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ABSTRACT

Effect of X-Ray Illumination on Magnetic Domain
Memory in [Co/Pd]/IrMn Multilayers

Colby Singint Walker
Department of Physics and Astronomy, BYU

Master of Science

This thesis focuses on investigating the possible x-ray illumination effects on the magnetic
domain memory (MDM) in magnetic [Co/Pd]IrMn multilayers. In this material, MDM is induced
via exchange couplings between the ferromagnetic Co/Pd layer and the antiferromagnetic IrMn
layer. To carry out this investigation, we have used magneto-transport and x-ray resonant magnetic
scattering. The use of magneto-transport in-situ at synchrotron x-ray scattering facility has allowed
us to follow the gradual effect of x-ray illumination on the amount of exchange bias, initially present
after field cooling the material. With our in-situ measurements we have been able to see that x-ray
illumination does have an effect on the strength of exchange couplings in our material. To support
this observation, we have also carried out complementary measurements at home in a cryomagnet,
at various temperatures between 300K and 25K, and in a variety of configurations.

Keywords: exchange bias, magnetic domain memory, magneto-transport, exchange couplings,
antiferromagnet, ferromagnet
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Chapter 1

Introduction

1.1 Exchange bias in magnetic multilayers

The material we are studying is a [[Co(4Å)/Pd(7Å)]12/IrMn(24Å)]4 multilayer for which the

structure is illustrated in Fig.1.1 . The [Co/Pd] layer is ferromagnetic. Ferromagnetism (FM) is

when the atomic spins (here carried by the atoms of Co) align parallel to each other. The IrMn alloy

forms the antiferromagnetic part of the material. Antiferromagnetism (AFM) is when the atomic

spins (here carried by the atoms of Mn) align anti-parallel. Our material exhibits what is called a

perpendicular magnetic anisotropy (PMA) which means that the net magnetization points out of

plane. The magnetic anisotropy is “the energy that it takes to rotate the magnetization direction

from easy into the hard direction.” [1]. When a FM/AFM interface is formed, it exhibits material

exhibits exchange bias. The bias is the result of uncompensated moments at the interface of the

AFM and FM layers. In order to create exchange bias the material must be field cooled (FC) below

its blocking temperature, TB which is ~300K. The spins pinned by FC remains locked when below

the TB and create a net (non-zero) field at the interface (the bias). This causes the hysteresis loop to

shift horizontally to the direction opposite to the field previous applied during the FC. We measured

1
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Figure 1.1 a) Cross section through [Co/Pd]/IrMn multilayer. The Co/Pd multilayer is
ferromagnetic. The IrMn alloy is antiferromagnetic. b) Magnetization loops measured via
VSM at 300 K and at 20 K after field cooling under a field of 4000 Oe. The blue loop
measured at 20 K exhibits an exchange bias of about 200 Oe.

a bias field of around -200 Oe at 20K after field cooling under a saturating field of 4000 Oe. This

bias is the physical manifestation of exchange coupling interactions between the FM [Co/Pd] and

the AFM IrMn layers. These exchange couplings allow the pattern in the FM layer to imprint the

AFM layer when the sample is field cooled, which leads to creates magnetic domain memory.

1.2 Magnetic Anisotropy and Magnetic Domains

When a magnetic field is applied to a ferromagnetic material (either in plane or out of plane), the

atomic magnetic moments eventually all align with the applied field (saturation point). Below

saturation, or in the absence of field, the material starts to form multiple magnetic domains, each

exhibiting a different direction for the magnetization. For materials with PMA, the magnetization

is mostly out-of plane, either up or down. This leads to the formation of domain patterns with
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Figure 1.2 Illustration of a magnetic domain pattern with magnetization directed up and
down out-of-plane.

magnetization pointing alternately up and down from one domain to the next one, for example

alternating spins of up and down. Fig. 1.2 illustrates an example of what a magnetic domain pattern

looks like. In a PMA thin film, these magnetic domains naturally form in order to reduce the total

magnetic energy. It should also be noted that there are two different types of anisotropies: shape

anisotropy and magneto-crystalline anisotropy. The former is due to the shape of the material

and the latter is due to the spin orbit interaction. The direction for the easy axis is determined by

the competition between both of these. The PMA in our material is mostly caused by the shape

anisotropy.

1.3 Magnetic Domain Memory

Magnetic domain memory (MDM) is a property of a magnetic material to retain the domain patterns

under field cycling. MDM is normally absent in single AFM layer. Here, MDM is induced via

exchange couplings between the FM and AFM layers. When field cooling, the FM layer imprints

a pattern on the AFM layer. Upon field cycling the same exact magnetic domain pattern reforms,

driven by the magnetic domain template imprinted in the AFM layer.

The way we probe MDM is by using coherent x-ray magnetic scattering (c-XRMS). Speckle
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patterns are collected at various field values throughout the magnetization cycle, in successive

cycles. The collected speckle patterns are then used to calculate cross-correlation coefficients which

are then assembled into a correlation map. A speckle pattern essentially represents the magnitude of

the Fourier transform of the particular magnetic domain pattern (the phase is lost). If the resulting

speckle pattern has the shape of a ring, then the magnetic domain pattern itself does not have a

preferred direction. See Fig. 1.3 illustrates an example of a speckle pattern. In the speckle pattern,

the speckle spots are not directed in a particular direction.

1.4 Research problem: study possible illumination effects

While carrying XRMS measurements of MDM, we noticed that x-ray illumination from synchrotron

radiation sources may result in the loss of exchange coupling between the FM and AFM layers. The

purpose of my research project is to study the possible effects of X-ray illumination on exchange

bias (EB) and consequently, on MDM. Applications of MDM are in the area of magnetic storage. It

is important to know if the photon illumination can possible affect the strength of MDM The ability

to control MDM by tuning the amount of light we shine onto the material can lead to numerous

applications including in magnetic recording. We anticipate that the results from this study will

likely lead to publications. In an article [2] the following was stated "can the number of pinned

uncompensated moments be manipulated by external means such as stress, light, and electric field".

We are seeking to answer part of this question and see if it is related to the observed loss of MDM

in our [Co/Pd]/IrMn thin films.



1.4 Research problem: study possible illumination effects 5

Figure 1.3 Example of speckle pattern collected on [Co/Pd]/IrMn multilayers with coherent
x-rays, whose energy is tuned to Fe-L3 edge at around 708 eV.



Chapter 2

Experimental Techniques

In this chapter we will discuss the experimental techniques used in my research project, including

magnetometry, magneto-transport and x-ray magnetic scattering.

2.1 Vibrating Sample Magnetometry (VSM)

The purpose of magnetometry is to measure the magnetic response of materials when subject to

a magnetic field. Vibrating Sample Magnetometry (VSM) is one way to access this information.

VSM is based on the Faraday effect, where the change of the magnetic flux through a loop induces

an electromagnetic voltage. To implement this, the sample is vibrated through a pickup coil. The

vibration of the magnetic material induces a change in magnetic flux through the pickup coil,

which itself induces a voltage (or “electromagnetic force”) in the pickup coil [3]. The measured

induced voltage is assumed to be proportional to the magnetization of the sample. The instrument is

calibrated so that the units of the measured magnetization M is "emu" (electro-magnetic unit).

Fig. 2.1 shows a diagram of the VSM instrument. A motor at the top of the instrument drives

the vibration of the sample. The driving frequency of the vibration is around 60 Hz. The vibration

occurs while a magnetic field is applied to the sample. The applied magnetic field H is produced by

6



2.1 Vibrating Sample Magnetometry (VSM) 7

Figure 2.1 . a) Diagram of the VSM, including (1) motor or transducer for driving
vibrations, (2) support, (3) sample holder, (5) sample, (7) sample coils, (8) superconducting
magnet. b) Picture of our VSM instrument at BYU.

a superconducting magnet located at the center of the instrument. The voltage induced in the pickup

coil is proportional to the magnetization M of the material at a given field H. The magnetic field H

can be set to any value from 0 to 9 T. In order to operate, the superconducting magnet needs to bathe

in liquid helium. A lack or low liquid helium supply could lead to damage to the superconducting

magnet. A proper measurement requires that the sample is centered at the center of the pickup coil.

Additionally, the instrument possesses a cryostat. The temperature of the sample can be varied from

a maximum value of 400 K down to around 1 K with the assistance of liquid helium. Being able

to heat up the sample to 400 K may be useful for getting rid of any remanent magnetization. The

instrument operates in vacuum.

The VSM can be used to measure magnetic hysteresis in ferromagnetic material. Fig. 2.2

shows an example of hysteresis loop measured via VSM on our [Co/Pd]/IrMn films, where the

magnetization M is plotted against the applied field H. It reflects the magnetic response of the
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Figure 2.2 Magnetization loop measured via VSM on our [Co/Pd]/IrMn film at 300 K

material to an externally applied field. The VSM can also be used to measure the magnetization as

a function of temperature M(T). This is useful to study materials that exhibit a magnetic transition,

and for finding the temperature at which magnetic transitions happen (for example, blocking

temperature).

The magnetization M is the averaged magnetic moment per volume. For FM material presenting

nanoscale magnetic domains where the magnetization is pointing in different directions, the VSM

just outputs the macroscopic averaged magnetization, averaged over all the microscopic domains.

The field value at which M starts plateauing is called the saturation field Hs. For the material we

are studying Hs = 3200 Oe at 300K. Below saturation (when H < Hs) the magnetization in the

various domains may point in different directions. Once the material has reached saturation (H =

Hs), the magnetization points uniformly in the same direction throughout the sample, and M reaches

its maximum value Ms (magnetization at saturation).The nucleation field (Hn) is the point on the
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descending branch of a magnetization loop where M starts to decrease again. The coercive field

(Hc) is the field that need to be applied in order to bring M back to zero. The magnetization loop is

symmetrical, meaning the descending and ascending branches reflects each other. The coercivity is

important to quantify, because this is how we will later estimate the amount of bias, in the presence

of exchange bias. For our [Co/Pd] IrMn multilayers, Hc ~200 Oe at around 20K.

2.2 Magneto-Transport

Magneto-transport is essentially the measurement of transport properties in the presence of magnetic

field and/or for magnetic materials. It includes two categories of signal: 1) magneto-resistance

(MR), and 2) Hall effect (HE) signals, which we describe below.

The Hall effect signal provides another way to measure hysteresis magnetization loops in

magnetic materials [4]. When measuring HE in magnetic materials, one needs to consider two

components: 1) the regular “ordinary” Hall effect, induced by the external field; and 2) the

“extraordinary” Hall effect (EHE), included by the internal fields. For non-magnetic, but conductive

materials, the Hall voltage measured across the sample is simply the ordinary Hall effect signal

proportional to the applied field H. For magnetic material, the additional EHE voltage is assumed

to be proportional to the magnetization M of the sample. In our ferromagnetic materials, the EHE

component largely dominates the ordinary Hall effect (no need to subtract it to visualize the EHE

signal).

In order to carry a EHE measurement on our ferromagnetic films with PMA, we need to first

apply a field perpendicular to the surface of the sample (out-of-plane) as illustrated in Fig. 2.3.

Next, we need to apply a current in-plane and measure the voltage in the transverse direction in the

plane of the film. The origin of this effect can be described by the Lorentz force (F = qE + qv x B),

that governs how charged particles (electrons, in this case) move under the influence of a magnetic
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Figure 2.3 Diagrams showing how current is applied and voltage is measured for a) Hall
Effect (cross configuration) and b) Magnetoresistance measurements (parallel configura-
tion)

field. When the electrons from the applied current move and enter the influence of the applied field,

they are deflected sideways, and this creates a Hall voltage. qv x B is a mathematical expression for

a sideways deflection of a charged particle. In order to get rid of any asymmetries in the data due to

the placement of the contacts we need to permute the arrangement of the contacts for the current

and voltage, respectively.

For HE measurements (illustrated in Fig. 2.3), there are two different arrangements, obtained

by switching the directions of the current and voltage, respectively. Once both arrangements are

measured, we average them in order to eliminate asymmetries in the placement of the contacts. It

can be very difficult to place the contacts perfectly symmetrically enough such that there are no

asymmetries in the data. The averaging technique generally eliminates asymmetries. Fig. 2.4 is

what the surface of sample looked like with the Pt pads deposited on it using Focused Ion Beam

(FIB) for making the contacts.

For the MR measurement, the field is still applied OOP, but the applied current and measured

voltage are now parallel, as shown in diagram Fig 2.3b In the Van-der-Pauw averaging method [5],

data is collected in four different permutations of the contacts. The data collected in the four
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Figure 2.4 SEM image showing a top view of the [Co/Pd]/IrMn film, with the 100 µm
window at the center, surrounded by four Pt pads at a distance of about 300 µm of each
other.
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different configurations is then averaged to eliminate any asymmetries coming from the contact

positioning.

2.3 X-ray magnetic scattering

In addition to magnetometry and magneto-transport, we collected x-ray magnetic circular dichroism

(XMCD) and x-ray resonant magnetic scattering (XRMS) data at synchrotron x-ray facilities. In

the shape of a ring, a synchrotron facility sends electrons around the ring near the speed of light.

Complex sets of magnets, called insertion devices, are used to control the trajectory of the electron

beam, so it follows the circular path. As it goes around the ring, the act of bending the electron

beam (bremsstrahlung effect) produces a synchrotron light, that covers a wide range of x-rays

energies from soft x-rays to hard x-rays. The produced synchrotron x-ray beam then goes through

advanced optics which are placed and designed to get the x-rays to where they need to go. One type

of insertion device are undulators. An undulator is an array of magnets arranged in a periodic way

that causes the beam to bend radially which causes another release of photons. As these photons

travel down the undulator their phases match, thus producing a more coherent beam of photons.

Additionally, the beamline may include optical components such as monochromators, allowing to

tune the energy, as well as polarization plates, allowing to polarize the x-ray light.

Both XMCD and XRMS are element selective techniques. Tuning the energy to the absorption

edge of the particular magnetic element provides the necessary magneto-optical contrast [3]. This

allows to select different elements in the different layers of the material. In the case of transition

metals, such as Co or Fe, one typically exploits the electronic transition between the 2p and 3d

electronic bands (L2,3 edges) [6]. For rare earth elements, the L2,3 edges land in the hard x-ray

region, but in the soft x-ray region are also the 3d to 4f transition available (M edges), although the

2p to 3d transition tends to provide more magnetic contrast. For our [Co/Pd]/ IrMn materials we
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Figure 2.5 Layout for the x-ray resonant magnetic scattering (XRMS) experiment, with
resulting speckle pattern. Extracted from [7]

use the Fe- L2,3 at around 700 eV, which is in the soft-ray range (below 1 keV). At these energies,

the wavelength of the light is a few nanometers, which is well suited to study nanoscale magnetic

domains. When using soft x-rays, XMCD and XRMS measurements must be carried in vacuum to

prevent the light to be absorbed by air. In order to carry out these measurements, the sample must

therefore be in a vacuum chamber. From the undulator the coherent x-rays travel down the beamline

where it gets to the beamline end station. Once it makes it to the sample, the coherent soft x-rays

interact with the electron spins in the matter and will be scattered. The scattered light results in a

speckle pattern which is collected on a CCD detector, as illustrated by Fig. 2.5.

2.4 Speckle correlation

The speckle patterns collected on the CCD camera are unique fingerprints of the magnetic domains

patterns. For our MDM investigation, cross-correlating these patterns then allows one to detect

any change in the magnetic domain patterns as the external magnetic field is being cycled. The

process of cross-correlating involves recording two speckle patterns at two distinct magnetic field
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values. The similarity between two speckle patterns is quantified by multiplying the intensity of

the speckle pattern pixel by pixle after shifting one pattern with respect to the other one [7]. This

process generates correlation patterns, which usually exhibit a correlation peak at their center. The

correlation peak is integrated, which results in a number ρ that is normalized with respect to the

square root of the product of the autocorrelations. The end result of this computation is a number, ρ

between 0 and 1 that expresses how similar two distinct speckle patterns are. When the two patterns

are exactly the same, ρ = 1, and when they are completely different, ρ = 0. A high degree (ρ

close to 1) of MDM (i.e. a high correlation coefficient) means that the magnetic domains pattern

in real space is unchanged. On the other hand, a low degree (ρ close to 0) of MDM means that

the magnetic domain patterns are significantly different. Fig. 2.6 shows an example of correlation

map measured on [Co/Pd]/IrMn at 20K after zero field cooling. The horizontal and vertical axes

represent the two different field values, H1 and H2, at which the two correlated speckle patterns

were collected.
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Figure 2.6 Correlation map, the horizontal and vertical axes represent two different field
values H1 and H2 at which the two correlated speckle patterns have been collected. The
quantity being plotted is the correlation coefficient, with blue being low (ρ < 20 %) and
red being high (ρ = 100 %).



Chapter 3

Experiment

3.1 MDM measurements

In the previous chapter, we discussed how correlation maps are created. These are used to quantify

how much memory the material has. For a regular ferromagnetic film, MDM is expected to be

low, near zero, because when the field is cycled through an entire major loop and set back to the

same initial value, the new magnetic domain pattern shows a different random arrangement of the

domains compared to the initial one, even though the average magnetization is the same. In this

case, when scattering patterns are cross-correlated over different cycles, the amount of MDM would

be nearly zero. Non-zero MDM is a remarkable effect that is only observed in specific materials.

Previous experiments have shown a strong amount of MDM under various conditions, including

zero field cooling and cooling under a moderate field, as illustrated in Fig. 3.1 MDM appears when

the temperature of the material is brought below the blocking temperature TB. When T < TB the

spins in the ferromagnetic and antiferromagnetic layers start to interact via exchange couplings.

This interaction will cause the domain pattern in the ferromagnetic layer to imprint onto the

antiferromagnetic layer via the uncompensated at the interface. The imprinted AFM domain pattern

16
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Figure 3.1 Correlation maps showing various amounts of MDM in [Co/Pd]/IrMn. (a)
The first row is shows correlation maps collected at 20 K under different field cooling
conditions where the magnitude of the cooling field varies from 0 up to 3200 Oe. (b) The
second row shows correlation maps all collected after successive field cyclings at 20 K
after the same zero field cooling process.

will then serve as a template for the domains in the F layer to nucleate and reform the same way

over cycling and thus lead to a high degree of MDM. The materials we are studying here have been

optimized to enhance the MDM effect by exploiting exchange bias between the FM and AF layers.

The Chesnel group has observed up to 100% of MDM in [Co/Pd]/IrMn in various field cooling

conditions [7–13].

3.2 Observed MDM loss

Previous measurements have demonstrated high MDM when field cooling [Co/Pd]/IrMn under zero

or moderate field [7]. The first row of correlation maps in Fig. 3.1 shows correlation maps that have

been measured in different cooling conditions, where the magnitude of the cooling field is varied

from 0 to near saturating field 3200 Oe. Each of these maps has been averaged over several cycles.

These maps show a relatively high amount of MDM in various field cooling,but the highest amount
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of MDM is observed in Zero Field cooling (ZFC) where ρ reaches up to 100% extending on a wide

range of field values throughout. The amount of MDM diminishes when the cooling field values

approaches the saturation field, but MDM remains somewhat high (up to 50%) near nucleation and

saturation (corners of the map) [7].

The correlation maps on the second row of Fig. 3.1, report correlations on successive cycles

measured at 20 K after zero field cooling. It shows a complete loss of MDM after the first cycle. It

is worth mentioning that the correlation maps on the first and second rows were collected at two

different synchrotron facilities (ALS and APS respectively) under different illumination conditions.

For the ALS data, a beam chopper was used, limiting the illumination time to brief periods, separated

by no-illumination periods. For the APS data, no beam chopper was available so the sample was

continuously illuminated by the x-ray beam for long period of time. After having done many

different studies of MDM on our [Co/Pd] IrMn multilayers, we observed this unexplained loss of

MDM after cycling the field. The loss of MDM was first noticed during experiments at the APS.

The loss of MDM suggests disruption in the exchange couplings occurring between the Co/Pd

ferromagnetic and the IrMn antiferromagnetic layer. However, it was found more recently that

when under different illumination conditions, the material exhibited an unexpected loss of MDM,

where the correlation coefficient was nearly zero throughout the entire magnetization loop, even

in ZFC state. This loss of MDM may be due to the amount of x-ray illumination which may alter

the strength of the exchange couplings between the ferromagnetic Co/Pd and antiferromagnetic

IrMn layers. Consequently, a question is if this disruption in exchange couplings may be caused by

increased x-ray illumination duration.
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3.3 Probing exchange bias via in-situ magneto-transport

In order to investigate the MDM loss, our approach is to examine the exchange bias and its possible

alteration under x-ray illumination. There are a few different ways to measure exchange bias in

the FM/AFM layer. These various ways include magnetometry (VSM), x-ray magnetic circular

dichroism (XMCD), and magneto-transport (MT). For investigating the effect of illumination on

MDM and exchange bias, VSM would not be a good option, as it necessitates mechanically vibrating

the samples and the VSM equipment is too bulky to fit in a x-ray scattering chamber. In order to

investigate the effects of x-ray illumination we need to keep the synchrotron beam aligned with

a micrometric transmission window on the sample. Vibrating the sample would lead to losing

the alignment. XMCD would also not be a good choice either for measuring the effect of x-ray

illumination because the XMCD signal contrast is dependent on the amount of illumination. As the

beam intensity is decreased the signal becomes noisier. The last choice is magneto-transport (MT).

For our specific study, MT fits our needs perfectly as it is independent of both vibrations and amount

of illumination. Fig. 3.2 shows the MT setup we used to collect data at the Advanced Photon Source,

at Argonne National Laboratory. The EHE signal measured around the transmission window on

[Co/Pd]/IrMn films at the synchrotron facility shown in Fig. 3.3 an unusual shape, looking like

a distorted magnetization loop. We see how the signal to noise is improved by increasing the

amplitude of the applied current.

3.4 Complementary ex-situ magneto-transport measurements

In order to understand the distorted shape of the magnetization loop measured around the trans-

mission window in Fig. 3.3, we carried separate measurements at BYU outside the synchrotron

beamline. These measurements were carried at different locations of the samples for comparison

purposes: on the inner contacts around the transmission window and on some outer contacts far
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Figure 3.2 Illustration of the magneto-transport setup we used at the Advance Photon
Source, at the Argonne National Laboratory (APS). a) Sample holder with electrical
connections to be inserted into the vacuum scattering chamber, b) X-ray magnetic scattering
chamber where the magneto-transport measurements were carried out at the APS.

away from the window as schematically illustrated in Fig. 3.4b.

The initial inner contacts were placed around the central transmission window such that they are

300 µm microns from each other, as seen in the SEM image Fig.3.4a. A third set of contacts were

placed at macroscopic distances of each other. For this macroscopic set, for the outer contacts, the

wirebonds have been placed on the edge of the sample which are about 5 mm apart for all these

contacts sets. Two different measurements were carried out, one in a cross configuration for the

EHE signal and one on the parallel configuration for magneto-resistance MR. By comparing the

measurements on the inner and outer contacts, we were able to identify the source of the asymmetry

in the data taken from the APS. We found that the source of the asymmetry was from the closeness

between the electrical contacts located around the transmission window.

In the next Results chapter, we describe our quantitative findings on how this contact closeness

causes data distortion.
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Figure 3.3 Synchrotron in-situ EHE loops measured at 300 K with different applied current
values and in the absence of x-ray illumination.
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Figure 3.4 Contacts for the MT measurements a) SEM image of the area around the
transmission window showing four Pt square pads; b) Diagram of the various wirebond
connections and the spacing between all of them.
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Results

4.1 High T magneto-transport (EHE and MR) data

We have carried MT measurements at home to better understand the data we were getting at the

APS. The placement of the wire bonds was the same as the ones at the APS, i.e., closely located

around the central transmission window. Over time some of these wire bonds broke or burned out,

but we have tried our best to place them as close to the original spot as possible. Also, we have

created a set of new wire bonds in two additional locations, so, in total, we have three sets of wire

bonds. The first set is located at 300 microns around the transmission window, the second set is

located at each corner of the sample around 5 mm apart, and the third set is like the first one at 300

microns apart, but located off window, as shown in diagram Figure 3.4.

Fig. 4.1 shows a selection of the data collected on the outer and inner contacts around the

window, as well as the off-window contact measurements at room temperature. The EHE and MR

signals on the outer contacts in Fig. 4.1 (a) and (b), respectively, show the expected shape for a

ferromagnetic film. The EHE data in Fig. 4.1(a) has the shape of the hysteresis curve characteristic

of our [Co/Pd] IrMn film and already measured via VSM in Fig. 2.2. Consistent with the VSM data,

23
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the saturation points on the EHE loop on both ends are located at 3500 Oe for all the magnetization

loops. The coercive points is 285 Oe for the ascending branch, and -285 Oe for the descending

branch. The MR data in Fig. 4.1(b) shows two lobes or arches, typical of MR data on ferromagnetic

films. Each arch extents from the nucleation point to the saturation point and peaks at around the

coercive point. In our MR data, the two arches (on the ascending and descending branches) are

symmetric and reaches about the same height, with a maximum located at ±2000 Oe.

The EHE and MR data collected on the inner contacts shown in Fig. 4.1(c) and (d) respectively

is distorted compared to the typical data as measured on the outer contact. We can interpret these

distorted shapes as being a combination of the standard EHE and MR signals. The upper right-hand

side of the EHE signal when combined with the MR signal would shift up the right-hand lobe as

well was decreasing its size. The lower left-hand side of the EHE signal would make the left-hand

lobe on the MR data decrease in size, but not as much as the right-hand lobe. Both EHE signals

measured on the inner contacts at the APS and at BYU show a signal that is asymmetric. The

EHE signal measured on the inner contacts around the transmission window looks very similar

to the data collected at the APS, which confirms that it was not an artifact but real signal. The

EHE signal measured off-window shown in Fig. 4.1(e) shows a distorted shape, similar to the one

measured in Fig. 4.1 (b), except it is flipped. Saturation is reached around -3500 Oe, and 4000 Oe

(the discrepancy between the negative and positive saturation points is mostly due to experimental

noise). Overall, the off-window signal is consistent with what is measured on-window.

In the next section, we will show that the asymmetric EHE signal on the inner contacts can be

modeled as a linear combination of the outer contacts EHE and MR signals. The closeness of the

contacts has created a mixed effect where the resulting data may be modeled as a mixture of both

EHE and MR signal.
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4.2 Effect of microstructration

The magnetization loops we have measured at the APS, have very noticeable asymmetries. As

previously explained, we investigated this asymmetry and found that due to the closeness of the wire

bonds and the non-equidistance between the wire bonds. We have found that the asymmetric shape

can be explain by a mixture of a Hall Effect signal and a MR signal. We have found that a linear

combination of both the EHE signal and MR signal can be used to account for these discrepancies.

The general form of the model used is (a∗EHE+b∗MR) where a and b are two scalars to be fitted.

What we have seen from the previous sections is that there is a difference between measurements

done on the edges of the sample and measurements done around the transmission window. The

data is very much dependent on the placement of the contacts in two distinct ways. First the overall

distance the contacts are apart, and second how equally spaced the contacts are from each other. If

measurements are taken with the contacts ~5 mm apart the resulting data is different when they are

300 µm apart. With contacts close around the window, there is a “mixing” of the HR signal and the

MR signal. which results in a distorted signal. In Fig. 4.3 we see that when the contacts are not

placed around the transmission window we still get the same distorted signal again. The setup of

the contacts on Fig. 4.3 are with the contacts ~300 µm apart. We also took measurements to see

if there was a difference between the on-window and off-window windows. The spacing between

off-window contacts were made to be roughly the same as the spacing between contacts on the inner

contacts. The fit on the off-window measurement for the most part looks very similar, but the fit

parameters a, b are different than in the on-window case. The fitted parmeters for the off-window

shown in Fig. 4.2 are a = -0.8 and b = 0.88, so the parameters are about equally weighted. On the

fits for the on-window shown in Fig. 4.3 there is more weight towards the b parameter ( b = 1.5

with a being close to 1) which is related to the MR component. We evaluated that about 1/3 of the

distortion is due to the window and 2/3 due to the closeness of the contacts [14].
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4.3 Effect of field angle

The experiment at the APS utilized an octupolar magnet for applying a field perpendicular to the

surface of the sample. This octupolar magnet allows one to apply a field in any direct we choose. It

turned out that during our experiment the applied field was not quite perpendicular to the surface

of the sample because of some issues with some of the electromagnet’s poles. Because of this

we weren’t sure how exactly this would effect the resulting data. So, we did more measurements

home, at room temperature to see what kind of effect a tilt angle could have on the magnetization

loops. Our collected data suggests no effect of the angle of the field/ field tilt on the shape of the

magnetization loop. Fig. 4.1 is a summary of collected data at different angles.

The fits shown in fig. 4.2 show the resulting fits at different tilt angles. The tilt angle is the angle

formed between the applied field and the surface of the sample. In more recent experiments we have

been taking measurements at different angles to study how sensitive the magnetization loop is to a

change in the angle. As shown in fig. 4.2 there is not much of a difference between the coefficient

values at different angles.

4.4 Low T magneto-transport data using PPMS

Fig. 4.4 show measurements that were done on the Physical Properties Measurement System

(PPMS) using a superconducting magnet. At low temperature, after field cooling under a saturating

field, the EHE loops show exchange bias as expected. The measured exchange bias for the EHE

magnetization loops is 400 Oe. The low temperature MR magnetization loops also exhibit exchange

bias. The measured exchange bias for the MR magnetization loop is 300 Oe. From this we should

be able to make a prediction of what the exchange bias should be on the APS data. Knowing the

amount of exchange bias on the EHE/MR curve will be useful to see if there is a partial loss or

complete loss of exchange bias while under x-ray illumination.
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Figure 4.1 EHE and MT data collected at 300 K in the different contact configurations. (a)
EHE and (b) MR signals on the outer contacts, (c) EHE and (d) MR signals on the inner
on-window contacts, (e) EHE signal on the inner off-window contacts.
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Figure 4.2 EHE data on window contacts collected at 300 K at different field tilt angles:
(a) zero degrees, (b) 5◦, (c) 10◦, and (d) 15◦ respectively

Figure 4.3 EHE data collected at 300 K off-window inner contacts with associated fit
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Figure 4.4 MT data meassured with the PPMS cryomagnet and resistivity puck. (a) EHE
data measured at 25 K, 50 K, 100 K, and 300 K after field cooling under 5000 Oe. (b) MR
data measured at 300 K and at 25 K after field cooling under 5000 Oe.

4.5 Synchrotron EHE data

Finally, we now review the MT data collected in-situ in the synchrotron scattering chamber, while

the sample is being illuminated with coherent x-rays and test our hypothesis. The contact setup used

for these APS measurements were the inner contact set around the transmission window. Fig. 4.5

shows data collected at 300 K and at 25 K after field cooling under a field of ~5000 Oe. A bias of

~300 Oe was observed at the beginning of the synchrotron experiment, before we start illuminating.

4.6 Effect of x-ray illumination

Fig. 4.6 shows more in-situ MT data, collected under x-ray illumination. One study compares

the MT signal collected before, during and after x-ray illumination There is a noticeable effect

on the shape of the magnetization EHE loop, in particular the location of the nucleation edge on

the descending branch. The longer the sample is illuminated by x-ray, the more the location of

the nucleation edge shifts to the right. There is a ~150 Oe loss in the bias during the measured
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Figure 4.5 Magnetization loops measured at the APS via MT (EHE signal) on our
[Co/Pd]/IrMn sample at 300 K and at 25 K after field cooling under a field of 4500
Oe. The arrow indicates the observed field bias of about 300 Oe.

illumination time. This shifting effect reflects an effective loss of field bias, which suggests a

progressive destruction of exchange couplings. Despite the loop distortion, the progressive change

in the loop and progressive shifting confirms that x-ray illumination can cause a loss of exchange

coupling and consequently a loss of MDM in the material.

Although there is, to our knowledge, no existing theory to explain the observed loss of bias,

we propose here a brief interpretation for our results. During the illumination of the material by

polarized resonant x-rays, the orbital angular momentum carried by the photons interacts with the

spin of the electrons in the (2p) band which are excited to the (3d) band. This excitation likely

disturbs the local exchange couplings at the interface between the spin in the ferromagnetic Co/Pd

layer and the spins in the antiferromagnetic IrMn layer. As a result, the exchange bias is partially

lost as we cycle the magnetic field, and so is the MDM.
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Figure 4.6 MT data measured in the synchrotron scattering chamber during x-ray illumina-
tion. a) EHE loop measured at 25 K after field cooling under H = 5000 at different stages
of the x-ray illumination. b) A zoomed in view of the data in a) around the nucleation
point on the descending branch, which shows a progressive loss of bias.
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Conclusion

In this study, we have investigated the possible effect of x-ray illumination on exchange couplings in

[Co/Pd]/IrMn layers via magneto-transport. We have observed that the EHE data measured on inner

contacts around the transmission window is asymmetric.We observed these asymmetries both in our

in-situ synchrotron measurement as well as ex-situ measurements at BYU. These measurements

were done at room temperature and below the blocking temperature. These measurements were

taken with the EHE and PPMS cryomagnet with the resistivity option. These BYU measurements

support the data we observed at the synchrotron, in showing an asymmetric magnetization loop.

We found that the asymmetric EHE data can be expressed as a combination of the regular EHE

and MR signals collected on macroscopic contacts. The placement of the wirebonds has a direct

effect on the symmetry of the magnetization loop and related to that how much of each signal

contributes to the resulting measurement. The resulting signal measured via magneto-transport is a

combination of the EHE and MR signals measured on macroscopic contacts. More importantly, we

have found that x-ray illumination does have a effect observed exchange bias. The more time the

material is exposed to x-rays, the less visible bias is observed which indicates a progressive loss of

exchange couplings between the FM and AFM layers. We attribute the bias loss to the interaction

between the orbital angular momentum carried by the polarized resonant x-ray photons and the
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spins in the material, which then disturbs the exchange couplings between the ferromagnetic and

antiferromagnetic layer.

Next directions to investigate include the effect of the illumination duration to see if it would

eventually lead to a complete loss of the exchange bias. It would also be interesting to study the

reversibility of this process, and see how the lost exchange couplings and lost MDM can possibly

be retrieved, via field heating and cooling.
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ABSTRACT
We measured the local magneto-transport (MT) signal with an out-of-plane magnetic field, including magneto-resistance (MR) and Extraor-
dinary Hall effect (EHE), in exchange-biased [Co/Pd]IrMn thin multilayers that are micro-structured with a 100 μm window. We found that
when measured locally around the window, the MT signal deviate from the expected behavior. We studied possible causes, including film
micro-structuration, electrical contact geometry as well as magnetic field angular tilt. We found that tilting the magnetic field direction with
respect to the normal direction does not significantly affect the MT signal, whereas the positioning and geometry of the contacts seem to
highly affect the MT signal. For comparison purposes, we carried these MT measurements using the Van-der-Pauw method on a set of four
microscopic contacts directly surrounding the window, and on another set of micro-contacts located outside the window, as well as a set of
four contacts positioned several millimeters away of each other at the corners of the wafer. If the contacts are sufficiently far apart, the EHE
and MR signals have the expected shape and are not significantly affected by the presence of the window. If, on the other hand, the contacts
are micro-positioned, the shape of the EHE signal is drastically deformed, and may be modeled as a mix of the standard EHE and MR signals
measured on the outer contacts. Furthermore, if the micro-contacts are located directly around the window, the deformation is amplified,
and the weight of the MR signal in the mix is further increased by about 40 %. This suggests that the electron path in the Hall geometry is
disturbed by both the proximity of the electrodes and by the presence of the window, which both contribute to the deformation for about
two-third and one third, respectively.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/9.0000350

INTRODUCTION

Multilayered [Co/Pd]IrMn thin films, as sketched in Fig.1a,
exhibit interesting magnetic properties.1–3 One of these properties
is exchange-bias (EB),4 caused by interfacial couplings between the
ferromagnetic (FM) Co/Pd multilayers and the antiferromagnetic
(AF) IrMn layers, occurring when the film is field-cooled below
its blocking temperature TB.5 We found in previous studies6–8 car-
ried on [[Co (4Å)/Pd (7Å)]x12/IrMn(24Å)]x4 for which TB ∼ 275 K,
that these exchange couplings induce remarkable Magnetic Domain
Memory (MDM). The observed MDM is the highest and the most
extended throughout the magnetization loop when the cooling field
is close to zero (remanence).9 At remanence, the magnetic domains

in the F layer tend to form a maze pattern, like the one illustrated in
Fig. 1b, which gets imprinted in the AF layer upon cooling. We car-
ried these studies using synchrotron x-ray radiation, which allows
probing the domain pattern morphological changes at the nanoscale
while applying a magnetic field in-situ.10 However, recently, we
observed an unexpected loss of MDM upon field cycling. We have
been investigating possible reasons for the MDM loss, including
x-ray illumination effects. For these investigations, we used in-situ
magneto-transport (MT) while under x-ray illumination, to see if
the MDM loss may be accompanied by a loss of EB. In practice, EB
consists in the biasing of the magnetization loop with the respect to
the applied magnetic field, in the direction opposite to the direction
of the previously applied cooling field. Our earlier magnetization

AIP Advances 12, 035327 (2022); doi: 10.1063/9.0000350 12, 035327-1
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FIG. 1. (a) Sketch of the [[Co (4Å)/Pd (7Å)]x12/IrMn(24Å)]x4 multilayer structure; (b) Illustration of magnetic domain pattern forming in the film near remanence; (c) Magneti-
zation loops measured via VSM at 300 K and at 20 K after field cooling under a + 6000 Oe field; (d) Magnetization loops measured via EHE under a current of 100 mA on
inner contacts at 300 K and 25 K after field cooling under +4750 Oe. In both VSM and EHE measurements, the cooling field was well above saturation point Hs ∼ 3200 Oe.

measurements on [[Co (4Å)/Pd (7Å)]x12/IrMn(24Å)]x4, shown in
Fig.1c using Vibrating Sample Magnetometry (VSM), indicate a bias
field as high as 200 Oe at 20 K. When measuring EB via MT, we could
observe a biasing effect consistent with the VSM measurements.
However, we found that the shape of the Extraordinary Hall Effect
(EHE) signal (see Fig.1d) is deformed with respect to the expected
magnetization loop shape. This paper investigates possible reasons
for this deformation.

METHODOLOGY

The synchrotron x-ray magnetic scattering measurements were
carried at the Advanced Photon Source, beamline 4-ID-C, in a
vacuum chamber equipped with an in-situ octupole magnet. To
allow x-ray scattering measurements in transmission geometry, the
[[Co (4Å)/Pd (7Å)]x12/IrMn(24Å)]x4 thin films were deposited onto
100 nm thick Si3N4 membranes supported by silicon wafers that
have a 100 μm window at their center. To enable MT measure-
ments, the films were electrically hooked to a circuit board with
ultra-thin 20 μm wires soldiered via wire-bonding, as seen in Fig.2a.
The electrical contacts were grouped by sets of four, to enable both
Extraordinary Hall Effect (EHE) and magneto-resistance (MR) mea-
surements using the Van-der-Pauw method11,12 with a magnetic
field applied out-of-plane.

To study the effect of x-ray illumination on the exchange cou-
plings and a possible loss of EB, the MT signal was measured locally,

as close as possible to the illuminated window. For this purpose,
we created four electrical contacts nearby the central window by
depositing four Pt pads using Focused Ion Beam (FIB). The geom-
etry and location of these four pads are shown in the sketch Fig.2b
and in the Scanning Electron Microscopy (SEM) image Fig.2c. Each
pad has a shape of a 125 x 125 μm2 square, that is 100 nm thick.
The four pads are diagonally located by the four corners of the win-
dow at a distance of 300 μm of each other. Along the diagonal,
the distance between pads is about 425 μm center-to-center and
the central window covers about 33% of that distance. Additional
to these micrometric “inner” contacts located around the window
(ON-window), we created, for comparison purposes, another set
of four “inner” contacts with similar geometry but located outside
the window (OFF-window), as well as a set of four “outer” contacts
located by the four corners of the wafer at about 5 mm of each other,
as schematically represented in Fig.2b.

When measuring the MT signal on the inner contacts while
using the octupole magnetic chamber, we found that the EHE signal,
shown in Fig.1d, was deformed with respect to the expected hystere-
sis loop, as measured via VSM (see Fig.1c). The EHE signal appeared
like a folded hysteresis loop.

To investigate the origin of this deformation, we conducted a
series of MT measurements in our laboratory at BYU. One investi-
gation consisted in comparing the MT signal on the inner contacts
to the MT signal on the outer contacts, used as a reference. Another
investigation consisted in comparing the MT signal measured on the
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FIG. 2. (a) Picture of the electrical board on which the film is mounted and electrically connected via wire-bonding; (b) Sketch showing the location of the outer contacts
at the four corners of the film and the location of the inner contacts surrounding the central 100 μm window; (c) SEM image of the padded inner contact deposited via FIB
surrounding the 100 μm window.

inner contacts ON-window and OFF-window to identify possible
effects caused by the window itself. Additionally, we studied possible
effects caused by tilting the applied magnetic field with respect to the
direction normal to the film surface. Indeed, during the synchrotron

measurement, one of the eight poles of the octupole electromagnet
failed, causing a tilting of the applied magnetic field with respect to
the direction of the x-rays. In addition, due to space constraints, the
sample holder was also tilted, causing a tilt of the film with respect

FIG. 3. (a,b) Actual MT signal measured on the outer contacts: (a) EHE signal and (b) MR signal; (c,d) Actual MT signal measured on the ON-window inner contacts: (c)
EHE signal and (d) MR signal. All the measurements were carried under a current of 100 mA.
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to the x-ray direction. The combination of these two angular devia-
tions resulted in a total tilt between the magnetic field direction and
normal to the film surface up to about 25○.

The BYU MT measurements were carried in a bipolar electro-
magnet. The EHE signal, on one hand, was obtained by measuring
the voltage in the transverse direction with respect to the applied
current, while the magnetic field is applied perpendicular to the film.
For the EHE data, averages between such transverse measurements
measured at 90○ of each other were taken. The MR signal, on the
other hand, was obtained by measuring the voltage in the direction
parallel to the applied current using the four contacts and applying
the Van-der-Pauw method, where four different configurations were
averaged to eliminate possible structural asymmetries.12

RESULTS AND DISCUSSION

The MT signal measured on the outer contacts, displayed
in Fig.3 a,b, shows a behavior typical of ferromagnetic materials.
The averaged EHE signal in Fig.3a has the shape of a hysteresis
loop, consistent with the VSM signal. The averaged MR signal in
Fig.3b has a symmetrical double-lobe shape typical of magneto-
resistance in ferromagnetic thin films with perpendicular magnetic
anisotropy.13,14 The measured MR voltage is around 118 mV for a
current of 100 mA, corresponding to a resistance of R// ≈ 1.2Ω with
magneto-resistance variation ΔR ≈ 210−3Ω.

The MT signal measured on the ON-window inner contacts
however behaves differently compared to the MT signal measured
on the outer contacts. The measured EHE signal in Fig.3c has a
deformed shape with respect to the expected hysteresis loop. The
deformed shape looks like a hysteresis loop folded onto itself in
an asymmetrical way, leading to two apparent hysteresis loops, a
smaller one and a bigger one. On the other hand, the average MR sig-
nal in Fig.3d is similar to the MR signal measured on the outer con-
tacts (Fig.3b), still showing a symmetrical double-lobe shape. The
measured MR voltage is around 178 mV for a current of 100 mA,
corresponding to a resistance R// ≈ 1.8Ω, with magneto-resistance
variation ΔR ≈ 310−3Ω.

The dependence with magnetic field tilt was studied by tilting
the sample holder with respect to the electromagnet axis. The setup
allowed a tilt up to 20○. Data collected at various angles is plotted
in Fig.4 For comparison purposes, the data in Fig.4 was normalized
to the maximum value (plotting V/Vmax) after recentering the sig-
nal, so that both the EHE and MR magnetization loop signal varies
between – 1 and +1. The data shows no significant effect of mag-
netic field tilt on the shape of the EHE and MR signals, neither
on the outer contacts nor on the inner contacts. This observation
rules out any correlation between the observed EHE signal defor-
mation and the actual magnetic field tilt during the synchrotron
measurement.

It then appears that the deformation of the EHE signal observed
on the inner contacts is principally due to micro-structuration

FIG. 4. (a,b) Normalized MT signal measured on the outer contacts: (a) EHE signal and (b) MR signal; (c,d) Normalized MT signal measured on the ON-window inner
contacts: (c) EHE signal and (d) MR signal. Measurements at various angles from 0 to 20○ are displayed.
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FIG. 5. Modeling of the EHE signal measured on two sets of inner contacts: (a-d) around the window (ON-window) and (e) outside the window (OFF-window) for comparison.
The location of the sets of contacts is schematically represented on the diagram. The data was collected as follows: ON–window at an angle of (a) θ = 0; (b) θ = 5

○

; (c) θ
= 10

○

; (d) θ = 15
○

; (e) OFF–window at an angle of θ = 0. For each data set, the model uses a linear combination of the normalized EHE and MR signals measured on the
outer contacts, as follows: (EHE)IN = a∗(EHE)OUT + b∗(MR)OUT .

(window) effects and geometry of the contacts. When measuring
the MT signal using the inner contacts, the electron path is signif-
icantly disturbed by the presence of the window, which occupies
33% of the distance between electrodes, and also by the relative
width of the pads (125 μm) with respect to the inter-pad distance
(300 μm), that occupies about 45 % of that inter-electrode dis-
tance. This suggests that electrons may not travel on straight paths
between diagonally opposite contacts, but instead may deviate from
the straight path to get around the central window. In this pro-
cess, some electrons may end up hitting adjacent contacts instead
of opposite contacts, causing some mixing between EHE and MR
signals.

To support this hypothesis, we attempted modeling the EHE
signal measured on inner contacts by using a linear combination of
the EHE and MR signals measured on the outer contacts as follows:

(EHE)IN = a∗(EHE)OUT + b∗(MR)OUT

The modeling results displayed in Fig. 5 show that one can
indeed reconstruct the asymmetric shape of (EHE)IN by mixing
the (EHE)OUT and (MR)OUT signals with coefficients a and b in
opposite signs. The ratio ∣b/a∣ for the EHE signal for the ON-
window inner contacts ranges between 1.5 and 1.7 for the various
sets measured at different tilt angles.

To further disentangle possible separate effects caused by the
window on one hand and by the contact geometry on the other hand,

we measured the EHE signal on a set of inner contacts located OFF-
window, as illustrated in Fig.5. The measured OFF-window EHE
signal, shown in Fig.5e, has a shape similar to the ON-window EHE
signal. The modeling of the OFF-window EHE signal leads to a ratio
∣b/a∣ ≈ 1.1. The significant change in the ∣b/a∣ ratio from about 1.1
up to 1.6 when moving from the OFF-window to ON-window con-
tacts confirms that the window does contribute significantly to the
deformation of the EHE signal. While the proximity of the contacts
induces about 2/3 (∼70%) of the deformation, the presence of the
window induces another 1/3 (∼30%) of the deformation. This sug-
gests possible pulling effects at the edge of the window, which could
be caused by misalignments between the plane of the film and the
plane of the window, as well as morphological defects or discon-
tinuities in the structure of the multilayered film at the edges of
the window. These micro-structuration effects are therefore non-
negligeable when measuring the MT signal locally and must be taken
into consideration.

CONCLUSION

We have probed the local magneto-transport (MT) signal,
including magneto-resistance (MR) and Extraordinary Hall Effect
(EHE), in exchange-biased [[Co (4Å)/Pd (7Å)]x12/IrMn(24Å)]x4
thin films that are micro-structured with a central 100 μm window.
We carried these measurements using the Van-der-Pauw method on
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three sets of four contacts: a set of outer contacts located 5 mm apart
at the four corners of the film; a set of inner contacts, made of 125 μm
pads located at 300 μm of each other, surrounding the central
100 μm window, and another set of inner contacts with same geom-
etry, located outside the window toward the corner of the wafer, for
comparison purposes. We found that when measured on the outer
contacts, the MT signal has the expected shape, with the EHE signal
forming a hysteresis loop consistent with magnetometry measure-
ments, and the MR signal showing a symmetrical double-lobe shape.
When measured on the inner contacts, the MR signal still shows the
symmetrical double-lobe shape, however the EHE signal is signifi-
cantly deformed, looking like an asymmetric folded hysteresis loop.
This deformation was observed both with the ON-window contacts
and the OFF-window contacts. The deformed (EHE)IN shape may be
reconstructed by mixing the (EHE)OUT and (MR)OUT signals mea-
sured on the outer contacts. The relative MR/EHE weight ratio was
found to be in the range of 1.5 to 1.7 for the ON-window con-
tacts, and around 1.1 for the OFF-window contacts. This suggests
that when EHE is probed locally with electrodes at close proximity,
the electrons are not traveling in a straight path between diagonally
opposite contacts but a portion of them hit the adjacent contacts
instead, leading to a mix of MR and EHE signals. Furthermore, the
presence of the window increases the weight of the MR signal in
the deformation (an additional 40%). This suggests that the win-
dow causes pulling effect due to morphological misalignments and
defects occurring at the edges of the window. Additionally, we found
that moderately tilting the magnetic field with respect to the film
normal direction is not affecting the shape of the MT signal signif-
icantly. The observed deformation of the EHE signal is mainly due
to the micro-structuration of the film and the proximity of the inner
contacts with the central window covering 33% of the path between
contacts.

In order to measure effects of x-ray illumination on exchange-
bias, it is however necessary to probe the MT signal locally around
the illuminated region of the film, which necessitates some micro-
structuration. Our current setup induces a deformation of the EHE
signal. A solution to this issue may be to etch the [Co/Pd]IrMn film
in the shape of a cross around the central window so to guide the
electrons path in the desired direction for the EHE measurement.
That being said, it is interesting to note that, despite the observed
deformation, the EHE signal measured on the inner contacts with
the current setup still shows the biasing effect when the film is cooled
from 300 K down to 20 K below the blocking temperature, consis-
tent with magnetometry measurements. So, even when its shape is
deformed due to micro-structuration, the EHE signal may be used

to measure exchange bias and monitor its dependence with various
parameters such as temperature or x-ray illumination.
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