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ABSTRACT

Physics-Guided Machine Learning in Ocean Acoustics Using Fisher Information

Michael Craig Mortenson
Department of Physics and Astronomy, BYU

Master of Science

Waterborne acoustic signals carry information about the ocean environment. Ocean geoacoustic
inversion is the task of estimating environmental parameters from received acoustic signals by
matching the measured sound with the predictions of a physics-based model. A lower bound on
the uncertainty associated with environmental parameter estimates, the Cramér-Rao bound, can
be calculated from the Fisher information, which is dependent on derivatives of a physics-based
model. Physics-based preconditioners circumvent the need for variable step sizes when computing
numerical derivatives. This work explores the feasibility of using a neural network to perform
geoacoustic inversion for environmental parameters and their associated uncertainties from ship
noise spectrogram data. To train neural networks, a synthetic dataset is generated and tested for
generalizability against 31 measurements taken during the SBCEX2017 study of the New England
Mud Patch.

Keywords: underwater acoustics, geoacoustic inversion, Fisher information, Cramér-Rao bound,
machine learning, deep learning, uncertainty analysis
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Chapter 1

Introduction

1.1 Background

As sound travels through and interacts with an environment, it becomes encoded with information

about that environment. This environmental influence is the reason the human ear can differentiate

the sound of someone singing in the shower and the sound of someone singing in Carnegie Hall. Via

networks of neurons in the brain, the acoustic signal is parsed and analyzed to determine that, yes,

the acoustic signal captured by the ear sounds like it bounced off a small space walled with hard,

porcelain tiles. This process, which the human brain carries out with seemingly little effort, turns

out to be difficult to replicate in practice with computational tools. The challenge of developing

such computational tools is an area of active research.

The Office of Naval Research, whose funding supports this work, is specifically interested

in determining details about the shallow ocean environment from waterborne sound. Here, the

term shallow ocean refers to depths of less than 200 m, typically found along continental shelves.

There are many methods of learning about the shallow ocean seabed environment including coring

experiments and sonar. Sonar comes in two varieties: active sonar, in which a ping signal is

1



1.1 Background 2

generated and information about the environment is recovered from the received echo, and passive

sonar, in which ambient noise from the wind, waves, ships, biological activity, and geologic activity

is used to learn information about the environment. This work is primarily concerned with passive

sonar using ship noise as the source.

The general approach for estimating characteristics of an ocean environment from sound begins

with a physics-based model. The goal is for the model to capture enough of the relevant physics

of underwater sound propagation that when the proper environmental parameters are fed into the

model, the model accurately predicts the same acoustic field as if a direct measurement had been

taken. Formulated mathematically, the process of learning about an environment from signals

is called inversion or inference and the problem of estimating parameters is called the inverse

problem.5

Some research on inverse problems focuses on the physical model, called the forward model, to

understand its strengths, weaknesses, structure, and behavior with respect to a given inference task.

The forward model utilized in this work is ORCA, a range-independent normal mode model that

predicts transmission loss, TL.6, 7

ORCA solves the wave equation in cylindrical coordinates to obtain TL for source-receiver

pairs in an ocean environment. The ocean environment is assumed to be horizontally stratified

and azimuthally symmetric. Thus, ORCA is a forward model that uses frequency, geometric

parameters describing source-receiver arrangements, and geoacoustic parameters describing the

water column and seabed. From these parameters, ORCA calculates the Green’s function over

the ocean waveguide, using Eq. 23 in Westwood et al.6 Conversion of the Green’s function to

decibels yields transmission loss, TL. The relationship between TL, the sound source level SL, and

the received level RL, at a given frequency f is given by the sonar equation:

TL = SL−RL. (1.1)
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For a moving source, the distance changes with time and repeated calculations of TL across

frequencies can be stacked together to form a spectrogram image. Such spectrograms encode

information about the simulated ocean environment, just as the spectrograms of measured acoustic

signals encode information about the physical ocean environment.

The information contained in transmission loss about different input parameters can be quantified

by studying ORCA as a forward model. With an understanding of this information content, it

becomes possible to predict the limitations of using ORCA as a forward model for geoacoustic

parameter inversions. Chapter 2 deals primarily with how numerical methods can be used to find

the information content of a forward model’s output with respect to input parameters. As a case

study, the information content of TL obtained from ORCA with respect to geoacoustic parameters

is used to estimate parameter uncertainties.

Besides studying the forward model, inversion research also focuses on the tools and procedures

used to perform inference. While many tools are available to perform inversion, this work focuses on

artificial neural networks, a tool that takes its inspiration from the brain. Artificial neural networks,

hereafter referred to simply as neural networks, consist of interconnected computational neurons,

which are parameterized nonlinear functions. A neural network can be “trained” by feeding in

labeled data and adjusting network parameters (weights) so the network predictions match expected

labels. When the possible label values are a discrete set, the task is called classification, and when

the label values are continuous the task is called regression. Ideally, in either classification or

regression, the network learns a generalizable function for consistently mapping inputs to labels

such that the network is capable of predicting labels on inputs it has never seen before.8

In prior work by our group, both regression and classification with ship noise spectrograms have

been performed. Because of the lack of labeled real-world measurements, the neural networks have

been trained on synthetic spectrograms. In Van Komen et al.,9 a five-layer CNN was trained to learn

via regression the ship speed and distance and a value representing the type of seabed. In Escobar et
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Figure 1.1 Workflow Overview. The lefthand side of the vertical dotted line depicts the
process of generating ship noise spectrograms from the forward model ORCA. Chapter
2 shows how parameter uncertainties can be obtained from ORCA. The righthand side
of the vertical dotted line depicts the process of training a neural network, ResNet18,
on a dataset of synthetic spectrograms. The generation and labeling of the dataset with
parameter values and uncertainties is discussed in Chapter 3. The training ResNet18 to
perform regression for parameter values and uncertainties is discussed in Chapter 4.

al.,10 six different network architectures were trained for classification among 34 discrete seabed

types from a large number of spectrograms that have a wide variety of source-receiver geometries.

The work in this thesis explores using ship noise spectrograms in a neural network to perform

regression for both geoacoustic parameters and estimated parameter uncertainties. The goal is to

train a neural network that is robust enough to generalize to measured, real-world spectrograms

and obtain estimates of the geoacoustic parameters and an estimate of their uncertainties. The

details of measured ship spectrograms and the generating and labeling a training dataset of synthetic

spectrograms is discussed in Chapter 3, along with a description of how the parameter uncertainties

are found using the techniques in Chapter 2. These steps are illustrated in the left side of the

workflow overview in Fig. 1.1. The right side of Fig. 1.1 depicts how the labeled data is used to

train a neural network, ResNet18, which is described in Chapter 4. An exploration of the abilities

and limitations of the trained network in generalizing to real-world data is also provided in Chapter

4.
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In summary, this thesis seeks to expand the body of knowledge about ocean acoustic inversion

and physics-guided machine learning in the following ways:

1. Develop a method for performing uncertainty analysis of parameter estimates. Uncertainty

analysis is made possible through the computation of accurate gradients of the forward model

with respect to individual parameters.

2. Explore how uncertainty analysis might be used to develop and label synthetic datasets for

training a neural network to perform environmental parameter inversion. Uncertainty analysis

is also considered as a way of evaluating potential targets for regression with a neural network.

3. Present an initial case study of training a neural network on synthetic data, both to perform

regression for individual environmental parameters and to provide an estimate of the forward

model uncertainty associated with parameter estimates.

The following chapters are organized as follows with relevant literature reviewed in each chapter.

Chapter 2 describes how to obtain accurate gradients of a forward model with respect to parameters

to enable uncertainty analysis. This chapter is an article that was submitted to the Journal of

the Acoustical Society of America. Chapter 3 details the development of a synthetic dataset of

spectrograms with parameter and parameter uncertainty labels. Chapter 4 covers the training of

a neural network to perform regression for parameter values and parameter uncertainties. Finally,

Chapter 5 concludes with a review of lessons learned and future work.



Chapter 2

Fisher Information Analysis of Ocean

Acoustic Models

2.1 Ocean Acoustic Models and Fisher Information

Physics-based ocean acoustics models play a central role in inferring environmental parameters

from underwater acoustic signals. Characterizing the inherent uncertainty in inferring environmental

parameters is a difficult task, further complicated by the difficulty of obtaining accurate numerical

derivatives of ocean acoustic models with respect to model parameters. In this work, we present

a methodology for obtaining accurate numerical derivatives of the predictions of ocean acoustics

models using physics-based parameter preconditioning and Richardson extrapolation, which renders

possible the study of model sensitivity and parameter uncertainty via Fisher information analysis.

The task of environmental parameter inference belongs to a larger family of inverse problems.5

From an information-theoretic perspective, an inverse problem encodes information from some

signal by fitting parameters of a model.11 In ocean acoustics inverse problems, the signal is acoustical

in nature (e.g., waveforms, spectrograms, transmission loss curves, etc.) and the information to be

6



2.1 Ocean Acoustic Models and Fisher Information 7

learned are details of the ocean environment, such as water depth, sediment density, sound speed

profile, etc. Often, ocean acoustic inversion literature focuses on finding best-fit parameters without

assessing model sensitivity or parameter uncertainties, which provide needed context about the

trustworthiness of best-fit parameters and facilitate comparison between the resulting models and

between inversion schemes.

Two powerful tools for characterizing the local behavior of a physical model in the context of

inverse problems are the Fisher information matrix (FIM) and the matrix inequality known as the

Cramér-Rao bound (CRB). The FIM quantifies how well the model resolves parameter estimates

from environmental information in the data. The CRB places a lower bound on the variance of

an unbiased estimator for the parameters of a model. If the eigenvalues of the FIM vary across

many orders of magnitude with approximately log-linear spacing, the model is said to be sloppy, a

characteristic common to many models across various fields of scientific inquiry including systems

biology,12–14 solid state physics,11, 15 and biokinematics.16, 17 Sloppy models are so-named because

the predictive behavior of the model is sensitive to combinations of a few stiff parameters and largely

insensitive to other sloppy parameters. As such, the FIM quantifies the local sensitivity of model

predictions to changes in model parameters. Sloppy model behavior has been observed for ocean

acoustic models in estimates of global sensitivity obtained using a Markov Chain Monte-Carlo

approach.18, 19 One of the major contributions of the current work is a local sloppy model analysis

using the FIM applied to an ocean sound propagation model.

In the literature, the context of either the experimental setup or the inversion approach typically

determines how the FIM and CRB are obtained. Where circumstances permit, analytical expressions

for the FIM and CRB are employed. Analytical expressions have been used for source localization

and velocity estimates with a stationary array,20 optimal sensor spacing to estimate speed and

attenuation parameters from isotropic ambient noise,21 and normal mode model Green’s functions
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for matched field tomography and ocean acoustic tomography.22 See Baggeroer et al. for a thorough

review of relevant literature from the underwater acoustics and signal processing communities.23

In Bayesian and other sampling-based inversion strategies applied to underwater acoustics,

calculations of the FIM and CRB rely on the evaluation of (often multi-dimensional) integrals of

probability distributions. These integrals are evaluated with methods ranging from naïve exhaustive

grid searches24, 25 to sophisticated Markov Chain Monte-Carlo methods.4, 26–28 See the review by

Gerstoft et al. for further details.29

A third approach for obtaining the FIM and CRB relies upon gradients of the physical model

taken with respect to parameters. However, gradients can be difficult to obtain. Some success has

been found with analytical gradients30, 31 and implicit adjoint methods32 although both require a

problem-specific gradient derivation. Finite-differencing has typically been avoided because of

the difficulty in determining appropriate step sizes; too large or too small of step sizes makes the

method inaccurate.29 In this work, we present a strategy including parameter preconditioning and

Richardson extrapolation that renders feasible a general finite-difference methodology for finding

numerical gradients. That methodology is subsequently applied in a case study using the FIM

and CRB to analyze a normal-mode propagation model for transmission loss in shallow ocean

environments.

The paper is organized as follows. In Section 2.2, the FIM and CRB are derived in terms of

gradients of the model, and the utility of the FIM and CRB in sensitivity and uncertainty analysis

is reviewed. Section 2.3 describes the methodology for accurate gradient computation including

preconditioning and Richardson extrapolation. Section 2.4 contains the case study validation of the

Fisher information analysis for a variety of seabed sediment types and frequencies, and conclusions

are presented in Section 2.5.
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2.2 Fisher information

Solutions to the inverse problem make use of a physical model and its inputs. For example, a

physical model of transmission loss, x, includes inputs for source depths sss, receiver depths zzz, source-

receiver range r, and model parameters θθθ , such that x(zzz,sss,r,θθθ) can predict the transmission loss at

each source-receiver pair. A forward model, m(θθθ), is then formed by concatenating the predictions

of x(zzz,sss,r,θθθ) for the different values of sss and zzz. The forward model can thus be expressed as a

mapping from an N-dimensional parameter space into an M-dimensional data space, where M is

the total number of data points to be fit:

m(θθθ) : RN → RM. (2.1)

Take, for example, a forward model for predicting transmission loss at M hydrophone locations.

The predictions of the forward model for all possible parameter values generates a set of accessible

model predictions. To qualify those predictions, a cost function, sometimes called an error or loss

function, is defined that measures how well model prediction values match observed data. One such

cost function is the least-squares cost:

Cθ =
1
2

M

∑
i
(mi(θθθ)−di)

2, (2.2)

where mi is ith prediction of the forward model corresponding to data point di. The input pa-

rameterization that minimizes the cost is the best fit parameterization, θ̂̂θ̂θ . The graph of the cost

defines an N-dimensional surface, called a cost surface, whose peaks correspond to parameter

values that poorly fit the data and whose valleys correspond to parameter values that fit the data

well. N-dimensional surfaces are unwieldy to visualize, so two-dimensional slices of cost surfaces

are often used to gain a “topographical” intuition of the peaks and valleys of the cost surface. One

such two-dimensional slice in the neighborhood of a best fit valley is shown in Fig. 2.1 for a toy

model, which is discussed throughout the present section.
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Figure 2.1 Two-dimensional cost surface cross-section in the θ1-θ2 parameter plane
showing the neighborhood about a local minimum. Notice the elliptical contours of equal
cost about the minimum at the best-fit parameters θ̂̂θ̂θ , marked by a white star. The semi-
minor and semi-major axes of the contours correspond to the FIM eigenvector directions
vvv1 and vvv2, respectively. The inverse of the square root of corresponding eigenvalues of
the FIM, λ1 and λ2, are proportional to the semi-minor and semi-major widths of the cost
ellipses. The width of the ellipses projected onto the θ1- and θ2-axes are proportional

to
√

I−1
ii , the square root of the corresponding diagonal elements of the inverse FIM

(covariance matrix). I−1 is calculated when finding the CRB. Finally, the widths of the
ellipses through the best fit point and parallel to the parameter axes are proportional to
1/
√

Iii the inverse of the square root of the corresponding elements of the FIM, also known
as the conditional variance.
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Cost surfaces for nonlinear models, such as those found in modeling ocean acoustics, often

include narrow valleys, flat plateaus, and multiple local minima. However, by zooming in on a

sufficiently small region around a local minimum, the cost surface is approximately quadratic with

lines of constant cost forming ellipse-shaped contours about the minimum. The axes of such ellipses

provide insight into the sensitivity of model parameters.

The local geometry about a minimum is described by a Taylor series of the forward model

expanded about the best fit:

m(θ̂̂θ̂θ) = m(θ̂̂θ̂θ)+ J(θθθ − θ̂̂θ̂θ)+O((θθθ − θ̂̂θ̂θ)2), (2.3)

where J = ∂m/∂θ is the M by N Jacobian matrix of the forward model. In this linear approximation,

the cost function becomes

Cθ (θ̂̂θ̂θ) =C(θ̂̂θ̂θ)+
1
2
(θθθ − θ̂̂θ̂θ)T JT J(θθθ − θ̂̂θ̂θ)) (2.4)

using the fact that the gradient is zero at the best fit. The Fisher information matrix, I = JT J

describes the curvature of the cost surface at the best fit and quantifies local statistical properties of

the inverse problem.33

It is instructive to consider how the singular value decomposition of J relates to the eigenvalue

decomposition of I. The singular value decomposition of J is given by

J =UΣV T , (2.5)

where U and V are unitary matrices and Σ is a diagonal matrix of singular values. The FIM is given

by

I =V Σ
2V T . (2.6)

The expression in Eq. 2.6 is an eigenvalue decomposition of I. Thus, the eigenvalues of the FIM are

the squared singular values of the Jacobian.
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The eigenvectors and eigenvalues of the FIM quantify the forward model’s sensitivity to

coordinated variation in parameter values. The eigenvectors corresponding to the largest eigenvalues

of I are stiff parameter combinations, i.e., parameter combinations to which the model is most

sensitive. Conversely, stiff parameter combinations are those model parameters that encode the

most information about the data. In Fig. 2.1, the eigenvector corresponding to the stiffest direction

vvv1 lies along the semi-minor axis of the ellipse and the eigenvector corresponding to the second

stiffest direction vvv2 lies along the semi-major axis of the ellipse about the best fit.

In many models, the FIM eigenvalues exhibit an approximate log-linear spacing across many

orders of magnitude, a phenomenon known as sloppiness.13, 33 Parameters most represented in

eigenvectors with small eigenvalues are considered sloppy parameters. Models are insensitive to

large variations in sloppy parameters, and the presence of sloppy parameters indicates the data

contain insufficient information to resolve such parameters individually. The implication is that

sloppy parameters are irrelevant to the model’s predictions and can be removed by parameter

reduction methods such as the Manifold Boundary Approximation Method.34

The FIM also provides insight into the statistical properties of inferred parameters. The inverse

of the FIM, I−1, is a covariance matrix that when placed in the context of the Cramér-Rao inequality

forms a lower bound on the uncertainty of parameter estimations. In terms of the singular value

decomposition of J, the Cramér-Rao bound inequality is

Cov(θ̂̂θ̂θ)≥ I−1 = VΣ
−2VT. (2.7)

The lower bound on the uncertainty for estimates of individual parameters from the model is defined

by the diagonal elements of I−1.

Large-valued entries of I−1 indicate high parameter uncertainty. Often the diagonal elements

I−1
ii , are of interest, i.e., the variances in the estimate of the ith parameters, which are proportional to

the length of the ellipse about the best fit projected along the θi direction, as shown in green for the
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toy model in Fig. 2.1. The CRB inequality (Eq. 2.7) effectively states that the parameter variances

found along the diagonal of I−1 are the smallest variances possible given a model and data.

For sloppy models, the presence of small eigenvalues of the FIM translates into large uncer-

tainties for inferred parameters. This can result from either of two causes. First, a model might be

insensitive to changes in an individual parameter, such as is the case for parameters deep beneath

the seafloor in a transmission loss model at sufficiently high frequencies. Second small eigenvalues

can result from strong correlations among parameters. In physical systems, correlation is typically

due to physical mechanisms that manifest similar effects in model predictions. In such cases the

effect of one model parameter may be cancelled by tuning another. The model is often sensitive

to many of the parameters individually but is insensitive to coordinated changes in combinations

of parameters. In fact, if all but one of the model parameters were fixed to their true values, the

sensitivity of the model to changes in the free parameter could be ascertained. Likewise, the free

parameter’s uncertainty could be found if correlations were eliminated from the model.

This theoretical uncorrelated parameter uncertainty, given by 1/
√

Iii, is called the conditional

variance. The conditional variance for a parameter is always less than or equal to the variance

obtained from CRB analysis. Disparities between the two variances are due to correlations among

parameters, and the two variances become equal for a model with uncorrelated parameters. A

comparison between the two variances effectively shows the potential for improving inversion

estimates if correlation effects were eliminated for the physical model via a parameter reduction

technique.

In terms of the cost surface picture of the inverse problem, the conditional variance corresponds

to the width of the constant-cost ellipse measured through the best fit and parallel to a parameter

axis, denoted by red in Fig. 2.1. The conditional variance is the lowest theoretical bound on the

variance for a parameter if all the other parameters of the model were known. This occurs in models

where the physical parameters are uncoupled. Thus, in the case of a model with uncorrelated
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parameters, the variance and the conditional variance of individual parameters are equal, and the

axes of the ellipses of constant cost align with the parameter axes.

The correlation between parameters can also be quantified with the Pearson correlation matrix

Cor(θ̂̂θ̂θ). The Pearson correlation matrix is calculated by normalizing the covariance matrix

Cor(θ̂̂θ̂θ)ij =
Cov(θ̂̂θ̂θ)ij√

(Cov(θ̂̂θ̂θ)iiCov(θ̂̂θ̂θ)jj

. (2.8)

Entries of the correlation matrix vary between -1 and 1, where a value of 1 indicates a completely

positive correlation, 0 indicates no correlation, and -1 indicates a completely negative correlation

between parameters. Taking the absolute value of matrix entries allows a clear picture of the

magnitude of correlation in the model. An example of a Pearson correlation matrix with the absolute

value applied to the entries is shown in Fig. 2.5 and discussed as part of the case study in Section

2.4.

Understanding parameter correlation can guide the improvement of optimization routines used

in acoustic inversions. In optimization procedures where parameters are optimized individually,

parameter correlation poses a problem by limiting the search space. Indeed, parameter correlation

implies that a more natural parameterization of the model exists which uncouples parameters.35 In

this natural parameterization, the parameters are independent so that the Cramér-Rao bound and

conditional variances converge.

Because the FIM is independent of the observed data di and depends only on derivatives of

the forward model, the lower bounds on the informativity of potential experimental data can be

established by analyzing the model alone. Through the CRB, the FIM establishes the best-case

variance for each model parameter, determining whether it is feasible to infer individual parameters

to the desired resolution from given data. Additionally, analysis tools derived from the FIM including

its eigenvector decomposition, the conditional variance, and the Pearson correlation matrix, yield

insight into interactions among parameters. Armed with this information, modelers can make

decisions about model choice, complexity, and experimental design for intended applications.
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2.3 Computing Accurate Numerical Gradients

The nonlinear nature of ocean acoustic models often makes it difficult to obtain accurate gradients

from finite-differences. Finite difference estimates balance a tradeoff between round-off error when

step sizes are too small and truncation error when step sizes are too large.36 The limited accuracy of

finite-difference estimates is worsened for multi-parameter functions, such as in our forward model,

and when the natural step size for individual parameters may be significantly different. Furthermore,

gradient-based optimization strategies get stuck on plateau regions of a cost surface where the true

gradient is near zero for sloppy models,37 a challenge compounded by inaccurate finite-difference

estimates.

To mitigate these problems, we apply two techniques to improve the numerical accuracy of

estimating derivatives of the forward model. First, we precondition the parameters of the forward

model, so a uniform step size can be used for finite-differencing. A function, called a preconditioner,

transforms the model parameters θθθ into preconditioned parameters φφφ . Second, we apply Richardson

extrapolation to the preconditioned model to obtain accurate finite difference estimates of the

gradient. With gradient estimates in hand, the chain rule is applied to transform the preconditioned

gradient estimates back into the initial forward model parameterization, as demonstrated explicitly

hereafter.

Preconditioners can be designed many ways, but the methodology we employ relies upon three

physics-based principles: 1.) Applying a preconditioner to a model parameter should result in a

unitless preconditioned parameter. 2.) Quantities included in a preconditioner, either for scaling

or unit cancellation, should be native to the forward model. 3.) A unit step in the preconditioned

parameters should probe a region of “local behavior” in the forward model. Local behavior is used

here to describe domains over which the forward model has slowly varying oscillations. We confirm

that we are probing local behavior by testing that our method for calculating numerical derivatives

is robust to variations in the finite difference step size. In the case of Richardson extrapolation, if



2.3 Computing Accurate Numerical Gradients 16

the points selected by decreasing the step size exhibit clear limiting behavior, the local behavior

has been captured. Figure 2.2, which is discussed throughout this section, shows acceptable local

behavior in the top row of plots and undesirable local behavior in the bottom row.

As an example of applying the physics-based preconditioner design principles, consider a

simplified ocean environment with 75 m of water and a single sediment layer over a basalt basement

layer. Let compressional sound speed vary linearly within the sediment layer but hold density and

the compressional attenuation coefficient constant within each layer. The forward model solves for

the modulus of the complex Green’s function from which the transmission loss at each receiver

location can be obtained. This model is used in the case study in Section 2.4, and reference values

for the environmental parameters for five sediment types are shown in Table 2.1.

Consider constructing a preconditioner φ(cp1o) for the compressional sound speed parameter

at the top of the water column, cp1o. Compressional sound speed has units of length per time, so, to

adhere to the first preconditioner design principle, this parameter must be placed in a ratio involving

quantities with units of length and time to cancel out units. What quantities should be chosen to

cancel units? The second preconditioner design principle answers this question, indicating that the

quantities should be native to the physics of the forward model. Since the parameter cp1o belongs

to the water layer, other water layer quantities should be considered before considering sediment

or basement quantities. Additionally, to ensure the preconditioner generalizes across frequencies

for a unit step size, it is important that the preconditioner be a function of frequency. Taking these

guidelines into account, physics-native candidates with units of length include the depth of the

ocean, ho,ref, sediment thickness, hsed, the source-receiver range, r, and the characteristic wavelength

of sound propagating through the ocean at a given frequency, λo. The only candidate quantity with

units of (inverse) time is frequency, f .

With this set of candidate quantities, unitless preconditioners can begin to be constructed

and tested against the third preconditioner design principle. As various unitless preconditioner
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Table 2.1 Preconditioners φ(θ) for physical parameters θ used to obtain accurate deriva-
tives, constructed according to physics-based preconditioner design principles. Parameters
are defined as follows: h, layer thickness, cp, compressional sound speed, ρ , density, and
α p compressional attenuation coefficient. The numerals 1 and 2 denote the top and bottom
of a layer, respectively. The subscript abbreviations o, sed, bas, and ref stand for ocean,
sediment, basalt basement, and reference value, respectively.

θ φ(θ)

ho
hor

λoho,ref

cp1o
f r

cp1o

cp2o
f r

cp2o

hsed
hsedr

λsedhsed,ref

cp1sed
f r

cp1sed

cp2sed
f r

cp2sed

ρ1sed
ρ1sedλo

ρ2o,refλα p1

ρ2sed
ρ2sedho,ref

ρ1sed,refhsed,ref

α p1sed
α p1sed f λcp1,sed

1000

α p2sed
α p2sed f λcp2,sed

1000

cpbas
cpbas

f (ho,ref+hsed,ref)

ρbas
ρbas

ρ2sed

α pbas
α pbas f λα p,bas(ho+hsed)

1000r
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permutations are explored, the construction that best captures the local behavior of the model within

a unit step is selected as the best preconditioner. Figure 2.2 shows the local behavior of two possible

candidate preconditioners for cp1o at various frequencies. The top row of plots in Fig. 2.2 shows a

preconditioner that captures local behavior and mitigates frequency dependence, while the bottom

row of plots shows a preconditioner that does not achieve either effect. For cp1o the best unitless

preconditioner for our model is f r
cp1o

. This choice of preconditioner leads to oscillations in the model

output that vary over similar scales regardless of frequency and sets the domain such that it captures

local behavior. The procedure applied in this example can be extended to the other parameters in

the forward model.

One advantage of forming preconditioners according to the three physics-based principles is the

potential for insights into the physics of the problem. For example, the preconditioner for ρ1sed,

the density at the top of the seafloor sediment layer, is ρ1sedλo
ρ2o,refλα p1

, where ρ2o,ref is the density of the

ocean used as a reference, λo = cpo/ f is the characteristic wavelength of sound propagating as a

compressional wave through the ocean, and λα p1 is the characteristic length of decay at the top

of the sediment layer. This last quantity is calculated as λα p1 =
1
|k̃| , where k̃ is the complex wave

number found in Eq. 23 of Westwood et al.6

The fact that this particular preconditioner for ρ1sed best satisfies the physics-based precondi-

tioner design principles implies that the ratio of densities at the interface between the ocean and

the sediment is an important feature of the physics of the problem. Indeed, the ratio of densities at

the interface controls acoustic impedance, the physical mechanism that determines the coupling of

sound from one medium to another. Additionally, the presence of the unitless length scaling term

implies that the dominant phenomena of propagation in the water and decay in the sediment play

important roles in the physics of the acoustic field. Similar conclusions can be drawn by examining

the other preconditioners in light of the physics. The formulation of physics-based preconditioners

is helpful for gaining an intuition about the interactions of physical parameters within the model.
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Figure 2.2 Variation in magnitude of Green’s function over a unit step in the precondi-
tioned parameter for two different preconditioners of cp1o. The top row shows the best
preconditioner f r

cp1o
and the bottom row shows a poor preconditioner cp1o

f ho,ref
. The curves

represent the modulus of the Green’s function |g| for various source-receiver pairs. The
legend gives the depth of the receiver followed by the depth of the source beneath the
surface of the ocean in meters. Notice how the best preconditioner captures a smoothly
varying region of local behavior with a unit step in the preconditioned parameter for all
frequencies considered. The poor preconditioner (bottom row) features oscillations on a
scale that would make finite-differencing difficult with a unit step size.
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Once physics-based preconditioning improves the tractability of finite-differencing, Richard-

son extrapolation is applied to obtain accurate gradients. The Richardson extrapolation applies

Richardson’s deferred approach to the limit38 to the estimation of numerical derivatives by using

the first-order finite difference estimate at decreasing step sizes to extrapolate to the true derivative

value. While the method does require many model evaluations, it effectively implements a higher

order finite-difference formula that gives more accurate results. For an introduction to the technique

of Richardson extrapolation see Numerical Recipes by Press et al.36

For this work the open-source Python package numdifftools is used for Richardson extrap-

olation to compute gradients.39 The package numdifftools returns both the estimated gradient

and an estimation of the error in the gradient. In this work, forward-step Richardson extrapolation

used with preconditioning led to an improvement of six orders of magnitude in error estimates over

using forward-step Richardson extrapolation alone. Additionally, since each preconditioner has an

analytic expression, the chain rule can be applied directly to numerical derivative estimations. The

existence of an analytic expression means that chain rule transformations are accurate to machine

precision and are not a primary source of error in derivative calculation.

It is instructive to note that finite-differencing works best on smooth and continuous functions.

Therefore, transmission loss, which features discontinuities of negative infinity at pressure nulls

where the argument of the log approaches zero, is not a suitable candidate for finite-differencing.

Alternatively, the modulus of the Green’s function, which is used to calculate the transmission loss,

is a smooth function without discontinuities, and therefore our choice for finite-differencing in

the case study in Section 2.4. The chain rule can then be applied to obtain an expression for the

Jacobian

J =
∂m
∂θ

=
∂m
∂g

∂g
∂φ

∂φ

∂θ
, (2.9)

where m is transmission loss and g is the Green’s function obtained from the model. The matrices

∂m
∂g and ∂φ

∂θ
are sometimes called preconditioners because they are analogous to left and right



2.4 Case Study 21

preconditioner matrices in linear algebra. The left preconditioner is chosen to set the threshold for

error estimates, e.g., transmission loss of 1 dB re 1 µPa, and the right preconditioner is designed

from physics-based principles to facilitate finite differencing.

It may be useful to compute J with respect to another parameterization. For example, taking the

log of parameters removes the effect of differences in parameter scaling due to units in calculating J.

Alternate parameterizations of J are achieved via the chain rule by right multiplying the expression

in Eq. 2.9 by an additional right preconditioner ∂θ

∂ l , where l is is the new parameterization. For the

case study in the following section, J is calculated in this way with respect to log parameters.

2.4 Case Study

A case study of a simplified ocean acoustic model of transmission loss is presented to demonstrate

the utility of Fisher information analysis. A laterally uniform shallow ocean is used with 75 m

of seawater over a two-layer seabed. The seabed is composed of a 35 m sediment layer of either

gravel, sand, silt, clay, or mud over a 100 m basalt basement layer. The model is parameterized

by environmental parameters in each layer: h layer thickness (m), cp compressional sound speed

(m/s), ρ density (g/cm3), and α p compressional attenuation coefficient (dB/m-kHz). Values for the

full 13 parameters in this case study are displayed in Table 2. For clarity, the digits 1 and 2 have

been attached to parameters to indicate parameters corresponding to the top and bottom of a layer,

respectively. Layer is indicated by subscript: “o” for the ocean water layer, “sed” for the sediment

layer, and “bas” for basalt basement layer.

ORCA, a range-independent normal-mode model for acousto-elastic sound propagation, is used

as the forward model.6 ORCA is configured to simulate a vertical array of 15 receivers spaced

equally throughout the water column and 2 acoustic sources at depths of 8 m and 16 m below

the surface of the ocean at a range of 3 km from the array. For each source-receiver pair, ORCA
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Table 2.2 Reference parameter values for case study ocean model. The simplified ocean
models consist of 3 layers: 75-m water column over a 35-m sediment layer of either mud,
clay, silt, sand, or gravel over 100-m basement layer of basalt. Compressional sound
speeds cp are assumed to be constant in the water column and basement. In the sediment
layer, the compressional sound speed is assumed to increase linearly at 1 m/s per meter
moving deeper into the sediment. All parameters except h are defined in the model by the
value at the top and bottom of the layer. Values of cp, ρ , and α p from Computational
Ocean Acoustics Table 1.3 unless otherwise noted.2

Medium h (m) cp (m/s) ρ (g/cm3) α p (dB/m-kHz)

Seawater 75 1500 1.0 -

Mud 35 1485–1520 1.61 0.042

Clay 35 1500-1535 1.4 0.13

Silt 35 1575-1610 1.7 0.63

Sand 35 1650-1685 1.9 0.48

Gravel 35 1800-1835 2.0 0.33

Basalt 100 5250 5.0 0.02

1Potty et al.40 p. 11, last 2 sentences

2Bowles et al.41 Table I., K column
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computes the complex Green’s function values at each receiver location for each source (see Eq. 16

in Westwood et al.6). From the modulus of the Green’s function the transmission loss is calculated

for each source-receiver pair, making a total of 15 x 2 forward model output values. In order to

perform Fisher information analysis, the number of model predictions must be greater than or

equal to the number of model parameters, otherwise the problem becomes under-specified. To

encourage the computational convergence of ORCA’s solvers, a non-physical, acoustically reflective

mathematical halfspace layer is included beneath the basalt basement layer.

Leveraging physics-based preconditioners and Richardson extrapolation as presented in Sec.

2.3, numerical derivatives are obtained to construct a Jacobian for environments with each of the

five sediment types at 50, 100, 200, and 400 Hz. A transmission loss threshold of 1 dB re. 1 µPa is

selected for the left preconditioner in the Jacobian calculation (see Eq. 2.9), allowing for sensitivity

analysis and parameter uncertainty analysis corresponding to a 1 dB uncertainty in transmission

loss.

Using the Jacobian, the FIM and its eigenvector decomposition are calculated, as well as the

covariance matrix I−1 and the Pearson correlation matrix. The variance and conditional variance

for each parameter are also found. All results are presented in terms of log parameters to remove

the effect of unit differences. Together these mathematical objects form the basis for the Fisher

information analysis, the results of which are presented for a case study hereafter. For brevity and

clarity, representative results are presented alongside commentary extending observations to all five

seabed environments.

The eigenvalues of the FIM, shown in Fig. 2.3, span 12 to 17 orders of magnitude for a sand

sediment. The log-linear spacing of the eigenvalues is characteristic of sloppy models. This sloppy

model behavior is consistent across the frequencies and sediments studied. The largest eigenvalues

correspond to the stiffest directions in parameter space, i.e., the parameter combinations to which
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Figure 2.3 Fisher information eigenvalue magnitudes at frequencies 50–400 Hz for sand
sediment environment. Notice the log-linear eigenvalue spacing characteristic of sloppy
models.

the model is most sensitive. A visualization of the magnitude of the entries of the eigenvectors of

the FIM in log parameters is shown in Fig. 2.4 for a sand sediment at 100 Hz.

Evidence of correlated relationships between parameters is clearly shown in the eigenvector

columns of Fig. 2.4. If model parameters were uncorrelated, each eigenvector would point along

a single parameter axis, and there would not be multiple elements in a column with dark colors.

While some understanding of correlated parameter interaction is discernible in the FIM eigenvector

visualization, the Pearson correlation matrix illustrates parameter correlations more clearly.
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Figure 2.4 Absolute value of entries of eigenvectors of the FIM with respect to log
parameters at 100 Hz for a sand sediment. The horizontal axis shows the eigenvalue
number in decreasing order that corresponds to each eigenvector of the FIM. Parameter
names are shown on the vertical axis. Each vertical column represents a unit-length
eigenvector in parameter space. Matrix elements with values closer to 1 and indicate
eigenvectors that point strongly in along the associated axis in parameter space.
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Figure 2.5 Absolute value of Pearson correlation matrix for a sand sediment at 100 Hz.
The correlation matrix shows parameter relationships. In many cases, strong correlations
occur between parameters from the same layer or parameters that mark a change at a layer
interface.
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Figure 2.6 Relative uncertainty, σCRB, associated with the CRB and the relative uncertainty
associated with the conditional variance, σcond, for each log parameter for a sand sediment
environment at 100 Hz. A solid black line has been placed at a value of 1 indicating the
point at which the uncertainty in the parameter is equal to the magnitude of the parameter’s
reference value. In general, the deeper the parameter is beneath the surface of the ocean, the
larger the relative uncertainty. Also, relative uncertainty tends to increase with frequency.
All relative uncertainty values are based on a transmission loss threshold of 1 dB re 1 µPa
in Eq. 2.9.
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The Pearson correlation matrix, calculated according to Eq. 2.8, uncovers parameter relation-

ships and interactions. The absolute value of the Pearson correlation matrix for a sand sediment

environment at 100 Hz is displayed in Fig. 2.5. A block of strongly correlated parameters (ho, cp1o,

and cp2o) is evident in the upper left corner. Parameters associated with this block are all ocean

parameters, so it is reasonable that they are strongly correlated with each other but not with deeper

seabed parameters, especially those describing the basalt basement layer. Similarly, ρ2sed and ρ1bas

are strongly correlated, which matches with the physical understanding that the density ratio across

the boundary between media plays a key role in acoustic propagation.

Notice the high correlation between many of the parameters, a feature of many sloppy models.

This feature is present across all cases considered in this study, consistent with the results of the

FIM eigenvectors. Another general trend is that as frequency increases from 50 Hz to 400 Hz,

parameters deep beneath the seafloor become less correlated with other parameters. This is because

higher frequencies do not penetrate as deeply into the seabed as low frequencies of the same energy.

This trend is more pronounced in hard sediments (gravel, sand, silt) than in soft sediments (mud,

clay) where sound propagates farther.

Working in log parameters has the benefit of removing the influence of physical units. Addition-

ally, uncertainty in log parameters corresponds to a relative uncertainty in physical parameters, since

a small variation in log parameters δ log(θ) corresponds to δθ/θ . The relative uncertainty associ-

ated with the CRB, σCRB =
√

I−1
ii , can be compared against the relative uncertainty associated with

the conditional variance, σcond = 1/
√

Iii, for the ith parameter. This comparison allows for better

understanding parameter uncertainties, correlation, and model behavior. By way of illustration,

σCRB and σcond for a sand sediment environment at 100 Hz are shown in Fig. 2.6.

As expected, Fig. 2.6 shows that the σcond are less than σCRB values. This difference is the

result of parameter correlation in the model and is not surprising given the sloppy character of the

model. Notice also the general trend in Fig. 2.6 that deeper parameters in the sediment have larger
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relative variances. This quantitative assessment matches the physical intuition that as sound travels

farther and passes through multiple media it loses energy. The trend of increasing parameter depth

and uncertainty is present across the sediments and frequencies studied.

At 100 Hz, most of the parameters in the ocean layer and the sand layer have σCRB values well

within 15% of the magnitude of the reference value. However, ρ2sed and α p2sed, both of which

describe physical conditions at the bottom of the sediment layer, feature large σCRB values. The

relative uncertainty associated with the conditional variance of these two parameters is still within

15% of the reference values providing further confirmation of the parameter relationships seen in

the correlation matrix of Fig 2.5. This is evidence that there may exist a parameterization of the

model with decreased correlation effects. In the basalt basement layer, only cpbas has a relative

uncertainty less than the magnitude of the reference value. The other two basement parameters have

large relative uncertainties, with α pbas having σCRB values on the order of 102.

These values can guide the design of efficient geoacoustic inversion: invert for those parameters

with small σCRB values. These are the parameters for which the signal carries the most information

and that will have the best resolution in an inversion. Inversions for parameters with high σCRB

values yield results with high uncertainty.

By examining σCRB values across a range of frequencies and sediments, more trends emerge.

For example, Fig. 2.7 shows σCRB and σcond values for a 35 m mud sediment layer at 50–400

Hz, and Fig. 2.8 shows σCRB and σcond values for a 35 m sand sediment layer over the same

frequencies. The results shown in these two figures are representative of soft and hard seabed

sediments, respectively.

As has been noted previously, the uncertainty increases with depth for both hard and soft seabeds.

The soft seabed environment generally has lower σCRB values for deeper parameters better than

the hard seabed, and that frequency impacts σCRB as well. These trends validate expected physical

behaviors of underwater sound propagation.
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For example, the less dense, soft sediments allow acoustic energy to propagate more deeply into

the sediment than the denser hard sediments. However, the characteristic wavelength of sound at a

given frequency also plays a role. For example, the σCRB value for hsed changes with frequency in

the mud environment. At 50 Hz in the mud environment the characteristic wavelength is on the

order of the sediment layer thickness. This similarity in scales renders the model insensitive to

the sediment layer thickness parameter. However, increasing the frequency to 200 Hz decreases

the uncertainty with a drop of three orders of magnitude in σCRB values. This effect can be seen

in several of the parameters. The identification of such “sweet spots” can improve inversions by

understanding which frequencies or frequency bands are best at resolving various environmental

features and in demarcating differences between environments.

The relative uncertainty plots (Fig. 2.7 and Fig. 2.8 show the impact of decay as sound energy

is dispersed and absorbed in the ocean. A trend for hsed in sand differs from mud, because the

hardness of the sediment means that the dominant physical phenomenon in the sand layer is decay

rather than propagation. Although the characteristic wavelength of sound at 200 Hz and 400 Hz is

better for resolving the depth of the layer, the acoustic signal decays too much by the time it reaches

the bottom of the sediment layer to relay information about the layer’s depth back to the receivers.

Thus, an analysis of these relative uncertainty plots reveals a trade-off between resolution reliant on

characteristic wavelengths and resolution reliant on signal strength. While only two of five seabeds

included in this study are shown, the results are representative of the range of outcomes found in

the Fisher information analysis. Such results indicate that the model captures relevant physical

behaviors of the situation and yields insight into parameter uncertainties and model sensitivities.
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Figure 2.7 Relative uncertainty values associated with the Cramér-Rao bound (σCRB) and
the conditional variance (σcond) for each of the model parameters at 50–400 Hz for a mud
seabed. Relative uncertainty values based on an assumed resolution of 1 dB re 20 µPa for
transmission loss. Bars for σCRB shown in blue with circles and σcond shown in orange
with diagonal cross-hatching.
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Figure 2.8 Relative uncertainty values associated with the Cramér-Rao bound (σCRB) and
the conditional variance (σcond) for each of the model parameters at 50–400 Hz for a sand
seabed. Relative uncertainty values based on an assumed resolution of 1 dB re 20 µPa for
transmission loss. Bars for σCRB shown in blue with circles and σcond shown in orange
with diagonal cross-hatching.
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2.5 Conclusion

This work presents a framework for Fisher information analysis made possible by accurate numerical

derivatives. The Fisher information matrix quantifies how much information a signal contains about

the parameters in a model and can be used to quantify parameter uncertainty and model sensitivity.

The FIM also provides insight into the sloppiness of a model and the correlation of its parameters.

Understanding of parameter relationships and sloppy and stiff parameter combinations lays the

groundwork for model reduction work in ocean acoustics. Additionally, for those interested in the

application of machine learning tools such as neural networks and Bayesian maximum entropy to

acoustic inversions, Fisher information analysis can help identify fundamental limits to parameter

inference and can guide problem formulation.

While accurate numerical derivatives of ocean acoustic models have proven a difficulty in the

past, we have shown that the application of physics-based preconditioners combined with Richardson

extrapolation leads to accurate numerical derivative estimates. The introduction of preconditioning

techniques and the use of Richardson extrapolation, while not exclusive to underwater acoustics,

places powerful tools in the hands of the ocean acoustics community to move optimization and

optimal experimental design forward.

As validation of the numerical derivative methodology and as demonstration of FIM analysis,

a case study is presented for a transmission loss model of a simplified ocean environment with

five different seabeds in the frequency range from 50–400 Hz. Results show which parameters

are best resolved by the model with a given environment and frequency. Such results are useful

for experimental design. Prior to performing an experiment, simulations can be run to identify

the limitations of that experiment’s design, i.e., understanding inherent uncertainties in parameter

estimations using the CRB. Likewise, the analysis can compare the performance of various models

and aid in the process of model selection. For example, the Fisher information could be used to
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explore differences in the inversion capabilities of the acousto-elastic model for underwater sound

propagation and the viscous grain shearing model for sound propagation.

This work is a step forward in connecting the theoretical world of mathematical models with a

physics-based understanding of the ocean acoustics world. By using the Fisher information analysis,

it is possible to allow physical data to influence the creation and refining of mathematical models of

real-world physics that are informed by the physics, rather than by human assumption and intuition.



Chapter 3

Synthetic Dataset Development

The popular adage garbage in, garbage out as used in the context of computer science and machine

learning refers to the idea that using poor input data decreases the odds of a useful output from

a program or model. Therefore, those who design and curate datasets strive to ensure quality.

Especially when training a machine learning model to perform regression, a dataset should span

the space of possible inputs, thus improving the model’s ability to interpolate and return reliable

predictions. Machine learning models are notoriously untrustworthy at extrapolation.42

Physics experiments are often costly and time-intensive, so data scarcity is a common problem.

This problem is only compounded by the demand from the machine learning algorithm’s side for

copious quantities of training data. Focusing on the dataset side of this problem, one potential

panacea is to augment a small dataset by generating plausible new samples, perhaps with a Genera-

tive Adversarial Network.43 Another option, which is the option taken in this work, is to generate

completely synthetic data with a physics-based model. If the synthetic data captures enough of the

underlying physics, a machine learning model trained on the synthetic dataset hopefully performs

well on real-world data. However, discrepancies, such as whether the simulated data accounts for

noise, whether the physics-based model is detailed enough, or whether the simulation spans the

35
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space of real-world variability, can lead trained machine learning models to generalize poorly to

real-world data.

To frame the development of a synthetic dataset, the real-world dataset from the 2017 Seabed

Characterization Experiment (SBCEX2017) consisting of SOO spectrograms labeled with parameter

uncertainties is introduced. The generation of synthetic SOO spectrograms with the forward model

ORCA is then discussed, with details on dataset labeling, including the labeling of geoacoustic

parameter uncertainties.

3.1 Uncertainty in Parameter Estimates

Uncertainty is a term that has many definitions and sources. In machine learning, uncertainty is

discussed when analyzing the trustworthiness of predictions. Machine learning models, including

neural networks, map an input dataset distribution to an output prediction distribution. In the case

of regression, the input and output distributions are continuous. Uncertainty in predictions arises

from two sources: the input data and the machine learning model.

Irreducible errors due to randomness in the input data is called aleatoric uncertainty from

the Latin alea, “a game with dice”.44 Aleatory uncertainty is an inherent property of the input

data distribution and is typically addressed by increasing the quantity and quality of training data.

Measures of aleatory uncertainty can be directly calculated by statistical analyses of datasets.

The second source of uncertainty is the model. As a model trains its weights are adjusted to

assimilate information learned from the training data. A trained model contains the “knowledge” or

“experience” learned from the dataset. When a model is presented with an out-of-distribution input,

it does not necessarily have the knowledge or experience to accurately produce an output prediction.

This type of uncertainty is called epistemic uncertainty from the Greek episteme, “knowledge”.44

As with aleatory uncertainty, epistemic uncertainty can be improved by the addition of training
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data of a higher quantity and quality for a given machine learning model. However, unlike aleatory

uncertainty, epistemic uncertainty is more difficult to estimate, a difficulty which has given rise

to multiple uncertainty quantification approaches such as evidential learning, Bayesian neural

networks, Monte Carlo dropout variational inference, Gaussian processes, ensemble techniques,

and many others. See the literature review by Abdar et al.45 for more on uncertainty quantification

in deep learning up through 2020.

In Chapter 2, Cramér-Rao bound, the lower bound on the uncertainty in forward model parame-

ters, was computed. This uncertainty is neither the aleatoric uncertainty in the data nor the epistemic

uncertainty of the machine learning model. Rather, the CRB should be considered a property of the

a priori parameter distribution needed to generate data with a given aleatoric uncertainty. Chapter 2

explained how the CRB for ORCA’s geoacoustic parameters is related to information content in

transmission loss output. Therefore, a spectrogram of transmission loss contains information both

about the parameters that led to its generation and their CRB uncertainties. These CRB parameter

uncertainties are employed as an additional label for the synthetic spectrograms, as described in this

chapter, in hopes that similar parameter uncertainties might be estimated for real-world data.

3.2 Real-World Dataset

In March and April of 2017, a multidisciplinary project called SBCEX2017 (Seabed Characterization

Experiment 2017) studied a region of the continental shelf in the Atlantic Ocean called the New

England Mud Patch. While the experiment site, which is roughly 95 km south of Martha’s Vineyard,

Massachusetts, is referred to as a ‘Mud Patch’, the seabed there is composed of a variety of

sediments including mud, clay, silt, and sand. The bathymetry of the site is relatively flat and is

known to have “an extensive region with comparatively thick and comparatively uniform upper
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layer of fine-grained sediment”.46 SBCEX2017 occurred in March and April to take advantage of a

stable, nearly isothermal, isovelocity sound speed profile in the water column.46

Two, sixteen-channel vertical line arrays (VLAs) were deployed by the Hodgkiss group at

Scripps-Marine Physical Laboratories to record merchant vessels traveling in nearby shipping

lanes.10 A schematic of the VLAs and the shipping lanes is shown in Fig. 3.1. Passing merchant

ships were identified using vessel traffic data collected by the U.S. Coast Guard through the

Automatic Identification System and retrieved from the Marine Cadastre.46, 47 Each ship was

labeled by its speed, measured in knots, and its CPA (closest point of approach distance in km) to

the VLA. Because each passing ship represents an opportunity to study the seabed, the ships are

dubbed Ships of Opportunity (SOO).48

The real-world SBCEX2017 dataset consists of 31 SOO spectrograms. The SOO spectrogram

images were generated from signals received on a hydrophone stationed 33 m above the seafloor,

roughly in the center of VLA1 and VLA2. The spectrograms depict 15-minute intervals, centered

on the time at CPA, as ships approached and then sailed away from CPA. The frequency range was

chosen to be 360–1500 Hz to avoid corruption from the 350 Hz tones produced by research vessels

during the experiment. Of the 31 spectrograms, 13 were measured at VLA 1 and 18 were measured

at VLA 2. One SOO spectrogram image of the Viking Bravery ship measured on VLA1 is shown in

Fig. 3.2.

3.3 Synthetic Dataset

Training and validating a neural network on a dataset of 31 samples is infeasible, so it is necessary

to generate a synthetic dataset that resembles the real-world dataset. Therefore, a synthetic dataset

was developed, composed of 22,680 SOO spectrograms generated with ORCA, a range-independent

normal mode model with azimuthal symmetry. ORCA calculates the transmission loss between
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Figure 3.1 SBCEX2017 site in the New England Mud Patch. The deployment locations of
VLA1 and VLA2 are marked for reference as well as the shipping lanes. The real-world
SOO spectrogram data used for generalization was obtained using the setup.
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Figure 3.2 SOO Spectrogram from the Viking Bravery recorded on VLA 1 at approxi-
mately 33 m above the seafloor. The “bathtub” striation pattern typical of SOO spectro-
grams is due to the shifting of interference patterns as the ship approaches and then leaves
CPA.1
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each source-receiver pair. Transmission loss, TL, is the drop in sound pressure level between the

source level, SL, and the received level, RL, as defined by the SONAR equation,

TL(f,θθθ ,zs,zr,rrr) = SL(f)−RL(f,θθθ ,zs,zr,rrr), (3.1)

where f is frequency, θθθ is a vector of environmental parameters, zs is the source depth, zr is the

receiver depth, and rrr is a vector of source-receiver ranges. Since the source level is not a function of

the environment, the uncertainty in the received levels with respect to environmental parameters is

only dependent on the transmission loss. Refer to Chapter 2 for more information about ORCA. As

with the SBCEX2017 data, the synthetic spectrograms cover 123 frequencies in the 360–1500 Hz

band at 121 time steps for the 15 minutes around CPA (7.5 minutes on either side of CPA sampled

at 7.5 second increments.)

The ocean is modeled as 75 meters of water with a surface water sound speed of 1469 m/s that

increases linearly to a bottom water sound speed of 1470 m/s. Water density is held constant at 1

g/cm3. These ocean parameter values are consistent with those obtained from the SBCEX2017

survey and estimates of the sound speed during the experiment.46

The experimental area has been studied extensively. Results of a full-waveform chirp sonar

survey (Fig. 3 of Wilson et al.46) shows a layer of mud on top of sand. The two-way acoustic

travel time map (Fig. 2 of Wilson et al.46) indicates that the thickness of the mud varies around the

measurement area up to a thickness of 12 m. For the sediment sound speed, each of the 19 published

estimates, included in Wilson et al. Fig. 7, found different values ranging from speeds typical of

mud to those typical of silt or sand, evidence of complexity in the exact layering of the sediment.46

In accordance with published results, the seabed was modeled with a single layer of sediment

over a thicker sand or gravel layer. A fluid model is used for the top layer because shear waves

are often negligible in water-saturated sediments. With this model, 140 seabed environments were

generated. For each environment, the top layer was randomly generated by varying the parameters
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of one of five prototypical seabed sediments ranging from fine-grained to coarse-grained: mud, clay,

silt, sand, and gravel. Of the 140 generated, 40 apiece came from mud and clay and 20 apiece came

from silt, sand, and gravel.

The generation process maintained ratios in the compressional sound speed and density across

the water-sediment interface. The density and compressional attenuation were assigned constant

values within layers. The compressional sound speed was constrained to vary linearly from top to

bottom with a non-negative gradient 0–1 m/s for each meter of depth. The thickness of the sediment

layer was assigned a value between 5 and 35 m.

All second layer parameters were drawn from the coarsest two sediments, sand and gravel. To

improve the convergence of ORCA’s solver, parameters in the second layer are constrained to values

greater than or equal to the corresponding top layer sediment parameter values. Additionally, for

the purposes of solver convergence, a non-physical half-space layer is included beneath 100 m of

the basement layer with a compressional sound speed of 6000 m/s, a density of 5 g/cm3, and an

attenuation of 0.83 dB / m-kHz.

The bounds for the parameters and parameter ratios are drawn randomly from a uniform

distribution. Bound values are drawn from Table 1.3 in Computational Ocean Acoustics.2 Possible

values the parameters can take on are summarized in Table 3.1. The geoacoustic parameter values

used to generate each environment were saved as labels for later use in training and validation.
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To ensure sufficient variability in the data, ship speeds, CPAs, source depths, and geoacoustic

parameters were varied as well. For each of 140 seabed environments, data samples were generated

that combine different source parameters: three ship source depths, nine ship speeds, and six CPAs.

The three ship source depths were randomly drawn from a uniform distribution 6–12 meters below

the surface of the water. A source depth of 6-12 meters models noise from the surface ship’s engine

and the resulting water turbulence. For each source depth, nine ship speeds are randomly sampled,

three from each range of values: 8–12 kn, 12–16 kn, and 16–20 kn. Finally, six CPAs are randomly

sampled, three from each range of values: 0.5–8 km and 8–15 km. This makes for a total of 140

environments x 9 source depths x 3 ship speeds x 6 CPAs = 22,680 SOO spectrograms. Source

levels were randomly assigned by sampling a uniform distribution over the range of 220–240 dB

referencing 1 µPa.

3.4 Uncertainty Labels

One key consideration in designing labels for datasets is how the labels will be interpreted in various

contexts. For instance, from the point of view of an ocean acoustic inversion, the exact value of a

parameter’s uncertainty is less important than whether the uncertainty is qualitatively acceptable. For

example, it does not matter whether a parameter estimate has 75% or 100% uncertainty when only

uncertainties less than, say, 10% are acceptable. Uncertainty values either indicate untrustworthiness

or reliability. Therefore, interpretation of uncertainties in parameter estimates has a qualitative

aspect.

If the purpose of uncertainty labeling is to get a handle on the qualitative reliability of parameter

estimates, it is important to note that not all uncertainty values are of equal interest nor are they

treated equally in interpretation. An estimate with an associated uncertainty of 50% may be just as

untrustworthy as an estimate with an associated uncertainty of 500% for a given application. Thus,
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it is helpful to define ranges of interest for uncertainty values. Uncertainty value ranges of interest

for this work are defined in Table 3.2.

Chapter 2 established that, at a given frequency, the information content concerning a geoacoustic

parameter in a transmission loss signal can be used to estimate the CRB, a lower bound on the

uncertainty in parameter estimates. For a SOO spectrogram containing 123 frequencies, 123

CRB values can be calculated for each parameter (following the same formulation set out in

Chapter 2, but switching out the many receiver depths for many source-receiver ranges). However,

performing regression for 123 local uncertainty labels is impractical for at least two reasons. First,

the computational expensive to compute the CRB for a dataset of thousands of SOO spectrograms

at 123 frequencies (across all the ranges) is prohibitively high. Secondly, and more importantly,

sampling a spectrogram at every point violates the underlying independence assumption required

for the calculation of traditional statistical moments like mean and standard deviation. To satisfy

independence and reduce computation time, sparse sampling of CRB values is the logical choice.

Thus, the following heuristic is adopted for labeling the parameter uncertainties for each SOO

spectrogram with a single value.

The spectrogram is sparsely sampled at k = 10 frequency slices equally spaced between the

spectrogram’s minimum frequency, 360 Hz, and maximum frequency, 1500 Hz. For each of the

selected frequencies, the CRB is calculated for each parameter of interest. On occasions where

ORCA stalls at one of the ten evenly spaced frequencies, a new frequency is randomly drawn from

a uniform distribution across the 360-1500 Hz band and the calculation is repeated.

Once the uncertainties are calculated at ten frequencies, they are binned. The range of possible

uncertainties is divided into seven bins of interest. The bins are not divided equally, following the

observation above that different uncertainty values are not interpreted in the same way. Rather, they

are approximately logarithmically spaced. The bounds for each bin are given in Table 3.2.
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Table 3.2 Relative uncertainty bins for the labeling of SOO spectrograms. For improved
weight convergence in the neural network and for ease in interpretation, each bin is
associated with a unit domain.

Percent Relative Uncertainty Label Mapping Domain

0-0.1% [0,1]

0.1-1% [1,2]

1-5% [2,3]

5-10% [3,4]

10-25% [4,5]

25-50% [5,6]

50-100+% [6,7]

A single uncertainty label assigned to each spectrogram is found as follows. The bin with the

greatest number of uncertainties is determined. This bin is referred to as the "mode bin", borrowing

the term "mode" from statistics where it refers to the sample value that occurs most often. It is

assumed that if CRB values for a spectrogram most frequently land in a specific uncertainty bin,

then a neural network asked to estimate a CRB value would also likely most often predict values

that belong in the same bin. Taking the arithmetic mean of the uncertainties in the mode bin yields

a representative uncertainty label for the spectrogram. If multiple bins contain the mode number of

samples, the lowest uncertainty bin is used to calculate the uncertainty label.

For potential gains in training speed, the uncertainty labels are mapped onto the range from 0

to 7. Each uncertainty bin is allotted a domain between two consecutive integers onto which the

uncertainty can be mapped via linear interpolation. The mapped domains for each uncertainty bin

are shown in Table 3.2. The entire dataset of 22,680 synthetic spectrograms took around 4 days to

generate with this labeling scheme. The largest bottleneck was the uncertainty labeling, with the
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uncertainty calculation for a single SOO spectrogram taking 16-30 seconds, varying with ORCA

hangups.

The decision to sample each spectrogram at k = 10 points is based on an exploration of various

values of k to determine the least k-value that gave similar results to sampling at k=74 (every 15 Hz).

It was found that k=10 matched the mode uncertainty bin found with k=74 with 93% accuracy. This

sampling strategy was deemed sufficient for the purposes of qualitative uncertainty interpretation.

This uncertainty labeling process yields a single value with qualitative meaning. It is less

important that the neural network exactly estimate the uncertainty label than that it returns a value

within the proper uncertainty bin. Note also that the CRB labels here are a lower limit on parameter

estimate uncertainties. Consistent with the case study in Chapter 2, the CRB values used in the

labeling process correspond to the least possible uncertainty in a particular parameter estimate

given an uncertainty in the transmission loss data of +/- 1 dB referencing 1 µPa. The uncertainty

in transmission loss data is a function of the measurement apparatus and signal processing, and a

dataset representing the corresponding CRB uncertainty for a different experimental setup could be

easily created using the method given here.



Chapter 4

Deep Learning

4.1 Background

Neural networks are popular in tackling inverse problems across disciplines. This work tends to

fall into two categories: classification and regression. Images are a popular data type for neural

networks, and, where spectral data is concerned, spectrogram images are used in many disciplines.

Basic feed-forward neural networks are being used to try to diagnose Alzheimer’s disease from

speech spectrograms49 and classify honeybee hive state from spectrograms of recorded hive sound.50

Convolutional neural networks, or CNNs, are being used to classify seismic events,51 estimate the

amount of grain in silos from RADAR spectrograms,52 classify back-bead formation in gas metal arc

welding from welding current spectrograms,53 estimating synthesizer settings from spectrograms

of music,54 and estimating the joint angles of a prosthetic robotic arm from electromyograph

spectrograms.55 A recurrent neural network, RNN, was used to categorize emotion from speech

spectrograms,56 and residual neural networks, ResNets, were used to classify and estimate source

parameters of gravitational waves from black hole mergers from spectrograms of electromagnetic

signals.57

48
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As with other domains, neural networks have gained popularity in ocean acoustic inversion

applications. In ocean acoustics, inversion applications often manifest as seabed classification,

source-receiver geometric parameter regression, and geoacoustic parameter regression. Seabed

classification with neural networks has been performed with CNNs, for side-scan sonar data,58

simulated time-series pressure data,9, 59, 60 simulated vertical line array pressure data,61 and ship of

opportunity (SOO) spectrograms.9, 10

Source-receiver geometric parameter regression includes estimating parameters like range,

closest point of approach CPA of a moving source, and source depth. Neural networks have been

used to estimate source range,60, 62–64 ship speed,9 source depth,65 and direction of arrival.66

Geoacoustic parameter regression with neural networks, which is the primary focus of this work,

goes back to the ‘90s. Early work focused on geoacoustic parameter regression with feed-forward

neural networks with synthetic data from a normal mode model67, 68 and radial basis function

neural networks (RBFNN) with simulated horizontal line array data.69 More recent work includes

regression for sound speed and attenuation from long-range time-series data with general additive

models,70 regression for a single sediment layer’s thickness, top and bottom sound speed, sediment

density, and basement sound speed with a RBFNN,71 and regression for layer thickness, sound

speed, density, and attenuation for a single sediment layer with a large feed-forward network.72 In

all these studies, the seabed is modeled as horizontally uniform single sediment layer and, in the

cases of Mao et al.72 and Shen et al.,71 a single basement layer.

While previous work has focused on using neural networks to estimate sediment parameters, this

work proposes to simultaneously estimate parameters and the uncertainty associated with parameter

estimates. With the goal of estimating parameters and uncertainties in mind, the neural network

architecture and training strategies for the current work are presented. A neural network is trained

and validated on the synthetic SOO spectrogram dataset covered in Chapter 3, then evaluated for

generalizability with a small sample of measured data from SBCEX2017.
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4.2 Architecture and Training

One of the primary challenges in training CNNs and FNNs is the vanishing gradient problem, a

problem which worsens as more layers are added to a network.8 Residual neural networks, ResNets,

were first proposed by He et al.73 in “Deep Residual Learning for Image Recognition” as way to

combat vanishing gradients and make deeper networks more feasible through the introduction of

an identity mapping skip connection between layers. In the seabed classification work by Escobar

et al.,10 of the size networks tested on SOO spectrogram data, the ResNet-18 architecture had the

highest consistent performance in cross validation testing. Therefore, ResNet-18, so-called for

its 18 layers, is used in this work.73 A final linear layer is added with an output size equal to the

number of values requested in the regression. In total the network has about 11.2 million learnable

parameters.

The ResNet-18 is trained on the synthetic dataset discussed in Chapter 3. The dataset, which

consists of 22,680 spectrogram images, is randomly divided with an 80-20% split into a test set

(18,144 spectrograms) and a validation set (4,536 spectrograms). A mean squared error (squared

L2 norm) loss criterion is imposed and the network is optimized with the AdamW optimizer, an

optimizer based on Adam but with weight decay corrections.74 An early stopping mechanism is

included that stops training when the validation loss does not improve for a patience length of four

epochs. Improvement in the validation loss is counted when the validation loss decreases by at least

0.001. Preliminary testing of various batch sizes indicated that a larger batch size improved the

training time with ResNet-18, so a batch size of 512 is used.

Normalization is used for both labels and input images. Data labels are normalized to the domain

[0,1] to encourage the convergence of network weights and decrease training time. Spectrogram

images are also normalized individually to the domain of [0,1] as follows. The spectrogram, whose

pixel values represent sound levels in decibels referencing 1 µPa , is centered about zero and

normalized to have a standard deviation of one by subtracting the mean and dividing by standard
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deviation of the spectrogram’s pixels. Any pixel values outside the range of three standard deviations

on either side of the mean are then reassigned a random value drawn from a uniform distribution

between plus and minus three standard deviations. The result is that outlier values are filtered out.

The pixel values are then linearly mapped to the domain of [0,1].

Models are trained to perform either single regression for individual parameters or simultaneous

dual regression for a single parameter and its uncertainty labels (see Chapter 3 for details on the

creation of uncertainty labels) for each of four geoacoustic parameters: layer thickness h, sound

speed at the top of the sediment cp1, density at the top of the sediment ρ1, and attenuation at the

top of the sediment α p1. These parameters are selected for two reasons. First, in the case study in

Chapter 2, all these parameter have CRB of 50% or less for most frequencies considered. Second,

these parameters have published estimates against which they can be judged for the SBCEX2017

dataset.46 The neural network architecture and training algorithms are implemented in PyTorch

version 1.5.1 and run in Python 3.6.9 on an NVIDIA Tesla T4 GPU. Under these conditions, the

entire process from loading data to finishing training takes less than twenty minutes for all models.

4.3 Validation

The root mean squared error, RMSE, and mean absolute percentage error, MAPE, for prediction

on the validation set are reported for both the single parameter regression and the dual parameter

regression in Table 4.1. In both the single and dual regressions cp1 and ρ1 have the lowest error

measures in their parameter estimates, while α p1 and h have large associated errors. These results

are consistent with the analysis in Chapter 2 where the CRB followed the same trend. Although it

remains unclear whether ResNet-18 can obtain the least error (i.e., reaching the Cramér-Rao lower

bound), the qualitative trend corroborates the findings in Chapter 2.
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In the dual regression case, unlike the errors in the parameter estimates, the errors in the

uncertainties do not appear to follow a pattern. Most explanations of the source of errors come back

to the ad hoc nature of the uncertainty labeling heuristic described in section 3.4. The sampling

of the spectrogram points used to generate the label was not always consistent due to the need to

randomly sample when ORCA failed to converge. If the regularity of the sampling is the cause of

this error, trying small perturbations of the inputs rather than random sampling might be enough

to fix the issue, assuming smooth variation between the original point and the perturbation. If the

evenly spaced regularity of the sampling is the issue, resorting to a random sampling technique to

generate the uncertainty labels may work better. If this is the case, a new study of the number of

sample points needed to consistently label the uncertainty would need to be performed.

Another possible cause of the network’s failure to estimate the uncertainty labels well is the

binning strategy. Since the bins are not equal, it is difficult to compare the uncertainty estimates of

samples in different bins. The RMSE values would suggest that cp1 and h are consistently a bin

or more off of their labels and that α p1 is within a bin of the true value much of the time. This is

deceptive if α p1 typically has uncertainties in the 50–100% uncertainty bin and cp1 is trying to

correctly estimate whether the error belongs in the 0.1–1% bin or the 1–5% bin. If unequal binning

is the cause of the errors, then it is unrealistic to directly compare errors between uncertainty labels

in different bins.

For reference, the validation results for the dual regression plotted in Fig. 4.1. For each parameter,

the predicted values are plotted against labeled parameter values. The labeled uncertainty bin is

indicated by color and the predicted uncertainty bins are broken out by subplot. The neural network

generally groups labeled uncertainties together, though they are often mixed across neighboring

bins. The upward diagonal trend across the plots shows that the network is learning to perform

regression, albeit with varying degrees of success.
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Table 4.1 Validation error analysis results from single and dual regression for four geoa-
coustic parameters: layer thickness h, sound speed at the top of the sediment cp1, density
at the top of the layer ρ1, and attenuation at the top of the layer α1. The dual regression
includes the results for simultaneous regression for the uncertainty labels, σ with the
associated parameter subscripted.

Single Parameter Regression

h (m) cp1(m/s) ρ1 (kg/m3) α p1 (dB/m-kHz)

RMSE 8.26 27.24 0.13 0.07

MAPE 46.0% 1.3% 5.9% 29.8%

Simultaneous Dual Regression

h (m) cp1(m/s) ρ1 (kg/m3) α p1 (dB/m-kHz)

RMSE 7.34 17.56 0.16 0.07

MAPE 38.3% 0.9% 7.5% 29.0%

σh σcp1 σρ1 σα p1

RMSE 1.19 1.28 0.32 0.62

MAPE 33.9% 44.4% 10.0% 11.2%



4.3 Validation 54

Fi
gu

re
4.

1
Va

lid
at

io
n

re
su

lts
fo

rt
he

si
m

ul
ta

ne
ou

s
re

gr
es

si
on

of
pa

ra
m

et
er

va
lu

es
an

d
pa

ra
m

et
er

un
ce

rta
in

tie
s.

Su
bp

lo
ts

ar
e

br
ok

en
ou

tb
y

pa
ra

m
et

er
an

d
pr

ed
ic

te
d

un
ce

rt
ai

nt
y

bi
n.

Po
in

ts
ar

e
co

lo
re

d
ac

co
rd

in
g

to
la

be
le

d
un

ce
rt

ai
nt

y
bi

n.
T

he
ax

es
of

ea
ch

pl
ot

ar
e

pa
ra

m
et

er
pr

ed
ic

tio
n

on
th

e
ve

rt
ic

al
ax

is
an

d
tr

ue
va

lu
e

on
th

e
ho

ri
zo

nt
al

ax
is

.F
or

an
ex

ac
t

re
gr

es
si

on
,t

he
po

in
ts

sh
ou

ld
al

ig
n

al
on

g
th

e
di

ag
on

al
of

ea
ch

su
bp

lo
t.



4.4 Generalization 55

4.4 Generalization

To test the generalizability of the models, measured data from the SBCEX2017 experiment is used.

The data come from 31 hydrophone recordings of passing surface ships taken at one of two vertical

line array locations. Information about the 31 ships is published in Table II of Escobar et al.10

This work uses entries with CPA values detected on VLA1 and VLA2. To work with the trained

ResNet-18 regression models, the data are extracted to have the same size as the synthetic training

data: 123 frequencies between 360 and 1500 Hz by 121 time steps over 15 minutes.

Since the measured data were annotated by hand and labeled using the Marine Cadastre, it is

possible that there is a small amount of human error in the labels. For example, the spectrograms

might not be centered exactly on CPA. However, the translational invariance of convolutional

layers should combat problems introduced by a shifted CPA. The true values for the geoacoustic

parameters of the New England Mud Patch are not known precisely, so the results must be compared

against the results of other inversions or surveys. Please refer to the comprehensive overview of

work published on SBCEX2017 by Wilson et al.46 For simplicity, two of the studies referenced in

the overview are used for a comparison. Ballard et al.3 measured the compressional sound speed at

the top of the sediment cp1 at about 1480 +/- 15 m/s with an acoustic coring system. The same

study measured the mean bulk density ρ1 to be about 1.5 +/- 0.2 g/cm3 . Belcourt et al.4 used a

trans-dimensional Bayesian approach to invert for the attenuation of the sediment in the mud patch

α p1 and came away with values ranging from 0.01 to 0.09 dB/m-kHz and a top layer thickness h of

9.2 m. These values are included in the analysis of the generalization results for comparison against

the results from the regression models, shown in Table 4.2.

The ResNet-18 regression models have mixed results when fed real-world data. For the single

parameter regression models, the predictions were significantly greater than the published values

except for α p1. The same trend occurs for the dual regression case, but the values are closer to the

reported SBCEX2017 values. Sound speed, cp1, is the greatest offender of overestimating. Of the
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Table 4.2 Generalization results performing regression with ResNet-18 on the 31 measured
SOO spectrograms from SBCEX2017. The mean and standard deviation are presented for
both the single parameter regression case and the dual regression parameter and parameter
uncertainty case. Representative nominal parameter values from the SBCEX2017 literature
are included for context.3, 4

h (m) cp1 (m/s) ρ1 (kg/m3) α p1 (dB/m-kHz)

Single Mean 14.07 1648.54 1.78 0.27

Single Standard Deviation 2.74 81.48 0.13 0.11

Dual Mean 9.2 1587.61 1.64 0.18

Dual Standard Deviation 4.79 79.87 0.18 0.12

SBCEX2017 Mean 9.2 1480.0 1.5 0.5

SBCEX2017 +/- Error - 15.0 0.2 0.4

31 measured ships, only four cp1 values were predicted within the range of values reported in the

literature. The overestimating behavior could be the result of the frequency range chosen, since, for

muddy sediment, sound at the low end of the 360-1500 Hz band is known to penetrate the seafloor

and is more likely to carry information about deeper layers than high frequencies. If ResNet-18 is

struggling to pick up on the correct frequency band to estimate the sound speed at the top of the

sediment, the network may be compromising to account for the deeper, harder sediments than were

used in creating the training data.

The thickness of the top layer is estimated with the dual regression model to have a mean value

equal to the reported value. It is difficult to judge the model’s performance, however, because

the uncertainty in the reported value is not known. The thickness of the top layer of sediment in

the seabed is not uniform across the entire propagation path of the sound from ship to receiver as

our model assumes. Depending on how much the reality of the New England Mud Patch differs
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from a truly uniform thickness, the model may be failing to capture enough of the physics to more

accurately train a model to infer parameter values.

At first glance, attenuation has the best estimates with ResNet-18, but the large range of

uncertainty in the reported values, means that this could be happenstance. The Cramér-Rao bound

study in Chapter 2 showed that the attenuation can vary wildly in its minimum uncertainty, which

makes it a difficult candidate for inversion.

On average the models perform best when predicting ρ1, estimating densities within the range

of published values for approximately one in three ship spectrograms. This performance may be the

result of the model capturing enough of the physics of how the sediment density at the boundary

between water and sediment affects the propagation of sound. Future work might focus on whether

the density ratio at the water-sediment interface or a density gradient in a sediment layer would be

good candidates for regression with a trained network.

Instead of considering the overall performance represented in Table 4.2, the results can also be

evaluated for each measured data sample to look for trends. Generalization results for the single

regression model are shown in Fig. 4.2. The single regression models consistently overestimate

the parameter values, compared with published estimates. The model does not appear to prefer

certain ships over others, an indication that CPA and ship speed do not seem to influence network

performance.

Generalization results for the dual regression models are show in Fig. 4.3. The results of the

simultaneous regression for parameter values tend to be closer to the published parameter values

than the results of the single regression models. For cp1 and ap1 the network tends to overestimate

parameter values compared with published estimates. The thickness of the top sediment layer h

predicts a wide spread of values centered on the published value of 9.2 m. The network appears

to have learned the features of sediments with a thickness around 9 meters, but not well enough

to avoid estimating, oddly enough, a negative sediment thickness for the BBC Tennessee SOO
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Figure 4.2 Generalization results for neural networks trained to estimate single parameter
values. Each of the 31 SOO spectrograms from SBCEX2017 are represented. The VLA
from which the measurements were obtained are listed beside the ship names. Reference
values from literature are indicated with dotted lines. For each parameter, the trained
ResNet-18 networks tend to overestimate compared to published values. The network does
not appear to prefer certain ship spectrograms the simultaneous regression of parameter
values and parameter uncertainties.
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spectrogram from VLA2. The best performing parameter with the dual regression models, however,

is ρ1, for which over half of the network’s predicted parameter values fall within the range of values

published in the literature.

Evaluation of these generalization results point to some future research questions about the

training dataset, network architecture, and training strategy. Focusing on the dataset, the best-case

option would be to train a model on measured data. Since such an option is expensive and likely

untenable, training with different quantities of data might prove fruitful. The quality of synthetic

dataset might also be improved by using data augmentation techniques, either on measured or

synthetic data.

A subtle difference between the synthetic SOO spectrograms generated by ORCA and the

spectrograms extracted from the SBCEX2017 data exists. The SBCEX2017 spectrograms are

generated via Fourier transform of a time-series signal, and thus represent a repackaging of a

continuous source of information. ORCA-generated SOO spectrograms are created by stacking

together outputs at discrete frequencies. Thus, in the SBCEX2017 data each frequency contains

information from nearby frequencies while the ORCA data does not. If the spectrogram is too

sparsely sampled, a network trained on synthetic data might fail to learn details about how the Fourier

transform packs information from a band of frequencies into a lower-dimensional representation. A

way to prevent this problem would be to use a higher resolution spectrogram. Although producing

higher resolution spectrograms would slow down training and dataset development, it could lead

to richer information content in each sample and a stronger trained network that is better at

generalization.

On the network architecture side, future work might explore deeper ResNet architectures. In

their study inferring synthesizer settings from spectrograms of music, Barkan et al.54 reported that

performance improved as they added layers to their CNN architecture. Of course, adding more
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Figure 4.3 Generalization results for neural networks trained to simultaneously estimate
parameter values and parameter uncertainty labels. Each of the 31 SOO spectrograms from
SBCEX2017 are represented. The VLA from which the measurements were obtained are
listed beside the ship names. Reference values from literature are indicated with dotted
lines. The predicted uncertainty bin is indicated by the color of each point. For cp1
and ap1 the network tends to overestimate parameter values compared with published
estimates. The thickness of the top sediment layer h predicts a wide spread of values
centered on the published value of 9.2 m. The best performing parameter, however, is ρ1,
for which over half of the network’s predicted parameter values fall within the range of
values published in literature.



4.4 Generalization 61

layers increases the size of the dataset needed to train the weights of a model, but there exist deeper,

more powerful ResNets for this purpose.

Finally, from a training perspective, future work might consider the impact of adjusting hy-

perparameters. Batch size was chosen to be large based on experimentation for how long the

training algorithm took to train the weights of a network, but the quality of the training was not

assessed. A smaller or larger batch size might improve the resulting network. Perhaps decreasing or

increasing the patience of the early stopping metric would produce a network with greater capacity

for generalization. Also, other data normalization techniques exist that might improve training. If

the filtering out of pixel values in the tails of the distribution causes a loss of valuable information,

altering the normalization to accommodate keeping those pixels would be a potential source of

performance gains.



Chapter 5

Conclusion

This thesis covers my research into some topics of interest to the ocean acoustic inversion and

machine learning communities, with special interest paid to parameter uncertainty. In Chapter 2, the

Cramér-Rao bound (CRB), a lower bound on the relative uncertainty of parameter estimates was

calculated from the Fisher information. Accurate numerical derivatives, which rely on physics-based

preconditioners and Richardson extrapolation, make it possible to calculate the Fisher information.

The Fisher information also allows for forward model-based analysis of parameter correlations and

model sensitivity, which can be used to design datasets and inform machine learning. Chapter 3

explored how one might use the Cramér-Rao bound to label a synthetic dataset. A key idea in this

chapter was that uncertainties have utility both quantitatively and qualitatively. A general heuristic

for labeling synthetic SOO spectrograms with a general uncertainty value was presented. Chapter

4 applied the synthetic dataset to training a ResNet-18 deep learning model for the purpose of

generalization to 31 measured samples from SBCEX2017. The results of the generalization were

mixed, but show promise given more time and work.

While this work focuses on local uncertainty, the results can be evaluated as an exploration of

how local uncertainty might relate to global properties. Work in the field of sloppy models shows

that the Fisher information reveals a model’s hierarchy of sensitivity to parameters locally. Through

62
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the Cramér-Rao bound, the sensitivities can be considered a hierarchy of uncertainties. These

uncertainties were used to consider which parameters might make good candidates for inversion

using a neural network.

Attempts at regression for the chosen candidate parameters indicate that, although the Cramér-

Rao bounds predict a certain hierarchy, the results are not constrained to that hierarchy. Rather, the

Cramér-Rao bound is what its name implies—a lower bound on the local uncertainty. Although ρ1

for the sediment layer did not have the smallest Cramér-Rao bound, the networks trained to predict

ρ1 performed best in generalization to measured data. This does not mean that the Cramér-Rao

bound is a poor guide for selecting candidate parameters for regression, only that it provides a limit

on the potential performance. A neural network might be expected to perform regression more

accurately for parameters with low CRB values than for parameters with high CRB values, but that

assumes the network has been able to learn the approximate inverse function to go from data space

to parameter space. Further exploration is needed to understand why, for example, cp1 of the first

layer had low CRB values but was not predicted accurately with a trained ResNet-18. Likewise,

more exploration is needed to understand why dual regression for the parameter and uncertainty

label led to parameter predictions closer to the desired range of outcomes than the single regression

parameter estimates.

The initial regression study in Chapter 4 showed mixed results for predicting parameter uncer-

tainty labels with a neural network in a dual regression setting. Mixed results do not mean that

uncertainty labels should be excluded from future work. Since Cramér-Rao bounds are related to

the information content, performing regression for parameter uncertainties should be theoretically

possible. The local nature of Cramér-Rao bound uncertainty means that a more finely sampled

representation of the data in time might be helpful for a neural network to learn to predict uncertain-

ties. Indeed, when the Cramér-Rao bound is calculated using finite differencing with Richardson

extrapolation, transmission loss values of several points as the parameter value varies in the vicinity
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of the point of interest are taken into account. Given that true ocean seabeds have variation in

parameters, increasing the time sampling of the spectrogram could give a neural network the boost

it needs to more accurately predict both parameter values and parameter uncertainties. A neural

network may need access to parameter information contained in the points around the point of

interest for a neural network to accurately perform regression for a local uncertainty value.

Following along with the theme of the relationship between local and global properties is

the nature of data labels. Many data labels are often treated as global descriptors, as with the

geoacoustic parameter values—a single value that has a relationship to the entire data sample.

Other data labels are local. An image that contains a cat might be labeled as a cat despite the label

only applying directly to a portion of the image. This realization prompts two potential paths for

labeling spectrograms with uncertainty data. First, a global uncertainty value might be applied

to an entire spectrogram. If there were a way to boil down all the local uncertainties associated

with a spectrogram to a single, global uncertainty, the global uncertainty would likely make a good

label for a neural network to learn. Alternatively, the second potential path would be to use a local

uncertainty label that applies only to a specific region of a spectrogram—the Cramér-Rao bound at

500 Hz, for example. The model could then learn to extract that specific, local piece of information

from the spectrogram image rather than having to worry about extracting the local uncertainties

from all parts of the spectrogram to take a shot at estimating the uncertainty, which was likely the

primary reason the network in this work struggled to estimate uncertainty labels.

If anything, this work should highlight the importance of taking the time to understand and

explore the information content characteristics of both simulated and measured data with respect

to a physical model. Uncertainty measures should be carefully considered. The great lesson of

the uncertainty labeling and regression in this study is the corollary to “Garbage in, garbage out”,

namely, “Ad hoc in, ad hoc out”. A more principled, systematic development of uncertainty labels
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could lead to improved performance in dual parameter and parameter uncertainty regression with

neural networks.
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