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ABSTRACT

Modeling Inter-Particle Magnetic Correlations in Magnetite Nanoparticle
Assemblies Using X-ray Magnetic Scattering Data

Johnathon Michael Rackham
Department of Physics and Astronomy, BYU

Master of Science

Magnetic nanoparticles are used in nanotechnologies and biomedical applications, such as
drug targeting, hyperthermia, MRI contrasting agents, and bio-separation of compound solutions.
Magnetite (Fe3O4) nanoparticles stand to be effective in these roles due to the non-toxic nature of
magnetite and its ease of manufacture. To this end, a greater understanding of the magnetic behavior
of the individual magnetite nanoparticles is needed when a collection of them is used. This research
seeks to discover the local magnetic ordering of ensembles of magnetite nanoparticles at various
stages of the magnetization process, temperatures above and below their blocking temperature, and
for various particle sizes. We use x-ray circular dichroism and x-ray resonant magnetic scattering
(XRMS), which provides information about the magnetic orders in the samples. Here we discuss
the modeling of the magnetic scattering data using a one-dimensional chain of nanoparticles in
real space as well as an empirical Gaussian packet model in reciprocal space. We find that at low
temperature, and field values close to the coercive point, magnetite nanoparticles experience a
significant amount of antiferromagnetic ordering that increases with particle size.

Keywords: magnetite, nanoparticles, magnetic scattering, XRMS, computational modeling
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Chapter 1

Introduction and Background

1.1 Motivation

Magnetic nanoparticles (NPs) are quickly becoming an integral part of many industries such as

biomedicine, computer hardware, and even the automotive industry [1]. The biomedical industry

is exploring the use of magnetic NPs in various applications such as MRI contrasting agents, but

also for additional use in drug targeting, hyperthermia, and bio-separation [2–4]. Also, computer

systems rely on data storage and magnetic NPs could provide a better way to manufacture long term

high density magnetic storage media [5]. Additionally, the engineers of suspension systems in high

performance vehicles are also exploring the use of magnetic NPs to dynamically alter the viscosity

of shock absorber dampening fluids [6].

Magnetite (Fe3O4) is a commonly occurring ferromagnetic iron oxide found in many minerals,

which makes it an ideal candidate for the applications mentioned above because of its non-toxic

nature and how easy it is to manufacture at scale. Successfully optimizing the use of magnetite

NPs for use these applications, and many others, could lead to breakthroughs in cancer diagnosis

and treatment, faster computers, and safer vehicles. However, in order to accomplish this we need

1



1.2 Prior Work 2

a greater understanding of how assemblies of magnetite NPs behave while exposed to external

magnetic fields.

The properties of bulk materials are largely determined by the arrangement of the atoms that

make up their composition. Because of the greater ratio of surface area to volume, NPs potentially

exhibit properties that differ from the material in bulk form. We are primarily concerned with the

properties that express on the nanoscale. In particular, the particle size, how easily NPs self-assemble

into regular arrangements, and how the nanospin moments behave.

The behavior of nanospin moments gives rise to a unique magnetic phase called superparamag-

netism which is the tendency of sufficiently small particles to randomly flip nanospin orientation

due to thermal activation. However, if the temperature is small there is not enough thermal energy

for the random flip to occur within typically measured time frames and the particle is considered

magnetically blocked. The temperature at which this occurs is the blocking temperature (TB). The

existing magnetic correlations and the dynamics of magnetic fluctuation are some of the character-

istics traits of NP assemblies that needs to be understood. To this end, we are employing several

methods of probing the characteristics of NPs to determine the necessary information for improving

the application of magnetite NPs.

1.2 Prior Work

Magnetite’s bulk properties are well established [7]. Because of the rising interest in the material in

its nanoparticle form, recent research has focused on probing the magnetic properties of collections

of NP, which may be in the form of a powder or thin monolayered assembly [8]. The particular

samples we examine in this work were fabricated at Brigham Young University (BYU) using an

organic solution method. The characterization of these samples begins with x-ray diffraction (XRD).

The XRD measurements reveal that the spectrum of individual particles is consistent with the
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crystal structure of bulk magnetite [8], as shown in Figure 2.1. Additionally, transmission electron

microscopy (TEM) images were used to determine the distribution of particle sizes present in the

samples and example images are also shown in Figure 2.1. The collective magnetic behavior of

the samples was determined using vibrating sample magnetometry (VSM). The magnetization

loops measured at various temperatures showed a smooth Langevin-type shape, characteristic

of superparamagnetic behavior at high temperatures [9]. Zero-Field-Cooling (ZFC) and Field

Cooling (FC) curves also indicated superparamagnetic behavior with blocking temperatures that

are directly correlated to the size of NPs [10]. The prior work done on this topic suggests that

for larger particles there may be inter-particle coupling at low external field values that could

cause interesting magnetic ordering within the ensembles of NPs. To determine the orbital and

spin contributions to the magnetic moment of our Fe3O4 NPs we used x-ray magnetic circular

dichroism (XMCD). Furthermore, to probe the nanoscale magnetic correlations we used x-ray

resonant magnetic scattering (XRMS)

1.3 Statement Problem and Thesis

A more detailed accounting of these characteristics, specifically for the 5 and 11 nm Fe3O4 NPs

examined by this work, is reported in this thesis. In particular, what we thoroughly explored is

the behavior of magnetite NP assemblies when exposed to the external magnetic fields that the

applications mentioned above potentially require. This work seeks to discover and characterize the

local magnetic ordering of magnetite NP assemblies using XRMS data collected at synchrotron

facilities and a modeling process in both real and reciprocal space.



Chapter 2

Sample and Data Preparation

2.1 Characterization of Samples

This work examines magnetite NP assemblies of two particle diameters, one of 5 nm and another

of 11 nm. These samples were prepared in collaboration with Dr. Roger Harrison of the Brigham

Young University Chemistry Department. The exact procedure used to manufacture the NPs can

be found here [8, 10, 11]. As mentioned above the NP characteristics were previously determined

in our lab on campus via XRD, TEM, and VSM. The TEM imaging and ZFC/FC results are of

particular interest here and later informed the parameters used in the modeling processes including

the temperature and field values the data was collected at. The TEM images, shown in Fig. 2.1, show

that the 5 nm diameter NP assemblies are more homogeneous in size than the 11 nm NP assemblies.

This homogeneity leads to more closely packed arrangements (as seen on the TEM images). The

FC and ZFC measurements were taken by cooling the sample in the presence of an external field

(FC), or without a field presence (ZFC), respectively. The magnetization is then tracked as the

temperature of the sample is increased. Larger diameter NPs have higher blocking temperatures (TB)

compared to smaller particles: precisely TB = 25 K for the 5 nm NP whereas TB ∼ 170 K for 11 nm

4



2.1 Characterization of Samples 5

Figure 2.1 TEM images and XRD patterns of the Fe3O4 nanoparticles (A) 5 nm (B) 8 nm
(C) 11nm. Extracted from [10].

Figure 2.2 (a-c) ZFC/FC measurements of sample A (5 nm), B (8 nm), and C (11 nm)
measured at 100 Oe. (d) Magnetization curves, measured at 400 K and (e) at 20 K. Insets:
close-up on hysteresis extracted from [10].

NPs. When below the blocking temperature, the particles remain magnetically frozen and do not

have enough thermal energy for the nanospin moment to flip in a typical observation timescale [10].
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The VSM magnetization loops define the saturation and coercive points for each sample, and the

hysteresis exhibited at low applied field values gives an indication of some manner of inter particle

coupling. This coupling could result in interesting magnetic ordering in the samples. The following

table comprises a summary of the characteristic quantities for the samples used in this work.

Sample NP5 NP11

Average Diameter 5 nm 11 nm

Diameter Variance ±0.7 nm ±2.5 nm

Blocking Temperature 25 K ∼ 170 K

M3000/Ms at 300 K 0.575 0.908

M3000/Ms at 20 K 0.829 0.899

Hc at 300 K 0 Oe 0 Oe

Hc at 20 K 0 Oe -300 Oe

Table 2.1 Summary of magnetic sample characteristics determined by VSM magnetometry
and TEM images. M3000/Ms is the ratio of the magnetization taken at field value of 3000
Oe and the magnetization at saturation. Hc is the coercive point. Data extracted from TEM,
XRD, VSM measurements carried at BYU by the Chesnel group.

2.2 XMCD and XRMS Diffraction Images

In addition to the magnetic characterization detailed above, the bulk of the data used in this work

is comprised of x-ray resonant magnetic scattering (XMRS) diffraction images. These XRMS

images were collected at opposite helicities of circular polarized light whose energy was tuned to

the L3 resonant edge of Fe for magneto-optical contrast. These data were collected at the Stanford

Synchrotron Radiation Lightsource with an optical setup detailed here [12]. When the x-ray energy

is tuned to a resonant edge it provides necessary magneto-optical contrast to provide magnetic

scattering information. Additionally, the use of partially coherent x-ray light leads to coherent
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(a) (b)

Figure 2.3 (a) Example of an XRMS diffraction pattern. (b) Resulting speckle pattern
after extracting the coherent signal extracted from [9].

scattering in the form of a speckle pattern. The speckle pattern found in the coherent portion of the

diffraction images constitutes a unique fingerprint of the magnetic ordering in real space at the time

of illumination. By examining changes in the diffraction images it is possible to extract information

about the local magnetic ordering as a function of temperature and applied field for a given particle

size. Figure 2.3 shows example diffraction images and the resulting speckle pattern. However, in

this thesis work, we did not focus on the speckle patterns themselves, but instead we utilized signals

constructed from the images in a manner detailed below.

2.2.1 Preparation of Data

We use the XRMS speckle patterns to construct 1D signals by first integrating them azimuthally and

then examining the changes between data collected at opposite helicities of the incident x-ray light.

To reduce the 2D diffraction images we angularly integrate around the center of the diffraction ring

to project the signal into 1D. To separate the charge scattering signal from the magnetic scattering
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signal we compare signals collected at opposite helicities of the light, I+ and I−. The charge

scattering signal is estimated via the sum Ic = I++ I−. The magnetic ratio

Rm =
I+− I−√
I++ I−

derived in appendix A, gives us information about the magnetic scattering signal from which

we hope to extract information on magnetic ordering. Due to variances in the incident beamline

intensity, thermal drift, and other factors outside of experimental control, it is difficult to directly

compare the absolute magnitude of Ic and Rm. Here we focus essentially on their dependence with

the scattering vector q, which has the most important information about magnetic ordering. To make

comparison at various fields and temperatures possible, we normalize the signals at the maximum

value of the main peak at position q∗ as shown in Figure 2.4 where we provide examples of the

NP11 sample data. The shape of the charge scattering signals does not significantly vary when an

external magnetic field is applied and changed in magnitude. This indicates that the NPs in the

assemblies are not physically moving around on the mounting substrate as an external magnetic field

is applied. The interesting features are found in the way the magnetic scattering ratio Rm changes

with the applied field. Panel (b) of Figure 2.4 shows the shape of the Rm drastically changing with

the external field H in particular at q∗/2. Next, we discuss the formulation of the models used to

recreate Rm and extract information about magnetic correlations from it.
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(a)

(b)

Figure 2.4 Data collected from the 11 nm sample at 300 K with applied field values
ranging from 100 to 3000 Oe. (a) The charge scattering signals (b) Magnetic Scattering
signals found with the magnetic ratio.



Chapter 3

Models

3.1 Formulation

Predictive models typically fall on a point somewhere along the axis spanning from a purely

mechanistic to purely empirical formulation. On one hand, mechanistic models seek to describe

phenomena based on deterministic physical laws expressed as derivations of independent variables.

On the other hand, empirical models make no attempt to use physical laws to explain phenomena,

but instead only fit observed data and utilize extrapolation or interpolation to predict outcomes. This

work examines the behavior of magnetite NP assemblies through both a mechanistic simulation

of particle assemblies in real space and through an empirical fitting process of the XRMS data

collected in reciprocal space.

As mentioned in section 2.2 the number of particles illuminated by the x-ray beam is sufficiently

large (in the order of millions) to make direct simulation computationally impossible. In order to

model the magnetic behavior of the NP assemblies we make two main simplifications so the problem

becomes tractable. The first assumption is that the physics governing the NP interactions can largely

be captured by using a 1D representation of the NP assembly as a chain of spherical particles.

10



3.1 Formulation 11

Given the high number of NPs illuminated, which averages the multiple lattice orientations, the 2D

magnetic correlations function is nearly isotropic and its radial part can therefore be represented by

a 1D model. Second, we assume that the lengths associated to the various magnetic correlations die

off rapidly enough to ensure that these chains can be finite in length. We account for the variance in

particle spacing and diameter present in the samples by averaging multiple chain models together

before Fourier transforming the resulting charge density function and comparing the result to the

data that was shown in section 2.2.1.

3.1.1 1D Nanoparticle Chains

We begin the modeling process by constructing 1D chains of spherical NPs using a particle diameter

and spacing estimated from the distributions measured from the TEM images of the samples shown

in Table 2.1 and illustrated in figure 3.1. With these values, the 3D charge density function (CDF)

we project spheres of the given diameters and spacing into a 1D CDF as illustrated in Figure 3.2a.

We then construct and average ten additional chains, each with values uniformly sampled from the

observed distribution of particle diameters and spacing. The weighted summation of this collection

of 1D chains serves as the representation of the NP assembly in real space. The resulting average

CDF is then a function of position r and fitting parameters, θθθ , and takes the form

C(θθθ ;r) = ∑
i

P(i)φi(θθθ ;r) (3.1)

where φi is the 1D chain for a given diameter and spacing. P(i) is the probability of that chain

occurring based on the observed distribution of particle size and spacing measured from the TEM

images discussed in Section 2.1. θθθ is a vector of parameters used in the model and fitting methods

described in chapter 4.

From the chains used to construct the CDF we create "magnetic density functions" (MDF)

representing various magnetic orders, including ferromagnetic (FM) and anti-ferromagnetic ordering
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Figure 3.1 (a) Illustration of charge density chains using particle radius(R), period (p)
and particle spacing (L). (b) Illustration magnetic NP chains exhibiting AF and FM
ordering [13]

(a) (b) (c)

Figure 3.2 (a) Charge density function representing a chain of spherical NP of specific
diameter and spacing into 1D. (b) Summed charge density function. (c) Fourier Transform
of charge density function
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(a) Ferromagnetic MDF Chain (b) Anti-ferromagnetic MDF Chain

Figure 3.3 Examples of magnetic order chains convoluted with a Gaussian function to
determine correlations

(AF), by assigning the corresponding spin values to each particle site in the chain. The convolution

of a Gaussian function centered at r = 0 and the MDF accounts for magnetic correlation lengths as

shown in figure 3.3.

The resulting MDF for the FM and AF ordering are respectively:

FM(θθθ ;r) = ∑
i

SFM,i(r)P(i)φi(θθθ ;r)NFM(θθθ ;r) (3.2)

AF(θθθ ;r) = ∑
i

SAF,i(r)P(i)φi(θθθ ;r)NAF(θθθ ;r) (3.3)

Equations 3.2-3 describe these spin chains with N being the normal Gaussian functions for the

respective FM and AF correlations and SFM,i and SAF,i are functions containing the corresponding

spin values.

We then form the overall magnetic density function M(θ ;r) from a linear combination of the

FM and AF functions as follows

M(θθθ ;r) = c1 FM(θθθ ;r)+ c2 AF(θθθ ;r)

where c1 and c2 are the weighing coefficients for the linear combination of FM and AF orders in the
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Parameter Description

θ1 mean particle separation (L0)

θ2 charge signal offset

θ3 magnetic signal offset

θ4 AF component(c2)

θ5 charge peak magnitude

θ6 magnetic central (q=0) peak height

θ7 charge central (q=0) peak height

θ8 FM correlation length (σFM)

θ9 AF correlation length (σAF )

θ10 Charge peak width

θ11 magnetic central (q=0) width

θ12 charge central (q=0) peak width

Table 3.1 Description of the parameters used in the nano chain model

mix and are contained in the parameter vector θθθ . A full detailing of the parameter vector is shown

in Table 3.1. The Fourier transforms of C and M, C̃(θθθ ;q) and M̃(θθθ ;q) respectively, are then used to

construct the charge intensity, Ic and Rm signals ready for fitting to the data as follows (derivation in

Appendix A):

Ic =|C̃|2

Rm =
|Re(M̃)[β Re(C̃)+α Im(C̃)]− Im(M̃)[α Re(C̃)+β Im(C̃)]

|C̃|

where Re and Im are the real and imaginary parts of complex quantities, and α and β are the real

and imaginary components of the complex index of refraction for magnetite.
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Figure 3.4 Overview of computation flow for the nano chain model beginning at charge
density function construction through to signal generation.

3.1.2 Empirical Gaussian Fit

In addition to the real space model discussed above, we also make use of an empirical model

composed of a sequence of Gaussian packets to fit the signals Ic and Rm directly to the reciprocal

space scattering data and extract values for the correlations and relative amounts of FM and AF

ordering present in the samples. This method relies on an examination of the features present in

the q-space charge scattering signal Ic(q) and magnetic ratio signal Rm(q). For each sample, both

the Ic(q) and Rm(q) signal exhibit a primary peak located near q∗. In the case of Ic(q) this peak

corresponds to the average inter-particle distance, and for Rm(q), this peak corresponds to a FM

ordering as every particle is aligned with its neighbors. In the case of Ic(q), the position of the peak

does not noteably shift at all with the applied field. Because of this, we first use a simple fit of the

charge scattering signal to find the value of q∗ which then determines the initial value of the FM

peak position parameter. Another region of interest in the Rm signal is located around q∗/2. This is
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Parameter Description Constraints

θ1 Central Amplitude [0,∞)

θ2 Central Width (0,∞)

θ3 FM Amplitude (0,∞)

θ4 FM Width (0,σ∗)

θ5 FM Peak Position q∗± ε

θ6 AF Amplitude θ6 <
(1−V SM)θ3

V SM

θ7 AF Width (0,σ∗)

θ8 AF Peak Position q∗
2 ± ε

θ9 Baseline Offset [0,∞)

Table 3.2 Description of the parameters used in the empirical fitting model and their
respective constraints. σ∗ was chosen to be ∼ 0.15 nm−1 so that the parameter would not
get trapped at extreme values during optimization. ε is about 3% of q∗. V SM is the value
for the M/Ms ratios extracted from the VSM data and is used as a normalizing factor.

of note because half the distance of q∗ in reciprocal space translates into to a period in real space

that is twice as long as the average inter particle spacing and which therefore corresponds to AF

ordering. To model the Rm(q) data we then sum the Gaussian functions for FM, AF and random

order with a baseline shift as follows:

Rm(θθθ ;q) =
θ1

θ2
√

2π
exp(

−q2

2θ 2
2
)+

θ3

θ4
√

2π
exp(

−(q−θ5)
2

2θ 2
4

)+
θ6

θ7
√

2π
exp(

−(q−θ8)
2

2θ 2
7

)+θ9

where the variables are described in detail in Table 3.2
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3.2 Parameter Optimization Methods

3.2.1 Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm [14, 15] is a robust and efficient method for solving

non-linear least squares problems and is generally considered to be the best starting point for

non-linear parameter optimization. Broadly speaking the LM algorithm takes best elements of the

Gauss-Newton and gradient descent methods by interpolating between the two through the use of a

damping coefficient. This work uses the implementation of the LM algorithm found in the LMfit

python library [16]

3.2.2 Basin Hopping

One of the significant problems we encountered during the search for best fit parameters was with

the LM algorithm falling into local minima rather than the ideal global minimum that we were

looking for. The reciprocal space model was particularly vulnerable to local minima because the

summation of the variables used often meant there were different combinations of parameter values

that yielded the same result. The constraints we imposed on the parameters helped to alleviate this.

But we needed to employ a basin hopping algorithm, on top of the LM fitting process, to jostle fit

results out of flat or otherwise shallow anomalies in the profile likelihoods for our parameters of

interest.

The basin hopping algorithm [17] works by taking the last best fit results and applying a small

random perturbation to the parameter values. These new perturbed values are then used as the initial

values for a subsequent run the LM fitting process. We used the implementation of basin hopping

found in the LMfit python library [16] with the number of iterations set at 200 hops. We found that

this value was sufficient to arrive at the global minimum within the constraints.



Chapter 4

Results and Analysis

The great British statistician, George Box, is often attributed with the saying "all models are wrong,

but some are useful" [18]. This aphorism points to one of the core concerns at the heart of any

modeling process: how reliable are a model’s results? Here we examine the results of applying the

two models described above and the methods we used to analyze their reliability and quantify their

error. We first examine the Fisher information matrix (FIM) associated with the model for a given

data point and, when applicable, construct profile likelihoods for our parameters of interest.

4.1 Fisher Information Matrix

The Fisher Information Matrix (FIM) formalism is a method intended to determine how well

the model parameters are constrained by the data. A more in-depth discussion of the method

and Fisher information in general can be found here [19, 20]. The essence of the technique is

that the eigenvectors and eigenvalues of the FIM contain information about how well a model

transforms points in parameter space to points in data space. The eigenvectors represent important

directions in parameter space, while the eigenvalues associated with each eigenvector give an

indication of how relevant that direction is to the model transformation. Eigenvectors with small

18



4.2 Profile Likelihood 19

eigenvalues correspond to directions, or changes in parameter values, that have lesser effects on

the transformation’s output. Figure 4.2 shows the difference between the eigensystem of a well

constrained model versus one where the model is poorly constrained results and where some

parameters could likely be omitted from the model without loss of predictive capability. In the initial

iteration of the empirical fit model we used parameters for the FM and AF amplitudes constrained

only by the simple bounds of [0,∞), which led to poorly conditioned FIM results and we found that

reparameterizing the AF parameter to include constraints as shown in in table 3.2 improved the

eigensystems for the FIM across the data sets.

4.2 Profile Likelihood

The FIM method of determining the error and confidence in the results was generally sufficient for

the nano-chain model, but due to the distinct non-linearity of the empirical fitting model we utilized

the profile likelihood method to quantify the error ranges for the ratio of AF to FM ordering present

in the samples. The profile likelihood method uses the f-test to compare an alternate model to the

best fit result and determine to a given confidence value how much of the difference between the

two models is the result of a significant change in parameters and not just due to the loss of a degree

of freedom.

F(Pf ix,N −P) = (
χ2

f

χ2
0
−1)

N −P
Pf ix

(4.1)

where χ2
0 is the residual of the best fit, and χ2

f the residual of a test model. Additionally, Pf ix is the

number of fixed parameters in the alternate model, N the number of data points, and P the number

of parameters in the best fit model. In our case, for the construction of the profile likelihood we

fixed one parameter in the test models, and there are N = 152 data points and P = 9 parameters in

the best fit model, leading to F(1,143) = 3.907. Using this value to solve the above equation for χ2
f

gives us all the models whose parameter result falls within the 95% confidence interval. Figure 4.1
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Figure 4.1 Example profile likelihood constructed by fixing the AF/FM ratio and letting
the remaining variables freely vary during the parameter optimization. The red horizontal
line corresponds to the χ2

f solution of equation 4.1. The boundaries of the confidence
interval is constructed by projecting the intersection points between the red horizontal line
and the profile down to the x-axis.

shows the line of demarcation for accepted test models. Where the line intersects with the profile

likelihood determines the bounds on the parameter of interest. While the profile likelihood method

can yield better results, it is quite computationally expensive to run. Therefore we only constructed

the profiles for the main figure of interest.

4.3 Model Results

This work applies the nano chain model to the NP11 sample and uses the FIM to calculate the

standard error in the parameters of interest. We also examine how reducible the nanochain model is

and what constraints the data imposes upon the transformation from parameter space to data space
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using the methods described above. We apply the Gaussian empirical fit to both NP11 (at 20 K, 280

K) and NP5 (at 15 K, 300 K) samples and construct profile likelihood to estimate the confidence

intervals.

4.3.1 Nanochain Model

The nanochain model is a mechanistic model and is constructed such that each of the parameters

has interpreted meaning. Our evaluation of the FIM eigensystem revealed that four of the original

12 parameters of the nanochain model are poorly constrained by the data. Figure 4.2 shows a

comparison of the full model versus the 10-parameter model for sample NP11 at H = −100 Oe

and at T = 300 K. The multitude of very small normalized eigenvalues for the full 12 parameter

model indicates that the model is sloppy, and the eigenvectors show us which parameters are poorly

constrained. We can see from figure 4.2e that the eigenvectors with the smallest eigenvalues point

solely in the direction of the parameters associated with the central peak width for both the charge

and magnetic signals which indicates that they are not well constrained by the data. This is not

surprising considering that there are no data available in the central q = 0 region to directly compare

with in the optimization process. The beam stop of the optical setup blocks the detector from picking

up any signal in the center of the beam where there would need to be data in order to well constrain

the parameters associated with the central peak width in the Ic(q) and Rm(q) signals. The overall

results of the nanochain model are displayed in figure 4.3 and show an increase in AF ordering at

applied values near remanence. Additionally, table 4.1 collects the magnetic correlations derived

from the model parameters.
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(a) (b)

(c)

(d)

(e)
(f)

Figure 4.2 Analysis of nanochain model results. (a, b) example fits, (c, d) FIM Eigenvalues,
(e, f) and FIM eigenvectors for the full 12 parameter model (left) and the model reduced to
10 parameters (right). The eigenvectors are expressed in the basis of parameters and the
color of the grid represent the coefficient of that component. The dip visible in the (b) fit is
an artifact of the reduction of parameters and shows that the loss of those parameters does
not appreciably affect the fitting region of interest.
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Figure 4.3 Fitting results for the nano chain model. (a-b) Example of fits performed at
field H =−100 Oe, on (a) the charge scattering intensity Ic data and (b) the magnetic ratio
Rm data; (c) Fitted coefficients (expressed as percentages) for the FM component (c1), the
AF component (c2), and the random component(c0) as a function of magnetic field H for
positive H; (d) Fitted AF coverage (c2) including error bars at 95% confidence intervals
for the whole range of magnetic fields (-3000 Oe, +3000 Oe). The blue bars indicate the
possible range for c2, the maximum value being set by 1− c1 (c0 = 0). Also plotted, the
χ2 values of the LM algorithm. Extracted from [13]
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H(Oe) σFM(nm) λFM(nm) σAF (nm) λAF (nm)

-3000 18.18 36.87 7.266 14.24

-1000 18.67 37.34 7.244 14.20

-600 17.66 35.32 7.03 13.78

-400 17.25 34.50 7.22 14.15

-200 16.88 33.76 6.95 13.62

-100 15.46 30.92 7.16 14.03

0 20.70 41.40 6.62 12.97

Table 4.1 Listing of the AF and FM correlation lengths (λFM and λAF ) for the negative
branch of the magnetization loop for NP11 at 300 K. The correlation lengths are calculated
from the width of the respective Gaussian functions that are used in the real space nanochain
model, λ = 2

√
2log2σ .

4.3.2 Empirical Gaussian Fit

We applied the Gaussian fit model to data from both the NP11 and NP5 samples, and found that the

FIM are better behaved when a model constrains the ratio of AF and FM parameters, as limited by

the VSM measurements. Figures 4.6 and 4.7 illustrate the ratio results for NP5 at 15 K and 300 K

and for NP11 at 20 K, and 280 K. The 95% confidence interval at applied fields near remanence

show a significant separation and indicate a well defined difference in values. Using these ratios

and the VSM data we provide an estimation of the magnetic ordering coefficients displayed in

figures 4.4 and 4.5. These coefficient plots indicate a general trend of increased AF ordering at

lower field values. But as can be seen by the dip in figure 4.5a at H =−300 Oe, the normalization

method we utilized causes problems because the M/Ms ratio is very close to zero. Therefore when

we multiply the normalization factor it effectively zeroes out the result and causes the erroneous

dip in the coefficient. The ratio plots found in figures 4.6 and 4.7 provide a better representation
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of the AF predominance at low temperatures and field values. We also see that the larger particle

NP11 sample exhibits greater AF ordering than the smaller particle NP5 sample. For NP5 this ratio

reaches an average of 1.54 within the 95% confidence interval (CI) [0.33,3.01], whereas for NP11,

it reaches about 3.85 in the CI [3.18,5.35].
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(a) NP5 Coefficients at 300 K

(b) NP5 Coefficients at 15 K

Figure 4.4 Calculated magnetic ordering coefficients for NP5. (a) results for 300 K, and
for 15 K (b). Shaded regions representing 95% confidence interval.
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(a) NP11 Coefficients at 280 K

(b) NP11 Coefficients at 20 K

Figure 4.5 Calculated magnetic ordering coefficients for NP11. (a) results for 280 K, and
for 20 K (b). Shaded regions representing 95% confidence interval
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Figure 4.6 Ratio results for the N5 sample at 15 and 300K with shaded region correspond-
ing with the 95% confidence interval for the ratio.
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Figure 4.7 Ratio results for the N11 sample at 20 and 280 K and 300 K with shaded region
corresponding with the 95% confidence interval for the ratio.



Chapter 5

Conclusion

In this work we have established the validity of computational modeling techniques to probe inter-

particle magnetic correlations in assemblies of magnetic NPs using XRMS data. Our modeling

of the 11 nm and 5 nm NP assemblies at temperatures above and below their respective blocking

temperatures (TB), shows that when the applied field (H) approaches remanence, the nanospin

carried by the individual NPs tends to be randomly oriented though a non-negliable AF contribution

is present in the samples at temperatures below the blocking temperature. This behavior is con-

sistent across both the real space nanochain and empirical q-space fitting models and confirmed

the superparamagnetic behavior of the material at T > TB. Additionally, it appears that the AF

correlations are stronger for the 11 nm NPs compared to the 5 nm with the former’s AF/FM ratio 3

times larger.

Further work expanding the nanochain model from a 1D representation, to a 2D model to fit

the original 2D speckle patterns should provide greater resolution and certainty in the magnetic

ordering and correlations parameters. These methods could also be applied to other magnetic NP

assemblies to study the dependence of magnetic correlation on the particle size and concentration

during the self-assembly process.

30
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Magnetic Ratio Derivation

X-ray magnetic circular dichroism proves to be an effective tool at extracting the magnetic signal

from scattering data. To do this, we use the theory of magnetic scattering where the scattering factor

f may be written as

f± = fc ± fm

with fc and fm are the charge and magnetic scattering factors respectively with ± representing the

helicity of the circularly polarized light in the plane transverse to propagation.

The scattering amplitude A of a nanoparticle assembly in a given direction q in the scattering

space can then be expressed as

A±(q) = ∑( fc, j ± fm, j)ei⃗q·⃗r j = fcsc ± fmsm = Ac ±Am

where the summation indexed by j is over all the atoms. We simplify the expression for the A by

introducing a charge and magnetic structure factor, sc and sm. These both respectively depend on

the spatial distributions of the charge and magnetism in the sample, and are both q dependent. The

scattering amplitude A can therefore be written as a sum of the charge and magnetic amplitudes
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Ac and Am. The scattering intensity I observed at the detector is related to the scattering amplitude

through

I± = |A±|2 = |Ac|2 ± (AcA∗
m +AmA∗

c)+ |Am|2

The scattering intensity is comprised of a pure charge term, |Ac|2, a pure magnetic term, |Am|2,

and a cross term whose sign is dependent on the polarization of incident light. We can exploit the

difference polarization has on the scattering to extract the magnetic contribution using a quantity

we call "magnetic ratio Rm" (modified from the standard dichroic ratio)

Rm =
I+− I−√
I++ I−

Where I+ and I− are the intensities associated with their respective helicities. The magnetic

component Am is typically small with respect to Ac which reduces the dichroic ratio to:

Rm =
AcA∗

m +AmA∗
c√

|Ac|2 + |Am|2
∼ AcA∗

m +AmA∗
c

|Ac|

The numerator can be further reduced but breaking the complex quantities Ac and Am into their real

and imaginary components.

fc = fc,1 + i fc,2 and fm = fm,1 + i fm,2

sc = sc,1 + isc,2 and sm = sm,1 + ism,2

The results of the x-ray absorption spectroscopy (XAS) collected on the magnetite nanoparticles

shows that at the energy chosen for our XRMS measurements (the third peak of our observed L3-Fe
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absorption edge), the real part of the magnetic scattering factor tends to vanish. Therefore, we

assume that fm,1 ∼ 0 in order to give Ac and Am the following form

Ac = ( fc,1 + i fc,2)(sc,1 + isc,2) = ( fc,1sc,1 − fc,2sc,2)+ i( fc,2sc,1 + fc,1sc,2)

A∗
c = ( fc,1sc,1 − fc,2sc,2)+ i( fc,2sc,1 + fc,1sc,2)

Am = ( fm,1 + i fm,2)(sm,1 + ism,2) = ( fm,1sm,1 − fm,2sm,2)+ i( fm,2sm,1 + fm,1sm,2)

A∗
m = ( fm,1sc,1 − fm,2sc,2)+ i( fm,2sc,1 + fm,1sm,2)

which leads to

AcA∗
m =−i fm,2(sm,1 − ism,2)[( fc,1sc,1 − fc,2sc,2)+ i( fc,1sc,2 + fc,1sc,2)]

= [− fm,2sm,2( fc,1sc,1 − fc,2sc,2)+ fm,2sm,1( fc,2sc,1 + fc,1sc,2)]

+ i[− fm,2sm,1( fc,1sc,1 − fc,2sc,2)− fm,2sm,1( fc,2sc,1 + fc,1sc,2)]

and

AcA∗
m +AmA∗

c = 2Re(AcA∗
m) = 2[− fm,2sm,2( fc,1sc,1 − fc,2sc,2)+ fm,2sm,1( fc,2sc,1 + fc,1sc,2)]

resulting in

Rm ≈
2 fm,2[sm,1( fc,2sc,1 + fc,1sc,2)− sm,2( fc,1sc,1 + fc,2sc,2)

| fc||sc|

The coefficients fc,1, fc,2 and fm are estimated with the XAS data using Kramer-Kronig transfor-

mations. sc,1, sc,2, sm,1, sm,2 are calculated with the Fourier transforms that are part of our model

for the charge density function, and magnetic density functions in a chain of Fe3O4 NPs. All these

quantities depend on the scattering vector q, so Rm does as well. In the end the modeled Rm(q) and

the experimental Rm(q) are compared and various parameters in the model are adjusted to make

the model match the experiment. In this process, the quantities sc,1, sc,2 (and the resulting |sc|) are
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concurrently evaluated by fitting the experimental charge scattering intensity:

(I++ I−)(q) = |Ac|2 + |Am|2 ≈ |Ac|2 = | fc|2|sc|2

Once the charge structural factors sc,1, and sc,2 are adjusted, the magnetic structural factors sm,1,

and sm,2 are adjusted by fitting Rm(q). A weight for the various magnetic components (FM, AF, and

random) is then evaluated as well as their respective correlation lengths.

Derivation courtesy of Dr. Karine Chesnel, and published in part in [12]



Bibliography

[1] N. A. Frey, S. Peng, K. Cheng, and S. Sun, “Magnetic nanoparticles: synthesis, functional-

ization, and applications in bioimaging and magnetic energy storage,” Chem. Soc. Rev. 38,

2532–2542 (2009).

[2] S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, “Magnetic nanoparticle design for medical

diagnosis and therapy,” J. Mater. Chem. 14, 2161–2175 (2004).

[3] E. Duguet, S. Vasseur, S. Mornet, and J.-M. Devoisselle, “Magnetic nanoparticles and their

applications in medicine,” Future Medicine (2006).

[4] J. Gao, H. Gu, and B. Xu, “Multifunctional magnetic nanoparticles: design, synthesis, and

biomedical applications,” Accounts of chemical research 42, 1097–1107 (2009).

[5] J.-S. Lee, J. Cho, C. Lee, I. Kim, J. Park, Y.-M. Kim, H. Shin, J. Lee, and F. Caruso, “Layer-

by-layer assembled charge-trap memory devices with adjustable electronic properties,” Nature

nanotechnology 2, 790–795 (2007).

[6] S. Chemicals, “Automotive Applications of Nanomaterials,” .

[7] L. Blaney, “Magnetite (Fe3O4): Properties, synthesis, and applications,” (2007).

[8] Y. Cai et al., “Orbital and spin moments of 5 to 11 nm Fe3O4 nanoparticles measured via

x-ray magnetic circular dichroism,” Journal of Applied Physics 115, 17B537 (2014).

35



BIBLIOGRAPHY 36

[9] K. Chesnel, J. Nelson, B. Wilcken, and S. D. Kevan, “Mapping spatial and field dependence of

magnetic domain memory by soft X-ray speckle metrology,” Journal of Synchrotron Radiation

19, 293–306 (2012).

[10] K. Chesnel, M. Trevino, Y. Cai, J. M. Hancock, S. J. Smith, and R. G. Harrison, “Particle size

effects on the magnetic behaviour of 5 to 11 nm Fe3O4 nanoparticles coated with oleic acid,”

Journal of Physics: Conference Series 521, 012004 (2014).

[11] S. Klomp et al., “Size-Dependent Crystalline and Magnetic Properties of 5–100 nm Fe3O4

Nanoparticles: Superparamagnetism, Verwey Transition, and FeO–Fe3O4 Core–Shell Forma-

tion,” IEEE Transactions on Magnetics 56, 1–9 (2020).

[12] K. Chesnel et al., “Unraveling Nanoscale Magnetic Ordering in Fe3O4 Nanoparticle Assem-

blies via X-rays,” Magnetochemistry 4 (2018).

[13] J. Rackham, B. Newbold, S. Kotter, D. Smith, D. Griner, R. Harrison, A. H. Reid, M. Transtrum,

and K. Chesnel, “Modeling inter-particle magnetic correlations in magnetite nanoparticle

assemblies using x-ray magnetic scattering data,” AIP Advances 9, 035033 (2019).

[14] K. Levenberg, Quartly of Applied Mathematics 2(1944), 164-168 .

[15] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,”

Journal of the Society for Industrial and Applied Mathematics 11, 431–441 (1963).

[16] M. Newville, R. Otten, A. Nelson, A. Ingargiola, T. Stensitzki, D. Allan, A. Fox, and F. Carter,

“lmfit-py https://zenodo.org/record/5570790,” .

[17] D. J. P. K. Wales D J, “Global Optimization by Basin-Hopping and the Lowest Energy

Structures of Lennard-Jones Clusters Containing up to 110 Atoms,” Journal of Physical

Chemistry A, 101, 5111 (1997).



BIBLIOGRAPHY 37

[18] G. E. P. Box, “Science and Statistics,” Journal of the American Statistical Association 71,

791–799 (1976).

[19] M. K. Transtrum, B. B. Machta, and J. P. Sethna, “Why are Nonlinear Fits to Data so

Challenging?,” Phys. Rev. Lett. 104, 060201 (2010).

[20] R. Chachra, M. K. Transtrum, and J. P. Sethna, “Comment on “Sloppy models, parameter

uncertainty, and the role of experimental design”,” Mol. BioSyst. 7, 2522–2522 (2011).


	Modeling Inter-Particle Magnetic Correlations in Magnetite Nanoparticle Assemblies Using X-ray Magnetic Scattering Data
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	1 Introduction and Background
	1.1 Motivation
	1.2 Prior Work
	1.3 Statement Problem and Thesis

	2 Sample and Data Preparation
	2.1 Characterization of Samples
	2.2 XMCD and XRMS Diffraction Images
	2.2.1 Preparation of Data


	3 Models
	3.1 Formulation
	3.1.1 1D Nanoparticle Chains
	3.1.2 Empirical Gaussian Fit

	3.2 Parameter Optimization Methods
	3.2.1 Levenberg-Marquardt
	3.2.2 Basin Hopping


	4 Results and Analysis
	4.1 Fisher Information Matrix
	4.2 Profile Likelihood
	4.3 Model Results
	4.3.1 Nanochain Model
	4.3.2 Empirical Gaussian Fit


	5 Conclusion
	Appendix A Magnetic Ratio Derivation
	Bibliography

