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ABSTRACT

Dielectric spectroscopy on 2D and 3D metal halide perovskites
using an interdigitated electrode geometry

Carrie Emma McClure
Department of Physics and Astronomy, BYU

Bachelor of Science

Metal halide perovskites are a class of 2D and 3D materials that are currently being studied for
use in solar energy and other applications. Permittivity is connected to other important characteristics
of these materials such as exciton binding energy, effective mass, and transition dipole moment, but
has proven challenging to accurately measure. Using experimental measurements of the impedance
of perovskite layers on interdigitated electrodes, we have been able to develop a model which
allows us to deduce the frequency dependence of permittivity in these materials. The results show
permittivity values for high frequencies (13 MHz) in the range of 4.1-5.1 for PEA2PbI4 (PEPI) and
12-45 for MAPbI3 (MAPI), with details depending on the specific sample. Further work will allow
some of the first measurements of dielectric constant in this frequency range for several types of
perovskites, aiding computational modeling and experimental electroabsorption analysis.

Keywords: perovskite, halide, permittivity, dielectric constant, spectroscopy, interdigitated electrode,
electroabsorption, exciton binding energy, impedance, capacitance, low frequency
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Chapter 1

Introduction

1.1 Metal halide perovskites in solar technology

Metal halide perovskites are a class of material comprising layers of octahedral inorganic crystalline

lattices of metal plus halogen atoms, interrupted by layers of organic molecules. The specific atoms

and molecules involved in perovskites can be varied, as well as the layering pattern: perfectly

alternating perovskites with n = 1 crystalline layers per organic layer create a “2D” material that

can be considered quantum wells, while large assemblies of n > 1 and n = ∞ crystalline layers per

organic layer create a more “3D” material, as depicted in Fig. 1.1. All of these variable factors

mean that perovskites don’t have just one specific set of electrical or optical properties, but rather a

continuum that can be tuned for desired effects [1].

The perovskites that will be addressed in this thesis are lead based, although we are also

beginning to study their tin-based counterparts. While tin-based perovskites have an optical

bandgap that is ideal for many solar cells, they are also much trickier to study since the small

distances between their optical features are easily obfuscated by thermal broadening effects [2]. The

two predominant perovskites in this thesis are methyl-ammonium lead iodide (MAPbI3, MAPI), a

1
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Figure 1.1 Series of crystalline structures of the perovskites PEPI n = 1, PEPI n = 3, and
PEPI n = ∞ (i.e. MAPI). Each of these materials are made from a different number of
octahedral inorganic layers separated by organic cation layers. When n = 1, the material is
"2D", and as the number of successive inorganic octahedral layers increases, the material
becomes a "3D" material.

3D perovskite, and phenethyl-ammonium lead iodide (PEA2PbI4, PEPI), a 2D perovskite, although

two halide variants will also be discussed briefly.

Perovskite materials have already shown great promise for use in solar technology despite only

growing in popularity in the scientific community in the last decade or so. The quantum efficiency

of perovskites, a value that quantifies their ability to capture solar energy, has grown from 14.1%

to 25.7% in just seven years; for comparison, it has taken crystalline silicon solar cells 25 years

to increase by just 2% [3]. As of 2018, the efficiency of crystalline silicon sits around 26.1%,

well within range of the predicted trajectory of perovskites within the next several years [3]. The

quantum efficiencies of these materials are also relatively large in comparison to many other solar

cell materials, including other crystalline and amorphous structures as well as quantum dots, as

depicted in Fig. 1.2.

Although perovskite materials show great potential for use in solar and other technology, there

are many factors delaying their use, including gaps in the knowledge required to fully understand
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Figure 1.2 Solar cell efficiencies plotted vs. year for many classes of materials. Per-
ovskite solar cells have shown a sharp increase in quantum efficiency in just one decade,
approaching that of the traditional silicon solar cell. Figure from [3].
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these materials and issues in practicality that have yet to be overcome. Optical quantities such as

band gap and exciton binding energy have been reported on many types of perovskites, but do not

reach a clear consensus due to experimental challenges in their measurement. Other quantities,

such as permittivity, have only been measured on select perovskites, in select frequency ranges.

The work of studying these materials is ongoing in the scientific community, utilizing a variety of

measurement and analysis techniques.

1.2 Physical, electronic, and optical properties of perovskite

materials

Perovskites are direct bandgap semiconductors, where the transition of an electron from the con-

duction band to the valence band produces a photon equal in energy to the energy difference in

states. Electrons in the conduction band will settle to the lowest energy state possible within a very

short amount of time, and holes in the valence band will rise to the highest energy state available,

so the typical energy difference between bands is a near-constant value called the bandgap. When

materials with a direct bandgap are excited with a laser, they emit photoluminescence at this single

wavelength, creating a sharp peak in the data. In absorption data, the bandgap instead is indicated

by an energy step-function where photons of greater energy will be accepted into the system to

excite an electron, but photons of smaller energy cannot. These relationships are shown in Figure

1.3 for two common perovskites. Optical data on perovskites show these features resulting from the

bandgap, but additionally exhibit features caused by a quasiparticle called the exciton that is also

important to study due to its influence in the process of solar energy conversion.

The exciton is a quasiparticle described by a bound state between an electron and an electron

hole in a material. There are different types of excitons that are classified by their behavior

and characteristics, but measurement of their energies are some of the most important pieces of
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Figure 1.3 Plots demonstrating the relationship between photoluminescence spectra (blue)
and absorption spectra (red) on PESI and PEPI perovskites. Absorption measurements
probe the energies of light accepted by electrons in the material, and display a rough
positive step function in energy at the bandgap. Photoluminescence measurements probe
the energies of light emitted by these excited electrons after they have some time to settle
in the conduction band. This means that photoluminescence data often looks like a sharp
feature at the bandgap, but may extend into lower energies if excitons are present, as in the
case of many perovskites. Figure from [2].

information to the perovskite community. When the electron and hole are in proximity to each

other, they lower each other’s potential energy in comparison to the default bandgap energy due

to Coulomb attraction, which allows photoluminescence to be emitted at wavelengths longer than

created by the bandgap. Exciton binding energy is the term for this energy change measured relative

to the bandgap.

Excitons exhibit both a dipole moment and polarizability due to their nature of containing a

positive and a negative charge with slight physical separation. They also have an effective mass and

radius when treated as a particle similar to the hydrogen atom, but with an electron hole instead

of proton. These values can be calculated from optical data and are interesting to the perovskite

community, but have proven challenging to measure.
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1.3 Benefits and requirements of the electroabsorption tech-

nique

Electroabsorption is a modification to the process of collecting absorption data that includes the

addition of an alternating electrical signal across electrodes near the sample. When an electrical

field is applied across the sample, the absorption will be altered due many effects, including the

linear and quadratic Stark effects, that will shift or broaden optical features. When this electric field

is modulated in time and the optical data interpreted by a lock-in amplifier, the resulting data is

essentially the difference between the electrically-modified signal and the regular absorption signal,

demonstrated in Fig. 1.4. The amplitude and shape of the electroabsorption features are related to

many important parameters in perovskites and give a lot of insight on their internal structure and

properties [1]. Additionally, in some perovskites where optical data would typically be obscured by

disorder-induced peak broadening, this method potentially allows for very crisp measurements of

optical features.

The extremely strong electric fields necessary for this experiment can be created in a sample by

generating high voltages in close proximity to each other, since E =V/d in free space. We use a

configuration called interdigitated electrodes (IDEs), which consist of alternating rows of electrode

fingers with only a few microns of separation, creating very strong electric fields between them

over most of the perovskite film, which is deposited on top. A more detailed description of IDEs is

given in the second chapter of this thesis, and our process of creating them is described in the fourth

chapter.

One issue with calculating certain sample parameters from electroabsorption peaks is that it

requires knowledge of the precise electric field strength. Although this may be estimated from

E =V/d in free space, it is not correct in general because it does not account for the response of

the material to the applied electric field. If the material has any significant dielectric constant, then
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Figure 1.4 Plots demonstrating the relationship between absorption spectra (black, right
axes) and electroabsorption spectra (purple, left axes) on two different PEPI perovskite
samples. Electroabsorption is the difference between absorption data with an applied
electric field, which may shift or broaden absorption features, and without an applied
field. They way these features scale with electric field strength provides data on several
important characteristics of the excitons that create them. Figure from [1].

it will set up its own internal electrical field in opposition to the applied field, so the net electric

field in the sample will be reduced. It therefore becomes essential to know the material’s dielectric

constant in order to deduce the net electric field in the sample for the calculations described above.

Unfortunately, this is not always simple to do.

1.4 The absence of permittivity data on perovskites

Dielectric constant εr, or relative permittivity (relative to the vacuum permittivity ε0), is a value that

describes the way matter interacts with electromagnetic waves, which varies with the frequency of

applied electric field. At low frequencies (below 1010 Hz), measurements are often generated by an

AC electrical signal using radio or microwaves. When frequency increases by a few more orders of

magnitude, the electric field frequency becomes that of visible light, and then optical experiments

can be done to measure the dielectric constant. Dielectric constant is related to index of refraction

by a square root: n =
√

εr.
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The Lorentz oscillator model describes how the dielectric constant of a material varies with

frequency. There are several physical modes that can contribute to a material’s ability to oppose

an electric field, but these modes become active at different time scales. Working from fast-acting

high frequency responses to slower low-frequency responses, the dielectric constant increases in

a step-like manner whenever any of these modes are reached, as detailed in Fig. 1.5. First, at

frequencies between 1014 and 1016 Hz (each period lasting between 0.1 and 10 femtoseconds),

the only mechanism fast enough to respond is the shape of the electron cloud around each atom:

the negative cloud is distorted slightly towards the positive potential, creating a dipole. Next,

at frequencies near 1013 Hz (on the scale of 0.1 picoseconds), the bonds between ions in the

crystalline lattice can contract and expand in a spring-like motion, changing the polarization. Last,

at frequencies near 109 Hz (on the scale of 1 nanosecond), any large molecules with a net dipole

moment in the films may rotate into alignment with the field to reduce their potential energy, which

further increases the polarization of the material.

In liquids, there is another potential mode that can become active at frequencies below 1 kHz

(period larger than about 1 millisecond), called the diffusional mode. Here, ions and molecules

with net charge in the liquid will be pulled towards either electrode due to the electric potential

generated, which creates a charge separation and therefore a net dipole with polarization. The lower

the frequency, the longer amount of time this effect has to take place, and as such, extremely large

dielectric constants can exist at low frequencies in fluids.

Surprisingly, perovskite materials are believed to have a diffusional response as well, even

though they are solids [5]. This implies that the atoms are actually swapping places within the

crystalline lattice, a characteristic called “ion migration” that was controversial in the scientific

community until recently. As such, perovskite materials have been described as potentially showing

a huge increase in dielectric constant at frequencies below about 1 kHz. This happens to be near the

frequency of interest that we use for electroabsorption in our laboratory, as do many others, so there
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Figure 1.5 Diagram of the complex dielectric function of perovskites, as explained by the
Lorentz oscillator model. The Lorentz oscillator model describes how various polarization
mechanisms affect a material’s ability to respond to an applied electric field in various
time regimes. At high optical frequencies, only the fastest mechanisms like electron cloud
distortion are able to respond to the field before it switches direction, but at low frequencies
there are impacts from most mechanisms including atomic bond motion, molecular dipole
alignment, and space charge migration. Figure from [4].
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exists a need to better understand the behavior of the dielectric constant of perovskites within this

frequency range.

Though there have been many measurements of perovskites at microwave frequencies and

above, there are remarkably few reported values in the low-frequency range. Lin et al. predict

a relatively stable dielectric constant for MAPI near εr = 35.19 for frequencies between 100 Hz

and 100 kHz [6], while Anusca et al. measure values near εr = 63.10 above 100 kHz, with the

dielectric constant increasing dramatically at lower frequencies [5]. Juarez-Perez et al. corroborate

the existence of extremely high dielectric constant values at low frequency, reporting a static value

on the order of εr = 1000 [7]. There has also been one ε∞ measurement on PEPI by Hong et al. in

the low frequency range, with a reported value of ε∞ = 4.41 [8], but there are no published low

frequency spectra on PEPI.

The goal of this thesis is to acquire measurements of the dielectric constant of perovskite thin

films in this low-frequency range, from 5 Hz to 13 MHz. As may be indicated by the lack of

measurements in this range in the scientific community thus far, this is more challenging to do than

one might think. We will attempt to use impedance data collected on our perovskite films measured

within this frequency range to calculate permittivity values that would explain these impedance

measurements.

1.5 Relationship between permittivity and capacitance

Permittivity is highly related to capacitance. While permittivity is a property intrinsic to materials,

capacitance is a measured quantity that describes a system’s ability to store charge in response

to an electric potential. This will include contributions from a material’s permittivity, but is also

impacted by the physical geometry of the system. The larger a material’s permittivity, the larger

its capacitance measurement becomes because a stronger internal electric field is generated in the



1.6 Parallel plate electrode geometries 11

material, which is able to store more energy.

Given this strong relationship, it makes sense that one should be able to relate these quantities

mathematically. Since capacitance is easily measurable, it is plausible to be able to find a mathe-

matical equation that relates capacitance to permittivity, if one has information on the geometrical

configuration of the system. For something as classic as the parallel-plate capacitor configuration,

the geometric factor depends only on the ratio of the plate area to their separation: C = ε0εrA
d . How-

ever, if we need to create a model based on a more complicated electrode configuration, such as the

IDEs required for electroabsorption, the geometric factor quickly becomes extremely complicated.

Chapter 2 details the mathematical process of relating capacitance to permittivity in the case of

IDEs.

Additionally, permittivity is a complex quantity, and the imaginary part is related to the material’s

resistance and conductance. Although my work does not focus on this aspect of permittivity at this

point, it could be useful in the future, so data is collected on both capacitance and resistance, i.e. the

total impedance vector. We measure the magnitudes of Z, R, and C at each frequency point.

1.6 Parallel plate electrode geometries

As mentioned in the previous section, one of the most common methods of measuring the complex

permittivity of perovskites and similar materials is via impedance measurements on a parallel plate

electrode apparatus. Parallel plate electrodes allow a relatively uniform and linear electric field to be

constructed between them, which a dielectric material can respond to evenly according to C = ε0εrA
d .

Nearly all low-frequency complex impedance measurements are acquired using impedance

analyzer machines specifically created for this task. They are capable of measuring the magnitudes

of resistance, capacitance, inductance, overall impedance, and more using a coaxial input that can

be connected to electrodes. They generate AC frequencies for the material to respond to, and can
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record data on computers with appropriate drivers and software.

There are a few methods available to create the parallel plate electrode geometry for their

impedance measurements. Some of the impedance analyzer machines have attachable parallel plate

fixtures for this purpose. They have metal plates with micrometer-adjustable plate separation and

several methods to calibrate the measurements they give on the impedance analyzer. A sample can

be placed between the plates, its impedance spectrum measured, and then its dielectric function

calculated based on the plate area and separation.

While use of this fixture is convenient and requires only simple equations to compute dielectric

function, it can be insensitive to small samples like thin films, especially if they are attached to a

substrate. We attempted to use such an apparatus with perovskite samples, both as thin films grown

on a substrate and as crystals pressed into flat pellets.

We obtained a series of dielectric function measurements on PEPI in pressed pellet form that

are in agreement with the static value presented by Hong et al. [8], presented in Fig. 1.6. However,

there were substantial issues in the calibration process as well as with the precision of these

measurements, and we saw large variability whenever the fixture was adjusted. While the data from

these measurements are acceptable, it is nearly impossible to create large enough pellets from most

other types of perovskites we are interested in measuring, so this method was abandoned.

With modifications to the parallel plate capacitor equation, dielectric functions could in theory

be calculated from samples on a substrate, as long as the thickness of each part is known. However,

we were never able to obtain reasonable values, since the extreme thinness of the perovskite thin

films amplified all the error in these measurements. This method was deemed impractical, and

abandoned as well.

An alternative way to use parallel plate geometry is to deposit or paste metal electrodes directly

onto the sample instead of placing the sample inside a rigid fixture. When using pasted electrodes,

as long as the thickness of the sample can be determined, then there are no additional complexities
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Figure 1.6 Our calculations of the dielectric function of PEPI, where circles indicate
measurements using pressed pellets in a parallel plate electrode fixture, and stars represent
measurements from thin films grown on IDEs. Figure from [1].

in accounting for air gaps or sample substrates in the parallel plate capacitor equation.

One example of this method’s use is described in a manuscript by Anusca et al., in which

experimental data of complex permittivity for MAPI and MAPbBr3 (MAPBr) are provided for

frequencies below 1 MHz [5]. They grew crystals of each material and pressed them into flat pellets

that would fit the shape of parallel plate electrodes. They further ensured flat surfaces by polishing

the surfaces of the pellets and washing them in acetone to eliminate roughness. Then, they were able

to paint electrodes onto either side of the pellets using silver paste and measure complex impedance

across the perovskite pellets. Lin et al. report reasonably similar values for MAPI, using the same

technique to generate the real dielectric function, and using CELIV, a method of measuring current

densities, to generate the imaginary dielectric function [6].

There are many obvious benefits to using a parallel electrode geometry. It is relatively simple

to calculate dielectric function mathematically in this geometry since the applied electric field is

uniform and linear. If the sample can be grown in large enough sizes to produce reasonably thick

films or pellets, then this method may be sufficient to determine the complex permittivity. Because

of its ease, two of the three perovskite measurements that have been published so far have been
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done using this technique.

However, since not all of our materials can be grown in sufficient quantity to be pressed into

thick pellets, there are many types of perovskites that we would be unable to measure. Additionally,

many of our samples grow in alternating layers that create anisotropy in dielectric measurements of

thin films. The dielectric measurements of a pressed pellet will lose any directional information

present in the thin film and may provide incorrect values accordingly.

1.7 Adjacent electrode geometries

While there are many clear benefits to having a uniform and linear electric field as constructed

between parallel plate electrodes, this element is not essential. As long as a mathematical relationship

can be established between impedance measurements and complex permittivity, there are many

potential electrode arrangements that can be investigated.

One such electrode arrangement is that of adjacent electrodes, deposited in the same horizontal

plane. In this arrangement, rather than sandwiching the perovskite between electrodes, the perovskite

is grown on top of them. The electric field lines arc from one electrode to the other on both sides,

rather than pass between them linearly. The mathematical model for parallel plate capacitors can

still be used with some accuracy in this case [9], surprisingly, but many choose to create a more

descriptive geometrical model that can account for the different electric field line paths and strengths

in the arcs. Torchyniuk et al. use a multi-step model with both a parallel plate component in-layer

with the electrodes and arcing component on either side of the electrodes [10]. Since electric field

lines may pass through one region or the other, this model is analogous to parallel circuit elements,

where the capacitance of each region may be summed to find the total capacitance of the system.

Another electrode arrangement is that of the split ring resonator. Split ring resonators (SRRs)

are arrays of concentric circular or rectangular rings, with gaps, that are typically used to modify
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magnetic susceptibility in technological applications. However, Su et al. have demonstrated that this

configuration of electrodes can also be used to obtain very sensitive measurements of the dielectric

constants of fluids since it can support the application of an alternating current [11]. They find that

studying the resonant frequencies of SRRs in liquids provides information about capacitance and

therefore the dielectric constant of these liquids.

The various adjacent configurations of electrodes provide many advantages when compared to

parallel electrodes, particularly in their ability to sense accurately at small scales, since the electric

field lines are confined close to the electrode surfaces. IDEs are another type of configuration of

adjacent electrodes placed on a surface, and as such they have the potential to allow highly accurate

impedance measurements of perovskite thin films as long as an accurate mathematical model exists.

That is the purpose of this thesis: to establish a mathematical relationship between the relative

permittivity of perovskites and the overall capacitance across the IDE electrodes on which the

perovskites are deposited, so that no other methods are required to measure their permittivity.
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Chapter 2

Development of Mathematical Model

2.1 Interdigitated electrode geometries

The interdigitated electrode format is a patterned area of alternating stripes of electrodes. Every-other

stripe/finger has opposite electric potential just a few microns apart, so very strong electric fields

are generated near them. This electrode configuration is chosen for use in optical electroabsorption

experiments precisely because of these strong electric fields, and because of their semi-transparency

to light. Since IDEs fall into the category of adjacent electrodes described in Chapter 1, they create

electric field lines that travel in both straight lines or arcs, depending on the region of space. A

diagram of this electrode configuration and the electric field lines it generates is shown in Fig. 2.1.

It becomes significantly more challenging to create a mathematical model for this electrode

arrangement than for simple adjacent or parallel plate electrodes. Many choose to use the parallel

plate electrode model of capacitance even when using an IDE format, such as Gennaro et al. [12],

Chen et al. [13], and Risos et al. [14], who successfully measured the dielectric constants of

several materials. This is a very reasonable option, especially in the case of extremely thin

films where the sample lies almost entirely between the electrode gaps where the electric field

17



18 Chapter 2 Development of Mathematical Model

Figure 2.1 (a) Top-view diagram of gold interdigitated electrodes photolithographically
deposited onto quartz substrate. (b) Side-view diagram of perovskite material grown
on electrode substrates, with dashed lines representing electric field lines induced by an
alternating signal.
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follows straight lines [15]. In many cases this model is sufficient, but there has also been interest

demonstrated by the scientific community in developing a more precise mathematical model for

measurement of dielectric constants. Development of new measurement technique has been done

both experimentally and computationally, as many have started to computationally model the

dielectric constant of perovskites and similar films using various electrode geometries using finite

element method [16–18].

A detailed approximation of capacitance from IDEs was made by Farnell et al. in 1970 [19].

The model accounts for the precise finger geometry and for the presence of a substrate, and appears

to make accurate measurements. However, it does not allow for the presence of other layers of

material, nor does it take anisotropy into account. Dimos et al. used this model to measure the

permittivity of several materials as thin films deposited on a substrate [20]. We intend to create a

new, more flexible model for capacitance from IDEs that will hopefully allow measurements with

several materials and preserve directional information, although its development is not entirely

finished at this point. While we compare our measurements of material’s dielectric functions to

those made in literature in Chapters 3 and 4, we are also interested in comparing the success of our

model versus these other IDE models when using the same data set, so that their accuracy can be

compared.

2.2 New approach to 3D interdigitated electrode model

In 1969, Helge Engan made another thorough mathematical analysis of the interdigitated electrode

configuration in a manuscript that has been cited by many, introducing a mathematical model of

capacitance for two materials [21]. However, as discussed in an article by Matthijs W. den Otter

in 2001, the equations presented in Engan’s article are difficult to solve [22], thus they would be

challenging for our script to solve hundreds of times for data points in a large frequency spectrum.
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As such, den Otter creates an approximation designed to imitate but simplify the solution by Engan;

rather than considering the electric potential of the whole electrode geometry at once, den Otter

ignores the effects of charge from fingers that are far away, and then represents this approximation

over all space using a periodic Fourier series expansion. By relating the energy stored within the

electric fields described by the model to the energy stored in a general capacitor, one can relate

the dielectric constant of nearby material to the overall capacitance of the electrodes. This greatly

simplifies the equations yet den Otter shows that it holds as an extremely close approximation as

long as the finger width-to-period ratio remains between 0.2 and 0.85 [22]. In addition, den Otter’s

equations have clear spatial dependence in three dimensions, which allows them to be easily altered

to consider more layers of materials, whereas Engan’s have no clear spatial relation other than

through two spatial boundary conditions.

We saw the potential to adapt this model to determine the dielectric of perovskite thin films

on quartz substrates. However, there were some modifications that we needed to make to fit our

configuration, and there will be more modifications in the future to preserve the anisotropic nature

of the dielectric constant.

2.3 The mathematical model for capacitance

As it stands, den Otter’s model considers IDEs in plain air with no surrounding materials. This is

definitely not the case for our perovskite thin films deposited on quartz. We needed to alter this

model to include different dielectric constants in different relative thicknesses, and at different

distances from the electrodes, which are all factors that influence the strength of the electric field.

The coordinate system and variables that we will be using are shown in Fig. 2.2.

Since electric potential V is constant along the length of the electrodes, the solutions to the
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𝑦𝑦

𝑥𝑥+𝑉𝑉0 +𝑉𝑉0−𝑉𝑉0 −𝑉𝑉0
𝑠𝑠

𝑤𝑤
𝑎𝑎

𝑡𝑡𝑝𝑝
𝑡𝑡𝑒𝑒

𝑡𝑡𝑞𝑞

Figure 2.2 Diagram of the variables used in the mathematical model, adapted from the
work of den Otter [22]. Variables a, s, and w describe the periodic pattern of the fingers,
variables tp, te, and tq represent material thicknesses, and V0 represents the electric potential
generated. Not depicted are variables q and p, which represent the total area over which
the IDEs span in the x and z coordinates, respectively.
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separable 2D Laplace equation in the x-y plane indicate equations of this general form:

V (x,y) = sin
(
(2n−1)πx

a

)
exp
(
−(2n−1)π|y|

a

)
(2.1)

The potential oscillates when one moves across the surface of the IDE in the x direction, and decays

with distance in the y direction.

Next, we follow den Otter’s example by fitting the electric potential equation to the specific

geometry of our system and to the established decay function in space [23], using a Fourier

coefficient expansion of harmonics. The result of this is

V (x,y) =
∞

∑
n=1

Bn sin
(
(2n−1)πx

a

)
exp
(
−(2n−1)π|y|

a

)
, (2.2)

with

Bn =
4V0

(2n−1)π
J0

(
(2n−1)πs

2a

)
.

This potential shape in space is demonstrated in Fig. 2.3 where potential is plotted against x and

z position. The square of the slope of this surface is proportional to the amount of energy that is

stored in the electric field at that location.

Since we must know the electric field E to calculate the energy, we may use the gradient to

determine E according to the equation E =−∇V . Then, we find that for y > 0,

E =
∞

∑
n=1

Bn
(2n−1)π

a
exp
(
−(2n−1)πy

a

)[
cos
(
(2n−1)πx

a

)
x̂− sin

(
(2n−1)πx

a

)
ŷ
]

(2.3)

and for y < 0,

E =
∞

∑
n=1

Bn
(2n−1)π

a
exp
(
(2n−1)πy

a

)[
cos
(
(2n−1)πx

a

)
x̂+ sin

(
(2n−1)πx

a

)
ŷ
]
. (2.4)

den Otter integrates the field-strength decay equation over all space using just one dielectric

constant. However, if we split the integral over the y-axis into separate integrals over various

distance regions, then we can add layers of different materials to the model. By considering the

dielectric constant of quartz below the electrodes (from t =−tq to t = 0 in an arcing region), the
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Figure 2.3 Plots of electric potential versus position across and away from the electrodes.
Between the electrodes the potential is linear due to constant electric field, and these values
decay with distance from the electrode.
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variable dielectric constant of perovskite in question (from t = 0 to t = te in a near constant field

region, see next paragraph, and from t = te to t = tp in an arcing region), and the dielectric constant

of air both above and below these layers (from t =−∞ to t =−tq and from t = tp to t = ∞, both in

arcing regions), each section’s overall impact on the capacitance will be included. Then, by setting

the overall energy stored in these electric field regions (U = 1
2
∫

D ·E dV ) equal to the energy stored

in a capacitor, (U = 1
2CV 2), the relationship between capacitance and various dielectric constants is

determined. We solve equations of this form for blank substrates and for perovskite samples, which

require different equations because they involve different layers of materials.

Since the thickness of the electrodes is on the same order of magnitude of the thickness of some

of our thin films, we included in our model a contribution from an inside-electrode-region that

behaves slightly differently than the surrounding arcing regions. Within the electrode thickness,

the electric field does not decay along the y-axis and can be approximated as a nearly constant

field. To do this we took the potential function in the y = 0 plane from den Otter’s model and

extended it from from y = 0 to y = te. The surrounding region distances were carefully shifted in

the calculations as to not double count any region of material.

One could also easily approximate this area as a parallel plate electrode winding through the

IDE gap due to the presence of uniform field. When this approximation is used, the capacitance

value generated is extremely similar to the capacitance value generated by the extension of the y = 0

plane, which assures us that the calculations are robust.
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For the blank IDEs, we find that (using k to represent dielectric constant for simplicity):

1
2

C0(2V0)
2 pq =
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2
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(2.5)

We can then solve for the capacitance C from the blank in terms of each layer’s dielectric

constant, thickness, and location:

Cquartz =
ε0 pq

a

(
π

8V 2
0

∞
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n=1

B2
n

[(
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])
. (2.6)

Obtaining this equation allows us to relate our measured capacitance values of the blank substrate

IDEs to the dielectric constant of quartz. We will need to know the dielectric function of quartz in

Eq. 2.7 in order to obtain the dielectric function of the perovskite thin film, otherwise there would

be too many variables to solve for in the system.
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Next, we repeat the same process for the perovskite sample by adding additional material regions

above the IDEs:
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(2.7)

Then, we are able to solve for the new overall capacitance of the perovskite samples on IDE

substrate, in terms of the unknown dielectric constant of the perovskite film, and the known dielectric

constants of air and quartz, as well as the known geometrical parameters.
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Now, the modifications to den Otter’s model allow us to add several materials and tune their

thicknesses to fit the geometry of our perovskite samples. It also opens the door to consider the

effect of anisotropy in dielectric constant in the future, since the equations can be modified to work

in three dimensions using a dielectric constant tensor.

Chapters 3 and 4 in this thesis present dielectric functions of several materials that were

calculated using this adapted model of den Otter, and compare their results to other measurements

in literature.
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Chapter 3

Testing Model on Quartz and Water

3.1 Measurements on quartz substrate

The first step required to calculate the dielectric constant of perovskite thin films using our model

is to measure the capacitance of the blank substrate with no thin film deposited. This allows us to

calculate the dielectric function of quartz using Eq. 2.6, to allow its use in Eq. 2.8 and in testing

the accuracy of the model. The results of solving Eq. 2.6 for the dielectric function of quartz using

capacitance measurements from four different blank substrates, as well as one with higher averaging,

are plotted in Fig. 3.1. We report values near 4.8 for frequencies above 100 Hz, with an increase

below this frequency. There is great consistency between blank substrates.

Published dielectric constant values for quartz, reported by Krupka et. al. [24] and De et.

al. [25], are overlaid with a closer view of our quartz measurements, in Fig. 3.2. In microwave-

range frequencies, there are many published measurements of the dielectric constant of quartz that

are in good agreement with each other. However, at sub-microwave frequencies, there are fewer

reported measurements, and their values still have substantial disagreement. Our reported value of

εr = 4.805 seems slightly large when compared to the values reported by Krupka et al. [24], but
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Figure 3.1 Calculated dielectric functions of quartz, measured from four different blank
IDE substrates. Thin lines represent the four blank measurements, while the thick line
represents a re-measurement of the first substrate, with 36 times more averaging.
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Figure 3.2 A closer view of our calculated dielectric functions of quartz, shown in
black. The blue line represents measurements of quartz by De et. al. [25], and the red
lines represent the parallel and perpendicular dielectric components of quartz measured by
Krupka et. al. [24] at a much higher frequency value. There is moderate agreement between
the values our model predicts and the published values, despite no overall consensus on
the onset of the low-frequency dispersion.

the discrepancy could be due to the difference in measurement frequency, as the Lorentz model

dictates that dielectric constant typically decreases with increasing frequency. Our measurements

are larger than the measurements reported by De et al. [25] even in the same frequency range, but

their measurements, as reflected in Fig. 3.2, are lower than one may expect considering its misfit

with most accepted high frequency values.
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Note that quartz displays two different dielectric constants depending on which direction

through the crystalline lattice the electric field runs. When the electric field is parallel to the

optically-defined z-axis, which runs perpendicular to the substrate surface of z-cut quartz, it is

influenced by the parallel dielectric constant. When the electric field runs along the surface of

the substrate, it is influenced by the perpendicular dielectric constant. The commonly accepted

values of these parameters in quartz, given by Krupka et. al. [24], are εr, parallel = 4.6440 and

εr, perpendicular = 4.4427. Since our electric fields travel in arcs between the electrode fingers, there

is likely a contribution from each of these directions in what we measure. Because of this, it will be

challenging to assign a number to precisely describe our error until the anisotropy-inclusive model

is fully developed.

Overall, the measurements we have produced seem to agree reasonably well with accepted

values, but may over-predict slightly. This may be a good indication that the model is able to provide

a great estimate of the dielectric constant of materials in the vicinity of IDEs. Next we will perform

another test on the model by calculating the well-studied dielectric function of water.

3.2 Measurements on water

Capacitance measurements on the IDEs with water in the vicinity were performed two ways: by

placing the surface of the electrodes onto the top of a dish of ultra-pure water, and by immersing the

electrodes completely. This requires the formation of two new equations from the model which are

not shown, but create separate results that can be compared against each other.

The values we report are shown in Fig. 3.3. The two ways that water was measured yield values

in close agreement with each other despite having significantly different capacitance equations,

which is a good indication of consistency. The two high-frequency measurements of water’s

dielectric constant we acquired are εr = 84.318 and εr = 83.105, both slightly larger than the
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expected value of εr = 80.054 according to Batalioto et al. [26] and many others.

There is a discrepancy indicated between the reported values of Batalioto et al. [26] and that of

Sherman et al. [27] below 10 kHz, relating to the onset of dispersion. This is most likely tied to the

presence of other compounds in the water influencing the electrical signal measurements. The onset

of the increase of dielectric constant occurring at higher frequencies (as frequency is reduced) most

likely indicates less pure water, as there are more contaminants that can respond to the electrical

signal.

Fig. 3.4 shows a closer look at frequencies above 10 kHz, where our high-frequency measure-

ments can be more easily compared to values from Batalioto et al. [26].

Overall, the measurements of dielectric functions of quartz and of water can be good indicators

of the success of the model, since their dielectric constants are known at certain frequencies. We see

good agreement in the model presented in this thesis with these known values, finding an average

error of 5.568% as an over prediction. Even with error, it will be useful to be able to estimate the

rough values of dielectric constant on many perovskite films because there are no existing values in

literature.
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Figure 3.3 Two calculated dielectric functions for water are shown in black and gray.
Data taken from Batalioto et al. [26] and Sherman et al. [27] are depicted in aqua and blue
respectively for comparison.
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Figure 3.4 A closer view of the calculated dielectric functions for water are shown at
frequencies above 10 kHz. The measurement by Batalioto et al. [26] is shown in blue.



36 Chapter 3 Testing Model on Quartz and Water



Chapter 4

Dielectric Constant Measurements on

Perovskites

4.1 Sample preparation on electrodes

Interdigitated electrode substrates are created at the Nano Fabrication Lab at the University of Utah

from high quality z-cut 500 µm thick quartz wafers. The interdigitated electrode layout is created by

photolithographically depositing an approximately 100 nm thick gold pattern onto the quartz wafer.

The pattern, demonstrated in Fig. 2.1(a), consists of two long rectangular electrodes on opposite

edges of the substrate, with many narrow (45 µm) fingers spanning the area between them. Each

finger alternates connecting to the left or right edge-electrodes. The perovskite materials are then

grown directly on top of the electrode array with thicknesses ranging from approximately 200 nm

to 2.5 µm, depending on the specific sample. The close proximity of each alternating finger allows

an alternating electrical signal to produce an extremely strong electric field between them. These

electric fields are generated from charges on the surfaces of the electrodes, arcing from one to the

next, and reach several microns deep into the materials on either side, shown in Fig. 2.1(b). This
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means that the electrical response of both the substrate and perovskite film to the field will influence

the overall impedance across the side electrodes.

To test the accuracy of the mathematical model in calculating the dielectric constant frequency

spectrum of various materials, four blank substrates and 16 perovskite samples were prepared. The

blank substrate measurements in Chapter 3 serve several purposes: to measure the dielectric spec-

trum of the quartz they were deposited on, and for use inside Eq. 2.8. Four types of perovskite thin

films, PEPI, MAPI, PEAPbCl4 (PEPCl) and PEAPbBr4 (PEPBr), were deposited on IDE substrates

by graduate student Kameron Hansen at the University of Utah. These specific types of perovskite

films were selected because they are of interest in ongoing electroabsorption experiments. The

duplicates of each measurement were intended to check the consistency of dielectric measurements.

Impedance measurements were collected using a commercial impedance analyzer for each

sample at 101 data points between 5 Hz and 13 MHz on a logarithmic scale. Eight averages

were done on the lowest 30 points to eliminate noise, but samples with extremely low capacitance

required 288 averages to reduce noise sufficiently. These measurements were done in parallel circuit

mode rather than series circuit mode for two reasons: logically, our samples resemble a parallel

circuit since capacitative and resistive features experience the AC signal at the same time rather than

in sequence, and additionally because parallel mode permits the measurements of lower capacitance

values than series mode does.

After the impedance measurements were collected, the perovskite samples were sent back to the

University of Utah to have their thicknesses measured using profilometry. This is a process where a

scrape is made across the surface of the sample, and a needle can trace the contours of the surface

and scratch to gauge the depth. Fig. 4.1(a) displays a microscope image of a MAPI sample with

a scratch across its surface for profilometry. The gold electrodes appear as white reflective lines

across the image, and can be seen underneath the thin grains in the dark MAPI sample. Fig. 4.1(b)

shows the 5 profilometer needle paths that were selected to compare the depths of the MAPI surface,
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Figure 4.1 (a) Microscope image of MAPI perovskite grown on interdigitated electrode
substrate with a large scratch in the middle for profilometry analysis. Electrode fingers
appear as white stripes and can be seen underneath the dark MAPI structure. (b) Image
from the profilometry software of the scratch in MAPI, where color represents approximate
depth. Five trajectories given by colored arrows can be seen detailing the paths that the
profilometer needle will take when gauging film thickness.

electrode surface, and quartz surface. Two samples of MAPI were found to have thicknesses of

390 (± 20) nm and 707 (± 56) nm.

4.2 Measurements on MAPI

Data on the MAPI perovskite samples can be seen in Fig. 4.2 below. The two published measure-

ments by Anusca et al. [5] and Lin et al. [6] show similar general trends but have very different

dielectric measurements overall, differing by more than a factor of two at high frequency. Our

model predicts values that sit comfortably within this range which may be a good indication of

accurate measurement.

Additionally, the two thicknesses of MAPI that were measured, shown in the second figure, are

in reasonable agreement with each other. One predicts high frequency values of εr = 26.0, and

the other of εr = 31.7. Both of these are quite similar to the values predicted by Lin et al. at this
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Figure 4.2 The values for calculated dielectric functions of MAPI thin film samples in
black and green, compared to data daken from Anusca et al. [5] in blue and Lin et al. [6]
in red.
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Figure 4.3 A closer look at values of calculated dielectric functions of MAPI thin film
samples in black and green, compared to data taken from Anusca et al. [5] in blue and Lin
et al. [6] in red. Error bars indicate uncertainty from layer thicknesses.

frequency range. A closer view of the high-frequency dielectric functions is shown in Fig. 4.3, with

the addition of error bounds calculated from the uncertainty in thickness measurement.

4.3 Measurements on PEPI

The dielectric constant of PEPI perovskite thin films was measured on three different sample

thicknesses: 568 nm, 716 nm, and 2527 nm. These measurements fall to a value of about εr = 7 at

high frequencies near 10 MHz, but show values in the hundreds and thousands at low frequencies;

see Fig. 4.4.

A closer view of the high-frequency dielectric constant values with error bounds propagated

from the uncertainty in thickness measurement are shown in Fig. 4.5. The thickest sample shows

features that the other two do not, including a bump between 100 kHz and 1 MHz. This may
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Figure 4.4 Calculated dielectric functions for PEPI perovskite thin films of three different
thicknesses.
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Figure 4.5 A closer view of our calculated dielectric functions for PEPI perovskite thin
films of three different thicknesses. Vertical lines represent error bounds propagated from
uncertainty in thickness measurement. The blue dot represents data taken from Hong et
al. [8] for a frequency corresponding to 1.5 eV, which is below the electronic resonances
but above the vibrational resonances (see Fig. 1.5).

be related to the formation of larger perovskite grains, since they are growing mostly above the

electrodes rather than between them, so they have no size constraint.

4.4 Measurements on PEPBr and PEPCl

Dielectric function measurements were additionally performed on PEPBr and PEPCl perovskite

thin films as shown in Fig. 4.6, though we are not aware of any published measurements of their

dielectric constant in literature thus far. PEPBr was measured to have a dielectric constant of

εr = 4.941 near 10 MHz, and PEPCl around εr = 7.238. Vertical lines represent error bounds

propagated from uncertainty in thickness measurement. In the future, we will be able to provide
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Figure 4.6 Calculated dielectric functions of PEPBr and PEPCl thin films. Lines represent
error bounds propagated from uncertainty in thickness measurement.

some of the first low-frequency dielectric measurements on a wide variety of perovskite thin films

due to the development of this model, as well as publish the model for others to use in different

circumstances.



Chapter 5

Conclusion

5.1 Discussion

In this thesis, we developed a model capable of calculating the dielectric functions of thin film

samples based on capacitance measurements from underlying electrodes. Due to the tightly-wound

nature of IDEs, the electric field is confined near the surface of the electrodes, which allows greater

sensitivity to thin film samples than is provided in most parallel-plate electrode geometries. Using

this model, we were able to predict values for the dielectric constant on many materials such as

quartz, water, and the perovskite thin films PEPI, MAPI, PEPBr, and PEPCl, and we compared

these values against published values when available.

The results of this comparison indicate that this model provides a viable method to measure the

dielectric functions of materials in proximity to IDEs due to good agreement with published values

and consistency across many measurements. We report some of the first measurements of dielectric

function on thin films PEPI, PEPBr, and PEPCl, and plan to report values for a wide variety of other

samples in the future.

45



46 Chapter 5 Conclusion

5.2 Future work

While this model is able to predict dielectric functions of various thin films already, there is more

work that can be done to improve the measurements it makes, as well as provide more information

about the samples it measures.

First, I would like to further analyze the results from this model by comparing its results to the

results of other IDE models, such as that of Farnell et al. [19], while using the same capacitance

data. This will allow us to gauge how successful our model is in comparison to existing IDE models.

In the coming months, we would like to obtain measurements on a series of varying n-number

perovskite thin films, such as PEPI n =1, 2, and 3. Analysis of measurements on a series like this

would allow us to make important claims about the effect on lattice structure on dielectric constant,

and consequently its effect on particles like excitons inside the crystal. It would also allow for a

more accurate comparison of electroabsorption data on these film series, since the differences in

dielectric constant between them could be accounted for.

Additionally, I have begun the work of extending these equations into three dimensions by using

the dielectric tensor instead of assuming an isotropic dielectric constant. In theory, one should be

able to solve these new equations for both the parallel and perpendicular dielectric constants of

materials, as long as two different thicknesses of that material can be produced. This will allow us

to make important insights about the anisotropy of the dielectric constant in perovskite materials,

which will impact the comparison of electroabsorption in which the field is applied parallel to the

perovskite layers to electroabsorption with field applied perpendicularly to the confining layers.

(The latter involves the quantum confined Stark effect.)

There are many disciplines that the development of this IDE capacitance model may be able to

benefit as more work is done, especially in the perovskite community, but also in materials science

in general.
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