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Abstract

We study the feasibility of polarizing electron beams using the lon-
gitudinal Stern-Gerlach effect. After a brief historical motivation we
review a semi-classical analysis for electron dynamics in the presence
of an axial current ring. We derive the complete set of differential
equations for the trajectories and variances in this cylindrical geome-
try and point out differences with expressions found in the literature.
We solve a subset of the equations numerically for a particular choice
of initial conditions and we provide numerical simulations of the ef-
fect. We conclude by comparing the trajectory variance with the spin
separation.
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1 Introduction

The truth is rarely appreciated, and perhaps that is why I feel a little trep-
idation in saying that I undertook this project originally with the intent to
solely fulfill a requirement for graduation. However, the not so gentle nudging
at times of Dr. Van Huele and the ability to utilize the limited mathematical
knowledge that I have accumulated sufficiently excited me to take on a purely
theoretical project. Throughout my academic career though, I had yet to un-
dertake such an ambitious project as a senior thesis where the research and
learning environments were entirely unstructured and self-imposed. In order
to step-up and not become a victim of these circumstances I surrounded my-
self with caring people who inspired me to continue. People who eventually
became my why’s.

Within this paper you will find the historicity of electron beam polariza-
tion: where the idea was first generated, discussed, dashed, and once again
slightly pried back open to the realm of possibility as discussed in the Back-
ground section. The development of a method for analyzing a mostly classi-
cal system with some quantum correction will be found in the Semi-Classical
Method section. Its application to a specific apparatus, the Longitudinal
Stern-Gerlach, will be covered in section four, Current Ring Dynamics. The
equations of motion describing the electron beam in the Longitudinal Stern-
Gerlach is discussed in section five, Dynamical Equations. The numerical
solutions and the chosen method of solution for the equations of motion are
found in the Numerical Solutions section, and in the Conclusion the question
concerning the possibility of polarizing an electron beam will be presented
based upon the results.

2 Background

2.1 Electron Polarization in Early Quantum Theory

Throughout the formative years of quantum theory, several of its discoverers
debated at length the possiblity of polarizing an electron beam. Stern and
Gerlach had polarized a beam of neutral silver atoms using what has come
to be known as a transverse Stern-Gerlach magnet and it would seem natu-
ral to begin our study of electron beam polarization with an apparatus that
has already proven capable of beam polarization. However, the transverse
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Stern-Gerlach magnet is unable to decouple the splitting of the beam of free
electrons from the blurring induced by the Lorentz force acting on a beam of
finite width [3, 4, 5]. In order to circumvent the Lorentz force blurring Bril-
louin suggested a new experimental geometry, the longitudinal Stern-Gerlach
where the magnetic inhomogeneity that generates the splitting is in the di-
rection of propagation thereby minimizing the blurring force [6]. In response
to this suggestion, the outspoken Pauli said, ”it is impossible to observe the
spin of the electron, separated fully from its orbital momentum, by means
of experiments based on the concept of classical particle trajectories”[1]. In
short, Pauli found that the longitudinal Stern-Gerlach would not polarize an
electron beam. So the question remained dormant for years until Dehmelt
did what Pauli thought unthinkable. Dehmelt isolated electrons of a given
spin in a modified Penning trap (continuous Stern-Gerlach magnet) and mea-
sured their magnetic moment ~µ. Since the measurement of ~µ is so closely
related to the measurement of spin splitting, Dehmelt reopened the question
of electron beam polarizability.

2.2 Brillouin’s Proposal

With renewed potential we address Brillouin’s proposal. The longitudinal
Stern-Gerlach experimental setup is characterized by electrons with a spe-
cific energy being passed through an inhomogenous magnetic field at some
angle to the principal direction of propagation (ẑ). The kinetic energy of the
particle in the ẑ direction depends solely upon the insertion angle, and the
potential energy depends on the spin projection along ẑ. Electrons with spin
parallel to the field require a different minimum insertion angle than those
with spin antiparallel to it if they are to reach the detector. The difference
in distance traveled associated with a given insertion angle effectively serves
to split an electron beam by spin.

2.3 Pauli’s Refutation

To understand both the strengths and limitations of the longitudinal Stern-
Gerlach we now follow reference [9] in the following argument given by Pauli
against its potential efficacy given at the Sixth Solvay Conference in 1930. We
begin with a finite width beam of electrons moving in the positive ẑ direction,
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anti-parallel to the primary magnetic field direction. If ∂Bz

∂z
> 0, then elec-

trons with spin parallel to ẑ and velocity vz stop and reverse direction within
a time t given by mvz = µB

∂Bz

∂z
t, where m is the mass of the electron. The

number of electrons detected beyond vzt is half that which would be counted
where spin properties are excluded. Now suppose that the magnetic field B
is everywhere parallel to the xz plane, so by Maxwell’s equations we know
that ∂Bx

∂x
= −∂Bz

∂z
. If the field at x = 0 is exactly along ẑ, then at a distance

∆x from the z axis the magnetic field component Bx = ∂Bx

∂x
∆x = −∂Bz

∂z
∆x.

This field causes the velocity in the z direction to reverse sign in the Larmor
precession time. Therefore, forces must act over a time much less than the
Larmor precession time, i.e., t ¿ h

µBBx
, or equivalently µB(∂Bz

∂z
)t∆x ¿ h,

which reduces to mvz∆x ¿ h. Because of the wave nature of electrons the
last condition cannot be fulfilled during the complete interaction time be-
cause the de Broglie wavelength λ is just h

mvz
and beam widths ∆x ¿ λ are

not possible. However, if you tried to make one, then ∆vx > h
m∆x

by the
uncertainty principle requires that ∆vx À vz and the outcome cannot be
predicted by classical mechanics.

2.4 Problems with Pauli’s Refutation

This constitutes the whole of Pauli’s argument; however, there exists a point
of questionable reasoning forwarded by Pauli concerning the actual classical
trajectories. It is certain that an electron slightly displaced from the z-axis
will experience a force that starts to rotate velocity towards the y axis. The
change in the direction of motion is modified by the small induced vy which
causes a Lorentz force due to Bz. The resulting trajectory is a helical spiral
about ẑ, with only one direction of motion along ẑ. Since the precession
does not affect the result, the forces are not required to act over a time much
less than the Larmor precession time. The uncertainty principle no longer
inhibits the dynamics of the system and a time can be chosen that satisfies
the initial conditions.
Therefore the essential difficulty in applying the transverse Stern-Gerlach
geometry to the polarization of a finite electron beam is that Lorentz forces
blur the beam, and in order to circumvent the blurring longitudinal geometry
is used. To analyze this experimental situation, we cannot resort to the
analytically simple mixed dynamical picture where the electron trajectory is
treated classically and the spin quantum mechanically, nor can we treat the
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problem entirely quantum mechanically due to the analytical difficulty; so a
method which exhibits partially the advantages of both dynamical pictures
is employed which incorporates both classical and quantum mechanics more
fully.

3 Semi-Classical Method

This method was originally developed by Sundaram and Milonni [2] for maser
theory. More recently though H. Batelaan [7] has employed this method to
describe electron polarization by the longitudinal Stern-Gerlach, the subject
of this paper; we develop this analysis more fully and in the process we correct
the form of some of the equations given in [7]. The purpose of this section is
to restate the development of the method and correct the errors previously
made. We begin by writing the position and momentum operators as the sum
of their large classical expectation value and a small quantum correction,

x̂ = 〈x〉+ δx, p̂x = 〈px〉+ δpx, (1)

with the commutation relation [x̂, p̂x] = [δx, δpx] = ıh̄. In order to describe
the time variance of these operators it is necessary to treat them quantum
mechanically. Within quantum mechanics there are two equivalent pictures
of describing time dependence. The first is the Schroedinger picture where
the states, ψ(x, t), are time dependent and the physical variables have no
time dependence. In this picture the time dependence is described by

ıh̄
∂

∂t
ψ(x, t) = Ĥψ(x, t). (2)

The second is the Heisenberg picture. Within this framework the states,
ψ(x) are time independent and the physical variables have time dependence,
the exact opposite of the Schroedinger picture. The time dependence for
Heisenberg is described by

ıh̄
d

dt
A = [A, H] + ıh̄

∂

∂t
A (3)

which leads to

ıh̄
d

dt
〈A〉 = 〈[A,H]〉+ ıh̄〈 ∂

∂t
A〉. (4)
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Both pictures are equivalent. We will employ the Heisenberg picture to con-
struct dynamical equations for the expectation values and for variances. This
will correspond to trajectories with a point-like center and a finite extension
similar to the motion of wave packets. Since our physical variables are ex-
plicitly time independent we will not need the last term in Eq. (4).

ıh̄
d

dt
〈A〉 = 〈[A,H]〉. (5)

First, we develop a general function F (x, px) into its Taylor series about the
expectation values

F (x, px) = F |+
(

∂F

∂x

∣∣∣∣∣ δx +
∂F

∂px

∣∣∣∣∣ δpx

)
+

1

2!

(
∂2F

∂x2

∣∣∣∣∣ δx
2 +

∂2F

∂x∂px

∣∣∣∣∣ (δxδpx + δpxδx) +
∂2F

∂p2
x

∣∣∣∣∣ δp
2
x

)
+

1

3!

(
∂3F

∂x3

∣∣∣∣∣ δx
3 +

∂3F

∂x2∂px

∣∣∣∣∣
(
δx2δpx + δxδpxδx + δpxδx

2
)

+

∂3F

∂x∂p2
x

∣∣∣∣∣
(
δxδp2

x + δpxδxδpx + δp2
xδx

)
+

∂3F

∂p3
x

∣∣∣∣∣ δp
3
x

)
+ · · · (6)

Where F | = F (x, px)|x=〈x〉,px=〈px〉. We do the same for a different function
G(x, px) and we then evaluate their commutator where,

[F (x, px), G(x, px)] = ıh̄ {F |, G|}+ ıh̄

({
∂F

∂x

∣∣∣∣∣ , G|
}

+

{
F |, ∂G

∂x

∣∣∣∣∣

})
δx

+ıh̄

({
∂F

∂px

∣∣∣∣∣ , G|
}

+

{
F |, ∂G

∂px

∣∣∣∣∣

})
δpx +

ıh̄

2!

({
∂2F

∂x2

∣∣∣∣∣ , G|
}

+ 2

{
∂F

∂x

∣∣∣∣∣ ,
∂G

∂x

∣∣∣∣∣

}
+

{
F |, ∂2G

∂x2

∣∣∣∣∣

})
δx2 +

ıh̄

2!

({
∂2F

∂x∂px

∣∣∣∣∣ , G|
}

+

{
∂F

∂x

∣∣∣∣∣ ,
∂G

∂px

∣∣∣∣∣

}
+

{
∂F

∂px

∣∣∣∣∣ ,
∂G

∂x

∣∣∣∣∣

}
+

{
F |, ∂2G

∂x∂px

∣∣∣∣∣

})
(δxδpx + δpxδx) +
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ıh̄

2!

({
∂2F

∂p2
x

∣∣∣∣∣ , G|
}

+ 2

{
∂F

∂px

∣∣∣∣∣ ,
∂G

∂px

∣∣∣∣∣

}
+

{
F |, ∂2G

∂p2
x

∣∣∣∣∣

})
δp2

x + · · · (7)

Where {F |, G|} =
(

∂F
∂x

∣∣∣ ∂G
∂px

∣∣∣
)
−

(
∂F
∂px

∣∣∣ ∂G
∂x

∣∣∣
)

represents the Poisson bracket.
We now evaluate the expectation value of the commutator and get

〈[F (x, px), G(x, px)]〉 = ıh̄{F |, G|}+
ıh̄

2!

({
∂2F

∂x2

∣∣∣∣∣ , G|
}

+ 2

{
∂F

∂x

∣∣∣∣∣ ,
∂G

∂x

∣∣∣∣∣

}
+

{
F |, ∂2G

∂x2

∣∣∣∣∣

})
〈δx2〉+

ıh̄

2!

({
∂2F

∂x∂px

∣∣∣∣∣ , G|
}

+

{
∂F

∂x

∣∣∣∣∣ ,
∂G

∂px

∣∣∣∣∣

}
+

{
∂F

∂px

∣∣∣∣∣ ,
∂G

∂x

∣∣∣∣∣

}
+

{
F |, ∂2G

∂x∂px

∣∣∣∣∣

})
(〈δxδpx〉+ 〈δpxδx〉) +

ıh̄

2!

({
∂2F

∂p2
x

∣∣∣∣∣ , G|
}

+ 2

{
∂F

∂px

∣∣∣∣∣ ,
∂G

∂px

∣∣∣∣∣

}
+

{
F |, ∂2G

∂p2
x

∣∣∣∣∣

})
〈δp2

x〉+ · · · (8)

It is difficult to be able to discern where (8) differs from that provided by
Batelaan given that it is not fully enumerated in the paper [7].

4 Current Ring Dynamics

In order to develop the Hamiltonian for Brillouin’s thought experiment we
need to find a physical apparatus which fulfills the longitudinal Stern-Gerlach
criterion. Fortunately, a very simple apparatus exits which satisfies all the
requirements, it is a circular current loop. The Hamiltonian in cylindrical
coordinates for this apparatus is

H =
(pz − Az)

2

2m
+

(pρ − Aρ)
2

2m
+

(pφ − Aφ)
2

2mρ2
, (9)
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where Az, Aρ, and Aφ are the vector potentials in cylindrical coordinates.
The vector potential is given [8] by Az = Aρ = 0 and

Aφ(r, θ) =
4Ia√

a2 + r2 + 2ar sin θ

[
(2− k2)K(k)− 2E(k)

k2

]
, (10)

where r2 = ρ2 + z2 and the argument k of the elliptic integrals K(k) and
E(k) is given by

k2 =
4ar sin θ

a2 + r2 + 2ar sin θ
. (11)

When either a À r, a ¿ r, or θ ¿ 1, then

(2− k2)K(k)− 2E(k)

k2
∼= πk2

16
. (12)

Within the approximation, Aφ is now

Aφ(ρ, θ, z) ≈ πIa2

c

ρ

(a2 + ρ2 + z2 + 2aρ)
3
2

. (13)

Substituting the values for A into (9) we get

H =
p2

z

2m
+

p2
ρ

2m
+

p2
φ

2mρ2
− ω(z)pφ +

1

2
mω(z)2ρ2 (14)

where ω(z) = 1
2

qB(z)
m

and B(z) = ( a√
a2+z2 )

3. The fourth term in eq. (14) is
twice as large and our fifth term is four times as large as the corresponding
terms in the results presented in [7]. The third term also differs from [7]
where our p2

φ is replaced by p2
φ + 1/4.

5 Dynamical Equations

We now apply Eq. (4) to the dynamical variables that we want to evaluate
in order to find the trajectories. Starting with z and pz, we discover that the
geometry of the field environment forces us to look at an increasing number
of expectation values of all the terms that appear in the right hand side of
the equations that we developed. In order to close the set of equations we
truncated the set at the third order in the small variances. We include a
term o(3) in the equations below to represent the truncation, corresponding
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to expectation values of the third order and higher (i.e. 〈δp3
z〉). Our system

of equations reads now
d〈z〉
dt

=
〈pz〉
m

, (15)

d〈pz〉
dt

= − ∂H

∂z

∣∣∣∣∣−
1

2

∂3H

∂z3

∣∣∣∣∣ 〈δz
2〉 − ∂3H

∂z2∂pφ

∣∣∣∣∣ 〈δzδpφ〉

− 1

2

∂3H

∂z∂ρ2

∣∣∣∣∣ 〈δρ
2〉 − ∂3H

∂z2∂ρ

∣∣∣∣∣ 〈δzδρ〉+ o(3), (16)

d〈δz2〉
dt

= 2
〈δzδpz〉

m
, (17)

d〈δzδpz〉
dt

=
〈δp2

z〉
m

− A〈δz2〉 −B〈δzδpφ〉 − C〈δzδρ〉+ o(3), (18)

d〈δp2
z〉

dt
= −2A〈δzδpz〉 − 2B〈δpzδpφ〉 − 2C〈δpzδρ〉+ o(3), (19)

d〈δzδpφ〉
dt

=
〈δpzδpφ〉

m
, (20)

d〈δzδρ〉
dt

=
〈δzδpρ〉

m
+
〈δρδpz〉

m
, (21)

d〈δpzδpφ〉
dt

= −A〈δzδpφ〉 − B〈δp2
φ〉 − C〈δρδpφ〉+ o(3), (22)

d〈δρδpz〉
dt

=
〈pzδpρ〉

m
− A〈δzδρ〉 − B〈δρδpφ〉 − C〈δρ2〉+ o(3), (23)

d〈δzδpρ〉
dt

=
〈δpzδpρ〉

m
− C〈δz2〉 −D〈δzδρ〉 − E〈δzδpφ〉+ o(3), (24)

d〈δp2
φ〉

dt
= 0, (25)

d〈δρδpφ〉
dt

=
〈δpρδpφ〉

m
, (26)

d〈δρ2〉
dt

=
〈δρδpρ〉+ 〈δpρδρ〉

m
, (27)

d〈δpzδpρ〉
dt

= −A〈δzδpρ〉 − B〈δpρδpφ〉 − C〈δρδpρ〉 − C〈δzδpz〉
−D〈δρδpz〉 − E〈δpzδpφ〉+ o(3), (28)
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d〈δρδpρ〉
dt

=
〈δp2

ρ〉
m

− C〈δzδρ〉 −D〈δρ2〉 − E〈δρδpφ〉+ o(3), (29)

d〈δpρδpφ〉
dt

= −C〈δzδpφ〉 −D〈δρδpφ〉 − E〈δp2
φ〉+ o(3), (30)

d〈δp2
ρ〉

dt
= −2C〈δzδpρ〉 − 2D〈δρδpρ〉 − 2E〈δpφδpρ〉+ o(3), (31)

d〈φ〉
dt

=
〈pφ〉

m〈ρ2〉 − 〈ω(z)〉, (32)

d〈pφ〉
dt

= 0, (33)

d〈ρ〉
dt

=
〈pρ〉
m

, (34)

d〈pρ〉
dt

=
〈p2

φ〉
m〈ρ3〉 −m〈ω(z)2ρ〉, (35)

with

A =
∂2H

∂z2
, B =

∂2H

∂z∂pφ

, C =
∂2H

∂z∂ρ
,D =

∂2H

∂ρ2
, E =

∂2H

∂pφ∂ρ
. (36)

Those equations whose form has been corrected are (24), (29), and (31).
The last term in all three instances was omitted from the original. These
three terms are equally important as their preceding terms in each of their
respective equations because they have the same order of magnitude as each
other term with an evaluated derivative as a coefficient. Also in the definition
of C our ∂ρ replaces the ∂pρ and our ∂pφ replaces the ∂φ from [7].
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6 Numerical Solutions

6.1 Spin Separation

Most important to the comparison of quantum diffusion and spin separation
is the interesting subset of differential equations of motion which describe the
longitudinal motion along ẑ and the widths of the probability distributions
for the beam. The subset is comprised of equations (15)−(31) and they form
a complete set (when truncated to the third order correction). Within the
solution of the time evolution of the beam two variables are very important for
they describe the beam dispersion. These values are 〈δz2〉 which describes
the longitudinal width of the packet and 〈δρ2〉 which is a measure of the
transverse beam width. Splitting will be detectable if splitting, given by

∆zspin =
∫ ∫

2azdt′dt =
∫ ∫ 2µB

m

∂Bz

∂z
dt′dt, (37)

versus dispersion remains reasonable.

6.2 Matlab

This application was chosen for its numerical analysis tools and familiarity.
Recently, I had taken a lab class (Physics 430) where I had learned how to
solve similar systems with relative ease in Matlab. The method taught and
used is that two M-files are needed, one for the equations, rhs17.m, and one
for the initial conditions of the system and the differential solver,spin.m. Both
rhs17.m and spin.m are available in Appendix B. In solving the system we
held the initial conditions of the apparatus geometry, magnetic field strength,
and small quantum correctional uncertainties constant while allowing the
beams macroscopic properties, initial position and momentum, to vary.
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7 Analysis

7.1 A Typical Result

When the system is evaluated a figure appears, which describes graphically
the spin separation versus the beam diffusion. If the spin separation lines
exit the beam diffusion box, that result indicates the ability to quantitatively
measure the spin of a free electron. However, if the spin separation lines
were not to exit the beam diffusion box that would correspond to not having
sufficient resolution to separate the diffusion from the separation. Under
the given initial conditions, it appears that the spin separation is unable to
overcome the large beam diffusion.

7.2 Possible Improvements

The method appears to be effective at approaching systems that are largely
classical with a slight quantum correction. The method is appropriate for
systems that are mostly classical. Also a careful determination of optimal
initial conditions needs to be done in order to explore the parameter space
to find out where spin polarization might be an experimental possibility. As
we now have it, the mass of the electron, me, the Bohr magneton, µB, and
the charge of the electron, e, are all unitary. Whereas, the beam width (ρ)
is five, the current rings radius (R) is 100, and the initial strength of the
magnetic field (B0) is ten. This seems inappropriate and can be improved.

8 Conclusion

Although left for history and nearly forgotten, the longitudinal Stern-Gerlach
magnet appears in simulation not to satisfy what Brillouin had hoped; how-
ever, a further study with expanded initial conditions should give us a more
complete view of the validity of Brillouin’s proposal.
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A Appendices

A.1 3-Dimensional Taylor Expansion for a General Func-
tion

F (xi, pi) = F |+
(∑

i

∂F

∂xi

∣∣∣∣∣ δxi +
∑

i

∂F

∂pi

∣∣∣∣∣ δpi

)
+

1

2!


∑

i,j

∂2F

∂xi∂xj

∣∣∣∣∣ δxiδxj

+
∑

i,j

∂2F

∂xi∂pj

∣∣∣∣∣ δxiδpj +
∑

i,j

∂2F

∂pi∂xj

∣∣∣∣∣ δpiδxj +
∑

i,j

∂2F

∂pi∂pj

∣∣∣∣∣ δpiδpj




+
1

3!


∑

i,j,k

∂3F

∂xi∂xj∂xk

∣∣∣∣∣ δxiδxjδxk +
∑

i,j,k

∂3F

∂xi∂xj∂pk

∣∣∣∣∣ δxiδxjδpk

+
∑

i,j,k

∂3F

∂xi∂pj∂xk

∣∣∣∣∣ δxiδpjδxk +
∑

i,j,k

∂3F

∂pi∂xj∂xk

∣∣∣∣∣ δpiδxjδxk

+
∑

i,j,k

∂3F

∂xi∂pj∂pk

∣∣∣∣∣ δxiδpjδpk +
∑

i,j,k

∂3F

∂pi∂xj∂pk

∣∣∣∣∣ δpiδxjδpk

+
∑

i,j,k

∂3F

∂pi∂pj∂xk

∣∣∣∣∣ δpiδpjδxk +
∑

i,j,k

∂3F

∂pi∂pj∂pk

∣∣∣∣∣ δpiδpjδpk




+ · · · . (38)

A.2 Commutation Relation of Two 3-Dimensional Gen-
eral Functions

[F (xi, pi), G(xi, pi)] = ıh̄
∑

i

{F |, G|}+ ıh̄
∑

i

({
∂F

∂xi

∣∣∣∣∣ , G|
}

δxi

+

{
F |, ∂G

∂xi

∣∣∣∣∣

}
δxi +

{
∂F

∂pi

∣∣∣∣∣ , G|
}

δpi

+

{
F |, ∂G

∂pi

∣∣∣∣∣

}
δpi

)
+

ıh̄

2!

∑

i,j

({
∂2F

∂xi∂xj

∣∣∣∣∣ , G|
}

δxiδxj

+

{
F |, ∂2G

∂xi∂xj

∣∣∣∣∣

}
δxiδxj +

{
F |, ∂2G

∂xi∂pj

∣∣∣∣∣

}
δxiδpj
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+

{
∂2F

∂xi∂pj

∣∣∣∣∣ , G|
}

δxiδpj +

{
F |, ∂2G

∂pi∂xj

∣∣∣∣∣

}
δpiδxj

+

{
∂2F

∂pi∂xj

∣∣∣∣∣ , G|
}

δpiδxj +

{
F |, ∂2G

∂pi∂pj

∣∣∣∣∣

}
δpiδpj

+

{
∂2F

∂pi∂pj

∣∣∣∣∣ , G|
}

δpiδpj

)

+ıh̄
∑

j,k

({
∂F

∂xj

∣∣∣∣∣ ,
∂G

∂xk

∣∣∣∣∣

}
δxjδxk

+

{
∂F

∂xj

∣∣∣∣∣ ,
∂G

∂pk

∣∣∣∣∣

} (
δxjδpk + δpkδxj

2

)

+

{
∂F

∂pj

∣∣∣∣∣ ,
∂G

∂xk

∣∣∣∣∣

} (
δpjδxk + δxkδpj

2

)

+

{
∂F

∂pj

∣∣∣∣∣ ,
∂G

∂pk

∣∣∣∣∣

}
δpjδpk

)
+ · · · . (39)

A.3 Expectation Value of the Commutation Relation
between Two 3-Dimensional General Functions

〈[F (xi, pi), G(xi, pi)]〉 = ıh̄
∑

i

{F |, G|}+
ıh̄

2!

∑

i,j

({
∂2F

∂xi∂xj

∣∣∣∣∣ , G|
}
〈δxiδxj〉

+

{
F |, ∂2G

∂xi∂xj

∣∣∣∣∣

}
〈δxiδxj〉+

{
F |, ∂2G

∂xi∂pj

∣∣∣∣∣

}
〈δxiδpj〉

+

{
∂2F

∂xi∂pj

∣∣∣∣∣ , G|
}
〈δxiδpj〉+

{
F |, ∂2G

∂pi∂xj

∣∣∣∣∣

}
〈δpiδxj〉

+

{
∂2F

∂pi∂xj

∣∣∣∣∣ , G|
}
〈δpiδxj〉+

{
F |, ∂2G

∂pi∂pj

∣∣∣∣∣

}
〈δpiδpj〉

+

{
∂2F

∂pi∂pj

∣∣∣∣∣ , G|
}
〈δpiδpj〉

)

+ıh̄
∑

j,k

({
∂F

∂xj

∣∣∣∣∣ ,
∂G

∂xk

∣∣∣∣∣

}
〈δxjδxk〉

+

{
∂F

∂xj

∣∣∣∣∣ ,
∂G

∂pk

∣∣∣∣∣

} (〈δxjδpk〉+ 〈δpkδxj〉
2

)
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+

{
∂F

∂pj

∣∣∣∣∣ ,
∂G

∂xk

∣∣∣∣∣

} (〈δpjδxk〉+ 〈δxkδpj〉
2

)

+

{
∂F

∂pj

∣∣∣∣∣ ,
∂G

∂pk

∣∣∣∣∣

}
〈δpjδpk〉

)
+ · · · . (40)

A.4 Running Matlab sources

In order to utilize the code provided below, it is necessary to create the two
m-files in the same directory. Then code them as instructed. In order to run
them, you double-click the spin.m file. It will query you as to an appropriate
initial momentum value, enter a value (a reasonable value might be 100-
1500), and it will provide the results for that value. Built into the code is
a disallowance for the abrogation of the physical laws of nature (i.e. when
the outputs of the code violate the Heisenberg Uncertainty Principle the code
quits).In the figures that pop up after successfully running the code, the axes
represent the longitudinal axis of the longitudinal Stern-Gerlach magnet (i.e.
current ring).

A.5 Source 1: rhs17.m

function F=rhs18(t,y)

global m;

global pphi;

global rho;

global Bo;

global R;

global q;

w=q*Bo/2/m*(R/(R^2+y(1)^2)^(1/2)))^3;

w1=-(3/2)*q*Bo/m*R^3*y(1)/((R^2+y(1)^2)^(5/2));

w2=-(3/2)*q*Bo*R^3/m*(R^2-4*y(1)^2)/((R^2+y(1)^2)^(7/2);

w3=(15/2)*q*Bo*R^3/m*y(1)*(3*R^2-4*y(1)^2)/((R^2+y(1)^2)^(9/2));

Hz1=-pphi*w1+m*w*w1*rho^2;

Hz3=-pphi*w3+3*m*w1*w2*rho^2+m*w*w3*rho^2;

Hz2p_phi=-w2;

Hzrho2=2*m*w*w1;

Hz2rho=2*m*w1^2*rho+2*m*w*w2*rho;

A=-pphi*w2+m*w1^2*rho^2+m*w*w2*rho^2;
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B=-w1;

C=2*m*w*w1*rho;

D=3*pphi^2/m/(rho^4)+m*w^2;

E=-2*pphi/m/(rho^3);

F=zeros(length(y),1);

F(1)=y(2)/m;

F(2)=-Hz1-(1/2)*Hz3*y(3)-Hz2pphi*y(6)-(1/2)*Hzrho2*y(13)-Hz2rho*y(7);

F(3)=2*y(4)/m;

F(4)=y(5)/m-A*y(3)-b*y(6)-C*y(7);

F(5)=-2*A*y(4)-2*B*y(8)-2*C*y(14);

F(6)=y(8)/m;

F(7)=y(10)/m+y(14)/m;

F(8)=-A*y(6)-B*y(11)-C*y(12);

F(9)=y(14)/m-A*y(7)-B*y(12)-C*y(13);

F(10)=y(14)/m-C*y(3)-D*y(7)-E*y(6);

F(11)=0;

F(12)=y(16)/m;

F(13)=y(15)/m;

F(14)=-A*y(10)-B*y(16)-c*y(15)-C*y(4)-D*y(9)-E*y(8);

F(15)=y(17)/m-C*y(7)-D*y(13)-E*y(11);

F(16)=-C*y(6)-D*y(12)-E*y(11);

F(17)=-2*C*y(10)-2*D*y(15);

A.6 Source 2: spin.m

clear;close all;

global m;

global pphi;

global rho;

global Bo;

global R;

global q;

initial conditions

m=1;pphi=0;rho=5;Bo=10;R=100;q=1;mu=1;

y0=zeros(17,1);

y0(1)=-500;
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y0(2)=input(’ initial momentum - ’);

y0(3)=1;

y0(4)=1;

y0(5)=1;

y0(6)=1;

y0(7)=1;

y0(8)=1;

y0(9)=1;

y0(10)=1;

y0(11)=0;

y0(12)=1;

y0(13)=1;

y0(14)=1;

y0(15)=1;

y0(16)=1;

y0(17)=1;

options=odeset(’RelTol’,1e-8);

tstart=0;tfinal=10;

N=1024;

taue=(tfinal-tstart)/(N-1);

te=tstart:taue:tfinal;

[t,y]=ode45(@rhs_17,te,y0,options);

spin separation animation

h1=0:.002:.15;

h2=0:.005:.15;

for n=1:N-1

spin down (backward)

xdown(1)=y0(1);

vdown(1)=y0(2)/m;

adown(1)=(mu/m)*(-3*Bo*R^3)*xdown(1)/((R^2+(xdown(1))^2)^(5/2));

vdown(n+1)=vdown(n)+adown(n)*taue;

xdown(n+1)=xdown(n)+vdown(n)*taue+(1/2)*adown(n)*(taue)^2;
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adown(n+1)=(mu/m)*(-3*Bo*R^3)*xdown(n+1)/((R^2+(xdown(n+1))^2)^(5/2));

no spin

xzero(1)=y0(1);

vzero(1)=y0(2)/m;

azero(1)=0;

vzero(n+1)=vzero(n)+azero(n)*taue;

xzero(n+1)=xzero(n)+vzero(n)*taue+(1/2)*azero(n)*(taue)^2;

azero(n+1)=0;

spin up (forward)

xup(1)=y0(1);

vup(1)=y0(2)/m;

aup(1)=(mu/m)*(3*Bo*R^3)*xup(1)/((R^2+(xup(1))^2)^(5/2));

vup(n+1)=vup(n)+aup(n)*taue;

xup(n+1)=xup(n)+vup(n)*taue+(1/2)*aup(n)*(taue)^2;

aup(n+1)=(mu/m)*(3*Bo*R^3)*xup(n+1)/((R^2+(xup(n+1))^2)^(5/2));

end

square wave animation & blurring

n=0;

set(gca,’NextPlot’,’replacechildren’)

for j=1:32:N

mu=y(j,1);

sigma=y(j,3);

delta=y(j,5);

if sigma<0

fprintf(’ position dispersion violation \%g \n’,y(j,3));

break

elseif delta<0

fprintf(’ momentum dispersion violation \%g \n’,y(j,5));

break

elseif delta*sigma<.25

fprintf(’ heisenberg uncertainty violation \%g \n’,y(j,5)*y(j,3));

break

else

if sigma>250
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sigma=250;

end

x=(mu-sigma):(mu+sigma);

s=1/2/sigma;

a=0:.0005:s;

plot(x,s,’k-’,mu-sigma,a,’k-’,mu+sigma,a,’k-’,xdown(j),h2,’b-’,xup(j),h1,’r-’);

axis([y(j,1)-150 y(j,1)+150 0 .15])

n=n+1;

Q(:,n)=getframe;

end

end

movie(Q,0)
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