults to 0.1 ms. This is the time before the reflection that the
42 timegating should start to cut off any buildup to the reflected signal.
43 This should also ideally be after the initial direct signal.
44

45 Returns
46 -------
47 IRgate: ndarray;
48 Time-gated array of the input signal.
49 Notes
50 -----
51 Author: Cameron Vongsawad
52

53

54 Last Modified: 4/1/2021
55 """
56 import numpy as np
57 Nb4 = tb4/1000 *fs #convert to seconds and then samples before gating
58 #where to start the time-gating or cutting off the signal to zero
59 #start the time gating allowing everything from the beginning of ht
60 start = int(leading*fs)
61 fin = start + int(tgate*fs-Nb4)
62 #convert time length to samples to determine the finish cutoff of ht
63 #fin = int(tgate*fs*percent)
64 #cut off the IR before the first reflection being index "fin"
65 IRgate = np.zeros(len(IR))
66 IRgate[start:fin] = IR[start:fin] #replace up to gate with original
67 tbuff = tb4/2 #buffer value to determine where to apply the hanning window.
68 damp = int(tbuff/1000*fs) #0.05ms of damping converted to samples
69 #apply hanning window to portion of the array following original cutoff
70 #this allows for the signal to more gradually ramp down to zeros.
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71 IRgate[fin:fin+damp] = IR[fin:fin+damp]*np.hanning(damp)
72 #repopulate first half of that damping data keeping original array information
73 IRgate[fin:int(fin+damp/2)] = IR[fin:int(fin+damp/2)]
74

75 return IRgate

The following function estimates sound speed in water according to the formulation of either

Garrett [3], Medwin [54], or Wilson [55]. Each of these simple formulations provide similar results

and were developed from or have inspired many other methods for estimating the speed of sound in

water [56–61]. This thesis primarily focuses on Garrett’s formulation for simplicity and confirmed

this estimated value through measuring the time delay via cross-correlation on range-dependent

measurements. The average value of the sound speed in the tank was estimated at 1478 m/s and

measured to be 1486.5 m/s. Many other methods exist for determining the sound speed or sound

speed profile in water, this method was accepted in this thesis considering the small nature of the

tank. Though with improved precision comes decreased error present in other calculations.

77

78 def uwsoundspeed(D=0.2,T=16.0,S=0.03,model='Garrett'):
79 """
80 Compute the Sound Speed of the Water based on the Depth, Temperature, and
81 Salinity of the water according to three well known models. Garrett, Medwin
82 & Kuperman or Wilson.
83

84 Parameters
85 ----------
86 #Water Characteristics in the Tank#
87 D: float, optional;
88 water depth (m) where 0<= D <=1000m
89 T: float, optional;
90 temperature in Celcius where -2<= T <=24.5
91 S: float, optional;
92 salinity where 0.030<= S <=0.042 grams salt per kg H20 (aka parts per
93 thousand = ppt)
94 Returns
95 -------
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96 c: float;
97 speed of sound in water for the specified depth, temperature and salinity
98

99 Notes
100 -----
101 Author: Cameron Vongsawad
102

103 Last Modified: 4/1/2021
104 """
105 ###############################################################################
106 ######## sound speed (m/s), Cite Garrett valid w/in +-0.2m/s ##################
107 ###### appears to be accurate w/in 0.000969% of wiki value @20C ###############
108 ########## effects of depth is negligible in the tank limits ##################
109 ########### EQ 11.26 pg 619 Garrett "Understanding Acoustics" #################
110 ###############################################################################
111 if model == 'Garrett' or 'garrett' or None:
112 c = 1493 + 3*(T-10) - 0.006*(T-10)**2 - 0.04*(T-18)**2 + 1.2*(S-35)- (0.01
113 *(T-18)*(S-35) + D/61)
114

115 #medwin & Kuperman Encyclo. of Ocean Sciences 2nd ed. 2001
116 if model == 'Kuperman' or 'Medwin' or 'MedwinKuperman':
117 c = 1449.2 + 4.6*T - 0.055*T**2 + 0.00029*T**3 + ((1.34 - 0.010*T)*(S
118 - 35)+0.016*D)
119

120 #Christ, WenliSr., The ROV Manual 2nd ed. 2014 from simplified Wilson's 1960
121 #S is in PSU which is basically equivalent to ppt
122 if model == 'Wilson':
123 c = 1449 + 4.6*T - 0.055*T**2 + 0.0003*T**3 + 1.39*(S - 35) + 0.017*D
124 return c

The final time-gating algorithm from TimeGate_UnderwaterTank.py uses the method of images

and ray theory in order to predict the arrival time of the first reflection off each boundary to the

receiving hydrophone compared to the time of estimated direct sound arrival. The precision of

this arrival time estimation depends on the estimated speed of sound and the particular frequency

content of interest behaving or propagating as rays (best assumed in frequencies above the Schroeder

frequency as discussed in Sec. 3.1.2).



B.2 General Data Processing 139

127 def gateValue(AEgir_pose, Ran_pose, D, c=1478, Coordinate='tank',Print='True'):
128 import numpy as np
129 """
130 Compute the first bounce reverberations of the BYU Hydroacoustics lab tank
131 in order to timegate signals. Assumes a rectangular volume.
132

133 Parameters
134 ----------
135 AEgir_Pose: tuple;
136 AEgir TCP position (x,y,z)
137 Ran_pose: tuple;
138 Ran TCP position (x,y,z,v) if 'robot' frame or (x,y,z) if 'tank'
139 frame where v is the vention position (7th axis extender)
140

141 #Water Characteristics in the Tank#
142 D: float, optional;
143 water depth (m) where 0<= D <=1000m
144

145 Coordinate: string, optional;
146 Choose if cordinate system is robot frame or tank frame
147 Standard is tank frame "tank"
148 or robot frame inputing each robot + vention positioning "robot"
149 Print: string, optional;
150 Choose if you want the function to print a bunch of numbers
151

152

153 Returns
154 -------
155 tshort: float;
156 shortest time for a single reflection in seconds.
157 tside: float;
158 shortest time for single reflection of side wall reflections only
159 but still allowing potential for seabed and surface reflections.
160 tdirect: float;
161 time for direct signal to arrive based on input speed of sound.
162 directpath: float;
163 distance of direct path from hydrophone to hydrophone
164

165 prints values of:
166 AEgir and Ran positions
167 direct sound "tdirect"
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168 Single bounce times:
169 bottom "tb"
170 H2O-O2 "tt"
171 Side 1 "ts1"
172 Side 2 "ts2"
173 Front wall "tfront"
174 Back wall "tback"
175

176 Notes
177 -----
178 Author: Cameron Vongsawad
179

180 This code only allows for a single tuple of length len(A)=3 and len(R)=3 or 4
181 Times printed in "ms" (milliseconds), however returned values in seconds
182

183 Last Modified: 6/1/2021
184

185 """
186

187 ############################################################################
188 ################### function to determine time of flight for ###############
189 ############## ray paths knowing tank fram positions #######################
190 ############################################################################
191 def pathtime(XA,YA,ZA,XR,YR,ZR):
192 """
193 XA, YA, ZA : float, cartesian coordinates of AEgir
194 XR, YR, ZR : float, cartesian coordinates of Ran
195

196 """
197 ############################################################################
198 ######################### main code for direct path time ###################
199 ############################################################################
200 directpath = np.sqrt((XA-XR)**2+(YA-YR)**2+(ZA-ZR)**2) #direct distance eq
201 tdirect = (directpath)/c
202

203 ############################################################################
204 ######################### main code for bottom bounce ######################
205 ####################### determined through geometries ######################
206 ############################################################################
207 range_b = np.sqrt(directpath**2 - np.abs(ZA-ZR)**2) #r bottom z-y plane
208 rzA = ZA/np.sin(np.arctan((ZA+ZR)/range_b))
209 rzR = ZR/np.sin(np.arctan((ZA+ZR)/range_b))
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210 tb = (rzA + rzR)/c #bottom bounce time
211

212 ############################################################################
213 ######################### main code for top bounce #########################
214 ####################### determined through geometries ######################
215 ############################################################################
216 ZAt = D - ZA #translate to looking from water surface
217 ZRt = D - ZR
218 range_t = np.sqrt(directpath**2 - np.abs(ZAt-ZRt)**2) #r top z-y plane
219 rzAt = ZAt/np.sin(np.arctan((ZAt+ZRt)/range_t))
220 rzRt = ZRt/np.sin(np.arctan((ZAt+ZRt)/range_t))
221 tt = (rzAt + rzRt)/c #top bounce time
222

223 ############################################################################
224 ######################### main code for side1 x=0 bounce ###################
225 ####################### determined through geometries ######################
226 ############################################################################
227 range_s1 = np.sqrt(directpath**2 - np.abs(XA-XR)**2) #r x=0 x-y plane
228 rxAs1 = XA/np.sin(np.arctan((XA+XR)/range_s1))
229 rxRs1 = XR/np.sin(np.arctan((XA+XR)/range_s1))
230 ts1 = (rxAs1 + rxRs1)/c #x=0 bounce time
231

232 ############################################################################
233 ######################### main code for side2 X=X bounce ###################
234 ####################### determined through geometries ######################
235 ############################################################################
236 Xmax = 1.22
237 XAs2 = Xmax - XA #translate to looking from water surface
238 XRs2 = Xmax - XR
239 range_s2 = np.sqrt(directpath**2 - np.abs(XAs2-XRs2)**2) #r x=x x-y plane
240 rxAs2 = XAs2/np.sin(np.arctan((XAs2+XRs2)/range_s2))
241 rxRs2 = XRs2/np.sin(np.arctan((XAs2+XRs2)/range_s2))
242 ts2 = (rxAs2 + rxRs2)/c #x=x bounce time
243

244 ############################################################################
245 ################## main code for "front" (North) wall bounce 1 y=0 #########
246 ################## using the method of images #########
247 ############################################################################
248 range_front = np.sqrt((XA-XR)**2+(YA-(-YR))**2+(ZA-ZR)**2) #direct image
249 tfront = (range_front)/c #front wall time
250

251 ############################################################################
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252 ################## main code for "back" (South) wall bounce 2 y=y###########
253 ################## using the method of images #########
254 ############################################################################
255 Ymax = 3.66
256 range_back = np.sqrt((XA-XR)**2+(YA-(YR+Ymax))**2+(ZA-ZR)**2) #direct image
257 tback = (range_back)/c #front wall time
258

259

260

261 t = (tb,tt,ts1,ts2,tfront,tback)
262 tshort = min(t)
263 tside = (ts1,ts2,tfront,tback)
264 tside = min(tside)
265 if Print:
266 print('')
267 print('AEgir(source) & Ran(Receiver) tank frame coordinates:')
268 print('(XA,YA,ZA)=',(XA,YA,ZA))
269 print('(XR,YR,ZR)=',(XR,YR,ZR))
270 print('')
271 print('Single Bounce reverberation times to receiver:')
272 print('direct sound t=', tdirect*10**3,'ms')
273 print('bottom bounce t=', tb*10**3,'ms')
274 print('H20-O2 bounce t=', tt*10**3,'ms')
275 print('Side 1 bounce t=', ts1*10**3,'ms')
276 print('Side 2 bounce t=', ts2*10**3,'ms')
277 print('Front Wall bounce t=', tfront*10**3,'ms')
278 print('Back Wall bounce t=', tback*10**3,'ms')
279 print('tshort=',tshort,'s')
280 print('')
281 return tshort,tside,tdirect,directpath
282

283

284 #### for tank frame coordinates, no need to translate coordinates ##########
285 if Coordinate == 'tank':
286 ############################################################################
287 ## Hydrophone Locations (Insert AEgir & Ran Tank coordinates (X,Y,Z) in m) #
288 ############################################################################
289 #"AEgir" Tank Frame position (X,Y,Z) TCP TC4038
290 XA = AEgir_pose[0]
291 YA = AEgir_pose[1]
292 ZA = AEgir_pose[2]
293 #"Ran" Tank Frame position (X,Y,Z) TCP TC4034
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294 XR = Ran_pose[0]
295 YR = Ran_pose[1]
296 ZR = Ran_pose[2]
297

298 tshort,tside,tdirect,directpath = pathtime(XA,YA,ZA,XR,YR,ZR)
299

300

301 #### for robot frame coordinates, must translate to tank frame first #######
302 elif Coordinate == "robot":
303 ############################################################################
304 ########## TCP Locations (insert current TCP locations in mm)###############
305 #### This is in correlation with default settings for the end connector ####
306 ############################################################################
307 #"AEgir" position TCP TC4038
308 TCPxA = AEgir_pose[0]
309 TCPyA = AEgir_pose[1]
310 TCPzA = AEgir_pose[2]
311 #"Ran" position TCP TC4034
312 TCPxR = Ran_pose[0]
313 TCPyR = Ran_pose[1]
314 TCPzR = Ran_pose[2]
315 #Vention 7th axis positioning adjustment for y direction
316 TCPvR = Ran_pose[3]
317

318 ############################################################################
319 ######## Tank Frame Locations (insert current tank locations in mm)#########
320 ######## these are directly measured values. must comment out future #######
321 ######## translation of positioning if used. OR translation trumps this ####
322 ############################################################################
323

324 #convert mm positioning to m
325 TCPxA = TCPxA/1000
326 TCPyA = TCPyA/1000
327 TCPzA = TCPzA/1000
328 TCPxR = TCPxR/1000
329 TCPyR = TCPyR/1000
330 TCPzR = TCPzR/1000
331 TCPvR = TCPvR/1000
332

333 ############################################################################
334 #translating TCP position to tank coordinate positions (/1000 for mm => m) #
335 #Home position used for conversion w/end connector settings of both ########
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336 #"AEgir" and "Ran" measured in mm initially and then later converted to m ##
337 #Home position in the tank frame for "Ran" should be measured at VR = 0 ####
338 ############################################################################
339 XA_TCP_home = 392.69/1000
340 YA_TCP_home = 288.83/1000
341 ZA_TCP_home = -59.54/1000
342 XA_tank_home = 100/1000
343 YA_tank_home = 2984/1000
344 ZA_tank_home = 901/1000
345

346 XR_TCP_home = 1291.6/1000
347 YR_TCP_home = 132.98/1000
348 ZR_TCP_home = -190.91/1000
349 VR_TCP_home = 1404.7
350 XR_tank_home = 1010/1000
351 YR_tank_home = 541/1000
352 ZR_tank_home = 721/1000
353 VR_tank_home = YR_tank_home
354

355 XA = (XA_tank_home + (-XA_TCP_home + TCPxA) )
356 YA = (YA_tank_home + (-YA_TCP_home + TCPyA) )
357 ZA = (ZA_tank_home + (-ZA_TCP_home + TCPzA) )
358 XR = (XR_tank_home + (-XR_TCP_home + TCPxR) )
359 #adjusted for Vention pos
360 YR = (YR_tank_home + (-YR_TCP_home + TCPyR) -TCPvR )
361 ZR = (ZR_tank_home + (-ZR_TCP_home + TCPzR) )
362

363 tshort,tside = pathtime(XA,YA,ZA,XR,YR,ZR)
364

365 return tshort,tside,tdirect,directpath

B.2.2 Fractional Octave Filtering

The following code (found in TankCharacterization.py) was developed primarily by Corey Dobbs

following IEC 61260-1:2014 [51] in order to apply a fractional octave filter to data-sets (especially

for swept-sine signals). Typically octave band and 1/3 octave band filters are used. Since this thesis

deals with such high frequency content, this function allows for any fractional octave. For this
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thesis, a 1/25th or 1/30th octave filter was used in order to gather frequency-dependent reverberation

and absorption data from swept-sine signal scans within the tank environment.

24 def OctaveFilter(data,f0,f1,fs,frac = 1,order = 5,exact = True):
25 """
26

27 Parameters
28 ----------
29 data: Ndarray;
30 Sampled data that covers some bandwidth.
31 f0: float;
32 Low-end frequency (Hz) of the desired bandwidth
33 f1: float;
34 High-end frequency (Hz) of the desired bandwidth
35 fs: float;
36 Sampling frequency of the data
37 frac: float, Optional;
38 Bandwidth fraction. Examples: 1/3-octave frac=3, 1-octave frac=1
39 (Default), 2/3-octave frac=3/2.
40 order: Int, Optional;
41 Order of the filter. Defaults to 5.
42 exact: boolean;
43 Gives option to use IEC standard for octave ratio (10**(3/10))
44 or generally accepted standard of 2. Default is True. Set exact
45 to False if factor of 2 is desired.
46

47 Returns
48 -------
49 filt_data: Ndarray;
50 2-d array of the bandpass filtered data. Row dimensions = same
51 dimensions as mid_bands. Each row is the data for a given band.
52 The column dimensions are the filtered data. Ex) filt_data[0,:]
53 would be all of the data for the first mid-band frequency.
54

55 mid_bands: Ndarray of float;
56 Array of octave or fractional octave frequencies
57 Note: center frequencies are based on IEC standard 61260-1
58 found in equation 1 in section 5.2.1. This code defaults to the
59 octave ratio 10**(3/10) as opposed to the standard ratio of 2.
60

61
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62 Notes
63 -----
64 Author: Corey Dobbs
65

66 Apply a bandpass filter to data in order to obtain an average over an
67 octave or fractional octave band centered at the middle frequencies output
68 in mid_bands.
69

70 References:
71 https://scipy-cookbook.readthedocs.io/items/ButterworthBandpass.html
72

73 https://github.com/jmrplens/PyOctaveBand/blob/
74 43e65e6cfc50d0b079383fee7ba0693cd645c350/PyOctaveBand.py#L14
75

76 TDOTOspec.m by Dr. Kent Gee at BYU, found in BYU Acoustics
77 under General Signal Processing/src/Analyzing Spectra
78 https://git.physics.byu.edu/acoustics
79

80 Dr. Gee's code included this note:
81 BUTTER is based on a bilinear transformation, as suggested in
82 ANSI standard. From oct3dsgn function by Christophe Couvreur, Faculte
83 Polytechnique de Mons (Belgium)
84

85

86 last modified 9/1/2021
87 """
88 import numpy as np
89 import math
90 import scipy.signal as sig
91

92

93 #Generate Frequency Array
94 if exact == True:
95 G = 10**(3/10) #octave frequency ratio
96 #based on IEC standard 61260-1 found in equation 1 in section 5.2.1.
97 elif exact == False:
98 G = 2
99 #generally accepted octave frequency ratio

100 fr = 1000 #reference frequency
101

102

103 # Get the initial mid-band frequency
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104 #According to IEC standard 61260-1 section 5.4
105 if frac % 2 == 0: #Even frac
106 x_init = math.ceil(frac*np.log(f0/fr)/np.log(G) - 1/2)
107 x_final = math.floor(frac*np.log(f1/fr)/np.log(G) - 1/2)
108 else: #Odd frac
109 x_init = math.ceil(frac*np.log(f0/fr)/np.log(G))
110 x_final = math.floor(frac*np.log(f1/fr)/np.log(G))
111

112 x = np.arange(x_init,x_final + 1)
113

114

115 #Get mid-band frequencies and limits
116 if frac % 2 != 0: #Odd frac
117 mid_bands = fr*G**(x/frac)
118 else: #Even frac
119 mid_bands = fr*G**((2*x+1)/(2*frac))
120

121 #Get frequency band limits
122 #References codes by Kent Gee and Christophe Couvreur
123 upper_limits = mid_bands*G**(1/(2*frac)) #low ends of filter
124 lower_limits = mid_bands/G**(1/(2*frac)) #high ends of filter
125 Qr = mid_bands/(upper_limits - lower_limits)
126 Qd = np.pi/2/frac/np.sin(np.pi/2/frac)*Qr
127 alpha = (1 + np.sqrt(1+4*Qd**2))/2/Qd
128

129

130

131 #Zero mean
132 data = data - np.mean(data)
133

134 #Window, and rescaling
135 w = np.hanning(len(data))
136 data = data*w/np.sqrt(np.mean(w**2))
137

138

139 #Use a butterworth filter on the data according to the fractional octave bands
140 for i in range(len(mid_bands)):
141

142 #Use a decimation factor to keep the sampling frequency within
143 #reasonable limits.
144

145 if mid_bands[i] < fs/20: #factor of 20 suggested as threshold for decimation
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146 deci_rat = np.ceil(fs/mid_bands[i]/20) #Decimation factor
147 #decdata = sig.decimate(sig.decimate(data,10),2)
148 else:
149 deci_rat = 1
150

151 fsdec = fs/deci_rat #Decimated sampling rate
152

153

154 W1 = mid_bands[i]/(fsdec/2)/alpha[i]
155 W2 = mid_bands[i]/(fsdec/2)*alpha[i]
156

157

158 b,a = sig.butter(order, [W1, W2], btype='band')
159

160 #Rescale decimated data
161 if deci_rat > 1:
162 decdata = sig.resample(data, int(len(data)/deci_rat))
163 else:
164 decdata = data
165

166 placeholder = sig.lfilter(b,a,decdata)
167

168 #Interpolate back up to original length of data
169 #This ensures that the output filt_data is a nxm array, where
170 #n is the number of center frequencies and m is the original length of
171 #the data
172 if len(decdata) != len(data):
173 dummy_time_act = np.arange(len(data))/fs
174 dummy_time = np.arange(len(decdata))/fsdec
175 placeholder = np.interp(dummy_time_act, dummy_time, placeholder)
176

177

178 #This initializes the filt_data array
179 if i == 0:
180 filt_data = np.zeros((len(mid_bands),len(placeholder)))
181

182 #Fill in filt_data with the filtered data held in placeholder
183 for j in range(len(placeholder)):
184 filt_data[i,j] = placeholder[j]
185

186 return filt_data, mid_bands
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B.2.3 Impulse Response with Frequency Deconvolution

The following code shows three algorithms developed within ESAUResponse.py. Each function (IR,

SysResponse, and TankResponse) are used in conjunction to calculate an impulse response (IR) from

a measurement through frequency deconvolution, using said impulse response (see Sec. 3.2.1) to

determine an in situ calibration (see Sec. 3.2.2) response, and applying this calibration to measured

data to determine an overall tank response.

IR is the general function to process the impulse response from a recorded signal relative to

a reference or generated signal. The IR function was designed to effectively process the impulse

response of a system excited by a swept-sine signal. It utilizes Wiener deconvolution to avoid

division by zero through the use of a regularization parameter. This function adjusts for noise by

performing the deconvolution via division in the frequency domain of the cross-spectrum by the

auto-spectrum of the input signals. Options for processing in alternate but similar methods are

provided. This function simply returns the impulse response in the time domain.

8 def IR(rec,gen,fs,wiener=False,domain='f'):
9 """

10 Parameters
11 ----------
12 rec: ndarray of float of size 1;
13 time domain of the received signal. Should be real valued.
14 gen: ndarray of float;
15 time domain of the generated signal. Should be real valued.
16 fs: float;
17 Sampling frequency in Hz
18 wiener: Boolean {True or False}; optional;
19 False (default) for using direct deconvolution instead of Wiener
20 deconvolution in frequency domain. If (True), the Wiener
21 deconvolution is performed. Wiener deconvolution acts as a
22 regularization which helps prevent dividing by zero allowing for
23 a more robust deconvolution while maintaining an account for any
24 system response.
25 domain: string, Optional;
26 Choice of domain performs the inverse filter in the initial step
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27 in either the temporal domain ('t' or 'time' or 'temporal') or
28 in the frequency domain (default) ('f' or 'freq' or 'frequency')
29 which is equivalent to determining the the cross-spectral density
30 and the auto-spectral density for the use in the deconvolution.
31 The end deconvolution always occurs by division in frequency domain.
32

33 Returns
34 -------
35 ht: ndarray of float;
36 Real valued impulse response (IR) of a measurement.
37

38 Notes
39 -----
40 Author: Cameron Vongsawad
41

42 The IR h(t) is determined following Gemba(2014) eq. 3.3.6 scaling similar
43 to a matched filter and deconvolving in order to obtain the pure delay of h(t).
44 Cite: "Characterization of underwater acoustic sources recorded in reverberant
45 environments with application to scuba signatures" Gemba (2014) Dissertation.
46 Also see eq. 3.3.3 and 3.3.5
47

48 This also follows the directions from Farina 2000 and Farina 2007 on IR
49 from swept-sines.
50

51 Also see eq. 1.7.1, 1.7.2, and 1.7.3 from Leishman 560 notes 2019.
52

53 Deconvolution all in the frequency domain should be much faster computationally.
54

55 Dr. Brian Anderson published a paper discussing Wiener deconvolution as a
56 regularization parameter for deconvolution. He particularly discusses
57 optimizing lambda."Time reversal focusing of high amplitude sound in a
58 reverberation chamber" (2018) Willardson, Anderson, Young, Denison, Patchett.
59 https://doi.org/10.1121/1.5023351
60

61 last modified 6/30/2021
62 """
63 import numpy as np
64 if domain == 'time' or 't' or 'temporal':
65 #The time domain is a slower computation
66 #rec(t)*gen(-t)) = h(t)*gen(t)*gen(-t) eq 3.3.5 solve for h(t)
67 gen_flip = np.flip(gen)
68 #np.convolve(gen,gen_flip) == sci.correlate(gen,gen) by def.
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69 #the inverse filter of the function is np.convolve(gen,gen_flip)
70 #for noise at output (receiver)
71 saa = np.convolve(gen,gen_flip,mode='same')
72 sab = np.convolve(rec,gen_flip,mode='same')
73 #The following does the same thing but via correlate:
74 #import scipy.signal as sci
75 #saa = sci.correlate(gen,gen,mode='same',method='auto')
76 #sab = sci.correlate(rec,gen,mode='same',method='auto')
77

78 #for noise at input (source) which is more rare
79 #rec_flip = np.flip(rec)
80 ##sbb = np.convolve(rec,rec_flip,mode='same')
81 ##sba = np.convolve(rec_flip,gen,mode='same')
82

83

84 import matplotlib.pyplot as plt
85 plot = False
86 #proof that this method applies what some literature refers to as
87 #an inverse filter.
88 if plot == True:
89 plt.figure()
90 plt.plot(np.abs(saa))
91 plt.title('Delta Function as result of the Inverse Filter Convolution')
92 plt.xlabel('time (Samples)')
93 plt.ylabel('Amplitude')
94 plt.grid()
95

96 #Division in the frequency domain is a deconvolution in the time domain.
97 #which gives H(f) and then ifft(H(f))=h(t)
98 Sab = np.fft.fft(sab) #double-sided frequency response
99 Saa = np.fft.fft(saa) #double-sided frequency response

100 ##Sbb = np.fft.fft(sbb)
101 ##Sba = np.fft.fft(sba)
102 #f = np.fft.fftfreq(len(xcorr),d=1/fs)
103

104 if domain == 'frequency' or 'freq' or 'f':
105 #COMPUTE ALL of the deconvolution in FREQ DOMAIN instead of time domain,
106 #should be faster for noise at output (receiver)
107 Sab = np.conj(np.fft.fft(gen))*np.fft.fft(rec)
108 Saa = np.conj(np.fft.fft(gen))*np.fft.fft(gen)
109 #for noise at input (source) which is more rare
110 ##Sbb = np.conj(np.fft.fft(rec))*np.fft.fft(rec)
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111 ##Sba = np.conj(np.fft.fft(rec))*np.fft.fft(gen)
112

113 #f = np.fft.fftfreq(len(gen),d=1/fs)
114

115 if wiener == True:
116 print('Performing deconvolution via Wiener deconvolution'
117 +'preventing dividing by zero')
118 #Wiener Deconvolution deals with the near zero values which cause
119 #processing noise and high frequency aliasing.
120 lamb = 0.005 #scaling parameter arbitrarily chosen
121 #for noise at output (receive)
122 sigma = lamb*np.mean(np.abs(Saa)) #expectation or noise or SNR
123 WDeconv = np.conj(Saa)*Sab/(np.abs(Saa)**2+sigma**2)
124 #for noise at input (source)
125 ##sigma = lamb*np.mean(np.abs(Sba)) #expectation or noise or SNR
126 ##WDeconv = np.conj(Sba)*Sbb/(np.abs(Sba)**2+sigma**2)
127 Deconv = WDeconv
128 else:
129 print('Performing deconvolution via direct division in frequency domain')
130 #Perform standard deconvolution by direct division in frequency domain.
131 #for noise at output (receive)
132 Deconv = Sab/Saa
133 #for noise at input (source)
134 ##Deconv = Sbb/Sba
135

136 #bring back to time domain with inverse fast fourier transform (IFFT)
137 ht = np.real(np.fft.ifft(Deconv)) #ensure real valued as it should be
138 return ht

The SysResponse function is used as a calibration function as discussed in Sec. 3.2. This

calibration function performs deconvolution in the frequency domain to obtain a response of the

measurement chain assuming small propagation losses with source and receiver positioned close.

Time-gating is performed by the Time-Gate function shown in discussed in Sec. 3.1.3 and shown in

Appendix B.2.1.
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145

146

147 def SysResponse(cal,gen,fs,tgate=0,wiener=False,domain='f'):
148 """
149 Parameters
150 ----------
151 cal: ndarray of float;
152 Received calibration signal. Should be real valued.
153 gen: ndarray of float;
154 Pure generated signal. Should be real valued.
155 fs: float;
156 Sampling frequency (Hz).
157 tgate: float,Optional;
158 Time of the first wall reflection determined through timegateTank.
159 This is the time we will use to determine the time of the first
160 reflection and timegate the impulse response of the calibrated
161 signal by. This input is optional if you want to timegate. If
162 not wanting to timegate the IR, leave tgate = 0 which is the default.
163 If tgate is nonzero, the IR will be gated according the input time.
164 wiener: Boolean {True or False}; optional;
165 False (default) for using direct deconvolution instead of Wiener
166 deconvolution in frequency domain. If (True), the Wiener
167 deconvolution is performed. Wiener deconvolution acts as a
168 regularization which helps prevent dividing by zero allowing for
169 a more robust deconvolution while maintaining an account for any
170 system response.
171 domain: string, Optional;
172 Choice of domain performs the inverse filter in the initial step
173 in either the temporal domain ('t' or 'time' or 'temporal') or
174 in the frequency domain (default) ('f' or 'freq' or 'frequency')
175 which is equivalent to determining the the cross-spectral density
176 and the auto-spectral density for the use in the deconvolution.
177 The end deconvolution always occurs by division in frequency domain.
178

179 Returns
180 -------
181 ht: ndarray of float;
182 Real valued impulse response (IR) of the measurement chain neglecting
183 effects of the water and tank environment through timegating only
184 direct signal with a small propagation assumption.
185 t: ndarray of float;
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186 Time array for the IR h(t) in seconds (s)
187 Hf: ndarray of complex;
188 Complex two-sided Frequency Response to account for all transducer,
189 amplifier, etc. in the measurement chain.
190 f: ndarray of float
191 frequency array in (Hz)
192

193 Notes
194 -----
195 Author: Cameron Vongsawad
196

197 Measurements should be taken with source and receiver close together and
198 in the center of the tank so it is easy to time gate the signal. Not too
199 close that nonlinear effects occur. The callibration position should already
200 be hard coded into ESAU but can be changed manually.
201

202 The IR h(t) is determined first by timegating the signal for only direct sound
203 then following Gemba(2014) eq. 3.3.6 and Farina 2000,2007 with the use of an
204 inverse filter and scaling similar to a matched filter and deconvolving in
205 order to obtain the pure delay of h(t).
206 Cite:
207 "Characterization of underwater acoustic sources recorded in reverberant
208 environments with application to scuba signatures" Gemba (2014) Dissertation
209

210 Farina (2000)
211 Farina (2007)
212

213 Often a single-sided response is desired. We find the s-sResponse
214 as follows below:
215 Hss = 2*Hf[0:(int(len(Hf)/2))] #convert to single-sided FRF
216 fss = f[0:int(len(f)/2)] #convert to single-sided
217

218 last modified 5/17/2021
219 """
220 import numpy as np
221 from ESAUResponse import IR
222

223 ht = IR(cal,gen,fs,wiener=wiener,domain=domain) #IR through deconvolution
224 t = np.linspace(0,len(ht)/fs,len(ht)) #time array for ht
225

226 if tgate !=0:
227 print('Timegating the IR of the signal...')
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228 import TimeGate_UnderwaterTank as tg
229 ht = tg.gatefunc(ht,fs,tgate,tb4=0.1) #cut off wall reflections
230

231 #calculate the FRF from the IR and obtain the associated freq array
232 print('calculating the 2-sided Frequency Response...')
233 #Report the double-sided time-gated FRF of the input IR
234 Hf = np.fft.fft(ht)
235 #Report the double-sided associated freq array
236 f = np.fft.fftfreq(len(ht),d=1/fs)
237

238 return ht,t,Hf,f

The TankResponse function is used to apply the calibration obtained from SysResponse to a

recorded signal and provide a true response of an environment being measured accounting for any

effects of the A-D and D-A system.

246

247

248 def TankResponse(rec,gen,fs,sysIR,wiener=True,domain='f'):
249 """
250 Parameters
251 ----------
252 rec: ndarray of float;
253 Received signal. Should be real valued.
254 gen: ndarray of float;
255 Pure generated signal. Should be real valued.
256 fs: float;
257 Sampling frequency (Hz)
258 sysIR: ndarray;
259 This is the system impulse response h(t) of the whole measurment
260 chain found between two close points using SystemResponse func.
261 wiener: Boolean {True or False}; optional;
262 False (default) for using direct deconvolution instead of Wiener
263 deconvolution in frequency domain. If (True), the Wiener
264 deconvolution is performed. Wiener deconvolution acts as a
265 regularization which helps prevent dividing by zero allowing for
266 a more robust deconvolution while maintaining an account for any
267 tank response effects.
268 domain: string, Optional;
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269 Choice of domain performs the inverse filter in the initial step
270 in either the temporal domain ('t' or 'time' or 'temporal') or
271 in the frequency domain (default) ('f' or 'freq' or 'frequency')
272 which is equivalent to determining the the cross-spectral density
273 and the auto-spectral density for the use in the deconvolution.
274 The end deconvolution always occurs by division in frequency domain.
275

276 Returns
277 -------
278 H_tank: ndarray of float;
279 Complex two-sided Greens function of Frequency Response of the Tank
280 envrionment
281 f: ndarray of float;
282 Two-sided frequency array matching the frequency response H_tank
283

284 Notes
285 -----
286 Author: Cameron Vongsawad
287

288 This greens function is relative to the individual positions of the Source
289 and Receiver in the tank. To use this, you will need to also run the
290 SystemResponse functin to obtain the frequency response of the
291 measurement chain (transducers,etc.)
292

293 last modified 5/17/2021
294 """
295 import numpy as np
296 from ESAUResponse import IR
297 #obtain the IR of the recorded signal relative to the generated signal
298 ht = IR(rec,gen,fs,wiener=wiener,domain=domain)
299 #if ht.size != sysIR.size, zeropadding is necessary at the end of the smaller
300 #so they are both of the same length, thus interpolating the FRF which allows
301 #the components of the deconvolution to be the same size.
302 if len(ht)<len(sysIR):
303 #number of zeros needed for padding to obtain same size for ht
304 nzeros =int(np.abs(len(ht)-len(sysIR)))
305 h = np.zeros(len(ht))
306 fin = int(.999*len(ht))
307 damp = int(0.0005*len(ht))
308 h[0:fin] = ht[0:fin] #replace up to gate with original
309 #apply half-hanning window to last portion of the array this allows for
310 #the signal to more gradually ramp down to zeros to be padded.



B.2 General Data Processing 157

311 h[fin:fin+damp] = ht[fin:fin+damp]*np.hanning(damp)
312 #repopulate first half of that damping data keeping original array information
313 h[fin:int(fin+damp/2)] = ht[fin:int(fin+damp/2)]
314 #pad the end of the array with zeros making up for the difference
315 ht0 = np.pad(h,(0,nzeros),'constant',constant_values=(0,0))
316 sys = sysIR
317

318 if len(sysIR)<len(ht):
319 nzeros =int(np.abs(len(ht)-len(sysIR)))
320 s = np.zeros(len(sysIR))
321 fin = int(.999*len(sysIR))
322 damp = int(0.0005*len(sysIR))
323 s[0:fin] = sysIR[0:fin] #replace up to gate with original
324 #apply hanning window to last portion of the array this allows for
325 #the signal to more gradually ramp down to zeros to be padded.
326 s[fin:fin+damp] = sysIR[fin:fin+damp]*np.hanning(damp)
327 #repopulate first half of that damping data keeping original array information
328 s[fin:int(fin+damp/2)] = sysIR[fin:int(fin+damp/2)]
329 sys = np.pad(s,(0,nzeros),'constant',constant_values=(0,0))
330 ht0 = ht
331

332 if len(sysIR) == len(ht):
333 sys = sysIR
334 ht0 = ht
335

336 #Obtain frequency response of both the sysIR and ht for deconvolution in freq.
337 Sys = np.fft.fft(sys)
338 Hf = np.fft.fft(ht0)
339 f = np.fft.fftfreq(len(ht0),d=1/fs) #associated frequency array
340

341 if wiener == True:
342 print('performing deconvolution via Wiener deconvolution preventing'
343 +' dividing by zero')
344 #Wiener Deconvolution deals with the near zero values which cause
345 #processing noise and high frequency aliasing.
346 lamb = 0.005 #scaling parameter arbitrarily chosen
347 sigma = lamb*np.mean(np.abs(Sys))
348 WDeconv = np.conj(Sys)*Hf/(np.abs(Sys)**2+sigma**2)
349 Deconv = WDeconv
350 else:
351 print('Performing deconvolution via direct division in frequency domain')
352 Deconv = Hf/Sys #standard deconvolution is division in freq domain
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353

354 Htank = Deconv
355

356 return Htank,f

B.2.4 Evaluation of the Frequency Deconvolution Technique by Simulation

This algorithm (found in IRSimulation.py) was developed to test the algorithms described in

Sec. B.2.3 that use frequency deconvolution algorithms to obtain the impulse response of the tank

environment. This algorithm generates a swept-sine signal as well as a simulated environmental

impulse response. The signal and impulse response are convolved together and the resulting

simulated recording is processed via the frequency deconvolution algorithm developed. This

algorithm may be used with a variety of simple simulated impulse responses that may be generated

and simulated in Python. It also offers the ability to add noise to the "recording" in order to evaluate

the efficacy of the deconvolution technique shown in Appendix B.2.3. The results of this simulation

are discussed in Sec. 3.2.1. Portions of the code are commented out and many parameters may be

changed to add more variability to the evaluation.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Fri Mar 26 15:23:29 2021
4

5 This python code is designed to simulate a recording and explore processing the
6 simulated recording via the functions written in ESAUresponse.py
7 It fist generates a chirped signal. Then it generates one of a few options of
8 simulated environments (impulse response). These two are convolved with each
9 other to simulate a recording. The generated chirp and the simulated recording

10 is passed through SysResponse() from ESAUresponse.py. Noise is also applied
11 to assess how well it handles under noise at either the input or output (source
12 or receiver).
13

14 Last updated 6/14/2021
15
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16 @author: cvongsaw
17 """
18 import ESAUdata as data
19 import byuarglib as byu
20 import numpy as np
21 import ESAUResponse as res
22 import matplotlib.pyplot as plt
23 import matplotlib.pylab as pylab
24 params = {'legend.fontsize': 24,
25 'figure.figsize': (15, 10),
26 'axes.labelsize': 28,
27 'axes.titlesize':29,
28 'axes.titleweight':'bold',
29 'xtick.labelsize':24,
30 'ytick.labelsize':24,
31 'lines.linewidth':3}
32 pylab.rcParams.update(params)
33

34

35 """___SIGNALS____"""
36 from scipy.signal import chirp
37 #times at which to evaluate the array for creating the chirp (sig)
38 chrp0 = 0 #chirp start time (s) (MUST START AT t=0 for CHIRP func)
39 chrp1 = 0.5 #chirp stop time (s)
40 f_0 = 10e3 #Hz start freq
41 f_1 = 100e3 #Hz end freq
42 fs = 500e3 #sampling rate should be min = 2*f_1
43 trl0 = 0.1 #trailing & leading zeros
44 noises = True #compute a noisy signal or not
45 nLi = 0 #noise Level @ Input/Source (factor, typically 1-10, 10 being VERY noisy)
46 nLo = 1 #noise Level @ Output/Receive (factor, typically 1-10, 10 being VERY noisy)
47 tim = np.linspace((chrp0),(chrp1),int(fs*(chrp1-chrp0)))
48 sig1 = chirp(tim,f_0,chrp1,f_1,method='linear')
49 #time array for plotting and putting in lead/trail zeros
50 time = np.linspace(0,(chrp1+2*trl0),int((chrp1+2*trl0)*fs))
51 nzeros = int(trl0*fs)
52 sig = np.pad(sig1,(nzeros,nzeros),'constant',constant_values=(0,0))
53

54 #divide by convert to change Hz to kHz if 1000 or leave as Hz if 1
55 if f_0>=1e3:
56 convert = 1000
57 if f_1<=1e3:
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58 convert = 1
59

60 plt.figure()
61 plt.plot(time,sig)
62 if convert == 1000:
63 plt.title(f'Swept-Sine Signal {f_0/1000}-{f_1/1000} kHz')
64 if convert == 1:
65 plt.title(f'Swept-Sine Signal {f_0}-{f_1} Hz')
66 plt.xlabel('time (s)')
67 plt.ylabel('Amplitude')
68 plt.grid()
69

70

71 """ADD RANDOM NOISE TO THE SYSTEM"""
72 if noises == True:
73 noise = np.random.normal(0, .1, sig.shape)
74 noisy = sig + nLi*noise #simple addition of noise
75 plt.figure()
76 plt.plot(time,noisy)
77 if convert == 1000:
78 plt.title(f'Noisy Swept-Sine Signal {f_0/1000}-{f_1/1000} kHz')
79 if convert == 1:
80 plt.title(f'Noisy Swept-Sine Signal {f_0}-{f_1} Hz')
81 plt.xlabel('time (s)')
82 plt.ylabel('Amplitude')
83 plt.grid()
84

85

86 """___Simulated Impulse Response___"""
87 ########################################
88 #arbitrary impulse response for testing#
89 ########################################
90 from scipy.signal import impulse, unit_impulse
91 #https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.impulse.html
92 system = ([1.0],[3.0,2.0,1.0])
93 timp,imp = impulse(system)
94

95 imp = np.pad(imp,int((len(sig)-len(imp))/2),mode='constant')
96 ################
97 #delta function#
98 ################
99 delta = unit_impulse(len(sig),int(0.5*fs))
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100 #########
101 #Gausian#
102 #########
103 from scipy.signal.windows import gaussian
104 gauss = gaussian(int(len(time)),std=1)
105 tg = np.linspace(0,np.max(time),int(len(time)))
106

107

108 """Impulse Simulation with REFLECTION"""
109 #append 0.5*imp to imp to simulate a reflection? to be timegated
110

111

112

113

114 """___Plot Impulsive Simulation___"""
115 """___This is the target for the Response Code to Return___"""
116 """___!!!___CHANGE_INPUTS_HERE_When_Other_IR_Desired___!!!___"""
117 #time,imp
118 #delta,time
119 #gauss,time or tg
120 RES = imp #IR signal to be tested
121 t = time #time array for the IR signal to be tested
122

123 plt.figure()
124 plt.plot(t,np.abs(RES))
125 plt.title('Simulated Impulse Response (IR)')
126 plt.xlabel('time (s)')
127 plt.ylabel('Amplitude')
128 plt.grid()
129

130

131

132

133

134

135

136 """___Convolve Simulated IR w/ Chirp___"""
137 #import scipy.signal as sci
138 #sig_flip = np.flip(sig)
139 #cal1 = sci.correlate(sig_flip,RES,mode='same',method='auto')
140

141 cal = np.convolve(sig,RES,mode='same')
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142 gen = sig
143

144 plt.figure()
145 plt.plot(t,cal)
146 if convert == 1000:
147 plt.title(f'{f_0/1000}-{f_1/1000} kHz Chirp Convolved w/ Simulated IR')
148 if convert == 1:
149 plt.title(f'{f_0}-{f_1} Hz Chirp Convolved w/ Simulated IR')
150 plt.xlabel('time (s)')
151 plt.ylabel('Amplitude')
152 plt.grid()
153

154

155 if noises == True:
156 calnoise = np.convolve(noisy,RES,mode='same')
157 noise1 = np.random.normal(0, .1, sig.shape)
158 calnoise = noise1*nLo + calnoise
159 plt.figure()
160 plt.plot(t,calnoise)
161 if convert == 1000:
162 plt.title(f'{f_0/1000}-{f_1/1000} kHz Noisy Chirp Convolved w/ Simulated IR')
163 if convert == 1:
164 plt.title(f'{f_0}-{f_1} Hz Noisy Chirp Convolved w/ Simulated IR')
165 plt.xlabel('time (s)')
166 plt.ylabel('Amplitude')
167 plt.grid()
168

169

170 """___Obtain IR & FRF back out___"""
171

172 hsys,tsys,Hsys,fsys = res.SysResponse(cal,gen,fs,tgate=0,wiener=True,domain='f')
173

174 FRFi = np.fft.fft(RES)
175 Fi = np.fft.fftfreq(len(RES),d=1/(len(RES)/max(t)))
176 Fiss = Fi[0:int(len(Fi)/2)]/convert #convert from Hz to kHz
177 FRFiss = 2*FRFi[0:(int(len(FRFi)/2))]
178 FRFi_dB = 10*np.log10(np.abs(FRFiss))
179

180 """___Roll the Shape of the Time-Domain___"""
181 #The IR is shifted to the end of the array, such that the tail
182 #spills over to the beginning of the ray. The array must be rolled
183 #for alignment w/ the actual IR. However, the number of zeros must
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184 #be equal for both leading and trailing zeros.
185 roll = int(0.5*len(hsys)-1)
186 hsys = np.roll(hsys,roll)
187 Hss = 2*Hsys[0:(int(len(Hsys)/2))] #convert to single-sided FRF
188 fss = fsys[0:int(len(fsys)/2)]/convert #convert to single-sided from Hz to kHz
189 Hss_dB = 10*np.log10(np.abs(Hss))
190

191

192 if noises == True:
193 #NOISY VERSION OF SYSTEM RESPONSE
194 hsysn,tsysn,Hsysn,fsysn = res.SysResponse(calnoise,gen,fs,tgate=0,wiener=True,
195 domain='f')
196 """___Roll the Shape of the Time-Domain___"""
197 #The IR is shifted to the end of the array, such that the tail
198 #spills over to the beginning of the ray. The array must be rolled
199 #for alignment w/ the actual IR. However, the number of zeros must
200 #be equal for both leading and trailing zeros.
201 hsysn = np.roll(hsysn,roll)
202 Hssn = 2*Hsysn[0:(int(len(Hsysn)/2))] #convert to single-sided FRF
203 fssn = fsysn[0:int(len(fsysn)/2)]/convert#convert to single-sided from Hz>kHz
204 Hss_dBn = 10*np.log10(np.abs(Hssn))
205

206

207

208 """___PLOT FOR COMPARISON___"""
209 plt.figure()
210 plt.plot(t,np.abs(RES),linewidth=6)
211 plt.plot(tsys,np.abs(hsys),'--',linewidth=3)
212 if convert == 1000:
213 plt.title(f'{f_0/1000}-{f_1/1000} kHz Impulse Response w/ fs={fs/1000}kHz')
214 if convert == 1:
215 plt.title(f'{f_0}-{f_1} Hz Impulse Response w/ fs={fs}Hz')
216 plt.xlabel('time (s)')
217 plt.ylabel('Amplitude')
218 plt.legend(['Simulated IR','Deconvolved IR'])
219 plt.grid()
220

221 if noises == True:
222 plt.figure()
223 plt.plot(t,np.abs(RES),linewidth=6)
224 plt.plot(tsysn,np.abs(hsysn),'--',linewidth=3)
225 if convert == 1000:
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226 plt.title(f'{f_0/1000}-{f_1/1000} kHz Impulse Response w/'
227 +f' Noise & fs={fs/1000}kHz')
228 if convert == 1:
229 plt.title(f'{f_0}-{f_1} Hz Impulse Response w/ Noise & fs={fs}Hz')
230 plt.xlabel('time (s)')
231 plt.ylabel('Amplitude')
232 plt.legend(['Simulated IR','Deconvolved IR'])
233 plt.grid()
234

235

236 """plt.figure()
237 plt.plot(Fiss,FRFi_dB,linewidth=6)
238 plt.plot(fss,Hss_dB,'--',linewidth=3)
239 if convert == 1000:
240 plt.title(f'Frequency Response of {f_0/1000}-{f_1/1000} kHz Signal')
241 plt.xlabel('Frequency (kHz)')
242 if convert == 1:
243 plt.title(f'Frequency Response of {f_0}-{f_1} Hz Signal')
244 plt.xlabel('Frequency (Hz)')
245 plt.ylabel('Amplitude dB')
246 plt.legend(['Simulated Frequency Response','Deconvolved Frequency Response'])
247 plt.grid()
248 buffer_limit = f_1+(f_1-f_0)*0.01
249 #plt.xlim(f_0-buffer_limit,f_1+buffer_limit)
250

251

252 if noises == True:
253 plt.figure()
254

255 plt.plot(fssn,Hss_dBn,'--',linewidth=3,color='tab:orange')
256 plt.plot(Fiss,FRFi_dB,linewidth=6,color='tab:blue')
257 if convert == 1000:
258 plt.title(f'Frequency Response of {f_0/1000}-{f_1/1000} kHz Noisy Signal')
259 plt.xlabel('Frequency (kHz)')
260 if convert == 1:
261 plt.title(f'Frequency Response of {f_0}-{f_1} Hz Noisy Signal')
262 plt.xlabel('Frequency (Hz)')
263 plt.ylabel('Amplitude dB')
264 plt.legend(['Deconvolved Frequency Response','Simulated Frequency Response'])
265 plt.grid()
266 buffer_limit = f_1+(f_1-f_0)*0.01
267 #plt.xlim(f_0-buffer_limit,f_1+buffer_limit)"""
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268

269

270

271 """
272 COULD USE THIS TO TEST OUT T60meas IF I COULD MAKE THE SIGNAL APPEAR REVERBERANT"""
273 import TankCharacterization as tank
274 tbound = tank.T60meas_bounds(hsysn,fs)
275 T60 = tank.T60meas(hsysn,fs,tbound[0],tbound[1],d=0.5,c=1478,rt='T60',plot=True)
276

277 """octData,OctFreq = tank.OctaveFilter(hsysn,f_0,f_1,fs,frac=3)
278 octTrans = np.transpose(octData)
279

280 plt.figure()
281 for i in range(len(OctFreq)):
282 plt.plot(octData[i,:])
283 plt.title('IR Octave Band')
284

285 for i in range(len(OctFreq)):
286 tbound = tank.T60meas_bounds(octData[i,:],fs)
287 T60 = tank.T60meas(octData[i,:],fs,tbound[0],tbound[1],d=0.5,c=1478,rt='T60',
288 plot=True)
289 #"""

B.3 Tank Characterization

B.3.1 Estimating Characterization Parameters

This algorithm (found in TankCharacterization.py) evaluates an idealized reverberant enclosure

using the modified Norris-Eyring equation, as discussed in Sec. 3.1.2, to determine the estimated

T60, minimum effective signal length, and estimated Schroeder frequency of the tank.

187

188

189 def T60est(d,c = 1478,zi= 3.26e6,ai=0,alpha_p=0):
190 """
191 Parameters
192 ----------
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193 d: float;
194 depth of water
195 c: float, Optional;
196 speed of sound in water. Defaults to 1478m/s (rounded to nearest
197 whole value for any depth of water the tank can have), using
198 Garrett's eq. for the speed of sound in water relative to
199 temperature, depth, and salinity for a temparature of 19 degrees C
200 (rough avg. in tank).
201 zi: float, Optional;
202 Acoustic impedance of side walls. Defaults to acoustic impdedance
203 of acrylic, accepted as 3.26E6 Ns/m**3 from the following source:
204 https://www.ndt.net/links/proper.htm
205 ai: float or ndarray of float, Optional;
206 Absorption coefficient of tank walls. Defaults to 0 which ignores
207 this input. If the absorption coefficient of the walls is known,
208 user can input this value and zi will be ignored, solving T60
209 using the known absorption. This may also be beneficial when
210 accounting for wall anechoic paneling (floor still assumed zi input).
211 alpha_p: float or ndarray of float, Optional;
212 Absorption coefficient due to thermoviscous molecular propagation
213 losses. Defaults as 0 such that there is no propagation absorption.
214 Can use alpha_prop(f,T,S,pH,depth) code to feed in an array of
215 frequency dependent absorption coefficients due to propagation
216 losses through the water.
217

218 Returns
219 -------
220 T60: float;
221 Estimate of the reverberation time (T60) in seconds.
222 i.e. time it takes for the signal to drop by 60dB
223 sigL: float;
224 minimum excitation signal length (s) required by T60 based on
225 Gemba recommendation for 5-10x length of T60. This gives 10x.
226 fschroeder: float;
227 Schroeder Frequency (Hz). The lowest frequency of interest
228 in which the tank is large.
229

230

231 Notes
232 -----
233 Author: Cameron Vongsawad
234
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235 Comes from Gemba 2014 dissertation ("Characterization of underwater acoustic
236 sources recorded in reverberant environments with application to scuba...")
237 Section 3.4 equations 3.4.1, 3.4.2, & 3.4.3. Where GembaEQ3.4.1 is the
238 Eyring equation that can be found in 661 notes eq 4-2.4.116 calculated from
239 the overall estimated Spatially Averaged Absorption Coefficient.
240

241 This can then be used to determine the length of the excitation signal (which
242 must be 5-10x longer than the T60)
243

244 This is all relative to the depth of the water, and if the boundary
245 impedance is altered from the standard tank. May also input a wall absorption
246 coefficient if known. Such as from a measured wall absorption coefficient.
247 This currently still assumes the floor absorption is according to zi however.
248 This improves all estimations given in this function.
249

250 Can also add in propagation absorption coefficients determined through
251 alpha_prop(f,T,S,pH,depth). Or leave that out by allowing the default to
252 remain 0. This further improves all estimations given in this function.
253

254 last modified 9/1/2021
255 """
256 import numpy as np
257 #dimensions of tank
258 Lx = 1.22 #width of tank (m)
259 Ly = 3.66 #length of tank (m)
260 V = Lx*Ly*d #volume relative to current water depth
261 A_floor = Lx*Ly #total surface area of tank floor
262 A_acrylic = A_floor + 2*Ly*d + 2*Lx*d #total surface area of acrylic boundaries
263 A_waterair = Lx*Ly #total surface area of water-air boundary
264 S = A_acrylic +A_waterair #total surface area of (semi)absorptive boundaries
265

266 #estimate absorption coefficients for boundaries
267 zw = 1.5E6 #accepted acoustic impedance of water in Ns/m**3
268 za = 415 #accepted acoustic impedance of air in Ns/m**3
269 alpha_acrylic = 1-np.abs((zw-zi)/(zw+zi))
270 alpha_air = 1-np.abs((zw-za)/(zw+za))
271 Aw = alpha_air*A_waterair/S #water absorption coefficient spatially averaged
272

273 if ai == 0:
274 #using zi (estimated acoustic impedance of walls)
275 #Sum of alpha*A/S found in eq. 3.4.1 of Gemba
276 #Absorption can be more thoroughly estimated using Physcs 661 notes.
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277 Ai = alpha_acrylic*(A_acrylic)/S #acrylic absorp coeff spatially averaged
278 Absorb = Aw + Ai #spatially averaged Absorption Coefficient
279 else:
280 #using ai (estimated acoustic absorption coefficient of walls)
281 Awall = ai*(A_acrylic-A_floor)/S
282 Ai = alpha_acrylic*(A_floor)/S #acrylic absorp coeff spatially averaged
283 Absorb = Aw + Ai + Awall #spatially averaged Absorption Coefficient
284

285 #Eyring equation (661 notes eq. 4-24.124(reduce to 4-2.4.116 when alpha_p=0))
286 T60 = (24*np.log(10)/c) * (V/(8*alpha_p*V - S*np.log(1-Absorb)))
287 fschroeder = np.sqrt(c**3*T60/(V*4*np.log(10))) #Pierce eq6.6.4
288 signal_length = 10*T60
289 sigL = signal_length
290

291 #if desired to compare with a simpler room estimation found in 461 notes?
292 #T60ng = np.log(10**6)*4*V/(c*Absorb)
293

294 return T60, sigL, fschroeder

B.3.2 Signal and Recording Length

The following algorithm follows Muller-Trapet [36] calculation for the minimum trailing zeros that

must be included in a signal to allow a recording to observe efficient decay of a swept-sine signal

and is found in TankCharacterization.py.

297 def trailzeros(RT,sigL,fstart,fstop,f = None,R = 60,sig = 'lin') :
298 """
299 *****Super not sure if this is working because linear and exponential dont
300 give differing results. and tstop does not seem like it is calculated
301 correctly since when f = None should cause it to give l as solution********
302

303

304 Parameters
305 ----------
306 RT: float;
307 Reverberation time (s). Defaults to the T60, but can be altered by
308 changing the following parameter R. T60 estimate can be determined
309 by the depth of the water using the function T60est
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310 sigL: float;
311 Generated Signal length (s). The min. length can be found in
312 T60est(d) and should be 5-10x that of the estimated T60
313 fstart: float;
314 Start frequency (Hz) of the chirp signal
315 fstop: float;
316 Stop frequency (Hz) of the chirp signal
317 f: float;
318 Target Frequency of interest within the chirped signal, often the
319 highest frequency and therefore defaults as None which makes
320 f = fstop. Chosen as the highest frequency of interest.
321 R: float, Optional;
322 Defaults to 60dB as the dynamic range for the reverberation time
323 (T60), but can be change to a T15, T25, etc.
324 sig: string, Optional;
325 Signal type. Either 'lin' for linear or 'exp' exponential chirp.
326 Defaults to 'lin' chirped signal.
327

328 Returns
329 -------
330 tstop: float;
331 Trailing zeros necessary (stop margin, or stop gap)
332 tls: float;
333 Total length of signal and trailing zeros recommended.
334

335 Notes
336 -----
337 Author: Cameron Vongsawad
338

339 Trailing Zeros estimate from Muller-Trapet JASA 2020 paper based on RT.
340

341 Changed order of input to align better with T60est()
342

343 Last Modified: 2/22/2021
344

345 """
346 #tf = time in the sweep, when certain frequency f is played
347 #D = dynamic range for RT found by D = 20dB + R where R is the reverb time
348 # level decrease (where for a T60 will be R = 60 and D = 80)
349 import numpy as np
350

351 if f == None:
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352 f = fstop
353 if sig == 'lin' or 'linear':
354 #eq 21 time in the sweep when the target frequency occurs (sigL = min.
355 #actual sweep len)
356 tlin = sigL*(f-fstart)/(fstop-fstart)
357 #eq 20 determining the total signal/recording length duration from
358 #dynamic range and the estimated RT
359 l = tlin + (20 + R)/60*RT
360 #eq 18 determine the stop margine or time of trailing zeros for the
361 #signal (l = total signal duration, sigL = time of sweep design)
362 tstop = l - sigL
363

364 if sig == 'exp' or 'exponential':
365 #eq 24 time in the sweep when the target frequency occurs (sigL = min.
366 #actual sweep len) for exponential chirps
367 texp = sigL* np.log(f/fstart)/np.log(fstop/fstart)
368 #eq 20 determining the total signal/recording length duration from
369 #dynamic range and the estimated RT
370 l = texp + (20 + R)/60*RT
371 #eq 25 determine the stop margine or time of trailing zeros for the
372 #signal (l = total signal duration, sigL = time of sweep design)
373 tstop = ((20+R)/60*texp*np.log(fstop/fstart) \
374 - l *np.log(fstop/f))/np.log(f/fstart)
375

376 tls = l
377 print(sigL)
378 print(tstop)
379 print(tls)
380 return tstop, tls

B.3.3 Propagation Absorption

Acoustic propagation absorption through water is determined following the formulation of Ainslie

and McColm [45] to determine frequency and range-dependent absorption of acoustic energy

through water. The Ainslie and McColm model outputs the solution of the model in dB/km

and should be converted to Np/m for effective processing in accordance with the code used in

Appendix B.3.6. The code for this algorithm is found in TankCharacterization.py.
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386 def alpha_prop(f,T=16,S=5,pH=7.7,depth=0.6):
387 """
388 Absorption Coefficient from Propagation losses through Sea Water
389

390 Parameters
391 ----------
392 f: ndarray of float;
393 frequency array for bandwidth of interest for freq. dependent absorption
394 T: float, Optional;
395 Temperature of the water in Celcius. Defaults to 16 degrees C.
396 Effective for -6<T<35 degrees C.
397 S: float, Optional;
398 Salinity of the water in ppt. Effective for 5<S<50 ppt. Defaults to
399 S = 5 ppt
400 pH: float, Optional;
401 pH level of the water. Defaults to 7.7 (though this is high relative
402 to the test strips and a normal pool). Effective for 7.7<pH<8.3
403 depth: float, Optional;
404 depth of water in km. Defaults to 0.6m or 0.0006 km. Which will
405 make that term in the function negligible as basically zero.
406 Effective for 0<z<7000m or 0<z<7 km.
407

408 Returns
409 -------
410 a_p: ndarray of float;
411 absorption coefficient if sound (alpha) for propagation
412 losses through the water. (Np/m or Nepers/m)
413

414 Notes
415 -----
416 Author: Cameron Vongsawad
417

418 Primarily due to viscous effects above 100kHz (high), but also due to
419 Chemical relaxation of Boric Acid up to a few kHz (low), Chemical
420 relaxation of Magnesium Sulfate up to a few 100kHz (mid). This formulation
421 comes from Ainslie & McColm 1997 - "A simplified formula for viscous and
422 chemical absorption in sea water" Published in JASA 103 equation 2 & 3.
423

424 Can apply this in propagation models similar to account for thermoviscous
425 molecular losses.
426
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427 For reference: http://resource.npl.co.uk/acoustics/techguides/seaabsorption/
428

429 last modified 9/1/2021
430 """
431 import numpy as np
432 #The function originally takes in km, This converts m (used in lab) to km
433 depth = depth/1000
434 #relaxation frequency for boron
435 f1 = 0.78*(S/35)**0.5*np.exp(T/26)
436 #relaxation frequency for magnesium
437 f2 = 42*np.exp(T/17)
438

439 term1 = 0.106*(f1*f**2)/(f**2+f1**2)*np.exp((pH-8)/0.56)
440 term2 = 0.52*(1+T/43)*(S/35)*(f2*f**2)/(f**2+f2**2)*np.exp(-depth/6)
441 term3 = 0.00049*f**2*np.exp(-(T/27 + depth/17))
442 a_p = (term1 + term2 + term3)
443 #Original function returns solution in dB/km
444 #convert dB/km to Np/m (Nepers/meter)
445 a_p = a_p/1000 *0.115129254650564
446 return a_p

B.3.4 Time Bounds for Reverse Schroeder Intergration

This algorithm (found in TankCharacterization.py) generates a GUI in order to evaluate and deter-

mine good time bounds to perform reverse Schroeder integration on an impulse response squared.

This evaluation of the time bounds follows the standards for determining the T60 through reverse

Schroeder integration according to ISO 354:2003, ISO3382-1:2009, and ISO3382-2:2008.

449 #before the following function can be used, currently the variable below must
450 #be initialized to ensure it will function due to a conditional statement used.
451 l1 = None #DO NOT ERASE
452 def T60meas_bounds(data,fs):
453 """
454 Parameters
455 ----------
456 data: Ndarray;
457 Impulse Response data.
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458 fs: Float;
459 Sampling rate.
460

461 Returns
462 -------
463 tbounds: List (2 values);
464 List of the initial and final time bounds to perform the
465 reverse Schroeder integration on T60meas(data,fs,t0,t1,d,c,rt,plot)
466

467 Notes
468 -----
469 Author: Cameron Vongsawad
470

471 Utilize a pop up graph to view the 10log10(h(t)**2) of an input impulse
472 response or h(t). This allows you to choose the appropriate time bounds
473 to perform the reverse Schroeder integration on the impulse response h(t)
474 according to ISO354:2003, ISO3382-1:2009, ISO3382-2:2008 standards.
475

476 *****Because of the conditional statement in updatePlot(), the statement:
477 "l1=None" must remain before this function. This simply initializes l1
478 until another workaround is determined.
479

480 This is to be passed into the T60meas code in order to plot the decay curve
481 and determine the T60 of the impulse response. OctFilter() is recommended
482 prior to this function in order to pass through specific frequency bands.
483 When doing this, it is also recommended that you write a loop to loop
484 through each octave band through this function.
485

486 last modified 7/19/2021
487 """
488

489

490 #Creatre fonts to be used in the plotting.
491 LARGE_FONT= ("Verdana", 12)
492 #Medium_FONT= ("Verdana", 10)
493

494 #import necessary packages for use in GUI and plotting
495 import tkinter
496 from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
497 from matplotlib.backends.backend_tkagg import NavigationToolbar2Tk
498 # Implement the default Matplotlib key bindings.
499 from matplotlib.backend_bases import key_press_handler
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500 from matplotlib.figure import Figure
501

502 #Setup the main window for the GUI
503 root = tkinter.Tk()
504 root.wm_title("Check h(t)**2")
505 label = tkinter.Label(root, text="Impulse Response Squared in dB",
506 font=LARGE_FONT)
507 label.pack(pady=10,padx=10)
508 #Create a figure to plot
509 import numpy as np
510 fig = Figure(figsize=(10, 8), dpi=100)
511 ax = fig.add_subplot(111)#.plot(t,data)
512 #Create time array for the sample data (IR)
513 t = np.linspace(0,len(data)/fs,len(data))
514 #Grab data to plot and adjust to properly view h(t)**2
515 floor = np.max(data)*1e-5
516 ht = np.clip(data,floor,(np.max(data)+floor)) #data w/out zeros
517 b = 10*np.log10((np.abs(ht))**2)
518 #Plot initial data
519 fig.suptitle("Choose a Time Interval (t1 to t2) for Reverse Schroeder"
520 +"Integration. This should be where the plot is most linear.")
521 ax.set_xlabel("Time (s)")
522 ax.set_ylabel("Level (dB)")
523 ax.plot(t,b)
524 ax.grid(True)
525 fig.canvas.draw_idle()
526

527 #Create inputs for choosing bounds on the graph
528 in1_label = tkinter.Label(root,text="t1",font=LARGE_FONT)
529 root.in1 = tkinter.Entry(root)
530 in2_label = tkinter.Label(root,text="t2",font=LARGE_FONT)
531 root.in2 = tkinter.Entry(root)
532 in1_label.pack(side="left", fill="x", expand = False)
533 in2_label.pack(side="right", fill="x", expand = False)
534 root.in1.pack(side="left", fill="x", expand = False)
535 root.in2.pack(side="right", fill="x", expand = False)
536

537 #Replace vlines for checking bounds on the 10log10(h(t)**2) plot
538 #when the Check button is pressed.
539 def updatePlot(t1,t2):
540 tt1 = float(t1)
541 tt2 = float(t2)
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542 global l1
543 global l2
544 if l1 != None:
545 ax.lines.remove(l1)
546 ax.lines.remove(l2)
547 fig.canvas.draw_idle()
548 l1 = ax.axvline(tt1,color="orange",linestyle="--")
549 l2 = ax.axvline(tt2,color="orange",linestyle="--")
550 fig.canvas.draw_idle()
551

552 #calculate the reverberation time based on the time bounds chosen when
553 #Run T60mean button is pressed.
554 def Reverb(t1,t2):
555 tt1 = float(t1)
556 tt2 = float(t2)
557 global tbounds
558 global t60
559 tbounds = [tt1,tt2]
560 root.destroy()
561

562 #A tk.DrawingArea.
563 canvas = FigureCanvasTkAgg(fig, master=root)
564 canvas.draw()
565

566 #Create a toolbar for the GUI including ability to save plot.
567 toolbar = NavigationToolbar2Tk(canvas, root)
568 toolbar.update()
569 canvas.mpl_connect("key_press_event", lambda event: print(
570 f"you pressed {event.key}"))
571 canvas.mpl_connect("key_press_event", key_press_handler)
572

573 #Create buttons for control in GUI
574 run_button = tkinter.Button(root,text="Run T60meas",command=lambda: Reverb(
575 root.in1.get(),root.in2.get()))
576 check_button = tkinter.Button(root,text="Check",command=lambda: updatePlot(
577 root.in1.get(),root.in2.get()))
578

579 # Packing order for Widgets are processed sequentially.
580 # The canvas is rather flexible in its size, so we pack it last which makes
581 # sure the UI controls are displayed as long as possible.
582 run_button.pack(side="bottom")
583 check_button.pack(side="bottom")
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584 toolbar.pack(side=tkinter.BOTTOM, fill="y")#tkinter.X)
585 canvas.get_tk_widget().pack(side=tkinter.TOP, fill=tkinter.BOTH, expand=1)
586 #Loop GUI
587 tkinter.mainloop()
588

589 #Return the bounds in a list and the T60 time.
590 return tbounds

B.3.5 Measured Reverberation Time

This algorithm (found in TankCharacterization.py) determined the T60 from an input impulse re-

sponse and time bounds determined from the algorithm discussed in Sec. B.3.4.

592 def T60meas(ht,fs,t0,t1,d=0.6,c=1478,rt='T60',plot=False):
593 """
594 Calculate the T20, T30, or T60 from Backward Schroeder Integration on the
595 measured impulse response hsys.
596

597 Parameters
598 ----------
599 ht: ndarray of float;
600 Measured Impulse Response of the environment.
601 fs: float;
602 Sampling frequency of the impulse reponse.
603 t0: int;
604 start time in seconds
605 t1: int;
606 finish time in seconds
607 d: float, Optional;
608 depth of water. Defaults to a common 0.6m of water in the tank
609 c: float, Optional;
610 speed of sound in water. Defaults to 1478 rounded to nearest whole
611 value for any depth of water the tank can have, using Garrett's eq.
612 for the speed of sound in water relative to temperature, depth, and
613 salinity for a temparature of 19 degrees C (rough avg. in tank).
614 rt: String, Optional;
615 Choose desired Reverb Time (rt) as T10, T20, T30, or T60. Defaults



B.3 Tank Characterization 177

616 to T60. Choosing less than T60 estimates the T60 by assuming linear
617 relationship between chosen rt and T60.
618 plot: boolian, Optional;
619 Defaults to False so as to not Plot the 10log(h(t)**2) and the
620 associated Decay Curve. True would plot the two.
621

622

623 Returns
624 -------
625 T60: float;
626 Calculated reverberation time (T60) in the tank in seconds.
627 This is calculated using the Through The System (TTS)
628 response to evaluate reverberation only in the tank.
629 (i.e. time it takes for the signal in the tank to drop by
630 60dB)
631

632 Notes
633 -----
634 Author: Cameron Vongsawad
635

636 Calculate the measured T60 in the tank.
637

638 Some guidance for this part found here:
639 https://github.com/python-acoustics/python-acoustics/blob/master/acoustics/room.py
640 the above link provides an alternate method to more generalize this solution
641

642 This also follows ISO3382-1:2009(E)
643

644 last modified 5/18/2021
645 """
646 import numpy as np
647 import matplotlib.pyplot as plt
648 import matplotlib.pylab as pylab
649 from scipy import stats
650 params = {'legend.fontsize': 24,
651 'figure.figsize': (15, 10),
652 'axes.labelsize': 28,
653 'axes.titlesize':29,
654 'axes.titleweight':'bold',
655 'xtick.labelsize':24,
656 'ytick.labelsize':24,
657 'lines.linewidth':3}
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658 pylab.rcParams.update(params)
659

660 ##avoid log(0) to prevent exploding by clipping all zeros to 0.00001% of
661 ##the max and go just beyond the max value so as to not clip.
662 floor = np.max(ht)*1e-5
663 ht1 = np.clip(ht,floor,(np.max(ht)+floor)) #data w/out zeros
664

665 #Portion of array to actually look at for the T60meas. This is found by
666 #eyeing it (ISO3382-1:2009(E)). Look just after the 10*np.log10(np.abs(ht)**2)
667 #is flat in the beg. and just before it is flat in the end (background level).
668 t0 = int(t0*fs) #convert to samples
669 t1 = int(t1*fs) #convert to samples
670 ht1 = ht1[t0:t1]
671

672 #Backward Schroeder Integration
673 T = 1/fs
674 schroeder = np.cumsum(ht1[::-1]**2)[::-1]*T
675 schroeder_dB = 10*np.log10(schroeder)
676

677 if rt == 'T10':
678 #determine T10 between -5dB and -15dB of the max value of the decay curve
679 init = -5.0
680 end = -15.0
681 factor = 6.0 #amount to mult. T10 by to extrapolate T60
682 if rt == 'T20':
683 #determine T20 between -5dB and -25dB of the max value of the decay curve
684 init = -5.0
685 end = -25.0
686 factor = 3.0 #amount to mult. T20 by to extrapolate T60
687 if rt == 'T30':
688 #determine T30 between -5dB and -35dB of the max value of the decay curve
689 init = -5.0
690 end = -35.0
691 factor = 2.0 #amount to mult. T30 by to extrapolate T60
692 if rt == 'T60':
693 #determine T60 between -5dB and -65dB of the max value of the decay curve
694 init = -5.0
695 end = -65.0
696 factor = 1.0 #amount to mult. T60 by to extrapolate T60
697

698 #Relative value to refine search for init & end bounds for rt measurement.
699 maxval = np.max(schroeder_dB)
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700 schroeder_dB = schroeder_dB - maxval
701 #Linear regression
702 #determine the value on the decay curve where it is nearest the init and end
703 #values below the maximum of the the decay curve
704 sch_init = schroeder_dB[np.abs(schroeder_dB - init).argmin()]
705 sch_end = schroeder_dB[np.abs(schroeder_dB - end).argmin()]
706

707 check_actual = (sch_init - sch_end +5)
708 check_bounds = (init-end)
709 if check_actual < check_bounds:
710 raise ValueError(f"Decay not large enough for {rt} measurement."
711 +"Choose smaller rt value.")
712

713 #indices of where the decay curve matches the init and end condition
714 init_sample = np.where(schroeder_dB == sch_init)[0][0]
715 end_sample = np.where(schroeder_dB == sch_end)[0][0]
716

717 #Reverberation time (RT)
718 #convert samples to time and determine the difference
719 t_init = init_sample / fs
720 t_end = end_sample / fs
721 RT = t_end - t_init
722 T60 = factor*RT
723 print('T60 =',T60,'s')
724 print('')
725 print('')
726

727

728 if plot == True:
729 t = np.linspace(0,len(ht1)/fs,len(ht1))
730 Level = 10*np.log10((np.abs(ht1))**2)
731 plt.figure()
732 #plot the IR**2 in dB
733 plt.plot(t,Level)
734 plt.xlabel('Time (s)')
735 plt.ylabel('Level (dB)')
736 plt.grid()
737 #plot Decay Curve
738 plt.plot(t,(schroeder_dB + maxval))
739 plt.legend([r'$10log[h^{2}(t)]$','Decay Curve'])
740 est,_,_ = T60est(d,c)
741 plt.title(f'T60meas={np.around(T60*1000,decimals=2)}ms,'
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742 +f'T60est={np.around(est*1000,decimals=2)}ms')
743

744 return T60

B.3.6 Boundary Absorption

The following algorithm uses the measured T60 to determine the spatially averaged absorption of

the tank boundaries. The user may choose to account for the absorption at the water-air surface

and/or absorption due to propagation. This algorithm is found in TankCharacterization.py.

748 def alpha_wall(T60,d=0.6,c=1478,acc=False,alpha_p=0):
749 """
750 Calculate the spatially averaged absorption coefficient of the walls of the
751 tank based on the measured T60 of the tank (either averaged or over freq)
752

753 Parameters
754 ----------
755 T60: float or array of float;
756 Calculated reverberation time (T60) in the tank in seconds.
757 This is calculated using the T60meas function.
758 d: float, Optional;
759 depth of water. Defaults to a common 0.6m of water in the tank
760 c: float, Optional;
761 speed of sound in water. Defaults to 1478 rounded to nearest whole
762 value for any depth of water the tank can have, using Garrett's eq.
763 for the speed of sound in water relative to temperature, depth, and
764 salinity for a temparature of 19 degrees C (rough avg. in tank).
765 acc: boolian, Optional;
766 Account for the assumption that the water-air boundary is perfectly
767 reflective. Defaults to False to not make this assumption and give
768 the overall spatially averaged absorption coefficient. If True,
769 then the spatially averaged absorption coefficient that is returned
770 only accounts for the walls and the floor of the enclosure.
771 alpha_p: float or ndarray of float, Optional;
772 Absorption coefficient due to thermoviscous molecular propagation
773 losses. Defaults as 0 such that there is no propagation absorption.
774 Can use alpha_prop(f,T,S,pH,depth) code to feed in an array of
775 frequency dependent absorption coefficients due to propagation
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776 losses through the water.
777

778 Returns
779 -------
780 alpha_S: float;
781 Estimated spatially averaged absorption coefficient
782 (Nepers/m**2) for the room based on the measured T60 and the
783 Norris-Eyring Equation.
784

785 Notes
786 -----
787 Author: Cameron Vongsawad
788

789 Calculate the spatially averaged absorption coefficient of the tank boudaries
790 from the measured T60 in the tank.
791

792 This assumes that the incident energy per unit time and area is the same for
793 all wall surfaces at any given time. If one of the consituent areas S1 has
794 an absorption coefficient alpha1 that is substantially different than the
795 coefficient alpha0 of the remaining surface area S-S1, this assumption
796 becomes questionable. See 661 notes section 4-2.4.2.4 (Rooms with
797 asymmetric or nonuniform absorption).
798

799

800 last modified 10/21/2021
801 """
802 import numpy as np
803 #dimensions of tank
804 Lx = 1.22 #width of tank (m)
805 Ly = 3.66 #length of tank (m)
806 V = Lx*Ly*d #volume relative to current water depth
807 S = 2*(Lx*Ly+Ly*d+d*Lx) #total enclosed surface area including air-water
808

809 if acc == True:
810 #account for perfectly reflective water-air boundary
811 print('Calc. absorp. assuming pressure-release water-air (reflective)')
812 Aw = 0
813 else:
814 print('Calc. absorption w/ respect to small surface absorption')
815 #account for slight impedance water-air boundary
816 #estimate absorption coefficients for boundaries
817 zw = 1.5E6 #accepted acoustic impedance of water in Ns/m**3
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818 za = 415 #accepted acoustic impedance of air in Ns/m**3
819 alpha_air = 1-np.abs((zw-za)/(zw+za))
820 Aw = alpha_air*Lx*Ly/(S) #water absorption coefficient spatially averaged
821

822 #solving Eyring equation w/propagation loss found in 661 notes eq 4-2.4.124
823 #with default of alpha_p=0 this simplifies to eq. 4-2.4.116.
824 alpha_S = 1-np.exp(V/S*(8*alpha_p - (24*np.log(10))/(c*T60)))
825

826 #Account for the absorption of the water-air surface boundary while
827 #assuming that the incident energy per unit time and area is the same for
828 #all wall surfaces at any given time. (This does not apply asymmetric correction)
829 A = alpha_S*S - Aw
830 alpha_S = A/S
831 return alpha_S

B.3.7 Added Absorption

When absorptive material is placed within the tank environment, the absorption of the added

material may be determined from this algorithm (found in TankCharacterization.py) by comparing

the measured T60 with and without the material added.

833 def alpha_addition(ai,T60_1,T60_2,dS,d,c=1478):
834 """
835 Determine the absorption coefficient of any added material in the tank by
836 comparison of a pre and post T60 measurement. This is performed by solving
837 for the change in absorptive area A between two measurements using the
838 Sabine equation. (Solving this for the Eyring Eq. may be a better idea)
839

840 Parameters
841 ----------
842 ai: float;
843 Measured or estimated absorption of tank acrylic walls that are
844 being covered by input material
845 T60_1: float;
846 Measured reverbeation time in seconds of the tank prior to
847 application of new material into the tank.
848 T60_2: float;
849 Measured reverbeation time in seconds of the tank post
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850 application of new material into the tank.
851 dS: float;
852 Effective change in surface area (m**2) of the tank boundaries
853 due to application of new material.
854 d: float;
855 Depth of the water in m
856 c: float, Optional;
857 Speed of sound in m/s. Defaults to 1478 m/s
858

859 Returns:
860 alpha_add: float;
861 Measured absorption (Nepers) of material input into the tank
862 based on reverberation time prior to placing new material.
863

864 """
865 import numpy as np
866 #dimensions of tank
867 Lx = 1.22 #width of tank (m)
868 Ly = 3.66 #length of tank (m)
869 V = Lx*Ly*d #volume relative to current water depth
870 #661 eq 4-2.4.90 & 4-2.4.91 generalized for any sound speed
871 alpha_add = ai+24*np.log(10)*V/(c*dS)*(1/T60_2 - 1/T60_1)
872 return alpha_add

B.4 Models

B.4.1 Eigenmodes

This algorithm determines the eigenmodes and eigenfrequencies of an idealized rigid wall tank

solution. The rigid wall solution with pressure-release water-air surface may be used for the reasons

discussed in Sec. 3.3.3. This algorithm is found in TankCharacterization.py.

874 def TankMode(perm=10,fmin=0,fmax=1000,Lx=1.22,Ly=3.66,Lz=0.6,c=1478):
875 """
876 Determine the rigid wall condition Eigenmodes, Eigenfrequencies, and
877 Eigenfunctions for any frequency range and a chosen number of permutations
878
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879 Parameters
880 ----------
881 perm: float, Optional;
882 number of permutations to iterate through for each dimension x, y, z.
883 Will end up with arrays for f and mode of size perm**3. Default is 10.
884 fmin: float, Optional;
885 Minimum frequency of interest to reduce computation time and limit
886 output array size. Defaults to 0 Hz
887 fmax: float, Optional;
888 Maximum frequency of interest to reduce computation time and limit
889 output array size. Defaults to 1000 Hz
890 Lx: float, Optional;
891 Width of water tank. Defalts as 1.22 m for the BYU Underwater tank.
892 This could be altered when anechoic panels are placed in the tank.
893 Ly: float, Optional;
894 Length of water tank. Defalts as 3.66 m for the BYU Underwater tank.
895 This could be altered when anechoic panels are placed in the tank.
896 Lz: float, Optional;
897 Depth of water in the tank. Defalts as 0.6 m for the BYU Underwater
898 tank. This SHOULD be altered dependent on the current water level
899 in the tank.
900 c: float, Optional;
901 Speed of sound in water. This defaults to 1478 m/s following Garrett's
902 formula for speed of sound due to Depth, Salinity, and Temperature.
903 This Default is set to the average room temperature of the water and
904 assuming near zero salinity over any depth the tank can handle.
905

906

907 Returns
908 -------
909 f: ndarray of float;
910 Ordered Natural frequencies of the tank environment assuming Rigid
911 walls and a pressure release surface.
912 mode: ndarray of int;
913 Associated mode numbers of the natural frequencies of the tank.
914

915 Notes
916 -----
917 Author: Cameron Vongsawad
918

919 Calculate the natural frequencies and room modes as defined by Garrett
920 eq. 13.12 altered by kz in 13.14 for pressure release boundary
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921 (aka solutions to the eigenfrequencies for a rigid walled tank with pressure
922 release water-air interface)
923

924 last modified 4/7/2021
925 """
926

927 import numpy as np
928 #Perfectly rigid wall solution
929 print('Solving for natural frequencies assuming perfectly Rigid walls')
930 #rigid wall solution for natural frequencies &
931 #Pressure release surface(nz component)
932 fN = lambda nx,ny,nz: c/(2)*np.sqrt((nx/Lx)**2 + (ny/Ly)**2 + (
933 (2*nz-1)/(2*Lz))**2)
934 #create empty lists to populate
935 mode = []
936 f = []
937 #iterate through the permutations selected for each mode possibility nx,ny,nz
938 #nx,ny: 0,1,2,3...
939 for nx in range(0,perm):
940 for ny in range(0,perm):
941 #nz: 1,2,3...
942 #Garrett pg.721 "The nz = 0 solution does not exist since constant
943 #pressure in the z-direction is not an option that satisfies the
944 #boundary conditions at z=Lz and z=0 simultaneously."
945 for nz in range(1,perm):
946 #for only values within the chosen bandwidth fmin<= f <=fmax
947 temp = fN(nx,ny,nz)
948 if temp >=fmin:
949 if temp <= fmax:
950 f.append(fN(nx,ny,nz))
951 mode.append([nx,ny,nz])
952

953 f = np.array(f)
954 mode = np.array(mode)
955 #order all the frequencies & associated modes in numerical order of freq.
956 idxs = np.argsort(f)
957 f = f[idxs]
958 mode = mode[idxs]
959 print(f'{len(f)} frequencies recorded in range {fmin}<=f<={fmax}')
960 return f, mode
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B.4.2 Eigenfunctions

The eigenfunctions corresponding to the above eigenmodes for a rigid wall solution are determined

in this algorithm found in TankCharacterization.py. The rigid wall solution with pressure-release

water-air surface may be used for the reasons discussed in Sec. 3.3.3.

963

964 def TankFunc(x,y,z,f,mode,Lx=1.22,Ly=3.66,Lz=0.6,plot=True,pstyle='colored',num=4):
965 """
966 Parameters
967 ----------
968 x: float or array;
969 Single value for a single position in the tank, or array of values
970 to iterate over.
971 y: float or array;
972 Single value for a single position in the tank, or array of values
973 to iterate over.
974 z: float or array;
975 Single value for a single position in the tank, or array of values
976 to iterate over.
977 f: Ndarray of float;
978 Ordered Eigenfrequency array calculated and output by TankMode function
979 mode: Ndarray of float;
980 Ordered Eigenmode array calculated and output by TankMode function
981 Lx: float, Optional;
982 Width of water tank. Defalts as 1.22 m for the BYU Underwater tank.
983 This could be altered when anechoic panels are placed in the tank.
984 Ly: float, Optional;
985 Length of water tank. Defalts as 3.66 m for the BYU Underwater tank.
986 This could be altered when anechoic panels are placed in the tank.
987 Lz: float, Optional;
988 Depth of water in the tank. Defalts as 0.6 m for the BYU Underwater
989 tank. This SHOULD be altered dependent on the current water level
990 in the tank.
991 plot: Boolian; Optional;
992 Choose whether or not to plot the EigenFunctions of the natural
993 frequencies in the x-y, x-z, and y-z planes for the first "num" of
994 modes. Default is set as True to plot. False will not plot. This only
995 plots if len(x) or len(y) or len(z) != 1
996 pstyle: string; Optional;
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997 Defaults to 'colored' to plot contourf plots. Can also choose 'line'
998 to plot contour line plots. The latter is only recommended when solving
999 for very low frequencies.

1000 num: float; Optional;
1001 Number of modes to plot if Plot = True. Default is set to 4 modes for
1002 each coordinate plane for a total of 12 plots (if is shows anything)
1003

1004 Returns
1005 -------
1006 psi: 3D ndarray of float;
1007 Ordered Eigenfunctions of the natural frequencies.
1008

1009 Notes
1010 -----
1011 Author: Cameron Vongsawad
1012

1013 Calculate the natural frequencies and room modes as defined by Garrett
1014 eq. 13.12 altered by kz in 13.14 for pressure release boundary
1015 (aka solutions to the eigenfrequencies for a rigid walled tank with pressure
1016 release water-air interface)
1017

1018 last modified 4/7/2021
1019 """
1020 import numpy as np
1021 #Eigen-Function for rectangular tank assuming rigid walls and pressure release
1022 #water-air interface
1023 Psi = lambda nx,ny,nz :np.cos(nx*np.pi*x/Lx) * np.cos(ny*np.pi*y/Ly) * np.cos(
1024 (2*nz-1)*np.pi*z/(2*Lz))
1025

1026 psi = []
1027 print('')
1028 print('calculating EigenFunctions')
1029 for i in range(len(mode)):
1030 psi.append(Psi(mode[i,0],mode[i,1],mode[i,2]))
1031 psi = np.array(psi)
1032

1033

1034 if len(x) > 1:
1035 ##########################################
1036 #The rest of this function is solely for #
1037 #contour plotting the Eigenfunctions psi #
1038 ##########################################
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1039 if plot == True:
1040 print(f'plotting first {num} EigenFunctions')
1041 import matplotlib.pyplot as plt
1042 import matplotlib.pylab as pylab
1043 params = {'legend.fontsize': 24,
1044 'figure.figsize': (15, 10),
1045 'axes.labelsize': 28,
1046 'axes.titlesize':29,
1047 'axes.titleweight':'bold',
1048 'xtick.labelsize':24,
1049 'ytick.labelsize':24,
1050 'lines.linewidth':3}
1051 pylab.rcParams.update(params)
1052 #number of modes we are interested in contour plotting
1053 start = 0 #zeroeth mode 0, 0, 0 is weird?.
1054 #modes and frequencies of interest
1055 modeint = mode[start:num+start]
1056 fint = f[start:num+start]
1057

1058 #plot over x-y plane w/ z = 0
1059 #create spatial arrays for the 3-dimensions of the tank
1060 x = np.linspace(0,Lx)
1061 y = np.linspace(0,Ly)
1062 z = 0
1063 x,y = np.meshgrid(x,y)
1064 for i in range(len(modeint)):
1065 psi1 = Psi(modeint[i,0],modeint[i,1],modeint[i,2])
1066 #check if mode actually present in this plane, if not, do not plot
1067 check =np.ones((len(x),len(y)))
1068 if np.any(psi1 != check) == True:
1069 fig,ax=plt.subplots(1,1)
1070 if pstyle == 'line':
1071 cb = ax.contour(x,y,psi1,colors='black',linestyles='dashed')
1072 ax.clabel(cb,inline=True,fontsize=15)
1073 else:
1074 cb = ax.contourf(x,y,psi1)
1075 fig.colorbar(cb)
1076 ax.set_title(f'{modeint[i,:]} Mode f={np.round(fint[i],2)} Hz'
1077 + f'where Z={z}m')
1078 ax.set_xlabel('X (m)')
1079 ax.set_ylabel('Y (m)')
1080 plt.show()
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1081 else:
1082 print('undesired mode not plotted in x-y')
1083

1084 #plot over x-z plane w/ y = 0
1085 #create spatial arrays for the 3-dimensions of the tank
1086 x = np.linspace(0,Lx)
1087 z = np.linspace(0,Lz)
1088 y = 0
1089 x,z = np.meshgrid(x,z)
1090 for i in range(len(modeint)):
1091 #iterate through calculating each eigenfunction
1092 psi2 = Psi(modeint[i,0],modeint[i,1],modeint[i,2])
1093 #check if mode actually present in this plane, if not, do not plot
1094 check =np.ones((len(x),len(z)))
1095 if np.any(psi2 != check) == True:
1096 fig,ax=plt.subplots(1,1)
1097 if pstyle == 'line':
1098 cb = ax.contour(x,z,psi2,colors='black',linestyles='dashed')
1099 ax.clabel(cb,inline=True,fontsize=15)
1100 else:
1101 cb = ax.contourf(x,z,psi2)
1102 fig.colorbar(cb)
1103 ax.set_title(f'{modeint[i,:]} Mode f={np.round(fint[i],2)} Hz'
1104 + f'where Y={y}m')
1105 ax.set_xlabel('X (m)')
1106 ax.set_ylabel('Z (m)')
1107 plt.show()
1108 else:
1109 print('undesired mode not plotted in x-z')
1110

1111 #plot over y-z plane w/ x = 0
1112 #create spatial arrays for the 3-dimensions of the tank
1113 y = np.linspace(0,Ly)
1114 z = np.linspace(0,Lz)
1115 x = 0
1116 y,z = np.meshgrid(y,z)
1117 for i in range(len(modeint)):
1118 #iterate through calculating each eigenfunction
1119 psi3 = Psi(modeint[i,0],modeint[i,1],modeint[i,2])
1120 #check if mode actually present in this plane, if not, do not plot
1121 check =np.ones((len(y),len(z)))
1122 if np.any(psi3 != check) == True:
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1123 fig,ax=plt.subplots(1,1)
1124 if pstyle == 'line':
1125 cb = ax.contour(y,z,psi3,colors='black',linestyles='dashed')
1126 ax.clabel(cb,inline=True,fontsize=15)
1127 else:
1128 cb = ax.contourf(y,z,psi3)
1129 fig.colorbar(cb)
1130 ax.set_title(f'{modeint[i,:]} Mode f={np.round(fint[i],2)}'
1131 + f'Hz where X={x}m')
1132 ax.set_xlabel('Y (m)')
1133 ax.set_ylabel('Z (m)')
1134 plt.show()
1135 else:
1136 print('undesired mode not plotted in y-z')
1137 else:
1138 #not sure what this plot physically means, but I have it here for now.
1139 #might need to change default to not plotting if singular value is input.
1140 if plot == True:
1141 import matplotlib.pyplot as plt
1142 import matplotlib.pylab as pylab
1143 params = {'legend.fontsize': 24,
1144 'figure.figsize': (15, 10),
1145 'axes.labelsize': 28,
1146 'axes.titlesize':29,
1147 'axes.titleweight':'bold',
1148 'xtick.labelsize':24,
1149 'ytick.labelsize':24,
1150 'lines.linewidth':3}
1151 pylab.rcParams.update(params)
1152 plt.figure()
1153 plt.plot(f,psi)
1154 plt.xlabel('Frequency (Hz)')
1155 plt.ylabel(r'$\Psi (r)$')
1156 plt.title(rf'Eigenfunction $\Psi$({x},{y},{z})')
1157

1158 return psi
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B.4.3 Finite-Impedance Model

This algorithm (found in Tank Characterization.py) follows the solution discussed in Sec. 3.3.3

following the Pierce [43] solution for a finite-impedance boundary water tank.

1163

1164 def P_model_Pierce(Psi0,Psi,k,kn,mode,alpha,d=0.6,A=1,acc=False,anech=False,
1165 alpha_p=0):
1166 """
1167 Parameters
1168 ----------
1169 Psi0: Ndarray of float;
1170 Eigenfunctions at source position. Determined w/ TankFunc function.
1171 Psi: Ndarray of float;
1172 Eigenfunctions at receiver position. Determined w/ TankFunc function.
1173 k: Ndarray of float;
1174 Wavenumber of frequency band of interest.
1175 kn: Ndarray of float;
1176 Eigenmodes of the tank environment. Determined w/ TankMode function
1177 mode: Ndarray of float;
1178 Ordered Eigenmode array calculated and output by TankMode function
1179 alpha: Ndarray of float;
1180 Spatially averaged absorption coefficient
1181 d: float, Optional;
1182 depth of water. Defaults to a common 0.6m of water in the tank
1183 A: float, Optional;
1184 Amplitude of the function. A=1 (default) ensures the solution is
1185 simply the Green's function.
1186 acc: boolian, Optional;
1187 Account for the assumption that the water-air boundary is perfectly
1188 reflective. Defaults to False to not make this assumption and give
1189 the overall spatially averaged absorption coefficient. If True,
1190 then the spatially averaged absorption coefficient that is returned
1191 only accounts for the walls and the floor of the enclosure.
1192 anech: boolian, Optional;
1193 Defaults to False to calculate with no anechoic panels in the tank.
1194 If true, the calculation takes into account the thickness of the
1195 panels on the inner dimensions of the tank environment for the
1196 calculation of the spatially averaged absorption coefficient.
1197 alpha_p: float or ndarray of float, Optional;
1198 Absorption coefficient due to thermoviscous molecular propagation
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1199 losses. Defaults as 0 such that there is no propagation absorption.
1200 Can use alpha_prop(f,T,S,pH,depth) code to feed in an array of
1201 frequency dependent absorption coefficients due to propagation
1202 losses through the water.
1203

1204 Returns
1205 -------
1206 P: Ndarray of float;
1207 Green's function or pressure in the tank as a function of source
1208 and receiver positions.
1209

1210 Notes
1211 -----
1212 Author: Cameron Vongsawad
1213

1214 This follows Pierce "Acoustics: An Introduction to its Physical Principles
1215 and Applications" 3rd Ed. eq 6.5.20 (2019) or more precisely Leishman 661
1216 notes 4-2C eq. 4-2.2.193 (2021)
1217

1218 last modified 5/19/2021
1219 """
1220 import numpy as np
1221 #dimensions of tank
1222 Lx = 1.22 #width of tank (m)
1223 Ly = 3.66 #length of tank (m)
1224 #Alter the dimensions relative to the thickness of the anechoic panels
1225 if anech == True:
1226 Lx = Lx - 2*0.05
1227 Ly = Ly - 2*0.05
1228 print('Calculating w/ respect to anechoic panels')
1229 V = Lx*Ly*d #volume relative to current water depth
1230 if acc == True:
1231 S = 2*(Ly*d+d*Lx)+Lx*Ly #total enclosed surface area minus air-water surface
1232 print('Calculating w/ respect to walls only')
1233 else:
1234 S = 2*(Lx*Ly+Ly*d+d*Lx) #total enclosed surface area including air-water
1235 print('Calculating w/ respect to water surface & walls')
1236 #Spatially averaged absorption area including propagation absorption
1237 alpha_wall = alpha #wall absorption/impedance accounted for
1238 As = S*alpha_wall + 8*alpha_p*V
1239 x,y,z = mode[0],mode[1],mode[2]
1240 if x == 0:
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1241 Ex = 1
1242 else:
1243 Ex = 2
1244 if y == 0:
1245 Ey = 1
1246 else:
1247 Ey = 2
1248 Ez = 2
1249 lamb = 1/(Ex*Ey*Ez)
1250 P= -4*np.pi*A*np.sum((Psi*Psi0)/(V*lamb*(k**2-kn**2-1j*k*(As/(4*V)))))
1251

1252 return P

B.5 Processing Data: Putting the Algorithms Together

The following code comes from TestCode.py which pulls from each algorithm discussed above

in order to process the measured data to obtain the reverberation time T60 and spatially averaged

absorption coefficient 〈α( f )〉S. The results of this computation are saved in .xlsx spreadsheets

discussed Appendix A.3. Adaptations to TestCode.py were made in TestCode2.py (not copied

here because it is so similar to TestCode.py) in order to determine the integration time bounds

(see Sec. 4.3) for the reverse Schroeder integration [49, 50] from randomly selected measurements.

TestCode5.py (not shown here) is basic code for reading .xlsx files and plotting the reverberation

and absorption data for analysis. TestCode5.py is not shown simply because it does not contain

much other than calling data and plotting commands but may be of interest for reference.

1 # -*- coding: utf-8 -*-
2 """
3 Created on Mon Jul 6 12:21:13 2020
4

5 TEST CODE USED FOR PROCESSING ALL OF THE DATA FROM THE LARGE SCAN
6 THIS COLLECTS THE T60 and Absorption OF THE FULL SCAN
7

8 @author: cvong
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9 """
10

11 import numpy as np
12 #import byuarglib as byu
13 #import sys as directory
14 #keep using the natural working directory
15 #directory.path.insert(0,'C:/Users/cvongsaw/Box/UW Research/Code/uw-measurements')
16 #add a second working directory
17 """directory.path.insert(1,'C:/Users/cvongsaw/Box/UW Research/Code/
18 underwater-measurements/analysis/')#"""
19 from readLogFile import readLogFile
20 import matplotlib.pyplot as plt
21 import matplotlib.pylab as pylab
22 params = {'legend.fontsize': 24,
23 'figure.figsize': (15, 10),
24 'axes.labelsize': 28,
25 'axes.titlesize':29,
26 'axes.titleweight':'bold',
27 'xtick.labelsize':24,
28 'ytick.labelsize':24,
29 'lines.linewidth':3}
30 pylab.rcParams.update(params)
31 import scipy.signal as sci
32 import ESAUpose as pose
33 import ESAUdata as data
34 import ESAUResponse as response
35 import TankCharacterization as tank
36 import TimeGate_UnderwaterTank as tg
37 import xlsxwriter as xls
38 import openpyxl as xl
39 #import pdb
40 #pdb.set_trace()
41

42 ###############################################################################
43 ###############################################################################
44 #when switching file name via copy/paste, must change forward and back slashes
45 ###############################################################################
46 ###############################################################################
47 date4 = '2021-02-24' #scan 3,7,8(noise),9(noise)
48 date5 = '2021-02-26' #TL measurement [scan 3(5 points) and 4(10 points) good]
49 date6 = '2021-03-23' #short cal length long signal length
50 date11 = '2021-08-09'
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51 date12 = 'Need to redo date12 good tests with panels in'
52 date13 = '2021-09-13'
53 date14 = '2021-09-14'
54 date15 = '2021-09-15'
55 date16 = '2021-09-16'
56 date17 = '2021-09-17B'
57 date18 = '2021-09-22'
58 date19 = '2021-09-27'
59 date2 = date15 #second file name
60 date = date13 #first file name
61

62 ###NO PANELS####
63 #scan 2, 5k-10k 2021-09-14 downsample false [0.511,0.5155] octs 30
64 #scan7, 10k-50k 2021-09-15 downsample true factor2 [0.511,0.5149] octs 30
65 #scan 9, 50k-100k (24:729) 2021-09-15 [0.5103,0.514]
66 #scan 11 50k-100k (0:24) [0.5103,0.514] 2021-09-16 downsample factor2? octs 30
67 #scan 1, 100k-500k (1V) 2021-09-17B\2021-09-17 octs 25?
68 #scan 2, 100k-500k (3V) 2021-09-17B\2021-09-17 octs 25 (0:10)[0.6004,0.606]
69 ###With PANELS####
70 #scan 3, 5k-10k 2021-09-27 octs 30 [0.6008,0.604]
71 #scan 4, 10k-50k 2021-09-27 octs 30 [0.6005,0.6025]
72 #scan 6, 50k-100k 2021-09-27 octs 30 [0.6005,0.6031]
73 #scan 1, 100k-500k (1V) 2021-09-22 octs 25 ?
74 #scan 4, 100k-500k (3V) 2021-09-22 octs 25 [0.6005,0.6035]
75 scan = '9'
76 octs = 30 #int(len(OctFreq)) #number of octave bands to look at
77 tbound = [0.5103,0.514]
78 group = np.arange(716,729,1) #set of desired measurement IDs
79 downsample = False #may need to adjust factor
80 factor = 4 #factor by which to downsample
81 bandwidth = '50k-100k'
82 propagation = True #account for propagation absorption losses
83 water_air = False #account for minute impedance boundary of water-air surface
84 wall1 = "AbsorbAcrylic" #input data into appropriate spreadsheet name
85 wall2 = "AbsorbPanels" #input data into appropriate spreadsheet name
86 wall3 = "AbsorbAcrylicProp" #input data into appropriate spreadsheet name
87 wall4 = "AbsorbPanelsProp" #input data into appropriate spreadsheet name
88 walltype = wall3
89

90 for iii in group:
91 print(f'Scan {iii} Calculation in progress...')
92 #desire is the list of all scans you care to actually look at in this analysis
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93 desire = [iii]#,19,56,80]
94 filename = f'ID{iii}_000log.txt'
95 calfile = 'cal_000log.txt'
96 channels = [0,1] #recording channels of interest
97 #recorded calibration of interest (currently should only be len(cal_channel)=1)
98 #legend = ['0']
99 cal_channel = [1]

100 #legend = ['Near Wall','Middle','Anechoic']
101

102 year = date[0:4]
103 xls_file = f'W:/Vongsawad/data/{date}/{walltype}{bandwidth}.xlsx'
104 path = f'W:/Vongsawad/data/{date}/{date2[0:10]}_scan{scan}/'
105

106 freqMin,freqMax,temp,fs,startzero,sigL,trail,totdur,depth,xSource,ySource,\
107 zSource,xRec,yRec,zRec = readLogFile(filename,path)
108 _,_,_,_,_,_,_,_,_,xA_cal,yA_cal,zA_cal,xR_cal,yR_cal,zR_cal = readLogFile(
109 calfile,path)
110 temp = 20.88
111 depth = 0.5
112

113 N = fs*sigL #number of samples
114 signal = f'{sigL}s Chirp {freqMin/1000}kHz-{freqMax/1000}kHz'
115 test = f'{date} scan{scan} {signal}'
116

117 #generated CALIBRATION signal
118 fscal = fs #sampling frequency
119 startzerocal = 0.02 #leading zeros of the signal
120 sigLcal = sigL #signal length
121 trailcal = 0.5 #trailing zeros
122 treccal = sigLcal #time record length in sec
123 Ncal = fscal*treccal
124 Acal = (xA_cal,yA_cal,zA_cal)#(0.6,2.14,depth/2)
125 Rcal = (xR_cal,yR_cal,zR_cal)#(0.6,2.06,depth/2)
126

127 ##############################################################################
128 ##############################################################################
129 ##############################################################################
130 ##############################################################################
131 #load generated signal and calibration measurement
132 """gen, calgen, cal, ch0, ch1, ch2, ch3 = data.ESAUdata(path+scan, desire,
133 channels, N, Ncal)#"""
134
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135 gen, _, cal, ch0, ch1, _, _ = data.ESAUdata(path, desire, channels, N, Ncal)
136 calgen=gen
137

138 #Need to downsample the signal for the T60 code to remove extra noise to
139 #IR**2 to at most 2.5x fmax
140 if downsample == True:
141 #resample the data for higher sampling rates???
142 factor = factor #factor by which to reduce signal
143 gen = sci.decimate(gen,factor)
144 calgen = sci.decimate(calgen,factor)
145 ch0 = sci.decimate(ch0[:,0],factor)
146 ch1 = sci.decimate(ch1[:,0],factor)
147 fs = fs/factor #"""
148 fscal = fs #sampling frequency
149 caldec = np.empty([len(ch0),4])
150 for i in range(4):
151 caldec[:,i] = sci.decimate(cal[:,i],factor)
152 cal = caldec
153

154 #Load in positions, calculate range distance, plot scan positions desired
155 A,R,dd = pose.ESAUpose(path, desire, plot=False, Acal = Acal, Rcal = Rcal)
156

157

158 #time delays now allowing for a single measurement w/ single source/receiver pose
159 c = tg.uwsoundspeed(D=depth,T=temp,S=0.03, model='Garrett')
160

161

162 #need to update MeasGreen to handle various channels.and update the inputs
163 #to use ch number instead of allsignals.
164 print('')
165 print('')
166 print('System Response...')
167 #obtain only the cal of interest for calculating the system response
168 cal1 = np.ndarray.flatten(cal[:,cal_channel])
169 #cal1 = cal[:,cal_channel[0]] ###!!change!!!####
170 #cal1 = ch0[:,0]
171 #ch1 = ch1[:,desire]
172 #ch1 = ch1[:,0] ##!!change!!!####
173

174 tgate,_,tdir,dis = tg.gateValue(A[0],R[0],c)
175 tgatec,_,tdirc,disc = tg.gateValue(Acal,Rcal,c)
176
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177 #how much to gate the signal in samples
178 tb4gate = 0.1 #ms before first reflection tgate
179 Nb4gate = tb4gate/1000 *fs #convert to samples before gating
180 Ngate = tgate*fs-Nb4gate
181

182 tt = np.linspace(0,len(cal1)/fs,len(cal1)) #time array for recorded signal
183 tt = tt*1000
184 """plt.figure()
185 plt.plot(tt,ch1)
186 plt.title(f'Recorded Signal \n {signal} fs={fs/1000}kHz \n {date} scan{scan}')
187 plt.xlabel('time (ms)')
188 plt.ylabel('Amplitude')"""
189

190 hsys,tsys,Hsys,fsys = response.SysResponse(cal1,calgen,fscal,tgate=tgate,
191 wiener=True,domain='f')
192 if downsample == False:
193 Htank,ftank = response.TankResponse(ch1[:,0],gen,fs,hsys,wiener=True,
194 domain='f')
195 if downsample == True:
196 Htank,ftank = response.TankResponse(ch1,gen,fs,hsys,wiener=True,domain='f')
197 htank = np.real(np.fft.ifft(Htank))
198 ttank = np.linspace(0,len(htank)/fs,len(htank))
199

200

201 """Hss = 2*Hsys[0:(int(len(Hsys)/2))] #convert to single-sided FRF
202 fss = fsys[0:int(len(fsys)/2)]/1000 #convert to single-sided from Hz to kHz
203 Hss_dB = 10*np.log10(np.abs(Hss)) #convert to Levels (dB)
204

205 plt.figure()
206 plt.plot(fss,Hss_dB)
207 plt.title(f'FRF of {signal} for System')
208 plt.xlabel('Frequency (kHz)')
209 plt.ylabel('Amplitude')
210 plt.grid()
211

212 plt.figure()
213 plt.plot(tsys*1000,hsys)
214 plt.axvline(tgatec*1000,linestyle='dashed',color='g')
215 #no idea how to gate this relative to fs
216 #plt.axvline(Ngate*1000,linestyle='dashdot',color='r')
217 #need to compare this with the fs = 1M and fs = 10M measurements.
218 plt.axvline(tdirc*1000,linestyle='dashed',color='r')
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219 plt.xlabel('Time (ms)')
220 plt.ylabel('Amplitude')
221 plt.legend(['Chirp IR','Estimated First Reflection','Estimated Direct Signal'])
222 plt.title(f'Time-Gated Calibration IR of {signal} fs ={fs}Hz')
223 plt.xlim(0,0.8)
224 plt.grid()"""
225

226

227

228

229

230 """___Roll the Shape of the Time-Domain for htank___"""
231 #The IR is shifted to the end of the array, such that the tail
232 #spills over to the beginning of the ray. The array must be rolled
233 #for alignment w/ the actual IR. However, the number of zeros must
234 #be equal for both leading and trailing zeros.
235 roll = True
236 if roll == True:
237 rollt = int(0.5*len(htank)-1)
238 shift = rollt/fs
239 htank = np.roll(htank,rollt)
240 else:
241 shift = 0
242 """Htss = 2*Htank[0:(int(len(Htank)/2))] #convert to single-sided FRF
243 ftss = ftank[0:int(len(ftank)/2)]/1000 #convert to single-sided from Hz to kHz
244 Htss_dB = 10*np.log10(np.abs(Htss)) #convert to Levels (dB)
245

246 plt.figure()
247 plt.plot(ftss,Htss_dB)
248 plt.title(f'FRF of {signal} for Tank')
249 plt.xlabel('Frequency (kHz)')
250 plt.ylabel('Amplitude')
251 plt.grid()
252 #"""
253

254 #####################################################
255 """plt.figure()
256 plt.plot(ttank,htank)
257 plt.axvline(tgate+shift,linestyle='dashed',color='g')
258 #no idea how to gate this relative to fs
259 #plt.axvline(Ngate*1000,linestyle='dashdot',color='r')
260 #need to compare this with the fs = 1M and fs = 10M measurements.
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261 plt.axvline(tdir+shift,linestyle='dashed',color='r')
262 plt.xlabel('Time (s)')
263 plt.ylabel('Amplitude')
264 plt.legend(['Chirp IR','Estimated First Reflection','Estimated Direct Signal'])
265 plt.title(f'Calibrated IR of {signal} fs ={fs}Hz')
266 #plt.xlim(0,3)
267 plt.grid()"""
268

269

270 #tbound = tank.T60meas_bounds(htank,fs)
271 T60 = tank.T60meas(htank,fs,tbound[0],tbound[1],d=depth,c=c,rt='T10',plot=False)
272

273 octData,OctFreq = tank.OctaveFilter(htank,freqMin,freqMax,fs,frac=octs)
274 octTrans = np.transpose(octData)
275

276 if propagation == True:
277 #propagation absorption estimated for the water characteristics over desired
278 #Octave Bands prop=0 #when desired to not look into propagation effects.
279 prop = tank.alpha_prop(OctFreq,T=temp,S=5,pH=7.2,depth=depth)
280 else: prop = np.zeros(len(OctFreq))
281

282 """plt.figure()
283 legend1 = []
284 for i in range(len(OctFreq)):
285 plt.plot(ttank,octData[i,:])
286 legend1.append(np.round(OctFreq[i]))
287 plt.xlabel('Time (s)')
288 plt.ylabel('Amplitude')
289 plt.title('IR Octave Band')
290 plt.legend(legend1)"""
291

292 """plt.figure()
293 legend = []
294 for i in range(len(OctFreq)):
295 plt.plot(ttank,octTrans[:,i])
296 legend.append(np.round(OctFreq[i]))
297 plt.xlabel('Time (s)')
298 plt.ylabel('Amplitude')
299 plt.title('IR Octave Band decimated')
300 plt.legend(legend1)"""
301

302
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303 T60_f = np.empty(int(len(OctFreq)))
304 a_wall_f = np.empty(int(len(OctFreq)))
305 for i in range(len(OctFreq)):
306 #tbound = tank.T60meas_bounds(octTrans[:,i],fs)
307 T60_f[i] = tank.T60meas(octTrans[:,i],fs,tbound[0],tbound[1],d=depth,c=c,
308 rt='T10',plot=False)
309 #plt.suptitle(f'f = {OctFreq[i]/1000} kHz')
310 a_wall_f[i] = tank.alpha_wall(T60_f[i],d=depth,c=c,acc=water_air,
311 alpha_p=prop[i])
312

313 #overall absorption coefficient over entire bandwidth. Cannot include
314 #propagation absortion which is freq. dependent for a full scan bandwidth
315 a_wall_gen = tank.alpha_wall(T60,d=depth,c=c,acc=water_air,alpha_p=0)
316 T60est,sig,fschroeder = tank.T60est(depth,c=c,)
317

318

319

320 #Open an excel file and append data to it to create a repository of data
321 #this is particularly important for sharing absorption coefficient values
322 #to apply to the models Kaylyn is working on.
323 #https://realpython.com/openpyxl-excel-spreadsheets-python/
324 #https://openpyxl.readthedocs.io/en/stable/tutorial.html
325 #https://www.geeksforgeeks.org/python-writing-excel-file-using-openpyxl-module/
326 wb = xl.load_workbook(xls_file) #Find created worksheet
327 a_sheet = wb['Alpha'] #Find worksheet names
328 T_sheet = wb['T60']
329 #populate selected excel workbook with alpha (absorption coefficient data)
330 for i in range(len(OctFreq)):
331 c1 = a_sheet.cell(row=1,column=i+3)
332 c1.value = OctFreq[i] #populate alpha frequencies
333 c1 = T_sheet.cell(row=1,column=i+3)
334 c1.value = OctFreq[i] #populate T60 frequencies
335 for i in range(len(a_wall_f)):
336 c01 = a_sheet.cell(row=desire[0]+3,column = 2)
337 c01.value = a_wall_gen #populate overall alpha
338 c2 = a_sheet.cell(row=desire[0]+3,column=1)
339 c2.value = f'alpha_{desire[0]}' #order alpha values by ID#
340 c3 = a_sheet.cell(row=desire[0]+3,column=i+3)
341 c3.value = a_wall_f[i] #populate alpha values by freq bin
342

343 #populate selected excel workbook with T60 (Reverberation time data)
344 for i in range(len(a_wall_f)):
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345 c01 = T_sheet.cell(row=desire[0]+3,column = 2)
346 c01.value = T60 #populate overall T60 value
347 c2 = T_sheet.cell(row=desire[0]+3,column=1)
348 c2.value = f'T60_{desire[0]}' #order T60 values by ID#
349 c3 = T_sheet.cell(row=desire[0]+3,column=i+3)
350 c3.value = T60_f[i] #populate T60 values by freq bin
351 wb.save(xls_file) #save the updated workbook
352

353

354

355 """
356 ht = np.abs(np.fft.ifft(Htank))
357 T60 = tank.T60meas(ht,fs,t0=0,t1=int(len(ht)/fs),d=depth,c=c,rt='T60',plot=True)
358 alpha_s = tank.alpha_wall(T60,depth,c,acc=False,anech=False,alpha_p=0)
359 """
360 """
361 Hss = 2*Hsys[0:(int(len(Hsys)/2))] #convert to single-sided FRF
362 fss = fsys[0:int(len(fsys)/2)]/1000 #convert to single-sided from Hz to kHz
363 Hss_dB = 10*np.log10(Hss)
364

365 Hsstank = 2*Htank[0:(int(len(Htank)/2))] #convert to single-sided FRF
366 fsstank = ftank[0:int(len(ftank)/2)]/1000 #convert to single-sided from Hz to kHz
367 Hsstank_dB = 10*np.log10(Hsstank/1e-6)
368 """
369 """
370 ir = response.IR(ch1,gen,fs,wiener=False,domain='f')
371 ir1 = 10*np.log10(ir**2)
372 tt = np.linspace(0,len(ir1)/fs,len(ir1)) #time array for ht
373 tt = tt*1000
374 frf = np.fft.fft(ir)
375 frf = 10*np.log10(frf/1e-6)
376 frf = 2*frf[0:(int(len(frf)/2))]
377 f = np.fft.fftfreq(len(ir),d=1/fs)
378 f = f[0:int(len(f)/2)]/1000
379 plt.figure()
380 plt.plot(tt,ir)
381 plt.title('straight IR')
382 plt.xlabel('time (ms)')
383 plt.ylabel('')
384 plt.grid()
385 plt.figure()
386 plt.plot(f,frf)
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387 plt.title(f'Straight FRF')
388 plt.xlabel('Frequency (kHz)')
389 plt.ylabel(r'Level (dB re 1 $\mu Pa$)')
390 plt.grid()
391 """
392

393

394

395

396 """
397 plt.figure()
398 plt.plot(fss,Hss_dB)
399 plt.title(f'Time-Gated Calibration FRF of {signal} Swept-Sine')
400 plt.xlabel('Frequency (kHz)')
401 plt.ylabel(r'Level (dB re 1 $\mu Pa$)')
402 #plt.xlim(0,300)
403 #plt.ylim(35,65)
404 plt.grid()
405

406 plt.figure()
407 plt.plot(fsstank,Hsstank_dB)
408 plt.title(f'Calibrated Tank Transfer Function of {signal} Swept-Sine')
409 plt.xlabel('Frequency (kHz)')
410 plt.ylabel(r'Level (dB re 1 $\mu Pa$)')
411 #plt.xlim(0,300)
412 #plt.ylim(35,65)
413 plt.grid()
414 """
415

416

417

418

419

420

421

422 """
423 #need to EDIT with the below link
424 #https://www.askpython.com/python/examples/rmse-root-mean-square-error
425

426 """
427

428
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429 ##############################################################################
430 ##############################################################################
431 #OASPL w/ and w/out panels
432 ##############################################################################
433 ##############################################################################
434

435 ##############################################################################
436 """OASPL"""
437 ##############################################################################
438 """
439 #Calculate the overall sound pressure level with respect to 1 microPascal as is
440 #standard for underwater acoustics, rounded to 4 decimal places.
441 print('')
442 print('calculating OASPL re 1e-6 Pa from timewaveform...')
443 OASPL = np.empty(len(desire))
444 for i in range(len(desire)):
445 OASPL[i] = np.round(10 * np.log10( np.mean( np.square( ch0[:,i] ) ) /1e-6**2),4)
446 print(f'OASPL{legend} = {OASPL}')
447 """
448 ##############################################################################
449 """
450 gate_dir = np.argwhere(t<0.34e-3)
451 gate_dir = max(gate_dir[:,0])
452 gate_min = np.argwhere(t>0.34e-3)
453 gate_min = min(gate_min[:,0])
454 gate_max = np.argwhere(t<0.40e-3)
455 gate_max = max(gate_max[:,0])
456 IR_gate_dir = np.real(x0[:gate_dir, 0])
457 IR_gate_anech = np.real(x0[gate_min:gate_max, 2])
458 IR_gate_acryl = np.real(x0[gate_min:gate_max, 0])
459

460 #OASPL
461 OASPL = np.empty((1,len(desire)))
462 for i in range(len(desire)):
463 OASPL[:,i] = byu.OASPLcalc(ch0[:,i])
464 print(OASPL)
465 """
466

467

468

469 ##############################################################################
470 ##############################################################################
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471

472 """
473 #Calculate the overall sound pressure level with respect to 1 microPascal as is
474 #standard for underwater acoustics, rounded to 4 decimal places. This is
475 #calculating from the IR instead of the timewaveform as seen above.
476 print('')
477 print('calculating IR OASPL re 1e-6 Pa...')
478 OASPL = np.empty(len(desire))
479 for i in range(len(desire)):
480 OASPL[i] = np.round(10 * np.log10( np.mean( np.square( x0[:,i] ) ) /1e-6**2),4)
481 print(f'OASPL{legend} = {OASPL}')
482 """
483



Appendix C

Laboratory Documentation
A Guide to Equipment, Maintenance, and Measurements in the

Hydroacoustics Lab

This is an active laboratory document developed to help answer frequently asked questions and

concerns that may be encountered within the BYU underwater acoustics research laboratory. This is

the first version of this lab documentation and constitutes a detailing of the tank, measurement chain,

and general equipment in the laboratory. This documentation offers a guide to taking measurements,

maintaining equipment, and cleaning the tank environment. This document is key to the safe and

effective operation of experimentation within the BYU underwater acoustic research laboratory

located in U117 of the Eyring Science Center at Brigham Young University.

C.1 Water Tank

The 1.22 m wide by 3.66 m long by 0.91 m open-air water tank was made by Engineering Laboratory

Design Inc. and is made of scratch resistant acrylic. However, it can and will likely become scratched

over time and care should be given to maintain the clear and smooth nature of the acrylic.

206
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Figure C.1 Hydroacoustics Lab at BYU’s Eyring Science Center

The acrylic should acoustic properties similar to the following characteristics: speed of sound

2750 m/s, density 1.19g/cm3, acoustic impedance 3.26, and attenuation 6.4 dB/cm at 5MHz. Exact

physical characteristics could be measured using an 11”x11” sample of the acrylic obtained from

Engineering Laboratory Design Inc.. Initial measurements determined the sample to have an

approximate density of 1.175g/cm3 by mass and dimensions. Acoustic characteristics of the tank

may also be measured via in-situ measurements within the tank. For more information on how to

characterize the tank, see Cameron Vongsawad’s masters thesis 2021.

C.1.1 Maintenance

To avoid electrical issues related to water, all maintenance of the tank should be done on the West

side of the tank (Xmax side wall) between the teach pendants. This will ensure that potential spills
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or drips do not affect the robot, tablets or any of the other measurement equipment. All maintenance

should be recorded in the “Tank Maintenance.xls” spreadsheet found on the Atlantis Computer

Desktop.

Always keep a detailed record of any type of maintenance performed on the tank, whether

cleaning, filtering, draining, filling, fixing, etc. This should be saved in the “Tank Maintenance.xls”

spreadsheet found on the Atlantis Computer Desktop.

A link to app.poolcalculator.com can be found here as well as all the details necessary to be

filled in to the poolcalculator. Simply fill in the day’s date and the associated important details and

you will be informed what to fill into the app.

Supplies needed: Filtration system, Clorox pool test strips, Safety goggles, Nitrile gloves,

Bleach(8.25%), Hydrochloric Acid(34.6% Muriatic Acid), Baking soda, Distilled water, Graduated

cylinder, Funnel, Microfiber towels (grey). Water treatment should be done about once a month, the

filtration unit should be able to handle the bulk of keeping the water clean with its particle filter and

UV cleaning treatment. More supplies may be purchased with our account at the Chem Store in

the Nicholes Building directly South of the Eyring Science Center. You must obtain a slip from

the Chem Store to be signed by Traci in order to be added as a purchaser on the account (this will

require your name, netID and the lab rm #(U117esc)).

Checking Tank Levels

Tank levels should be checked once every other week. Using app.poolcalculator.com in association

with the Clorox test strips above the sink.

• Settings should be selected for Type: Pool, Surface: Fiberglass, Unit Type: Metric, Ranges:

Traditional Pool

– Volume = (3.66m x 1.22m x depth x1000) L. This can be calculated by using the

website’s Volume Calculator in the side menu.

app.poolcalculator.com
app.poolcalculator.com
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– Temperature = (Reading on Duck, thermocouples, or ESAU) in Celsius

– Input the tested and goal marks for the Chlorine, pH, Alkalinity and Calcium Hardness

to be instructed on what to adjust automatically.

• Clorox test strips

– Dip the test strip into the water to about elbow depth and remove immediately. (If water

is too low for elbow depth, get at least half-way under the water and hold for about the

time it would take to go to your elbow and then remove, too long can over-saturate the

test strip).

– Compare colors as best as you can to those on the bottle

– Record findings in the online pool calculator and the maintenance record.

Water Treatment

• Always wear safety goggles and gloves when handling chemicals. Goggles and gloves can be

found in the cabinet above the sink. A facemask may also be beneficial particularly when

handling HCL.

• Bleach (used for chlorinating the tank)

– Ensure to put concentration of bleach in the pool calculator to obtain proper amount

needed to add (should be 8.25%)

– Fill graduated cylinder with appropriate amount of bleach, dilute with distilled water

and carefully submerge the graduated cylinder and run it along the length of the tank

from (X,0,Z) to (X,Y,Z) gradually allowing the diluted bleach to pour out into the length

of the tank without creating bubbles. Gently rinse with tank water carefully to not splash

or create bubbles.
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• HCI (used for lowering pH) *Consider wearing a face mask when handling the HCL.

– Ensure to put concentration of HCL in the pool calculator to obtain the proper amount

needed to add (should be 36.25-38

– Fill graduated cylinder with appropriate amount of HCL, dilute with distilled water.

Carefully submerge the entire graduated cylinder close to the water surface and move it

along the length of the tank from (X,0,Z) to (X,Y,Z) gradually allowing the diluted HCL

to spread out into the length of the tank without creating bubbles and evenly spreading

it. Gently rinse the graduated cylinder with tank water carefully to not splash or create

bubbles.

• Washing Soda, Borax, or Soda Ash (used for raising the alkalinity and pH of the water.)

– Fill the graduated cylinder with the appropriate amount of chosen compound according

to the pool calculator.

– Gently spread the compound out along the length of the tank.

– Gently mix in the compound using the pool skimmer until it is mostly dissolved into the

water. Follow this by turning on the filtration system for at least an hour.

Filtration

The filtration unit designed and built by John Ellsworth has particle filtration, UV treatment, a water

heating element, and debubbling. Filtration should be performed for 4 hours per day to maintain

cleanliness.

• Ensure the water pressure is appropriate in the filtration system as indicated by the red LED

on the top of the intake and output. If the pressure is not appropriate, the water level on the

intake and output will be low and the LED will not be lit. If the LED is not lit, the pump will
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not activate until air is purged from the system and the water level rises so that the LEDs are

lit.

• The filtration system is fitted with quick release inlet and outlet piping. Once the pressure

is released from both the inlet and the outlet, these may be removed to remove the filtration

system from the tank. When these are reattached, both the inlet and outlet must be re-

pressurized on the control panel until the LED in either pipe is restored with the water level

about an inch above the LED water level sensor.

• Filtration is not enough on its own and the water chlorine and pH levels should still be checked

regularly.

Filling and Draining the Tank

• Filling

– The tank should be initially filled with tap water from the main faucet. The tank

should never be filled with only distilled water because of the corrosive nature of a

nutrient/mineral deficient water. Distilled water can easily eat metal up in an attempt to

obtain minerals.

– Attach the clean hose (neon colored) to the right faucet at the sink for tap water

– Attach the clean hose to the left faucet at the sink for distilled water. Distilled water may

be used once the tank is at least half full (0.4m) if less hard water is desired. However, it

should mainly be used for refilling a tank that has lost water level due to evaporation,

but maintains the original total hardness.

– Ensure the clean hose (neon colored) is attached to the right side of the hose splitter

under the tank. Should be the side not already attached to drain.
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– Turn on the water while the tank valve is still closed but the drain valve is open. This will

purge any impurities that may remain in the line. This can be tricky (for distilled water)

because it will not stay on by itself without forcing the valve to stay open somehow (use

of a claw clamp and tripod is helpful).

– Close the drain valve on the splitter. Then remove the magnetic plug in the bottom of

the tank and open the valve to allow water to flow into the tank.

– When filled to desired depth, close the valve on the tank, allow excess water to drain

down the dirty hose line, and disconnect the clean hose from the faucet. Leave both

splitter valves open to ensure the hose can dry out properly.

• Draining

– In the case of needing to drain, a magnetic rod must first be used to remove the plexiglass

plug in the base.

– The greywater line (dirty) is denoted by the grey hose attached to the splitter and

permanently in the floor drain.

– Simply turn the splitter valve on (toward the center) to allow flow as well as open the

large yellow handle valve to the tank to drain. Cover both ends with old rags to catch

drips

– Clean the squeegee with alcohol to prevent any debree from scratching the acrylic

surfaces when used. Then use the squeegee to ensure all water drains as best as possible.

• Cleaning the acrylic tank walls

– First drain the tank.

– Prepare a small and clean bucket filled with water and a drop or few of dish soap ready

with a few clean gray microfiber towels.
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– Pour a little bit of the lightly soapy water down the drain to clean out the last bit as much

as possible and wash it through the hose and down the drain.

– Use towels and lightly soapy water to wipe down and then dry all acrylic surfaces to

remove all hard water, chemical, dust or dirt residue in the tank. Wring out towels in a

different bucket than the clean soapy water.

– Take care to not scratch the acrylic. Wear clean socks and gloves when entering the

tank and put most weight over the steel supports. A mask may also be worn in order to

prevent any impurities attaching to the tank walls/floor.

C.2 Underwater Positioning System

The Underwater Positioning System (UPS) uses two UR10e collaborative robots from Universal-

Robots.

Ægir, named after the Norse god of the sea, was obtained first in order to evaluate if it met

the need of our specific applications. Ægir (Host name: Static IP address:

) originally came with version 5.5 of the polyscope software. Ægir is mounted on

a simple stationary Vention pedestal on the South-East end of the water tank. Rán (Host name:

Static IP address: ) is Ægir’s wife in Norse mythology and the

second UR10e robot obtained that originally came with version 5.6 of the polyscope software.

Rán is mounted on a Vention MachineMotion (Host name: Static IP address:

) 7th-axis extender track (https://vention.io/designs/ur-7th-axis-with-extended-range-

of-20ft-with-urcaps-integration-64710) that allows maximum reach throughout the water tank

environment. Each robot currently runs on URsoftware 5.7.0.90932 software updated on January

21, 2020. (some details have been redacted for security purposes)

Since the UR10e robots are collaborative, force sensors and other safety features make it safe
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and intuitive for students to use. The polyscope robot software is simple to program with the help of

a basic online training course found on universal-robots.com/academy that also provides a thorough

understanding of setting up robot safety protocols. The Core, Advanced, Application and Interface

training should be completed before attempting to alter any robot programming, manually move

the robots, or adapt any ESAU code for robot motion control. It is also recommended to meet with

an already trained student after completing the online training to practice using the robots with

someone to answer any questions that may come up.

Positioning with these robots is precise within 0.01mm. The added Vention MachineMotion

7th axis extender adds an additional ±0.01mm of uncertainty primarily seen at the far end of the

track. Care should be given to program the proper offset positioning of any tool end connector for

the robot arm.

Custom end connectors have been designed and built in house for holding each specific trans-

ducers used in the underwater acoustic measurement tank. Care has been taken for both ensuring

transducer safety and optimizing orientation for transducer directivities.

Both robotic arms are fitted with a flexible cable management system, Teach Pendant armor, and

screen protector obtained from MSITech. The flexible cable management should should typically

be fitted with BNC cables to connect to. Visit MurrPlastik’s website (https://www.murrplastik.com/

products/robotic-dress-packs/fhs-flexible-holder-systems-for-collaborative-robots/) for videos on

how to safely replace BNC cables and adjust this system. Whenever cabling is moved around,

ensure that cables are managed neatly with consideration to avoiding any cross-talk especially to

transducer BNC cables.

universal-robots.com/academy
https://www.murrplastik.com/products/robotic-dress-packs/fhs-flexible-holder-systems-for-collaborative-robots/
https://www.murrplastik.com/products/robotic-dress-packs/fhs-flexible-holder-systems-for-collaborative-robots/
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C.2.1 Robot Control

Ægir and Rán can be manually controlled via the attached teach pendant powered by the built in

Polyscope software. This allows for precise motion in Cartesian coordinates relative to a defined

TCP including orientation control using the robot’s six joints of motion. The manual control is

performed by simply pressing arrow keys on the teach pendant’s manual motion control.

The robots may also be controlled via programmable motion performed directly on each robot’s

teach pendant. The programming is made for repeatable motion via way points, orientation, and

various types of motion typically utilized in factory-like applications requiring high precision.

Motion can be done as linear motion, j-motion or circular motion. Simplified grid pattern motion

can be performed in preset routines such as a palletizing routine.

To perform this motion safely, the Polyscope installations must be programmed with the tool

being used and safety parameters input in order for the robot software to fully understand how the

robots should move. Inputs includes tool mass, tool center of mass, tool TCP position offset, joint

limits, speed limits, acceleration limits, plane limits, and more.

Setting Joint limits can be the easiest method to prevent parts of the robot from crashing into

anything. This is also beneficial to prevent Rán from colliding into the north tank wall, even when

the Vention MachineMotion 7th axis extender moves to the end of the track.

The best method for creating safety parameters is to create safety planes, establish a tool position,

and the parameters for the TCP. Safety planes should be made relative to the base or another feature.

Create a new feature following the right hand rule (not according to the Teach Pendant or tank

axes), where the thumb is Z+, the index finger is X+, and the middle finger is Y+, such that the

Z+ direction is toward increasing danger or away from the safe operating positions. Copy the tool

position from the established TCP. Safety for each plane should be named and set for “Normal”

which will stop the robot. An additional Displacement of at least -50 mm should be set for each

safety plane to ensure no damage to the hydrophones even with anechoic paneling in place. Safety



C.2 Underwater Positioning System 216

parameters should not be set with a transducer attached in case of damage to the transducer. It is

highly recommended, when moving the TCP near an object of interest to create a feature, that you

move it manually both to and away from that feature. This will ensure a natural MoveJ of the robot

does not make the tool accidentally crash into the new feature.

Ægir should have at least 5 safety planes and 2 joint limits when operating inside the tank.

These include: Seabed or tank floor, Xmin (Acrylic Wall), Xmax (Acrylic Wall), Ymax (Acrylic Wall),

and Lab Ceiling. An additional Ymin (Imaginary plane dividing robots) could be created to further

prevent Ægir from hitting Rán. Ægir should have both the base and the shoulder joints limited to

prevent the robot from colliding with the Xmin (Acrylic Wall or East wall) as best as possible. The

base joint limits can also benefit the prevention of Ægir hitting Rán.

Rán should have at least 4 safety planes and 2 joint limits when operating inside the tank.

These include: Seabed or tank floor, Xmin (Acrylic Wall), Xmax (Acrylic Wall), and Lab Ceiling.

Additional Ymin (Acrylic Wall) and Ymax (Acrylic Wall) may be set up in the installation. However,

features are created relative to the base of the UR10e robot and because of the MachineMotion

7th axis extender, these planes can move relative to the track. In any case, care must be taken in

the programming to ensure Rán does not crash into obstacles in the Y-direction or X-Z plane. Rán

should have both the base and the shoulder joints limited to prevent the robot from colliding with

the Xmin (Acrylic Wall or East wall) and the Ymin (Acrylic wall or North wall) when the Vention

MachineMotion 7th axis extender is moved to the end of the tank.

C.2.2 Vention MachineMotion

For further motion with Rán the Vention Machine Motion adding a 7th axis of motion may be

connected to a computer via the ethernet port of the machine motion labeled . An

ethernet to USB adapter is provided to allow connectivity to the Microsoft Surface Pro 7 in the lab.
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Using a chrome browser, input the IP address to access the manual control of the 7th

axis extender track for Rán. (Some information has been redacted for security purposes)

LEDs on the MachineMotion box should be lit when operating. 3 green-yellow LEDs should

illuminate if the proper safety settings are loaded and the motor is ready to move. MachineMotion

will not allow control until safety parameters or a program with safety parameters are loaded

properly into the Polyscope software. Blue indicator lights on the manual control interface will

light up when the track is sensed by the inductive sensors on the Home and End positions. If both

indicator lights are lit, the system does not recognize a safe program loaded and will not allow

manual control of the track. You may also notice that if the Vention control panel on google chrome

on the tank mounted Surface Pro is still loaded from a previous session, it may not be showing

a correct position for one of two reasons. First try refreshing the page, this may fix a connection

problem with the Vention itself. After sitting for some time the google chrome page may have just

fallen asleep and disconnected, restarting the page will allow for reconnection to occur. Secondly try

to move the Vention to the Home position. At the Home position the electromagnetic sensor activates

and the system re-calibrates the zero position and will now report the position correctly again. If

Vention is still not functioning, a shut down and restart of the robot system may be necessary. When

shutting down the robot system, shut down both Ægir and Rán and then hard shutoff Vention on the

MachineMotion control box. Let them sit shut-off for a short period of time and turn them back on.

Ensure that when Ægir and Rán are turned back on that the proper installation is loaded so all safety

settings are loaded and when Vention recognizes a proper installation, it will function again.

The Vention MachineMotion track brings a level of difficulty and potential for damages when

programming. This is because programs are written relative to the UR10e base and not relative to

the MachineMotion track base. The track simply adds increased motion. This can cause a poorly

programmed TCP waypoint position to crash into the tanks North wall when Rán is moved to the

End of the track.
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The Vention can be controlled via the teach pendant by use of additional Vention URCap

software. When programming with the Vention URCap, it is important to ensure that the maximum

speed is no more than 100mm/s and maximum acceleration as 50mm/s2. This will ensure a

consistent stopping position at home and end of the track as defined by the inductive sensors

on either end sensing the attached metal spring’s proximity which should be 3 mm from the

electromagnetic sensor to the end of the spring on either home or end positions. The approximate

3mm separation can be exceeded when allowed to move too fast and the springs are present to allow

some give if the sensor is crashed into.

When programming, ensure the position of the Rán TCP in a program will not place the end

connector/hydrophone assembly in a position to collide with the north wall of the tank or Ægir on

the other end in order to prevent damages as the track moves to either end. This can be achieved

for example by ensuring the TCP position is above the top of the tank when moving the track to

the End position. This may also be accomplished by setting plane and joint limits for Rán. Once

effective plane and joint limits are set in the Rán’s installation, this becomes less of a worry.

Both the robotic arms and the Vention MachineMOtion 7th axis extender may be controlled

remotely via custom software developed at BYU using LabVIEW. This software, Easy Spectrum

Acoustics Underwater or ESAU, sends script commands directly to the robots and MachineMotion

interface via TCP/IP through Ethernet connection. Specific Polyscope and Vention script commands

can be found on universal-robots.com and https://vention.io/docs/guides/socket-api-61 respectively.

C.2.3 ESAU Motion Control

ESAU has the ability to send commands to each robot to perform motion control in the same system

as taking measurements. This also allows for motion to only occur once the measurement has been

taken and vice versa. ESAU reads in position and orientation statements from each robot through

TCP/IP and passes commands to each robot arm informing them of position and orientation to

universal-robots.com
https://vention.io/docs/guides/socket-api-61
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move to. These commands are input as individual Cartesian tank coordinates or as multi-point scan

positions. ESAU uses hard-coded coordinate translation based off of Rán’s coordinate position

relative to Ægir’s relative to the tank. This minimizes error by not compounding multiple coordinate

translations. The ability to measure this translation exactly greatly determines the true level of

positioning precision that ESAU reports in tank coordinates.

Multi-point scan positioning allows for the selection of Cartesian coordinate limits for a scan, as

well as number of positional points that should occur between those limits. However, hardcoded

into ESAU, are maximum reachable positions creating a 3D polygon shape displayed when an input

position is outside of that safely reachable range. Any multi-point scan position outside of the safety

polygon may be deleted so the maximum amount of possible scan positions will be allowed for a

scan measurement.

C.2.4 Robot End Connectors

The robot end connectors are used to attach the tool which holds the transducer. To maintain the

precision of the robots, every possible measurement should be made, recorded, and clearly shown

in a proposed design submitted to the machine shop. This way they can effectively make the design.

The end connectors should be attached to the robot arm using 4x Vented Socket Head Screw

M6 x 1mm Thread, 25 mm long bolts that can be ordered from McMaster-Carr. Length of bolt may

differ with end connector design.

After attaching the end connector and tool, measure the new TCP offset positions and program

this into a new Polyscope installation with appropriate safety parameters and use the creation date

in the name. Safety parameters should all be set in reference to the robot base coordinates and the

tool end should extend 500mm in the y direction from the robot’s end connection for robot safety

parameters to take the TCP into account and to maintain the functionality of ESAU motion limit

settings.
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Each tool is equipped with a float sensor as an extra safety precaution to ensure neither robot

touches the water. These sensors are wired into both robots as a safeguard stop. The sensor is

oriented and wired to be naturally off or low voltage when out of the water (Note that common float

switches are normally open because they typically are powered when not floating, telling a system

to continue to fill a tank or that a tank is empty). When the sensor reaches water level the ring will

be pushed to the top of the sensor and the signal will be switched to high voltage causing the whole

system to immediately stop. The robot cannot move out of this stopped position without manually

unswitching the float and manually moving the robot (this may require assistance). If the sensor

was triggered while running ESAU, then ESAU will have lost connection with the robots as their

E-Stop was triggered. If this is triggered by only Ægir, then Rán will have E-Stopped as well, but

Vention may not have.

C.2.5 Robot Maintenance

Software updates should be regularly obtained at universal-robots.com/download. A new USER

MANUAL version should be downloaded to Dr. Neilsen’s BOX account under “Papers on Under-

water Acoustics” with every software update. Download the software update onto a flash drive

(Hydra is commonly used) and then load that onto each Teach Pendant.

When the Polyscope or ESAU software is updated, ensure that extensive testing is performed

with any desired motion/programming in order to ensure no bugs have developed due to the update.

C.3 Other Laboratory Equipment

C.3.1 Depth and Temperature Sensors

The tank is equipped with two LMP 307T sensors from SensorOne, each mounted to the tank via

suction cup mounts. These sensors improve remote measurements with ESAU by outputting current

universal-robots.com/download
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water depth and water temperature at two opposite corners of the tank. This allows for guided input

of the current water depth preventing ESAU from allowing robots to move to positions of potential

water damage and current water sound speed due to temperature.

Without proper knowledge of the current water depth, water damage to the robotic arms is

possible. However, float sensors are also mounted to the tool connection in order to further prevent

allowing the robots to become damaged. The depth and temperature sensors are mounted opposite

corners of the tank and held in place with strong magnets adhered to the walls of the tank. The

black caps protecting the pressure (depth) sensor diaphram should rest in contact with the tank floor

for best results. A gap in the anechoic paneling should be provided for this.

The sensors are then attached to an NI card mounted to the underside of the Vention track.

Sensor Wiring for the SensorsOne LMP307 connected to the NI cards is as follows.

Sensor 2199435 should be wired as follows:

Supply P+ (White) - Ground

Supply P- (Brown) - A17

Supply T+ (Grey) - Ground

Supply T- (Pink) - A16

Sensor 2199436 should be wired as follows:

Supply P+ (White) - Ground

Supply P- (Brown) - A14

Supply T+ (Grey) - Ground

Supply T- (Pink) - A15
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If water does make contact with any electronics, Immediately Shut Off electronics and unplug

to ensure no current is flowing. Allow sufficient time for each component to dry thoroughly before

turning back on and ensure to make special note of what happened and what was being done at the

time of the incidence. In the note, propose what might be done to prevent this occurrence in the

future.

C.3.2 Transducers

In the U117 lab, there are 6 major types of underwater transducers used for measurements. Each

transducer should be used with appropriate impedance matching transformer relative to frequency

as well as appropriate power or pre amplifier.

AS-1 reciprocal hydrophone

Best used in the frequency range 1Hz-100kHz. Two AS-1 hydrophones are available. However, no

specific calibrated sensitivity was given for either hydrophone and the provided in-line preamplifiers

do not currently appear to work reliably.

Brüel & Kjær 8103 reciprocal hydrophone

Best used in the frequency range 4-100kHz. Seven 8103 hydrophones are available and are

commonly used. These require use with the Brüel & Kjær NEXUS conditioning preamplifiers and

specialized connectors/cables.

Teledyne Reson TC4038 reciprocal hydrophone

Best used in the frequency range 50-500kHz. Five TC4038 hydrophones are abilable. Due to their

size, they are best for creating arrays without adding as much acoustic scattering potential.
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Teledyne Reson TC4034 reciprocal hydrophone

Best used in the frequency range 5-200kHz. One TC4034 hydrophone is available. As the largest

hydrophone, greater consideration must be given to ensure the safety of the hydrophone which may

reach just outside of the robot safety limits.

Pool Speaker

The pool speaker does not have a very flat response as a source because it was specifically designed

for providing a reference for synchronized swimming in the audible range.

Geospectrum Particle Motion Detector

The Geospectrum Particle Motion Detector (inventory number 7100) is an expensive piece of

equipment ($5000+) and as such should be treated with great care. For any questions, refer to this

manual and the User Manual contained in the pelican case with the detector.

Never suspend the particle motion detector from the cable. Always support with polyethylene

rope from eyelet attachment on top of detector bought for this specific purpose. Use a sturdy knot

that is tested not to slip. Fisherman’s knot is proven to work, but another sturdy knot will suffice.

The analog c/v converter should never get wet. There is a power supply with a fuse on the end that

plugs into the wall that was specifically made for the analog c/v converter. The use of any other

power supply is possible but not recommended. Refer to the particle motion detector user manual

contained in the pelican case for specifications and limitations for the power supply. Similarly, the

use of the particle motion detector without the included cable or analog c/v converter is possible but

not recommended. If the need or desire ever arises, refer to the user manual contained in the pelican

case for important instructions, and good luck. Never attach cable to detector or c/v converter

without first applying Molykote 44 lubricant.
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C.3.3 Data Acquisition

Data acquisition and signal generation is performed primarily using hardware from Spectrum

Instrumentation and ESAU. The data acquisition cards have relatively high resolution (16-bit) and

high sampling rate (40 MS/s). Using the Star-Hub module, the arbitrary waveform generator (AWG)

(M2p.6546-x4) and digitizer (M2p.5932-x4) are accurately synchronized while housed inside an

external PCIe chassis. As implemented, this configuration allots 128 mega samples for each of the

four input and four output channels for each of two chassis that may be daisy chained for larger

arrays. The chassis are connected to the control machine with ESAU software or other chassis via

Thunderbolt 3 ports. Data is saved to the machine as binary files with associated text files detailing

measurement settings for later processing via Python3 code developed in the research group.

Data acquisition may also be performed using AFR (Acoustic Field Recorder) also developed by

BYU specifically for rocket/jet noise field tests. A Tektronix TBS 2000B Series digital oscilloscope

is also available in the lab to perform more direct data analysis and acquisition.

C.3.4 Power Amplifiers

TEGAM 2350 Power Amplifier

The data sheet and specifications for the TEGAM 2350 high voltage power amplifier can be found

on TEGAM’s website (https://www.tegam.com/shop/signal-source-amplifier/2350/2350precision-

amplifier-high-voltage-two-channel/). To avoid clipping or tripping the internal fuse, do not exceed

±4V input. This power amplifier provides a x50V output, such that the maximum ±4V input

equals ±200V output. The maximum output current of this amplifier is 40mA, which is the

real determining factor that depends on frequency due to each hydrophones frequency dependent

impedance. Impedance matching transformers have been custom designed and built in house to

attach between a source transducer and the TEGAM power amplifier to provide a more flat response
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depending on the desired frequency range. Ensure to take note that you are using the appropriate

impedance matching transformer for the appropriate transducer in the appropriate bandwidth. This

amplifier may be used with all the AS-1, Brüel & Kjær 8103, TC4038, and TC4034 transducers.

Teledyne RESON EC6081 mk2 VP2000 preamplifier

The Teledyne Reson EC6081 hydrophone preamplifier specifications can be found on Teledyne’s

website (http://www.teledynemarine.com/reson-ec6081) for basic details.

The preamplifier is connected to Teledyne receiving hydrophones to boost the signal before

being sent to the DAQ. It is important to note that after the preamplifier is turned on, any settings

are changed, or any connections are changed that you must let the preamplifier sit all ready to go

for 30 seconds before taking measurements in order for the capacitors to charge properly. If not,

measurements will not be trustworthy. Once this occurs the Teledyne does not need any extra wait

time between scans until another change is made.

Brüel & Kjær NEXUS Conditioning Amplifier

The NEXUS conditioning amplifier is a preamplifier that can filter, add gain, and adjust for noise

on a measured signal before that signal is sent to the DAQ. This specific conditioning amplifier is

designed for charge sources with 2 channels in and 2 channels out. The input takes a special adapter

that should be kept on the amplifier at all times. Two of the conditioning amplifiers were purchased

specifically for the Brüel & Kjær 8103 hydrophones.

When using the Transducer SETUP screen, the default units will be pC/ms−2 which are

picoCoulombs per meter per second squared. This is clearly an odd unit for our application but is

great for use of an accelerometer, that can be changed by navigating over to Sensitivity, selecting

down the column to the desired channel and pressing the +/- button to change the units to pC/Pa

which are picoCoulombs per Pascal which is the appropriate charge sensitivity that is needed to be

http://www.teledynemarine.com/reson-ec6081
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input for each 8103 hydrophone. The single-valued charge and voltage sensitivity of transducers

should be assumed good for where the frequency response of the transducer is flat and can be

found on the tan card in their respective cases. This change of units will not necessarily change the

electrical output values setup with the default, unless the numeric value is changed, but it will lead

to less confusion when using the conditioning amplifier.

The NEXUS manual indicates that charge transducer cables should be fitted with ferrite magnet

cable clamps (provided) to reduce EMI intrusion only if the NEXUS amplifier itself is grounded

and the channels are set to floating. In addition, the manual also advises to wind the cable twice

around the ferrite core so as to form two loops, and the ferrite should be located as close to the

NEXUS input socket as possible. This creates an inductor on the line to reduce high frequency

noise. The ferrite magnets may also be used on the power supply line input if desired.

C.3.5 Signal Generation

Signal generation can be performed with software such as ESAU or AFR. It may also be performed

by the Koolertron signal generator or the Brüel & Kjær precision 4063 80MHz dual channel

function/arbitrary waveform generator.

C.3.6 Remote Access

Using a VPN and Remote Desktop, you may access the machines in the lab using the research

team login information. Use of the Global Protect VPN will be necessary when accessing the lab

computers using the shared research team account “panda-underwater” in order to gain off-site

authorization. Do not select the use of remote desktop gateway when using the VPN. When logging

in remotely with your personal byu login you may not be required to use the VPN instead connect

via the remote desktop gateway similarly to how you would access the computers remotely as you

normally would any machine on campus via remote desktop and your personal byu credentials.
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When you plan to take measurements in the tank remotely, ensure you have either setup the

amplifiers, preamplifiers, turned on the robots, etc. that you will not have access to control off site.

You may use the OBS Studio software that is on the main Atlantis desktop in order to easily access

all 4 webcams in the laboratory in order to visually monitor your experimentation live. This may

also be easier if the lights are on in the lab.

C.4 Laboratory Processes

C.4.1 Taking Measurements with ESAU

Easy Spectrum Acoustics Underwater (ESAU) was created specifically for this laboratory as a sister

program to ESTR (Easy Spectrum Time Reversal) used by Dr. Anderson’s students and also created

by Adam Kingsley. Its basic functionality runs in conjunction with ESTR. Before starting ESAU,

ensure that the chassis are connected to the computer via Thunderbolt3 cable so the Spectrum cards

may be initialized at startup.

The default card0 output setting is 300mV. This is the minimum required and bits will be lost if

set below this even though it can be done. The Cards can output 12V, but should not be set this high.

Stay between 100-6000 mV (ESAU will limit capabilities here). *It should be noted that 4V output

from ESAU is the greatest the TEGAM power amplifiers will handle before clipping the signal or

tripping a breaker. Often times, 3V should be sufficiently high.

Receiver cards should be setup with high impedance(1MΩ) to get voltage measurements and

have negligible current. The low impedance setting works well when connecting to the TEGAM

monitor output in order to monitor the signal you are generating and sending out from the TEGAM

power amplifier.

The data that is recorded in .txt file contains the source and receiver positions recorded each

as 12 numbers (x,y,z,rx,ry,rz,xtcpo f f set ,ytcpo f f set ,ztcpo f f set ,rxtcpo f f set ,rytcpo f f set ,rztcpo f f set). For
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the "Scan Positions.txt" file, each row is a new scan position. A log.txt file is also generated for each

scan position. The log.txt file contains the scan position, temperature from each of 4 sensors, card

settings, transducers selected, and the signal configuration. Data recorded in .bin files are the raw

recorded data saved as Float-32 single precision voltages(pressure when sensitivities are applied).

ESAU can generate infinite types of signals since a custom signal may be loaded into it. Typically

simple sine waves and chirped signals (both linear and logarithmic) are used. Pulse signal generation

is less understood within ESAU since it is not commonly used(this feature has not been explored

much as of 11/4/2021). With pulsed signals, attenuation denotes the amount of time it takes for

the signal to dissipate (in the frequency domain). This is the inverse of what we would otherwise

expect it to be; increasing the attenuation decreases the width of the pulse in the time domain. For

more information, visit https://zone.ni.com/reference/en-XX/help/371361R-01/lvanls/gmsp/.

Before taking first measurements in experiment, the following checklist will be useful:

• All cables running from transducers (hydrophones) are correctly connected and plugged in

through filters and amplifiers to the DAQ and acquisition computer.

• Ensure that the cables are not crossing other cables which may cause induced noise. If they

must cross, it is best to ensure that they cross at a 90◦ angle.

• Appropriate impedance matching transformer is attached or not (below 10kHz).

• Each component of the measurement chain is powered on. This may include checking to see

if the TEGAM power amplifier has tripped a breaker.

• When using AFR (instead of ESAU), ensure it is reading data from correct ports associated

with the transducers (if using multiple-card chassis pay close attention to card number).

• Ensure the sampling frequency is appropriate for equipment (below sampling maximum

threshold) and experiment (high enough to accurately read frequencies of signal. This should

https://zone.ni.com/reference/en-XX/help/371361R-01/lvanls/gmsp/ 
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be set as a minimum with respect to the Nyquist frequency). For ESAU, you are not able to

sample any lower than 128 kHz.

• Ensure the output voltage is not too high as to blow out transducers. The TEGAM amplifier

should do a decent job at preventing this since it will trip a breaker and clip signals when the

signal is 4V or more.

In the red ‘Signal’ section of ESAU, turn on the channel(s) being used for output into the tank

and input your value of input voltage. To generate a signal click on the ‘Load/Gen Signal’ button. In

the Load/Gen Signal you can input the desired Sampling Frequency (must be 128kHz or more). On

the Generate page choose your Signal Type, frequency parameters, signal length including leading

and trailing 0’s. Then click the ‘Generate’ button to load the signal. Once a signal has been loaded

click Accept on the main page to use this signal.

In the blue ‘Recorder’ page turn on the channel(s) being used for recording signal data. Select

the voltage sensitivity and a ‘High’ or ‘Low’ impedance setting (typically high for recordings and

low for monitor signals). Only turn on the combined channel switches(large bar connecting two

channels) if using Differential mode.

Select motion control for the UR10e robot arm control panel in ESAU. You must connect each

robot and the Vention track. When connected, two green LEDs will be lit. You will also select

which transducers are being use in this screen. A transducer must be selected in order to apply the

small positioning offset to the acoustic center of the transducers. Manual motion allows you to

move each individual robot to a chosen position in Cartesian tank coordinates. You may also choose

a scan grid to apply by selected minimum and maximum Cartesian coordinates as well as number

of points to iterate through. If the selected position(s) do not fit within the reachable limits that

have been hard programmed into ESAU, you may select to dump the unfitting positions in order to

maintain a large scan over the maximum reachable positions.
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C.4.2 Laboratory Journals and Documentation

It is important to maintain a detailed record of experimentation at all times. This record used to be

kept physically in a white with pink polka dots Lab Measurement Journal and Tank Maintenance

Log. Records are now kept digitally and saved within each measurement folder along with saved

ESAU .txt log files. There is a formatted .doc file on the Atlantis panda-underwater account desktop

to copy and use for the record. A separate copy should also be found on Box.

Information to always record may include:

• Date and Time

• Researchers involved in measurements

• Goals for session of research

• Note Specific Test variations

• Note anything special noticed with each measurement

• Specific equipment used

• Transducers (including catalog ID)

• Amplifiers

• Filters

• Signal Generation

• Current water conditions

• Depth in meters
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• Temperature in degrees Celsius

• Data file path

• Individual measurement ID’s

• Improvements/Things to buy

• Summary of measurements taken and which may be valuable and what they may be valuable

for

When recording information from measurements, it is important to remember that weeks or

months later you will likely not remember the details of the measurement. The more detail you

record, the easier it is to use the information or write about it later.

Measurement Chain

The automated measurement system can be used with any transducers assuming a robot end

connector has been designed for the specific transducer and desired transducer orientation. Currently,

we are using Aquarian Scientific AS-1, Brüel & Kjær 8103 phase matched, Teledyne Reson

TC4034 [31] and Teledyne Reson TC4038 [30] hydrophones as both source and receiver transducers

(Reciprocal transducers can act as both a projector and a receiver. An absolute calibration of

reciprocal transducers may easily be obtained with 3 transducers.) for their relatively flat response

up to 100 kHz, 4-100 kHz, 5-300 kHz and from 100-500 kHz respectively. Each transducer has

a custom designed mount on a thin rod extended from the robot to maintain orientation of the

transducers and protect the robot from water damage. The received signals are passed through a

preamplifier (Teledyne Marine Reson VP2000 EC6081 mk2) [31].

The custom mounts allow for multiple transducer configurations including an added wire

thermocouple to gather current localized environment conditions [11] without significant increased
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scattering. Currently, environmental conditions are acquired with two SensorsOne LMP 307T

temperature and pressure/depth sensors from MCT RAM (mctram.com) sensitive from 0-86°F and

up to 250 m depth in water pressure.

The cables connecting transducers to the DAQ run along the length of the robotic arms and may

require special consideration of shielding to reduce induced noise from robot motors and brakes.

Shielded RG58 coaxial cables were found to be sufficient for current applications. Higher levels of

shielding or the use of shielding tape may also be used to further decrease noise. Noise levels were

confirmed by mounting the preamplifier and conditioner to the receiving transducer before passing

the signal along the robot arm.

The output signal from the arbitrary waveform generator (AWG) (ESAU signal generation)

is passed through a power amplifier (TEGAM Model 2350). The TEGAM allows a maximum

of 4 Vpp input and provides a gain of x50. The TEGAM output is passed through a transformer

fabricated to address the impedance mismatch often found between an amplifier and a piezoelectric

source [22]. This impedance matching transformer must be designed and built specifically for each

transducer’s impedance response.

The spectrum cards take in electronic signals from amplifiers via BNC adapters. The two

spectrum units can be daisy chained via Thunderbolt3 cables, which is also how they communicate

with the desktop.

As a preamble to a series of measurements, a calibration measurement is made to ensure proper

signal analysis. During the calibration measurement, the source and receiver are positioned close

together in order to reduce transmission loss through the water while also accounting for any minor

phase effects. The response of a chirp covering the frequencies of interest is then broadcast and

recorded. This calibration measurement can be used with known transducer response curves to

ensure the frequency response of the measurement chain is taken into account. This through-the-

sensor calibration incorporates the sensitivities of unknown components [7, 27]. The frequency
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response can be obtained by the time-gated response of the cross correlation or by a phase-corrected

deconvolution [27, 35, 37].

Analysis code has been developed in Python for ease of use. See the git repository and

Appendix B for details.
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