

Microcontroller Lesson Manual for Teachers and Students Alike to Improve Understanding of

Electricity and Circuits through Hands-On Application

Caitlin Mastroianni

A capstone submitted to the faculty of

Brigham Young University

In partial fulfillment of the requirements for the degree of

Bachelor of Science

Adam Bennion, Advisor

Department of Physics and Astronomy

Brigham Young University

April 19, 2023

Copyright © 2023 Caitlin Mastroianni

All Right Reserved

ABSTRACT

Microcontroller Lesson Manual for Teachers and Students Alike to Improve Understanding of

Electricity and Circuits through Hands-On Application

Caitlin Mastroianni

Department of Physics and Astronomy, BYU

Bachelor of Science

 Education standards have evolved rapidly within the 21st century, transitioning from

content-based lectures and memorization to hands-on learning which encourages creativity,

problem-solving, and cognitive engagement. Through the implementation of low-cost

microcontrollers, such as Arduinos, in the classroom, teachers and students alike are encouraged

to explore the concepts of electricity and circuitry through experimental learning. A lesson

manual, intended to be used as introductory material for microcontrollers, was created in the

hopes to fulfill and exceed secondary education standards/requirements, specifically within the

state of Utah. Said manual was revised to a completed and presentable state with the assistance

and feedback from BYU students within the Department of Physics and Astronomy who were in

pursuit of their bachelor’s degree in Physics Education.

Keywords: [Microcontroller, Arduino, Lesson Manual, Secondary Education, Physics Education,

Hands-on Learning, Active Learning]

ACKNOWLEDGMENTS

Primarily, I'd like to thank Professor Adam Bennion for helping guide me throughout this

capstone and offering me the opportunity to see my work in effect. I'd also like to thank

Professor Merrell for allowing me to work with his students within his classroom and financially

aiding with the collection of required electrical components for his students.

I would like to thank my parents for devoting their lives to giving me every opportunity

imaginable. Thank you for the sacrifices you've made to come to America to offer me the

American dream along with the outstanding example of persistence, patience, and love of family.

Thank you for also making me apply to BYU, just in case I decided to transfer from ASU - it

happened to work out quite wonderfully.

I would like to thank my husband, Spencer, for being by my side through thick and thin. For

being my laughter, my strength, and my shoulder to cry on. You have kept me going through the

times when I thought I couldn't do it anymore and have carried me to my finish line.

Finally, I would like to thank my service dog, Winston. Thank you for staying by my side

through the long nights, for offering me kisses when I truly needed them, and for the endless

days of dedicated work.

Table of Contents

1 Introduction

1.1 Background

 1.1.1 Active Learning in STEM Classrooms

 1.1.2 Implementations of Microcontrollers in the Classroom

1.2 Purpose of Study

2 Methods

2.1 Manual Structure

2.2 Organization of the Subject Curriculum

 2.2.1 Microcontroller Basics Structure

 2.2.2 Lesson Structure

 2.2.3 Project Structure

2.3 Implementation of Lesson Manual within a Classroom

3 Results and Discussion

3.1 Classroom Implementation Observations

3.2 Lesson Manual Feedback and Consequential Corrections

 3.2.1 Original Manual Structure

 3.2.2 Introduction

 3.2.3 Microcontroller Basics

 3.2.4 Lessons

 3.2.5 Project

3.3 Discussion

4 Conclusion

References

Appendix A. Completed Lesson Manual

Introduction

1.1 Background

1.1.1 Active Learning in STEM Classrooms

Scientific education can be divided into two broad domains: content knowledge and

processing skills. (Loewenberg Ball, 2018). Content or declarative knowledge is defined to be

the realm of understanding and memory such as statistics, principles, conceptual models, and

fact-based theory. Processing or procedural knowledge, such as observation, measurement, and

the ability to progress through the scientific process, expands the declarative knowledge of

students (Hurca 2013). Recent research has generated support for a transition from teacher-

centered instruction to learner-centered, active learning which expands a student’s ability to

develop both declarative and procedural knowledge. (Freeman et al. 2014).

“A child best learns to swim by getting into water; likewise, a child best learns science by

doing science” (Rillero, 1994). It was determined that students struggling to understand concepts

explored and taught in a secondary-level physics classroom could be categorized into two main

groups: students who were not familiar with the subject from daily life” and “students who

couldn’t embody abstract concepts”. (Aycan & Yumuşak, 2002; Karakuyu, 2008). The student-

centered teaching method requires educators to remain facilitators and guides whilst the focus

shifts onto students, encouraging their engagement through problem-solving, communication,

collaboration, and scientific inquiry. Reasoning skills, the ability to perform independent critical

thinking, and a deep understanding of complex topics developed from constructivist teaching

styles encourage interpersonal skills that lead to open-ended, complex, and team-based

exploration within the boundaries of scientific experimentation.

The Department of Psychology’s Human Performance Lab, directed by Professor Sian

Beilock, published a study in 2015 that provides both a statistical and biological insight into the

benefits of constructivist teaching styles within a physics classroom. The study determined that

action experience (relative to observation) led to increased activation of sensorimotor systems –

up to 57.9% more stimulation – important for representing physical concepts. Activation, in turn,

enhanced the students' understanding of torque and angular momentum. (Kontra et al. 2015)

Utah State Board of Education (USBE) established a policy requiring the identification of

specific core standards to be met by all K-12 students to graduate from secondary education.

Utah Science with Engineering Education (SEEd) declares that a principle of science learning is

to be personal and engaging. Their definition of this criteria is as follows:

Research in science education supports the assertion that students at all levels

learn most when they can construct and reflect upon their ideas, both by

themselves and in collaboration with others. Learning is not merely an act of

retaining information but creating ideas informed by evidence and linked to

previous ideas and experiences. Therefore, the most productive learning settings

engage students in authentic experiences with natural phenomena or problems to

be solved (USBE- Utah State Board of Education).

When teachers were asked which topic among the various constructs in the physics

curriculum was the most challenging for students in terms of conceptual learning, results showed

that current, voltage, and power in electrical circuits were the most difficult (Aykutlu et al.

2015). Furthermore, Strand PHY.2: Energy, under the Standard PHYS.2.4 states that students are

required to:

Design a solution by constructing a device that converts one form of energy into

another form of energy to solve a complex real-life problem. Define the problem,

identify criteria and constraints, develop possible solutions using models, analyze

data to make improvements from iteratively testing solutions, and optimize a

solution. Examples of energy transformation could include electrical energy to

mechanical energy, mechanical energy to electrical energy, or electromagnetic

radiation to thermal energy. (PS3.A, PS3.B, ETS1.A, ETS1.B, ETS1.C) (USBE-

Utah State Board of Education).

Combining the beneficial effects of hands-on learning and the means of increasing achievements

surrounding electricity, microcontrollers could offer a cost-effective and hands-on route to teach

students the concepts of electricity and energy transformation (Slugan et al. 2017).

1.1.2 Implementations of Microcontrollers in the Classroom

A microcontroller unit, or MCU for short, is a single integrated circuit comprised of

various elements. Elements found on MCUs typically include a microprocessor, input/output

ports (I/O), random access memory (RAM), read-only memory (ROM), timers, and counters

accessed by varying ports and pins on the unit itself. Arduino is an open-source electronics

platform based on easy-to-use hardware and software. The simplistic design of the single-board

microcontroller, along with microcontroller kits, allows for the easy building of digital devices

and is widely available, and a low-cost option.

In what can be described as a micro-laboratory, Arduinos naturally lends itself to

introducing students to programming, automation, and robotics (Marzoli 1970). The main aims

of implementation of micro-controllers, including Arduinos, within the classroom, are: ": 1)

Encourage interest in microcomputer concepts and understanding of measurements, natural

phenomena, and concepts. 2) Develop critical-logical and systematic thinking. 3) Develop

experimental skills through the study of the deterministic nature of physical laws. 4) Formulate

research questions and hypotheses. 5) Systematize and analyze data." (Slugan et al. 2017).

Ateş and Eryilmaz examined the effectiveness of hands-on and minds-on activities with

ninth-grade students' achievements and attitudes toward simple electric circuits. Students split up

into two groups – a control group who learned through lecture and an experimental group who

engaged in an activity – were then taught an electrical concept and took a pretest and a posttest.

In the case of achievements, a noticeable change of 22% in the pretest and posttest was found in

the experimental group when compared to the 2% change in the control. (ATEŞ et al. 2011). The

implementation has proven beneficial effects on academic achievements and increased students'

motivation and creativity when applying the microcontroller concept to real-life applications

(Santosa et al. 2019).

In the hopes of fostering individual curiosity and interest in exploring natural phenomena,

curricula such as these encourage students to find the applications of concepts in everyday life,

therefore, increasing the fun, creative, and exploratory nature of physics. With the design of

circuits within a microcontroller, foundational layers for software design are laid with simple

objectives such as input/output interactions of lights, motors, and sensors inspiring the next

generation of STEM students (Litts et al. 2017).

1.2 Purpose of Study

Whilst completing my undergraduate degree in Physics, a course introducing skills to

foster innovation and leadership in experimental science through hands-on experience introduced

Arduinos to explore circuitry and electrical theorems, such as Ohm's law, in practical

applications. After taking this course, I found great interest in the capabilities and opportunities

that an Arduino presented. I spent my free time at home creating various circuits that performed

many small tasks as well as creating my own, simple "R2-D2" robot that was able to move

independently, perform a tiny dance while lighting up, and play the robot's classic beeping.

In the summer of 2021, I was granted the opportunity to apply my newly gained

knowledge by working alongside Doctor Nathan Powers at Brigham Young University as a

teaching assistant for a summer course that high school teachers in nearby districts attended; the

course aimed to impart new teaching applications through laboratory and hands-on methods. As

a teaching assistant, my responsibilities were to help answer general questions while walking

through various experiments and learning segments as well as creating projects involving

Arduinos that encouraged discovery and aided students (and teachers) in their application of

electricity. Additionally, I helped create motherboards and add-ons for Arduinos with

capabilities such as photoresistors and SD recorders to measure the velocity of an object.

Working with the teachers during the week-long course, I noticed a disconnect when we

first introduced Arduinos. Due to the teachers' lack of knowledge and experience with Arduinos,

they were taught how to interact with the boards by following the "basics" tutorials provided on

the Arduino website. Although the lessons are rudimentary, they lacked essentials such as clear

instructions, provided code with explanation, and encouragement to understand circuit

components. Teachers approached the microcontroller as a task to be completed, throwing wires

and components into the mix with the hopes of "just making it work" without understanding

what they were creating. After noticing the way that teachers approached learning this type of

circuitry, it was likely that students would mirror the behavior.

The purpose of this capstone is to provide a framed structure through lessons in which

both teachers and students can learn and apply principles of electricity and circuitry in a physical

space. It becomes apparent that preservice teachers in secondary education, most specifically

physics instructors, should prepare syllabuses that build from low-cost materials and experiences

in which undergraduates can enhance their student’s scientific process skills through personal

discovery and experimentation (Hurca .N. 2012).

This capstone aims to provide students and future teachers with a foundational

knowledge of microcontrollers through the physical implementation of electrical concepts. As

the undergraduates work through the created lessons, they can gain confidence by exploring

circuits whilst creating a connection between models such as electricity and classic mechanics.

The medium will be Arduinos - Arduino is an open-source electronics platform based on easy-to-

use hardware and software. The simplistic design of the single-board microcontroller and

microcontroller kits allows for the easy building of digital devices and is widely available, and a

low-cost option.

Methods

2.1 Manual Structure

The creation of the manual/workbook will be founded on previous coding projects on

which I’ve established my knowledge of microcontrollers. The workbook will be created under

the assumption that teachers or students are interacting with microcontrollers for the first time

and will commence with introductory material that will both introduce the benefits of Arduino

use in the classroom along with the basics of the Arduino unit itself. In the hopes of exceeding

the standard provided in the basic tutorials provided by Arduino, the manual will focus on

providing introductory information about all components of the microcontroller and equipment,

as well as detailed breakdowns of circuits and code.

The manual will be separated into 4 parts as detailed below:

Introduction

The introduction will include an explanation of the manual's purpose through a collection of

background information on the importance of hands-on learning and an explanation of how

microcontrollers apply to the manual's main objective.

Microcontroller Basics

Microcontroller basics will include a breakdown of the basic knowledge necessary to begin

working through the lessons. The topics covered will be the Arduino integrated development

environment (IDE), Arduino IDE coding essentials, Arduino schematics, and circuitry basics.

Lessons

The lessons contained in the manual will cover introductory circuits and coding with each

consecutive lesson building on the previous lesson's principles. Lessons will take students

step-by-step through each lesson's circuits, giving them a foundation of how to create a

circuit with an objective in mind (such as lesson one's objective being to blink an LED). The

lessons aim to make students comfortable with the material enough to create their circuits,

such as those encouraged in the lesson's exploration section, as well as understand electrical

material and phenomena better.

Project

The final project is created as a cumulative experiment in which students are to complete a

goal using the knowledge and principles explored in the lessons.

2.2 Organization of the Subject Curriculum

2.2.1 Microcontroller Basics

 As described above, the first section of content will cover the basics of microcontrollers

from coding to circuitry essentials. This section aims to give students a basis of understanding of

the components they will be working with throughout the lessons and to encourage students to

use their knowledge to problem-solve independently. The individual segments expanded upon

are:

 Arduino Integrated Development Environment (IDE)

 The Arduino microcontroller is a physical programmable circuit board that, combined

with a piece of software or an integrated development environment, can be coded to perform

different tasks by controlling the board's output/input capabilities. The IDE contains a text editor

for writing code, a text console, and a toolbar with buttons for a series of functions and menus.

Programs written using Arduino IDE are called sketches, which within the software can be

compiled, debugged, and uploaded to the board. Going through the basic elements of the IDE a

student can gain a basic understanding of how to work the IDE software in connection to the

board.

 Arduino IDE Coding Essentials

 The Arduino IDE software is based on a variant of the C++ programming language. A

simplified version of the C++ language, along with simplified syntax and pre-defined functions,

is used because it is a language simple enough for inexperienced coders to compile a functional

program. Students are introduced to basic pre-defined functions that are frequently used to create

a practical sketch – this section covers both the basic function's structure, description of the

function's purpose, and example implementations.

 Arduino Schematics

 Arduino boards are microcontrollers based on the ATmega328P, with 14 digital

input/output pins (with various pins capable of PWN outputs), 6 analog input pins, a 16 MHz

resonator, a power jack, a USB connection, and a reset button. In an included diagram, the

Arduino board is detailed piece by piece with each pin's ability described, and should be used as

a reference for students whilst building circuits and connecting them to the board.

 Circuitry Basics

 Circuit essentials such as explanations of the use of breadboards, circuit symbols, and

component descriptions are included in this section. When an electric current is provided, such as

through an Arduino board, within an electrical circuit, electrical energy can be transformed into

other forms of energy that do work such as through light in LEDs, rotation of motors, and can be

manipulated through elements such as potentiometer and buttons. For students to understand

what they will be building, students must comprehend every piece of a circuit and how they play

a role in a circuit's function.

2.2.2 Lesson Structure

 The lessons contained in the manual will cover introductory circuits and coding with each

consecutive lesson building on the previous lesson's principles. Lessons have been created to

cover basic circuits with each lesson split into parts allowing those working through it to

understand each task completely whilst also encouraging personal exploration of circuitry and

coding. The lessons are structured in parts as follows:

 Hardware Required

 A list of the circuit components necessary to complete a lesson is included at the

beginning to allow both teachers and students to gather everything necessary at the outset.

 Schematic

 A schematic of the electrical circuit needed to be built to apply properly functioning code

is presented at the beginning of the lesson. This section includes not only a symbolic

representation of the circuit but also includes a basic explanation of how the circuit can be

connected.

 Step-By-Step Programming

 After students have completed their circuit, a step-by-step guide takes them through the

coding portion with descriptions of what each line of code means. Whilst working through the

program, students are encouraged not only to understand the intention behind the code but begin

to understand the functionality of circuit components when interacting with the board.

 Completed Code with Comments

 A screenshot of the Arduino IDE with the completed code, with comments explaining a

code's line meaning, is included at the end to give students a complete view of the compilation

and completed product of the step-by-step guide.

 Exploration

 Most lessons include a section called exploration that encourages students to answer

questions founded on the knowledge that they gained through every lesson. This section's

purpose is to encourage students to manipulate and "play" with circuits, and to provide a space

where students are allowed to explore, experiment, and create an independent understanding of

electricity in electrical circuits.

2.2.3 Project Structure

 The manual ends with a final project that explores the principle of electrical energy being

converted into mechanical energy while utilizing the knowledge gained throughout the lessons.

This section aims to give students a "problem" to solve through which a student's curiosity and

interest in exploring natural phenomena encourages them to find the applications of concepts in

everyday life increasing the fun, creative, and exploratory nature of physics. Teachers are

allowed to implement this section within their classrooms in a competitive nature if wanted, to

encourage students to push their project's limits whilst working with their peers.

2.3 Implementation of Lesson Manual within a Classroom

 A completed, comprehensive draft of the tutorial manual was given to undergraduates at

Brigham Young University in the Physics Education Major in the PHSCS 311 class, overseen by

Professor Duane Merrell; this opportunity was made possible by my advisor, Professor Bennion.

The students worked through the manual providing feedback on the work they’ve completed in

correlation to how the workbook has helped and can be improved to better help understand the

basics of electricity and circuitry. This application within a classroom setting between the

capstone manual and the students of PHSCS 311 took place in scheduled classes on November

30th and December 5th of 2022.

Results and Discussion

3.1 Classroom Implementation Observations

On November 30th and December 5th of 2022, undergraduates at Brigham Young

University in the Physics Education Major worked through the tutorial manual under the

supervision of Professor Duane Merrell, Professor Adam Bennion, and myself to collect as much

data and feedback as possible. While working alongside them, any questions or comments made

were noted and talked through for later review when revising the tutorial manual for a final draft.

Initial Impressions were generally positive. I often checked in with them about their

feelings, questions, or changes that they would like to see to clarify the material or make it more

engaging for students. Personal observations were also noted about how the students interacted

with the manual were referred to when revising the manual.

3.2 Feedback and Consequential Corrections

 Below is a gathered list of comments and notes that were made throughout the classroom

observation period and consequential corrections that were made to the manual within the final

draft presented.

3.2.1 Original Manual Structure

Student Note: "It clearly defines what you will find in each section… teachers will have an easier

time leading students to the proper place"

The original main structure of the manual remained unchanged.

Original and Revised Structure: Introduction, Microcontroller Basics, Lessons, Project

Observations within the Microcontroller Basics Section

When observing the students working through the primary draft of the manual, I noticed

there to be a lack of basic knowledge specifically concerning electric circuits and their elements.

Students often remarked on the lack of understanding between each element's purpose, structure,

and implementation within the circuit itself. The questions students asked were questions such as

"What is a breadboard? How does this work? How do I put in the elements in the breadboard?

How does a potentiometer work? What do the colors on a resistor mean?". Therefore, additional

sections and subsections were added to microcontroller basics.

Original Microcontroller Basics Structure

Arduino Integrated Development Environment

 Opening Page, IDE Buttons, and Setup

 Most Frequently Used Functions

 Example Implementations of Frequent Functions (DIGITAL)

 Example Implementations of Frequent Functions (ANALOG)

Arduino Schematics

Revised Microcontroller Basics Structure

 Arduino Integrated Development Environment

 IDE Button Functions

 IDE Coding Setup and Loop

 Output Window

 Arduino IDE Coding Essentials

 Most Frequently Used Functions

 Example Implementations of Frequent Functions (DIGITAL)

 Example Implementations of Frequent Functions (ANALOG)

 Arduino Schematics

 Circuitry Basics

 Breadboard Diagram

 Circuit Symbols

 Component Explanations

3.2.2 Introduction

No comments noted.

3.2.3 Microcontroller Basics

Student Note: "Breaking down the Arduino IDE is a little difficult not knowing what to expect

when you first download the software"

The Arduino IDE section was revised to include more specific sections about the

individual parts of the software instead of lumping them all together under one header.

The more detailed descriptions aim to help guide students about each piece of software

before working with it.

Original IDE Sections Revised IDE Sections

- Opening Page, Buttons

and Setup

- IDE Button Functions

- IDE Coding Setup and Loop

- Output Window

Student: "The coding basics section seems a little "wordy", the students might have a hard time

reading through it all"

Although, understandably, the section itself is word-heavy, it is still necessary to include

descriptions of common functions. However, to cater to the idea that words alone on the

page would be difficult to grab students' attention, the revised manual has a more eye-

catching style. The descriptions of the functions were also revised to be as minimal and

concise as possible without detracting from their purpose.

Original Function Description Image Revised Function Description Image

3.2.4 Lessons

Note: Students asking about where the circuit goes, maybe add a breadboard diagram?

The updated circuitry basics section now includes a diagram along with a very thorough

explanation of what a breadboard is and how it's used to build electrical circuitry. This

was included to make it easier for students to comprehend the components of their kits

and how each piece functions so that they are acquainted with what they are interacting

with and building with when they arrive at the lessons.

Revised Breadboard Diagram

Note: Comments on the "completed code" section of the lessons are confusing. When they are

later referenced, students think that they must include comments for the code to upload and

function as expected.

The usefulness and purpose of commenting code within the IDE are explained in the

microcontroller basics under Arduino integrated development environment in a section

titled IDE coding setup and loop. Computer programs can be annotated by adding Human

Readable Descriptions that explain what the code is doing. When comments are used

correctly, they can greatly simplify code upkeep and speed up bug discovery.

Note: Explain circuit symbols. There doesn't seem to be any understanding of what they mean

from the get-go.

Circuit symbols are a section of the microcontroller basics under circuitry basics that

goes into great depth and explains the function and implementation of circuit symbols.

The diagram below, which shows all circuitry symbols used in the lessons, is the revised

section's main visual feature:

Note: Explain elements. Maybe a diagram of a potentiometer? Explain what is happening as

voltage and resistance change in the potentiometer.

Note: Make a picture example of what a DC motor is and how it works – needs a diagram to

explain how it works.

Note: Include a picture and diagram breakdown of a MOSFET

In the added section labeled "Component explanations" of the microcontroller basics

chapter on circuitry, you can find a list of circuit elements, their function,

implementation, and diagrams. Here is an illustration of the revised decomposition of a

direct-current (DC) motor as a circuit component:

3.2.5 Project

Note: Discussed with students what they might change about the project to make it more

intriguing or use the lessons more effectively within the project. Ideas from them included maybe

having it set up as a competition and less information on the project page, so students have to

figure it out on their own.

The final project was established to be a road course wherein students have to make a cart

build throughout the lessons and by gathering data to determine the cart's velocity, guide

it through a designed path created by the teacher (by using tape or something similar on

the floor). The section itself has been revised to include less "guidance" and removed all

step-by-step solutions allowing students to use critical thinking and their knowledge after

going through the manual's lessons. An element of competition can also be added at the

teacher's discretion.

3.3 Discussion

As previously discussed, educational standards have quickly changed from content-based

lectures and memorization to hands-on learning that promotes creativity, problem-solving, and

cognitive engagement. This lesson manual was designed as introductory material for

microcontrollers to teach electrical circuitry to meet and offer ways to surpass secondary

education standards and requirements concerning electrical circuitry, particularly in the state of

Utah. By applying electrical principles physically, this capstone aimed to give students and

aspiring instructors a fundamental understanding of microcontrollers.

Throughout the testing process, the undergraduate students expressed their admiration

and excitement about using it in their future classes. Various comments were made and noted

about how enjoyable the material became whilst learning, and how they learned to work with

Arduinos and felt confident doing so in the future. Primarily, students remarked on how they

could use them in their classrooms in a variety of other ways to teach a wide range of physics

topics. With the help and input of the BYU students, the manual was revised to be optimal in

encouraging individual curiosity whilst teaching the foundational knowledge of designing

circuits, and software design made with simple objectives in mind such as input/output

interactions of lights, motors, and sensors inspiring the next generation of STEM students (Litts

et al. 2017).

Whilst teaching electricity, teachers must require students to define the problem, identify

criteria and constraints, develop possible solutions using models, analyze data to make

improvements from iteratively testing solutions and optimize a solution. The revised manual and

its designed structure offer sections of precise direction in the hopes of laying down foundational

understanding (mainly the microcontroller basics and lesson sections) followed by moments that

encourage exploration and stimulate interest in understanding natural phenomena, such as the

exploration sections within lessons and the final project. In response to Utah's education

requirements, the manual strives to perform "guided research" in science education whilst

allowing students to construct and reflect learned principles, both by themselves and in

collaboration with others.

Learning is not merely an act of retaining information but creating ideas informed by

evidence and linked to previous ideas and experiences whilst building an interest in

understanding natural phenomena, encouraging students to find applications of concepts in

everyday life boosts the enjoyable, creative, and inquisitive nature of physics.

Conclusion

The capstone sought to offer students and future teachers a fundamental grasp of

microcontrollers by physically implementing electrical principles, and based on feedback from

undergraduates, it appears that the manual succeeded in its intended purpose. As teachers

continue to find new ways to incorporate hands-on teaching and learning into their classes, it is

hoped that mediums like these will become valuable assets in teaching physics concepts when

encountering physical implementations. Future work can expand on the simple format of the

presented manual to include more lessons and projects that broaden the teacher's and students'

understanding of how microcontrollers can be a helpful tool for exploring real-world phenomena

other than simple electricity, such as classical mechanics. I hope that my manual will be useful in

secondary education classes, as well as for undergraduate students at BYU studying to become

secondary education teachers, to learn how to work with and explore the world with

microcontrollers, either as a formatted example for lesson planning or through direct application

of the manual.

References

ATEŞ, Özlem, and Ali ERYILMAZ. “Effectiveness of Hands-on and Minds-on Activities on

Students’ Achievement and Attitudes towards Physics.” Asia-Pacific Forum on Science

Learning and Teaching, vol. 12, no. 1, ser. 6, June 2011.

Aycan, Ş. & Yumuşak, A. (2003). Lise fizik müfredatındaki konuların anlaşılma düzeyleri

üzerine bir araştırma [A study on the levels of understanding of high school physics

curriculum subjects], National Education Journal, 159, 171-180.

Aykutlu, I., Bezen, S., & Bayrak, C. (2015). Teacher opinions about the conceptual

challenges experienced in teaching physics curriculum topics. Procedia - Social and

Behavioral Sciences, vol. 174, pg. 390–405.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &

Wenderoth, M. P. (2014). Active learning increases student performance in science,

engineering, and mathematics. Proceedings of the National Academy of Sciences,

111(23), 8410–8415.

Hurca, N. (2012). The Influence of Hands-on Physics Experiments on Scientific Process Skills

According to Prospective Teachers’ Experiences, European Journal of Physics Education,

Vol 4, Issue 1, 2013.

Karakuyu, Y. (2008). Problems of Physics Teachers in Physics Education: Afyonkarahisar

Sample, Mustafa Kemal University Journal of Social Sciences Institute, 10, 147–159.

Kontra, Carly, et al. “Physical Experience Enhances Science Learning.” Psychological Science,

vol. 26, no. 6, 2015, pp. 737–749.

Litts, Breanne K., et al. “Stitching Codeable Circuits: High School Students' Learning about

Circuitry and Coding with Electronic Textiles - Journal of Science Education and

Technology.” SpringerLink, Springer Netherlands, 29 May 2017.

Loewenberg Ball, D., Thames, M. H., & Phelps, G. Content Knowledge for Teaching: What

Makes It Special? Journal of Teacher Education, 59(5), 389–407, 2018.

Marzoli, Irene, et al. “Arduino: From Physics to Robotics.” SpringerLink, Springer International

Publishing, 1 Jan. 1970.

Rillero, P. (1994). Doing science with your children. East Lansing, MI: National Center for

Research on Teacher Learning (ERIC Document Reproduction Service No. ED 372 952).

Santosa, E. S. B., and S. Waluyanti. "Teaching Microcontrollers using Arduino Nano Based

Quadcopter." Journal of Physics: Conference Series, vol. 1413, no. 1, 2019.

Slugan, Jelena, and Ivica Ružić. “High School Stem Curriculum and Example of Laboratory

Work That Shows How Microcomputers Can Help in Understanding of Physical

Concepts.” World Academy of Science, Engineering and Technology International

Journal of Educational and Pedagogical Sciences, vol. 11, no. 8, 2018.

USBE- Utah State Board of Education. https://www.schools.utah.gov/File/e5d886e2-19c3-45a5-

8364-5bcb48a63097.

Appendix A. Completed Lesson Manual

Microcontroller Basics Lesson Manual
Capstone 2022-2023

Caitlin Mastroianni

Table of Content

INTRODUCTION

 Purpose

 What Are Microcontrollers?

MICROCONTROLLER BASICS

 Arduino Integrated Development Environment (IDE)

 IDE Button Functions

IDE Coding Setup and Loop

Output Window

 Arduino Integrated Development Environment Coding Essentials

Most Frequently Used Functions

Example Implementations of Common Functions (DIGITAL)

Example Implementations of Frequent Functions (ANALOG)

 Arduino Schematics

 Circuitry Basics

 Breadboard Diagram

Circuit Symbols

Component Explanations

 Button

 Potentiometer

 Direct-Current (DC) Motor

 Resistor

 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

 Light-Emitting Diode (LED)

 LESSONS

 Overview

 Blink - LEDs

Blink 2 – LEDs and Potentiometers

Blink 3 – LEDs and Buttons

 Movement – Motors

Movement 2 – Motors and MOSFETs

PROJECT

 Cart Racing – Voltage and Velocity

INTRODUCTION

PURPOSE

The discussion surrounding the benefits of “hands-on” experimentation in high school

studies has been an area of great study, especially in the conceptualization of topics taught in

physics classrooms. The foundation upon which the capstone is built is in response to two areas

of study: the realized difficulty in a student’s conceptualization of electricity and the benefits of

hands-on learning in understanding physical concepts.

Studies both in 2002 and 2008 determined that students struggling to understand

concepts explored and taught in secondary-level physics could be categorized into three main

groups: “students lacking background about the physics subjects (before high school)”,

“students who were not familiar with the subject from daily life” and “students who couldn’t

embody abstract concepts”. (Aycan & Yumuşak, 2002; Karakuyu, 2008). Teachers echoed these

results in various studies published in the field of Educational Sciences, stating that students

gravely struggle to understand variable currents, capacitors, coils, transformers, and electronic

circuit elements in electricity units taught in secondary education. “It was concluded that the

challenges … stemmed [from] various factors such as students’ lack of knowledge in terms of

concepts, the existence of misconceptions, difficulties in comprehending abstract concepts,

deficiencies in mathematical operations, and insufficiency of time allocated to the course

leading to incomplete teaching tasks.” (Aykutlu, I., Bezen, S., & Bayrak, C. 2015).

Appealing to the weakness in the educational structure, and the lack of foundational knowledge

with which students enter secondary-level physics, this capstone is constructed with students in

establishing connections between electricity and circuitry through hands-on means.

Hands-on experimentation has been proven to be extremely beneficial to understanding

and conceptualizing physical structures. An intriguing study, published in 2015, explored the

realm of hands-on learning in testing whether physical experience with angular momentum

“increases the involvement of sensorimotor brain systems during students’ subsequent

reasoning and whether this involvement aids their understanding.” The results produced

directly correlated the benefits of such physical interaction, stating that it “leads the way for

classroom practices in which experience with the physical world is an integral part of learning.”

(Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. 2015). With real-world applications,

students can become confident to explore barriers and expand their learning through trial and

error.

This capstone aims to provide a framed structure through a tutorial manual in which

both teachers and students can learn and apply principles of electricity and circuitry in a

physical space. It becomes apparent that physics instructors should prepare syllabuses that

build from low-cost materials and experiences in which students can enhance their scientific

process skills through personal discovery and experimentation (Hurca .N. 2012).

WHAT ARE MICROCONTROLLERS?

A microcontroller unit, or MCU for short, is a single integrated circuit comprised of

various elements depending on the purpose or brand. Elements found on MCUs typically

include a microprocessor, input/output ports (I/O), random access memory (RAM), read-only

memory (ROM), timers, and counters accessed by varying ports and pins on the unit itself.

Arduino is an open-source electronics platform based on easy-to-use hardware and

software.1 The simplistic design of the single-board microcontroller, along with microcontroller

kits, allows for the easy building of digital devices and is widely available, and a low-cost

option.

2015). Teacher opinions about the conceptual challenges experienced in teaching physics curriculum topics. Procedia - Social and Behavioral Sciences, 174, 390–405.

Aycan, Ş. & Yumuşak, A. (2003). Lise fizik müfredatındaki konuların anlaşılma düzeyleri üzerine bir araştırma [A study on the levels of understanding of high school physics curriculum subjects], National Education Journal, 159, 171-

180.

Hurca, N. (2012). The Influence of Hands-on Physics Experiments on Scientific Process Skills According to Prospective Teachers’ Experiences, European Journal of Physics Education, Vol 4, Issue 1, 2013.

Karakuyu, Y. (2008). Problems of Physics Teachers in Physics Education: Afyonkarahisar Sample, Mustafa Kemal University Journal of Social Sciences Institute, 10, 147–159

Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical Experience Enhances Science Learning. Psychological Science (0956-7976), 26(6), 737–749.

MICROCONTROLLER BASICS

ARDUINO INTEGRATED DEVELOPMENT ENVIRONMENT

To download the Arduino IDE for free, head to https://www.arduino.cc/en/software

IDE Button Functions

Verify – checks your code for errors whilst compiling it; if there are errors, they will

appear in the interface below with a line number and an error description.

Upload – compiles the code and uploads it to the specified board

Debugger - runs the code piece by piece, monitoring everything that happens as the

program runs. This also allows you to pause the app at any point to examine its state then

step through your code line by line to watch every detail as it happens by setting a

breakpoint (this is done by clicking on the left margin of the code, just to the left of the

code line number, and is represented by a red dot).

Select Board – selection the type of board that is plugged in

How to select a board

Select your COM based on the external port that you are using on your laptop/desktop. If

you are unsure of the exact port’s name or number, plug in your Arduino and see which

port becomes available and becomes unavailable once you unplug your Arduino.

Serial Plotter – whilst an Arduino is plugged in, data being collected by the board can be

analyzed visually through graphing in real-time

Serial Monitor – whilst an Arduino is plugged in, data being collected by the board can be

analyzed visually through terminal data in real-time

https://www.arduino.cc/en/software

IDE Coding Setup and Loop

Setup – the sketch’s starting point. This is where variables and pin modes should be initialized

as well as accessing libraries, etc. The setup function will only run once and will re-initialize

each time the Arduino is powered up/reset.

Loop – the sketch’s looping point. This is where the actions are coded in the potions loop

consecutively and will continuously perform the codes without resetting the collected data. The

Arduino is actively controlled by the looping portions of its code.

Output Window

Output – communication between the computer and the Arduino. This window will declare

success or may display any errors present during compiling and/or uploading.

ARDUINO IDE CODING ESSENTIALS

Description of the coding essentials for the Arduino IDE including the most frequent functions,

and coding examples with how to implement common functions.

Most Frequently Used Functions

Basic Function Description

digitalRead() Reads the value from a specified digital pin, either HIGH or LOW.

digitalWrite() Write a HIGH or LOW value to a digital pin.

pinMode()
Configures the specified pin to behave either as an input or an

output.

analogRead() Reads the value from the specified analog pin.

analogWrite() Writes an analog value (PWM wave) to a pin.

delay()
Pauses the program for time (in milliseconds) specified as a

parameter.

Serial.begin()
Sets the data rate in bits per second (baud) for serial data

transmission (default set to 9600 bits per second).

//Enter comment here Commenting ability on code.

Example Implementations of Common Functions (DIGITAL)

Initialization, Line 2 - Initializing variables with names. Variables are initialized outside of the

setup loop, with the pin’s functions initialized within the setup loop. In this example, ledPin is

the name of the object that is connected to the digital pin of integer 13. The format for

initializing variables is as follows:

pinMode(), Line 6 – Initializing a pin’s function. A variable’s function that has been previously

named through an initialization (e.g., line 2) is defined by using pinMode(); this configures the

specified pin to behave as either an INPUT or an OUTPUT. The format for initializing a pin’s

mode is as follows:

digitalWrite(), Line 11/13 – Controlling a pin’s output. A digital pin can be controlled by calling

digitalWrite() and writing the digital pin to a HIGH or LOW state. When the pin is initialized as

an output, its voltage will be set to 5V when at HIGH and 0V when at LOW. The format for

writing a value to a digital pin is as follows:

delay(), Line 12/14 – Setting a line’s run length. Once an action is called such as digitalWrite

where a pin is set to HIGH, delay can be used to separate the previous line of code’s call to the

next by a set amount of time. This will pause the program for the time (in milliseconds)

specified as a parameter. The format for writing a delay is as follows:

Example Implementations of Frequent Functions (ANALOG)

Serial. begin(), Line 4 – Initializing the serial communication. By initializing the serial

communication, the user can access the input data from the Arduino board in real-time using

the serial monitor or serial plotter in the Arduino IDE. The format to initialize the serial

communicator is as follows:

analogRead(), Line 10 – Initializing the collected values of data from the analog pin. At the

beginning of the continuous loop and in each continuous run-through, a value is set from the

data collected when analogRead() is called (analog returns values between 0 and 1023 through a

10-bit analog to digital converter). That value read is then printed in the serial communicator’s

window. The format for accessing the analog pin’s input is as follows:

Serial.println(), Line 12 – Outputting collected data to the serial communicator. The print line

call accesses the input value initialized through analogRead() and outputs it into the serial

communicator accessed through the serial monitor or serial plotter. The format for printing the

analog pins input to the serial communicator is as follows:

digitalRead() – Accessing the collected data from an INPUT pin. Reading a digital pin allows

the user to see the information collected from the Arduino in real time through the serial

monitor (digital returns HIGH or LOW). The format for accessing the digital pin’s input is as

follows:

ARDUINO SCHEMATICS

Power Supply - There are three ways to power your Arduino depending on what power outage

you need and if the Arduino needs to be functioning freely or can be powered by a chord.

USB Plug - The most common way to power an Arduino board is by using its onboard

USB/micro-USB connector. The USB connector provides a regulated 5V line to power the

board's electronics.

Power Jack & External Power Supply - The recommended voltage and current ratings for

external regulated DC power supplies connected to the barrel jack connector are as follows:

voltage (7-12 V) and current (1 A). Exceeding recommended voltage, the regulators might

overheat whilst not reaching a 7-volt input might not suffice the powering of the board

along with connected components.

Ground Pins (GND) - All GND pics are used to close an electrical circuit and are interconnected

with one another. There are 5 found within the board.

Reset – pin resets the Arduino

IOREF - This pin is the input/output reference. It provides the voltage reference with which the

microcontroller operates.

Digital I/O Pins – These digital pins can be used as both input and output pins, defaulting to

inputs if not explicitly declared as outputs in the Arduino software. Digital pins represent

voltage in 1 bit: represented as either 1 or 0, with no in-between.

Digital OUTPUT - When configured as outputs, these pins are capable of being either on or off,

these pins either output on a HIGH voltage state of 5V and when OFF in a LOW voltage state of

0V.

Digital INPUT - When in their default state, the voltage being read is converted into 1 bit

whereas any voltage being read below 0.8 V is read as 0 and once passing this threshold convert

into a 1.

Analog Pins – These analog pins use ADC (analog to digital converter) to serve as analog input

but can also function as digital inputs or digital outputs.

Analog INPUT - Capable of reading analog voltages on a 10-bit resolution meaning that it can

represent analog voltage by 1,024 digital levels.

CIRCUITRY BASICS

Breadboard Diagram

A breadboard is a plastic board with interconnected pins that are used to connect electrical

components to create a functional circuit. There are two kinds of strips – bus or power strips

and terminal strips. Terminal strips (green) are used to connect the electrical components, each

strip is connected vertically but not horizontally. Bus or power strips (red and blue) are used to

connect power or ground to the terminal strips, these strips are connected horizontally to one

another.

Breadboards are used to build non-permanent circuitry. These come in handy when testing,

creating, and experimenting with circuits, allowing for easy subtraction, addition, and analysis

of various electrical components.

For more permanent circuitry, soldering breadboards can be used to solder electrical

components onto it – like the one displayed below:

Circuit Symbols

Below are the circuit symbols that are both common in simple circuitry and are used in the

lessons within this workbook.

All electrical circuitry is described through universal electrical symbols – they are a graphical

representation of circuits. Think of it as a universal language. All circuits start with a symbol

and end with a symbol and all symbols in between are connected with plain lines.

Component Explanations

Button

Until pressure is applied on the button’s top, the moving contact will remain separated from the

static contact which prevents the circuit from being completed. Once the button is pressed, the

contacts connect, and the circuit is completed allowing the voltage to flow freely.

Potentiometer

The input voltage is applied across the whole length of the resistor, and the output voltage is

the voltage drop between the commencing point and the point where the sliding contact lays.

As the dial on the potentiometer is turned, the position of a sliding contact wiper across the

resistance strip changes and therefore, increases or decreases the total resistance.

Direct-Current (DC) Motor

DC motors take electrical power through a DC current and convert the energy into torque and

mechanical rotation within the motor. Within the motor, magnetic fields are created to allow an

electrical coil to rotate when an electrical current is running through it. When the two interact,

the torque created generated the mechanical rotation of a pin.

Resistor

A resistor is a passive two-terminal component that limits the current flowing through itself by

creating resistance through heat. The resistance of the resistor is determined by a ceramic rod

wrapped with a copper wire – the thinner the copper wire, the higher the resistance, and the

same stands for a thicker wire having a lower resistance. The colored bands on a resistor

demonstrate the resistance of the resistor. The table below explains each color’s meaning and

representation:

Color
1st, 2nd Band

Significant Figures
Multiplier Tolerance

Black 0 x 1

 Brown 1 x 10 ± 1% (F)

Red 2 x 100 ± 2% (G)

Orange 3 x 1K ± 0.05% (W)

Yellow 4 x 10K ± 0.02% (P)

Green 5 x 100K ± 0.5% (D)

Blue 6 x 1M ± 0.25% (C)

Violet 7 x 10M ± 0.1% (B)

Grey 8 x 100M ± 0.01% (L)

White 9 x 1G

Gold x 0.1 ± 5% (J)

Silver x 0.01 ± 10% (K)

Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)

A MOSFET (metal-oxide-semiconductor field-effect transistor) has three pins: a source, a gate,

and a drain. The MOSFET works in the same principle as a button and a switch – the MOSFET

controls the voltage and current flowing within the circuit from the source to the drain.

Light-Emitting Diode (LED)

As an electrical current passes through the microchip, it illuminates and creates the visible light

that we identify as a light-emitting diode (LED). The long pin, called an anode, is connected to

power or a voltage supply whilst the short pin, called a cathode, is connected to negative or

ground. Current in an LED flows from the anode to the cathode and never in the opposite

direction.

LESSONS

OVERVIEW

Lesson Kits

For each of the following lessons, be sure to have the following listed below:

Required:

- Arduino Uno

- Arduino IDE

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- LED (Standard 2-Pin, Single Color) x 1

- 220-ohm Resistors x 2

- Potentiometer x 1

- MOSFET x 1

- Car Kit that includes DC Motor (Standard 12VDC) x 4

Optional:

- LED (Standard 4-Pin, RGB) x 1

Lesson Structure

Each lesson will be split into parts allowing those working through it to understand each task

completely whilst also encouraging personal exploration of circuitry and coding. The lessons

are structured in parts as follows:

- Hardware Required

- Schematic

- Step-By-Step

- Completed Code

- Exploration Questions

Blink 1 - LEDs

Hardware Required

- Arduino Uno Board

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- LED (Standard 2-Pin, Single Color) x 1

- 220-ohmhm resistor x 1

Schematic

An explanation of how LEDs work can be found on page

Connect the digital pin (pin D13) to one end of the 220-ohm resistor, followed by connecting the

anode (the positive leg or longer leg) of the LED to the opposite side of the resistor. Connect the

LED's cathode (the negative leg or shorter leg) to GND. Once your circuit is connected, move on

to programming.

Step-By-Step Programming

Plug in your board to the computer and start the Arduino IDE.

Initialize digital pin 13 as the pin that your LED will be connected to. Digital Pin 13 is also

connected to the LED onboard the Arduino Uno, allowing for easier circuit debugging, if

necessary.

int ledPin = 13;

In your setup, initialize digital pin 13 to be an output pin by calling pinMode().

void setup() {

 // put your setup code here, to run once:

 pinMode(ledPin, OUTPUT);

}

In your loop, make the LEDs blink; this means that a voltage will be provided so that the LED

turns on for a specified period followed by removing the voltage provided so that the LED

turns off. To do so, use digitalWrite() to declare whether the voltage is at HIGH or LOW

followed by a delay().

void loop() {

 // put your main code here, to run repeatedly:

 digitalWrite(ledPin, HIGH);

 delay(1000);

 digitalWrite(ledPin, LOW);

 delay(1000);

}

Compile your code to double-check that there are no errors and that the program itself will

upload and run onto your chosen device. If the compilation is successful, upload the program

and watch how the LED reacts.

Completed Code with Comments

Exploration

Delay()

Let’s play around with the delay() function.

If we decrease a delay (e.g., line 12) what would the consequence be?

__

Turn down the delays on lines 12 and 14 to 500 and see how the LED reacts.

delay(500);

Taking what we now know about the delay function, configure the light to turn on for 3

seconds before turning off for 1 second.

RGB Light-Emitting Diodes

RGB LEDs work just the same as a standard two-pin LED except that three pins are

connected to different colored microchips to emit red, green, or blue light.

Let’s connect the RGB to our Arduino so that we can separately control each of the

colors emitted by the LED. We’ll start with the circuit itself.

Draw below, using our RGB LED symbol, a circuit to make on your breadboard.

RGB LED Symbol: Circuit:

Taking your drawn circuit, let’s add some code to our existing code from this lesson.

Assign 2 new digital pins for your red and green LED pins.

int ledRedPin = (insert digital pin number here);

int ledGreenPin = (insert digital pin number here);

Now assign your variables to function as output digital pins in your setup() loop.

pinMode(ledRedPin, OUTPUT);

pinMode(ledGreenPin, OUTPUT);

In your loop(), turn on the digital pin assigned to your red LED pin to light up for 2 seconds

then turn it off whilst the others take turns lighting up.

digitalWrite(ledRedPin, HIGH);

delay(2000);

digitalWrite(ledRedPin, LOW);

Repeat this process with the other pins. Your LED should now rotate between red, green,

and blue light with each lasting for 2 seconds.

Blink 2 – LEDs and Potentiometers

Hardware Required

- Arduino Uno Board

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- LED (Standard 2-Pin, Single Color) x 1

- 220-ohmhm resistor x 1

- Potentiometer x 1

Schematic

Circuit One:

Connect the digital pin (pin 13) to one end of the 220-ohm resistor, followed by connecting the

anode (the positive leg or longer leg) of the LED to the opposite side of the resistor. Connect the

LED's cathode (the negative leg or shorter leg) to GND.

Circuit Two:

Connect the rightmost pin of the potentiometer to the positive, and the leftmost pin to ground.

Connect the analog pin (pin A0) to the center pin.

Step-By-Step Programming

Continue to build from the previous code that you established in Blink 1.

Initialize two more variables that will be connected to the potentiometer – one variable will be

to initialize which analog pin will be the input (e.g., A0); the other variable is to access that

value that is collected at the moment a line that calls analogRead() is executed.

int ptPin = 0;

int ptValue = 0;

At the very beginning of the loop, set our access variable equal to the value being collected in

our input port by calling analongRead().

ptValue = analogRead(ptPin);

Set your delay() functions to the value collected from the potentiometer.

delay(ptValue);

Compile your code to double-check that there are no errors and that the program itself will

upload and run onto your chosen device. If the compilation is successful, upload the program

and watch how the LED reacts as you turn the potentiometer.

Completed Code with Comments

Exploration

Serial Monitor and Plotter

The serial monitor and plotter are great tools to see how the voltage input from an

analog pin change over time with variables such as a potentiometer. Let’s add two lines

of code to see how the voltage changes as you spin the potentiometer’s dial.

In our Setup() function, add the Serial.begin() command that declares a communication

rate of 9500.

 Serial.begin(9600);

In our Loop() function, add the Serial.println() command to print the values collected

from our potentiometer after declaring the ptValue variable.

 Serial.println(ptValue);

Your code should now look like this:

Upload your code to the Arduino and open your serial plotter on the top right of the

Arduino IDE.

What behavior are you seeing in the serial plotter as you turn the dial and why?

__

__

__

__

Analog Output

Let’s play around with the analog pins to see how they differ from digital pins.

When using analogRead, we used the value collected at the moment of execution to

break up the changing of the output pin connected to the LED from HIGH to LOW. Why

are digital pins so useful for making an LED blink?

__

__

__

__

Let’s say that instead of making the LED go from on to off, we wanted to vary the

brightness by changing the voltage supplied. Why would analog pins be better for

performing this function?

__

__

Change your code slightly to allow your potentiometer to decide the brightness of the

LED. As we want our output to be on an analog scale, allowing us to access between 5V

and 0V, replace our digitalWrite() in our loop function with analogWrite().

 analogWrite(ledPin, ptValue);

Your code should now look like this:

Carefully (ever so slightly) twist your potentiometer to see how the LED reacts. As we

slowly turn the potentiometer, the LED can be seen to have its brightness determined by

the analog input by the analog output.

Blink 3 – LEDs and Buttons

Hardware Required

- Arduino Uno Board

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- LED (Standard 2-Pin, Single Color) x 1

- 220-ohmhm resistor x 1

- Button x 1

Schematic

The following circuits should be on two separate circuits.

Circuit One:

Connect the digital pin (pin 13) to one end of the 220-ohm resistor, followed by connecting the

anode (the positive leg or longer leg) of the LED to the opposite side of the resistor. Connect the

LED's cathode (the negative leg or shorter leg) to GND.

Circuit Two:

Connect the rightmost pin of the button to the voltage (positive), and the leftmost pin to the

digital pin (D2) and a resistor. The other end of the resistor should be connected to ground.

Step-By-Step Programming

Continue to build from the previous code that you established in Blink 2’s exploration.

Initialize two new variables that will be connected to the button – one variable will be to

initialize which digital pin will be the input (e.g., D1); the other variable is to access what state

the button is in and that will be collected at the moment a line that calls digitalRead() is

executed.

int buttonPin = 1;

int buttonState = 0;

At the very beginning of the loop, set our access variable equal to the value being collected in

our input port by calling digitalRead().

buttonState = digitalRead(buttonPin);

We will now implement an if-loop in which we declare what would happen depending on the

specific circumstance – in this case, we will be looking into the state of the button to either turn

on or off the LED. If our button is pressed down, the voltage that will be read will be in a HIGH

state which will be programmed to turn on the LED. The opposite holds in the else portion of

the if-else statement.

if (buttonState == HIGH){

 digitalWrite(LED, HIGH);

}

 else {

 digitalWrite(LED, LOW);

 }

Compile your code to double-check that there are no errors and that the program itself will

upload and run onto your chosen device. If the compilation is successful, upload the program

and watch how the LED reacts as you press the button.

Completed Code with Comments

Exploration

LEDs Combined – Blink on Button Press

Let’s combine all that we know with LEDs to make the LED perform a blinking pattern

when the button is pressed.

In our if statement where an action is performed if the button is pressed, make the light

blink 3 times with each blink lasting ½ of a second.

Movement – Motors

Hardware Required

- Arduino Uno Board

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- 220-ohmhm resistor x 1

- Car Kit that includes DC Motor (Standard 12VDC) x 4

Schematic

Circuit One:

Connect the digital pin (pin 13) to one end of the 220-ohm resistor, followed by connecting one

side of the motor to the resistor and the other side to the ground.

Step-By-Step Programming

Plug in your board to the computer and start the Arduino IDE.

Initialize digital pin 13 as the pin that your motor will be connected to. Digital Pin 13 is also

connected to the motor onboard the Arduino Uno which allows for easier circuit debugging, if

necessary.

int motorPin = 13;

In your setup, initialize digital pin 13 to be an output pin by calling pinMode().

void setup() {

 pinMode(motorPin, OUTPUT);

}

In your loop, make the motor turn on and off; this means that a voltage will be provided so that

the motor turns on for a specified period followed by removing the voltage provided so that the

motor turns off. To do so, use digitalWrite() to declare whether the voltage is at HIGH or LOW

followed by a delay() call.

void loop() {

 digitalWrite(motorPin, HIGH);

 delay(1000);

 digitalWrite(motorPin, LOW);

 delay(1000);

}

Compile your code to double-check that there are no errors and that the program itself will

upload and run onto your chosen device. If the compilation is successful, upload the program

and watch how the motor reacts.

Completed Code with Comments

Movement – Motors and MOSFETS

Hardware Required

- Arduino Uno Board

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- 220-ohmhm resistor x 2

- Car Kit that includes DC Motor (Standard 12VDC) x 4

- MOSFETS x 2

Schematic

Circuit One:

Connect the leftmost pin of the MOSFET to a digital output pin (D13). The motor is connected

to voltage (positive) and the middle pin of the MOSFET. The rightmost pin of the MOSFET to

ground.

Step-By-Step Programming

The code remains identical to the previous lesson, Movement – Motors.

Exploration

How do MOSFETS work?

Connect a second motor to the first circuit’s MOSFET.

Now create a second circuit like the first and connect another two motors to that second

MOSFET.

Create a code in which you turn on one MOSFET and two motors for a period whilst the

other is not on. Then switch the MOSFETS to allow the other two motors to move for a

period.

HINT: Assign the other circuit to another pin and follow the same tactics we’ve used

before.

What are the purposes of a MOSFET? Why would they come in handy?

__

__

__

__

One use of MOSFETs is the capability of making only connected equipment react in a

certain way. You can make the cart take left and right turns by only turning on one set of

motors with the MOSFET will keep the other MOSFET off.

PROJECT

Project Kit

For the following project, be sure to have the following listed below:

Required:

- Arduino Uno

- Arduino IDE

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- 220-ohm Resistors x 2

- MOSFET x 1

- Car Kit that includes DC Motor (Standard 12VDC) x 4

- Meter Stick

- Tape

- Stopwatch

Purpose

A DC motor's operating principles are reasonably straightforward. A coil is placed in a

magnetic field, that's the armature placed within the permanent magnets, and a current is

passed through the coil. The current passing through the coil produces torque (a rotational

force) that turns the motor's shaft and, in turn, the attached load. Since the whole operation

depends on applying a current to the coil of the motor, the voltage of the source power is

directly related to the motor's output speed.

A DC motor's speed is directly proportional to the input voltage. The higher the input voltage,

the faster the output speed. The lower the input voltage, the slower the output speed.

We can control the speed independently of torque by manipulating the supply voltage using a

DC motor control unit. This allows the operator to maintain a steady torque over varying

speeds or maintain a constant speed over a variable load.

Let’s explore this correlation and find out the relation between voltage and velocity.

Cart Racing – Voltage and Velocity

Hardware Required

- Arduino Uno Board

- Breadboard

- Wires (Suggested 22AWG-Silicone Stranded Wire)

- 220-ohmhm resistor x 2

- Car Kit that includes DC Motor (Standard 12VDC) x 4

- Button x 1

- MOSFETS x 2

- Meter stick

- Tape

- Stopwatch

- Computer with Excel

Schematic

Combining various pieces of previous lessons, let’s create a car that will run a program when a

button is pushed the car will travel for a certain amount of time.

Take the completed circuits from the Blink 3 – LEDs and Buttons and Movement – Motors and

MOSFETs.

Circuit One and Two:

Create two identical circuits with two MOSFETS that are connected to the right and left motors

of your cart, respectively. Connect the leftmost pin of a MOSFET to a digital output pin (D13 or

D12). The motor is connected to the voltage (positive) and the middle pin of the MOSFET. The

rightmost pin of the MOSFET to ground.

Circuit Three:

Connect the rightmost pin of the button to the voltage (positive), and the leftmost pin to the

digital pin (D2) and a resistor. The other end of the resistor should be connected to ground.

Step-by-Step Programming

Assign different digital pins for the two sides of the car’s motor, as well as assign the button an

analog pin. Once the pins are assigned, declare the digital pins as OUTPUT pins and the button

as an INPUT pin.

Create an action in our loop function where we will assign the action of turning on both

MOSFETs for 10 seconds once the button is pressed.

HINT: Like the code with lesson 3 but replace our LED digital pins with MOSFETs.

Test the button to see if the cart will run for 10 seconds before stopping.

Experimentation

Once the circuit and code are complete, take a meter stick and measure out 5 meters on the floor

and mark it with tape. Place your cart on the starting line, and with your stopwatch, measure

the time it takes for the car to travel from the starting line to the end line when your button is

pressed. Perform this measurement 3 times.

Using the data that you have collected, calculate the velocity of your specific cart.

On the floor, using colored tape and a meter stick, create a track in which your cart will be able

to travel automatically through your written code and measured velocity.

