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ABSTRACT 
 

A Large-Scale Survey of Brown Dwarf Atmospheres 
 

Savanah Kay Turner 
Department of Physics and Astronomy, BYU 

Master of Science 
 

Brown dwarfs are substellar objects that fall in-between the smallest stars and largest 
planets in size and temperature. Due to their relatively cool temperatures, the atmospheres of 
these “failed stars” have been shown to exhibit interesting properties such as iron, silicate, and 
salt clouds. Theoretical atmospheric models based on known physics and chemistry can be used 
as tools to interpret and understand our observations of brown dwarfs. I have fit archival and new 
infrared spectra of over 300 brown dwarfs with atmospheric models. Using the parameters of the 
best-fit models as estimates for the physical properties of the brown dwarfs in my sample, I have 
performed a survey of how brown dwarfs evolve with spectral type and temperature. I present 
my fit results and observed trends. I use these fit results to note where current atmospheric 
models are able to well-replicate the data and where the models and data conflict.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: brown dwarfs, atmospheric models, low-mass stars, exoplanet atmospheres, infrared 
spectroscopy 
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Introduction 

Brown dwarf research is a relatively young area of astronomy due to the cool 

temperatures and dim luminosities of these substellar objects. The difficulty of observing such 

faint objects through a telescope meant that brown dwarfs were predicted theoretically decades 

before the first observational discoveries. In the years that have followed since those initial 

discoveries, many individuals have contributed to the efforts to better characterize and 

understand these substellar bodies.  

In this section, I first outline some of the key events of the history of brown dwarf 

research. Next, I provide a brief summary of the general characteristics of brown dwarfs. I then 

explain how brown dwarfs can be useful as exoplanet analogs and, by extension, how brown 

dwarf research is furthering the goals of the NASA Astrophysics Division. Finally, I give an 

overview of the goals of this project and structure of the paper as a whole. 

1.1 History of Brown Dwarf Research  

Every introductory astronomy course teaches that stars are formed when a giant 

molecular cloud collapses in on itself. The cloud fragments into multiple centers of collapse of 

various masses, each of which will become a new stellar object. Each protostar continues to 

gravitationally contract, converting the original gravitational potential energy of the material into 

thermal energy, until its core reaches great enough temperatures and pressures for hydrogen 
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fusion to ignite. This fusion pushes back against the inward gravitational pressure and halts the 

collapse of the star.  

In 1963, an astrophysicist named Shiv Kumar [1] analyzed convective models of stars of 

mass M < 0.1 M☉1. Kumar found that there was a point during the formation of these low-mass 

objects at which further contraction resulted in a decrease in temperature rather than the 

generally expected increase. This drop in temperature was due to the input energy needed to 

overcome electron degeneracy pressure. He calculated that, eventually, electron degeneracy 

pressure would halt the gravitational collapse of these small objects without their ever reaching 

the temperatures and pressures needed to ignite hydrogen fusion. Kumar explained: [1] 

Thus all stars having a mass less than a certain limiting mass ultimately become 

completely degenerate objects or “black” dwarfs without ever going through the normal stellar 

evolution. 

Kumar is credited with the first prediction of the existence of what he dubbed “black 

dwarfs.” Twelve years later, the name for these objects was changed to “brown dwarfs” by Jill 

Tarter to avoid confusion with perpetually-cooling white dwarf remnants, also called “black 

dwarfs” [2]. 

It wasn’t until 1995 that the first brown dwarf candidates were observed. Two different 

teams published papers that same year announcing their independent brown dwarf discoveries. 

The team led by R. Rebolo published their paper in September 1995, entitled Discovery 

of a Brown Dwarf in the Pleiades Star Cluster [3]. Pleiades, a nearby open cluster, was chosen as 

the best site to search for the first brown dwarf due to its young age: brown dwarfs that formed 

within this cluster would be more likely to be young and warm enough to still be detectable in 

 
1 This symbol means “solar mass”. 
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the near infrared. The discovery of their brown dwarf, Teide 1, occurred after they had surveyed 

only 0.3% of the area of the Pleiades cluster, leading them to conclude that the cluster could 

likely house somewhere around 175 brown dwarfs in total.  

They first detected the object in photometric data, and then performed follow-up optical 

spectroscopy. The similarities between the optical spectrum of Teide 1 and LHS 2065, a known 

M9 dwarf, were immediately apparent and showed that Teide 1 was indeed a cool dwarf of some 

type (Figure 1). Using the bolometric luminosity of Teide 1 and estimates for the luminosity-

mass relationship of cool stars, the team estimated the mass of their brown dwarf candidate to be 

less than 70 times the mass of Jupiter, right in the predicted range of brown dwarf masses.  

Figure 1: Taken from Figure 1 of Rebolo et al. [3]. A comparison of the optical spectrum of brown dwarf 
Teide 1 to that of the M9 star LHS 2065. The similarities between the spectra showed that Teide 1 was a cool, 
low-mass object. It wasn’t until the discovery of lithium in the atmosphere of Teide 1 [4] that it was accepted 
as the first brown dwarf discovery. 



 4 

The final step was to look for lithium in the spectrum of the object. Lithium is depleted in 

low mass stars due to convective mixing and lithium burning, but was expected to still be 

abundant in brown dwarf atmospheres because all but the largest of these objects lack the mass 

needed to burn lithium2. Follow-up observations using the low-resolution imaging spectrograph 

on the Keck Observatory 10-meter telescope discovered lithium in the atmosphere of Teide 1 

(Figure 2), confirming its status as a brown dwarf [4]. 

 

Two months after the Rebolo 1995 paper, Nakajima et al. [7] observed a companion 

object orbiting the M-type red dwarf star Gl229. Broadband spectroscopy in the optical and 

infrared (Figure 3) allowed the team to calculate a bolometric luminosity for the companion 

object, which was found to be orders of magnitude fainter than the luminosity of the dimmest 

 
2 Brown dwarfs with masses of about 60-75 times the mass of Jupiter are able to fuse lithium at the beginning of 
their lives. Brown dwarfs with masses less than 60 times that of Jupiter never have this ability, however. Thus, 
discovering lithium in the atmosphere of a substellar object can confirm that it is a brown dwarf if the object is old 
enough to have burned all of its lithium, but the lack of lithium does not necessarily mean that it is not a brown 
dwarf. [26] 

Figure 2: Taken from Figure 2a of Rebolo et al. [4]. The spectrum of Teide 1 is compared to the spectra of 
Calar 3 (another brown dwarf candidate [5]) and PPl 15 (a known brown dwarf [6]). The lithium 1 feature at 
670.8 nm is visible in all three spectra, confirming that all three objects are brown dwarfs. 
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known star. Furthermore, the broadband spectrum of the companion peaked in the infrared J-

filter, suggesting the presence of strong H2O and CH4 absorption. These absorption features 

matched the theoretical brown dwarf models of the time. They named this companion Gl229B 

and declared with confidence that “Gl229B is certainly a brown dwarf.”  

 

These first two discoveries were just the beginning. By the end of 1998, 26 brown dwarfs 

had been discovered. Kirkpatrick et al. [8] began the process of classifying these objects into 

spectral types, defining the “L” spectral type and suggesting the future need for a cooler spectral 

type, “T.”  

The onset of near-infrared all-sky surveys resulted in a rapid increase of brown dwarf 

discoveries. By early 2001, the number of known brown dwarfs was approaching 100. Many of 

these and future discoveries were due to the Two Micron All Sky Survey (2MASS [9]), Deep 

Figure 3: Taken from Figure 1 of Nakajima et al. [7]. Photometry of the M-type red dwarf star Gl229 and 
brown dwarf companion Gl229B. Images were taken in r-band (top left), i-band (top right), z-band (bottom 
left), and ks-band (bottom right) using the Palomar 60-inch telescope (r-, i-, and z-band images) and the Hale 
200-inch telescope (ks-band image). 
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Near-Infrared Survey (DENIS [10]), and Sloan Digital Sky Survey (SDSS [11]). Burgasser et al. 

[12] analyzed these new data and outlined an official definition of the spectral type “T” in 2001. 

Brown dwarf discoveries continued and ten years later, data provided by the Wide-Field 

Infrared Survey Explorer (WISE [13]) revealed the existence of brown dwarfs even cooler than 

Burgasser’s T dwarfs. Cushing et al. [14] published a paper defining spectral type “Y” in 2011. 

This remains the coolest brown dwarf spectral type that has been observed and defined to date. 

As of 2015, there had been nearly 3000 confirmed brown dwarf discoveries [15], and that 

number continues to grow. Brown dwarf research remains an active area of study as we seek to 

understand how these objects form, how they evolve over time, what molecules can be found in 

their atmospheres, how many exist in our galaxy, and more. Looking forward, the era of the 

James Webb Space Telescope (JWST) promises to bring exciting new discoveries that will shape 

the future of brown dwarf research.  

1.2 General Characteristics of Brown Dwarfs 

Smaller than the smallest stars but more massive than the largest planets, brown dwarfs 

exhibit characteristics of both stellar and planetary bodies.  

One nickname often given to brown dwarfs is “failed stars” [16].  When a molecular 

cloud is perturbed and begins to collapse, it will fragment into pieces. The initial mass of each 

fragment determines the type of star that it will become: the largest fragments will form the 

hottest, largest, brightest stars while smaller fragments form cooler, smaller, dimmer stars. Even 

smaller fragments, below a mass of about 80 times the mass of Jupiter [17], will fail to achieve 

the temperatures and pressures needed to ignite hydrogen fusion, and thus will produce brown 

dwarfs rather than stars. Many brown dwarfs do have masses above the deuterium fusion limit 

and thus are initially able to burn deuterium [18], but they quickly run out of fuel and fizzle out. 
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Because brown dwarfs form like stars but are unable to maintain fusion in their cores, they 

indeed could be considered the “failures” of the stellar class.  

 

On the other hand, some prefer to think of brown dwarfs as “super Jupiters” [16] due to 

the characteristics they share with large planets. For one thing, the smallest deuterium-fusing 

brown dwarfs are only about 13 times the mass of Jupiter [18], and sub-brown dwarfs 3are 

expected to be able to form with initial masses as small as 1 Jupiter mass [27]. All brown dwarfs, 

 
3 The nomenclature for objects that form like stars but are below the deuterium fusion limit is a source of debate. 
One common name for these cool objects is “sub-brown dwarfs,” although many astronomers including Shiv Kumar 
[27] believe that all objects below the hydrogen fusion limit that form like stars should simply be called “brown 
dwarfs.” 

Figure 4: Taken from Figure 1 of Muirhead et al. [21], who adapted a plot from Burrows et al [22]. This plot 
shows evolutionary curves of objects of different initial masses. Planetary, stellar, and brown-dwarf regimes 
are labeled.  
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regardless of mass, are expected to have about the same radius as Jupiter [19]. There is also a 

large overlap in the temperatures of brown dwarfs and large planets, resulting in a similar 

atmospheric makeup [20].  

Furthermore, while stars are able to maintain a fairly constant temperature for the 

majority of their lifetimes due to the energy generated during the fusion process, both brown 

dwarfs—after a possible initial period of deuterium burning—and planets lack this internal 

furnace. Brown dwarfs and planets thus must cool over time as they lose energy via blackbody 

radiation. The thermal evolution of brown dwarfs compared to planets and very low-mass stars is 

depicted in Figure 4. Each curve in the figure represents the evolutionary track of an object with 

a different initial mass. Note that the initial mass determines the starting effective temperature 

and spectral type of the object, and that a brown dwarf will evolve through later and later spectral 

types as it cools.  

  

Brown dwarfs have also been observed to exhibit complex cloud structures like those 

seen in planetary atmospheres. Molecules, dust grains, and clouds that would be unstable in the 

Figure 5: Taken from Lodders [25]. A diagram showing different cloud layers that are expected to exist in L 
and T brown dwarfs compared to the cloud layers in Jupiter and objects on the brown dwarf-stellar 
boundary (L to M dwarf transition).  
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much hotter atmospheres of stars appear to be prevalent in brown dwarfs. Because the 

temperature and pressure of a brown dwarf atmosphere increases with depth, different cloud 

species are stable at different altitudes, resulting in cloud layers similar to those observed in the 

planet Jupiter (Figure 5). The number and composition of these cloud layers depends on the 

effective temperature/spectral type of the brown dwarf. Specifics regarding the chemistry of 

brown dwarf atmospheres will be further explored in Chapter 2.   

1.3 Brown Dwarfs as Analogs of Exoplanets   

I have thus far presented a brief overview of the history of brown dwarf research, as well 

as a small glimpse into the general characteristics of these substellar objects. While many might 

see the search for understanding alone as a goal worthy of any effort, I acknowledge that, more 

often than not, the general public prefers an answer to the question “so, why should we care?” 

Thus, before proceeding to the more technical parts of this thesis, I pause to address this often-

expensive question. 

The characterization of exoplanets and the search for Earth-like planets has recently 

become a major focus of astrophysics. Indeed, the search for habitable worlds around other stars 

is listed as one of the three main goals of the NASA Astrophysics Division [23].  

However, there are many challenges when it comes to exoplanet characterization. One 

major complication is the dimness of exoplanets compared to their host stars. The difficulty of 

observing an exoplanet has been compared to “looking for a firefly with a spotlight shining in 

your face” [24]. Creative observational techniques are in use and more are under development, 

but the fact remains that direct exoplanet observation can be a chore. 

Brown dwarfs, on the other hand, are often found in single systems far from brighter 

stars. Their cool temperatures and cloudy atmospheres make brown dwarfs effective analogs for 
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exoplanets. In fact, many of the same research groups that develop atmospheric models for 

brown dwarfs also develop models for large exoplanets because of the overlap in temperatures 

[20].  

As brown dwarf researchers work to refine understanding of the characteristics and 

evolution of brown dwarf atmospheres, our results can be used to further the efforts of exoplanet 

characterization. As brown dwarf and exoplanet atmosphere modeling techniques improve 

together, the quest to answer the question “could other planets harbor life?” becomes less a topic 

of science fiction and more an attainable goal of science.  

1.4 Project Overview 

The main goal of this project was to fit a large sample of archival and new brown dwarf 

spectra to atmospheric models. The purpose of this model fitting is two-fold:  

First, the parameters of the best-fit models (described in detail in Chapter 4) can be used 

to estimate the physical properties of the brown dwarfs. I know of no other project where 

physical properties such as temperature, cloudiness, cloud composition, etc. have been estimated 

for such a large sample of brown dwarfs. Analysis of these physical properties across the brown 

dwarf evolutionary sequence has provided insight into how brown dwarf atmospheres change as 

they cool. The model-fitting results also allow for a discussion of the correlation between pairs of 

attributes such as temperature and spectral type, optical and infrared type, cloudiness and 

temperature, etc.  

Second, fitting such an extensive sample of brown dwarfs with atmospheric models 

highlights where the models and data match well and where the models need to be adjusted. 

Atmospheric modeling is an ongoing, iterative process. It is necessary to carry out projects such 
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as this in order to reveal physics and chemistry that might be missing from current models so that 

modeling techniques can continue to improve.  

Chapters 2-4 of this paper provide necessary background regarding infrared astronomy, 

brown dwarf spectral types, and theoretical models. Chapter 5 describes the code used for the 

spectral fitting, and Chapter 6 explains where the data were obtained. In Chapters 7 and 8, I give 

analysis of the fits and observed trends. Conclusions and ideas for future work are described in 

Chapter 9. 
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Infrared Astronomy: Observational Terms 

2.1 Magnitudes 

 When observing objects through a telescope, one of the main properties one might wish 

to quantify is the brightness of the object. Historically, ancient astronomers such as Hipparchus 

assigned brightness measures to stars by eye. These measures were called “magnitudes,” and 

smaller magnitudes corresponded to brighter objects. Because the human eye perceives 

brightness on a logarithmic scale rather than a linear scale, Hipparchus’ original magnitude scale 

was similarly non-linear [28]. 

 As technology has developed, methods for quantifying brightness have become more 

clearly defined and consistent than the original by-eye measurements. However, the logarithmic 

magnitude system has remained because astronomers love tradition nearly as much as we love 

horrible acronyms4.  

Various magnitude systems have been developed over the years with different zero-

points. The system used in this paper is the Vega system, where a magnitude of zero corresponds 

to the observed magnitude of Vega, the brightest star in the summer constellation Lyra. Negative 

 
4 I refer readers to the following website for a demonstration of just how much astronomers love our horrible 
acronyms: https://lweb.cfa.harvard.edu/~gpetitpas/Links/Astroacro.html. 
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magnitudes correspond to objects that are brighter than Vega, while objects with positive 

magnitudes are fainter. 

The magnitude that is measured from a telescope is called an “apparent magnitude.” 

However, flux—the amount of light passing through a square area per unit time—falls off with 

distance squared. This means that comparing apparent magnitudes of objects that are different 

distances from earth is not truly a method of comparing the intrinsic brightness of the objects.  

In order to calculate the true or “absolute magnitude” of an object, one must know its 

distance from Earth. Then, the distance modulus equation given in Equation 1 can be used to 

convert from apparent to absolute magnitude. In this equation, M and m are absolute and 

apparent magnitudes, respectively, and d is the distance to the object in parsecs. 

𝑴𝑴 = 𝒎𝒎−𝟓𝟓 𝐥𝐥𝐥𝐥𝐥𝐥𝟏𝟏𝟏𝟏 �
𝒅𝒅
𝟏𝟏𝟏𝟏
�  Equation 1 

2.2 Filters and Colors 

In Hipparchus’ day, magnitudes were based on the wavelengths of light that were visible 

to the human eye. Today, magnitudes are measured in different passbands of light. Filters with 

different transmission profiles are used to limit the range of wavelengths that are able to reach 

the detector of the telescope, and then a magnitude can be calculated for that passband/filter.  

Comparing the magnitudes of an object measured in different filters can provide insight 

into the physical properties of that object. For example, an object that is brighter in an ultraviolet 

filter than in a green optical filter is likely a young, hot star with a blackbody peak in the 

ultraviolet. On the other hand, cooler stars like our Sun would be brighter in the green filter than 

in the ultraviolet filter because the Sun’s blackbody curve peaks in the optical part of the 

spectrum. 
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“Colors” of objects are calculated by subtracting magnitudes in two different filters. One 

of the most common colors used in infrared astronomy is the J-K color. The J filter is centered 

around 1.2 μm while the K filter is centered at 2.1 μm. Even though both filter magnitudes 

measure infrared light, the J filter measures shorter, more energetic infrared wavelengths and is 

therefore considered to be a “bluer” filter than the “redder” K filter. Thus, brown dwarfs with 

negative J-K colors are called “blue” brown dwarfs while brown dwarfs with larger, positive J-K 

colors are called “red” brown dwarfs (recall that smaller magnitudes are brighter, so a negative J-

K color means that the object is brighter in the J filter). The J-K color is especially useful for 

estimating the cloudiness of a brown dwarf atmosphere. This will be discussed more in later 

chapters. 

2.3 Atmospheric Absorption 

 One factor that needs to be taken into consideration when performing observational 

astronomy from the ground is the effect of the Earth’s atmosphere on the light that we observe. 

Molecules in the atmosphere absorb and scatter light before it reaches our telescopes. These 

effects are dependent upon the wavelength of light, so failing to take them into account can 

drastically impact our observations. 

 As seen in Figure 6, the visible part of the spectrum is mostly free of atmospheric 

absorbers. Rayleigh scattering is important here, but can easily be accounted for because the 

amount of scattering versus wavelength is well-defined. 

 In the infrared, the effects of the atmosphere become far more important. The near-

infrared (from about 0.7 – 2.5 μm) is dominated by absorption from water vapor, carbon dioxide, 

and methane. Not only do these molecules absorb large wavelength regions or “bands” of light, 

but their effects are constantly fluctuating: the amount of water vapor absorption in particular 
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depends on weather, location, humidity, and altitude and can change quickly over the course of a 

night.  

  

Near-infrared filters are carefully designed to fit in wavelength regimes that fall in-

between major bands of atmospheric absorption. The three main infrared filters are J, H, and K. 

Various filter systems use slightly different versions of these three filters. The filter systems 

discussed in this paper are the 2MASS and MKO systems. Transmission profiles for some 

common filter systems, including 2MASS and MKO, are given in Figure 7. Because the filters of 

Figure 6: Taken from Figure 7 of Alimonti [29]. The top diagram shows the transmission spectrum of solar 
radiation (red) and thermal/infrared radiation (blue) through the atmosphere of the earth. The second panel 
gives the percent of light that is absorbed/scattered at each wavelength. The bottom panels show how 
components such as water vapor, other atmospheric molecules, and Rayleigh scattering contribute to this 
removal of light at each wavelength. 
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different profiles are not identical, magnitudes obtained for the same object using different filter 

systems will not be identical and should be compared with caution [30].  

  

Nearly all light in the mid-infrared (from about 2.5-15 μm) is absorbed by atmospheric 

water vapor before it reaches ground-based telescopes. Thus, observations in the mid-infrared 

require time on space telescopes such as the James Webb Space Telescope. Previous missions 

such as the Spitzer Space Telescope and the Japanese observatory AKARI had mid-infrared 

Figure 7: Taken from Figure 1 of Leggett et al. [30]. Transmission profiles of J, H, and K filters from various 
filter systems. This project mainly uses 2MASS magnitudes, but a small discussion of MKO magnitudes is 
included in the analysis of Best’s gap later in this paper. The different transmission profiles mean that 
measured magnitudes and colors are system-dependent.  
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detectors, but neither mission is operational today. The archival data used in this project was all 

obtained from the ground, and therefore only covers wavelengths in the near-infrared.  

  

Passband filters are not used in spectroscopy. However, it is common practice in brown 

dwarf astronomy to refer to regions of the spectrum of a brown dwarf by the name of the near-

infrared filter in which they would fall. For example, the three regions of the brown dwarf 

spectrum given in Figure 8 have been labeled with their corresponding filter bands. Note the 

significant absorption features in the spectrum of the brown dwarf in-between the three bands. 

These are caused by absorption of light by the atmosphere of the Earth, not by the brown dwarf.  

 

 

 

 

 

 

 
 

K 

J 
H 

Figure 8: Spectrum of the L1-type brown dwarf 2MASS J1807159+501531. The spectral data was published 
by Burgasser et al. [31] and obtained from the SpeX Prism Library [32]. J, H, and K bands have been labeled. 
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Brown Dwarf Spectral Types 

Spectroscopy is one of the most powerful methods of studying the atmospheres of objects 

in space. The spectral signature of an object can reveal much about its chemical makeup, 

temperature, variability, density, etc. Thus, it has long been a tradition in astronomy to classify 

stars and substellar objects such as brown dwarfs based on similarities in their spectral features.  

The three spectral classes used for brown dwarfs are the L, T, and Y types. Each letter is 

further subdivided into numerical types—given in integer or sometimes half-integer steps—

ranging from 0 to 9.5. These spectral classifications roughly correlate to a temperature sequence, 

where L0 is the hottest spectral type and Y9.5 is the coolest type (although no objects of class 

Y9.5 have been observed to date).  

 Occasionally, numerical indices are used to denote the different spectral types for ease of 

plotting or data analysis. In index notation, the letter is replaced by a 1 (for L-dwarfs), 2 (for T-

dwarfs), or 3 (for Y-dwarfs), while the numerical subtype remains the same. For example, the 

spectral index for an L5 dwarf is 15, while the index for a T3 dwarf is 23.  

As it cools, a brown dwarf will evolve through progressively cooler spectral types. For 

this reason, the hotter spectral types are often referred to as “early types,” while the cooler types 

are sometimes called “late types.”  
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With changes in temperature/spectral type come changes in cloud properties and 

atmospheric chemistry as molecules condense, settle, and mix through different layers of the 

atmosphere. In this chapter, I outline the main characteristics of each brown dwarf spectral type 

as well as some of the complexities that arise as a brown dwarf transitions from type L to type T. 

3.1 L Type 

 

Figure 9: Taken from Figure 4 of Kirkpatrick et al. [8]. Comparison of the spectra of a late-M star, an early-
L brown dwarf, and a late-L brown dwarf. The main spectroscopic marker of the L- type versus the M- type 
is the disappearance of TiO and VO lines and the strengthening of hydride and alkali features. Absorption 
features denoting the presence of various atoms and molecules have been labeled. 
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The L-type was classified by Kirkpatrick et al. [8] and denotes the hottest class of brown 

dwarfs. The general consensus is that L-type brown dwarfs range in temperature from about 

2400 K (type L0) down to about 1300 K (type L9.5) [33]. Spectroscopically, L-type brown 

dwarfs are differentiated from the coolest stars (spectral type M, also called “red dwarfs”) by the 

disappearance of TiO and VO spectral features. Instead of these metal oxides, L-dwarf spectra in 

the far optical are dominated by metallic hydrides and neutral alkali metals. A comparison of M- 

and L- type spectra is given in Figure 9. 

Figure 10: Taken from Table 4 in Kirkpatrick et al. [8]. A list of the major atomic and molecular absorption 
features Kirkpatrick identified in the spectra of his L-dwarfs. Note that his observations at the time of this 
paper only included wavelengths from 0.6 – 1 μm.  
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The spectral observations Kirkpatrick used to develop his classification scheme only 

covered wavelengths from 0.6 to 1 μm. Even in this small far-optical wavelength range, he was 

able to detect multiple atomic and molecular species in the spectra of his L-dwarfs. His table of 

important spectral features is provided in Figure 10.  

In his paper, Kirkpatrick provided a “recipe for L-dwarf spectral classification” using 

optical spectra. This recipe involved calculating spectral ratios to find the strength of the oxide 

bands, hydride bands, and alkali features as well as a measurement of the redness of the object 

and amount of broadening seen in the potassium doublet at about 0.77 μm. Once these 

measurements were obtained, tables from the paper could be used to determine a numerical 

subtype. [8] 

Geballe et al. [34] later developed a classification scheme for L-dwarfs based on infrared 

observations from 0.6 – 2.5 μm. The “recipe” used by this team involved measurements of water 

absorption bands at 1.15 and 1.5 μm, methane bands at 1.6 and 2.2 μm, and two color indices. 

The infrared classifications were designed to be consistent with Kirkpatrick’s optical 

classifications, although the infrared and optical types for the same object do not always agree.  

Further observations of L-dwarfs and comparison to theoretical atmospheric models have 

revealed that L-dwarf atmospheres contain large amounts of CO gas as well as cloud layers of 

liquid iron, corundum, and dusty silicates such as enstatite and forsterite [25,35,36].  

3.2 T Type 

The T-type, ranging in temperature from about 1300 K to 700 K [33], was defined by 

Burgasser et al. [12]. The classification indices used for T-dwarfs rely solely on near-infrared 
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observations—due to the dimness of T-dwarfs in the optical regime—and are based on the same 

measurements of water and methane absorption used for L-dwarfs [34]. 

The main spectral indication of the transition from late-L to early-T type is the appearance 

of methane. Methane absorption features at 1.6 and 2.2 μm deepen with each T subtype, as seen 

in Figure 11. The water band near 0.93 μm also becomes deeper as a brown dwarf cools through 

the T-types [12].  

 

Features denoting silicate and iron clouds are no longer seen in T-dwarf spectra, suggesting 

that these clouds dissipate at cooler temperatures [37]. Instead, condensation curves such as 

those shown in Figure 12 predict that salt and sulfide clouds take over [36].  

Figure 11: Taken from Figure 3 of Geballe et al. [34]. Comparison of near-infrared spectra of late-L and 
early-T brown dwarfs. Note the onset of methane absorption at 1.6 and 2.2 μm in the T-dwarfs. 
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3.3 Y Type 

Y-dwarfs are the coolest brown dwarfs known to date, ranging from about 700 K down to 

at least 300 K [14]. The extremely cool temperatures of these objects have made them difficult to 

observe spectroscopically. Because few spectra of Y-dwarfs have been obtained as of now, the 

Y-type is not as well defined as the other two types.  

Theoretical calculations predict that Y-dwarfs have clouds layers composed of sodium, 

potassium, water, and ammonia [36].  Cushing et al. [14] present a loose classification scheme 

based on the appearance of ammonia absorption around 1.5 μm, but suggest that it would be 

more effective to develop a classification scheme based on spectral features in the mid-infrared 

where Y-dwarfs shine the brightest. It is expected that the era of the James Webb Telescope will 

Figure 12: Taken from Figure 3 of Morley et al [36]. The solid-colored lines are condensation curves for 
brown dwarfs of different effective temperatures. As you move deeper into a brown dwarf, the pressure and 
temperature both increase. Dotted lines denote stable regions for various condensates. The different 
condensates are stable at different depths within the atmosphere, resulting in layers of clouds. Note how Na2S  
and sulfides such as ZnS and MnS are stable fairly high-up in the atmospheres of T-dwarfs (shown by the 
1300K and 900K curves).  
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allow for mid-infrared observation of many more Y-dwarfs and result in a more detailed 

characterization of the Y spectral type. 

3.4 The L/T Transition and Best’s Gap 

As a brown dwarf transitions from L- to T- type, complicated changes take place in its 

atmosphere. Much work has been done since the classification of L- and T-dwarfs to develop 

theories that explain how and when these changes occur. Many questions have been answered, 

but many remain. Thus, I was particularly interested in using the model fits generated for this 

project to analyze how well current models are able to replicate the spectra of L/T transition 

objects. I also wanted to develop a temperature/spectral-type relationship that could shed light on 

one of the ongoing debates regarding L/T transition objects: whether there is a gap or a pileup of 

objects in the L/T transition. Our research group refers to this question as “Best’s gap,” named 

after William Best’s 2021 paper [40]. 

The initial inspiration for this project came from the observation that some authors present 

their results in terms of spectral type, others plot in terms of estimated effective temperature, and 

still others use J-K color. While these three values are expected to be loosely correlated, there is 

not a defined one-to-one conversion. This can result in some confusion, and we hypothesized 

that this could be the cause of the “Best’s Gap” debate. 

For example, the evolutionary models presented by Saumon & Marley [38] predict a pileup 

of brown dwarfs of temperatures from 1200-1400 K, as shown in Figure 13. Kirkpatrick et al. 

[39] performed an observational survey of brown dwarfs out to 20 pc and observed this same 

predicted pileup, as shown in Figure 14. Both papers refer to this temperature range as the “L/T 

transition.”  
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On the other hand, Best et al. [40] performed an observational survey of brown dwarfs out 

to 25 pc and reported a dearth of objects “in the L/T transition,” apparently in direct conflict with 

previous works. The plot from Best et al. is provided in Figure 15. Note that the results from this 

paper were presented in terms of J-K color and spectral type rather than temperature. 

We speculated that the lack of a clear conversion from spectral type to temperature to color 

for brown dwarfs could be the cause of these apparently conflicting results. Best et al. observe 

that the data shown in Figure 15 would no longer be in conflict if either the Saumon & Marley 

predictions or their own observations were shifted by 0.5 magnitudes in J-K color. Noting that 

the Saumon & Marley models are generated based on temperature rather than color, this seems 

Figure 13: Taken from Figure 13 from Saumon & Marley [38]. A plot of the predicted number fraction of 
brown dwarfs of different temperatures within the galactic disk, based on the evolutionary atmospheric 
models presented in their paper. The red curve corresponds to the cloudy model set, the blue curve 
corresponds to the cloudless model set, and the black curve corresponds to a hybrid model set in which 
clouds clear away at the L/T transition. The authors of [38] note that the hybrid models predict a pileup of 
objects around 1200-1400K. 
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feasible. I sought to more clearly define the correlation between J-K color, temperature, and 

spectral type in order to explore this possibility. 

Figure 14: Taken from Figure 28 of Kirkpatrick et al. [39]. The measured space densities resulting from their 
survey out to 20 pc are given in black. The red curve gives predicted space densities based on one version of 
the Saumon & Marley [38] evolutionary models. Both the measured and predicted data show a pileup of 
objects in the bin corresponding to effective temperatures of 1200-1400 K. 

Figure 15: Taken from Figure 15 of Best et al. [40]. This plot shows the measured space densities of brown 
dwarfs of different (J-K)MKO colors (black) based on an observational survey out to 25pc. Predicted space 
densities given by the Saumon & Marley hybrid models [38] are shown in green. 



 27 

 

 
Theoretical Models 

Since the first observations of brown dwarfs, multiple groups have been working to 

develop and refine brown dwarf atmospheric and evolutionary models. These models serve as 

tools for explaining the physical processes behind the observed spectral features of brown 

dwarfs. Comparison of real data to theoretical models can also show gaps in our theoretical 

understanding of the physics and chemistry in brown dwarf atmospheres: where the models and 

data disagree, there is something lacking from the theory. 

Although multiple model sets exist for brown dwarf atmospheres, this project solely uses 

models originating from the Ackerman, Saumon, and Marley [35, 38] group. Future work could 

involve the use of other model sets to compare and contrast resulting fits, but that is outside the 

scope of the current project.  

4.1  Main Parameters of the Ackerman, Saumon, and Marley Models 

The foundational model grids of this group are generated based on parameters of 

effective temperature, surface gravity, mixing, and sedimentation. Here, I explain the meaning of 

each of these parameters. 

The effective temperature of a brown dwarf is essentially the temperature of its surface or 

photosphere. This is not an average or global temperature by any means: the temperature of the 



 28 

atmosphere will increase with depth. So, a brown dwarf with an effective temperature of 2400 K 

really is significantly hotter below the surface. However, the light that we observe at our 

telescopes originates from the surface of the brown dwarf, so the effective temperature is 

generally what we will measure from this light. The effective temperature grid of the models 

used in this project ranges from 2400 K down to 200 K and has a varying resolution starting at 

100 K for the hottest temperatures and reaching 25 K for the coolest temperatures. 

Surface gravity refers to the value of the gravitational acceleration constant at the surface 

of the brown dwarf. This value depends on both the mass and radius of the object, and thus 

conveys information about density as well. Surface gravity can be used as an indicator of age: 

younger brown dwarfs are expected to have lower surface gravities because they are still 

contracting [42]. This value is usually either given as g in CGS units (cm/s2) or log g. The 

surface gravity grid of these models ranges from 10 to 3000 cm/s2, with varying resolution.  

The models also use a parameter called the vertical eddy diffusion coefficient (kzz with 

units of cm2/s) that controls the amount of vertical mixing taking place in the atmosphere. This 

coefficient relates to the vertical mixing time tmix and the scale height H according to Equation 2 

from [43]. I have briefly discussed how different cloud species are stable at different atmospheric 

depths: vertical mixing allows convection to pull molecules from deeper in the atmosphere and 

deposit them in higher layers where they would usually not be stable. The mixing parameter is 

given for each model as log(kzz) and can take values of 0, 2, 4, or 6, where larger kzz corresponds 

to a shorter vertical mixing time/more vertical mixing [41,43,63]. 

𝒕𝒕𝒎𝒎𝒎𝒎𝒎𝒎 =  𝑯𝑯
𝟐𝟐

𝒌𝒌𝒛𝒛𝒛𝒛
  Equation 2 
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The sedimentation parameter, fsed, is a measure of how efficiently cloud particles are able 

to grow. This unitless value is defined by Ackerman & Marley as the “ratio of the mass-weighted 

sedimentation velocity to the convective velocity scale” [35]. Larger values of fsed correspond to 

generally larger cloud grains, which then quickly rain out of the upper atmosphere due to their 

heavy weight. Smaller values of fsed result in smaller cloud grains, which are able to collect in the 

atmosphere and create thicker clouds. Thus, even though individual particle size grows with 

increasing fsed, the thickness of the physical clouds in the upper atmosphere is inversely related to 

fsed [38]. Values for fsed can be 1, 2, 3, 4, or “nc”/ “none” (referring to cloudless model 

atmospheres). 

4.2  Specific Model Subsets Used in This Project 

Even within this one modeling group, different iterations of the models exist. In this 

section, I describe the different model subsets used in this project and their additional 

parameters. The models from each subset described below were combined into one conglomerate 

model library that was used to find the best-fit model for each target brown dwarf. 

4.2.1 S&M 2008 Models 

Approximately half of the models used in this project come from the set presented in 

Saumon & Marley [38]. The grid includes 1,184 cloudy or hybrid models (cloudless but with 

vertical mixing still permitted) as well as 157 cloudless models with fsed = “nc” and  kzz = 0. 

These models come in temperatures from 300 K to 2400 K and have log g values from 3.5 to 5.5. 

The grid included kzz values of 0, 2, 4, or 6 and fsed values of “nc,” 1, 2, 3, or 4. 

A small handful of these models have metallicity [M/H] included as an extra parameter.  

Metallicity, or the ratio of hydrogen to all other elements, is defined relative to the measured 
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solar metallicity value. The metallicity options used in this grid are 0, +0.3, and +0.5, where 0 is 

solar. The models that do not specify a metallicity value all assume a solar metallicity.  

The models from this subset will be referred to as the “S&M models” for the duration of 

this paper. 

4.2.2 Morley 2012 Models 

 I include another 182 models from Morley et al [36]. This subset was an iteration of the 

S&M models. The same modeling code from Saumon & Marley [38] was used to generate these 

newer models, but opacity values for some cloud species expected to be found in T- and Y-dwarf 

atmospheres were added to the line list. These previously “neglected clouds” were Cr, ZnS, KCl, 

MnS, and Na2S. Because the focus of this subset was on adding clouds for T- and Y-dwarfs, the 

temperature grid only ranges from 400 – 1300 K and opacity values for silicate, corundum, and 

iron clouds were removed from the code. Comparison of the new grid to older models can be 

seen in Figure 16. Gravity options are 100, 300, 1000, and 3000 cm/s2. Values for fsed can be 2, 

3, 4, or 5. kzz was not incorporated into this model grid, and solar metallicity was assumed for all 

models.  

Figure 16: Taken from Figure 11 of Morley et al. [36]. The spectrum of the T8.5 dwarf Ross 458C (black) is 
compared to its best-fit models from a cloudless grid (blue), a grid including iron and silicate clouds like those 
seen in L-dwarfs (purple), and a grid including sulfide clouds (pink). The subset of models from Morley et al. 
[36] includes the sulfide clouds and not the iron/silicate clouds. The sulfide clouds result in the best fit to the 
peaks around 1, 1.2, and 1.2 μm. The iron/silicate clouds better fit the peak around 1.6 μm. The secondary 
peak around 1.6 μm that is not fit by any of the modes is due to methane absorption. It is a known problem 
that the S&M and Morley subsets have outdated methane opacity values. 



 31 

  

Note how the model fits in Figure 16 fail to fit the methane feature found around 1.6 μm 

due to outdated opacity values. This missing methane feature was a recurring problem for this 

project. 

 The models from this subset will be referred to as the “Morley 2012” models. 

4.2.3 Morley 2014 Models 

  

An additional 76 models come from Morley et al. [44] This subset is another iteration of 

the S&M models and focuses on incorporating water clouds in order to better model Y-dwarfs. 

The temperature grid ranges from 200 – 450 K and gravity options are 10, 30, 100, and 300 

Figure 17: Taken from Figure 11 of Morley et al. [44]. These plots show the effects on the infrared spectrum 
of a cool Y-dwarf (200K) when the cloud patchiness parameter h and sedimentation efficiency parameter fsed 
are varied. 
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cm/s2. Most of these models have fsed = 5, although options for fsed = 3 and 7 were included only 

for the models with a surface gravity of 100 cm/s2. 

An additional parameter was included in these models in order to account for possible 

cloud patchiness.  This parameter is called h for “cloud holes” and gives the fraction of the 

surface area of the atmosphere that is made up of holes in the clouds. Most of the models in the 

grid assumed h = 0.5, although the models with a surface gravity of 300 cm/s2 were given h 

values ranging from 0.2 to 0.8 (in increments of 0.1). The effects of varying h and fsed are 

illustrated in Figure 17. 

Models from this subset did not often appear in the model fits to L- and T- dwarfs 

performed as a part of this project; the cool temperatures of these models are meant to match the 

atmospheres of Y-dwarfs. However, there was a possibility that the L- and T- dwarfs could be 

binary systems with a dim Y-dwarf, so it was worth including these models especially when 

performing binary fits.  

The models from this subset will be referred to as the “Morley 2014” models. 

4.2.4 Sonora Bobcat Models 

The other large subset of 1,209 models comes from the Sonora Bobcat grid presented in 

Marley et al. [41]. The main advantage of this subset compared to the other three was the 

inclusion of updated methane opacity values that better fit the methane features found in L/T 

transition objects and T-dwarfs.  

The models in this grid have temperatures ranging from 200 – 2400 K. Surface gravity 

options are 10, 17, 31, 56, 100, 178, 316, 562, 1000, 1780, and 3160 cm/s2. The drawback to this 

subset—and the reason that the S&M models were still included even with the outdated methane 
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values—is that clouds were not included in the modeling code. Thus, fsed is “nc” for the entire 

grid and kzz was not used.  

Metallicity is included as an additional parameter and can be [M/H] = 0, +0.5, or -0.5 

(again with 0 corresponding to solar metallicity). The final parameter used for these models is an 

assumed C/O ratio. Most of the models assume a solar C/O ratio, although the solar-metallicity 

models with a surface gravity value of 1000 cm/s2 give the option for C/O = 0.5 or 1.5 

(corresponding to either 0.5 or 1.5 times the solar value). The impact of these two parameters as 

well as surface gravity and temperature on the Bobcat models is illustrated in Figure 18. 

Models from this subset will be referred to as the “bobcat” models. 

 

 

 

Figure 18: Taken from Figure 2 of Marley et al. [41]. Plots illustrating the effects of temperature, surface 
gravity, metallicity, and C/O ratio on models from the Sonora Bobcat grid. Temperature has the most 
dramatic impact on the spectrum, but the other three parameters are useful for fine-tuning fits of models to 
data. 



 34 

 
 

 
Spectral Fitting/ The Code 

 The spectral fitting code used in this project was originally created as a means of finding 

unresolved brown dwarf binaries using the methods developed in [45, 46, 47]. For this project, 

the code was predominantly used in the single-fitting mode, although the binary-fitting feature 

was used for a small portion. In this chapter, I describe the development of the code, where the 

code can be accessed, its single- and binary-fitting capabilities, and planned improvements. 

5.1  Development of the Code 

 The development of the code was an iterative process that began before my time at BYU 

and included the work of multiple individuals [48, 49, 50, 51]. I refer readers to my 

undergraduate senior thesis [52] for a more detailed history of the code. 

 In summary, as of April of 2020 the binary fitting code was functional and produced 

results that matched those given in Burgasser et al. and Bardalez-Gagliuffi et al. [45, 46]. 

However, using the code required running multiple scripts in Perl, C++, and Python as well as 

editing multiple files by hand. The process was time-intensive, required user input at multiple 

steps, could only be run on one object at a time, and could take upwards of 1-2 hours per object. 
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 My undergraduate research from 2020-2021 involved re-writing the Perl script in Python, 

creating a Python pipeline that would run the entire code from a single command, and adding the 

option to perform fits to multiple objects in one run.  

I also added the ability to use real brown dwarf spectra obtained from the SpeX Prism 

Library [32] as models in lieu of the theoretical models. The purpose of this feature is to be able 

to link together “families” of similar objects. For example, if a feature in the spectrum of one of 

the target objects is not well-fit by the theoretical models, a fit to real data could reveal whether 

or not this feature appears in the spectra of other objects. For the duration of this paper, fits to 

theoretical models are called “SM” fits (short for “Saumon Models”), while fits to real SpeX 

spectra are called “RM” fits (short for “Real Models”). 

The Python pipeline I created as an undergraduate still called the old C++ scripts, so 

downloading the code and all of the necessary Python packages and C++ libraries was an 

element of frustration for new users. As a part of this master’s thesis, I removed all of the C++ 

dependencies. Now, the entire code is written in Python and includes only four separate code 

files. Input parameters are entered into a .txt file as are the names of all of the objects to be fit. 

The entire fitting process can then be called with a single command and left to run without user 

supervision.  

 Other improvements made as a part of this project include cleaner output of results, the 

option to plot on a log scale, and the ability to mask over user-defined spectral regions (this 

element was included in the old C++ version of the code but had not yet been added to the 

Python version). I also adapted the code to run well for spectra taken with different instruments. 

Specifically, capabilities have been added for data obtained with the Spitzer IRS, SpeX, AKARI, 

and TRIPLESPEC instruments. 
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5.2  Accessing and Running the Code 

All of the files needed to run the code can be found at the following GitHub address: 

https://github.com/savanahkay/binary-fit.git.  Future students at Brigham Young University can 

also find the code on the data drive of the upstairs lab machines in the 

data/StephensBinaryFittingCode folder or on the Google Drive folder used by Denise Stephen’s 

research group (StephensResearchGroup/BinaryFitting/Code; access will need to be granted by 

Denise Stephens). 

Running the code requires installing Python 3 and the following packages: numpy, scipy, 

tqdm, os, pandas, itertools, and matplotlib. A section providing a more detailed description of the 

code as well as instructions on how to use the parameter files and call the code is given in 

Appendix 1 of this paper. 

5.3  Single Fitting 

 The single-fitting element of the code uses simple optimization of the goodness-of-fit 

statistic (also called an “adapted χ2 value” in [45]) described in Cushing et al. [47] to match each 

object to its best-fit model. This statistic, Gk, is defined in Equation 3. 

The summation over 𝜆𝜆 represents summing over all the wavelength values included in the 

data. The variables 𝑤𝑤𝜆𝜆 , 𝑓𝑓𝜆𝜆 , and 𝜎𝜎𝜆𝜆 are the weight, flux, and error of the data at each wavelength, 

𝐹𝐹𝑘𝑘,𝜆𝜆 is the flux of the kth model at each wavelength, and 𝐶𝐶𝑘𝑘 is the scaling factor used to scale the 

kth model to fit the data. The optimization function (I use the scipy “optimize.minimize” 

function with the numerical Nelder-Mead algorithm option) minimizes Gk by allowing 𝐶𝐶𝑘𝑘 to 

fluctuate. This optimization is performed for each model, and the code then sorts the fit results 

by 𝐺𝐺𝑘𝑘. The model with the smallest 𝐺𝐺𝑘𝑘 is the best fit for that object. 

https://github.com/savanahkay/binary-fit.git
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 I note that the current iteration of the code assumes equal weighting of all data points, so 

the 𝑤𝑤𝜆𝜆 term in Equation 3 is set to 1 at all wavelengths. This weighting term should be 

implemented for situations in which the data being fit does not have a consistent resolution 

across its entire wavelength domain: for example, in cases where different spectral regimes were 

obtained with different telescopes. The error term was also set to 1 for all wavelengths for this 

project because some of the archival data had recorded error values of zero at some wavelengths, 

resulting in division by zero. The error term could be easily re-implemented for future projects. 

5.4  Binary Fitting 

 The binary fitting process is based on the methods described in [45,46]. First, composite 

spectra representing the spectra of unresolved binary pairs are generated by adding the fluxes of 

two individual model spectra at each wavelength. Every possible combination of two individual 

model spectra is used to generate the full suite of composite models.  

 The algorithm then optimizes the same goodness-of-fit statistic described in the last 

section for each composite model. The composite model with the lowest 𝐺𝐺𝑘𝑘 value is considered 

to be the best binary fit. 

 Once both a best single fit and best binary fit have been determined for the object in 

question, the goodness-of-fit statistics for the two best fits can be used to calculate an 𝜂𝜂 value 

according to Equation 4 from [45]. 𝜈𝜈𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝜈𝜈𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represent the degrees of freedom of the 

single and binary fits, respectively. The 𝜂𝜂 value is then used in an F-test to determine the 
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likelihood that the binary model is a better fit than the single model. If the code returns a 95% 

likelihood or higher, the object is considered to be a likely binary. 

𝜼𝜼 =  𝐦𝐦𝐦𝐦𝐦𝐦�𝑮𝑮𝒌𝒌,𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔�/𝝂𝝂𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝐦𝐦𝐦𝐦𝐦𝐦�𝑮𝑮𝒌𝒌,𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃�/𝝂𝝂𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

  Equation 4 

 I note that the current code follows the suggestions of [45] and uses the number of data 

points used in the fit for the degrees of freedom. Because the single and composite models have 

the same number of data points, the 𝜈𝜈 values are equal and cancel out. This method of calculating 

an 𝜂𝜂 value results in an unexpectedly high number of likely binaries.  

Also, this statistical method does not consider the multiple model subsets used and their 

slightly different parameters/inconsistent parameter grids. We observed that some of the objects 

that were marked as likely binaries were best fit by composite models that were the sum of two 

models with the same effective temperature from different subsets: for example, a 1200 K S&M 

model and a 1200 K bobcat model. I believe that these fits do not represent true binaries, but 

instead show that the different model subsets have their own individual strengths and 

weaknesses. For example, the 1200 K S&M model is able to model clouds but has outdated 

methane opacities, while the 1200 K bobcat model has improved methane opacities but no 

clouds. In this example, a composite model made of one S&M model and one bobcat would be 

able to better fit both the methane and clouds simultaneously, and thus have a much lower 

goodness-of-fit statistic than either model alone.  

Because the binary fitting portion of the code was such a small portion of this project, I 

chose to ignore the 𝜂𝜂 value and instead compare the best binary and single fits for the same 

object by eye rather than spending a significant amount of time developing a new statistical 

scheme that would account for the multiple model subsets.  
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5.5  Planned Improvements 

 Future work on the code will focus on developing and implementing a new method to 

statistically compare the single and binary best fits. It is likely that this will require only using a 

single model set with consistent parameter options. I plan to use the upcoming Diamondback 

model grid (another iteration of the Saumon & Marley models) for future versions of the code. 

I also plan to incorporate a function that will perform error analysis and generate 

uncertainties for the best-fit parameter estimates. Because the optimization function used in the 

code is based on a numerical algorithm that starts with a different random guess each run, the 

code does not always find exactly the same best-fit model for the same object. The variation in 

best-fit parameters falls within a reasonable range, but some sort of uncertainty estimate would 

allow for more confident conclusions for future work.  

The error and weight values in Equation 3 could also be re-implemented for future 

iterations of the code.  
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Data 

 Over 300 brown dwarf spectra were fit to models as part of this project. In this chapter, I 

describe where these data were obtained and, when applicable, how they were reduced.   

6.1  Archival Data 

The majority of the brown dwarf spectra used in this project were downloaded from the 

SpeX Prism Library [32] or the BDNYC Database [53]. The data were all obtained with the 

SpeX spectrograph [54] at the NASA Infrared Telescope Facility (IRTF). The wavelength range 

for these spectra was generally 0.8-2.5 μm. The resolution of each spectrum was either 𝜆𝜆/Δ𝜆𝜆 = 

75 or 120. 

The headers of the archival data provided 2MASS J, H, and K magnitudes as well as 

optical and near-infrared spectral types for each object. The SpeX Prism Library documentation 

explains that most of this supplemental data was obtained from the brown dwarf archive 

previously maintained by Gellino & Kirkpatrick [55]. Because this archive is no longer available 

online, the specific references for each magnitude and spectral type cannot be detailed here.  

As described in Chapter 3, the methods for determining optical spectral types differ from 

the methods for determining infrared spectral types. Optical types are generally only used for 

characterizing early L dwarfs, as they still emit sufficient flux in the far optical. These early Ls 
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can also be given infrared types. Cooler brown dwarfs are generally classified only with infrared 

types as they do not emit much light in the far optical. However, a few of the late L dwarfs and 

even some of the T dwarfs included in this sample had optical types listed in their headers. Some 

objects in the sample had both optical and infrared types, while other objects only had one type 

listed. The optical and infrared types for the same object did not always agree, so the analysis 

given in Chapters 7 and 8 differentiates between the two typing systems. Only a small handful of 

the spectral types from the literature included uncertainty estimates, so error bars are not 

included in this work. Future projects could involve creating spectral type uncertainty estimates. 

This archival data was normalized, and thus needed to be flux-calibrated before the 

model-fitting process. The flux calibration routine used by [51] was incorporated into the main 

fitting code (see Appendix 1 for the code and instructions) to simplify this process. The 2MASS 

H and K magnitudes for each object were fed into the code and used along with published 

2MASS filter profiles to calibrate each spectrum before the fitting steps.  

The object name, spectral types, magnitudes, and references for each of the 306 archival 

spectra used in this project are given in Appendix 2.  

6.2 Parallaxes 

 Many of the 306 archival objects also had parallaxes published on the Simbad database 

[56]. Most of these distances were either obtained with GAIA [57,58] or as a part of the Hawaii 

Infrared Parallax Program [59]. These published parallaxes were used to convert the apparent 

2MASS J, H, and K magnitudes into absolute magnitudes. 
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6.3  New Observations with TRIPLESPEC  

 We also performed new observations of 16 L- and T- type brown dwarfs with the 

TRIPLESPEC instrument [60] on the Apache Point Observatory (APO) 3.5-meter telescope. 

TRIPLESPEC is an infrared spectrometer with a wavelength coverage from 0.95-2.46 μm. The 

1.1 arcsecond slit was used, giving a resolution of R = 3500.  A detailed explanation of the 

observations and reduction process is given in Conner Scoresby’s senior thesis [61].  

The object name, spectral types, magnitudes, and references for these 16 brown dwarfs 

are given in Appendix 3.  
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General Trends 

The first focus after performing the spectral fits was to look for overall trends in the data. 

The analysis of these general trends is presented in this chapter, while a closer look at the results 

for each individual spectral type is given in the next chapter.  

7.1  Temperature vs Spectral Type 

 I began by plotting the effective temperature of the best-fit model versus the recorded 

spectral type of each object. Because some objects had both optical and infrared spectral types 

recorded that conflicted with one another, separate plots were created for infrared types and 

optical types. Since optical classification is generally not used for spectral types later than L, 

small black points were used to plot the infrared-type data for later spectral types on the optical 

plot. These plots are given in Figure 20.  

 Both the optical and infrared plots show a loose correlation between spectral type and 

temperature. This correlation has the general shape of a cubic function, with a flat turning point 

centered near spectral type L8. This flattening of the temperature trend fits with the theory: as a 

brown dwarf transitions from type L to type T, silicate clouds clear away from the upper 

atmosphere and allow light from deeper, hotter layers of the atmosphere to shine through. This 
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causes the decreasing trend in observed effective temperature versus spectral type to slow down 

temporarily [62,63,35].  

  

In order to quantify this trend, I fit a cubic function to the data. Plots showing the 

resulting regression curve for both the infrared- and optical-type data sets are given in Figure 19. 

Figure 20: A plot of the temperature of the best-fit model vs recorded spectral type of each object in the 
sample. Colors represent different spectral type groups. As some objects had both optical and infrared 
spectral types recorded and the two types did not always agree, separate plots are given for optical and 
infrared spectral types. Because optical spectral types are usually not assigned to objects later than the L/T 
transition, later objects with infrared types are plotted as small black dots on the right plot. 

Figure 19: Plots of best-fit temperature versus spectral type for the objects in our sample (black), fit with a 
cubic regression function (red). The usefulness of this regression function is limited due to the wide spread of 
temperature possibilities for each spectral type, but at the least provides an estimate for the mean 
temperature of each spectral type. 
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I note that, due to the large spread in possible temperatures for each spectral type, the regression 

functions are not necessarily useful in converting between temperature and spectral type. 

However, the regression function does provide an estimate for the mean temperature of each 

spectral type. Comparison of the regression functions based on infrared and optical types shows 

that the optical types generally correspond to slightly cooler temperatures than the infrared types. 

This could either be a result of the way in which optical and infrared types are assigned, or 

observation bias of the different surveys that focus on either optical or infrared classification. 

7.2  Absolute J Magnitude vs J-K Color 

  

I next plotted absolute 2MASS J magnitude versus 2MASS J-K color. These plots are 

given in Figure 21. The plots show an initial reddening with spectral type for early-to-mid L 

types. This same reddening is described in the literature as being a result of thickening silicate 

clouds. As the spectral type evolves from late-L to early-T, the J-K color quickly swings leftward 

Figure 21: Plots of absolute 2MASS J- magnitude vs 2MASS (J-K) color for the archival objects with 
published parallaxes. Colors indicate spectral type. As some objects had both optical and infrared spectral 
types recorded and the two types did not always agree, separate plots are given for optical and infrared 
spectral types. Because optical spectral types are usually not assigned to objects later than the L/T transition, 
later objects with infrared types are plotted as small black dots on the right plot. 
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and becomes progressively bluer with spectral type. The literature suggests that this shift to bluer 

colors is due to the silicate clouds clearing away, allowing light from deeper, hotter layers of the 

atmosphere to shine through. Methane is also condensing into clouds throughout the T-type 

sequence and removing light from the H- and K-bands. [63,35,64] 

 The infrared and optical-type plots match fairly well, although there is a little more 

scatter in color for the L4-L6.5 optical types than is seen for the infrared types. This scatter 

seems to line up with the trend observed in the temperature-spectral type plots of Figure 20: if 

optical types tend to run 1-2 spectral types ahead of infrared types, this could explain both the 

slightly lower average temperatures for optical types compared to infrared types as well as the 

inclusion of slightly bluer objects in the L4-L6.5 range for optical types. 

 The infrared-type plot shows a definite increase in color scatter for the mid-to-late T-

dwarfs as compared to the rest of the data. There are not enough late T-dwarfs in the sample to 

make a conclusive statement regarding this scatter; it could simply be a result of the dimness of 

T-dwarfs in the near-infrared and resulting uncertainties in the model fits.  

Assuming that this scatter is a real effect, one possible explanation is that the salt and 

sulfide clouds described by Morley et al. [36] have begun to set in for some of the T dwarfs, 

causing their colors to begin to redden again, while this cloud formation has not yet set in for the 

bluest objects. Another contributing factor could be the deepening of the water band around 1.2 

μm, which removes light from the middle of the J-band. If the water clouds described in [44] are 

appearing sooner for some T-dwarfs than for others, this could contribute to the scatter in 

observed colors.  
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7.3 Implications for Best’s Gap 

 The pileup of objects in the L/T transition predicted by Saumon & Marley [38] and 

Kirkpatrick et al [39] occurred in the temperature range 1200-1400 K. The temperature versus 

spectral type plots in Figure 20 and Figure 19 show that objects with spectral types from L3 to 

T4 can be found with these temperatures. Thus, it would indeed make sense to observe a pileup 

of objects in this temperature range: the flattening-out of the temperature trend results in a large 

spectral-type range that could correspond to 1200-1400 K. However, referring to this as a pileup 

“in the L/T transition” does not seem to be very accurate, both because this temperature range 

extends to spectral types on either side of the transition and because the archival L/T transition 

objects could have temperatures as high as 1800 K. 

 Best et al. [40] observed their gap at a J-K color of about 1. I note that Best used the 

MKO photometric system to calculate these colors while this project uses the 2MASS 

photometric system. J-KMKO of 1 does not correspond directly to J-K2MASS of 1, so the plots in 

Figure 21 should be used with caution in the context of Best’s gap. However, if J-KMKO of 1 

corresponds to a J-K2MASS value anywhere from 0.5-1.5, Figure 21 suggests that Best’s observed 

gap would correspond to a much smaller spectral-type range than Saumon & Marley and 

Kirkpatrick’s pileup.  

 In summary, based on the trends observed in this project, I believe that the issue of Best’s 

gap versus a pileup is an issue of comparing apples to oranges. All three papers could be seeing 

the same distribution of objects but comparing their data using non-equivalent terms. 

7.4  Surface Gravity 

 I next analyzed the surface gravity distribution of the archival objects. As explained in 

previous chapters, surface gravity can be used as an indication of age. Objects with lower surface 
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gravities are thought to be young, fluffy objects that have not yet finished contracting. Theory 

suggests that there should be some critical mass below which a fragment of a molecular cloud is 

unable to form a brown dwarf [65]. If this is true, there should be a spectral type/temperature at 

which young, low-gravity objects disappear.  

  

In order to investigate this theory, I created histograms of the surface gravity distribution 

of my sample objects based on spectral type (again separated into optical and infrared types). 

Figure 22 gives these histograms both based on the number of objects in each bin (top two plots) 

Figure 22: Histograms showing the distribution of surface gravity (based on the parameters of the best-fit 
model for each object) and spectral type. The plots on the left use infrared spectral types, while the right plots 
use optical types. The top two plots give the number of objects in each bin, while the bottom two plots give the 
percent of objects in each bin.  
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and the fraction of objects in each bin (bottom two plots). I note that the mid- and late- T types 

are underrepresented in this sample, so the numerical and percentage histograms should be used 

in tandem to account for this. 

 The infrared-type histograms show a peak in the distribution of the lowest surface-gravity 

objects (red bar) at the L4-L6 spectral-type bin. The distribution of these low-gravity objects 

then falls off with spectral type until disappearing in the T7-T9 bin. The optical-type histograms 

show a peak in the distribution of these low-gravity objects in the L7-L9 bin. This is consistent 

with the theory presented in section 7.2: if infrared types tend to lag slightly behind optical types, 

the L4-L6 infrared bin and L7-L9 optical bin could have a significant overlap.  

  

I pause here to note a very possible issue with this analysis: there are significantly fewer 

late T-dwarfs in the sample than there are L- and early T-dwarfs. This is especially true for the 

subset of objects with optical types. Thus, it is entirely possible that the disappearance of lower 

surface gravity objects is a result of the smaller sample size and not a true effect. The sample 

Figure 23: Best-fit surface gravity values have been added to the temperature-spectral type plots given in 
Figure 20. The up-triangle, star, left-triangle, and right-triangle symbols represent different surface gravity 
values, listed in increasing order. 
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would need to be extended to include more late T-dwarfs as well as Y-dwarfs in order to make a 

more conclusive statement.  

 In Figure 23, I add surface gravity estimates to the temperature-spectral type plots shown 

previously. There appears to be a slight tendency for lower surface gravity objects to have cooler 

temperatures than objects of the same spectral type with higher temperatures, especially for the 

infrared types. It is also interesting that the major outliers in the early L-types (dark blue) are best 

fit with moderately high surface gravities and that the major outliers in the early T-types (gold) 

are best fit with the highest surface gravity values.  

  

Figure 24 gives the absolute 2MASS J-magnitude vs 2MASS J-K color plots shown 

previously, but with surface gravity information added. The only apparent trend to this plot is 

that most of the objects in the reddest “elbow” of the curve (colors from 2-2.5) were best fit with 

the lowest surface gravity values. This lines up with theory: younger objects with lower surface 

gravities are expected to be able to keep silicate clouds in their upper atmospheres for longer, 

and thus achieve redder colors than older, higher-gravity objects of the same spectral type [66].  

Figure 24: Best-fit surface gravity values have been added to the absolute 2MASS J-magnitude vs 2MASS J-
K color plots given in Figure 21. The up-triangle, star, left-triangle, and right-triangle symbols represent 
different surface gravity values, listed in increasing order. 
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The results presented in this section suggest that there are a few slight trends to the 

surface gravity distribution that can be explained with theory. At the same time, there is a lot of 

scatter to the distribution and none of the trends presented above were perfect. A similar model-

fitting analysis performed by Stephens et al. [63] suggested that surface gravity is not very well-

constrained by fits to the entire near-infrared spectrum. In the future, I plan to fit narrower 

wavelength regimes that are known to be particularly sensitive to surface gravity (such as the H2 

absorption region in the K-band [64]) to see if clearer gravity trends will emerge. I also plan to 

generate uncertainty estimates for the best-fit gravity values in order to be able to make more 

confident observations. 

7.5  Clouds 

 
 The distribution of cloud sedimentation efficiency (fsed) values for the objects in my 

sample is shown in Figure 25. For both the infrared-type and optical-type plots, it is apparent that 

L-types tend to be best-fit by fsed values of 1, 2, or 3, with 2 being the most common value on 

average. For the infrared-type plot, the early T-type objects show a large scatter in fsed, with 

every value represented. We do not see this same scatter for the early T-type objects in the 

optical type plots, most likely because there are so few objects. Then, for both the infrared and 

optical plots, cloudless models take over for the mid-to-late Ts, with just a few objects matching 

with an fsed of 3 or 4. 

 Recall that smaller values of fsed mean smaller individual cloud particles but thicker, 

hazier clouds [38]. The atmospheres of L dwarfs are believed to have thick, dusty silicate clouds 

[35]: this aligns well with fsed values of 1 or 2. Around the L/T  transition, these silicate clouds 

are believed to fall below the atmosphere while sulfide clouds begin to form [35,36]. This 
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change in upper-atmosphere cloud composition could explain the scatter of fsed values for the 

early T-types.  

 

The fact that nearly all of the mid-to-late T-dwarfs are best-fit by models with fsed = nc 

does not necessarily mean that these objects are truly cloudless: further inspection of the model 

fits shows that many of these objects were best fit by bobcat models (cloudless but with updated 

methane opacities) rather than S&M or Morley models (which can be cloudless or cloudy, but 

have outdated methane opacities). Methane absorption is so strong for the T-dwarfs that it 

Figure 25: Histograms showing the distribution of the cloud sedimentation efficiency parameter fsed (based on 
the parameters of the best-fit model for each object) and spectral type. The plots on the left use infrared 
spectral types, while the right plots use optical types. The top two plots give the number of objects in each bin, 
while the bottom two plots give the percent of objects in each bin. 
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becomes much more important than cloudiness for model fitting. In order to truly see the fsed 

distribution of mid-to-late T-dwarfs, we would need a cloudy grid of models with updated 

methane opacities. No such model set has been published to date. I do note that the few T-dwarfs 

that were not fit by bobcat models generally had high fsed values of 3 or 4, supporting the theory 

that clouds in T-dwarf atmospheres are thinner than the silicate clouds of L-dwarfs [36]. 

 

Figure 26: Histograms showing the distribution of the cloud sedimentation efficiency parameter fsed (based on 
the parameters of the best-fit model for each object) and spectral type. These plots differ from those in Figure 
25 in that only the J and K bands were included in the model fitting. This excluded the spectral regions with 
outdated methane opacities. The plots on the left use infrared spectral types, while the right plots use optical 
types. The top two plots give the number of objects in each bin, while the bottom two plots give the percent of 
objects in each bin. 



 54 

In order to further investigate the effect of methane on the best-fit cloud distribution, I 

performed new fits for all of the objects in my sample with spectral types of L5 or later. I did not 

re-fit the objects with earlier spectral types because methane features should not be present in 

early L-dwarf spectra. For these fits, I used the masking function in the code to limit the fitting to 

the J- and K-bands, excluding the methane feature at 1.6 μm found in the H-band. Figure 26 

gives the resulting cloud distribution of the new fits. This distribution again shows that fsed values 

of 1, 2, or 3 are the most common for the mid-to-late L-types. However, many more T-types fit 

to fsed = 4 rather than fsed = nc now that fitting the methane was no longer required. It appears that 

thin clouds remain important for the late T-types. 

This observed cloud distribution agrees well with the literature. Stephens et al. [2] 

performed a similar analysis of the fsed parameter using only the S&M models. They also found 

that L-dwarfs are best-fit by fsed values of 1 or 2. Their analysis of the T-dwarf fits showed that 

fsed grew quickly through the early T-types (seen in the scatter of fsed for T0-T3 in my data) and 

that late T-dwarfs were generally fit by either fsed = 4 or fsed = nc. 

  

Figure 27: Best-fit fsed values have been added to the temperature-spectral type plots given in Figure 20. The 
various symbols represent different fsed values. 
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In Figure 27, the fsed distribution is shown in context of the temperature-spectral type 

plot. Here we see the same trends observed in Figure 25: fsed generally increases with spectral 

type until fsed = nc quickly takes over around T4. There does appear to be a slight trend where 

cloudier atmospheres have lower temperatures for the same spectral type—suggesting that the 

clouds prevent photons from escaping from deeper, hotter levels of the atmosphere—although 

this is not a perfect trend by any means. 

 Figure 28 adds fsed information to the 2MASS J-magnitude vs 2MASS J-K color plot. 

This figure supports the theory that brown dwarfs with redder colors generally have hazier 

atmospheres (fsed = 1 or 2) [35]. There is a definite increase in fsed moving from right-to-left (red-

to-blue), up until the clouds disappear for the mid Ts. 

 
 
 
 
 
 
 
 
 
 

Figure 28: Best-fit fsed values have been added to the absolute 2MASS J-magnitude vs 2MASS J-K color plots 
given in Figure 21. The various symbols represent different fsed values. 
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Results for Individual Spectral Types 

 Here I present trends seen in the model fits for each individual spectral type. I continue to 

distinguish between optical and infrared spectral types. When half-types are given, I round down 

for grouping purposes. For example, objects of type L1.5 are grouped with the L1s. Specific 

brown dwarfs are referred to by the first four digits of their 2MASS designations (which also 

correspond to the first four digits of their Right Ascension (RA) coordinates). 

8.1  L Types 

8.1.1 L0-L3 
 Fit results for the archival objects of infrared or optical type L0 are given in Figure 29 

and Figure 30, respectively. The J-band is generally well-fit for all of these objects. The models 

consistently are slightly brighter than the data in the H-band around 1.6 μm and dimmer than the 

data around 1.75 μm, although the discrepancy is slight. Almost without exception, the models 

underfit the data in the K-band around 2.25 μm.  

J0141, J0406, and J1711 all have colder best-fit temperatures than would be typically 

expected for L0 objects. These objects have been previously flagged in the literature as 

“peculiar,” “gamma,” “lg,” or “;”. All three objects also have more triangular H-bands than the 

other L0s. They were all fit with surface gravities less than 1000 cm/s2, while most of the other 

L0s had gravity fits of 1000 or 3000 cm/s2. The low gravities of these objects appear to result in 
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some physical cloud effect that gives the H-band the triangular shape. This agrees with 

statements made in [90] that a triangular H-band profile is an indication of young age. 

 The fits for the L1 types, given in Figure 31 and Figure 32, look very similar to the L0 

types. The K-band is still generally underfit around 2.25 μm. The models often have a triangular 

shape for the H-band (similar to the peculiar L0s) that does not match the more rounded shape of 

the H-band for the data. The model H-bands generally have higher flux peaks than the data H-

bands. 

 The models are still generally underfitting the K-band. However, J1756 and J1440 are 

both able to match the K-band well (at the expense of the H-band) by fitting to models with 

temperatures that are noticeably hotter than the other L1s. 

 The L2 fits in Figure 33 and Figure 34 show that the H-band fits look about the same, 

although the peaks are not quite as overfit as they were for the L1s. Similar to the two hot L1s, 

J1431, J1434, and J0921 were able to fit the K-band well but have model temperatures that are 

abnormally high. 

 The L3 spectral type (Figure 35 and Figure 36) seems to be a turning point: both the H- 

and K-band fits are starting to look better, although there are still exceptions. 

8.1.2 L4-L6 
The L4 fits are shown in Figure 37 and Figure 38. I noted in the last section that L3 is a 

turning point: spectral types L4-L6 on average have better fits to the K-band than were seen for 

spectral types L0-L3, although there are exceptions to this. The shape of the H-band shows quite 

a bit of variation from one object to the next even within the same spectral type. For example, 

some L4s have very triangular H-bands (like Gliese 417BC), while other L4s have a more 
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pronounced absorption feature around 1.6 μm that causes the top of the H-band to fall off 

diagonally to the left. Even more unique is the double-spiked H-band peak seen in J0805. 

The L5 (Figure 39 and Figure 40) and L6 (Figure 41 and Figure 42) fits look very similar 

to the L4s. The K-band is still fitting well, but the models are struggling to fit the varying H-band 

shapes seen in the data. 

8.1.3 L7-L9 
Figure 43 and Figure 44 show that the L7 fits generally do very well. There is still 

variation in the H-band, although the models are usually able to match the general shape. The 

three worst fits are to the three objects that have H-bands shaped like plateaus. These objects are 

J2252, J0423, and J0518. All three of these objects also show a slight absorption dip in the K-

band around 2.2 μm that is not as pronounced in the other L7s. 

The L8 objects (Figure 45 and Figure 46) look very similar to the L7s. Three more H-

band plateaus are seen in this spectral type: J0032, J1207, and Gl337CD. These three objects also 

show the deeper absorption at 2.2 μm seen for the three L7s. 

There were no objects with optical type L9. The infrared L9s are shown in Figure 47. The 

fits for this spectral type are generally poorer than for the mid L-types, both in the H- and K-

bands. The object J0328 shows a plateau, while the H-band of J0805 (mentioned previously for 

its optical type L4) seems to be a cross between a plateau and the more common diagonal slant. 

This odd shape could be explained if J0805 were an unresolved binary system containing both a 

plateaued L-dwarf and a more typical L-dwarf. 
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Figure 29: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L0 and L0.5. The object names and best-fit parameters are given in the plot keys. 

Figure 30: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L0 and L0.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 31: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L1 and L1.5. The object names and best-fit parameters are given in the plot keys.  
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Figure 32: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L1 and L1.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 33: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L2 and L2.5. The object names and best-fit parameters are given in the plot keys. 

Figure 34: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L2 and L2.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 35: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L3 and L3.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 36: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L3 and L3.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 36: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L3 and L3.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 37: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L4 and L4.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 38: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L4 and L4.5. The object names and best-fit parameters are given in the plot keys. 

Figure 39: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L5 and L5.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 39: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L5 and L5.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 40: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L5 and L5.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 41: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L6 and L6.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 42: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L6 and L6.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 43: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L7 and L7.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 44: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L7 and L7.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 45: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L8 and L8.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 46: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type L8 and L8.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 47: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type L9 and L9.5. The object names and best-fit parameters are given in the plot keys. 
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8.2  T Types 

8.2.1 T0-T3 
 The plateaued H-bands become even more common for the T0 objects (Figure 48 and 

Figure 49). The absorption dip at 2.2 μm also is more prevalent for the T0s. Both features are 

likely due to the appearance of methane. J1511 has a particularly interesting H-band: the top of 

the band dips in the middle where earlier spectral types had a peak. 

 The same double-peaked H-band appears in about one third of the T1 objects (Figure 50), 

and the absorption at 2.2 μm continues to deepen. However, J0858 and J0518 both show double 

peaks like the other early Ts but have K-bands that look more like L-types since neither object 

shows much absorption at 2.2 μm. These two objects could be candidates for binarity: if they 

were each unresolved binary systems containing one L- and one T-type object, this could explain 

how they can simultaneously show T-like H-bands and L-like K-bands. 

 The T2 fits are given in Figure 51 and Figure 52. Methane absorption has removed a 

significant amount of flux from the H-band, causing the J- and H-bands to have nearly the same 

height. The methane absorption feature at 1.6 μm has become strong enough that the H-band 

now slopes diagonally to the right. Many of the fits for this spectral type are poor, likely due to 

the many atmospheric changes taking place in the L/T transition. 

 Spectral type T3 (Figure 53) is another turning point. Half of the objects fit to S&M 

models, while half instead fit to bobcat models. Methane appears to have finally become strong 

enough to be more important to the fits than clouds. The objects that matched with bobcat 

models (J1206, J1209, J1750, and J1214) are fit beautifully, while the S&M fits are very poor for 

the J- and H-bands. 
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8.2.2 T4-T6 
 The T4-type objects are the best-fit objects in the entire sample (Figure 54 and Figure 

55). Nearly all of these objects matched with cloudless bobcat models and are fit almost 

perfectly. If sulfide clouds have already begun to condense in T4-dwarfs, they do not yet appear 

to have much of an effect on the spectra. The absorption feature in the J-band around 1.15 μm 

has begun to deepen noticeably with temperature. 

 Enough light has been removed from the H-band by methane absorption that it has fallen 

below the peak height of the J-band for the T5-type objects (Figure 56 and Figure 57). 

Absorption at 1.15 μm continues to deepen. 

 The T6-type objects in Figure 58 and Figure 59 are fit poorly at 1.6 μm. The models 

predict a spike here that overfits the data. This is likely another methane opacity value that needs 

to be updated. The J- and K-bands are still generally fit very well. The models are well-able to 

replicate the extreme suppression of the K-band and the near-complete absorption at 1.15 μm. 

8.2.3 T7-T8 
 The mismatch between the data and the models at 1.6 μm is even more apparent for the 

T7-types (Figure 60 and Figure 61) and the T8-types (Figure 63 and Figure 62). The general 

shapes of the J- and K- bands are well fit for these types, although the models underfit the peaks 

of these bands for almost every object. Comparison of the fits of these objects to the plots from 

Morley et al. [36] shown in Figure 16 suggests that the models could be suppressed due to 

sulfide clouds: perhaps the objects that are underfit have thinner clouds than Morley predicts. 
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Figure 48: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T0 and T0.5. The object names and best-fit parameters are given in the plot keys. 

Figure 49: This was the only archival object assigned an optical type of T0. The data is given in blue, while 
the best-fit model is shown in red. 
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Figure 50: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T1 and T1.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 51: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T2 and T2.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 52: This was the only archival object assigned an optical type of T2. The data is given in blue, while 
the best-fit model is shown in red. 

Figure 53: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T3 and T3.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 54: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T4 and T4.5. The object names and best-fit parameters are given in the plot keys. 

Figure 55: This was the only archival object assigned an optical type of T4. The data is given in blue, while 
the best-fit model is shown in red. 
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Figure 56: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T5 and T5.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 56: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T5 and T5.5. The object names and best-fit parameters are given in the plot keys. 

Figure 57: This was the only archival object assigned an optical type of T5. The data is given in blue, while 
the best-fit model is shown in red. 



 86 

 

Figure 58: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T6 and T6.5. The object names and best-fit parameters are given in the plot keys. 

Figure 59: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type T6 and T6.5. The object names and best-fit parameters are given in the plot keys. 
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Figure 60: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T7 and T7.5. The object names and best-fit parameters are given in the plot keys. 

Figure 61: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type T7 and T7.5. The object names and best-fit parameters are given in the plot keys. 
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8.3 TRIPLESPEC Data 

 The 16 objects observed with TRIPLESPEC were chosen because they had J-K colors 

that placed them in Best’s gap. Conner Scoresby presents a detailed analysis of the spectra of all 

16 objects in his senior thesis [61]. I refer readers to his paper for an in-depth literature review 

and thorough discussion of the real model (RM) single and binary fitting results for each target. I 

acknowledge that Conner was the Primary Investigator (PI) on the TRIPLESCPEC proposals, 

selected the targets, and performed all of the data reduction. I will mainly highlight the 

Figure 63: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of infrared-type T8 and T8.5. The object names and best-fit parameters are given in the plot keys. 

Figure 62: Best-fit models (red) are plotted over the archival spectral data (blue) for all of the objects in my 
sample of optical-type T8. The object names and best-fit parameters are given in the plot keys. 
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theoretical model (SM) fit results for the 16 objects here, focusing on features that are more 

relevant to this project, and leave the rest of the analysis to Conner. 

Figure 64: Model-fitting results for the L4-L5 type objects observed with TRIPLESPEC. Black curves 
correspond to the data, while orange curves correspond to either the theoretical model (SM) fits or the real 
model (RM) fits. SM fits are on the left, and RM fits are on the right. The legend of each plot gives either the 
parameters of the best-fit SM model or the object name of the RM model. The wavelength regimes in-between 
the J, H, and K bands have been masked over due to atmospheric absorption. 
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8.3.1 L4-L5 
 
 The fits of the four L4 and L5 TRIPLESPEC objects are shown in Figure 64. All four 

objects are underfit by the theoretical models in the K-band to varying degrees, like many of the 

L-type archival objects. The SM models struggle to fit the H-band peak for all of the objects 

except for J1539. The H-band peaks are reminiscent of the plateau features observed in some of 

the late L-types or double-peaks seen in a few of the early T-types. These H-band features are 

rare in the archival data for spectral types L4 and L5, however, suggesting that perhaps the 

spectral typing taken from the literature for the TRIPLESPEC objects is off by a type or two. 

Unlike most of the archival objects, all four TRIPLESPEC objects show a truncation in the J-

band peak that is not represented in any of the SM model fits. 

J0805 is interesting- this object also had an archival SpeX spectrum that was discussed in 

the last section of this paper. I previously flagged the archival fit for this object because of its 

double-peaked H band. Both the archival spectrum and new TRIPLESPEC spectrum show this 

double-peak as well as the J-band truncation, showing that these are real features and not simply 

reduction errors. Further inspection of the archival fits that were flagged for double-peaks or 

plateaued H-bands reveals that others in this group demonstrate similar J-band truncations. For 

example, the RM fits for J0805 and J0539 both matched to archival objects showing truncated J-

bands (J2252 and J0423).  

There appears to be a link between the truncated J-bands and plateaued or double-peaked 

H-bands. The archival fits of the previous section show that these features are fairly rare, but pop 

up often enough in the mid-to-late Ts and early Ls that further investigation is warranted. One 

possible explanation is that these objects are unresolved binary systems, and that the poor fits are 

not necessarily a reflection upon the theoretical models. Another possibility is that J- and H-band 
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methane absorption is appearing earlier than expected for some objects, or that clouds of another 

previously-unexplored molecule are found in these objects but not in others. Either of these 

scenarios would require adjustment to the theoretical models.  

Figure 65: Model-fitting results for the L6-L7 type objects observed with TRIPLESPEC. Black curves 
correspond to the data, while orange curves correspond to either the theoretical model (SM) fits or the real 
model (RM) fits. SM fits are on the left, and RM fits are on the right. The legend of each plot gives either the 
parameters of the best-fit SM model or the object name of the RM model. The wavelength regimes in-between 
the J, H, and K bands have been masked over due to atmospheric absorption. 
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8.3.2 L6-L7 
 
 The fits for the four TRIPLESPEC objects in this spectral range are given in Figure 65. 

The SM model fits for these objects are generally poor, aligning with the trend observed in the 

archival data that SM fits on average are the worst for objects of L/T transition types.  

 The SM fit for J0908 is exceptionally poor: the model is really only able to fit the J-band. 

The H- and K-bands are both noticeably underfit. However, the RM fit for J0908 is spot-on, 

showing that there is at least one other archival object with similar physical characteristics. The 

simultaneous underfitting of both the H- and K-bands could be an indication that the J-band of 

J0908 is abnormally suppressed compared to the other two bands. Further modeling with the 

PICASO code (discussed in the next chapter) could reveal the cause of this suppression. 

 J1515 has a much better SM fit than J0908, although both the J- and H-bands are slightly 

underfit. The J-band for this object shows the same truncation observed for all four of the 

TRIPLESPEC objects of types L4-L5. The SM model fit completely misses this feature. 

 The SM fit for J1658 is generally good, although the K-band is underfit like was 

observed for many of the archival objects of this spectral type. This object has a fairly typical 

late L-type spectrum. 

 The object J2126 shows both the double-peaked H-band and the truncated J-band seen in 

J0805. Both objects also have an overluminous K-band compared to the model fit.  

8.3.3 L8-T0 
 
 The fits for these objects are given in Figure 66. The SM fits for J0031 and J1809 are 

nearly perfect: the models are able to replicate the K-bands of these objects particularly well. 

However, the K-band fits for J0920 and J1851 are some of the worst so far. The models under-

predict methane absorption and over-predict CO absorption. This could possibly be explained by 
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the combined effects of the spectral types of these objects being slightly too early and vertical 

mixing not being sufficiently accounted for.  

 

Figure 66: Model-fitting results for the L8-T0 type objects observed with TRIPLESPEC. Black curves 
correspond to the data, while orange curves correspond to either the theoretical model (SM) fits or the real 
model (RM) fits. SM fits are on the left, and RM fits are on the right. The legend of each plot gives either the 
parameters of the best-fit SM model or the object name of the RM model. The wavelength regimes in-
between the J, H, and K bands have been masked over due to atmospheric absorption. 
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Figure 67: Model-fitting results for the T1-T2 type objects observed with TRIPLESPEC. Black curves 
correspond to the data, while orange curves correspond to either the theoretical model (SM) fits or the real 
model (RM) fits. SM fits are on the left, and RM fits are on the right. The legend of each plot gives either the 
parameters of the best-fit SM model or the object name of the RM model. The wavelength regimes in-between 
the J, H, and K bands have been masked over due to atmospheric absorption. 
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8.3.4 T1-T2 

 The fits for the TRIPLESPEC objects with spectral types from T1-T2 are given in Figure 

67. The spectra and fits for all four of these objects are interestingly similar. All four objects 

show a deepening of the water absorption feature around 1.15 μm that the archival data showed 

was typical for mid T-types. All four objects show the beginning of methane absorption at 1.6 

μm that aligns with the archival early T-types. The shapes of all four K-bands are similar to the 

K-bands of some of the archival early T-types. However, all four objects were best fit by SM 

models with temperatures of either 1900 or 2000 K: much too hot for a T-dwarf. These fits 

match the relative heights of the J- and H-bands (although are missing the deepened water 

absorption and onset of methane absorption), but completely fail to fit the shape of the K-band. 

 A few archival early T-type objects had overly hot SM model fits with similar issues, 

such as J0247 and J1435. While all of these objects have very obvious T-dwarf methane and 

water absorption, there is something about the relative peak heights of the different bands or the 

relative CO/methane absorption depths that causes the fitting algorithm to select models with 

temperatures typical of L-dwarfs. There is a clear model-data discrepancy here.  

8.4 Binary Fits 

 Many of the “odd” objects discussed in the previous three sections can be grouped into 

families. For example, multiple L-dwarfs had similar H-band plateaus, while other L-dwarfs had 

H-band double peaks as well as truncated J-bands. One “odd” family for the T-dwarfs included 

the objects with too-hot model fits. A proposed explanation for the oddities of these objects was 

that they could be unresolved binary systems containing two brown dwarfs of different spectral 
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types. Rather than present binary fits for all 322 brown dwarfs in the sample, I chose a few 

archetypal objects from each “odd” family and use these to investigate the hypothesis of binarity.  

8.4.1 Double-Peak Family 

  

The archival spectra for J0858, J0518, and J0805 all showed double-peaked H-bands to 

varying degrees. Their single and binary fits are compared in Figure 68. Each of the three objects 

matched with composite spectra containing one warmer object (with a temperature that could 

Figure 68: Plots of the single (left) and binary (right) best-fit models of three archival brown dwarfs whose 
spectra showed a double peak in the H-band. The double peak is most prominent for J0518, which is also the 
object that shows the most obvious improvement between the single and binary fits. 
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correspond to an object of mid L- to early T-type according to Figure 19) and one cooler object 

(with a temperature consistent with a late T-type or early Y-type). All three objects were fit at 

least slightly better with the binary model than with the single model, but the improvements for 

J0858 and J0805 were too small for a conclusive statement regarding possible binarity. However, 

J0518 is almost certainly an unresolved binary object. This was also the object with the most 

pronounced H-band double peak. This suggests that strong double peaks are likely explained by 

binarity, but faint double peaks need to be explored further. 

8.4.2 Plateau Family 
 

  

Two objects of type L7 were chosen to represent the family of objects with H-band 

plateaus and early methane absorption at 2.2 μm. The fits of these objects—J2253 and J0423—

are given in Figure 69.  

Figure 69: Plots of the single (left) and binary (right) best-fit models of two archival brown dwarfs whose 
spectra showed a plateau in the H-band and slight methane absorption at 2.2 μm.  
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The binary fit for J0423 slightly improves the fits of all three bands, but upon further 

inspection the binary is composed of two models of the same temperature (1400K) just with 

different values of gravity, clouds, and mixing. I believe this object is not a true binary, but 

simply did not match well with any of the model grid gravity/clouds/mixing combinations and 

thus tried to invent its own. This object would be an excellent candidate for PICASO fitting 

(described in the next chapter).  

The binary fit for J2252 is slightly better for the J- and H-bands, but worse for the K-

band. Although the composite model for this object contains models of two different 

temperatures, I still believe it to be unlikely that this object is an unresolved binary.  

Both of these late L-dwarfs fall at the beginning of the L/T transition where the archival 

data fits generally begin to worsen. I conclude that a plateau is not necessarily an indicator of 

binarity, but is more likely an indication of a true physical process taking place in transition 

objects that is not well-fit by current model grids.  

Figure 70: Plots of the single (left) and binary (right) best-fit models of two archival early T-type brown 
dwarfs whose single fits were too hot to belong to T-dwarfs.  
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8.4.3 Overly-Hot Early Ts 

 This family is composed of early T-dwarfs that showed very poor model fits and were 

best-fit by models with temperatures too high to fit in the spectral type. I chose J0247 and J1435 

as the test objects from this group. Their fits are given in Figure 70. I note that the single fits 

shown in this figure are slightly different from the single fits given in the last chapter. This is a 

result of the numerical optimization starting from a different guess for this fitting run. For objects 

that are poorly fit by the data, the optimization function is more likely to find a slightly different 

answer each time.  

These objects are fit significantly better by composite models than single models. Both of 

their composite models have components with temperatures of 1000 and 1300 K, corresponding 

to one cool L/T transition object and one mid T-dwarf (according to Figure 19). 

 I conclude that both of these objects are likely unresolved binary pairs. Other objects in 

the sample that are overluminous (shown by fits to models with temperatures too hot to belong to 

their measured spectral type) are thus likely candidates for binarity. 

8.4.4 Binary Fits to Only J- and K- Bands 

 All three “odd-object” families investigated in this section have spectral types that are 

late enough for at least some methane absorption to be present in their spectra. As discussed in 

previous sections, many of the models used in this project had outdated H-band methane 

opacities. Thus, it seemed possible that the binary fits could be influenced by a single model’s 

inability to fit the H-band methane absorption.  In order to investigate this possibility further, I 

performed new binary fits on each of the same 7 archetypal objects, this time excluding the H-

band from the fit.  
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 The new fits for the double-peak family are presented in Figure 71. These fits are very 

similar to those from Figure 68: once again, all three objects fit to a composite spectrum made of 

one object of mid L- to early T-type and one cooler T-type object. The binary fits for J0858 and 

J0805 still show only slight improvement over the single fits, but J0518 again seems to be a 

likely binary candidate. Methane absorption in the H-band does not appear to be the reason for 

the odd spectral shapes of this family. 

Figure 71: Plots of the single (left) and binary (right) best-fit models of three archival brown dwarfs whose 
spectra showed a double peak in the H-band. The H-band was masked over for these fits to avoid regions 
with possible outdated methane opacity values. The fits presented here are very similar to those presented in 
Figure 68, suggesting that methane is not the cause of any apparent binarity. 
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 The new fits for the family with plateaued H-bands are given in Figure 72. Once again, 

the difference between the single and binary fits is too slight to provide convincing evidence that 

these objects could be unresolved binaries.  

  

Finally, new fits for the overly-hot early T-dwarfs are given in Figure 73. When the H-

band is excluded from the fitting, the new single fits find temperatures that are cool enough to be 

T-types. However, the best-fit single models significantly overfit the H-band. Interestingly, the 

binary fits are better-able to match the H-band for these objects even when the H-band is masked 

over. The J- and K-band shapes are sufficient to identify very similar binary components to those 

found when the entire spectrum is fit. Methane once again does not seem to be the cause of 

apparent binarity for this family. 

 

Figure 72: Plots of the single (left) and binary (right) best-fit models of two archival brown dwarfs whose 
spectra showed a plateau in the H-band and slight methane absorption at 2.2 μm. The H-band was masked 
over for these fits to avoid regions with possible outdated methane opacity values. 
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Figure 73: Plots of the single (left) and binary (right) best-fit models of two archival early T-type brown 
dwarfs whose original single fits were too hot to belong to T-dwarfs.  The H-band was masked over for these 
fits to avoid regions with possible outdated methane opacity values.  
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Conclusions 

 This project has demonstrated that there is much that can be discovered by comparing 

real brown dwarf data to theoretical models. Here, I summarize the main results of this project 

and outline plans for future work. 

9.1 Summary of General Trends 

 When the best-fit parameters of the entire sample were plotted against each other, the 

following general trends were observed:  

1. The correlation between temperature and spectral type was shown to loosely follow 

the shape of a cubic function, although both the scatter of temperatures for each 

spectral type and the flat region of temperatures make it impossible to assign an exact 

spectral type to an object based solely on its temperature. 

2. Analysis of the temperature and color distribution of the sample suggested that the 

debate of Best’s gap is a simple example of comparing apples to oranges: different 

authors are defining the L/T transition using terms that are not equivalent. The gap 

and the pileup could actually exist simultaneously. 

3. The absolute J magnitude versus J-K color plot showed that objects in the elbow 

generally have low surface gravity values. The gravity distribution histograms also 
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suggested that the number of low gravity objects might fall off after the early T-types, 

although this could have been caused by the limited number of late T-type objects in 

the sample.  

4. Comparison of the general trends of temperature, gravity, and clouds for objects with 

optical spectral types versus infrared spectral types suggested that optical spectral 

types tend to run 1-2 types ahead of infrared types. Thus, optical and infrared types 

should not be used interchangeably, and papers should be careful to explain which 

typing system is being used. 

5. The distribution of the cloudiness parameter showed that L-dwarfs generally have 

thicker, hazier clouds than early T-dwarfs. The haziness of the clouds increases until 

the L/T transition. After the L/T transition, the cloud parameter was difficult to 

analyze because of the competition between cloudless models with updated methane 

and the older, cloudy models. However, when fits were limited to the J- and K-bands, 

T-dwarfs fit either to thin clouds or cloudless models. 

9.2 Summary of Type-Specific Trends 

 Closer inspection of the individual spectra and model fits for each object revealed the 

following spectral-type-specific trends: 

1. The K-band in L-type objects is underfit by the models more often than not.  

2. The H-band peaks in L-type objects vary noticeably in shape even within the same 

spectral type. Notable shapes include triangular peaks, plateaued peaks, and double 

peaks. The models struggle to fit the wide range of H-band peaks. The double peak 

appears to be an indicator of binarity, but the plateaued shape is more likely caused 

by real physical attributes of the brown dwarf atmosphere.  
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3. Model fits are poor for objects around the L/T transition. The parameter combinations 

available for current model grids do not appear to have fine enough resolution to fit 

the many different changes taking place in the atmospheres of L/T transition objects. 

There could also be physical changes that are not included in the models at all.  

4. Objects that are overluminous/have best-fit models with temperatures too high for the 

spectral type are likely candidates for binarity. 

5. Mid T-type models show a flux spike at 1.6 μm that is not present in the data, even 

when bobcat models are included as fit options. This is likely another methane 

opacity value that needs to be updated, although it is possible that there is another 

cloud feature in the mid T-types that is missing from the models. 

6. Late T-types are generally underfit in all three bands. This could be a result of model 

codes overpredicting the cloudiness of these objects. 

9.3 Future Work 

 The sample of archival objects and new observations analyzed in this project included a 

limited number of late T-type objects and no Y-type objects. An important next step is to expand 

the sample to include more T- and Y-type objects. A handful of proposals were accepted for 

JWST Cycle 1 that involved observations of cool brown dwarfs. These data will be made 

publicly available this summer and can then be used to expand this project to cooler 

temperatures. Hopefully the inclusion of later spectral types will reveal whether there is a true 

low-gravity cutoff corresponding to a fragmentation limit, as discussed in Chapter 7. 

 The results of this project suggested that the surface gravity parameter is not well-

constrained by model fits to the entire near-infrared spectrum. Future work could involve fitting 
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specific wavelength regimes that have been shown by the literature to be particularly sensitive to 

gravity. This could result in clearer trends in the gravity/spectral type distribution. 

 Binary fits were performed for many of the archival objects, but time constraints and the 

lack of a statistical measure of binarity meant that only a few of these binary fits were analyzed. 

In the future, I plan to improve the statistical aspect of the modeling code so that analyzing the 

binary fits of a large sample will be more feasible. 

 We have heard promises from the modeling teams that a new set of atmospheric models 

is coming that will contain updated methane values as well as clouds. Once these models are 

released, I plan to perform new model fits to this same sample to see if any of the model-data 

discrepancies are resolved and if there are any changes to the general trends. 

 Another important future step, as discussed in Chapter 5, will be adding uncertainty 

estimates to the fitting code. Running the fits over and over has been shown to produce slightly 

different results due to the numerical optimization algorithm starting from a different guess, so 

error analysis will be an important addition to future work. This will allow for more concrete 

conclusions, especially regarding some of the general trends discussed in Chapter 7.  

 The main future step is to use the open-source Planetary Intensity Code for Atmospheric 

Scattering (PICASO) to dig deeper into the common model-data discrepancies (such as the 

underfit K-band or plateaued H-band in L-type objects) observed as a part of this project. 

PICASO takes a starting guess for the best-fit parameters of an object and then allows users to 

iteratively refine the parameter values beyond the capabilities of a pre-existing model grid. With 

PICASO, users can also add, remove, or change the abundance of different cloud species in order 

to discover cloud molecules that might be missing from current models. Every time a parameter 

or cloud abundance value is altered, PICASO uses a radiative transfer code to generate a new 
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model in real time. PICASO has been mainly used for exoplanet atmospheres to date: this would 

be the first time that it was used to fit a large sample of brown dwarfs. This is a time-consuming, 

user-intensive process, but promises to provide deeper insight into why the models are failing to 

recreate certain spectral features seen in the data. [67,68] 

9.4 Conclusion 

The purpose of this project was to fit a large sample of archival brown dwarf spectra with 

theoretical models in search of general trends and areas where current models could be 

improved. Many trends and model/data discrepancies have been described in this paper. This and 

future work will provide important data needed to improve modeling techniques and refine 

theories of brown dwarf evolution. 

As brown dwarf models are improved, not only do we gain insight into the physical 

processes taking place in brown dwarf atmospheres as they cool, but the same modeling 

techniques can be applied to exoplanetary atmospheres as well. The era of the James Webb 

Space Telescope promises to bring an explosion of both brown dwarf and exoplanetary 

observation, so now is the time to update models and prepare to analyze the coming influx of 

data.  

Our understanding of the complex cloud chemistry of substellar atmospheres is evolving 

continuously, and with it grows our understanding of the universe as a whole. Much work 

remains to be done in brown dwarf atmospheric research: there are many questions that need 

answering, but the tools to seek these answers are finally available. Now is a thrilling time to be 

an infrared astronomer. 
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Appendix 1 
Instructions for Running the Code 

Introduction to the Code: 
 
The purpose of this code is to match brown dwarf spectral data to best-fit brown dwarf 

atmospheric models. 
The original intended application was to determine the likelihood that an object was an 

unresolved binary pair rather than a single object, and this feature remains in the code. However, 
fitting spectral data to single models (as opposed to the composite models used to model binary 
pairs) has also come to be an important application. Fitting data to single models will help us to 
establish a better understanding of the connection between spectral type and temperature and 
more easily note spectral features that might be missing from our models. There are four 
different types of fits that can be performed using this code: 

1.SMSF, which stands for Saumon & Marley Single Fit. 
2.SMBF, which stands for Saumon & Marley Binary Fit 
3.RMSF, which stands for Real Model Single Fit. 
4.RMBF, which stands for Real Model Binary Fit. 
The Saumon & Marley fits use a compilation of brown dwarf atmospheric models created 

by Saumon & Marley and released in a few different papers. The real model fits use a collection 
of 166 real brown dwarf spectra taken from the SpeX Prism Archive. These real models have 
been anti-normalized and distance-corrected with their GAIA parallaxes. 

The single fits compare your target object to each model and determine the best match 
using an adapted chi-squared algorithm presented in Cushing et al. [47]. 

The binary fits compare your target object to composite models using the same chi-
squared algorithm. The composite models are generated by taking every possible combination of 
two models and adding the flux of each pair together at each wavelength. These composite 
models mimic the spectra of spectral binary pairs. 

If you opt to perform both a single and a binary fit for the same model type, the code will 
perform a statistical analysis after fitting and give you a percent likelihood that your object is a 
binary pair rather than a single object. Note that the code will not perform the statistical analysis 
if you only run one type of fit or run the single and binary fit with separate commands. 

Note that we opted for ease of use rather than speed, and therefore wrote this code in 
Python rather than C++. While the code can take anywhere from a few seconds to 2.5 hours 
(depending on the fits performed and the set of models used) to run on a single object, it has been 
designed so that even an individual with no coding experience can call the code with a single 
command and then walk away until the code has finished. 
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If you notice issues, bugs, or other areas for improvement, please contact Savanah Turner 
at savanahkayturner@gmail.com. 
 
Downloading the Code: 
 

All of the files needed to run the code can be found at this GitHub address: 
https://github.com/savanahkay/binary-fit.git. 

The Python code files can also be found in the google drive folder Stephen- 
sResearchGroup/BinaryFitting/Code. This folder is only available to members of Dr. Stephen’s 
research group and will not contain the model folders due to their large size, so for the initial 
download it would be best to pull everything from git. If changes are made after your download, 
you could then grab the most recent code files from the google drive folder without having to 
deal with git. 

If using git, please download the code and then move the code to a separate folder so that 
you do not accidentally push changes to GitHub and overwrite the code. 

Running the code requires Python 3 and the following packages: numpy, scipy, tqdm, os, 
pandas, itertools, and matplotlib. Ensure that the necessary packages have been installed on your 
machine. 

 
Preparing to Run the Code: 
 
In order to run the code, you need to do the following things: 
 

• Generate a text file containing the spectrum of each target. Any non-data lines can be 
left in the file, but need to be commented out with a ”#”. The data in the text file 
should be in the order of wavelength, flux, then errors. Name the text file 
“0000Raw.txt”, replacing the zeros with the first four numbers in the target name. 
Any lines containing flux values recorded as ”nan” should be either commented out 
or deleted. 

• Place all of the target text files together in a folder in the directory containing the 
code. 

• Update the text file called “objects.txt” to include the 4 digit number codes (the same 
used to name the data text files) and 2MASS H- and K-magnitudes of each target. 
Note that you only need the magnitudes if your data is normalized and you want the 
code to perform anti-normalization. If your data is not normalized, you can just fill in 
zeroes for the magnitudes. 

• Update the “params.txt” file to include the units of your wavelength and flux values. 
If your data is not given in any of the unit options given in the “params.txt” file, the 
code does not yet have functionality to accept these units. You can send an email to 
savanahkayturner@gmail.com requesting functionality be added for the desired units. 
Note that while the code can be run on multiple objects at once, because there is only 
one params file you can only batch-run objects with the same units. 

• Update the “params.txt” file to indicate whether or not your data is already flux-
normalized. 

• Update the “params.txt” file to indicate which type(s) of fit you wish to perform. 

mailto:savanahkayturner@gmail.com
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• Update the “params.txt” file to indicate the folder names containing the FilterData, 
filters used to unnormalize the data, target object data files, Saumon & Marley model 
files, and real data model files. 

• Update the “params.txt” file to indicate whether or not your target data contains error 
values. 

• Update the “params.txt” file to indicate whether or not you wish all plots to be made 
on a log(wavelength) scale. (This feature is useful for data spanning both the near- 
and mid- infrared). 

• Update the “params.txt” file to indicate any wavelength spans you wish to omit from 
the fitting routine, such as the usual gaps from 1.35 to 1.5 microns, 1.8 to 2.0 
microns, and 2.5 to 5 microns. At this point the code will crash if you include gaps 
that extend beyond the wavelength range of your target data, so be sure to check this. 

 
A note regarding choice of model folder: I have created sets of models that have been 

smoothed and regridded to match the wavelength range and resolution of various data sets. The 
git repository contains a folder called “modelFolders” that holds each model set. Before running 
the code, you will need to choose which model set you want to use and copy the folder 
containing this model set from “modelFolders” and paste it into the same directory as the code 
files. 

Current model subsets are the Saumon & Marley 2008 models, models from Morley et al. 
(2012), models from Morley et al. (2014), the Sonora Bobcat models, and a set called 
“mixedModels” that includes the models from all of these subsets. 

Within the folder for each model subset are folders containing the actual models, labeled 
for the data sets they have been regridded to match. For example, if I wish to perform fits to data 
obtained from the SpeX spectrograph and want to use the mixed model subset, I would need to 
use the folder of models called “mixedModelsForSpex”. After copying the desired folder of 
models into the same directory as the code, be sure to update the params file to give the correct 
model folder name. 

Note that the Spitzer model set is for Spitzer data with wavelength ranges from 0.8 - 2.4 
microns, while the SpitzerFull model set is for Spitzer data from 0.8 - 14.9 microns.  

If you want to run fits on data taken from a telescope with range/resolution that does not 
match any of these four model sets, contact us to request a new model set. 
 
Running the Code: 
 

Once you have finished preparing to run the code, simply execute the main.py script and 
all of the fitting will be performed. You can either open the main.py script using some IDE such 
as Spyder and run the script using the IDE, or you can run the script from the terminal. To run 
from the terminal, navigate to the folder containing your code and then type “python3 main.py” 
and push “enter.”  

Note that the run time varies drastically for the different fit types and different model 
sets. Progress bars will be displayed in the terminal to give an idea of how long the code will 
take. Single fits should generally take less than 15 seconds per object, while binary fits should 
take between 20 minutes and 2.5 hours per object. 
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The code will generate multiple files and place them in a folder for each target. Resultant 
files will include graphs of the the spectral fits, text files containing the best-fit spectra, and 
spreadsheets containing lists of all of the fits tried, sorted by chi-squared value. 

 

Example params.txt File 

#What are the units of your wavelength values? (angstroms or nm or um) 
um 
#What are the units of your flux values? (erg/cm^2/s/Hz or W/m^2/um or Jy or erg/cm^2/s/A) 
W/m^2/um 
#Is your data normalized? (Y/N) 
Y 
#Do you wish to perform a BF to the Saumon and Marley models? (Y/N): 
Y 
#Do you wish to perform a SF to the Saumon and Marley models? (Y/N): 
Y 
#Do you wish to perform a BF to the real data models? (Y/N): 
Y 
#Do you wish to perform a SF to the real data models? (Y/N): 
Y 
#Where is the FilterData folder located? 
FilterData 
#Where is the unnormalizeFilters folder located? 
unnormalizeFilters 
#Where are your object data txt files located? 
LDwarfs 
#Where are the saumon and marley model files located? 
mixedForSpex 
#Where are the real data model files located? 
spexDistanceUnnormalized 
#Do your target objects have error values? (Y/N): 
Y 
#Do you want to plot on a log(wavelength) scale? (Y/N): 
N 
#List any wavelength spans you wish to omit from the fitting routine 
0.6,0.8 
1.35,1.5 
1.8,2.0 
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Example objects.txt File 

#Format is: 4 digit object code tab Hmag tab Kmag 
1435 16.15 16.906 
2252 13.36 12.901  
1171 14.09 15.01 
0809 12.07 12.98 
1423 13.17 14.91 
 

main.py 

  1. # -*- coding: utf-8 -*- 
  2. """ 
  3. Created on Wed Feb 23 09:22:28 2022 
  4.   
  5. @author: savan 
  6. """ 
  7. import numpy as np 
  8. import savvySpectrum 
  9. from savvyFitter import fitter, binaryFitter 
 10. from scipy.integrate import simps 
 11. from regridTheSpectrum import regridModels, regridModelsWithErrors 
 12. from tqdm import tqdm 
 13. import os  
 14. import pandas as pd 
 15. import matplotlib.pyplot as plt 
 16. from scipy.stats import f 
 17.   
 18. #initialize global variables used to store parameter information 
 19. fluxUnits = wavelengthUnits = filterFolder = None 
 20. unnormalizeFilterFolder = dataFolder = None 
 21. SMmodelFolder = RMmodelFolder = None 
 22. normalized = SMBF = SMSF = RMBF = RMSF = areThereErrors = logPlot = False 
 23. gapList = [] 
 24.   
 25. #Parse through the params file to get information regarding 
 26. #type of fit and location of files. Update global variables. 
 27. def parse_params(paramsFile): 
 28.     file = open(paramsFile,"r")  
 29.     contents = file.readlines() 
 30.     contents = [line.rstrip('\n') for line in contents] 
 31.     global fluxUnits,wavelengthUnits,filterFolder,dataFolder 
 32.     global unnormalizeFilterFolder, SMmodelFolder, RMmodelFolder 
 33.     global normalized, SMBF, SMSF, RMBF, RMSF 
 34.     global gapList, areThereErrors, logPlot 
 35.     wavelengthUnits = contents[1] 
 36.     fluxUnits = contents[3] 
 37.     filterFolder = contents[15] 
 38.     unnormalizeFilterFolder = contents[17] 
 39.     dataFolder = contents[19] 
 40.     SMmodelFolder = contents[21] 
 41.     RMmodelFolder = contents[23] 
 42.     if contents[5] == "Y": 
 43.         normalized = True 
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 44.     if contents[7] == "Y": 
 45.         SMBF = True 
 46.     if contents[9] == 'Y': 
 47.         SMSF = True 
 48.     if contents[11] == 'Y': 
 49.         RMBF= True 
 50.     if contents[13] == 'Y': 
 51.         RMSF = True 
 52.     if contents[25] == 'Y': 
 53.         areThereErrors = True 
 54.     if contents[27] == 'Y': 
 55.         logPlot = True 
 56.     if len(contents) > 27: 
 57.         numberOfGaps = len(contents) - 29 
 58.         gapList = [None]*numberOfGaps 
 59.         for i in range(0,numberOfGaps): 
 60.             gapList[i] = contents[29+i]  
 61.         gapList = readGapList(gapList) 
 62.     file.close() 
 63.   
 64. #Parse through objects text file to get names of all 
 65. #targets to be fit as well as their magnitudes to use 
 66. #for unnormalization if necessary 
 67. def parse_objects(objectsFile): 
 68.     objects,Hmags,Kmags = np.loadtxt(objectsFile,dtype=str,unpack = True);  
 69.     if hasattr(objects, '__len__') and (not isinstance(objects, str)): 
 70.         Hmags = [float(Hmag) for Hmag in Hmags] 
 71.         Kmags = [float(Kmag) for Kmag in Kmags] 
 72.     #else statement is for dealing with single-object input 
 73.     else: 
 74.         tempH = float(Hmags) 
 75.         Hmags = [] 
 76.         Hmags.append(tempH) 
 77.         tempK = float(Kmags) 
 78.         Kmags = [] 
 79.         Kmags.append(tempK) 
 80.         tempO = objects 
 81.         objects = [] 
 82.         objects.append(tempO) 
 83.     return objects,Hmags,Kmags 
 84.   
 85. #TODO: might need to add more functionality here if normalized data does not  
 86. #always come in erg/cm^2/s/A 
 87.   
 88. #Choose needed flux conversion function based on  
 89. #input data inuts 
 90. def choose_flux_conversion_func(inputUnit): 
 91.     conversionFunction = None 
 92.     if inputUnit == 'W/m^2/um'and normalized == True: 
 93.         print("Your data is already in W/m^2/um and antinormalization will complete the 
conversion to Jy, so no conversion is needed here.") 
 94.     elif inputUnit == 'erg/cm^2/s/A'and normalized == False: 
 95.         conversionFunction = 'ergLam2Jy' 
 96.     elif inputUnit == 'W/m^2/um' and normalized == False: 
 97.         conversionFunction = 'W2Jy' 
 98.     elif inputUnit == 'Jy' and normalized == False: 
 99.         print("Your data is already in Jy, so no conversion is needed") 
100.     elif inputUnit == 'erg/cm^2/s/Hz' and normalized == False: 
101.         conversionFunction = 'ergNu2Jy' 
102.     else: 
103.         print ("The flux unit you entered is not recognized. Please try again") 
104.     return conversionFunction 
105.   
106. #Choose needed wavelength conversion function based on 
107. #input wavelength units 
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108. def choose_wavelength_conversion(inputUnit): 
109.     if inputUnit == "um": 
110.         conversionFactor = 1 
111.     elif inputUnit == "angstroms": 
112.         conversionFactor = 0.0001 
113.     elif inputUnit == "nm": 
114.         conversionFactor = 0.001 
115.     else: 
116.         print ("The wavelength unit you entered is not recognized. Please try again") 
117.         conversionFactor = 0 
118.     return conversionFactor       
119.   
120. #Convert from watts to janskys     
121. def W2Jy(wavelengths,fluxes,errors): 
122.     fluxes = fluxes*wavelengths*wavelengths*1e26/2.99792458e14 
123.     errors = errors*wavelengths*wavelengths*1e26/2.99792458e14 
124.     return (fluxes,errors) 
125.   
126. #Convert from Flambda in erg to janskys          
127. def ergLam2Jy(wavelengths,fluxes,errors = None): 
128.      fluxes = fluxes*wavelengths*wavelengths*(10**8)*(2.99792458*10**4) 
129.      if errors != None: 
130.          errors = errors*wavelengths*wavelengths*(10**8)*(2.99792458*10**4) 
131.      return (fluxes,errors)  
132.     
133. #Convert from Fnu in erg to janskys 
134. def ergNu2Jy(wavelengths,fluxes,errors): 
135.     fluxes = fluxes * (10**23) 
136.     errors = errors * (10**23) 
137.     return(fluxes,errors) 
138.      
139. #use known magnitudes and filter profiles to un-Normalize 
140. #flux-normalized data to allow for better fits. 
141. #This function was written by John-Michael Eberhard. 
142. def unNormalize(name,wavs,fluxes,errors,Hmag,Kmag): 
143.     fluxVegaH=11.38e-11;#erg cm-2 s-1 A-1 
144.     fluxVegaK=3.961e-11; #erg cm-2 s-1 A-1     
145.     wavsFilter,filterData = 
np.loadtxt(f'{unnormalizeFilterFolder}/MASSallFilters.txt',unpack=True,comments='#');                 
146.     wavsFilterH,filterDataH = 
np.loadtxt(f'{unnormalizeFilterFolder}/MASSHFilter.txt',unpack=True,comments='#');  
147.     filterDataH_newGrid  = np.interp(wavs,wavsFilterH,filterDataH);                                     
148.     I1H= simps(filterDataH_newGrid*fluxes*wavs,wavs) 
149.     I2H= simps(filterDataH_newGrid*wavs,wavs) 
150.     FlambdaH = I1H/I2H    
151.     myFluxH= 10**((Hmag)/-2.5) * fluxVegaH 
152.     myFluxH = myFluxH/(1e-10)*(1e-6)/(1e-4)/(1e7) 
153.     myRatioH = myFluxH/FlambdaH;    
154.     wavsFilterK,filterDataK = 
np.loadtxt(f'{unnormalizeFilterFolder}/MASSKFilter.txt',unpack=True,comments='#');  
155.     filterDataK_newGrid  = np.interp(wavs,wavsFilterK,filterDataK);                                    
156.     I1K= simps(filterDataK_newGrid*fluxes*wavs,wavs) 
157.     I2K= simps(filterDataK_newGrid*wavs,wavs) 
158.     FlambdaK = I1K/I2K    
159.     myFluxK= 10**((Kmag)/-2.5) * fluxVegaK 
160.     myFluxK = myFluxK/(1e-10)*(1e-6)/(1e-4)/(1e7) 
161.     myRatioK = myFluxK/FlambdaK; 
162.     avgRatio= (myRatioK+myRatioH)/2; 
163.     unNormalFlux = fluxes*avgRatio; 
164.     fluxesInJy= unNormalFlux*1e26/2.99792458e14*wavs*wavs; 
165.     unNormalError = errors*avgRatio; 
166.     errInJy = unNormalError*1e26/2.99792458e14*wavs*wavs; 
167.     unnormalizedData=np.column_stack((wavs,fluxesInJy,errInJy)) 
168.     np.savetxt(f'{name}/{name}unnormalized.txt',unnormalizedData)   
169.     return (wavs,fluxesInJy,errInJy) 
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170.   
171. #TODO: check this with stats professor 
172. #Function written by John-Michael Eberhard. Performs an fTest after fitting to 
173. #determine likelyhood that target is binary. Generates a statistical curve 
174. #giving the eta value needed for each percent confidence level.  
175. def fTest(eta,dof,name,code,bestSingleName,singleScale,bestBinaryName,binaryScale): 
176.     rv1 = f(dfn=dof, dfd=dof, loc=0, scale=1) 
177.     x = np.linspace(rv1.ppf(0.0001), rv1.ppf(0.9999), 100) 
178.     y = rv1.pdf(x) 
179.     per99=rv1.ppf(0.99) 
180.     per95=rv1.ppf(0.95) 
181.     per90=rv1.ppf(0.90) 
182.     confLevel=100 
183.     counter=1 
184.     while eta<confLevel: 
185.         confLevel=rv1.ppf(counter) 
186.         counter=counter-.01 
187.     if eta > per99: 
188.         conf="above 99% confidence" 
189.     else: 
190.         if eta > per95: 
191.             conf= "between 95-99% confidence" 
192.         else: 
193.             if eta >per90: 
194.                 conf="between 95-99% confidence" 
195.             else: 
196.                 conf="below 90% confidence" 
197.     #create statistics plot 
198.     plt.figure() 
199.     plt.xlim(0.5,per99+.5) 
200.     plt.plot(x,y, 'b-') 
201.     plt.ylabel('Probability Distribution',fontsize=12) 
202.     plt.xlabel('η value',fontsize=12) 
203.     plt.plot(x,y, 'y') 
204.     plt.axvline(x=per99,c='g') 
205.     plt.axvline(x=per95,c='y') 
206.     plt.axvline(x=per90,c='r') 
207.     plt.axvline(x=eta,c='k') 
208.     plt.text(per99, max(y)-.5,'99%',rotation=90) 
209.     plt.text(per95, max(y)-.5,'95%',rotation=90) 
210.     plt.text(per90, max(y)-.5,'90%',rotation=90) 
211.     plt.text(eta, max(y)-1.5,'ηsb') 
212.     plt.savefig(f'{name}/{code}{name}StatsPDF.pdf') 
213.     #Save stats to file 
214.     file= open(f'{name}/{code}{name}stats.txt',"w+") 
215.     file.write(f'The best single fit was with the model {bestSingleName} and a scale factor of 
{singleScale}.') 
216.     file.write(f'\nThe best binary fit was with the composite model {bestBinaryName} and a 
scale factor of {binaryScale}.') 
217.     file.write(f'\n99%: {per99}') 
218.     file.write(f'\n95%: {per95}') 
219.     file.write(f'\n90%: {per90}') 
220.     file.write(f'\nmy eta value: {eta}\n') 
221.     file.write(conf) 
222.     file.close() 
223.   
224. #Generate plots for a list of spectrum objects     
225. def plotSpectra(spectrumObjects,objectsNames,name,file,logPlot = False): 
226.     plt.figure(figsize=(8,6)) 
227.     i = 0 
228.     for spectrum in spectrumObjects: 
229.         plt.plot(spectrum.wavs, spectrum.fluxes,label = f'{objectsNames[i]}') 
230.         if logPlot: 
231.             plt.semilogx() 
232.         i = i + 1 
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233.     plt.legend() 
234.     plt.title(name) 
235.     plt.ylabel('Flux (Jy)',fontsize=13) 
236.     plt.xlabel('Wavelength (microns)',fontsize=13) 
237.     plt.savefig(f'{file}/{name}.png') 
238.     plt.close() 
239.   
240.   
241.  
242.  
243.  
244.   
245. #Function used to calculate an eta value. The equation for eta 
246. #in John-Michael Eberhard's senior thesis included degrees of freedom, 
247. #but in his own code he determines the degree of freedom to be one minus 
248. #the number of data points used in each fit, and since I use the same number 
249. #of data points for single and binary fitting, this value cancels out. He 
250. #made the same assumption in his own code. 
251. def calculateEta(bestSingleChi,bestBinaryChi): 
252.     return bestSingleChi/bestBinaryChi 
253.   
254. #TODO: Works well for temp and gravity, but needs refining for f and kzz values and bobcats 
255. def breakModelNameIntoCharacteristics(objectName): 
256.     tempIndex = objectName.find('sp_') 
257.     gravityIndex = objectName.find('g') 
258.     temp = objectName[tempIndex+4:gravityIndex] 
259.      
260.     isNCpresent = objectName.find('nc') 
261.     isKZZpresent = objectName.find('kzz') 
262.     isFpresent=objectName.find('f') 
263.      
264.     if isNCpresent != -1: 
265.         gravity=objectName[gravityIndex+1:-6] 
266.         clouds = "nc" 
267.         mixing = "none" 
268.      
269.     if isFpresent != -1: 
270.         gravity=objectName[gravityIndex+1:isFpresent] 
271.         if isKZZpresent != -1: 
272.             clouds = objectName[isFpresent+1:isKZZpresent-1] 
273.             mixing = objectName[isKZZpresent+3:-4] 
274.         else: 
275.             clouds = objectName[isFpresent+1:-4] 
276.             mixing = "none" 
277.     return (temp,gravity,clouds,mixing) 
278.   
279. #Take the top 100 S&M single fits and print characteristics to csv 
280. def printTop100FitCharacteristics(fitList,top100FileName): 
281.     df = pd.read_csv(fitList) 
282.     matrix2 = df[df.columns[1]] 
283.     list2 = matrix2.tolist() 
284.     names=[None]*100 
285.     temps = [None]*100 
286.     gravities = [None]*100 
287.     clouds = [None]*100 
288.     mixings = [None]*100 
289.     for i in range(0,100): 
290.         names[i]=list2[i] 
291.         props = breakModelNameIntoCharacteristics(list2[i]) 
292.         temps[i]=props[0] 
293.         gravities[i]=props[1] 
294.         clouds[i]=props[2] 
295.         mixings[i]=props[3] 
296.     dict = {'name':names,'temp':temps,'gravity':gravities,'clouds':clouds,'mixing':mixings} 
297.     df = pd.DataFrame(dict) 
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298.     df.to_csv(top100FileName) 
299.   
300. #Take the top 100 S&M binary fits and print characteristics to csv 
301. def printTop100FitCharacteristicsForBinaries(fitList,top100FileName): 
302.     df = pd.read_csv(fitList) 
303.     matrix2 = df[df.columns[1]] 
304.     list2 = matrix2.tolist() 
305.     names1 = [None]*100 
306.     names2=[None]*100 
307.     temps1 = [None]*100 
308.     temps2 = [None]*100 
309.     gravities1=[None]*100 
310.     gravities2=[None]*100 
311.     clouds1=[None]*100 
312.     clouds2=[None]*100 
313.     mixings1=[None]*100 
314.     mixings2=[None]*100 
315.     for i in range(0,100): 
316.         SMBF1,SMBF2,empty = list2[i].split(".txt") 
317.         names1[i] = SMBF1 + '.txt' 
318.         names2[i] = SMBF2 + '.txt' 
319.         props1 = breakModelNameIntoCharacteristics(names1[i]) 
320.         props2=breakModelNameIntoCharacteristics(names2[i]) 
321.         temps1[i]=props1[0] 
322.         gravities1[i]=props1[1] 
323.         clouds1[i]=props1[2] 
324.         mixings1[i]=props1[3] 
325.         temps2[i]=props2[0] 
326.         gravities2[i]=props2[1] 
327.         clouds2[i]=props2[2] 
328.         mixings2[i]=props2[3] 
329.     dict = 
{'name1':names1,'name2':names2,'temp1':temps1,'temp2':temps2,'gravity1':gravities1,'gravity2':gravit
ies2,'clouds1':clouds1,'clouds2':clouds2,'mixing1':mixings1,'mixing2':mixings2} 
330.     df = pd.DataFrame(dict) 
331.     df.to_csv(top100FileName) 
332.   
333. #TODO: write this function 
334. #Generate errors in the S&M fits using the Excel Sheet 
335. def calculateErrors(): 
336.     pass 
337.   
338. #turn gapList (currently a list where each element is a string containing the whole gap) 
339. #into a list of tuples giving range of gaps as floats 
340. def readGapList(gapList): 
341.     i = 0 
342.     newGapList = [None]*len(gapList) 
343.     for gap in gapList: 
344.         values = gap.split(",") 
345.         first = float(values[0]) 
346.         second = float(values[1]) 
347.         newGapList[i] = (first,second) 
348.         i = i+1 
349.     return newGapList 
350.   
351. #TODO: Fix in case gaps are outside of the range of the data 
352. #mask over wavelength ranges given in params file that 
353. #user does not want to include in the fit 
354. def maskOverGaps(wavs,fluxs,gapList,errors=None): 
355.     for gap in gapList: 
356.         endpt1 = gap[0] 
357.         endpt2 = gap[1] 
358.         startIndex = next(x for x, val in enumerate(wavs) if val > endpt1) 
359.         endIndex = next(x for x, val in enumerate(wavs) if val > endpt2) 
360.         wavs = np.delete(wavs,np.arange(startIndex, endIndex, 1)) 
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361.         fluxs = np.delete(fluxs,np.arange(startIndex, endIndex, 1)) 
362.         if type(errors) is np.ndarray: 
363.             errors = np.delete(errors,np.arange(startIndex, endIndex, 1)) 
364.     if type(errors) is np.ndarray: 
365.         return (wavs,fluxs,errors) 
366.     else: 
367.         return(wavs,fluxs) 
368.   
369. if __name__ == '__main__':  
370.     myList='objects.txt' 
371.     myParams='params.txt' 
372.         
373.     #parse the params file 
374.     parse_params(myParams) 
375.     print("Params have been read in and recorded as follows:") 
376.     print (f'\nThe units of the input data are {wavelengthUnits},{fluxUnits}') 
377.     print (f'Normalized = {normalized}') 
378.     print (f'Saumon and Marley Binary Fit = {SMBF}') 
379.     print (f'Saumon and Marley Single Fit = {SMSF}') 
380.     print (f'Real Models Binary Fit = {RMBF}') 
381.     print (f'Real Models Single Fit = {RMSF}') 
382.     print (f'Targets have errors = {areThereErrors}') 
383.     if len(gapList)!= 0: 
384.         print(f'The wavelength ranges omitted from fit are {gapList}') 
385.     else: 
386.         print("The entire wavelength range will be used in the fit.") 
387.     print("\n") 
388.   
389.     #parse list of objects 
390.     objectsList,HmagsList,KmagsList = parse_objects(myList) 
391.     print(f'The objects to be fit are {objectsList}') 
392.     print(f'The data files can be found in the folder {dataFolder}\n')    
393.      
394.     #decide if/which unit conversion is needed 
395.     fluxFunctionName = choose_flux_conversion_func(fluxUnits)  
396.     wavelengthConversionFactor = choose_wavelength_conversion(wavelengthUnits) 
397.     print('\n') 
398.      
399.     #create Spectrum objects for each of the Saumon & Marley models 
400.     if SMSF or SMBF: 
401.         SMmodelNames = np.loadtxt(f'{SMmodelFolder}/Models.txt',dtype = str) 
402.         SMmodels = [None] * len(SMmodelNames)    
403.         for i in tqdm (range (len(SMmodelNames)), desc="Preparing SM models..."): 
404.             model = SMmodelNames[i] 
405.             (wavelengths,fluxes)=np.loadtxt(model,unpack=True,comments = '#') 
406.             (wavelengths,fluxes)=maskOverGaps(wavelengths, fluxes, gapList) 
407.             SMmodels[i] = savvySpectrum.SavvySpectrum(model,wavelengths,fluxes) 
408.          
409.     #create Spectrum objects for each of the real data models 
410.     if RMSF or RMBF: 
411.         RMmodelNames = np.loadtxt(f'{RMmodelFolder}/Models.txt',dtype = str) 
412.         RMmodels = [None] * len(RMmodelNames)    
413.         for i in tqdm (range (len(RMmodelNames)), desc="Preparing RM models..."): 
414.             model = RMmodelNames[i] 
415.             (wavelengths,fluxes,errors)=np.loadtxt(model,unpack=True,comments = '#') 
416.             (wavelengths,fluxes,errors)=maskOverGaps(wavelengths, fluxes, gapList,errors) 
417.             RMmodels[i] = savvySpectrum.SavvySpectrum(model,wavelengths,fluxes, errors) 
418.      
419.     #create Spectrum objects for each target object 
420.     #convert to um and Jy and/or unnormalize if needed 
421.     spectrumObjects = [None] * len(objectsList)   
422.     degreesOfFreedom = [None]*len(objectsList) 
423.     for i in tqdm (range (len(objectsList)), desc="Preparing target objects..."): 
424.         friend = objectsList[i] 
425.         if os.path.isdir(objectsList[i])==False: 
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426.             os.mkdir(objectsList[i]) 
427.         if areThereErrors == False: 
428.             (wavelengths,fluxes) = 
np.loadtxt(f'{dataFolder}/{friend}Raw.txt',unpack=True,comments = '#') 
429.             errors = None 
430.         else: 
431.             (wavelengths,fluxes,errors) = 
np.loadtxt(f'{dataFolder}/{friend}Raw.txt',unpack=True,comments = '#') 
432.         wavelengths = wavelengths * wavelengthConversionFactor 
433.         if fluxFunctionName != None: 
434.             fluxes,errors=eval(f'{fluxFunctionName}(wavelengths,fluxes,errors)') 
435.         if normalized == True: 
436.            wavelengths,fluxes,errors = unNormalize(friend, wavelengths, fluxes, errors, 
HmagsList[i], KmagsList[i]) 
437.         if areThereErrors == False: 
438.             (wavelengths,fluxes)=maskOverGaps(wavelengths, fluxes, gapList) 
439.         else: 
440.             (wavelengths,fluxes,errors)=maskOverGaps(wavelengths, fluxes, gapList,errors) 
441.         spectrumObjects[i] = savvySpectrum.SavvySpectrum(friend,wavelengths,fluxes,errors) 
442.         degreesOfFreedom[i] = len(wavelengths) - 1 
443.   
444. #TODO: make starting guess adaptable to flux of object    
445. #theoretical models  
446.     #single fit  
447.     if SMSF: 
448.         bestSMSFchi2s = [None]*len(spectrumObjects) 
449.         bestSMSFnames = [None]*len(spectrumObjects) 
450.         bestSMSFscales = [None]*len(spectrumObjects) 
451.         for i in tqdm (range (len(spectrumObjects)), desc="Performing SMSF..."): 
452.             target = spectrumObjects[i] 
453.             currentSMmodels = regridModels(target,SMmodels) 
454.             SMSFresults=fitter(target,currentSMmodels,10**-19,10**-22,gapList) 
455.             SMSFnames, SMSFchi2s,SMSFscales = zip(*SMSFresults) 
456.             bestSMSFchi2s[i] = SMSFchi2s[0] 
457.             bestSMSFnames[i] = SMSFnames[0] 
458.             bestSMSFscales[i] = SMSFscales[0] 
459.             dict = {'name':SMSFnames,'chi2':SMSFchi2s,'scale':SMSFscales} 
460.             df = pd.DataFrame(dict) 
461.             df.to_csv(f'{objectsList[i]}/AllSMSFresults.csv') 
462.             #create spectrum objects for results 
463.             (SMSFwav,SMSFflux) = np.loadtxt(SMSFnames[0],unpack=True,comments = '#') 
464.             SMSFflux = SMSFflux * SMSFscales[0] 
465.             SMSFbest = savvySpectrum.SavvySpectrum(SMSFnames[0],SMSFwav,SMSFflux) 
466.             plotSpectra([SMSFbest,target],['Best Single Fit','Target'],f'{target.path} SM 
Single Best Fit',target.path,logPlot) 
467.             bestSingleSMData=np.column_stack((SMSFwav,SMSFflux)) 
468.             np.savetxt(f'{target.path}/{target.path}BestSMSingleFit.txt',bestSingleSMData) 
469.             #create detailed Excel sheet for top 100 objects 
470.             
printTop100FitCharacteristics(f'{objectsList[i]}/AllSMSFresults.csv',f'{objectsList[i]}/SMSFtop100.c
sv') 
471.             #calculate errors in the fit (function not implemented yet) 
472.             calculateErrors() 
473.          
474.     #binary fit        
475.     if SMBF: 
476.         bestSMBFchi2s = [None]*len(spectrumObjects) 
477.         bestSMBFnames = [None]*len(spectrumObjects) 
478.         bestSMBFscales = [None]*len(spectrumObjects) 
479.         for i in tqdm (range (len(spectrumObjects)), desc="Performing SMBF..."): 
480.             target = spectrumObjects[i] 
481.             currentSMmodels = regridModels(target,SMmodels) 
482.             SMBFresults=binaryFitter(target,currentSMmodels,10**-19,10**-22,gapList) 
483.             SMBFnames, SMBFchi2s,SMBFscales = zip(*SMBFresults) 
484.             bestSMBFchi2s[i] = SMBFchi2s[0] 
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485.             bestSMBFnames[i] = SMBFnames[0] 
486.             bestSMBFscales[i] = SMBFscales[0] 
487.             dict = {'name':SMBFnames,'chi2':SMBFchi2s,'scale':SMBFscales} 
488.             df = pd.DataFrame(dict) 
489.             df.to_csv(f'{objectsList[i]}/AllSMBFresults.csv')   
490.             #split name into two objects 
491.             SMBF1,SMBF2,empty = SMBFnames[0].split(".txt") 
492.             SMBF1 = SMBF1 + '.txt' 
493.             SMBF2 = SMBF2 + '.txt' 
494.             #create spectrum objects for results 
495.             (SMBFwav1,SMBFflux1) = np.loadtxt(SMBF1,unpack=True,comments = '#') 
496.             (SMBFwav2,SMBFflux2) = np.loadtxt(SMBF2,unpack=True,comments = '#') 
497.             SMBFflux1 = SMBFflux1 * SMBFscales[0] 
498.             SMBFflux2 = SMBFflux2 * SMBFscales[0] 
499.             SMBFbest1 = savvySpectrum.SavvySpectrum(SMBF1,SMBFwav1,SMBFflux1) 
500.             SMBFbest2 = savvySpectrum.SavvySpectrum(SMBF2,SMBFwav2,SMBFflux2) 
501.             (SMBFbest1reg,SMBFbest2reg) = regridModels(target,[SMBFbest1,SMBFbest2]) 
502.             SMBFcomposite = savvySpectrum.SavvySpectrum(SMBFnames[0], SMBFbest1reg.wavs, 
SMBFbest1reg.fluxes + SMBFbest2reg.fluxes) 
503.             plotSpectra([SMBFbest1,SMBFbest2,SMBFcomposite,target],['Binary Component 
1','Binary Component 2','Composite','Target'],f'{target.path} SM Binary Best Fit 
Components',target.path,logPlot) 
504.             plotSpectra([SMBFcomposite,target],['Best Binary Fit','Target'],f'{target.path} SM 
Binary Best Fit',target.path,logPlot) 
505.             bestBinarySMData1=np.column_stack((SMBFwav1,SMBFflux1)) 
506.             
np.savetxt(f'{target.path}/{target.path}BestSMBinaryComponent1.txt',bestBinarySMData1) 
507.             bestBinarySMData2=np.column_stack((SMBFwav2,SMBFflux2)) 
508.             
np.savetxt(f'{target.path}/{target.path}BestSMBinaryComponent2.txt',bestBinarySMData2) 
509.             bestBinarySMCompositeData = np.column_stack((SMBFbest1reg.wavs,SMBFbest1reg.fluxes 
+ SMBFbest2reg.fluxes)) 
510.             
np.savetxt(f'{target.path}/{target.path}BestSMBinaryComposite.txt',bestBinarySMCompositeData) 
511.             #create detailed Excel sheet for top 100 objects 
512.             
printTop100FitCharacteristicsForBinaries(f'{objectsList[i]}/AllSMBFresults.csv',f'{objectsList[i]}/S
MBFtop100.csv') 
513.   
514. #real data models 
515. #TODO: regrid target in case target has higher grid than models? 
516. #TODO: what to do if your gaps are outside RM model range? EX: Spitzer long 
517.     #single fit 
518.     if RMSF: 
519.         bestRMSFchi2s = [None]*len(spectrumObjects) 
520.         bestRMSFnames = [None]*len(spectrumObjects) 
521.         bestRMSFscales = [None]*len(spectrumObjects) 
522.         for i in tqdm (range (len(spectrumObjects)), desc="Performing RMSF..."): 
523.             target = spectrumObjects[i] 
527.             currentRMmodels = regridModelsWithErrors(target,RMmodels) 
528.             RMSFresults = fitter(target,currentRMmodels,1,10**-10,gapList) 
529.             RMSFnames,RMSFchi2s,RMSFscales = zip(*RMSFresults) 
530.             bestRMSFchi2s[i] = RMSFchi2s[0] 
531.             bestRMSFnames[i] = RMSFnames[0] 
532.             bestRMSFscales[i] = RMSFscales[0] 
533.             dict = {'name':RMSFnames,'chi2':RMSFchi2s,'scale':RMSFscales} 
534.             df = pd.DataFrame(dict) 
535.             df.to_csv(f'{objectsList[i]}/RMSFresults.csv')   
536.             #create spectrum objects for results 
537.             (RMSFwav,RMSFflux,RMSFerrors) = np.loadtxt(RMSFnames[0],unpack=True,comments = '#') 
538.             RMSFflux = RMSFflux * RMSFscales[0] 
539.             RMSFbest = savvySpectrum.SavvySpectrum(RMSFnames[0],RMSFwav,RMSFflux) 
540.             plotSpectra([RMSFbest,target],['Best Single Fit','Target'],f'{target.path} RM 
Single Best Fit',target.path) 
541.             bestSingleRMData=np.column_stack((RMSFwav,RMSFflux)) 
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542.             np.savetxt(f'{target.path}/{target.path}BestRMSingleFit.txt',bestSingleRMData) 
543.          
544.         
545.     #binary fit 
546.     if RMBF: 
547.         bestRMBFchi2s = [None]*len(spectrumObjects) 
548.         bestRMBFnames = [None]*len(spectrumObjects) 
549.         bestRMBFscales = [None]*len(spectrumObjects) 
550.         for i in tqdm (range (len(spectrumObjects)), desc="Performing RMBF..."): 
551.             target = spectrumObjects[i] 
552.             currentRMmodels = regridModelsWithErrors(target,RMmodels) 
553.             RMBFresults = binaryFitter(target,currentRMmodels,1,10**-10,gapList) 
554.             RMBFnames,RMBFchi2s,RMBFscales = zip(*RMBFresults) 
555.             bestRMBFchi2s[i] = RMBFchi2s[0] 
556.             bestRMBFnames[i] = RMBFnames[0] 
557.             bestRMBFscales[i] = RMBFscales[0] 
558.             dict = {'name':RMBFnames,'chi2':RMBFchi2s,'scale':RMBFscales} 
559.             df = pd.DataFrame(dict) 
560.             df.to_csv(f'{objectsList[i]}/RMBFresults.csv') 
561.             #split name into two objects 
562.             RMBF1,RMBF2,empty = RMBFnames[0].split(".txt") 
563.             RMBF1 = RMBF1 + '.txt' 
564.             RMBF2 = RMBF2 + '.txt' 
565.             #create spectrum objects for results 
566.             (RMBFwav1,RMBFflux1, RMBFerror1) = np.loadtxt(RMBF1,unpack=True,comments = '#') 
567.             (RMBFwav2,RMBFflux2,RMBFerror2) = np.loadtxt(RMBF2,unpack=True,comments = '#') 
568.             RMBFflux1 = RMBFflux1 * RMBFscales[0] 
569.             RMBFflux2 = RMBFflux2 * RMBFscales[0] 
570.             RMBFbest1 = savvySpectrum.SavvySpectrum(RMBF1,RMBFwav1,RMBFflux1,RMBFerror1) 
571.             RMBFbest2 = savvySpectrum.SavvySpectrum(RMBF2,RMBFwav2,RMBFflux2,RMBFerror2) 
572.             (RMBFbest1reg,RMBFbest2reg) = regridModels(target,[RMBFbest1,RMBFbest2]) 
573.             RMBFcomposite = savvySpectrum.SavvySpectrum(RMBFnames[0], RMBFbest1reg.wavs, 
RMBFbest1reg.fluxes + RMBFbest2reg.fluxes) 
574.             plotSpectra([RMBFbest1,RMBFbest2,RMBFcomposite,target],['Binary Component 
1','Binary Component 2','Composite','Target'],f'{target.path} RM Binary Best Fit 
Components',target.path) 
575.             plotSpectra([RMBFcomposite,target],['Best Binary Fit','Target'],f'{target.path} RM 
Binary Best Fit',target.path) 
576.             bestBinaryRMData1=np.column_stack((RMBFwav1,RMBFflux1)) 
577.             
np.savetxt(f'{target.path}/{target.path}BestRMBinaryComponent1.txt',bestBinaryRMData1) 
578.             bestBinaryRMData2=np.column_stack((RMBFwav2,RMBFflux2)) 
579.             
np.savetxt(f'{target.path}/{target.path}BestRMBinaryComponent2.txt',bestBinaryRMData2) 
580.             bestBinaryRMCompositeData = np.column_stack((RMBFbest1reg.wavs,RMBFbest1reg.fluxes 
+ RMBFbest2reg.fluxes)) 
581.             
np.savetxt(f'{target.path}/{target.path}BestRMBinaryComposite.txt',bestBinaryRMCompositeData) 
582.      
583.     #analyze results     
584.     for i in range(0,len(spectrumObjects)): 
585.         if SMSF and SMBF: 
586.             etaSM = calculateEta(bestSMSFchi2s[i], bestSMBFchi2s[i]) 
587.             
fTest(etaSM,degreesOfFreedom[i],spectrumObjects[i].path,'SM',bestSMSFnames[i],bestSMSFscales[i],best
SMBFnames[i],bestSMBFscales[i]) 
588.         if RMSF and RMBF: 
589.             etaRM = calculateEta(bestRMSFchi2s[i], bestRMBFchi2s[i]) 
590.             
fTest(etaRM,degreesOfFreedom[i],spectrumObjects[i].path,'RM',bestRMSFnames[i],bestRMSFscales[i],best
RMBFnames[i],bestRMBFscales[i]) 
591. 
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regridTheSpectrum.py 

 1. from scipy import interpolate 
 2.    
 3. #TODO: add smoothing back in?   
 4. #smoothsize=40 
 5.     
 6. def regrid(wavs,fluxs,templateWavs,name,hasErrors = False,errs = None): 
 7.      
 8.     tck = interpolate.splrep(wavs, fluxs) 
 9.     newFluxes = interpolate.splev(templateWavs, tck) 
10.     if hasErrors: 
11.         tck2 = interpolate.splrep(wavs,errs) 
12.         newErrs = interpolate.splev(templateWavs,tck2,der=0) 
13.     else: 
14.         newErrs = None 
15.     for n in range(0,len(newFluxes)): 
16.         if newFluxes[n]<0: 
17.             newFluxes[n]=0 
18.     return(templateWavs,newFluxes,newErrs) 
19.   
20.   
21. def regridModels(target,models): 
22.     for model in models: 
23.         
(model.wavs,model.fluxes,emptyError)=regrid(model.wavs,model.fluxes,target.wavs,model.path) 
24.     return models 
25.   
26. def regridModelsWithErrors(target,models): 
27.     for model in models: 
28.         
(model.wavs,model.fluxes,model.errors)=regrid(model.wavs,model.fluxes,target.wavs,model.path,True,mo
del.errors) 
29.     return models 
30.   

 
             

savvyFitter.py 

 1. # -*- coding: utf-8 -*- 
 2. """ 
 3. Created on Tue May 31 14:23:56 2022 
 4.   
 5. @author: savan 
 6. """ 
 7.   
 8. import numpy as np 
 9. import scipy.optimize as optimize 
10. from itertools import combinations 
11. import savvySpectrum 
12.   
13. targetObject = None 
14. template = None        
15.   
16. def chai_squared(scale): 
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17.     #What to do when the error is 0? 
18.     #TODO: If including errors, the binary fitter needs an option to generate composite models 
including errors 
19.     C = targetObject.fluxes 
20.     T = template.fluxes 
21.     #sigma = targetObject.errors 
22.     #chaiSquared = np.sum(((C - scale*T)/sigma)**2) 
23.     chaiSquared = np.sum((C - scale*T)**2) 
24.     return chaiSquared 
25.   
26. def makeNameList(templateList): 
27.     names = [None]*len(templateList) 
28.     for i in range(0,len(templateList)): 
29.         names[i] = templateList[i].path 
30.     return names 
31.   
32. def fitter(targetObjectin,templateList,initialGuess,tolerance,gapList): 
33.     chaiSquaredList = [None]*len(templateList) 
34.     totalFailed = 0 
35.     scaleList = [None]*len(templateList) 
36.     global targetObject 
37.     global template 
38.     targetObject = targetObjectin 
39.     nameList = makeNameList(templateList) 
40.     fitResultsList = [None]*len(templateList) 
41.     for i in range(0,len(templateList)): 
42.         template = templateList[i] 
43.         results = optimize.minimize(chai_squared, tol = tolerance, x0=[initialGuess], method = 
"Nelder-Mead") 
44.         if results.success == False: 
45.             totalFailed += 1 
46.         scaleList[i] = results.x 
47.         chaiSquaredList[i] = results.fun 
48.         fitResultsList[i]= (nameList[i],results.fun,results.x[0]) 
49.     fitResultsList.sort(key = lambda x: x[1]) 
50.     percent = (totalFailed / len(templateList))*100 
51.     if percent >= 10: 
52.         print(f'\nThe total number of failed fits for {targetObjectin.path} was {totalFailed} 
out of {len(templateList)}.') 
53.     return fitResultsList 
54.   
55. def binaryFitter(targetObjectin,templateList,initialGuess,tolerance,gapList): 
56.     pairs = list(combinations(templateList,2)) 
57.     chaiSquaredList = [None]*len(pairs) 
58.     totalFailed = 0 
59.     scaleList = [None]*len(pairs) 
60.     global targetObject 
61.     global template 
62.     targetObject = targetObjectin 
63.     nameList = [None]*len(pairs) 
64.     fitResultsList = [None]*len(pairs) 
65.     for i in range(0,len(pairs)): 
66.         currentPair = pairs[i] 
67.         first = currentPair[0] 
68.         second = currentPair[1] 
69.         nameList[i] = f'{first.path}{second.path}' 
70.         compositeFluxes = first.fluxes + second.fluxes 
71.         compositeModel = savvySpectrum.SavvySpectrum(nameList[i],first.wavs,compositeFluxes) 
72.         template = compositeModel 
73.         results = optimize.minimize(chai_squared, tol = tolerance, x0=[initialGuess], method = 
"Nelder-Mead") 
74.         if results.success == False: 
75.             totalFailed += 1 
76.         scaleList[i] = results.x 
77.         chaiSquaredList[i] = results.fun 



 127 

78.         fitResultsList[i]= (nameList[i],results.fun,results.x[0]) 
79.     fitResultsList.sort(key = lambda x: x[1]) 
80.     percent = (totalFailed / len(pairs))*100 
81.     if percent >= 10: 
82.         print(f'\nThe total number of failed fits for {targetObjectin.path} was {totalFailed} 
out of {len(templateList)}.') 
83.     return fitResultsList 
84.   

 
         
         

savvySpectrum.py 

 1. # -*- coding: utf-8 -*- 
 2. """ 
 3. Created on Tue May 31 14:06:07 2022 
 4.   
 5. @author: savan 
 6. """ 
 7. from scipy import interpolate 
 8.   
 9. class SavvySpectrum: 
10.     def __init__(self, path, wavs, fluxes, errors = None): 
11.         self.path = path 
12.         self.wavs = wavs 
13.         self.fluxes = fluxes 
14.         self.errors = errors 
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Appendix 2 
 
 
Object Name Optical 

Type 
IR 

Type 
2MASS 

J 
2MASS 

H 
2MASS 

K 
Ref 

SDSS J000013.54+255418.6 ---- T4.5 15.063 14.731 14.836 [81] 
SDSS J000250.98+245413.8 ---- L5.5 17.165 16.06 15.656 [69] 
LHS 102B (J00043484-
4044058) 

L5 L4.5 13.109 12.055 11.396 [70] 

2MASS J00150206+2959323 L7 L7.5pe
c 

16.158 15.226 14.482 [82] 

2MASS J00165953-4056541 L3.5 ---- 15.316 14.206 13.432 [45] 
2MASS J00193927-3724392 L3: ---- 15.519 14.47 13.689 [45] 
2MASS J0028208+224905 ---- L7: 15.607 14.468 13.781 [45] 
2MASSW J0030300-145033 L7 ---- 16.278 15.273 14.481 [45] 
SDSSp J003259.36+141036.6 ---- L8 16.83 15.648 14.946 [45] 
2MASS J00345157+0523050 ---- T6.5 15.535 15.443 16.243 [76] 
2MASSW J0036159+182110 L3.5 L4+/-1 12.466 11.588 11.058 [31] 
SDSS J003609.26+241343.3 ---- L5.5 17.033 16.108 15.657 [69] 
HD 3651B 
(J0039191+211516) 

---- T7.5 16.16 16.68 16.87 [70] 

2MASS J00501994-3322402 ---- T7 15.928 15.838 15.241 [81] 
2MASSW J0051107-154417 L3.5 ---- 15.277 14.164 13.466 [45] 
2MASS J00531899-3631102 L3.5 ---- 14.445 13.48 12.937 [45] 
2MASSI J0103320+193536 L6 ---- 16.288 14.897 14.149 [71] 
SDSSp J010752.33+004156.1 L8 L5.5 15.824 14.512 13.709 [45] 
2MASSI J0117474-340325 L2 ---- 15.178 14.209 13.489 [31] 
SDSS J011912.22+240331.6 ---- T2 17.017 15.953 17.042 [69] 
2MASS J01311838+3801554 L4: ---- 14.679 13.696 13.054 [45] 
2MASS J01340281+0508125 ---- L1 16.024 15.376 14.459 [82] 
IPMS J013656.57+093347.3 ---- T2.5 13.455 12.771 12.562 [31] 
2MASS J01414839-1601196 ---- L7: 16.209 15.161 14.344 [82] 
2MASS J01415823-4633574 L0 lg L0pec 14.832 13.875 13.097 [72] 
2MASS J01443536-0716142 L5 ---- 14.191 13.008 12.268 [31] 
2MASS J01472702+4731142 ---- L1.5 15.843 14.847 14.282 [82] 
SDSS J015141.69+124429.6 ---- T1 16.566 15.603 15.183 [76] 
2MASS J01550354+0950003 ---- L5: 14.825 13.763 13.139 [45] 
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SDSS J020735.60+135556.3 L3 L3+/-
1.5 

15.462 14.474 13.808  

2MASSW J0205034+125142 L5 ---- 15.679 14.449 13.671 [73] 
DENIS-P J0205.4-1159 
(J02052940-1159296) 

L7 L5.5+/-
2 

14.587 13.568 12.998 [45] 

2MASS J02055138-0759253 ---- L2 16.031 15.169 14.358 [82] 
SDSS J020608.97+223559.2 ---- L5.5 16.556 15.538 15.162 [69] 
SDSS J020742.48+000056.2 ---- T4.5 16.799 16.396 15.412 [81] 
2MASSW J0208236+273740 L5 ---- 15.714 14.56 13.872 [45] 
2MASSW J0208183+254253 L1 ---- 13.989 13.107 12.588 [31] 
2MASS J02271036-1624479 L1 ---- 13.573 12.63 12.143 [31] 
2MASSW J0228110+253738 L0 L0 13.839 12.993 12.471 [31] 
2MASS J02304442-3027275 ---- L1 15.822 15.21 14.886 [82] 
GJ 1048B (J02355993-
2331205) 

L1 L1 12.69 12.725 12.186 [31] 

2MASSI J0241536-124106 L2 ---- 15.605 14.646 13.931 [31] 
SDSS J024256.98+212319.6 ---- L4 16.977 15.938 15.474 [69] 
2MASSI J0243137-245329 ---- T6 15.381 15.137 15.216 [76] 
SDSS J024749.90-163112.6 ---- T2+/-

1.5 
17.186 16.17 15.616 [69] 

DENIS-P J0255-4700 
(J02550357-4700509) 

L8 L9 13.246 12.204 11.558 [81] 

2MASS J02572581-3105523 L8 ---- 14.672 13.518 12.876 [74] 
2MASS J03001631+2130205 ---- L6 pec 15.921 14.885 14.258 [82] 
2MASSW J0310599+164816 L8 L9 16.025 14.932 14.312 [70] 
2MASS J03185403-3421292 L7 ---- 15.569 14.346 13.507 [45] 
2MASSW J0320284-044636 ---- L0.5 13.259 12.535 12.134 [31] 
SDSS J032553.17+042540.1 ---- T5.5 16.25 16.08 16.525 [69] 
2MASSI J0328426+230205 L8 L9.5 16.693 15.547 14.916 [31] 
2MASP J0345432+254023 L0 L1+/-1 13.997 13.211 12.672 [75] 
SDSS J035104.37+481046.8 ---- T1+/-

1.5 
16.466 15.566 14.996 [69] 

2MASS J04070752+1546457 ---- L3.5 15.478 14.354 13.559 [31] 
2MASS J04070885+1514565 ---- T5 16.055 16.017 15.922 [76] 
2MASS J04062677-3812102 L0gamm

a 
L1pec 16.756 15.624 15.111 [82] 

2MASSI J0415195-093506 T8 T8 15.695 15.537 15.429 [76] 
SDSSp J042348.57-041403.5 L7.5 T0 14.465 13.463 12.929 [76] 
2MASSI J0439010-235308 L6.5 ---- 14.408 13.409 12.816 [70] 
2MASS J0447430-193604 L5: ---- 15.969 14.785 14.012 [45] 
2MASS J05103520-4208140 ---- T5 16.222 16.237 15.996 [78] 
2MASS J05160945-0445499 ---- T5.5 15.984 15.721 15.486 [31] 
2MASS J05161597-3332046 L3: ---- 15.879 14.801 13.987 [45] 
2MASS J05185995-2828372 L7.5pec T1p 15.978 14.83 14.162 [71] 
SDSSp J053951.99-005902.0 L5 L5 14.033 13.104 12.527 [89] 
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2MASS J05591914-1404488 T5 T4.5 13.802 13.679 13.577 [81] 
2MASS J06020638+4043588 ---- T4.5 15.544 15.592 15.166 [78] 
2MASS J06244595-4521548 L5: ---- 14.48 13.335 12.595 [74] 
2MASSI J0652307+471034 L4.5 ---- 13.511 12.384 11.694 [45] 
SDSS J065405.63+652805.4 ---- L6+/-1 16.138 15.196 14.603 [45] 
2MASSW J0717163+570543 ---- L6.5 14.636 13.593 12.945 [45] 
2MASSI J0727182+171001 T8 T7 15.6 15.756 15.556 [81] 
2MASS J07290002-3954043 ---- T8pec 15.92 15.979 15.29 [78] 
SDSS J073922.26+661503.5 ---- T1.5+/-

1 
16.823 15.998 15.831 [45] 

SDSS J074149.15+235127.5 ---- T5 16.158 15.838 15.847 [45] 
2MASS J07415784+0531568 ---- L1.5 14.379 13.563 13.062 [82] 
SDSS J074201.41+205520.5 ---- T5 16.193 15.911 15.225 [45] 
2MASSI J0755480+221218 T6 T5 15.728 15.669 15.753 [81] 
SDSS J075840.33+324723.4 ---- T2 14.947 14.111 13.879 [31] 
2MASSW J0801405+462850 L6.5 ---- 16.275 15.452 14.536 [45] 
SDSS J080531.84+481233.0 L4 L9+/-

1.5 
14.734 13.917 13.444 [70] 

2MASSW J0820299+450031 L5 ---- 16.279 15 14.218 [45] 
SDSS J082030.12+103737.0 ---- L9.5+/-

2 
16.98 16.079 15.538 [69] 

2MASS J08234818+2428577 L3 ---- 14.986 14.06 13.377 [45] 
2MASSI J0825196+211552 L7.5 L6 15.1 13.792 13.028 [45] 
SSSPM 0829-1309 L2 ---- 12.803 11.851 11.297 [70] 
SDSSp J083008.12+482847.4 L8 L9+/-1 15.444 14.343 13.676 [31] 
SDSS J083048.80+012831.1 ---- T4.5 16.289 16.14 16.358 [45] 
SDSS J083506.16+195304.4 ---- L4.5 16.094 14.889 14.319 [69] 
2MASSI J0835425-081923 L5 ---- 13.169 11.938 11.136 [45] 
SDSSp J083717.22-000018.3 T0+/-2 T1 17.101 15.988 15.674 [81] 
2MASSI J0847287-153237 L2 ---- 13.513 12.629 12.061 [77] 
2MASSs J0850359+105716 L6 ---- 16.465 15.221 14.473 [83] 
SDSS J085116.20+181730.0 ---- L4.5+/-

1.5 
16.567 15.948 14.968 [69] 

SDSS J085234.90+472035.0 ---- L9.5+/-
1 

16.182 15.419 14.718 [45] 

2MASSI J0856479+223518 L3: ---- 15.679 14.58 13.951 [45] 
SDSSp J085758.45+570851.4 L8 L8+/-1 15.038 13.79 12.962 [45] 
SDSS J085834.42+325627.7 ---- T1 16.453 15.382 14.756 [45] 
2MASS J09054654+5623117 ---- L5 15.395 14.284 13.73 [45] 
2MASSI J0908380+503208 L5 L9+/-1 14.549 13.477 12.945 [74] 
SDSS J090900.73+652527.2 ---- T1.5 16.034 15.214 15.171 [69] 
Gl 337CD 
(J09121469+1459396 

L8 T0 15.512 14.621 14.043 [45] 

2MASS J09153413+0422045 L7 ---- 14.548 13.531 13.011 [70] 
2MASSW J0920122+351742 L6.5 T0p 15.625 14.673 13.979 [45] 
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2MASS J09211410-2104446 L2 pec 12.779 12.152 11.69 [70] 
SDSSp J092615.38+584720.9 ---- T4.5 15.897 15.307 15.45 [45] 
2MASSW J0929336+342952 L8 L7.5 16.601 15.44 14.644 [45] 
2MASSI J0937347+293142 T7 T6p 14.648 14.703 15.267 [81] 
2MASS J09393548-2448279  T8 15.98 15.797 16.556 [81] 
2MASS J09490860-1545485 ---- T2 16.149 15.262 15.227 [81] 
SDSS J100711.74+193056.2 ---- L8+/-

1.5 
16.871 15.755 14.997 [45] 

2MASS J10073369-4555147 ---- T5 15.653 15.686 15.56 [78] 
2MASSI J1010148-040649 L6 ---- 15.508 14.385 13.619 [73] 
SDSS J102109.69-030420.1 T4+/-2 T3 16.253 15.346 15.126 [81] 
HD 89744B 
(J10221489+4114266) 

L0 L 
(early) 

14.901 14.022 13.608 [31] 

SDSS J102552.43+321234.0 ---- L7.5+/-
2.5 

15.913 15.593 15.072 [69] 

SDSS J103026.78+021306.4 ---- L9.5+/-
1 

16.889 16.175 15.079 [45] 

2MASS J10315064+3349595 ---- L2 15.923 14.838 14.364 [82] 
SDSS J103321.92+400549.5 ---- L6 16.644 15.874 15.408 [69] 
2MASSW J1036530-344138 L6 ---- 15.622 14.446 13.798 [45] 
SDSS J103931.35+325625.5 ---- T1 16.405 15.335 15.151 [45] 
2MASS J10430758+2225236 L8 ---- 15.965 14.725 13.991 [74] 
SDSS J104335.08+121314.1 ---- L7+/-1 15.997 14.969 14.258 [45] 
SDSS J104335.08+121314.1 ---- L9 15.997 14.969 14.258 [82] 
SDSS J104409.43+042937.6 ---- L7 15.881 14.95 14.259 [45] 
2MASSI J1047538+212423 T7 T6.5 15.819 15.797 16.408 [31] 
SDSS J104842.84+011158.5 L1 L4 12.924 12.14 11.623 [31] 
2MASS J10461875+4441149 ---- L5 pec 15.622 14.656 14.13 [82] 
SDSS J104829.21+091937.8 ---- T2.5 16.594 15.898 16.365 [45] 
SDSS J105213.51+442255.7 ---- T0.5+/-

1 
15.958 15.161 14.568 [31] 

DENIS-P J1058.7-1548 
(J10584787-1548172) 

L3 L3 14.155 13.226 12.532 [45] 

2MASS J10595219+3041498 ---- T4 16.195 15.766 15.56 [79] 
2MASS J10595185+3042059 ---- T4 16.195 15.766 15.56 [79] 
2MASS J11000965+4957470 ---- L3.5 15.282 14.192 13.474 [74] 
2MASSI J1104012+195921 L4 ---- 14.38 13.476 12.95 [76] 
SDSSp J111010.01+011613.1 ---- T5.5 16.343 15.924 15.129 [81] 
Gliese 417BC 
(J11122567+3548131) 

---- L4.5 14.584 13.499 12.721 [45] 

SDSS J111320.16+343057.9 ---- L3 16.767 15.803 15.51 [69] 
2MASS J11145133-2618235 ---- T7.5 15.858 15.734 16.109 [81] 
2MASS J11181292-0856106 L6 L6 pec 15.784 14.731 14.296 [82] 
SDSS J112118.57+433246.5 ---- L7.5 17.006 16.231 15.572 [69] 
2MASS J11220826-3512363 ---- T2 15.019 14.358 14.383 [81] 
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2MASS J11263991-5003550 L4.5 T0+/-
1.5 
(pec) 

13.997 13.284 12.829 [31] 

2MASSW J1146345+223053 L3 ---- 14.165 13.182 12.59 [45] 
SDSS J115553.86+055957.5 ---- L7.5 15.66 14.703 14.118 [45] 
2MASS J11582077+0435014 sdL7 sdL7 15.611 14.684 14.439 [82] 
2MASS J12070374-3151298 ---- L3: 15.85 14.719 13.997 [74] 
SDSS J120602.51+281328.7 ---- T3 16.541 15.815 15.817 [69] 
SDSS J120747.17+024424.8 L8 T0 15.58 14.561 13.986 [78] 
2MASS J12095613-1004008 ---- T3 15.914 15.329 15.062 [76] 
2MASS J12154432-3420591 ---- T4.5 16.236 15.809 16.317 [78] 
SDSS J121440.95+631643.4 ---- T3.5+/-

1 
16.586 15.779 15.877 [69] 

SDSS J121659.17+300306.3 ---- L3.5+/-
1 

17.072 15.739 15.813 [69] 

2MASSI J1217110-031113 T7 T7.5 15.86 15.748 15.887 [81] 
SDSS J121951.45+312849.4 ---- L8 15.913 14.907 14.305 [45] 
2MASS J12212770+0257198 L0 ---- 13.169 12.41 11.953 [31] 
2MASS J12255432-2739466 T6 T6 15.26 15.098 15.073 [76] 
DENIS-P J1228.2-1547 
(J12281523-1547342) 

L5 L6+/-2 14.378 13.347 12.767 [45] 

2MASS J12304562+2827583 ---- L4: 16.073 15.005 14.434 [79] 
2MASS J12314753+0847331 ---- T5.5 15.57 15.309 15.22 [76] 
2MASS J12373919+6526148 T7 T6.5 16.053 15.739 16.058 [88] 
2MASSW J1239272+551537 L5 ---- 14.711 13.568 12.792 [45] 
2MASS J12474944-1117551 ---- L0: 15.991 15.104 14.725 [82] 
SDSSp J125453.90-012247.4 T2 T2 14.891 14.09 13.837 [76] 
2MASS J13023811+5650212 L2 L3pec 16.36 15.469 14.972 [82] 
Kelu-1 (J13054019-2541059) L2 L3+/-1 13.414 12.392 11.747 [70] 
2MASS J13184794+1736117 ---- L5.5 16.341 15.227 14.533 [82] 
2MASS J13243553+6358281 ---- T2:pec 15.596 14.576 14.058 [78] 
SDSSp J132629.82-003831.5 L8: L5.5 16.103 15.05 14.208 [45] 
2MASS J13313310+3407583 L0 L1pec 14.168 13.333 12.868 [82] 
SDSS J133148.92-011651.4 L6 L8+/-

2.5 
15.459 14.475 14.073 [45] 

SDSS J134203.11+134022.2 ---- L5.5 16.756 15.708 15.109 [69] 
SDSS J134525.57+521634.0 ---- L3.5 16.945 16.257 15.348 [69] 
SDSSp J134646.45-003150.4 T7 T6.5 16 15.459 15.772 [81] 
2MASS J13571237+1428398 L4: ---- 15.584 14.647 13.88 [45] 
SDSS J135852.68+374711.9 ---- T4.5+/-

1 
16.46 16.142 16.099 [69] 

SDSS J140023.12+433822.3 ---- L7+/-1 16.301 15.094 14.487 [45] 
2MASS J14044941-3159329 ---- T2.5 15.577 14.955 14.538 [78] 
2MASS J14075361+1241099 L5 ---- 15.378 14.344 13.598 [45] 
2MASS J14162409+1348267 L6 ---- 13.148 12.456 12.114 [86] 
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SDSS J141530.05+572428.7 ---- T3+/-1 16.734 15.821 15.544 [45] 
SDSS J141659.78+500626.4 ---- L5.5+/-

2 
16.95 15.955 15.597 [69] 

2MASS J14182962-3538060 ---- L1.5 15.165 14.253 13.691 [82] 
2MASS J14192618+5919047 ---- L1: 16.411 15.757 15.024 [82] 
SDSS J142227.25+221557.1 ---- L6.5+/-

2 
17.064 16.032 15.642 [69] 

2MASS J14283132+5923354 ---- L4 14.781 13.875 13.265 [45] 
2MASS J14313029+1436599 ---- L2 

(pec) 
15.151 14.501 14.125 [79] 

2MASS J14313097+1436539 L2 L3.5+/-
1.5 

15.151 14.501 14.125 [79] 

2MASS J14343616+2202463 ---- L2.5+/-
1.5 

14.519 13.833 13.545 [79] 

SDSS J143553.25+112948.6 ---- T2+/-1 17.137 16.15 16.906 [69] 
SDSS J143945.86+304220.6 ---- T2.5 17.223 16.28 15.881 [69] 
2MASS J14403186-1303263 L1 L1pec 15.38 14.747 14.243 [82] 
2MASSW J1439284+192915 L1 ---- 12.759 12.041 11.546 [76] 
2MASSW J1448256+103159 ---- L3.5 14.556 13.433 12.683 [45] 
Gliese 570D (J14571496-
2121477) 

T7 T7.5 15.324 15.268 15.242 [76] 

2MASS J15031961+2525196 T6 T5 13.937 13.856 13.963 [76] 
2MASSW J1506544+132106 L3 ---- 13.365 12.38 11.741 [70] 
2MASSW J1507476-162738 L5 L5.5 12.83 11.895 11.312 [70] 
SDSS J151114.66+060742.9 ---- T0+/-2 16.016 14.955 14.544 [45] 
2MASSW J1515008+484742 L6 L6 14.111 13.099 12.5 [45] 
SDSS J151506.11+443648.3 ---- L7.5+/-

1.5 
16.583 15.636 14.757 [45] 

SDSS J151643.01+305344.4 ---- T0.5+/-
1 

16.848 15.868 15.081 [45] 

SDSS J151603.03+025928.9 ---- T0 17.23 15.997 15.433 [45] 
2MASS J15200224-
4422419A 

---- L1.5 13.55 12.73 12.27 [70] 

SDSS J152039.82+354619.8 ---- T0+/-1 15.54 14.579 14 [45] 
SDSS J152103.24+013142.7 ---- T2 16.399 15.576 15.347 [45] 
2MASS J15200224-
4422419B 

---- L4.5 14.7 13.7 13.22 [70] 

Gl 584C 
(J15232263+3014562) 

L8 L8 16.056 14.928 14.348 [45] 

2MASSI J1526140+204341 L7 ---- 15.586 14.497 13.922 [76] 
2MASS J15293306+6730215 ---- L0: 16.159 15.385 14.753 [82] 
SDSS 
J153417.05+161546.1AB 

---- T3.5 16.753 16.078 16.411 [69] 

2MASSI J1534498-295227 T6 T5.5 14.9 14.866 14.843 [45] 
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SDSS J153453.33+121949.2 ---- L4+/-
1.5 

15.332 14.303 13.827 [69] 

SDSS J154009.36+374230.3 ---- L9+/-
1.5 

16.558 15.348 14.739 [45] 

2MASS J15461461+4932114 ---- T2.5+/-
1 

15.902 15.135 14.9 [45] 

2MASS J15462718-3325111 ---- T5.5 15.631 15.446 15.485 [31] 
2MASSI J1546291-332511 ---- T5.5 15.631 15.446 15.485 [31] 
SDSS J154849.02+172235.4 ---- L5 16.104 15.142 14.456 [69] 
2MASS 
J15500845+1455180A 

L2: ---- 14.776 13.795 13.261 [85] 

2MASSI J1553022+153236 ---- T7 15.825 15.939 15.507 [45] 
2MASS J16150413+1340079 ---- T6 16.35 16.489 15.859 [78] 
SDSS J161731.65+401859.7 ---- L4 16.741 15.605 14.754 [69] 
SDSS J162255.27+115924.1 ---- L6+/-

1.5 
16.879 16.149 15.548 [69] 

SDSSp J162414.37+002915.6 ---- T6 15.494 15.524 15.518 [76] 
SDSS J163030.53+434404.0 ---- L7+/-

1.5 
16.634 15.438 14.652 [45] 

2MASSW J1632291+190441 L8 L8 15.867 14.612 14.003 [70] 
SDSS J163239.34+415004.3 ---- T1 17.078 16.114 15.748 [45] 
SDSS J163359.23-064056.5 ---- L6 16.138 15.165 14.544 [69] 
2MASS J16382073+1327354 ---- L2 16.452 15.447 14.961 [82] 
2MASS J16452207+3004071 L3 ---- 15.19 14.213 13.587 [45] 
2MASSW J1645221-131951 L1.5 ---- 12.451 11.685 11.145 [31] 
SDSS J164916.89+464340.0 ---- L5 18.265 16.311 16.177 [69] 
SDSS J165329.69+623136.5 L3 ---- 15.089 14.442 14.069 [45] 
DENIS-P J170548.38-
051645.7 (J17054834-
0516462) 

---- L4 13.309 12.552 12.032 [45] 

2MASS J17072343-
0558249B 

---- L3 13.96 12.72 12.2 [77] 

2MASS J17111353+2326333 L0: ---- 14.499 13.668 13.056 [69] 
2MASSI J1711457+223204 L6.5 pec 17.089 15.797 14.727 [45] 
2MASSW J1728114+394859 L7 ---- 15.988 14.756 13.909 [83] 
SDSS J173101.41+531047.9 ---- L6+/-

1.5 
16.374 15.484 14.854 [69] 

2MASS J17320014+2656228 ---- L1 15.931 15.018 14.461 [82] 
2MASS J17392515+2454421 ---- L4 15.802 14.647 13.946 [82] 
2MASS J17461199+5034036 ---- L5 15.096 14.047 13.529 [45] 
2MASS J17502484-0016151 ---- L5.5 13.294 12.411 11.849 [45] 
SDSSp J175032.96+175903.9 ---- T3.5 16.34 15.952 15.478 [76] 
2MASS J1754544+164920 ---- T5 15.762 15.531 14.788 [31] 
2MASS J17561080+2815238 sdL1 L1pec 14.712 14.135 13.813 [82] 
SDSS J175805.46+463311.9 ---- T6.5 16.152 16.254 15.465 [81] 
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2MASSI J1807159+501531 L1.5 L1 12.934 12.127 11.602 [31] 
2MASS J18131803+5101246 ---- L5 15.884 14.835 14.393 [82] 
2MASS J18212815+1414010 ---- L5 pec 13.431 12.396 11.65 [78] 
2MASS J18283572-4849046 ---- T5.5 15.175 14.908 15.181 [76] 
2MASS J19010601+4718136 ---- T5 15.856 15.468 15.641 [76] 
2MASS J19163888-3700026 ---- L1 15.669 14.878 14.381 [82] 
2MASS J19285196-4356256 L5 ---- 15.199 14.127 13.457 [45] 
2MASS J19415458+6826021 ---- L2 15.99 15.2 14.711 [82] 
2MASS J19495702+6222440 L2 pec L2 pec 16.359 15.47 14.75 [82] 
2MASS J20025073-0521524 L6 ---- 15.316 14.278 13.417 [31] 
2MASS J20261584-2943124 L1: ---- 14.802 13.946 13.36 [84] 
SDSS J202820.32+005226.5 L3 ---- 14.298 13.377 12.793 [76] 
2MASS J20343769+0827009 L3 ---- 14.464 13.593 13.08 [45] 
2MASS J20360316+1051295 L3 ---- 13.95 13.018 12.447 [45] 
SDSS J204317.69-155103.4 ---- L9 16.625 16.054 15.402 [45] 
SDSS J204749.61-071818.3 ---- T0 16.946 15.909 14.99 [45] 
SDSS J205235.31-160929.8 ---- T1+/-1 16.334 15.414 15.123 [45] 
2MASSI J2057540-025230 L1.5 L1.5 13.121 12.268 11.724 [31] 
2MASSW J2101154+175658 L7.5 ---- 16.853 15.861 14.892 [45] 
2MASSI J2104149-103736 L3 ---- 13.841 12.975 12.369 [45] 
2MASSI J2107316-030733 L0 ---- 14.2 13.443 12.878 [76] 
SDSS J212413.89+010000.3 ---- T5 16.031 16.183 16.144 [69] 
2MASS J21321145+1341584 L6 ---- 15.795 14.604 13.839 [74] 
2MASSW J2130446-084520 L1.5 L1 14.137 13.334 12.815 [82] 
SDSS J213154.43-011939.3 ---- L9 17.396 15.781 15.559 [69] 
SDSS J213240.36+102949.4 ---- L4.5+/-

1 
16.594 15.366 14.634 [69] 

SDSS J213352.72+101841.0 ---- L5+/-1 16.878 15.833 15.236 [69] 
2MASS J21392676+0220226 ---- T1.5 15.264 14.165 13.582 [81] 
2MASS J21420580-3101162 L3 ---- 15.844 14.767 13.965 [45] 
HN Peg B 
(J21442847+1446077) 

---- T2.5 15.86 15.4 15.12 [87] 

2MASS J21481628+4003593 L6 L6 pec 14.147 12.783 11.765 [80] 
2MASS J21512543-2441000 L3 ---- 15.752 14.571 13.649 [31] 
2MASS J21513979+3402444 ---- L7 pec 16.704 15.796 14.983 [82] 
2MASS J21513839-4853542 ---- T4 15.73 15.168 15.431 [81] 
2MASS J21542494-1023022 ---- T4.5 16.425 16.454 17.045 [78] 
2MASS J21543318+5942187 ---- T5 15.661 15.765 15.338 [78] 
2MASS J21555848+2345307 ---- L2 15.833 15.05 14.268 [82] 
2MASS J21580457-1550098 L4: ---- 15.04 13.867 13.185 [45] 
DENIS-P J220002.05-
303832.9B (J22000201-
3038327) 

---- L0 14.36 13.57 13.09 [75] 

2MASS J22114470+6856262 ---- L2 15.668 14.761 14.023 [82] 
2MASS J22120703+3430351 L5: L6 16.316 15.182 14.37 [45] 
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2MASSW J2224438-015852 L4.5 L3.4 14.073 12.818 12.022 [45] 
2MASS J22282889-4310262 ---- T6 15.662 15.363 15.296 [76] 
2MASS J22425317+2542573 L3 L 14.812 13.744 13.048 [45] 
2MASSW J2244316+204343 L6.5 L7.5+/-

2 (pec) 
16.476 14.999 14.022 [80] 

SDSSp J224953.45+004404.2 L3 L5+/-
1.5 
(pec) 

16.587 15.421 14.358 [31] 

DENIS-P J225210.73-
173013.4 (J22521073-
1730134) 

---- L7.5 14.313 13.36 12.901 [73] 

2MASSI J2254188+312349 ---- T4 15.262 15.018 14.902 [76] 
2MASS J23174712-4838501 L4 pec L6.5 

pec 
15.15 13.925 13.181 [82] 

2MASS J23254530+4251488 L8 ---- 15.493 14.452 13.764 [45] 
2MASS J2325560-025950 L3: ---- 15.961 14.935 14.115 [45] 
SDSS J232804.58-103845.7 ---- L3.5 17.005 15.841 15.083 [69] 
2MASS J23312378-4718274 ---- T5 15.659 15.51 15.389 [76] 
2MASS J23392527+3507165 ---- L3.5 15.362 14.351 13.588 [45] 
2MASSI J2339101+135230 ---- T5 16.239 15.822 16.147 [81] 
2MASS J23512200+3010540 L5.5 L5 pec 15.781 14.838 14.017 [82] 
2MASSI J2356547-155310 ---- T5.5 15.824 15.63 15.771 [81] 

Table 1: Archival data obtained from the SpeX Prism Library and BDNYC database. The name of the object, 
optical and infrared spectral types, 2MASS J, H, and K magnitudes, and reference are given for each of the 
306 brown dwarfs. The spectral types and magnitudes provided are those listed in the headers of each 
archival data file. See Chapter 6 for a more detailed description of the data. 
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Appendix 3 
 
 

Object Name Obs Date Spectral 
Type 

2MASS 
J 

2MASS 
H 

2MASS 
K 

WISE J203042.79+074934.7 9/16/2021 T1.5 14.227 13.435 13.319 
WISE J165842.56+510335.0 10/10/2021 L6 pec 15.062 14.175 13.655 
WISE J185101.83+593508.6 10/10/2021 L9 pec 14.939 13.966 13.459 
SIMP J013656.57+093347.3 10/10/2021 T2 13.455 12.771 12.562 
SDSSp J053951.99-005902.0 10/22/2021 L5/L5 14.033 13.104 12.527 
SDSS J075840.33+324723.4 10/22/2021 T2.5 14.947 14.111 13.879 
WISE J092055.40+453856.3 10/22/2021 L9 15.223 14.164 13.728 
2MASSI J0908380+503208 5/11/2022 L5/L6 14.549 13.477 12.945 
2MASS J11061197+2754225 5/11/2022 T2.5 14.824 14.15 13.801 
SDSS J080531.84+481233.0AB 5/11/2022 L4/L9 14.734 13.917 13.444 
WISE J003110.04+574936.3 6/14/2022 L8 14.954 13.779 13.215 
DENIS-P J153941.96-052042.4 6/14/2022 L4/L4.2 13.922 13.06 12.575 
2MASS J17114559+4028578 6/14/2022 L5 15.004 14.304 13.799 
2MASSW J1515008+484742 8/24/2022 L6/L5.5 14.111 13.099 12.5 
WISE J180952.53-044812.5AB 8/24/2022 T0.5 15.136 14.276 13.959 
2MASS J21265916+7617440 8/24/2022 L7/T0 pec 14.336 13.586 13.16 

Table 2: A list of the new spectral observations performed with the TRIPLESPEC [60] instrument on the 3.5-
meter APO telescope. The second column gives the date of each observation. When two spectral types are 
given, the first is an optical type and the second is an infrared type. When only one type is given, it is an 
infrared type. Spectral types and 2MASS magnitudes were obtained from the brown dwarf database 
previously maintained by Chris Gellino [55]. These spectra were reduced by Conner Scoresby using methods 
described in [61]. 
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