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ABSTRACT

Quantum Decoherence in Time-Dependent Anharmonic Systems

Ty Beus
Department of Physics and Astronomy, BYU

Doctor of Philosophy

This dissertation studies quantum decoherence in anharmonic oscillator systems to monitor and
understand the way the systems evolve. It also explores methods to control the systems’ evolution,
and the effects of decoherence when applicable. We primarily do this by finding the time evolution
of the systems using their Lie algebraic structures.

We solve for a generalized Caldirola-Kanai Hamiltonian, and propose a general way to produce
a desired evolution of the system. We apply the analysis to the effects of Dirac delta fluctuations in
mass and frequency, both separately and simultaneously. We also numerically demonstrate control
of the generalized Caldirola-Kanai system for the case of timed Gaussian fluctuations in the mass
term. This is done in a way that can be applied to any system that is made up of a Lie algebra.

We also explore the evolution of an optomechanical coupled mirror-laser system while main-
taining a second order coupling. This system creates anharmonic effects that can produce cat states
which can be used for quantum computing. We find that the decoherence in this system causes a
rotational smearing effect in the Husimi function which, with the second order term added, causes
rotational smearing after a squeezing effect.

Finally, we also address the dynamic evolution and decoherence of an anharmonic oscillator with
infinite coupling using the Born-Markov master equation. This is done by using the Lie algebraic
structure of the Born-Markov master equation’s superoperators when applying a strategic mean
field approximation to maintain dynamic flexibility. The system is compared to the Born-Markov
master equation for the harmonic oscillator, the regular anharmonic oscillator, and the dynamic
double anharmonic oscillator. Throughout, Husimi plots are provided to visualize the dynamic
decoherence of these systems.

Keywords: quantum dynamics, anharmonic, decoherence, Lie algebra, representation, mean field,
unitarity conditions
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Chapter 1

Introduction

1.1 Introduction and Background

This dissertation is on time-dependent anharmonic oscillator systems with decoherence. Anharmonic

oscillators can create important quantum effects while decoherence degrades those effects. This

topic can be challenging, rewarding, and relevant to quantum computing through this type of

system’s cat state creation.

In recent history, there has been considerable interest in quantum computers. Quantum comput-

ers are said to be essential for the future of physics simulation [1] as well as for the realization of

computational feats such as Shor‘s algorithm (an efficient way to factor primes) [2] and Grover‘s

algorithm (an efficient way to search through a list) [3]. Particularly, quantum computers show

promise in cryptography and optimization problems [4, 5]. But to create quantum computers, we

need qubits, which are a superposition between two quantum states. It has been shown that one path

to creating these qubits can be “cat states” which are quantum states that can be created by nonlinear

oscillator systems also known as anharmonic oscillator systems [6, 7]. Thus, studying the dynamics

of anharmonic oscillator systems may be one way to develop quantum computers. Unfortunately,

1



1.1 Introduction and Background 2

studying the dynamics of anharmonic oscillator systems is insufficient by itself to effectively prepare

the theoretical background for creating such quantum devices. When we actually attempt to build

these anharmonic oscillators, there will be an environment of chaos that will inevitably tamper

with, couple to, and adversely affect the dynamics of our anharmonic oscillator quantum device.

Such outside tampering is called decoherence and must be limited, controlled, and understood,

specifically for these time-dependent anharmonic oscillator systems. Thus, here I will propose to

study quantum decoherence in time-dependent anharmonic oscillator systems.

To gain a little more understanding of what types of anharmonic oscillators can be studied, we

must first look at linear or harmonic oscillators. Harmonic oscillators represent the quintessential

physics problem since the times of Hooke and Newton. They are applicable to many situations

and can approximate any system near a point of equilibrium up to first order in a Taylor series

approximation [8]. Some such systems are molecular vibrations [9], photons, or field modes in a

cavity [10]. Problems become more interesting when time dependence is added to such situations.

Examples of these kinds of oscillators include the parametric oscillator in which the frequency is

time-dependent and the Caldirola-Kanai system in which the mass is time-dependent. In the quantum

version, both of these oscillators result in squeezing, which is the sacrifice of quantum precision of

one variable for more precise knowledge of another [11]. Harmonic oscillators are well behaved

in that they are linear and in terms of the potential energy have a clean parabolic well, whereas

oscillators that are nonlinear and do not have a parabolic potential well are anharmonic oscillators.

Some specific instances of anharmonic oscillators are cavities with Kerr media and Morse potentials

for vibrating molecules [9]. We will also look at the previously mentioned harmonic systems, such

as parametric oscillators and Caldirola-Kanai [12–14], with some anharmonic effects added.

Decoherence, model-wise, is the coupling of a quantum system to an outside, probabilistically

ignored, environment. When decoherence occurs, the simple models that we make for quantum

devices tend to break down. The concept of decoherence, although relatively new, has been well
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studied for several situations. The dynamics of some systems containing decoherence have been

analytically solved, such as a simple harmonic oscillator coupled to a single harmonic oscillator

heat bath [15]. Another popular system which has been well studied is the Bateman model (a set

of oscillators coupled and constantly leaking energy to a second single oscillator heat bath) [12].

A special case of the Bateman model leads to the dynamics of the Caldirola-Kanai Hamiltonian

which have also been well studied [12, 13]. Decoherence for more complicated systems requires

some simplifying assumptions such as the Born approximation (that the environment and the

system are weakly coupled) and the Markov approximation (that the effect of the environment

has no “memory”) [16]. The Born-Markov Master equation is of particular note as it allows one

to solve for the dynamics of the system after having already taken into account the effects of the

environment [16]. Theorists have already analytically solved for the dynamics of the Born-Markov

Master equation for a simple harmonic oscillator coupled to a continuous spectrum of coupled

oscillators in the environment [17, 18]. Thus, much work has been done on decoherence for

harmonic oscillators, but it turns out little work has been done for decoherence with anharmonic

oscillators.

In conclusion, anharmonic oscillators create cat states that approximate qubits, which are

important for quantum computing. However, the effects of decoherence on an anharmonic oscillator

system have not been well studied theoretically. Thus, I propose to analyze the effects of decoherence

in several anharmonic oscillator models, as well as further the general progress in the field of limiting

and controlling decoherence.

1.2 Objectives

We will study quantum decoherence in anharmonic oscillator systems to monitor and understand

the way the systems evolve, then try to find ways to control the decoherence and evolution of such
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systems.

1.3 Methodology and Procedures

In order to get a broad understanding of anharmonic oscillator systems with decoherence, we will

study the anharmonic oscillator with different models, as well as some simpler models without

anharmonic terms and possibly without decoherence to gain practice, obtain insight, and compare to

the anharmonic oscillators with decoherence. First we will look at the Caldirola-Kanai Hamiltonian,

which is the classical time-dependent Hamiltonian for a harmonic oscillator with resistance made

quantum. Here we may study the effects of squeezing from this leaky system. It has dissipation, yet

no decoherence, and it does not have an anharmonic term. This case is a good practice problem

to analyze before studying more complex problems. We will then move on to a double oscillator

with one of the oscillators gauged and measured, and the other oscillator set as the environment and

probabilistically ignored, thus simulating decoherence. We will then add an anharmonic term to

the double oscillator, and solve for the new dynamics. We will also add anharmonic effects. After

working on these systems, we will attempt to couple an anharmonic oscillator to an environment

of a continuous spectrum of coupled oscillators. In a system as complex as this, we will take the

Born-Markov approximation referred to in the introductory section.

As an overview and general rule, each of the above-mentioned systems will be analyzed in the

following way. First, if the system has anharmonic effects, we will typically need to rearrange the

problem and make a small approximation to make the rest of the steps manageable. Second, we

will use the Wei-Norman method to solve for the time evolution operator. Third, we will find the

conditions for unitarity of the time evolution operator to simplify results and analysis. Fourth, if

there are decoherence effects, we will take the partial trace of the density matrix. Fifth, we will

analyze the system by solving for expectation values of relevant variables, finding the von Neumann
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entropy, and plotting the Husimi and Wigner distributions at different times. We will then attempt

to find patterns, features, and ways to control the dynamics of each system we study.

We will now begin with the first step. Anharmonic effects tend to complicate the methods

we will use to solve for and analyze the systems we want to study. Namely, this effect causes

the Hamiltonian to be made up of a set of time-independent operators that have no closure under

commutation which will make it impossible to apply the Wei-Norman method in the next step.

Here we look at an example of how we may get around this problem. Observe the Hamiltonian

H = A(t)a+A(t)∗ a† +
(
a†a
)2, where a and a† are the standard creation and annihilation oper-

ators with the commutation relation of a and a† defined by
[
a,a†] = 1, then

(
a†a
)2 would be

a term that adds anharmonic effects. The time-independent operators in this Hamiltonian are

{a,a†,
(
a†a
)2}. The closure with respect to commutation of the set of time-independent operators

in this is {a,a†,
(
a†a
)2
,1,a†a,a†2

,a2,a†2a,a†a2, . . .}, which is an infinite set. This type of system

makes it impossible to apply step 2, so we need to somehow reformat or make an approximation

that makes the operators in the Hamiltonian closed under commutation. One option is to replace the

term
(
a†a
)2 with its expectation value, but such an approximation would remove all anharmonic

effects from the dynamics, which is the very thing we want to study. Another method is to take the

interaction picture with respect to the anharmonic term, and then apply the mean field approximation

where necessary. Thus for this case, we assume the time evolution operator to be U =U0 UI, where

ih̄dU0
dt =

(
a†a
)2U0. Doing so and plugging this into the Schrödinger equation, we obtain a second

equation ih̄dUI
dt = HI UI, where HI = U−1

0
(
A(t) a+A(t)∗ a†)U0. U0 is easily solved for and is

U0 et
(a†a)

2

ih̄ , and simplifying HI we get HI = A(t) a e4t a†a−1
ih̄ +A(t)∗e−4t a†a−1

ih̄ a†. The term that

is now problematic in HI is e4t a†a−1
ih̄ , so we now take the mean field approximation by replacing

that term with its expectation value. Thus after doing so, HI = B(t)a+B(t)∗a† where B(t) is a

time-dependent scalar that is the expectation value of A(t)e4t a†a−1
ih̄ . Thus, now the interaction

Hamiltonian is made up of time-independent operators closed under commutation, which is compat-
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ible with step 2. Furthermore, we have preserved some anharmonic effects by allowing our time

evolution operator to be U =U0 UI.

After having set up a Hamiltonian that is made up of time-independent operators that are closed

under commutation, as our second step, we would apply the Wei-Norman method to solve for the

time evolution operator for the system. The Wei-Norman method solves for the time evolution

operators associated with Hamiltonians that are composed of time-independent operators that are

closed under commutation with time-dependent coefficients. Basically if the Hamiltonian is of

the form H = ∑
n
i=1 bi (t) Ai where the set {A1}n

i=1are time-independent operators closed under

commutation and the bi (t)’s are time-dependent scalar coefficients, then we can make the ansatz

U = ∏
n
i=1 egi(t) Ai , and substitute this expression into the Schrödinger equation. Using properties

of Lie algebras, we can then match coefficients to obtain a set of coupled first order nonlinear

differential equations to solve for the gi (t) given in the ansatz.

Whenever the Hamiltonian is Hermitian, the time evolution operator is unitary, which brings

us to the step 3. As per the previous step, we can assume U , the time evolution operator, is of

the form U = ∏
n
i=1 egi(t) Ai and that it is unitary. We can set U† = U−1 then find some relation-

ships between the gi (t) coefficients in the exponentials by using some representation theory. As

an example, suppose we were working with a time evolution operator U = eg1(t) a†
eg2(t) aeg3(t) 1 .

Using some Lie algebra properties, we find a faithful representation of the basis
{

a†,a,1
}

that

preserves the commutation relations. An appropriate representation is for this case given by


0 0 −1

0 0 0

0 0 0

 ,


0 0 0

0 0 0

0 1 0

 ,


0 1 0

0 0 0

0 0 0


 . Replacing the operators with this repre-

sentation in the equation U† = U−1 we match matrix indexes and algebraically eliminate re-

dundant equations to obtain the unitarity conditions for this U which are g2 (t) = −g1 (t)
∗ and

R [g3 (t)] = −1
2g1 (t)

∗g1 (t), where R means the real part. Thus, since g2 (t) and R [g3 (t)] are in

terms of g1 (t) our problem is reduced to finding g1 (t) and the imaginary part of g3 (t), significantly
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reducing the complexity of this system. Note that the finding of a faithful representation that

preserves commutation is not usually a trivial matter but an algorithm has been published to do

this [19].

After having found the unitarity conditions, the time evolution operator and thus the density

matrix become simpler and easier to work with, which brings us to step 4, taking a partial trace

of the density matrix. The density matrix is an operator that describes the state of a quantum

system. When you apply a bra and ket of a respective state here labeled s to the density matrix ρ , it

gives the probability P that the system is in that state: P[s] = ⟨s |ρ| s⟩. In decoherence problems,

usually the operators of the problem are a direct product of a system S that we care about and an

environmental system E that we wish to ignore. To ignore the environment, we take the partial

trace of the density matrix by applying all the possible states to the density matrix with respect

to the environment: ρS = ∑y∈E ⟨y |Eρ| y⟩E . Doing this type of partial averaging, we eliminate all

operators and variables with respect to the environment, and leave only operators and variables

with respect to the system that we care about. Such partial tracing usually makes the density matrix

become non-idempotent due to information loss.

For step 5, we will analyze the evolutions of these systems using analytic methods and visualiza-

tion through plots and animations [20]. Some analytic methods will be used to find the expectation

value of relevant terms such as the position, momentum, and energy number operators, as well as

find the von Neumann entropy of the system when applicable [21]. We will visualize the evolution

of the system by plotting the evolution of the Wigner and Husimi distribution functions [22, 23]. By

looking at how all these variables (and plots) act, we will then find ways to manipulate inputs so

that we may be able to control interesting phenomena of the system as it evolves in time.

Note that steps 2 through 5 will be automated and assisted via a Mathematica program that

I have developed over several years including a general program to find the nonlinear ordinary

differential equations mentioned in step 2, the unitarity conditions in step 3, some methods of partial
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tracing in step 4, a general method to find expectation values and some methods for finding the von

Neumann entropy as well as the Wigner and Husimi distribution functions in step 5.

1.4 Scope and Limitations of Research

This research will be mainly limited to the study of the evolution of several anharmonic oscillator

systems under various decoherence conditions, although some other models will be explored for

practice and to compare to the anharmonic case. Note that for systems with anharmonic effect, we

will take the interaction picture and a mean field approximation as described in the previous section

in order to make computation and analysis more manageable. Also note that although much of the

procedure in the previous section would likely work for a relativistic model, this research will not

include relativistic extensions of the mentioned models since the models that we are looking at are

not relativistic.

1.5 Significance of the Research

After studying and publishing these results, the scientific community will better know how to

interpret and control the evolution of anharmonic oscillators under decoherence. In particular, since

anharmonic systems lead to cat states which are approximately qubit states, this should hopefully

somewhere down the line help experimentalists and engineers further their goal to create a quantum

computer. In these models we are developing, we can compare how long it takes for decoherence

and dissipation to affect the system where relevant. In studying the list of systems, which have

varying complexity and degrees of freedom, we may address the question of how many degrees

of freedom are really necessary to model a system with decoherence. This study will also help in

furthering understanding and techniques to achieve quantum control in systems. During and after

this project, a Mathematica program which automates many of the steps listed in the Methodology
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and Procedures section has been available to assist REU students and undergraduate/graduate

students for BYU quantum physics research.

1.6 Dissertation Summary

In Chapter 2 we establish Lie algebraic methods for analyzing dynamic quantum systems. We

address some rules for coherent states and number states and discuss decoherence and partial

tracing. Chapters 3-5 are copies of papers published or currently in the submission process. In

Chapter 3 we look into a method to control a generalized time dependent Caldirola-Kanai system

using temporally compact fluctuation repetition. This paper was published [24]. In Chapter 4 we

look at an optomechanical system which contains implicit anharmonic effects in the Lie algebra

while maintaining the second order term in the laser-mirror coupling. The decoherence effects

lead to rotational smearing in phase space while the squeeze factor causes rotational smearing after

a squeezing effect. In Chapter 5 we also address the dynamic evolution and decoherence of an

anharmonic oscillator with infinite coupling using the Born-Markov master equation. The system is

compared to the Born-Markov master equation for the harmonic oscillator, the regular anharmonic

oscillator, and the dynamic double anharmonic oscillator. In Chapter 6 we summarize the results.



Chapter 2

Lie Algebraic Methods for Analyzing

Quantum Dynamics

Throughout this dissertation, there is a focus on using Lie algebraic properties to solve and analyze

quantum systems. Thus, we use concepts such as the Wei-Norman procedure, the Heisenberg and

interaction pictures, unitarity conditions, and faithful Lie algebraic representations often. For the

most part, most of these concepts will be taken for granted and unexplained in subsequent chapters.

Thus, this chapter explains these Lie algebraic methods.

2.1 Lie Algebra

A Lie algebra is a vector space that also has a binary operation of Lie brackets that respects

bilinearity, altenativity, the Jacobi identity, and anticommutivity. For an associative algebra, we can

create a Lie algebra by allowing the Lie brackets to be the commutator defined as [A,B] = AB−BA.

Since we mainly are dealing with linear operators, this is the type of Lie algebra that we work with

throughout the dissertation.

10
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2.2 Wei-Norman and the Adjoint Representation

The Wei-Norman factorization method [25] is a general procedure to solve first order linear

differential equations y′(t) = A(t)y(t), where A(t) is equal to a time dependent weighted sum of

time independent operators that form a finite Lie algebra basis. The solution using this method

y(t) is given as a product of a finite number of operator exponentials. When A(t) and y(t) are

associated with the Hamiltonian and time evolution operator respectively, this method can find the

time evolution operator for a Schrödinger equation.

Allow the Schrödinger equation to have the form ih̄U̇ = HU , with a time dependent Hamiltonian

of the form H/h̄ = ∑
n
i=1 Aibi, with {Ai}n

i=1 a time independent set of operators closed under

commutation, and bi a set of time dependent scalars and U the time evolution operator. Then, the

implementation of the Wei-Norman method is as follows.

1. We assume the Ansatz of time evolution operator to be of the form

U(t) = eg1A1eg2A2 . . .egnAn (2.1)

with gn undetermined coefficients.

2. We reorganize the Schrödinger equation to the form

dU
dt

U−1 =−iH/h̄ (2.2)

3. Using the chain rule, we find

dU
dt

U−1 =
n

∑
i=1

eg1A1eg2A2 . . .egiAiAig′i(t)e
−Aigi . . .e−A2g2e−A1g1 (2.3)

Then, using the formula eBAe−B = eB×A with the notation eB×A ≡ A+ [B,A]
1! + [B,[B,A]]

2! + . . .,

we have
dU
dt

U−1 =
n

∑
i=1

(
∏
j≤i

eg jA j×

)
Aig′i(t) =

n

∑
j=1

c jA j, (2.4)

where ci is the coefficient of Ai.



2.2 Wei-Norman and the Adjoint Representation 12

4. Finally, we match linearly independent coefficients and solve the set of linear differential

equations which are obtained by the equation −ib j = c j. Upon solving these differential

equations for the time dependent coefficients gi, we then have a well defined time evolution

operator that satisfies the Schrödinger equation.

Much of the process associated in the Wei-Norman method can be simplified by use of the

adjoint representation. The adjoint representation of an operator B is a matrix representing the

commutator action of operator B. We define the matrix cells of the adjoint representation B as

adj(B)i j given by the equation

[B,Ai] = ∑
j

adj(B)i jA j, (2.5)

where the set Ai are basis elements of the Lie algebra containing B and all other operators to which

we apply this representation.

We note that this representation is not necessarily faithful (linearly independent elements in

the basis may not be linearly independent in the representation), but it does preserve commutation

relations.

For the Wei-Norman factorization method, we use the commutation action properties of the

adjoint representation. Returning the form of dU
dt U−1, and assuming the ansatz in Eq. (2.3) we can
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rewrite the equation as

dU
dt

U−1 =
n

∑
i=1

(
A1 A2 . . . Ai

)(
eg1adj(A1)eg2adj(A2) . . .egiadj(Ai)

)


δi1 0 . . . 0

0 δi2 . . . 0

0 0 . . . ...

0 0 . . . δin





g′1(t)

g′2(t)
...

g′n(t)



=

(
A1 A2 . . . Ai

)
[g-Matrix]−1



g′1(t)

g′2(t)
...

g′n(t)


(2.6)

where

[g-Matrix]−1 =
n

∑
i=1

(
eg1adj(A1)eg2adj(A2) . . .egiadj(Ai)

)


δi1 0 . . . 0

0 δi2 . . . 0

0 0 . . . ...

0 0 . . . δin


(2.7)

or more compactly,

[g-Matrix]−1
j,k =

(
∏
i≤k

egiadj(Ai)

)
j,k

. (2.8)

Applying (2.6) to (2.2) with H/h̄ = ∑
n
i=1 Aibi, we find

(
A1 A2 . . . An

)
[g-Matrix]−1



g′1(t)

g′2(t)
...

g′n(t)


=−i

(
A1 A2 . . . An

)


b1(t)

b2(t)
...

bn(t)


.
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Or, removing the linearly independent operators Ai, we get

i[g-Matrix]−1



g′1(t)

g′2(t)
...

g′n(t)


=



b1(t)

b2(t)
...

bn(t)


. (2.9)

Note that Eq. (2.9) is interesting from a control theory perspective in that Eq. (2.9) suggests given a

set of gi(t) values for our time evolution operator, the time dependent parameters for the Hamiltonian

bi(t) are fully determined. Thus, given a time evolution operator with determined coefficients gi(t),

we can find the Hamiltonian bi(t) required to fulfill the particular time evolution operator path.

After a little more rearranging we find a more simplified form of the differential equation

i



g′1(t)

g′2(t)
...

g′n(t)


= [g-Matrix]



b1(t)

b2(t)
...

bn(t)


, (2.10)

where, given a Lie algebra basis {Ai}n
i=1, the bi are given by the Hamiltonian H = h̄∑

n
i=1 Aibi,

g-Matrix is given by Eq. (5.4), and the coefficients gi are for the time evolution operator of the form

U(t) = eg1A1eg2A2 . . .egnAn .

It is interesting to note that g-Matrix is based solely on the structure of the Lie algebra and

the order in which the ansatz basis is listed since Eq. (2.6) contains no direct reference to the

Hamiltonian. Another property we notice is at time t = 0, g-Matrix is the identity matrix which

confirms ig′i = bi at t = 0 .

As a side note to the reader, thus far I have not found a general equation for the g-Matrix directly.

This is unfortunate since anecdotally, I have found that the g-Matrix is typically simpler than its

inverse. I sense calculations would become more straightforward and we would gain more insights

into the dynamics of these Lie algebraic first order differential equations if a more direct method of
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calculating the g-Matrix were discovered, but for now, we find g-Matrix by taking the inverse of Eq.

(5.4).

To give an example of the Wei-Norman process we apply procedure to the driven harmonic

oscillator. This consists of a harmonic oscillator with a time dependent force applied. The driven

harmonic oscillator has a Hamiltonian H = p2

2m + ω2

2 mx2 + f (t)x where x and p are the position and

momentum operators. Allowing the dimensionless variable replacements P= p√
ωmh̄

, X =
√

ωm
h̄ , and

F(t) = 1
ω h̄

√
h̄

2ωm f (t) the Hamiltonian simplifies to H = h̄ω

2

(
P2 +X2)+ h̄ω

√
2F(t)X . Furthermore,

we make the substitutions to the rising and lowering operators a = X+iP√
2

, a† = X−iP√
2

, and a†a = n̂

making the Hamiltonian become

H = h̄ω

(
n̂+

I
2
+F(t)

(
a+a†

))
(2.11)

where I is the identity operator.

Because the basis set {a†,a, n̂, I} forms a Lie algebra with [a,a†] = I, [n̂,a†] = a†, [n̂,a] =−a

with I commuting with everything, we identify A1 = a†, A2 = a, A3 = n̂, and A4 = I; and set the

ansatz for the time evolution operator

U = eg1a†
eg2aeg3n̂eg4I. (2.12)

For this dissertation, the procedure for finding the g-Matrix is usually done with an algebraic

manipulation program such as Mathematica, but for this particular case, we will show the steps in

finding the g-Matrix. For future cases, we forgo this procedure, assuming it trivial. Using Eq. (2.5),
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we find the adjoint representation

adj(a†) =



0 0 −1 0

0 0 0 0

0 0 0 0

0 −1 0 0


,adj(a) =



0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0



adj(n̂) =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


,adj(I) =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



. (2.13)

Using Eq. (5.4), we find

[g-Matrix]−1 =

(
∏
i≤k

egiadj(Ai)

)
j,k

=



1 0 −g1 0

0 1 g2 0

0 0 1 0

0 −g1 −g1g2 1


(2.14)

Concluding, we take the inverse of Eq. (2.14) to obtain the g-Matrix

g-Matrix =



1 0 g1 0

0 1 −g2 0

0 0 1 0

0 g1 0 1


(2.15)

From the Hamiltonian in Eq. (2.11) we identify b1 =ωF(t), b2 =ωF(t), b3 =ω , and b4 =ω/2.

Thus, according to Eq. (5.3)

i



g′1

g′2

g′3

g′4


=



1 0 g1 0

0 1 −g2 0

0 0 1 0

0 g1 0 1





ωF(t)

ωF(t)

ω

ω/2


. (2.16)
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Solving for the gi’s using the set of first order differential equations in Eq. (2.16), we find

g1 =− iωe−itω
∫ t

0
eiτωF(τ)dτ

g2 =− iωeitω
∫ t

0
e−iτωF(τ)dτ

g3 =− iωt

g4 =− iωt
2

− iω
∫ t

0
F(τ)g1(τ)dτ

. (2.17)

With these coefficients solved for, we have now obtained the general dynamics of the time

evolution operator of a time-dependent forced harmonic oscillator.

2.3 Heisenberg Representation and Interaction Picture

The Heisenberg representation is a well used concept in quantum mechanics that can be assisted

using Lie algebraic techniques. Often it is necessary to calculate the Heisenberg representation of a

given operator. The notation for the Heisenberg representation of an operator p is typically given

as an operator as a specified function of time p(t), and is defined given a time evolution operator

U as p(t) =U† pU . The Heisenberg representation has many uses including a convenient step for

calculating the expectation value of an operator ⟨p⟩. This is done using the relationship

⟨p⟩= ⟨ψ(t)| p |ψ(t)⟩= ⟨ψ0|U† pU |ψ0⟩= ⟨ψ0| p(t) |ψ0⟩ . (2.18)

When the time evolution operator is of the form U = eg1A1eg2A2 . . .egnAn where, as in the previous

section, the set {Ai} forms a Lie algebra, we can often calculate the Heisenberg representation of

an operator p using the adjoint representation provided that the time evolution operator is unitary

(U† = U−1). If p is a member of the Lie algebra with p = ∑
n
i=1 diAi, where di’s are scalars, the
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Heisenberg representation of p can be written as

p(t) =U† pU =U−1 pU =
n

∑
i=0

U−1AiU ×di

= (A1,A2, . . . ,An)eg1adj(A1)eg2adj(A2) . . .egnadj(An)



d1

d2

...

dn


(2.19)

Should one run into a situation where an operator p(B1,B2, . . . ,Bn) is a function of a set of

elements in the Lie algebra {Bi}, but p itself is not in the Lie algebra, we can still use this method

by noting,

p(t) =U† p(B1,B2 . . .Bn)U = p(U−1B1U,U−1B2U . . .U−1BnU)

= p(B1(t),B2(t) . . .Bn(t)).
(2.20)

Thus, after calculating the Heisenberg representation for the basis elements, it is simple to calculate

p by replacing the operator elements that are in the Lie algebra with their respective Heisenberg

representation.

As an example of this technique, we find the Heisenberg representations for the dimensionless

position X = a+a†
√

2
and position squared X2 = n̂+ I

2 +
a2+a†2

2 for a time evolution operator of the

form U = eg1a†
eg2aeg3n̂eg4I. This is the time evolution operator of the driven harmonic oscillator

given in Section 2.2. From Eq. (2.19), we calculate the Heisenberg representation of X to be

X(t) = eg3 a+e−g3a†+(g1−g2)I√
2

. Although X2 is not a member of the Lie algebra associated with

Eq. (2.11), X is a member. Thus, we can still calculate the Heisenberg representation using

Eq. (2.20) by noting (X2)(t) = (X(t))2.

Another concept often used in quantum dynamics is the interaction picture. The interaction

picture is a method of splitting a time evolution operator, U , with a Schrödinger equation idU
dt =

(H0 +∆H)U , into two parts by allowing U = U0UI, where idUI
dt = HIUI, idU0

dt = H0U0, and HI =
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U0 (∆H)U†
0 . Assuming U0 = eg1A1eg2A2

. . . egnAn where the set of Ai forms a Lie algebra, we can

often calculate HI by finding U0 piU
†
0 for the operators within ∆H. This is effectively taking the

reverse-Heisenberg, RevHeis of the elements pi. Using a similar method to our calculation for the

Heisenberg, but in reverse, we find

RevHeis(p) =U0 pU†
0 =U pU−1 =

n

∑
i=0

diUAiU−1

= (A1,A2, . . . ,An)e−gnadj(An) . . .e−g2adj(A2)e−g1adj(A1)



d1

d2

...

dn


.

(2.21)

Once again, the reverse Heisenberg can be further generalized to operators p(B1,B2 . . .Bn)

where p is a function of operators Bi which are part of the Lie algebra, but p is not part of the Lie

algebra by the property:

RevHeis(p) =U p(B1,B2 . . .Bn)U† = p(UB1U−1,UB2U−1 . . .UBnU−1)

= p(RevHeis(B1),RevHeis(B2) . . .RevHeis(Bn))

(2.22)

Thus, for the cases where the time evolution operator is of the form in Eq. (2.1), operators

and Hamiltonians that are functions of operators within the associated Lie algebra can easily be

calculated using the adjoint representation. For this dissertation, this is usually done using a

computer program.

2.4 Faithful Representation of Time Evolution Operator and

Unitarity Conditions

In the past few sections, we have discussed the usefulness of the adjoint representation of a Lie

algebra for calculating the time evolution operator using the Wei-Norman method, as well as for
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working with the Heisenberg and interaction pictures. We will now discuss the uses of faithful

representations in quantum dynamics for time evolution operators of the form Eq. (2.1). We note

that at times, the adjoint representation is faithful when it is semi-simple; that is when the set of all

elements that commute with everything (which is called the center) is limited to 0. Otherwise, as

our experience has shown, the techniques described in this section will give incomplete information

when using the adjoint representation. Also observe that in making these transformations, we are

sacrificing information on how the operators interact with bras and kets, while gaining insight into

relationships between the operator exponential coefficients. This sacrifice is easily recovered as

more often than not, one can find a relationship to return to the usual operator space after performing

the matrix calculations in the faithful representation.

A faithful representation of a Lie algebra A is a mapping from A to a set of matrices that preserve

the commutation relations and is injective. With such a mapping, it is easy to limit the basis of the

matrix set, making the mapping bijective.

Noting from the Baker-Campbell-Hausdorff formula:

eX eY = eX+Y+ 1
2 [X ,Y ]+ 1

12 [X ,[X ,Y ]]− 1
12 [Y,[X ,Y ]]+..., (2.23)

we see that combining and reordering linear exponential operators is determined through the

commutation rules of those operators. This leads to the following useful theorem.

Theorem 2.4.1. Allow eA1eA2 . . .eAn = eB1eB2 . . .eBm where Ai and Bi are linear operators and allow

R to be a Lie algebra representation that encompasses a Lie algebra containing {Ai} and {Bi}.

Then, eR(A1)eR(A2) . . .eR(An) = eR(B1)eR(B2) . . .eR(Bm).

Proof. Allow

eA1eA2 . . .eAn = eB1eB2 . . .eBm (2.24)

where there is a faithful representation R that encompasses a Lie algebra containing {Ai} and

{Bi}. Then, by the Baker-Campbell-Hausdorff formula Eq. (2.23), we know that B j is a function of
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commutation relation combinations of the set {Ai}. Call this function f j(A1,A2, . . . ,An)≡ f j({Ai}).

Then, B j = f j({Ai}). Applying our representation, we note R(B j) = R( f j({Ai})) = f j({R(Ai)})

since R is a representation and preserves commutation. Furthermore, using the Baker-Campbell-

Hausdorff formula again, we can assert that:

eR(A1)eR(A2) . . .eR(An) = e f1({R(Ai)})e f2({R(Ai)}) . . .e f j({R(Ai)}) (2.25)

since the same commutation combinations governed by the Baker-Campbell-Hausdorff formula for

Eq. (2.24) would be required for their representations since R preserves the commutation relations.

Since we have already established that R(B j) = f j({R(Ai)}),

eR(A1)eR(A2) . . .eR(An) = eR(B1)eR(B2) . . .eR(Bm). (2.26)

Thus, when replacing the exponential terms by their representation, we do not change the

validity of the equation. This is true even when the representation is not faithful.

If we assume the form of the time evolution operator to be U(t) = eg1A1eg2A2 . . .egnAn and allow

the representation R to be faithful, it is unlikely that any of the {gi} terms fully disappear from the

matrix R(U(t)) = eg1R(A1)eg2R(A2) . . .egnR(An). Thus, after examining the cells, one can usually find

a method to convert from R(U(t)) to U(t) using the relationships between the cells and the {gi}

coefficients.

For an example, we look again to the driven harmonic oscillator. Previously, we gave the adjoint

representation in Eq. (2.13). You may have noticed that the adjoint representation mapped the
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identity I to zero, making that representation not faithful. Here we give a faithful representation

R(a†) =



0 0 −1 0

0 0 0 0

0 0 0 0

0 0 0 0


,R(a) =



0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 0



R(n̂) =



0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 1


,R(I) =



0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0



. (2.27)

Using these to calculate R(U(t)) where R(U(t)) = eg1R(a†)eg2R(a)eg3R(n̂)eg4R(I), we find the explicit

form of the time evolution operator under this representation

R(U(t)) =



1 −g1g2 +g4 −e−g3g1 eg3g2

0 1 0 0

0 g2 e−g3 0

0 0 0 eg3


. (2.28)

Now, we can find a relationship between the gi functions and the R(U(t)) j,k matrix cells by

looking at the cells in the matrix R(U(t)) and using simple algebraic manipulation

g1 =−R(U(t))1,3R(U(t))4,4,

g2 =R(U(t))3,2,

eg3 =R(U(t))4,4,

g4 =−R(U(t))1,3R(U(t))1,4 +R(U(t))1,2.

. (2.29)

With these relations, we can map from our representation back to the time evolution operator U(t).

We now find a composition rule of time evolution operators for this system. Allow Uh =
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eh1a†
eh2aeh3n̂eh4I, and Uk = ek1a†

ek2aek3n̂ek4I. Then, using our representation, we find

R(UhUk) =



1 h4 − k1k2 −h1(h2 + e−h3k2)+ k4 e−k3
(
−e−h3h1 − k1

)
ek3
(
eh3h2 + k2

)
0 1 0 0

0 h2 + e−h3k2 e−h3k3 0

0 0 0 eh3+k3


.

(2.30)

Applying the relation in Eq. (2.29), we find the time evolution operator composition rules are:

(
h1,h2,eh3,h4

)(
k1,k2,ek3,k4

)
=
(

h1 + eh3k1,h2 + e−h3k2,eh3+k3 ,eh3h2k1 +h4 + k4

)
. (2.31)

Faithful representations can be used to find conditions of unitarity. It is often simpler to analyze

systems when we apply conditions of unitarity to our calculations. A time evolution operator is

unitary when its conjugate transpose equals its inverse, i.e. U−1 =U†. This is always the case for

the time evolution operator when the Hamiltonian is Hermitian. Finding the unitarity conditions

is easily done by taking a representation and applying it to the equation U−1 =U†, or U =U†−1.

Assuming again that the time evolution operator is of the form U = eg1A1eg2A2 . . .egnAn , and assuming

the Lie algebra’s faithful representation of R, the unitarity condition matrix equation takes the more

explicit form

egn
∗R(An

†) . . .eg2
∗R(A2

†)eg1
∗R(A1

†) = e−gnR(An) . . .e−g2R(A2)e−g1R(A1), (2.32)

corresponding to the equation U−1 =U†, or, equivalently, the unitarity conditions can be given by

R(U) = e−g1
∗R(A1

†)e−g∗2R(A2
†) . . .e−g∗nR(An

†) (2.33)

corresponding to the equation U = U†−1. Note that this typically eliminates half of the degrees

of freedom in the time evolution operator, simplifying calculation and enlightening us on the

limitations of the time evolution operator.
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Applying this to the example of the driven harmonic oscillator, using Eq. (2.27) as our represen-

tation, and using Eq. (2.33), we calculate that

R(U(t)) = R(U†−1
) =



1 −g4
∗ eg3

∗
g2

∗ −e−g3
∗
g1

∗

0 1 0 0

0 −g1
∗ eg3

∗
0

0 0 0 e−g3∗


. (2.34)

Applying Eq. (2.29), we obtain the unitarity conditions

g1 =−g2
∗,g2 =−g1

∗,eg3 = e−g3
∗
,g4 = g1

∗g2
∗−g4

∗, (2.35)

which, simplified, are the unitarity conditions

g2 =−g1
∗,ℜ(g3) = 0,ℜ(g4) =−|g1|2

2
. (2.36)

Note that as expected, the unitarity conditions have eliminated 4 independent variables, leaving the

time evolution of the system to depend only on the functions g1, ℑ(g3), and ℑ(g4).

It is also worth noting that the g-Matrix in Eq. (5.3) for a time evolution operator U is only

dependent on the commutation table for the Lie algebra, the order that those operator exponentials

are multiplied in U , and the linear independence of the operators. Since all these properties are

preserved in R(U), it is necessary that R(U) satisfies the same Schrödinger equation, replacing the

Hamiltonian H with R(H) and with the same g-Matrix. Note that the representation R(H) may not

necessarily be Hermitian. In those cases, the representation R(U) will not be unitary.

Finding a faithful representation for a given Lie algebra can be quite a complicated and lengthy

process, but an algorithm for finding a faithful representation is given in [19]. The algorithm involves

splitting the Lie algebra into its Levi subalgebra part (which is semi-simple) and its solvable radical

part with the solvable radical split into its elementary sequences. Then it involves some specific

assignments for the nilpotent part, some methods of extending the representations for each solvable
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step in the elementary sequence (via choosing elements beyond the Lie algebra and gauging their

actions on the added elements) until the representation is faithful for the solvable radical part, then

doing a direct product with the respective adjoint representations for each element, which is faithful

for the Levi subalgebra part. After creating a Mathematica program to fulfill the algorithm and find

faithful representations, the process becomes automatic. Thus, for the future, we omit the details of

such calculations.

2.5 Rules for Coherent States, Number States, Husimi and

Wigner Functions

When dealing with time evolution operators, especially those given in this dissertation, we typically

deal with some combinations of operators in exponentials. In order to obtain the dynamics of

a specific state evolving in time, it is necessary to apply these states to such exponentials. In

this section, we give the rules for applying exponentials of operators to coherent and number

states. Such rules are used throughout this research. Furthermore, we give a small summary of the

properties and uses of Husimi and Wigner functions which are necessary to visualize the evolution

of quantum systems. We also address treatments of decoherence and introduce the Born-Markov

Master equation which assists in modeling systems with infinite couplings.

2.5.1 Number States and Coherent States

Number states are the eigenvalues of the number operator n̂ = a†a and are associated with the

Hamiltonian of the simple harmonic oscillator H = n̂+ 1
2 . Number states are orthonormal and
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complete. Some properties of the number state are

a |n⟩= |n−1⟩
√

n

a† |n⟩= |n+1⟩
√

n+1

n̂ |n⟩= |n+1⟩n

eγ n̂ |n⟩= |n⟩eγn

eγam
|n⟩=

n

∑
j=0

|n−m j⟩ γ j

j!

√
n!

(n−m j)!
.

(2.37)

Coherent states are eigenvalues of the lowering operator a. They are also the states of minimal

uncertainty with spreads in dimensionless position and canonical momentum equal to each other.

The coherent state |α⟩ written in a number state basis is

|α⟩= e−
|α|2

2

∞

∑
n=0

αn
√

n!
|n⟩ . (2.38)

These states are overcomplete and follow the property

∫
|α⟩⟨α| dα

2

π
= I (2.39)

where I is the identity operator.

Some useful properties for the coherent states are

a |α⟩= |α⟩α

eγa |α⟩= |α⟩eγα

eγ n̂ |α⟩= |αeγ⟩e
1
2(|αeγ |2−|α|2)

eγa†
|α⟩= |α + γ⟩e

|γ|2
2 +ℜ(γα∗)

⟨β |α⟩= e−
1
2(|α|2+|β |2−2αβ ∗)

⟨β |eγ n̂2
|α⟩= e−

1
2(|α|2+|β |2)

∞

∑
j=0

(αβ ∗) j

j!
eγ j2.

(2.40)
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2.5.2 Husimi Function

The Husimi function Q(z) is the normalized projection of a coherent state |z⟩ on an evolved state. It

is given by

Q(z) =
1
π
⟨z|ρ |z⟩ . (2.41)

Looking at this equation, we see that Q(z) gives a transition probability distribution of measuring the

coherent state |z⟩. Because of the nature of coherent states, z = ⟨z| a+a†+a−a†

2 |z⟩=
√

2⟨x⟩+ i
√

2⟨p⟩

where ⟨x⟩= ⟨a+a†
√

2
⟩ and ⟨p⟩= ⟨a−a†

i
√

2
⟩ are the average position and momentum for the coherent state

|z⟩. Thus, Q(z) gives a plot of the projected coherent state |z⟩ with respect to the average positions

and momentums of |z⟩.

2.5.3 Wigner Function

The Wigner function is the quantum equivalent to a phase diagram distribution, and has the properties∫
∞

−∞

W (X ,P)dP = ⟨X |ρ |X⟩∫
∞

−∞

W (X ,P)dX = ⟨P|ρ |P⟩
(2.42)

for a given density matrix ρ . The Wigner function is related to the Husimi function via an inverted

Gaussian filter:

W (X ,P) =
∫

Q(z)

(
1
π

e2
∣∣∣z−X+iP√

2

∣∣∣2)dz2. (2.43)

This is easily calculated when Q(z) is a Gaussian using the Gaussian complex integral property:

∫
eA|z|2+Bz2+Cz∗2+Dz+Ez∗+Fdz2 =

e
CD2+A2F−4BCF−ADE+BE2

A2−4BC π√
A2 −4BC

. (2.44)

2.5.4 Decoherence and Partial Tracing

Quantum decoherence is the loss of quantum coherence in a system. When a quantum system is

coherent, the state of the system can be described by a wave function or sum of wave functions
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∑ci |i⟩. Quantum decoherence occurs when information is lost due to classical uncertainty. When

this occurs, the state of the system is described by a mixed state which is a sum of pure state density

matrices ∑ pi |i⟩⟨i| where pi are the classical probability weights for the state |i⟩ due to classical

uncertainty. Often, decoherence effects are caused by open systems.

Closed systems are when all is known about a quantum system. In closed systems, we assume

that its Hamiltonian is Hermitian, all variables in the system are known, and that the initial state

for evolution is also known. An open system is one where the system we are analyzing is linked to

another system called the environment within which, we are ignorant of the wave function. This

adds classical uncertainty to the situation, causing quantum decoherence and the need to describe

the system in terms of a density matrix.

Oftentimes, decoherence can be modeled by allowing the Hamiltonian to be in the form

H = HS +HE +HSE where HS is the Hamiltonian for the system, HE is the Hamiltonian for the

environment, and HSE is the part of the Hamiltonian coupling the two. After solving for the

evolution of the system for a density matrix operator ρ one can filter out information of the state in

the environment via partial tracing. One can take the partial trace via infinite sums of number state

projections associated with the environment via the equation

ρs =
∞

∑
n
⟨n|ρ |n⟩. (2.45)

where |n⟩ are number states associated with the environment. One can also take the partial trace

through an integration of coherent state projections associated with the environment through the

equation

ρs =
∫

⟨β |ρ |β ⟩ dβ 2

π
. (2.46)

where |β ⟩ are coherent states associated with the environment.



Chapter 3

Quantum Manipulation Through Finite

Fluctuations for a Generalized Parametric

Oscillator Using a Lie Algebra

Representation

3.1 Abstract

In this paper, we focus on the effects of temporally compact fluctuations on the parameters m(t)

(mass), ω(t) (frequency), and γ(t) (spatial dilation coefficient), for the generalized Caldirola-Kanai

Hamiltonian. We propose an algorithm such that given control over the timing of repeated compact

fluctuations, one can produce any time-evolution associated with complete parameter control of the

generalized Caldirola-Kanai Hamiltonian. Computational simplicity is achieved in this endeavor

using a faithful representation of the Hamiltonian’s associated Lie algebra. Further simplification

occurs as a result of using unitarity conditions for the time-evolution operator. We apply our analysis

29



3.2 Introduction 30

to the effects of Dirac delta fluctuations in mass and frequency, both separately and simultaneously.

We also numerically demonstrate control of the generalized Caldirola-Kanai system for the case

of timed Gaussian fluctuations in the mass term. Furthermore, we use the faithful Lie algebra

representation to show that any unitary evolution of this generalized Caldirola-Kanai system is given

by the squeeze operator multiplied with a phase factor. We also show that the classical evolution

of a probabilistic Gaussian phase space distribution and the evolution of the Wigner function of a

coherent state in the quantum Caldirola-Kanai system are identical.

3.2 Introduction

Quantum control is the ability to manipulate variables in the Hamiltonian in order to achieve desired

quantum states [26]. It applies in fields such as molecular dynamics [26–29], quantum gate and

operations [30–32], and assessments of system controllability [33]. Here, we treat the issue of

time-evolutionary control for a system with time-dependent mass, frequency, and spatial dilation

coefficient for a parametric harmonic oscillator. The goal of this paper is to set up a method to

control the time-evolution operator for the generalized Caldirola-Kanai system using well timed,

but arbitrary finite pulses in these parameters. These pulses can be of any shape so far as they are

repeatable.

The harmonic oscillator model is applicable to many situations and can approximate any

system near a point of equilibrium up to first order in a Taylor series approximation [34]. Such

harmonic oscillator systems include molecular vibrations [9], photons, and field modes in a cavity

[10]. Harmonic oscillator models become more useful when time-dependence is included in their

parameters. Examples of time-dependent oscillators include the parametric oscillator, in which

the frequency is time-dependent ω(t), and the generalized Caldirola-Kanai system, in which the

mass is time-dependent m(t). The dynamics of parametric oscillators [35–38] and Caldirola-
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Kanai [12–14, 39] have been studied for many cases and have confirmed the resulting squeezing

effects that appear in these systems [11]. Such systems are applicable in optics [10] since variations

in mass and frequency can be interpreted as variations in permittivity and permeability of space for

a single mode cavity.

In this paper, we will deal with the harmonic oscillator with variations in frequency ω(t) and

mass m(t), as well as a spatial dilation coefficient γ(t). The effect of this additional dilation term has

been studied for the case in which γ(t) preserves the structure of the Caldirola-Kanai oscillator in

position space [40]. Here we deal with the general compact γ(t) case. A more general review using

the xp space propagator is given in [41]. Some numerical analysis of the Caldirola-Kanai system

was done using fractional derivatives in [42, 43]. A semi-classical interpretation of a Wei-Norman

factorization for the generalized Caldirola-Kanai system is given in [44]. The explicit form of the

generalized Caldirola-Kanai Hamiltonian, HGCK(t), is given as

HGCK =
1

2m(t)
p2 +

1
2

m(t)ω(t)2x2 +ω0γ(t)(xp+ px). (3.1)

A further generalization of this Hamiltonian is given by adding a g 1
x2 term and has also been

studied [45, 46] with g(t)m(t) = constant.

In this paper, we focus on the effects of temporally compact fluctuations of the parameters m(t),

ω(t), and γ(t) on the time-evolution operator. We give an algorithm with which, given control

over the timing to repeat a given temporally compact fluctuation, one can produce any evolution

associated with general control over the parameters in the Hamiltonian in Eq. (3.1). In particular, any

squeezed state with nonzero expectation value for position and momentum can evolve to any other

squeeze state of nonzero position and momentum through these temporally compact fluctuations in

the given parameters.

Several papers have addressed methods of quantum control systems similar to this [47–55]. Most

of these use matrices associated with solving a differential equation for a function in the propagator.

Uniquely here, we directly start with a faithful representation of a Lie algebra associated with the
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time-evolution operator to perform the dynamic calculations and Lie group multiplications. This

gives a direct connection to describe time-evolution operator variations given dynamic variables.

Furthermore, all the calculations are done in terms of gi coefficients of the time-evolution operator

U(t) taking into account the unitarity conditions, which will be shown as

U(t) = eg1
a†2

2 e
g1

∗

−1+|g1|2
a2
2

e(ln[1−|g1|2]+iγ3) 1
2(a†a+ 1

2). (3.2)

This expression gives a different perspective to the propagator and often leads to simpler equations.

It also gives more dynamic flexibility than assigning specific Hamiltonian time-dependencies. Thus,

by using the faithful Lie algebra representation, we develop a general analysis for general parameter

variations in the Hamiltonian to control the time-evolution operator which can apply to any initial

ket. After this general analysis concludes in Section 3.8, we apply our results to two specific pulse

variations in Sections 3.9 and 3.10.

As far as the authors have seen, the time-evolution operator has yet to be manipulated in this

direct way using Lie algebra faithful representations. Furthermore, such an analysis can be obtained

for any system with a time-dependent Hamiltonian composed of a Lie algebra basis using the

techniques given in this paper. An alternative method for analyzing this problem is through Lewis-

Riesenfeld invariants [36–38, 48, 56], though the method is more focused on the evolution of the

eigenvalue basis for the Lewis-Riesenfeld invariants, and less directly focused on the time-evolution

operator.

This paper is organized as follows. In Section 3.3 we give a description of the classical dynamics

for the Caldirola-Kanai Hamiltonian. In Section 3.4 we re-express the quantum Hamiltonian in

terms of raising and lowering operators. In Section 3.5 we introduce a representation for the time-

evolution operator, find the conditions for unitarity, and prove that any unitary evolution is given by

a squeeze operator with a phase factor. In Section 3.6 we discuss the effects of the time-evolution

on an initial coherent state. In Section 3.7 we discuss the connection between classical evolution of

a probabilistic phase space distribution and quantum evolution of the Wigner function. In Section
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3.8 we find ways to fully control the system using temporally compact fluctuations combined with

waiting periods. In Section 3.9 we analytically explore the effects of Dirac delta fluctuations in mass

and frequency. In Section 3.10 we numerically demonstrate control of this system using Gaussian

fluctuations which are approximately temporally compact.

3.3 Classical Caldirola-Kanai Dynamics

We start by exploring the dynamics of the Caldirola-Kanai Hamiltonian in the classical, i.e., non-

quantum case. Early on, the classical Caldirola-Kanai Hamiltonian was used to model the motion

of damped harmonic oscillators [57]. The form of the classical Hamiltonian is

Hcl =
1

2m0
p2e−

∫ t
0 ξ (t ′)dt ′ +

1
2

m0ω
2x2e

∫ t
0 ξ (t ′)dt ′, (3.3)

where x and p are the position and canonical momentum respectively, and traditionally ξ (t ′) is

constant [57]. Using Hamilton’s equations leads to ẋ = p
m(t) , ṗ =−ω2xm(t) where m(t) = m0eξ (t).

Decoupling, we obtain the equation of motion for the damped harmonic oscillator:

0 = ẍ+2ω0ξ (t)ẋ+ω
2x. (3.4)

Thus, ξ (t) can be interpreted as a time-dependent oscillator decay term.

Allowing ξ (t) to be constant, and assuming the mass to be m0, we see in the (x,v) phase diagram

where v = ẋ is the velocity, given in Fig. (3.1), an energy decay consistent with a typical damped

harmonic oscillator.

Alternatively, we could allow ξ to be time-dependent, and reinterpret this Hamiltonian as an

oscillator with a time-dependent mass:

Hcl =
1

2m(t)
p2 +

1
2

m(t)ω2x2. (3.5)

As was done earlier, we allow m(t) = m0eξ0t , but the resulting (x, p) phase diagram where p

is the momentum, under this new interpretation is much different. The contour plot with initial
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Figure 3.1 Phase diagram (x,v) of a single trajectory of a damped oscillator
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conditions of a Gaussian probability distribution in phase space evolves, using Hamilton’s equations,

as given in Fig. (3.2). Note that the distribution in Fig. (3.2) shows a classical “squeezing” in the

phase distribution in that the distribution, is forming into the shape of an ellipse, a feature that is

similar to the quantum case shown later.

In this paper, we focus on temporary changes, i.e., temporally compact variations in the

Hamiltonian. One could, for example, allow a mass to have the temporal Gaussian variation about

t = t0 : m(t) = m0

(
1+Ce−ε(t−t0)

2
)

. Fig. (3.3) gives a series of contour plots in phase space

describing the evolution of an initial Gaussian probability distribution with this mass variation.

Note that this classical analysis approximately mirrors what happens with the quantum case as

shown later. As we see, the spread of the system is affected by variations in the mass term. Further

experimentation shows that the magnitude of C has an effect on which direction the distribution

spreads and that similar effects happen when C is negative. We also see that such variation effects

are not reversed by simply returning the mass to its initial value.

3.4 Dynamic Generalized Quantum Caldirola-Kanai

We now consider a more general Caldirola-Kanai quantum Hamiltonian. To increase generality,

for the sake of more flexibility, we allow the frequency to be time-dependent. Since our analysis

involves Lie algebra manipulation, we also add a direct squeezing control term (xp+ px) with no

added complication to the Lie algebra of this analysis, allowing the Hamiltonian to extend to all

Hermitian operators spanned by the Lie algebra basis
{

p2,x2,(xp+ px)
}

. Thus, the Hamiltonian

becomes

HGCK =
1

2m(t)
p2 +

1
2

m(t)ω(t)2x2 +ω0γ(t)(xp+ px). (3.6)

Eq. (3.6) is a generalized Hermitian Hamiltonian preserving the Lie algebraic structure of the
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Figure 3.2 Evolving phase diagram (x, p) of oscillator with an initial Gaussian distribution
in phase space and exponentially increasing mass with time. The distribution performs
classical “squeezing”.
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Figure 3.3 Evolving phase diagram (x, p) of an oscillator with an initial Gaussian distri-
bution in phase space starting centered at (x, p) = (−3,0) and a Gaussian mass variation
centered at a time t0, where t0 corresponds to the distribution centered at (x, p)≈ (−1,5).
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original Caldirola-Kanai Hamiltonian. For convenience of analysis later, we will set m(0) = m0,

ω (0) = ω0, and allow for a x− p commutation preserving substitution such that γ (0) = 0. The

Caldirola-Kanai system has been well studied in the x2 and p2 operator basis with Lie Algebra basis

{ x2

2h̄ ,
p2

2h̄ ,
1
2 + i xp

h̄ }. However, for our convenience and simpler solutions, we convert this Hamiltonian

to a basis of raising and lowering operators:

a =
X + iP√

2
,a† =

X − iP√
2

, (3.7)

where X =
√

m0ω0
h̄ x and P = p√

ω0m0h̄ are dimensionless variables for position and momentum.

Defining M (t) = m(t)
m0

and Ω(t) = ω(t)
ω0

and introducing the variables

A(t) = ω0
−1+M (t)2

Ω(t)2

2M (t)
+ iω0γ (t) (3.8)

and

B(t) = ω0
1+M (t)2

Ω(t)2

2M (t)
, (3.9)

we reduce the Hamiltonian to the form

HGCK = h̄

(
A(t)

a†2

2
+A(t)∗

a2

2
+B(t)

1
2

(
a†a+

1
2

))
, (3.10)

where the associated Lie algebra is su(1,1) with generator basis {a†2

2 , a2

2 ,
1
2

(
a†a+ 1

2

)
} and the

commutation relations [
a†2

2
,
a2

2

]
=−2

(
1
2

(
a†a+

1
2

))
,[

a†2

2
,
1
2

(
a†a+

1
2

)]
=−a†2

2
,[

a2

2
,
1
2

(
a†a+

1
2

)]
=

a2

2
.

(3.11)

We note that at t = 0, this Hamiltonian reduces to the time-independent simple harmonic

oscillator.
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3.5 Structure of the Time-Evolution Operator

In order to solve the Schrödinger equation, we assume the evolution operator U can be factorized as

a product of exponentials of all the generators of the associated Lie algebra [25]

U = eg1
a†2

2 eg2
a2
2 eg3

1
2 (a

†a+ 1
2 ), (3.12)

where the time-dependent complex coefficients g1(t), g2(t), and g3(t) are time-dependent regular

functions to be determined.

Substituting this form of the evolution operator into its own evolution equation

ih̄
∂U
∂ t

U−1 = H, (3.13)

and using the property [21, p. 39]

eFGe−F = G+
[F,G]

1!
+

[F, [F,G]]

2!
+ . . . , (3.14)

and matching linearly independent operator coefficients, we obtain the following set of nonlinear

ordinary differential equations (ODEs):

iġ1 = A(t)+B(t)g1 +A(t)∗g2
1

iġ2 = A(t)∗−B(t)g2 −2A(t)g1g2

iġ3 = B(t)+2A(t)∗g1


. (3.15)

With these nonlinear ODEs, we can solve for the time-evolution of this system. Note the lack

of analytic solution to these differential equations for general A(t) and B(t) means the dynamics

need to be solved numerically for most cases. Nonetheless, we can gain more insight by studying

the system’s Lie algebraic structure. In order to simplify algebraic calculations, we will use the

following faithful representation of the Lie algebra, which is similar to the set of Pauli matrices, to
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fulfill the commutation relations in Eq. (3.11):

R

(
a†2

2

)
=

 0 i

0 0


R
(

a2

2

)
=

 0 0

i 0


R
(

1
2

(
a†a+

1
2

))
=

1
2

 1 0

0 −1

 .

(3.16)

As a consequence of the Baker-Campbell-Hausdorff theorem [58], which is

eAeB = eA+B+ 1
2 [A,B]+

1
12 [A,[A,B]]−

1
12 [B,[A,B]]+..., (3.17)

equalities of products of exponentials of operators are preserved under a faithful representation

since such exponential combinations only rely on the commutation relations of the operators. Thus,

applying the representation Eq. (3.16) to the unitarity equation U−1 =U†, and matching matrix

elements, we obtain the following conditions for unitarity:

g2 =
g1

∗

−1+ |g1|2

ℜ(g3) = ln
(

1−|g1|2
)
 , (3.18)

where ℜ(g3) is the real part of g3, thereby reducing the independent variables from six to three. We

note that, although the classical Caldirola-Kanai system is dissipative, we still maintain unitarity in

the time-evolution operator for the quantum case since the Hamiltonian is Hermitian.

Looking at Eq. (3.18), we see this system is completely determined by the coefficients g1 and

γ3 ≡ ℑ(g3), where ℑ(g3) is the imaginary part of g3. With this in mind, the time-evolution operator

can be rewritten as

U = eg1
a†2

2 e
g1

∗

−1+|g1|2
a2
2

e(ln[1−|g1|2]+iγ3) 1
2(a†a+ 1

2). (3.19)
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Note that because of the structure of the time-evolution operator, the effect of the coefficient

γ3 is indistinguishable from γ3(mod 4π). Thus, throughout this paper, we will often portray a

time-evolution as a function of g1 and ei γ3
2 .

We now examine the representation for U under the unitarity conditions given in Eq. (3.19).

Applying the representation Eq. (3.16) to Eq. (3.19), we find

R(U) =
1√

1−|g1|2

 ei γ3
2 ig1e−i γ3

2

−ig∗1ei γ3
2 e−i γ3

2

 . (3.20)

By looking at R(U) in Eq. (3.20), we make the following observations:

ei γ3
2 =

R(U)1,1∣∣∣R(U)1,1

∣∣∣
g1 =−i

R(U)1,2

R(U)2,2

 . (3.21)

Using these relations, we can map from a representation back to a time-evolution operator

written in the convenient form given in Eq. (3.19).

In order to differentiate between different time-evolution operators, we will label them and their

exponential coefficients. Given a time-evolution operator U(k), we will denote U(k)’s exponential

coefficients when in the form Eq. (3.19) by h(k)i rather than gi. More explicitly and for reference,

given a time-evolution operator in representation form R(Uk), we can convert back to operator form

using the equations

U(k) = eh(k)1
a†2

2 e

h(k)1
∗

−1+
∣∣∣∣h(k)1

∣∣∣∣2
a2
2

e

(
ln
[

1−
∣∣∣h(k)1

∣∣∣2]+iγ(k)3

)
1
2(a†a+ 1

2) (3.22)

with

ei
γ
(k)
3
2 =

R
(
U(k)

)
1,1∣∣∣R(U(k)
)

1,1

∣∣∣ , h(k)1 =−i
R
(
U(k)

)
1,2

R
(
U(k)

)
2,2

. (3.23)

For a generic time-evolution U , we will still denote the exponential coefficients by gi.
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To demonstrate the process of converting between the faithful representation and the opera-

tor form, consider the squeeze operator S (ξ ) = e
1
2

(
ξ ∗a†2−ξ a2

)
≡ US. We wish to put it into the

convenient form in Eq. (3.22). Using the representation depicted in Eq. (3.16), S (ξ ) corresponds to:

R(S (ξ )) =

 cosh(|ξ |) ie−iarg(ξ )sinh(|ξ |)

−ieiarg(ξ )sinh(|ξ |) cosh(|ξ |)

 . (3.24)

Since S (ξ ) is unitary, we can use relation Eq. (3.23) to identify h(S)1 = eiarg(ξ ) tanh(|ξ |) and

effectively ℑ

(
h(S)0

)
= 0. Thus, applying this to Eq. (3.22), we find

S (ξ ) = eh(S)1
a†2

2 e

h(S)1
∗

−1+
∣∣∣∣h(S)1

∣∣∣∣2
a2
2

e

(
ln
[

1−
∣∣∣h(S)1

∣∣∣2]) 1
2(a†a+ 1

2)
. (3.25)

If we allow h(S)1 = g1, S (ξ ) is the general time-evolution operator U given in Eq. (3.19) barring

the phase factor eiγ3
1
2(a†a+ 1

2). Thus, in general, the time-evolution operator for this generalized

Caldirola-Kanai system can also be written in the form

U = S (ξ )eiγ3
1
2(a†a+ 1

2), (3.26)

where ξ = tanh−1 (|g1|)eiarg(g1), which is consistent with the literature. This product can be

interpreted as a phase space rotation followed by a squeezing operation.

3.6 Evolution from Coherent to Squeezed States

We now apply the time-evolution operator to a coherent state. An initial coherent state can be

expressed as the displacement operator (with respect to the initial system), acting on the ground

state

|αi ⟩= eαia†−α∗
i a |0⟩= D(αi) |0⟩ , (3.27)
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where D(α0)≡ eα0a†−α∗
0 a is the displacement operator. Applying the time-evolution operator to the

coherent state, and using the property

eABe−A = B+
[A,B]

1!
+

[A, [A,B]]
2!

+ . . . , (3.28)

again, we find the evolved coherent state to be

U |αi ⟩=UD(αi) |0⟩

=
(
UD(αi)U−1)U |0⟩

= D(β )U |0⟩ ,

(3.29)

where β =
e

1
2 iγ3αi+e−

1
2 iγ3α∗

i g1√
1−|g1|2

.

Thus, substituting Eq. (3.26) into Eq. (3.29), we obtain the following:

U |αi ⟩= D(β )U |0⟩

= D(β )S (ξ )eiγ3
1
2(a†a+ 1

2) |0⟩

= D(β ) S (ξ ) |0⟩ei γ3
4

= |β ,ξ ⟩ei γ3
4

(3.30)

where

ξ = tanh−1 (|g1|)eiarg(g1) (3.31)

and

β =
e

1
2 iγ3αi + e−

1
2 iγ3α∗

i g1√
1−|g1|2

, (3.32)

and where the squeezed state |β ,ξ ⟩ ≡ D(β )S (ξ ) |0⟩ is referred to in the literature as an intelligent

state. Thus, all evolutions of coherent states subject to the generalized Caldirola-Kanai Hamiltonian

lead to a squeezed state with a phase factor ei γ3
4 .

The squeezed state has been well studied [10]; here we give some of its properties in terms of g1

and γ3 = ℑ(g3). The variances for X and P are

σ
2
X =

1
2

1+ |g1|2 +2ℜ(g1)

1−|g1|2
, (3.33)
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σ
2
P =

1
2

1+ |g1|2 −2ℜ(g1)

1−|g1|2
. (3.34)

The expectation values for X and P are

⟨X⟩+ i⟨P⟩=
√

2

e
1
2 iγ3αi + e−

1
2 iγ3α∗

i g1√
1−|g1|2


=
√

2β .

(3.35)

Since the squeezed state rotates when evolving in simple harmonic dynamics, it is convenient to

show the variances in X-P with the rotated coordinates following the direction of maximal spread.

Thus, allowing the rotating variables Xθ+ = Xcosθ+−Psinθ+ and Xθ− = Xcosθ−−Psinθ−, where

Xθ+ is the coordinate in the direction of maximal spread and Xθ− is the coordinate in the direction

of minimal spread, the rotated spreads are

σ
2
Xθ±

=−1
2
+

1
1∓|g1|

, (3.36)

θ± = tan−1
(

ℜ(g1)±|g1|
ℑ(g1)

)
+nπ, (3.37)

where θ± refers to the angle of maximal/minimal variance from the X axis and n is an integer. It

is worth noting that σ2
Xθmax

σ2
Xθmin

= 1
4 , thus confirming again that this system preserves minimal

uncertainty.

3.7 Classical Phase space and the Wigner Function

We now compare classical and quantum evolutions of this system. To do this, we find the Husimi

and Wigner functions. With respect to the coherent states, the Husimi function is given by

Q(z) =
1
π
|⟨z |U | αi⟩|2

=
1
π

√
1−|g1|2e−(1−|g1|)ℜ(µ(z))2−(1+|g1|)ℑ(µ(z))2

,

(3.38)
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with µ(z) = (z−β )e−
iarg(g1)

2 , and β given in Eq. (3.32). We now calculate the Wigner function to be

W (X̃ , P̃) =
1
π

∫∫
⟨β1|U |αi⟩

〈
αi|U†|β2

〉
e−

|β1|
2+|β2|

2+4|z|2
2 +2(z∗β1+zβ2

∗)−β1β2
∗ dβ 2

1
π

dβ 2
2

π

=
1
π

e
−

(
ℜ(µ(z))
σXθ+

)2

−

(
ℑ(µ(z))
σXθ−

)2

,

(3.39)

where µ(z) is defined by Eq. (3.38), σ2
Xθ±

is defined in Eq. (3.36), and z = X̃+iP̃√
2

. Note that the form

of the Wigner function is a displaced, rotated, and squeezed Gaussian with respect to that of the

initial coherent state.

Looking at the classical case and the quantum case of a single Gaussian mass fluctuation

(m(t) = m0

(
1+Ce−ε(t−t0)

2
)

), we can compare the evolution of a phase diagram with an initially

Gaussian probability in Fig. (3.4) and, using Eq. (3.39), the Wigner function with an initial coherent

state in Fig. (3.5). Comparing the two evolutions, we find that the resulting plots are identical. This

is a general feature for all cases we have considered.

3.8 Discrete Dynamic Control

In this Section, we establish a method to control the time evolution via finite fluctuations. From

the unitarity conditions, we found that any possible time-evolution is determined by the three

parameters ℑ(g3) = γ3, arg(g1), and |g1|. Thus, here we demonstrate that given any repeatable

compact fluctuations in the system that lead to a nonzero |g1|, any time-evolution can be achieved

via repetitions of this compact fluctuation and waiting periods. We will then study the effect of

these time-evolutions on squeezing, and the possibility of reversing a time-evolution.

The evolution of a waiting period is given by the time independent Hamiltonian H0 =
1

2m0
p2 +

1
2m0ω0

2x2. This evolution is easily solved using the differential equations in Eq. (3.15), which

yields the exponential coefficients for the simple harmonic time evolution operator U0 to be h(0)1 = 0
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Figure 3.4 Classical Gaussian Phase Distribution Contour Plot evolving with a Gaussian
mass fluctuation
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Figure 3.5 Wigner function of a Coherent State Contour Plot evolving with a Gaussian
mass fluctuation.
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and h(0)3 =−2itω0. Thus,

R(U0 (t)) =

 e−itω0 0

0 eitω0

 . (3.40)

We now find a way to control the phase factor coefficients γ3 and arg(g1) using waiting

periods. Selecting Uφ1,φ2 ≡U0

(
φ1+2πm

2ω0

)
UU0

(
φ2−φ1+2πn

2ω0

)
, with U from Eq (3.19), then calculating

R
(
Uφ1,φ2

)
, and using relations Eq. (3.23), we find the resulting coefficients to be h(φ1,φ2)

1 = e−iφ1g1

and ei
γ
(φ1,φ2)
3

2 = ei 1
2 (γ3−iφ2). Thus,

U0

(
φ1 +2πm

2ω0

)
U
(

g1,ei γ3
2

)
U0

(
φ2 −φ1 +2πn

2ω0

)
=U

(
e−iφ1g1,ei 1

2 (γ3−φ2)
)
. (3.41)

By simply waiting before and after the fluctuation, we can control the phase factor coefficients

γ3 and arg(g1) for the time-evolution operator.

Having established a method for controlling the phases for the time-evolution operator, we focus

on controlling the parameter |g1|. We do this via repetitions. Allow Un to be the n times repeated

evolution of U . Then Un = Un. Calculating R(Un) = R(U)n and once again applying relation

Eq. (3.23), we identify the exponential coefficients to be of the form

h(n)1 =
g1

|g1|
e−i γ3

2 sinh(nΦ)

cosh(nΦ− iΘ)
, (3.42)

and

ei
γ
(n)
3
2 =

cosh(nΦ+ iΘ)

|cosh(nΦ+ iΘ)|
, (3.43)

with

Φ = cosh−1

 ℜ

(
ei γ3

2

)
√

1−|g1|2

 ,

Θ = sin−1

ℑ

(
ei γ3

2

)
|g1|

 .

(3.44)
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Thus,

Un
(

g1,ei γ3
2

)
=U

(
g1

|g1|
e−i γ3

2 sinh(nΦ)

cosh(nΦ− iΘ)
,

cosh(nΦ+ iΘ)

|cosh(nΦ+ iΘ)|

)
, (3.45)

with Φ and Θ given in Eq. (3.44).

Since we are interested in controlling the term |g1|, we take the magnitude of h(n)1 and find

∣∣∣h(n)1

∣∣∣=
∣∣∣∣∣∣ sinh(nΦ)√

cosh2 (nΦ)− sin2 (Θ)

∣∣∣∣∣∣ . (3.46)

Adjusting the parameter γ3 using Eq. (3.41) and n, we can cause
∣∣∣h(n)1

∣∣∣ to become any number

between 0 and 1 if the evolution term |g1| from a single pulse variation is nonzero. Thus by using

waiting periods and repetitions of a given temporally compact pulse fluctuation with |g1| ̸= 0, we

can completely control the time-evolution operator of the system.

We now examine the possibility of inverting a time-evolution. We first guess the form of

the inverse to be U−1 = U0 (∆t1)UU0 (∆t2), with ∆t1 and ∆t2 undetermined. Allowing for UD =

U0 (∆t1)UU0 (∆t2)U , with eventual intention of setting UD = I, then calculating R(UD) and using

relation Eq. (3.23) to find h(D)
1 and ei

γ
(D)
3
2 , as before, then forcing the conditions h(D)

1 = 0 and

ei
γ
(D)
3
2 = 1 to make UD the identity, we find

∆t1 =
γ3 +(1+2m)π

2ω0
,

∆t2 =
γ3 +(1+2n)π

2ω0
,

(3.47)

with n and m integers of opposite parity. Thus,

U−1 =U0 (∆t1)UU0 (∆t2) , (3.48)

with ∆t1 and ∆t2 given in Eq. (3.47). Thus one can cancel a time-evolution by waiting, repeating

that evolution, then waiting again. Related work on time reversal is given in [49, 50].

We now consider the evolution of repeating fluctuations timed for maximal squeezing. As shown

in Eq. (3.36), the maximal squeeze of a coherent state is solely determined by |g1|. From Eq. (3.46),
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we see that if Φ is real, in the limit as n → ∞,
∣∣∣h(n)1

∣∣∣→ 1, which implies by Eq. (3.36) that the

squeeze approaches infinity. In order to maximize the squeeze per repetition, we could phase shift

the initial time-evolution U using Eq. (3.41) such that ei γ3
2 =±1, which is achieved by spacing the

time between pulses γ3
2ω0

apart. By doing so, |g1|→ tanh [nΦ] = Qn−1
Qn+1 with Q = |g1|+1

|g1|−1 . Applying

this to Eq. (3.36) and Eq. (3.37), we find under these conditions, applied to an initial coherent state:

σ
2
Xθ±

=
Q±n

2
, (3.49)

θ± = tan−1

−
ℜ

(
e−iarg(g1)

)
±1

ℑ
(
e−iarg(g1)

)
, (3.50)

with Q = |g1|+1
|g1|−1 . Thus, under optimized squeezing conditions, repeated evolutions cause exponential

squeezing to occur. Also, should g1 be near to real, the angle of squeezing will focus in the P

direction. Should g1 be near imaginary, the angle of squeezing will be close to the 45◦ between X

and P axis. Similar claims of exponential squeezing are given in [47, 52].

3.9 Delta Fluctuations

We now examine the extreme case of Dirac delta fluctuations in the mass and frequency terms. We

allow

M (t) = 1+∆M
θ (t)θ (∆t − t)

ω0∆t
,

Ω(t) = 1+∆Ω
θ (t)θ (∆t − t)

ω0∆t
,

(3.51)

noting that

lim
∆t→0

θ (t)θ (∆t − t)
∆t

= δ (t), (3.52)

where θ is the Heaviside function. Then, after solving for the exponential coefficients gi using

Eq. (3.15) and taking the limits as ∆t → 0, we find the effects of M (t) = 1+∆M δ (t)
ω0

and Ω(t) =
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Table 3.1 Dirac Delta Fluctuations Characterization

Case ∆M ∆Ω g1 ei γ3
2

1 ̸= 0 ̸= 0 −1 −i ∆M∆Ω

|∆M∆Ω|

2 ̸= 0 = 0 ∆M
2i−∆M

2−i∆M
|2−i∆M|

3 = 0 ̸= 0 ∆Ω

2i−∆Ω

2−i∆Ω

|2−i∆Ω|

1+∆Ω
δ (t)
ω0

. Three cases are shown in Table 3.1.

From Eq. (3.36) and Eq. (3.37), we see that Case 1 suggests an infinite squeezing in the 0◦

direction. Cases 2 and 3 suggest more moderate squeezing.

By spacing the time between pulses to be γ3
2ω0

apart, in case 2, we optimize the squeezing per

pulse. The variance effects on an initial coherent state would increase/decrease exponentially in the

maximal/minimal directions in the X-P plane according to σ2
Xθ±

= Q±n

2 , with

Q =

√
4+∆M2 + |∆M|√
4+∆M2 −|∆M|

(3.53)

given by Eq. (3.49). Related work on Dirac delta fluctuations that does not use the Lie algebra

representations is given in [53–55].

3.10 Gaussian Fluctuations

We now perform a similar analysis for a series of Gaussian mass term pulses

M (t) = 1+C

√
ε

π
∑
k

e−ε(t−tk)
2
, (3.54)

which could be associated with variations in the permittivity of a cavity.

Since the differential equations with this mass variation are significantly more complicated, we

solve them numerically allowing C = 5, ω0 = 1/2, and ε = 10. To find the evolution of the system,
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Figure 3.6 Squeeze of coherent state under effect of timed Gaussian pulses for exponential
growth

we study the effect of one pulse of width 2t0 where t0 = 1.5. By using Eq. (3.15), the evolution is

given by:

2iġ1 = ω0

(
−M(t)−1(1−g1)

2 +M (t)(1+g1)
2
)

iġ3 = ω0

(
M(t)−1 (1−g1)+M (t)(1+g1)

)
,

(3.55)

with M (t) = 1+C
√

ε

π
e−ε(t−t0)

2
and initial conditions g1 (0) = 0 and g3 (0) = 0. Numerically, we

find g1 (2t0)≈−0.734+ i0.359, and γ3 (2t0)≈−4.051.

The rest time interval between pulses that maximizes the squeeze is given by ∆tmax =
1

ω0

γ3(t0)
2 ≈ 2.23.

Since each pulse takes 2t0 time, the maximizing period is ∆Tmax = ∆tmax +2t0 = 5.23. Allowing

the function to be M (t) = 1+C
√

ε

π ∑k=0 eε(t−t0−kTmax)
2
, we find that the spread and squeeze grow

exponentially as shown in Fig. (3.6). This squeezing is consistent with the general analysis that
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Figure 3.7 Squeeze of coherent state under effect of timed Gaussian pulses for reversible
squeezing

σ2
Xθ±

= Q±n

2 with Q = |g1|+1
|g1|−1 = 9.919 where n is the number of repetitions.

Noting from Eq. (3.48) that U−1 = U0

(
γ3−π

2ω0

)
UU0

(
γ3−π

2ω0

)
and allowing ∆Tmin =

γ3−π

2ω0
+2t0,

we could cause the system to squeeze, return to a coherent state, then squeeze again by judiciously

timing the Gaussian pulse fluctuations in the mass term:

M (t) = 1+C

√
ε

π
∑
k=1

e−ε(t−∑
k
i=1 ∆ti)

2

, ∆ti =


t0 i = 1

∆Tmin i = 4

∆Tmax i ̸= 1,4

. (3.56)

This evolution containing two squeezing events is depicted in Fig. (3.7).

To further illustrate the evolution of this particular system, we allow the initial coherent state to

arbitrarily be
∣∣∣∣ .2(√2+i)√

3

〉
and provide the Husimi plot in Fig. (3.8). Taking the angle of minimal
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Figure 3.8 Frames of the Husimi function for the evolution of a coherent state subject to a
series of Gaussian pulse variations given in Eq. (3.56) and illustrated in Fig. (3.7) demon-
strating quantum control. Each frame represents the Husimi function after a Gaussian
pulse. More precisely, t0 = 1.5 after the center of Gaussian pulse variation.
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and maximal spread at time 2t0 using Eq. (3.50), we calculate

θ± = tan−1

−
ℜ

(
e−iarg(g1(2t0))

)
±1

ℑ
(
e−iarg(g1(2t0))

)


= 31.97◦∓45◦,

(3.57)

which is consistent with t = 3.00 on Fig. 3.8. Note that the timing chosen for maximal and

minimal squeezing are set up such that the directions of spreads in Fig. 3.8 are pointing in the

θ = 31.97◦∓45◦ directions.

3.11 Conclusion

In this paper, we have analyzed the quantum Caldirola-Kanai system in terms of the raising and

lowering operators. We found a representation for the time-evolution operator Eq. (3.16) and

used this to find conditions for unitarity Eq. (3.18). We showed that any unitary evolution of the

generalized Caldirola-Kanai system is given by the squeeze operator with a phase factor using

the Lie algebraic representation and unitarity conditions. We discussed the time-evolution on an

initial coherent state, and a connection between the classical evolution of a probabilistic phase

space distribution and the quantum evolution of the Wigner function. We then found ways to

fully control the system using temporally compact fluctuations combined with waiting periods.

We analytically explored the effects of Dirac delta fluctuations in mass and frequency. We then

numerically demonstrated the effectiveness in controlling this system for the case of Gaussian

fluctuations in the mass term.

Note that the methods described here are similar to some of those implemented for the “shortcuts

to adiabaticity” [59] in that we use matrices to set up time-evolution operators to transport a

quantum state from one to another using finite variations in the parameters. However, the further

generalization involving the Lagrangian density [60] to approximately apply to systems that are
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unharmonic is incompatible with the methods using faithful representations. The work here can,

however, apply to any system with a Hamiltonian composed of time-independent operators forming

a Lie algebra, and can be further extended to systems where a mean field approximation can be used

with an interaction picture as in [61].



Chapter 4

Photon Creation, Decoherence, and

Squeezing in a Second Order

Optomechanical System

4.1 Abstract

Optomechanical systems consist of a coupling between a mirror and a laser, and present a possible

way to create cat states. Cat states can function as qubits, essential for quantum computers. But

this mirror-laser coupling leads to decoherence effects, which muddle such desired dynamics

and requires correction. Furthermore, maintaining the second order coupling terms, which are

usually ignored, adds important effects, such as photon creation and squeezing. Here we analyze

an optomechanical system with second order coupling using a mean field approximation, the

Wei-Norman method, partial tracing, and Husimi plots. We show that the effects of decoherence

lead to a rotational smearing of the Husimi function, demonstrating a loss of harmonic oscillator

phase information for the laser for first order coupling. We then study and show that second order

57
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laser-mirror coupling causes photon creation via a dynamic Casimir effect and effectively adds a

squeeze term to the density matrix of the laser. We also show that the added squeeze term causes

decoherence effects to have the same rotational smearing after the squeeze effects in the Husimi

function.

4.2 Introduction

4.2.1 Optomechanical Systems and Schrödinger Cat States

Optomechanical systems typically involve a Fabry-Pérot cavity with one of its mirrors endowed

with the ability to move. Radiation pressure on the mirror and momentum transfer creates a

mirror-laser coupling [62]. With this coupling, we attempt to use the mirror to control and/or

gauge the laser [63, 64]. For this paper, we will assume the mirror to move in such a way as to

mimic the motion and response of a harmonic oscillator [65–68]. It has been shown that such an

optomechanical system can create Schrödinger cat states [65].

Schrödinger cat states, often referred to as simply cat states, appear as a superposition of two

equally weighted coherent states with opposing eigennumbers [10]. When measuring for one of

these coherent states, the probability of getting a false positive for its opposing twin is very low.

Because of this, the two coherent states for the cat state are approximately orthogonal, making

Schrödinger cat states usable as qubits. These qubits are possible building blocks for quantum

computers which represent the future of physics simulation [1],cryptography, and optimization

problems, [4] as well as computational feats such as Shor’s factorization algorithm [2] and Grover’s

algorithm [3]. The typical method utilized to creating these cat states is through a Kerr medium, i.e.

a medium that presents a nonlinear response to electromagnetic fields, often modeled by adding a

second order term with respect to the number operator [6, 7]. Optomechanical systems can mimic

this Kerr-like effect from the number operator squared term that is not explicit in the Hamiltonian,
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but implicit via the Lie algebraic structure of the system [65, 66, 69].

The optomechanical laser-mirror interaction leads to decoherence and in some scenarios the

effects of second order coupling.

4.2.2 Decoherence

Much of the difficulty involved in creating quantum devices involves decoherence. Decoherence,

model-wise, is the coupling of a quantum system to an outside, probabilistically ignored, envi-

ronment [70]. Such probabilistic ignoring is achieved mathematically via partial tracing away the

environment, while leaving the quantum part of the system to be studied [70]. By ignoring the

environment, we lose information leading to a decrease in idempotency [71] for the density matrix.

This causes the system to lose its "quantumness" in that the interference terms in the density matrix

lose amplitude, leaving the diagonal terms to evolve without interaction—much like in classical

mechanics. Thus, when decoherence occurs, the system becomes "more classical".

In an optomechanical system, a laser interacts with a mirror environment, causing some deco-

herence with the laser. It is therefore important to study the effects of decoherence in the laser for

this system. In this paper, we show that decoherence creates a rotational smearing effect in the

Husimi function [22], further exploring the phenomenon mentioned in [66]. For the case of an

initial coherent state under first order interaction, we show that the Husimi function approaches a

modified Bessel function with exponential decay and loses all phase distinction. When the effects

of second order coupling are included, we show that this causes more of rotational smearing after

squeezing in the Husimi function.

4.2.3 Second Order Coupling

Optomechanical system interactions typically are approximated to be linear, since the interactions in

most experimental optomechanical systems tend to be weak [68]. Much exploration in maintaining
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a second order coupling focuses on the second order term in the resonator [72–76]. Here we treat the

case for a second order approximation of the coupling with respect to the laser. This system has been

suggested in [68] and explored in [77] by using numerical diagonalization. In this paper, a mean

field approximation is applied to the nonlinear coupling term in the interaction Hamiltonian. This is

done in order to maintain some of the properties associated with the nonlinear coupling effects while

allowing use of Wei-Norman Lie algebraic methods [25] to obtain some more analytical results. We

also show and verify the addition of this coupling term causes squeezing [10] in the system which

leads to photon creation via the dynamic Casimir effect [78] (the moving mirror causing photons to

appear in an initially empty laser cavity).

4.2.4 Overview

In Section 2.1 we develop a model for an optomechanical system with second order coupling. In

Section 2.2 we examine the evolution of the optomechanical system with linear coupling. In Section

2.3 we measure the decoherence of the system described in Section 2.2 and find the evolution limits

as the decoherence approaches infinity. In 2.4 we create Husimi plots of the linearly coupled case

and show, in the limiting case as the decoherence becomes large, this Husimi function tends towards

a modified Bessel function for an initial coherent state. In Section 2.5 we examine the evolution of

the expectation value of the number operator ⟨ f (n)⟩ from the linear coupling. In Section 2.6 we

analyze the effects of adding nonlinear coupling to the system. In Section 3.1 we conclude.

4.3 Methods

4.3.1 The Model

In this section, we develop our model for an optomechanical system with second order coupling.

We begin with the Hamiltonian for the parametric oscillator representing a single mode field:
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Hosc =
P2

2m
+

1
2

m Ω
2(t)X2, (4.1)

where P is the effective momentum, X is the effective position, m is the effective mass, and Ω(t) is

the effective frequency for the laser with:

Ω
2(t) =

(
Ω0

1+ x(t)
L

)2

≃ Ω0
2
(

1− 2x(t)
L

)
, (4.2)

x(t) being the instantaneous displacement of the mechanical oscillator for the mirror from equi-

librium, L being the length of the cavity, and x(t)<< L. Substituting Eq. (4.2) into Eq. (4.1), and

adding the energy of the mirror with ω1 the frequency of the mirror and b†b the number operator

for the mirror, the Hamiltonian becomes,

H =
P2

2
+

1
2

m Ω
2
0

(
1− 2x(t)

L

)
X2 + h̄ω1

(
b†b+

1
2

)
= h̄Ω0

(
n̂+

1
2

)
+ h̄ω1

(
b†b+

1
2

)
−

mΩ2
0x(t)
L

X2
(4.3)

Quantizing the position of our mechanical oscillator, we allow x(t) =
√

h̄
2Mω1

(b+b†) where b†

and b are standard rising and lowering operators and M and ω1 are the mass and frequency for the

mechanical oscillator. We also define a =
√

Ω0m
2h̄ X + i

√
1

2Ω0h̄mP with a and a† standard mode rising

and lowering operators. We also define n̂ = a†a to be the standard number operator with respect to

a. Making these substitutions into Eq. (4.3) and shifting the energy origin by setting the relevant

1/2 terms to zero, we obtain

H =h̄(Ω0n̂+ω1b†b−Bn̂(b+b†)

− B
2
(a2 +a†2

)(b+b†))
(4.4)

with B = Ω0
L
√

2Mω1
.
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We now separate the Hamiltonian into terms of H0 and V with

H0 = h̄
(

Ω0n̂+ω1b†b−Bn̂(b+b†)
)

(4.5)

and

V = h̄
(
−B

2
(a2 +a†2

)(b+b†)

)
(4.6)

where H0 is the usual Hamiltonian for a linear optomechanical system [65–68]. Since the Hamil-

tonian H in Eq. (4.4) is not composed of operators closed under commutation, we switch to the

interaction picture, allowing Hint to be our interaction Hamiltonian.

Hint =U0VU0
† =

−B
2

h̄
(

a2W +W †a†2
)

(4.7)

Where W is determined by the equation U0a2 (b+b†)U0
† = a2W and U0 is the time evolution

operator governed by the Hamiltonian H0 and is explored in the next Section.

4.3.2 Treatment of H0

We begin by analyzing the properties and dynamics of H0, the model most often used for the laser-

mirror optomechanical system [65–68]. Here, we use the method given by Wei and Norman [25] to

solve for the time evolution operator for H0.

In order to solve the Schrödinger equation for H0, we let the Ansatz for the time evolution

operator be

U0 = eg1n̂2
eg2n̂eg3n̂b†

eg4n̂beg5b†b (4.8)

allowing {gi(t)} to be undetermined time dependent coefficient functions.

To solve for these undetermined coefficients, we plug U0 into the Schrödinger equation rewritten

in the form

ih̄
∂U0

∂ t
U−1

0 = H0. (4.9)
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Using the property:

eFGe−F = G+
[F,G]

1!
+

[F, [F,G]]

2!
+ . . . , (4.10)

and matching linearly independent operator coefficients, we obtain the following set of nonlinear

ordinary differential equations:

i ġ1 = Bg3

i ġ2 = Ω0

i ġ3 = B+ω1g3

i ġ4 = B−ω1g4

i ġ5 = ω1


, (4.11)

where the dots imply derivatives with respect to time.

Because the Hamiltonian is Hermitian, its respective time evolution operator is constrained to

be unitary. Using Eq. (4.11) and the constraints to make the time dependent H0 Hermitian, we solve

for unitarity conditions to be{
ℜ(g2) = 0,ℜ(g5) = 0,ℜ(g1) =−|g3|2

2
,g4 =−g∗3

}
, (4.12)

where ℜ(g) refers to the real part of g. Solving the differential Eqs. (4.11) for the case of constant

H0 gives the time-dependent coefficient functions in terms of ω1,B, and Ω0:

g1 =
B2

ω12 (−1+ tω1 + e−iω1t)

g2 =−itΩ0

g3 =
B
ω1

(
−1+ e−itω1

)
g4 =

B
ω1

(
1− eitω1

)
g5 =−itω1

. (4.13)

Thus, with the {gi(t)} solved for, we now have our time evolution operator for H0 fully determined.
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The next step is to find the evolving density matrix for the system. Since we mainly care about

the evolution of the laser, we will assume the mirror is initially in a heat bath state, and take the

partial trace with respect to the mirror. Thus,

ρ0 = Trmirror

(
U†

0
eγb†b

1− eγ
ρ0laserU0

)
(4.14)

where ρ0laser is the initial state for the laser and γ = ln( n
1+n0

) with n0 the expectation value of the

number operator for the initial state of the mirror [10]. Taking the partial trace explicitly, the matrix

elements of ρ0 given in the number state representation are given as:

⟨n|ρ0 |m⟩= e−i((m2−n2)ℑ(g1)+(m−n)ℑ(g2))

× e−(m−n)2|g3|2( 1
2+n0) ⟨n|ρ0laser |m⟩

(4.15)

where ℑ(g) refers to the imaginary part of g and ⟨n| and |m⟩ refer to photon number states.

Throughout this paper, we will mostly assume that the initial state of the laser is a coherent state

|α⟩. For this case, Eq. (4.15) becomes

⟨n|ρ0 |m⟩= e−i(m2−n2)e−(m−n)2|g3|2( 1
2+n0)

× e−|α|2

(
αeiℑ(g2)

)n(
αeiℑ(g2)

)∗m

√
n!m!

(4.16)

where α is the complex eigennumber for the initial coherent state of the laser. Note that the time

dependence of the system after partial tracing is now only determined by the terms ℑ(g1), ℑ(g2),

and |g3|2.

4.3.3 Decoherence Effects of H0

Decoherence is loosely defined as the loss of quantumness of a system. When a system is affected

by decoherence, the interference terms of the density matrix become diminished making the

system more classical. The partial trace of our initial density matrix, shown in Eq. (4.15), creates
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decoherence for our optomechanical system. We can measure the decoherence of this system by

taking the trace of ρ2
0 and comparing it with 1, thus measuring the loss of idempotency (the property

ρ2
0 = ρ0) [71] due to the loss of information from interaction with the mirror.

Taking this trace, we see:

Tr(ρ2
0 ) =

∞

∑
n=1
m=1

e−2|α|2+(m−n)2|g3|2(1+2n0)|α|2(m+n)

m!n!
. (4.17)

As far as time evolution is concerned, the term |g3|2 is the only factor that affects this measure

of decoherence. This interpretation makes sense when considering Eq. (4.15): as |g3|2 becomes

larger, the off-diagonal terms become less important. Taking the limit of Eq. (4.15) as |g3|2 goes to

infinity gives

lim
|g3|2→∞

ρ0 =
∞

∑
n=1

|n⟩⟨n|ρ0laser |n⟩⟨n| , (4.18)

thus leaving the energy of the mirror and the interference terms irrelevant. Allowing ρ0laser to again

be a coherent state |α⟩, the trace becomes

Tr(( lim
|g3|2→∞

ρ0)
2) = e−2|α|2I0(−2 |α|2) (4.19)

where I0(z) is a modified Bessel function. Due to the e−2|α|2 term, the decoherence effects increase

quickly as |α| becomes larger.

4.3.4 Husimi Function for H0

It is convenient to gain some insight into the standard optomechanical system governed by H0 via

Husimi plots associated with ρ0. To do this, we convert Eq. (4.16) into a representation with matrix

elements in the basis of a coherent state. Then, the diagonal elements of the matrix in the coherent
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state basis yield the Husimi function:

Q(β ) =
∞

∑
n=0
m=0

e−|α|2−|β |2

(
αβ ∗ei ℑ(g2)

)n

n!

(
α∗βe−i ℑ(g2)

)m

m!

×
(

e−(m−n)2|g3|2( 1
2+n0)

)(
ei (n2−m2)ℑ(g1)

)
.

(4.20)

In Eq. (4.20), the term ℑ(g2(t)) only causes a phase shift in the initial coherent state. The

decoherence term (e−
1
2 (m−n)2|g3|2(1+2n0)) causes a rotational smearing effect . This smearing for

a coherent state is shown in Fig. (4.1b). The splitting term ( ei (n2−m2)ℑ(g1)) causes the coherent

state to split into cat states whenever the term (ℑ(g1)) is a half integer multiple of π . A plot of the

Husimi function for a cat state without decoherence is given in Fig. (4.1c), and a plot of a cat state

under decoherence effects is given in Fig. (4.1d).

To find the case for large decoherence effects, we take the limit as |g3|2 goes to infinity and find

lim
|g3|2→∞

Q(β ) = e−|α|2−|β |2I0(2 |α| |β |) (4.21)

where again, I0(z) is a modified Bessel function. Thus, under large decoherence effects, the system

loses all phase information resulting in a donut-shaped Husimi function.

4.3.5 Photon creation with respect to ρ0

Looking at the Husimi plots for ρ0 in Fig. (4.1) suggests that the evolution of this system only

causes cat state splitting effects, as well as rotation in phase space and rotational smearing which

suggests little change in overall energy level for the system. This suggests that the photon number

should stay constant throughout any evolution governed by H0. We can confirm this by taking the

expectation value of an arbitrary function of the photon quantum number, f (n̂):
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(a) (b)

(c) (d)

Figure 4.1 Husimi function Q(X + iP) plots for attributes of decoherence and splitting
into cat states. These plots show: (a) a coherent state without decoherence or splitting, (b)
a coherent state with rotational smearing due to decoherence effects, (c) a coherent state
split into a cat state without decoherence effects, (d) a coherent state split into a cat state
with rotational smearing due to decoherence effects.
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⟨ f (n̂)⟩= Tr( f (n̂)ρ0)

=
∞

∑
n=0

f (n)⟨n|ρ0 |n⟩

=
∞

∑
n=0

f (n)⟨n|ρ0laser |n⟩

= ⟨ f (n̂)⟩t=0

(4.22)

where in the second to last step, we used Eq. (4.15). With this constraint, we see that no photon

creation can occur for this limited system.

4.3.6 Second Order Terms Added

To add in the effects of the second order terms, we need to solve the Schrödinger equation for the

interaction part of the time evolution operator Uint:

ih̄
dUint

dt
= HintUint (4.23)

where Hint is given in Eq. (4.7). To do this, we first solve for the operator W referred to in Eq. (4.7).

Using the time evolution operator U0 given in Eq. (4.8), applying the property Eq. (4.10), and

applying the unitarity conditions given in Eq. (4.12), we find W to be

W = DM(−g2)
(

b† +b
)

e−2iℑ(g1)n̂+iℑ(g1−g2) (4.24)

where DM(−g2) is the displacement operator [10] with respect to the mirror system.

Because of the time dependent and algebraically complex nature of W in Hint, we simplify our

model invoking the mean field approximation, leading to the simplified interaction Hamiltonian:

Hint =
−B
2

h̄
(

a2 ⟨W ⟩+ ⟨W ⟩∗ a†2
)

(4.25)
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Taking the time evolved expectation value of W , assuming an initial coherent state for the laser

with eigenvalue α , we find:

⟨W ⟩= (1+ n̄0)e
(

e−2iℑ(g1)−1
)
|α|2+iℑ(g1−g2)−|g3|2n̄0

×
(

eiℑ(g5)g∗3 (1+ n̄0)− e−iℑ(g5)g3n̄0

)
.

(4.26)

If we allow B to be constant, g1, g2, g3, and g5 are given by Eq. (4.13).

Solving for Uint in the same manner as for U0, we find the interaction time evolution operator to

be of the form:

Uint = eh1
a†2

2 eh2
a2
2 eh3

1
2(

1
2+n̂) (4.27)

where h1, h2, and h3 are governed by the system of equations

i ḣ1 =−B
(
⟨W ⟩∗+ ⟨W ⟩h1

2)
i ḣ2 = B⟨W ⟩(−1+2h1h2)

i ḣ3 =−2B⟨W ⟩h1


(4.28)

Since Hint is Hermitian, Uint is unitary. The unitarity conditions associated with Uint (which can

be found using Lie algebra representations [24] and confirmed using Eq. (4.28)) are

{h2 =− h1
∗

1−|h1|2
,ℜ(h3) = ln

(
1−|h1|2

)
}. (4.29)

Thus, Eq. (4.27) can be rewritten as:

Uint = eh1
a†2

2 e
− h1

∗

1−|h1|2
a2
2

e(ln(1−|h1|2)+iℑ(h3)) 1
2(

1
2+n̂) (4.30)

which can be rewritten [24] as

Uint = S (ξ )eiℑ(h3)
1
2(

1
2+n̂) (4.31)
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where S (ξ ) is the squeeze operator [10] and ξ = tanh−1 (|h1|)eiarg(h1). Thus, the effects of Uint on

the density matrix can be interpreted as an added squeeze operator with a phase term.

The complete density matrix is given by Eq. (4.15) with

ρ0laser =U†
intρiUint , (4.32)

where ρi is the initial state of the laser before the squeezing effects is applied. Effectively, the

evolution is the same, but with squeezing effects added to the initial state before rotational smearing.

These changes can be seen in the Husimi function for ρ which is

Q(β ) =
∞

∑
n=0
m=0

e−
∣∣∣α ′ ∣∣∣2−∣∣∣β ′ ∣∣∣2

(
α

′∗β
′
)n

n!

(
α

′
β

′∗
)m

m!


×
(

e−(n−m)2( 1
2 |g3|2(1+2n0))

)(
ei(n2−m2)ℑ(g1)

)
× eℜ(α

′2
)|h1|
(

1−|h1|2
) 3

2

×

U

(
1−n

2
,
3
2
,α

′∗2 1−|h1|2

2 |h1|

)(
α

′∗2

2|h1|

) 1−n
2


×

U

(
1−m

2
,
3
2
,α

′2 1−|h1|2

2 |h1|

)(
α

′2

2|h1|

) 1−m
2


(4.33)

where β
′
= βei(ℑ(g2)+

1
2 ℑ(h3)− 1

2 arg(h1)), α
′
= αe−i 1

2 arg(h1), and U(k1,k2,k3) in this equation is the

confluent hypergeometric function of the second kind. Note that the first part of this Husimi function

is virtually identical to that of the Husimi function for ρ0 given in Eq. (4.20). The effects of cat state

splitting and rotational smearing are virtually the same as those in Fig. (4.1) as well, except for an

added squeezing that is shown in Fig. (4.2). The squeezing is purely determined by the parameter

|h1| which controls the magnitude part for the squeeze operator in Eq. (4.31).

With the added squeeze term, photon creation can occur. We show this by again taking the

expectation value of n̂ while allowing the coherent state to be the ground state |0⟩. The expectation
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(a) (b)

(c) (d)

Figure 4.2 Husimi function (Q(X + iP)) plots for attributes of decoherence and splitting
into cat states. All of these are under squeezing effects. These plots show: (a) a coherent
state without decoherence or splitting, (b) a coherent state with rotational smearing due to
decoherence effects, (c) a coherent state split into a cat state without decoherence effects,
(d) a coherent state split into a cat state with smearing due to decoherence effects.
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value is

⟨n̂⟩= |h1|2

1−|h1|2
. (4.34)

Thus, as |h1|2 → 1, which would indicate extreme squeezing, the photon number tends toward

infinity.

4.4 Results and Conclusion

By examining Eq. (4.17) we see that decoherence is determined by |g3|. Varying |g3| leads to a

rotational smearing in the Husimi plots in Fig. (4.1), suggesting a loss of information with respect to

the phase of the harmonic oscillator. The effect being only rotational suggests the optomechanical

system without second order terms, H0, leads to no photon creation as shown in Eq. (4.22).

The addition of the second order terms adds a squeeze operator with a phase shift as shown in

Eq. (4.31). The squeeze term does cause the effects of decoherence to create rotational smearing

after squeezing as shown in the Husimi functions. As a result from this squeezing, we see that there

is photon creation of photons in Eq. (4.34) demonstrating the dynamic Casimir effect [78].



Chapter 5

Dynamic Evolution of an Anharmonic

Oscillator with Infinite Coupling

5.1 Abstract

This paper addresses the dynamic evolution and decoherence of an anharmonic oscillator with

infinite coupling using the Born-Markov master equation. This is done by using the Lie algebraic

structure of the Born-Markov master equation’s superoperators when applying a strategic mean

field approximation to maintain dynamic flexibility. The system is compared to the Born-Markov

master equation for the harmonic oscillator, the regular anharmonic oscillator, and the dynamic

double anharmonic oscillator. Throughout, Husimi plots are provided to visualize the dynamic

decoherence of these systems.

5.2 Introduction

We follow the dynamic evolution and decoherence of an anharmonic oscillator with infinite coupling

using the Born-Markov master equation. This is achieved by using the Lie algebraic structure of

73
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superoperators associated to the Born-Markov equation. A mean field approximation is evoked in

order to simplify the problem. The system is then compared to the Born-Markov master equation

for the harmonic oscillator, the regular anharmonic oscillator, and the dynamic double oscillator.

Anharmonic oscillators constitute a convenient path to creating cat states [6, 7]. Among other

systems, cat states can be used for quantum computing which are essential for the future of physics

simulation [1] as well as for the realization of computational feats such as Shor‘s algorithm [2] and

Grover‘s algorithm [3] as well as cryptography and optimization problems [4, 5].

Much work has been done on studying the dynamics of the anharmonic oscillator without

extra coupling [79–81]. Adding outside coupling in general leads to decoherence. Decoherence

is the loss of quantum information by ignoring the irrelevant environment [70]. The concept

of decoherence, although relatively new, has been well studied for several situations such as

the dynamics of systems involving the simple harmonic oscillator with decoherence which have

been analytically solved [12, 13, 15]. Decoherence for more complicated systems requires some

simplifying assumptions such as the Born approximation (where the environment and the system

are weakly coupled) and the Markov approximation (where the effect of the environment is assumed

to have no “memory”) [16]. The Born-Markov master equation is of particular note as it allows one

to solve for the dynamics of the system after having already taken into account the effects of the

environment [16]. The Born-Markov master equation has been well applied to the simple harmonic

oscillator case, giving good simulation for decoherence in quantum dynamics [17, 18]; but the

application of the Born-Markov master equation to the anharmonic oscillator is a difficult problem,

as the Lie algebra does not close and has not been well studied. Some work on decoherence with

anharmonic oscillators has been done, often in association with quantum computing [82–86], but

little to no work has been done on the anharmonic oscillator under the Born-Markov approximation.

Thus, in this paper, we will find a Born-Markov master equation for the anharmonic oscillator

with infinite couplings, solve for its dynamic evolution, and compare it to the evolution of the
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infinitely coupled harmonic oscillator, the uncoupled anharmonic oscillator, and the double oscillator.

We will do this by exploiting the Lie algebraic structure in the system after applying an appropriate

mean field approximation.

5.2.1 Lie Algebra in Quantum Dynamics and Unitarity Conditions

To properly exploit the Lie algebra of quantum systems, we will expedite evolutionary analysis

using the Wei-Norman method. Wei and Norman [25] give a convenient method for finding the time

evolution operator for any time-dependent Hamiltonian composed of time independent operators

that form a Lie algebra basis. For our purposes, we present this as follows. Allow a Hamiltonian H

to be made up of time independent operators Ai that form a Lie algebra basis with time-dependent

coefficents bi(t) such that

H = h̄
n

∑
i=1

Aibi. (5.1)

Then, the time evolution operator for this system can be given as

U(t) = eg1A1eg2A2 . . .egnAn. (5.2)

The time-dependent gi(t) terms are determined by the set of first order differential equations

i



g′1(t)

g′2(t)
...

g′n(t)


= [g-Matrix]



b1(t)

b2(t)
...

bn(t)


(5.3)

where g-Matrix is given by

[g-Matrix]−1
j,k =

(
∏
i≤k

egiadj(Ai)

)
j,k

, (5.4)

and adj(Ai) is the respective adjoint representation of the Ai operator [19].
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An alternative useful tool discussed in [24] is a method to use a faithful Lie algebra representation

to find the conditions for unitarity for situations following Eqs. (5.1)-(5.2). This is done exploiting

the matrix relationship

eg1R(A1)eg2R(A2) . . .egnR(An) = e−g1
∗R(A1

†)e−g2
∗R(A2

†) . . .e−gn
∗R(An

†) (5.5)

where R is a faithful representation for the Lie algebra referred to in Eq. (5.1). Using Eq. (5.5),

one can find the conditions for unitarity for any time evolution operator of the form described in

Eqs. (5.1)-(5.2) by comparing the respective matrix cells on both sides of the equation. We shall use

this result in section 5.4 and section 5.5.

5.2.2 Decoherence and Partial Tracing

Quantum decoherence is the loss of quantum coherence in a system. For a coherent quantum system,

the state of the system can be described by a single ket, or a superposition of kets ∑ci |i⟩. Quantum

decoherence occurs when information is lost due to classical uncertainty. When this occurs, the

state of the system is described by a mixed state and the system is best described using a sum of

pure state density matrices ∑ pi |i⟩⟨i| where pi are the "classical probability weights" for the state

being |i⟩ due to classical uncertainty. Often, decoherence effects are caused by open systems.

For a closed system, all quantum information is contained in the system studied. In a closed

systems, we assume that its Hamiltonian is Hermitian, all variables in the system are known, and that

the initial state for evolution is also known. An open system is a system linked to an environment

system, within which we are ignorant of the wave function. This adds classical uncertainty to the

situation, causing quantum decoherence and the need to describe the system in terms of a density

matrix.

Oftentimes, decoherence can be modeled by allowing the Hamiltonian to be in the form

H = HS +HE +HSE where HS is the Hamiltonian for the system, HE is the Hamiltonian for the
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environment, and HSE is the part of the Hamiltonian coupling the two. After solving for the

evolution of the system for a density matrix operator ρ , we can filter out irrelevant environmental

information of the state via partial tracing. We can take the partial trace via infinite sums of number

state projections associated with the environment via the equation

ρs =
∞

∑
n
⟨n|ρ |n⟩. (5.6)

where |n⟩ are number states associated with the environment. We can also take the partial trace

through an integration of coherent state projections associated with the environment through the

equation

ρs =
∫

⟨β |ρ |β ⟩ dβ 2

π
(5.7)

where |β ⟩ represent coherent states associated with the environment.

5.2.3 Born-Markov Master Equation

Another common method for modeling decoherence is via master equations. With these, we make

assumptions to filter out the environment before solving for reduced the density matrix. The

most popular of these is the Born-Markov approximation, which leads to the Born-Markov master

equation.

The Born approximation results from the assumption that the coupling between the system and

environment is weak to the point that the system and environment remain in an essentially separable

state at all times, and the environment does not change much with time. The Markov approximation

is the assumption that the environment has no memory and the environment correlation times are

near zero except when comparing with the same times [70].

Let the Hamiltonian take the general form

H = HS +HE +∑
α

SαEα (5.8)
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where HS is the Hamiltonian for the system, HE is the Hamiltonian for the environment, Sα are

operators associated with the system, and Eα are operators associated with the environment. The

Born-Markov master equation [70], with system density matrix ρs, is then

ih̄
d
dt

ρs = [Hs,ρs]− i∑
α

[Sα ,Bαρs]+ [ρsDα ,Sα ] (5.9)

with

Bα =
∫

∞

0
dτ ∑

β

Cαβ (τ)Heisenberg(Sβ )HS(−τ),

Dα =
∫

∞

0
dτ ∑

β

Cβα(−τ)Heisenberg(Sβ )HS(−τ),

Cαβ =
〈
Heisenberg(Eα)HE Eβ

〉
ρε

(5.10)

where Heisenberg(A)Hb refers to the Heisenberg representation of A with respect to the evolution

governed by the Hamiltonian Hb.

In our case we will use the Wei-Norman method for finding the evolution of the Born-Markov

master equation. As an example, we show this procedure firstly for an oscillator with infinite

oscillator couplings.

In section 5.3, we look at the usual harmonic oscillator with the Born-Markov master equation

using the superoperator Lie algebraic structure. In section 5.4, we establish the dynamics for

the single anharmonic oscillator using its Lie algebraic structure and time evolution operator for

reference and comparison. In section 5.5, we look at the dynamic anharmonic double oscillator

using its Lie algebraic structure. In section 5.6, we use the results and techniques in previous

sections to establish the dynamics of the anharmonic oscillator with infinite coupling using its

Born-Markov master equation and a mean field approximation that preserves the anharmonic effects.
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5.3 Harmonic Oscillator Born-Markov Master Equation

In this section, we solve for the dynamics of the Born-Markov master equation for a harmonic

oscillator coupled to an infinite number of independent harmonic oscillators representing the

environment. The Hamiltonian for such a system is

H = h̄

(
ωcn̂+

∞

∑
i=1

ωin̂i +
(

c∗i aai
† + cia†ai

))
(5.11)

where ωc is the frequency for the oscillator of our system, ωi are the frequencies for the oscillators in

the environment, and ci is the coupling strength between the systemic and respective environmental

oscillators. Identifying for this particular system the operators Ei,{1,2} = {c∗i ai
†,ciai} and Si,{1,2} =

{a,a†}, and setting the environmental density matrices to be thermal states, ρE = ∏
e

ln
(

ni
1+ni

)
n̂i

1+ni
,

where n̄i is the initial expectation value for n̂i, and using Eq. (5.9), the Born-Markov master equation

is:

i
dρ

dt
= [ωcn̂,ρ]− i

((
n̂ρ −aρa†

)
η1 +

(
ρ n̂−aρa†

)
η
∗
1 +
(

ρ +ρ n̂−a†
ρa+ n̂ρ −aρa†

)
η2

)
(5.12)

where η1 = ∑
∞
i=0 |ci|2

∫
∞

0 eit(ωc−ωi)dt and η2 = ∑
∞
i=0 n̄i |ci|2

∫
∞

0 eit(ωc−ωi) + e−it(ωc−ωi)dt. This is

consistent with the literature [87]. Using the identity
∫

∞

0 e±i(Ω)dτ = πδ (Ω)± iP 1
Ω

where P is the

Cauchy principal part, we find

η1 =
∞

∑
i=0

|ci|2 (πδ (ωc −ωi)+ iP
1

ωc −ωi
dt)

=
∫

∞

i=0
|c(ωi)|2 (πδ (ωc −ωi)+ iP

1
(ωc −ωi)

)g(ωi)dωi

= π |c(ωc)|2 g(ωc)+ iP
∫

∞

i=0

|c(ωi)|2

ωc −ωi
g(ωi)dωi

=
γ

2
+ i∆ω

(5.13)

where we have assumed the ωi operators are close together, where g(ωi)dωi is the number of

modes in dωi and ωi +dωi, and we define γ = 2 |c(ωc)|2 g(ωc) and ∆ω = P
∫

∞

i=0
c(ωi)

2

ωc−ωi
g(ωi)dωi.
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Similarly,

η2 =
∫

∞

0
n̄(ωi)c(ωi)

2g(ωi)2πδ (ωc −ωi)dωi

= 2π n̄(ωc) |c(ωc)|2 g(ωc)

= 2n̄cγ.

(5.14)

Making these substitutions for η1 and η2, our master equation takes the form:

i
dρ

dt
=

(
(ωc +∆ω)[n̂,�]+ iγ

(
1
2

�+n̄ca† �a+(1+ n̄c)a�a† −
(

n̄c +
1
2

){
I
2
+ n̂,�

}))
ρ

(5.15)

with the curly brackets representing the anti-commutator and the empty box � representing a place

holder for an input in the superoperator after factoring out ρ .

Although Eq. (5.15) does not feature a traditional Hamiltonian, the differential equation is

still in a form applicable to the Wei-Norman procedure to solve for a time evolution operator that

forwards the dynamics of a given density matrix. In Eq. (5.15), we identify an associated Lie algebra

superoperator basis to be
{

a�a†,a† �a, 1
2

{
n̂+ 1

2 ,�
}
, 1

2 [n̂,�] ,�
}

with the commutation table:[
a† �a,a�a†

]
=−2

(
1
2

{
n̂+

1
2
,�
})

[
a† �a,

1
2

{
n̂+

1
2
,�
}]

=−a† �a[
a�a†,

1
2

{
n̂+

1
2
,�
}]

= a�a†

(5.16)

and with 1
2 [n̂,�] and � spanning the center of the Lie algebra.

For our Ansatz, we allow the time evolution superoperator, which propagates the density matrix

forward in time, to be of the form

U = eg1a�a†
eg2a†�aeg3( 1

2{n̂+ 1
2 ,�})eg4

1
2 [n̂,�]eg5�. (5.17)
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Using the Wei-Norman method given in Eq. (5.3), the differential equations for the gi functions are

i



g′1

g′2

g′3

g′4

g′5


=



1 g1
2 g1 0 0

0 1−2g1g2 −g2 0 0

0 2g1 1 0 0

0 0 0 1 0

0 0 0 0 1





iγ n̄c

iγ (1+ n̄c)

−2iγ (1+2n̄c)

2(ωc +∆ω)

i γ

2


. (5.18)

Note again, any unitarity conditions for the gi’s associated with this Lie algebra would not apply

here since the superoperator in Eq. (5.15) is not Hermitian. However, looking at this particular

differential equation, we can gather that g1, g2, g3, and g5 are real and g4 is purely imaginary.

If we assume η1, η2, and ωc to be constant, the differential equations in Eq. (5.18) yield the

solutions 

g1

g2

g3

g4

g5


=



1− 1
1+n̄c(1−e−tγ )

(1+ n̄c)(−1+ etγ +2n̄c (−1+ cosh(tγ)))

2ln
(

1
1+n̄c(1−e−tγ )

)
− tγ

−2it (ωc +∆ω)

γ

2t


. (5.19)

To assist with applying this time evolution superoperator U to a density matrix ρ , we state the

following properties:

eγ�
ρ = eγ

ρ

eγ[A,�]
ρ = eγA

ρe−γA

eγ{A,�}
ρ = eγA

ρeγA,

(5.20)

where A is an operator and γ is a scalar. Unfortunately, in order to apply terms such as eg1a†�a and

eg2a�a†
, it is often necessary to resort to the expansion

eγA�B
ρ =

∞

∑
i=0

γ
i A

iρBi

i!
, (5.21)
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where A and B are operators.

We now apply U to an initial coherent state density matrix ρ0 = |α⟩⟨α| using the following

coherent state properties:

a |α⟩= |α⟩α

eγa |α⟩= |α⟩eγα

eγ n̂ |α⟩= |αeγ⟩e
1
2(|αeγ |2−|α|2)

eγa†
|α⟩= |α + γ⟩e

|γ|2
2 +ℜ(γα∗)

⟨β |α⟩= e−
1
2(|α|2+|β |2−2αβ ∗)

⟨β |eγ n̂2
|α⟩= e−

1
2(|α|2+|β |2)

∞

∑
j=0

(αβ ∗) j

j!
eγ j2,

(5.22)

and using Eq. (5.20)-(5.21). Furthermore, noting g1, g2, g3, and g5 are real, and g4 is purely

imaginary (from Eq. (5.18)), we find the evolved density matrix is

ρ̃(t) =U |α⟩⟨α|= e
(
|α|2−|α ′|2(1+g2)

)
+g5

∣∣∣∣ α ′

α

∣∣∣∣ ∞

∑
i=0

g j
1

j!
a† j |α ′⟩⟨α ′|a j, (5.23)

with α ′ = αe
1
2 (g3+g4). Since Eq. (5.23) is not normalized, we divide it by its trace using Eq. (5.7) to

obtain the normalized density matrix:

ρ(t) =
ρ̃(t)∫

⟨z| ρ̃(t) |z⟩ dz2

π

= |1−g1|e
− g1

1−g1
|α ′|2 ∞

∑
j=0

g j
1

j!
a† j |α ′⟩⟨α ′|a j,

(5.24)

with α ′ = αe
1
2 (g3+g4). Note that after this renormalization only g1, g3, and g4 are relevant.

To monitor the decoherence, we take the trace of ρ2. Thus using the equation

∫
eA|z|2+Bz2+Cz∗2+Dz+Ez∗+Fdz2 =

e
CD2+A2F−4BCF−ADE+BE2

A2−4BC π√
A2 −4BC

(5.25)

to integrate, we find

tr
(
ρ(t)2)= 1−g1

1+g1
. (5.26)
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When assuming the constant case, thus applying Eq. (5.19), the trace simplifies to

tr
(
ρ(t)2)= 1

1+2n̄c (1− eγt)
, (5.27)

which is consistent with [15].

For a more graphical representation of this system, we solve for the Husimi and Wigner functions.

The Husimi function is given by

Q(z) =
1
π
⟨z|ρ(t) |z⟩= 1

π
(1−g1)e−(1−g1)|z−α ′|2, (5.28)

where |z⟩ is a coherent state. Since the Husimi function is in a Gaussian form, the Wigner function

is easily found using Eq. (5.25); thus

W (X ,P) =
κ

π
e−κ|X+iP−

√
2α ′

1−g1
|2
, (5.29)

where κ = 1−g1
1+g1

= tr
(
ρ2). For the constant case, using Eq. (5.19), we note α ′=α(1−g1)e−

1
2 t(γ+2i(∆ω+ω0)),

suggesting the Gaussian distribution of the Wigner function for the coherent state widens while the

center of the distribution decays to the origin.

5.4 Single Anharmonic Oscillator

We consider a single anharmonic oscillator as a simple harmonic oscillator with an assumed

quadratic term added given by the Hamiltonian

H = h̄ω

(
n̂+

1
2

)
+ h̄Ωn̂2. (5.30)

This is represents a nonlinear susceptibility [7], and is the simplest Hamiltonian that portrays

the evolution of an anharmonic oscillator. This system has been well explored [6, 7], but for the

purposes of comparison, we will review this system using the notation form of future Sections.
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The Lie algebra associated with this Hamiltonian is described simply by the basis elements

{n̂2, n̂, I}, all of which commute with each other. Thus, assuming the time evolution operator to be

of the form

U = eg1n̂2
eg2n̂eg3I, (5.31)

Eq. (5.3) yields

i


g′1(t)

g′2(t)

g′3(t)

=


1 0 0

0 1 0

0 0 1




Ω

ω

2

ω

4

 . (5.32)

Using a faithful representation and Eq. (5.5), we see the conditions for U to be unitary are

{ℜ(g1) = 0,ℜ(g2) = 0,ℜ(g3) = 0} , (5.33)

which is expected from the simple Lie algebra.

We will assume the initial state is a coherent state |α⟩. Applying the time evolution operator to

this initial state using the properties in Eq. (5.22), we find the time evolved state to be

U |α⟩= eiℑ(g1)n̂2
|α ′⟩eiℑ(g3) = e−

|α|2
2

∞

∑
n=0

ein2ℑ(g1)
α ′n
√

n!
|n⟩eiℑ(g3) (5.34)

where the kets |n⟩ are number states and α ′ = αeiℑ(g2). Some special states occur when ℑ(g1) =

2π/m where m is an integer. In such cases, the state can be written as a finite sum of coherent states.

For example, when ℑ(g1) = π/2, this becomes

U(ℑ(g1)→ π/2) |α⟩= e−
|α|2

2 eiℑ(g3)

(
∞

∑
n∈odd

ein2π/2 α ′n
√

n!
|n⟩+

∞

∑
n∈even

ein2π/2 α ′n
√

n!
|n⟩

)

= e−
|α|2

2 eiℑ(g3)

(
∞

∑
n∈odd

in((−1)(n−1)/2)n α ′n
√

n!
|n⟩+

∞

∑
n∈even

(−1)n α ′n
√

n!
|n⟩

)

= e−
|α|2

2 eiℑ(g3)

(
ie−

|α|2
2

∞

∑
n∈odd

α ′n
√

n!
|n⟩+ e−

|α|2
2

∞

∑
n∈even

α ′n
√

n!
|n⟩

)
.

(5.35)
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Noting that

|α ′⟩− |−α ′⟩
2

= e−
|α|2

2

∞

∑
n∈odd

α ′n
√

n!
|n⟩

|α ′⟩+ |−α ′⟩
2

= e−
|α|2

2

∞

∑
n∈even

α ′n
√

n!
|n⟩ ,

(5.36)

this reduces to

U(ℑ(g1)→ π/2) |α⟩= eiπ/4 |α ′⟩+ e−iπ/4 |−α
′⟩ , (5.37)

which turns out to be a cat state [10]. When ℑ(g1) = 2π/m where m is an integer, similar states

occur.

We can visualize this evolution using the Husimi function. Using Eq. (5.22), the Husimi function

is

Q(z) =
1
π
⟨z|U |α⟩⟨α|U† |z⟩= 1

π
e−|z|2−|α ′|2

∣∣∣∣∣∑n=0

(α ′z∗)n

n!
ein2ℑ(g1)

∣∣∣∣∣
2

, (5.38)

where α ′ = αeiℑ(g2). A plot of the Husimi function is given in Fig (5.1). In these plots, we froze

the motion due to the harmonic oscillator by forcing α ′ to be constant so we could focus on

the anharmonic effects. Note the cat state at ℑ(g1) =
π

2 as well as the formed or almost formed

superpositions of coherent states when ℑ(g1) =
π

8 , ℑ(g1) =
π

4 , and ℑ(g1) =
3π

8 . Further note that at

ℑ(g1) =
5π

16 it is near equal to π

3 which, leads to a three-way superposition of coherent states.

5.5 Anharmonic Double Oscillator with Partial Tracing

In this Section, we develop the dynamics of the time-dependent double anharmonic oscillator using

Lie algebraic techniques to add to the analysis of the anharmonic oscillator with infinite coupling in

the next Section. In the first subsection we develop the double harmonic oscillator. In the second

subsection, we add the anharmonic effects.
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Figure 5.1 Husimi function (πQ(z)) plots evolution with rotation due to harmonic motion
fixed for an initial coherent state. Note the cat state at ℑ(g1) =

π

2 as well as the formed
or almost formed superpositions of coherent states when ℑ(g1) =

π

8 , ℑ(g1) =
π

4 , and
ℑ(g1) =

3π

8 .
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5.5.1 Dynamics of the Double Oscillator

The general time-dependent double harmonic oscillator after taking the rotating wave approximation

is [88]

H = h̄
(

ω(t)n̂1 +Ω(t)n̂2 +g(t)∗a1a†
2 +g(t)a†

1a2

)
, (5.39)

where a1 and n̂1 correspond to the first harmonic oscillator, while a2 and n̂2 correspond to the second.

The terms ω(t)n̂1 and Ω(t)n̂2 correspond to the different potential wells, while g(t)∗a1a†
2+g(t)a†

1a2

is the term of interaction between the two. The basis
{

a1a†
2,a

†
1a2, n̂1, n̂2

}
forms a Lie algebra with

commutation relations:

[a1a†
2,a

†
1a2] = n̂2 − n̂1, [a1a†

2, n̂1] = a1a†
2, [a1a†

2, n̂2] =−a1a†
2,

[a†
1a2, n̂1] =−a†

1a2, [a†
1a2, n̂2] = a†

1a2,

[n̂1, n̂2] = 0.

(5.40)

This being a Lie algebra, we can set the time evolution operator to be

U = eg1 a1a†
2eg2 a†

1a2eg3 n̂1eg4 n̂2 (5.41)

where, using Eq. (5.3), we obtain the differential equations for the gi coefficients:

i



g′1

g′2

g′3

g′4


=



1 −g2
1 −g1 g1

0 1+2g1g2 g2 −g2

0 g1 1 0

0 −g1 0 1





g(t)

g(t)∗

ω(t)

Ω(t)


. (5.42)

For the constant case, after much simplification, the coefficients can be solved for as



g1

g2

g3

g4


=



− g∗
Ω−ω

2
1−icot( 1

2 tω ′)

gΩ−ω

ω ′2

(
1− cos(tω ′)− isin(tω ′) ω ′

Ω−ω

)
−ln

 e
1
2 it(ω+Ω)

cos( 1
2 tω ′)+

isin( 1
2 tω ′)

ω ′/(Ω−ω)


ln

 e−
1
2 it(ω+Ω)

cos( 1
2 tω ′)+

isin( 1
2 tω ′)

ω ′/(Ω−ω)




, (5.43)
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with ω ′ = (Ω−ω)

√
4
(

|g|
Ω−ω

)2
+1. Using a faithful representation and Eq. (5.5), we see the

conditions for U to be unitary are{
g2 =−

g∗1
1+ |g1|2

,ℜ(g3) =−1
2

ln
(
1+ |g1|2

)
,ℜ(g4) =

1
2

ln
(
1+ |g1|2

)}
, (5.44)

which is true for all time-dependent cases, and is consistent with the constant case in Eq. (5.43).

Thus, the time evolution operator U is determined by g1, ℑ(g3), and ℑ(g4).

We will now obtain the density matrix for this time evolution operator. We will allow the initial

density matrix to be a coherent state for oscillator 1 and a heat bath for oscillator 2. Thus, we allow

ρ0 = (1− eγ)eγ n̂2 |α0⟩1 ⟨α0|1 , (5.45)

where eγ = n̄
1+n̄ with n̄ as the initial expectation value of n̂2.

We will put the evolved density matrix in the coherent state representation, with a partial

trace over the second oscillator, placing an identity operator I =
∫
|β ′⟩2 ⟨β ′|2

dβ ′2

π
next to ρ0 for

convenience, and applying Eq. (5.22) and Eq. (5.25). We obtain

ρ1 (α1,α2) = ⟨α1|1 ρ1 |α2⟩1 =
∫

⟨α1|1 ⟨β |2Uρ0U† |α2⟩1 |β ⟩2
dβ 2

π
=∫

e−|α0|2−|β ′|2−|β |2+2ℜ(g3)|α0|2+eγ+g4β ′β ∗+eg∗4ββ ′∗
(1− eγ)

⟨α1|1 ea1β ∗g1ea†
1eγ+g4β ′g2 |eg3α0⟩

⟨eg3α0|ea1eg4
∗

β3
∗g2

∗
ea1

†βg1
∗
|α2⟩

dβ 2

π

dβ ′2

π
.

(5.46)

In order to evaluate further, we apply the property eAeB = eBeAe[A,B] when [A,B] commutes with

both A and B. Furthermore, we apply the unitary conditions in Eq. (5.44) and evaluate the integrals

using Eq. (5.25) to obtain

ρ1 (α1,α2) =
e−

|α1|
2+|α2|

2−2α1
∗α2

2 −(
α ′

0−α2)(α ′
0−α1)

∗

N

N
, (5.47)

with α ′
0 = α0

eiℑ(g3)√
1+|g1|2

and N = 1+ n̄
(

1−
(
|g1|2 +1

)−1
)

.
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If we note using Eq. (5.44) that

⟨α1|α ′
0/N⟩= e−

|α1|2
2 −|α0/N|2

2 +α1
∗(α0/N), (5.48)

we can expand Eq. (5.47) into an operator form. Observe

⟨α1|ρ1 |α2⟩=
e−

|α1|
2+|α2|

2−2α1
∗α2

2 −(
α ′

0−α2)(α ′
0−α1)

∗

N

N

=
1
N

e−
|α ′

0|
2

N +
|α ′

0|
2

N2 eα1
∗α2 ⟨α1|α ′

0/N⟩⟨α ′
0/N|α1⟩

=
1
N

e−
|α ′

0|
2

N +
|α ′

0|
2

N2
∞

∑
j=0

(
1− 1

N

) j

j!
⟨α1|α1

∗ j |α ′
0/N⟩⟨α ′

0/N|α2
j |α2⟩

= ⟨α1|

 1
N

e−
|α ′

0|
2

N +
|α ′

0|
2

N2
∞

∑
j=0

(
1− 1

N

) j

j!
a† j |α ′

0/N⟩⟨α ′
0/N|a j

 |α2⟩ .

(5.49)

Thus, an operator form of the density matrix for the partial traced double oscillator system is

ρ1 =
1
N

e−
|α ′

0|
2

N +
|α ′

0|
2

N2
∞

∑
j=0

(
1− 1

N

) j

j!
a† j |α ′

0/N⟩⟨α ′
0/N|a j. (5.50)

Taking the trace of ρ2
1 , we can obtain a measure of the decoherence of the system. Using the

coherent state representation in Eq. (5.47) along with the complex Gaussian integral formula in

Eq. (5.25), we find the simple form

tr
(
ρ

2
1
)
=
∫

ρ1
(
β ,β ′)

ρ1
(
β
′,β
) dβ 2

π

dβ ′2

π

=
1

|1−2N|
,

(5.51)

with N = 1+ n̄
(

1−
(
|g1|2 +1

)−1
)

. Note that this implies the decoherence of this time dependent

system is only determined by the energy of the environment, n̄, and the term |g1|2.

For confirmation of this result, we apply the constant case for g1 into the solution using Eq. (5.43).

After full simplification,

tr
(
ρ1

2)= 1

1+2n̄ |g|2 sin(ω ′)2

ω ′2

, (5.52)

which is consistent with [15].
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5.5.2 Anharmonic Effects Added

We will now look at the double oscillator with an anharmonic effect added to the first oscillator.

Specifically, we will use the Hamiltonian

H = h̄
(

ω(t)n̂1 +Ω(t)n̂2 + v(t)∗a1a†
2 + v(t)a†

1a2 +Bn̂2
1

)
, (5.53)

which is Eq. (5.39) with the h̄Bn̂2
1 term added. We note that with the additional n̂2

1 term, the Lie

algebra for this Hamiltonian does not close. We will thus change this system to the interaction

picture, then take a mean field approximation to make this system’s evolution more manageable

while retaining the anharmonic effects [89].

Changing into the interaction picture, we split the time evolution operator as U =U0Uint. We

set H0 = h̄Bn̂2
1 making U0 = eg0n̂2

1 where g0 is purely imaginary and g0 =−i
∫ t

0 B(τ)dτ . With this,

our interaction Hamiltonian becomes

H ′
int =U†

0 (Hh̄−H0h̄)U

= h̄
(

ω(t)n̂1 +Ω(t)n̂2 + v(t)∗
(

U†
0 a1U0

)
a†

2 + v(t)
(

U†
0 a†

1U0

)
a2

)
= h̄

(
ω(t)n̂1 +Ω(t)n̂2 + v(t)∗eiℑ(g0)(2n̂1+1)a1a†

2 + v(t)a†
1a2e−iℑ(g0)(2n̂1+1)

)
,

(5.54)

where we used the fact that a1F(n̂1) = F(n̂1 + 1)a1 to move the a1 and a†
1 terms next to the n̂2

1

exponentials. These exponentials of operator terms in the Hamiltonian make it so the Lie algebra

for the Hamiltonian will not close, so we now take the mean field approximation with respect

to the operator eiℑ(g0)(2n̂1+1) by replacing the operator with its expectation value [89]. With this

approximation, the Hamiltonian becomes

Hint = h̄
(

ω(t)n̂1 +Ω(t)n̂2 + v(t)∗ ⟨eiℑ(g0)(2n̂1+1)⟩a1a†
2 + v(t)a†

1a2 ⟨e−iℑ(g0)(2n̂1+1)⟩
)

= h̄
(

ω(t)n̂1 +Ω(t)n̂2 +g(t)∗a1a†
2 +g(t)a†

1a2

)
,

(5.55)

with g(t) = v(t)⟨e−iℑ(g0)(2n̂1+1)⟩. Thus, with the mean field approximation, the interaction Hamilto-

nian reduces to the case of the double harmonic oscillator given in Eq. (5.39). Thus, the interaction
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time evolution operator is given by Eq. (5.39), with the gi coefficients determined by Eq. (5.42),

with unitarity conditions determined by Eq. (5.44). Furthermore, we allow the initial state for the

second oscillator to be a thermal state, and the first oscillator to be a coherent state |α0⟩ as in the

previous section. Then, since U0 does not interact with a trace with respect to the second oscillators

system,

ρ1 = tr2

(
Uρ0U†

)
=U0 tr2

(
Uintρ0U†

int

)
U†

0

= eiℑ(g0)n̂2
1

 1
N

e−
|α ′

0|
2

N +
|α ′

0|
2

N2
∞

∑
j=0

(
1− 1

N

) j

j!
a† j |α ′

0/N⟩⟨α ′
0/N|a j

e−iℑ(g0)n̂2
1

=
1
N

e−
|α ′

0|
2

N +
|α ′

0|
2

N2
∞

∑
j=0

(
1− 1

N

) j

j!
a† j

eiℑ(g0)(n̂1+ j)2
|α ′

0/N⟩⟨α ′
0/N|e−iℑ(g0)(n̂1+ j)2

a j

=
1
N

e−
|α ′

0|
2

N +
|α ′

0|
2

N2
∞

∑
j=0

(
1− 1

N

) j

j!
a† j

eiℑ(g0)n̂2
1 |α ′

0e2 j iℑ(g0)/N⟩⟨α ′
0e2 j iℑ(g0)/N|e−iℑ(g0)n̂2

1a j,

(5.56)

with α ′
0 = α0

eiℑ(g3)√
1+|g1|2

and N = 1+ n̄
(

1−
(
|g1|2 +1

)−1
)

. This was done using Eq. (5.50), noting

F(n̂)a j = a jF(n̂+ j), and using the properties of coherent states given in Eq. (5.22).

With the density matrix given in Eq. (5.56), we can find the Husimi function. Again, using the
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coherent state properties given in Eq. (5.22), we find the Husimi Q(z) to be

Q(z) =
1
π
⟨z|ρ1 |z⟩

=
1

Nπ
e−

|α ′
0|

2

N +
|α ′

0|
2

N2
∞

∑
j=0

(
1− 1

N

) j

j!
z∗ j ⟨z|eiℑ(g0)n̂2

1 |α ′
0e2 j iℑ(g0)/N⟩⟨α ′

0e2 j iℑ(g0)/N|e−iℑ(g0)n̂2
1 |z⟩z j

=
1

Nπ
e−

|α ′
0|

2

N −|z|2
∞

∑
k=0

∞

∑
l=0

e−iℑ(g0)k2
(

zα ′∗
0

N

)k

k!

eiℑ(g0)l2
(

z∗α ′
0

N

)l

l!

∞

∑
j=0

((
1− 1

N

)
e2iℑ(g0)(l−k) |z|2

) j

j!

=
e
−

(
|α ′

0|
2

N +|z|2
)

Nπ

∞

∑
k=0

∞

∑
l=0

eiℑ(g0)(l2−k2)

(
zα ′∗

0
N

)k( z∗α ′
0

N

)l

k! l!
e|z|

2(1− 1
N )e2iℑ(g0)(l−k)

.

(5.57)

Looking at Eq. (5.57), we see that as N approaches 1, the Q(z) function here approaches the

evolution of the single anharmonic oscillator given in Eq. (5.38). Thus, when decoherence is low,

the evolution is similar to the usual anharmonic oscillator as expected. When N → ∞, i.e. when

decoherence is large, the terms where l and k are nonzero would fade away, leaving a wide Gaussian

at the origin. Further plots are given in Figs. (5.2)-(5.4).

5.6 Born-Markov Master Equation for Anharmonic Oscillator

Here we take a look at the Born-Markov approximation for an anharmonic oscillator coupled with

an infinite heat bath of environmental oscillators. The Hamiltonian for such a system is of the form

H = h̄

(
ωcn̂+Ωn̂2 +

∞

∑
i=1

ωin̂i +V ∗
i aai

† +Via†ai

)
, (5.58)

where h̄ωcn̂+ h̄Ωn̂2 is the Hamiltonian for the single anharmonic oscillator, and the terms with

subscript i refer to the oscillators to which the anharmonic system is coupled. Assuming the

environmental oscillators are in respective thermal states, and following the procedure described in
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Figure 5.2 Husimi function πQ(z) plots of the anharmonic double oscillator (given in
Eq. (5.57)) of varying decoherence and times. Left column is N = 1; middle column is
N = 2; right column is N = 3; and α ′

0 = 4 throughout.
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Figure 5.3 Husimi function πQ(z) plots of the anharmonic double oscillator (given in
Eq. (5.57)) of varying decoherence and times. Left column is N = 1; middle column is
N = 2; right column is N = 3; and α ′

0 = 4 throughout.
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Figure 5.4 Husimi function πQ(z) plots of the anharmonic double oscillator (given in
Eq. (5.57)) of varying decoherence and times. Left column is N = 1; middle column is
N = 2; right column is N = 3; and α ′

0 = 4 throughout.
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Eq. (5.9), the Born-Markov master equation for this system is

i
d
dt

ρ =[ω0n̂+Ωn̂2,�]

− i
(
�ν1(n̂)n̂+ n̂ν1(n̂)† −a�ν1(n̂)a† −aν1(n̂)† �a†

+�ν2(n̂)n̂+ n̂ν2(n̂)† �+�aν2(n̂)†a† −a�ν2(n̂)a†

−aν2(n̂)† �a† +aν2(n̂)a† �−a† �aν2(n̂)† −ν2(n̂)a† �a
)
,

(5.59)

where ν1(n̂)=∑
∞
i=0 |Vi|2

∫
∞

0 eiτ(−ω0+ωi+Ω(1−2n̂))dτ and ν2(n̂)=∑
∞
i=0 |Vi|2 n̄i

∫
∞

0 eiτ(−ω0+ωi+Ω(1−2n̂))dτ .

Note that when Ω approaches zero, Eq. (5.59) becomes the evolution of the Born-Markov approx-

imation of the harmonic oscillator with infinite couplings in Eq. (5.12). This leads to a difficult

problem. The terms ν1(n̂) and ν2(n̂) do not commute with the other operators, and as it stands,

the Lie algebra for this system does not close. There are several directions one can go with this

problem. We could take a mean field approximation of the terms ν1(n̂) and ν2(n̂). This would make

the equation similar to the Born-Markov equation for the harmonic oscillator Eq. (5.12) with an

added anharmonic term. One could go this direction, but there would be further complications

since the [n̂2,�] would not form a Lie algebra with the rest of the operators in the equation. Thus it

would require some sort of interaction picture for superoperators coupled with another mean field

approximation.

Instead, we will return to the Hamiltonian in Eq. (5.58) and apply an interaction picture form

much like in Section 5.5.2 with the anharmonic double oscillator.

Changing into the interaction picture, we split the time evolution operator such that U =U0Uint.

We set H0 = h̄Ωn̂2 making U0 = eg0n̂2
where g0 is purely imaginary and g0 =−i

∫ t
0 Ω(τ)dτ . With

this, our interaction Hamiltonian becomes

H ′
int =U†

0 (H −H0)U0

= h̄
(

ωcn̂+ωin̂i +V ∗
i

(
U†

0 acU0

)
a†

i +Vi

(
U†

0 a†
cU0

)
ai

)
= h̄

(
ωcn̂+ωin̂i +V ∗

i eiℑ(g0)(2n̂+1)aa†
i +Via†aie−iℑ(g0)(2n̂+1)

)
.

(5.60)
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To make this more manageable, we take the mean field approximation to create the new interaction

Hamiltonian

Hint = h̄

(
ω n̂+

∞

∑
i=1

ωin̂i +V ∗
i ⟨eiℑ(g0)(2n̂+1)⟩a1a†

i +Via
†
1ai ⟨e−iℑ(g0)(2n̂+1)⟩

)

= h̄

(
ω n̂+

∞

∑
i=1

ωin̂i + c∗i (t)aa†
i + ci(t)a†ai

)
,

(5.61)

with ci(t) = Vi ⟨e−iℑ(g0)(2n̂+1)⟩. Again, using Eq. (5.9) with the same assumptions as above, the

Born-Markov master equation for the interactive part of the density matrix is

i
dρI

dt
= [ωcn̂,ρI]−i

((
n̂ρI −aρIa†

)
η1 +

(
ρIn̂−aρIa†

)
η
∗
1 +
(

ρI +ρIn̂−a†
ρIa+ n̂ρI −aρIa†

)
η2

)
,

(5.62)

with η1 = ∑
∞
i=0
∫

∞

0 |ci|2 eit(ωc−ωi)dt and η2 = ∑
∞
i=0 n̄i

∫
∞

0 |ci|2
(

eit(ωc−ωi)+ e−it(ωc−ωi)
)

dt. This is

the same as equation Eq. (5.12) except that |ci|2 is time-dependent. We now use the real number

labels γ , n̄c ,and ∆ω to denote η1 =
γ

2 + i∆ω and η2 = 2n̄cγ . With these labels, the Born-Markov

master equation for the interaction density matrix becomes

i
dρI

dt
=

(
(ωc +∆ω)[n̂,�]+ iγ

(
1
2

�+n̄ca† �a+(1+ n̄c)a�a† −
(

n̄c +
1
2

){
I
2
+ n̂,�

}))
ρI,

(5.63)

which is the same form as Eq. (5.15). Thus, all the results of Eqs.(5.15)-(5.29) for the harmonic

oscillator with infinite couplings with the Born-Markov approximation apply for the interaction

density matrix ρI for this case. In particular,

ρI(t) = |1−g1|e
− g1

1−g1
|α ′|2 ∞

∑
j=0

g j
1

j!
a† j |α ′⟩⟨α ′|a j, (5.64)
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with α ′ = αe
1
2 (g3+g4) and

i



g′1

g′2

g′3

g′4

g′5


=



1 g1
2 g1 0 0

0 1−2g1g2 −g2 0 0

0 2g1 1 0 0

0 0 0 1 0

0 0 0 0 1





iγ n̄c

iγ (1+ n̄c)

−2iγ (1+2n̄c)

2(ωc +∆ω)

i γ

2


. (5.65)

If we take Eq. (5.64) and make the replacements g1 → (1− 1
N ) and α ′ → α ′

0
N , then the form of

the interaction density matrix is the same as the interaction density matrix for the double oscillator

with an anharmonic term in Eq. (5.50). Thus, Eqs. (5.47)-(5.51) apply to this interaction density

matrix with the substitutions α ′
0 → α ′/(1−g1) and N → 1/(1−g1) . Since the U0 is of the same

form as well, we will copy down the evolved density matrix for the double oscillator with an

anharmonic term Eq. (5.56) with the replacements α ′
0 → α ′/(1−g1) and N → 1/(1−g1). Thus,

the density matrix of the anharmonic oscillator with infinite couplings and with the mean field and

the Born-Markov approximations is

ρ(t) = (1−g1)e−g1|α ′|2
∞

∑
j=0

(g1)
j

j!
a† j

eiℑ(g0)n̂2
|α ′e2 j iℑ(g0)⟩⟨α ′e2 j iℑ(g0)|e−iℑ(g0)n̂2

a j, (5.66)

with α ′ = αe
1
2 (g3+g4). Applying the same replacements to Eq. (5.57), we see the Husimi Q function

takes the form

Q(z) =
1
π
(1−g1)e

−
(

|α ′|2
(1−g1)

+|z|2
)

∞

∑
k=0

∞

∑
l=0

eiℑ(g0)(l2−k2) (zα ′∗)k (z∗α ′)l

k! l!
e|z|

2g1e2iℑ(g0)(l−k)
, (5.67)

Once again, we see that as g1 → 0, the Husimi function Eq. (5.67) approaches the form of the

single anharmonic oscillator in Eq. (5.38). Looking at Eq. (5.65), we see that there is a connection

between g1 and g3 that is not apparent in Eq. (5.67). Using the constant case given in Eq. (5.19), we

see α ′ = (1− g1)e−
1
2 t(γ+2i(ω0+∆ω)) and g1 = 1− 1

1+n̄c(1−e−tγ ) . Thus, as time evolves, the Husimi

function collapses to a wide Gaussian distribution centered at the origin, much like the evolution for

the double anharmonic oscillator and the Born-Markov master equation for the harmonic oscillator.
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5.7 Conclusion

In this paper we explore the dynamic evolution and decoherence of the anharmonic oscillator

with infinite coupling using the Born-Markov master equation. This is done by exploiting the Lie

algebraic structure of the Born-Markov master equation’s superoperators after applying a mean

field approximation. We have also analyzed the evolution of the time-dependent anharmonic

double oscillator and its decoherence. We have seen that the anharmonic double oscillator and

the anharmonic oscillator with the Born-Markov approximation take similar forms using the Lie

algebraic structure. The difference in these are mostly hidden in the exponential gi coefficients. We

plotted the Husimi functions of these and viewed cat states with varying degrees of decoherence.

We see the Husimi function for the anharmonic double oscillator collapses to a wide Gaussian

distribution as the decoherence effects become large, similar to the Born-Markov master equation

for the simple harmonic oscillator. Because the structure of the anharmonic oscillator with the

Born-Markov master equation is Lie algebraically similar to the double anharmonic oscillator, the

effects of large decoherence on the anharmonic oscillator with the Born-Markov master equation

are much the same.



Chapter 6

Results Summary

We explored the effects of decoherence in various systems. These include the harmonic oscillator

with infinite coupling using the Born-Markov approximation in Section 5.2.3, the anharmonic double

oscillator in Chapter 5.5, the optomechanical system with second order coupling in Chapter 4.1, and

the anharmonic oscillator with infinite coupling using the Born-Markov approximation in Chapter

5.6. We established that the anharmonic Born-Markov oscillator had a structure similar to the

anharmonic double oscillator, and both act similar to the evolution of the single anharmonic oscillator.

Looking at the density matrices and Husimi functions, we have found that the decoherence effects

for the anharmonic oscillators with both Born-Markov and double oscillators cause a dissociative

bulging, as expected, whereas the decoherence effects of the optomechanical system create rotational

smearing with the second order coupling in the system causing rotational smearing after squeezing.

We also found the unitarity conditions for several systems which give effective time dependent

restrictions for the time evolution operators. We also solved for the g-Matrix for many systems

which determine the dynamics of the time evolution operators according to Eq. (5.3). The g-Matrix

and unitarity conditions for the systems studied are given in Table (6.1).

Also, in Chapter 3, we made progress in quantum control. We developed a method for using

faithful representations of Lie algebras associated with the Hamiltonian to control the dynamics of

100
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the generalized Caldirola-Kanai system using timing to apply fluctuations of arbitrary shape to the

Hamiltonian to control the system’s time evolution. This technique could be applied to all systems

with a Lie algebraic Hamiltonian. Furthermore, many of the results throughout this dissertation are

written in terms of the gi coefficients which are directly linked, via the g-Matrix, to any general

time dependent Hamiltonian fulfilling the Lie algebra requirements. These are shown in Table 6.1.

This allows for direct control links from the time evolution operator and density matrices to the

Hamiltonian, thus dictating the time evolution of the Hamiltonian to control the quantum system’s

state.



102

Table 6.1 Wei-Norman and Unitarity Conditions Results Summary

System Evolution operator U g-Matrix Unitarity Conditions

Driven

Oscillator

eg1a†
eg2aeg3n̂eg4I



1 0 g1 0

0 1 −g2 0

0 0 1 0

0 g1 0 1


g2 =−g1

∗

ℜ(g3) =0

ℜ(g4) =− |g1|2

2

Born-Markov

Oscillator

eg1a�a†
eg2a†�aeg3( 1

2{n̂+ 1
2 ,�})

× eg4
1
2 [n̂,�]eg5�



1 g1
2 g1 0 0

0 1−2g1g2 −g2 0 0

0 2g1 1 0 0

0 0 0 1 0

0 0 0 0 1


N/A

Anharmonic

Oscillator

eg1n̂2
eg2n̂eg3I


1 0 0

0 1 0

0 0 1


ℜ(g1) = 0

ℜ(g2) = 0

ℜ(g3) = 0

Generalized

C-K

eg1
a†2

2 eg2
a2
2 eg3

1
2 (a

†a+ 1
2 )


1 g1

2 g1

0 1−2g1g2 −g2

0 2g1 1


g2 =− g∗1

1−|g1|2

ℜ(g3) = ln
(

1−|g1|2
)

Double

Oscillator

eg1 a1a†
2eg2 a†

1a2eg3 n̂1eg4 n̂2



1 −g2
1 −g1 g1

0 1+2g1g2 g2 −g2

0 g1 1 0

0 −g1 0 1


g2 =− g∗1

1+ |g1|2

ℜ(g3) =−1
2

ln
(
1+ |g1|2

)
ℜ(g4) =

1
2

ln
(
1+ |g1|2

)

Optomechan-

ical Oscillator

eg1n̂2
eg2n̂eg3n̂b†

eg4n̂beg5b†b



1 0 0 g3 0

0 1 0 0 0

0 0 1 0 g3

0 0 0 1 −g4

0 0 0 0 1



ℜ(g2) = 0

ℜ(g5) = 0

ℜ(g1) =−|g3|2

2

g4 =−g∗3
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