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ABSTRACT

Physics-Guided Modeling of Acoustic Environments
Using Limited Spatio-Spectro-Temporal Data

Mylan Ray Cook
Department of Physics and Astronomy, BYU
Doctor of Philosophy

When creating data-based models it is important to include the underlying physical
characteristics and constraints of the data. If physical characteristics are not properly included in
the model, results may be infeasible or physically impossible. Acoustic environments are better
characterized by ensuring that models include the fundamental spatial, spectral, and temporal
characteristics of noise sources, or how they change based on location, frequency, and time.
When model data are limited, in availability or in reliability, additional care must be taken to
ensure models predict feasible results. This dissertation focuses on physics-guided modeling of
acoustic environments using limited data, taking into consideration spatial, spectral, and
temporal characteristics of noise sources, specifically focused on wind noise and traffic noise.

Wind noise contamination in spectral data can be significant, even when using a
windscreen. By modeling spectral characteristics of temporally varying wind noise
contamination, a method for automatically detecting and reducing wind noise was developed.
Reducing non-acoustic wind noise contamination allows for better characterization of outdoor
acoustic environments and is useful for accurately measuring other noise sources.

Traffic noise varies spatially, spectrally, and temporally, and depends on traffic volume
(the number of vehicles per unit time) and traffic class mix (e.g., the relative number of small
vehicles compared to large trucks). Using the temporal variation found in reported traffic volume
at thousands of locations, a model was developed to represent and predict the spatio-temporal
variability of traffic volume nationwide. Further models were created to include dynamic
changes in traffic class mix and to predict spectral source traffic noise. The resulting model for
predicting source traffic noise is known as VROOM, the Vehicular Reduced-Order Observation-
based Model.

The physics-guided modeling techniques presented in this dissertation are intended for
characterizing acoustic environments, which has applications for such diverse areas as human
health and wellness, bioacoustics, wildlife conservation, urban and roadway planning, land
development and conservation, noise ordinance legislation, homebuying, and more.

Keywords: noise, modeling, wind noise, traffic noise, traffic modeling, physics-guided modeling
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Chapter 1

Introduction

When taking outdoor acoustic measurements, measured data can contain multiple types of
noise, including non-acoustic noise signals, such as wind noise contamination, as well as acoustic
noise signals, such as noise from vehicular traffic. To characterize an acoustic environment, noise
signals must be understood and accounted for. Modeling these noise signals properly so as to allow
for accurate noise predictions of acoustic environments requires a physics-based modeling
approach.

Noise can show many types of variation. First, noise can vary spatially. This means that
the noise can change from one location to another. Second, noise can vary spectrally. This means
that it changes based on frequency. Third, noise can vary temporally. This means that the noise
can change from one time period to another. Noise does not have to change in only one of these
ways, but can change spatially, spectrally, and temporally. Measuring noise that changes in these
three ways produces spatio-spectro-temporal data.

In modeling data, determinations must be made as to which mathematical methods are used
to represent the underlying system. Methods with the smallest errors may not properly represent
the physical processes and can ignore relationships within data. Special considerations must be
taken in modeling spatio-spectro-temporal data so that data representation and predictions are
physically meaningful and can accurately represent the acoustic environment, which fully data-

driven models may fail to do. A physics-based modeling approach ensures that non-physical



effects are not allowed. In particular for this research, physics-based models are used to represent
an acoustic environment to preserve spatial, spectral, and temporal relations of noise.

Using limited data further complicates modeling of acoustic environments. Data may be
limited to relatively few locations, to a specific frequency range, to a relatively short time period,
or may be limited in availability or even reliability. Data weighting methods and other signal
processing techniques may be used so that limited data does not disproportionately negative impact

models.

1.1  Part I: Spectro-temporal data modeling

Part I of this dissertation focuses on spectro-temporal data modeling, specifically applied
to detecting and reducing wind noise in outdoor acoustic measurements. Wind noise is a non-
acoustic signal caused by atmospheric conditions [1-2]. Many methods have been used to mitigate
wind noise contamination, including the use of microphone windscreens, signal processing
techniques involving multiple microphones, and removing data when the measured wind speed is
high [3-7]. Even with a windscreen, contamination is only partially reduced. However, wind noise
produces contamination with specific spectral characteristics, even though the amount of
contamination can vary with time [8]. By modeling the spectral characteristics of temporally
varying wind noise, a model was created to automatically detect and remove wind noise in spectral
data obtained with a screened microphone so that non-acoustic wind noise contamination does not

erroneously contribute to the characterization of the acoustic environment.

1.2 Part II: Spatio-temporal data modeling

Part II of this dissertation focuses spatio-temporal data modeling, specifically applied to

modeling traffic volume on a national scale, which is prerequisite to characterizing traffic noise



on a national scale. Traffic volume—or the number of vehicles per time period—changes based
on location and time period, with especially pronounced diurnal (day/night) patterns which can
differ in urban and rural locations. Day-of-week and month-of-year patterns, along with yearly
variation, are also commonly seen, and many models have been created that characterize traffic
volume at particular, targeted spatial locations [9-17]. Using reported traffic counts from the
Federal Highway Administration, which are limited in both amount and in reliability, a traffic
volume model has been created using physically meaningful temporal traffic volume cycles which
can represent and predict the spatio-temporal variation of road traffic across the continental United
States. This traffic volume model is part of a larger model called VROOM, the Vehicular Reduced-

Order Observation-based Model, which can predict traffic noise nationwide with hourly resolution.

1.3  Part III: Spatio-spectro-temporal data modeling

Part III of this dissertation focuses on modeling spatio-spectro-temporal data modeling,
specifically applied to modeling road traffic noise on a national scale. The Federal Highway
Administration uses traffic volume data in the production of the National Transportation Noise
Map [18-19]. Despite road traffic noise being one of the most widespread sources of anthropogenic
noise across the country, this map lacks temporal and spectral variability, and acoustic signals

taken at a particular time can often differ from the average levels reported [20].

In addition to the traffic volume model, a traffic class mix model was created to predict not
just total traffic volume, but traffic volume by traffic class type, which includes combination
trucks, single-unit trucks, and other vehicles. The class mix model uses reported traffic volume of
different traffic class types from Hallenbeck et. al. (1997) [21]. Then, a traffic noise source model

was created to predict source traffic noise near roads using vehicle source emission equations from



the Federal Highway Administration’s Traffic Noise Model 3.0 Technical Manual [22]. Together
these three models comprise VROOM, the Vehicular Reduced-Order Observation-based Model,

which is used to predict traffic noise nationwide with spatial, spectral, and temporal variability.

1.4  Additional notes on chapters and organization

This dissertation includes six papers, including conference proceedings as well as journal
publications. This introduction comprises Chapter 1, and Chapter 8 contains conclusions and final
remarks. The body of the dissertation is divided into three parts, which were described above, with
two papers in each section. Chapters 2-7 each contain one paper, with titles and publication status

as follows:
e PART I: SPECTRO-TEMPORAL DATA MODELING

o Chapter 2: “Automatic classification and reduction of wind noise in spectral data,”
published in the Journal of the Acoustical Society of America Express Letters 1 (6),
063602 (2021).

o Chapter 3: “Application of a spectral-based wind noise reduction method to acoustical
measurements,” published in Proceedings of Meetings on Acoustics, Vol. 45, 045002
(2022).

e PART II: SPATIO-TEMPORAL DATA MODELING
o Chapter 4: “Toward improving road traffic noise characterization: A reduced-order

model for representing hourly traffic volume dynamics,” published in Proceedings of

Meetings on Acoustics, Vol. 45, 045002 (2022).



o Chapter 5: “Toward a dynamic national transportation noise map: Modeling temporal
variability of traffic volume,” submitted to the Journal of the Acoustical Society of

America on 23 May 2023.

o PART III: SPATIO-SPECTRO-TEMPORAL DATA MODELING

o Chapter 6: “Toward a dynamic national transportation noise map: Modeling spectral
traffic noise emission levels,” being prepared for submission to the Journal of the
Acoustical Society of America.

o Chapter 7: “An app for nationwide dynamic traffic noise prediction,” accepted to INTER-
NOISE and NOISE-CON Congress and Conference Proceedings in May 2023,

publication forthcoming.
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Chapter 2

Automatic classification and reduction of wind noise in spectral data

2.1 Introduction

This article focuses on a spectral-based method of automatically detecting and removing
wind noise for a screened microphone. It was selected as an editor’s pick article, and within a few

months of publication received thousands of views and hundreds of downloads.

2.2 Required Copyright Notice

The following article appeared in the Journal of the Acoustical Society of America Express
Letters and may be found at https://doi.org/10.1121/10.0005308, under the title “Automatic
classification and reduction of wind noise in spectral data”. It is reproduced in its original published
format here by rights granted in the Acoustical Society of America Transfer of Copyright
document, item 3.

https://asa.scitation.org/pb-assets/files/publications/jas/jascpyrt-1485379914867.pdf

Citation: Mylan R. Cook, Kent L. Gee, Mark K. Transtrum, Shane V. Lympany, Matt
Calton; Automatic classification and reduction of wind noise in spectral data. JAS4 Express Lett 1
June 2021; 1 (6): 063602. https://doi.org/10.1121/10.0005308

I hereby confirm that the use of this article is compliant with all publishing agreements.

2.3 Published Article



ARTICLE :  asascilation.org/journal/jel @E“’“Ma'k

Automatic classification and reduction of wind noise
in spectral data

cesesssucasseessesrsennsasesteasstensanns

R R R R R P P R R R R TR RN

Mylan R. Cook," Kent L. Gee,"” Mark K. Transtrum,' Shane V. Lympany,” and Matt Calton”
'Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
2Blue Ridge Research and Consulting, LLC, Asheville, North Carolina 28801, USA

mylanray@byu.edu, kentgee@byu.edu, mkt24@by,

yu.edu, shane.lympany@blueridgeresearch.com,
matt.calton@blueridgeresearch.com

Abstract: Outdoor acoustic data often include non-acoustic pressures caused by atmospheric turbulence, particularly below a
few hundred Hz in frequency, even when using microphone windscreens. This paper describes a method for automatic wind-
noise classification and reduction in spectral data without requiring measured wind speeds. The method finds individual fre-
quency bands matching the characteristic decreasing spectral slope of wind noise. Uncontaminated data from several short-
timescale spectra can be used to obtain a decontaminated long-timescale spectrum. This method is validated with field-test
data and can be applied to large datasets to efficiently find and reduce the negative impact of wind noise contamination. ©

2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (hiip://cre
ativecommons.org/licenses/by/4.0/).

|Editor: Tracianne B. Neilsen| https://doi.org/10.1121/10.0005308
Received: 31 March 2021  Accepted: 28 May 2021  Published Online: 18 June 2021

1. Introduction

When collecting acoustic data in uncontrolled environments, extraneous noise signals can contaminate or even invalidate mea-
surements. Contaminating noise can be caused by both acoustic sources and by non-acoustic signals, and therefore correctly
measuring a source signal alone can be difficult. Contamination can be more pronounced in outdoor measurements due to
non-acoustic contamination caused by atmospheric and weather conditions. One particularly challenging source of outdoor
contamination is wind, which not only creates additional acoustic sources—such as the rustling of leaves—but also introduces
non-acoustic pressures, known as wind-induced microphone self-noise or hydrodynamic noise, that contaminate data.

Acoustic signals like the rustling of leaves caused by wind are a part of the acoustic environment and are not
addressed in this paper. Conversely, wind-induced microphone self-noise—hereafter referred to simply as “wind noise”—is a
non-acoustic signal which should not be considered as indicative of the acoustic environment." For outdoor acoustic
measurements in the audible frequency range, the dominant source of wind noise is the stagnation pressure fluctuations caused
by atmospheric turbulence interacting with the microphone diaphragm or windscreen.”” While microphone windscreens can
reduce the overall amount of contamination measured by a microphone, they do not eliminate all wind contamination.

Various methods are used to mitigate the excess pressures resulting from wind noise,” ’ such as using multiple
microphone coherence to eliminate uncorrelated noise.” Another possible solution relies on measuring wind speeds along
with acoustic data so that data taken during times of increased wind can be removed. For example, the National Park
Service (NPS) Natural Sounds and Night Skies Division typically removes any data that were collected when the measured
wind speed exceeds 5m/s.” However, when considering data sets that contain only a single-channel recording and that do
not include measured wind speeds, or even for relatively low but still relevant wind speeds, it can be more difficult to
determine which data are the result of acoustic sources and which are wind-contaminated data.

This paper describes the development of a wind contamination identification and reduction method for
one-third-octave band data taken with unobstructed, outdoor, screened microphones and is based on known spectral
characteristics of wind noise contamination. The method uses the characteristic spectral slope of wind noise to classify
individual spectral frequencies as either contaminated or uncontaminated. When several short-timescale measurements
(e.g., several two-second spectra) are available, a decontaminated long-timescale average spectrum can be calculated (e.g., a
spectrum composed of one-hour median spectral levels at each frequency, also known as an Lsy). This method allows for
automatic calculation of wind-noise-reduced or decontaminated spectra—and thus decontaminated overall sound pressure
levels—for single-microphone data where wind speeds were not measured. By removing the wind-noise-contaminated
data, the method can automatically estimate decontaminated acoustic levels for a wind-noise-contaminated sound field.

4pd-aul|u0™ | Z09E90/8/8¥0EE L/BOES000°0 L/ LT L 0 L/IoPApd-sloie/|sl/ese/Bio diesqndy/:dny wouy papeojumoq

DORCID: 0000-0002-5768-6483.

JASA Express Lett.1(6), 063602 (2021) ©Author(s) 2021. 1,063602-1
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2. Characteristic slope of wind-contaminated spectral data

2.1 Theory

Wind noise is caused by non-acoustic turbulent pressure fluctuations on a microphone diaphragm. The sources of these
pressure fluctuations may include turbulence that occurs naturally in the atmosphere or wake turbulence generated by the
microphone and windscreen. In outdoor measurements, atmospheric turbulence is the dominant source of wind noise.’
The magnitude of the pressure fluctuations produced by atmospheric turbulence depends on the wind speed, height above
the ground, stability of the atmosphere, and frequency.

The frequency spectrum of atmospheric turbulent pressure fluctuations can be grouped into three frequency
ranges: the energy-containing range, the inertial subrange, and the dissipation range. The energy-containing range occurs
at low infrasonic frequencies (often less than a few Hz), which are below the frequencies of interest for the outdoor acous-
tic measurements considered in this paper. In the dissipation range, turbulent fluctuations rapidly dissipate into heat, so
wind noise is typically negligible compared with the acoustic sources or instrumentation noise. The frequency of the dissi-
pation range increases with wind speed and typically occurs above 100-1000 Hz.

For most outdoor acoustic measurements, contaminating wind noise in the inertial subrange is of primary
importance. The inertial subrange lies between the energy-containing range and the dissipation range and can occur
between high infrasonic and mid-range audible frequencies. In the inertial subrange, the stagnation pressure fluctuations
caused by atmospheric turbulence interacting with the microphone diaphragm or windscreen are proportional to f~5/3,
where f is the frequency. Turbulent-turbulent pressure fluctuations, which are proportional to f~7/3, are negligible com-
pared with the stagnation pressure fluctuations.” Thus, the magnitude frequency spectrum of wind noise varies linearly
with logarithmic frequency, i.e., SPL o log(f), where SPL is the sound pressure level created by wind noise.

Windscreens are often used in an attempt to reduce wind noise in outdoor acoustic measurements. The pressure
measured by a microphone at the center of a windscreen is a combination of the acoustic pressure and the turbulent pres-
sure fluctuations as mitigated by the windscreen. Within the inertial subrange, the turbulent pressure fluctuations vary lin-
early with the fractional-octave band, which produces a characteristic spectral slope indicative of wind noise. However, the
characteristic spectral slope changes at a crossover frequency of f, = V/(3D), where V is the mean wind speed and D is
the windscreen diameter.'” At frequencies below f, in the inertial subrange, the turbulent pressure fluctuations are coherent
over the entire surface of the windscreen, and the characteristic spectral slope is —6.7 dB per decade.” At frequencies above
fe in the inertial subrange, the turbulent pressure fluctuations are incoherent over the surface of the windscreen, and the
characteristic spectral slope is —26.7dB per decade.”'' This result implies that a windscreen reduces wind noise by
“averaging out” incoherent turbulent pressure fluctuations over its surface.”’

For many outdoor acoustic measurements with reasonably low wind speeds compared to the size of the wind-
screen, the crossover frequency occurs at infrasonic frequencies, and the characteristic spectral slope is —26.7 dB per
decade at audible frequencies. For example, for a windscreen with a diameter of 9 cm at a wind speed of 5.4 m/s, the cross-
over frequency is f. =20Hz. Although an increase in wind speed results in higher measured sound pressure levels, the
characteristic spectral slope is independent of wind speed above the crossover frequency. Thus, if the crossover frequency
is not greater than the lowest frequencies of interest, the characteristic spectral slope can be used to detect the presence of
wind noise in acoustic measurements without requiring knowledge of the wind speed.

2.2 Current work

Data for this paper were collected in a remote, barren location in a Utah desert with few ambient acoustic sources, while a
powered SOUNDBOKS speaker was used to generate a brown noise signal. The low-frequency roll-off of the speaker
occurs around 50 Hz, below which there was no dominant acoustic source, and so measured levels are primarily the result
of wind noise. Brown noise was chosen as the source signal because its characteristic slope—approximately —32dB per
decade for the type of brown noise used here—is similar to that of wind noise, and so the limitations of correctly classify-
ing wind noise-contaminated data could be investigated. A GRAS 40-AE 12.7mm diameter microphone with a GRAS
AMO0069 9-cm diameter porous foam ball windscreen was placed on a tripod at a height of approximately 1.5 m. Recorded
data totaled approximately 75 min after removing time intervals where data were contaminated by airplanes flying over-
head. Wind speeds were measured using a Kestrel 5500 weather meter at the sound measurement height with a two-
second temporal resolution. Short-timescale spectra were likewise calculated for each two-second interval so that each
spectrum has an associated measured wind speed.

Figure 1(a) shows the short-timescale one-third octave band spectra collected, each colored by its respective mea-
sured wind speed. Levels increase at low frequencies for higher wind speeds. Greater wind speeds also cause contamination
to reach higher in frequency—at 0.7 m/s the contamination reaches only to about 25 Hz, while for a wind speed of 4.3 m/s
the contamination reaches up to around 40 Hz. Figure 1(b) shows a few representative spectra, and how each spectral
slope at low frequencies, regardless of measured wind speed, follows the characteristic slope of wind noise in the inertial
subrange; the increase in wind speed correlates with an increase in overall levels, while the slope of —26.7 dB per decade
remains unchanged.
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Fig. 1. Two-second spectra colored by measured wind speed (a). As wind speed increases, levels at low frequencies increase. The acoustic sig-
nal consisted of brown noise, while other measured levels, particularly at low frequencies, are primarily the result of wind noise contamina
tion. A few selected spectra are shown (b), along with dashed lines showing the characteristic slope of wind noise, which is seen to fit the data.

3. Classifying contamination

Identifying contamination in screened microphone data processed using one-third-octave bands is accomplished by finding
data which approximates the characteristic wind noise slope of —26.7dB per decade. However, measured spectra typically
include contributions from both acoustic signals and wind noise, so the measured data will rarely fit the characteristic
wind noise slope precisely. Therefore, it is necessary to find data which approximately match the characteristic slope.

3.1 Data transformation

The complexity of finding points that fall along the same line can be greatly reduced by transforming the data. Spectral
data consist of several two-dimensional data points, each giving the sound pressure level in decibels for a particular loga-
rithmic fractional-octave band frequency. By using the characteristic wind-noise slope, these data are transformed into
single-dimensional, linear data to find points that approximately match the characteristic slope.

The transformation can be considered as a projection of each data point along a line with the characteristic slope
onto a vertical axis, similar to finding a y-intercept value for data points in a two-dimensional, linear space. As any two
points can be connected by a straight line, we can use the analytic slope to find the point on the vertical axis that connects
with each data point. For an illustration of the transformation method see Fig. 2(a). Note that the intercept need not be
calculated at a vertical line going through the origin (ie., 10° = 1Hz in logarithmic frequency space); the absolute differ-
ence between any two intercept values will be equal when projecting onto any vertical —or even horizontal (in this case
logarithmic)—axis. Points that yield the same intercept value necessarily lie along the same line, and points with similar
intercept values lie approximately on the same line. The differences between intercept values are then used to find points
that approximate the characteristic wind noise slope.

3.2 Classifying contamination

Ideally, all contaminated data for a particular spectrum would yield the same intercept value; in practice, however, there
will be some standard deviation between intercept values, depending on the particular data used. Some maximum standard
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Fig. 2. For a particular wind noise contaminated spectrum, the process of finding contaminated data is shown. Plot (a) shows the point projec-
tion onto the vertical axis using the characteristic wind noise slope. Points have been colored based on their intercept values, meaning that
similar colored points are approximately on the same line, as seen for all frequencies below 40 Hz. Plot (b) shows how these points are all
labeled as contaminated and shows the best fit line with the characteristic wind noise slope fitting these data points. The measured wind speed
for this spectrum was 2.3 m/s. A spectrum measured with no contaminating wind noise is shown for reference in plot (b).
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deviation needs to be chosen—a default of 2dB will generally suffice—so that intercept values near one another can be
considered as fitting the characteristic slope.

In the inertial subrange, data points with wind contamination will give the lowest intercept values. Any acoustic
signal will increase overall levels, and therefore intercept values. While this is not generally true for frequencies in the dis-
sipation range, in practice the acoustic noise floor and/or acoustic signal will generally be louder than the dissipation range
wind-contaminated levels, and so inertial subrange wind-contaminated frequencies will still give the lowest intercept val-
ues. However, it is still important to account for potential low outliers in intercept values.

The classification algorithm finds a tight grouping of points among the lowest intercept values, allowing for pos-
sible low outliers. By iteratively adding points with similar intercept values, the average intercept value is calculated, along
with the standard deviation of the differences. The absolute differences of intercept values are used as they are invariant to
the vertical axis location, unlike intercept values themselves. Additional points are added until the standard deviation of
intercept differences exceeds the determined maximum standard deviation; the default standard deviation of 2 dB requires
the grouping of intercept values have a standard deviation of no more than 2 dB. This process yields a group of points
with similar intercept values. This is shown in Fig. 2(b), where all frequencies below 40Hz were found to be
contaminated.

The data giving the grouped intercept values all lie along a line with the characteristic slope of —26.7dB per
decade. These points can therefore all be classified as contaminated data. If determined necessary, data points that are low
outliers among the intercept values can also be classified as contaminated. In addition to finding contaminated points, this
process also finds a best-fit intercept value, which determines the line that the data approximate. This is shown in Fig. 2(b).

This method for classifying wind noise contamination assumes a constant characteristic spectral slope of —26.7 dB
per decade for wind noise contamination, so the lower frequency limit is determined by the crossover frequency f;, but
makes no further assumptions about the frequency range of contamination. Contaminated frequencies need not be adjacent
to one another, and no cutoff frequency must be specified. Additionally, no assumptions are made about the frequency out-
put of the source signal. Thus, the method can classify wind noise contamination in measured signals that contain acoustic
spectra and wind noise spectra in overlapping frequency ranges, even when the source signal—which could be broadband,
band limited, tonal, or even more complex—is unknown.

3.3 Experimental validation

The data considered previously are used to validate the classification method. Each frequency band from every two-second
spectrum is individually classified as either contaminated or uncontaminated. Figure 3(a) shows the results for all of the
spectra together, while Fig. 3(b) shows the results for a few particular spectra. While there are some data points labeled as
uncontaminated at lower frequencies with high levels, the classification is accurate for most spectra. Between 12% and
30% of the data below 25 Hz were classified as uncontaminated, corresponding to the amount of time the measured wind
speed was below 1.1m/s, showing that the algorithm is successfully able to find wind contamination. More than 99% of
the data above 50 Hz were classified as uncontaminated, and so very little of the acoustic signal was incorrectly classified
as contaminated.

One limitation of the method is that some acoustic data can be misclassified as wind noise. A single two-second
brown noise spectrum, with a wind speed of 4.1 m/s, was classified as contaminated up to 1kHz, showing that the classi-
fier can mistake brown noise for wind-noise contamination. However, this only occurred for a single two-second spectrum
(where the lower frequencies were indeed contaminated), meaning that less than 0.05% of the brown-noise spectra, despite
having a similar characteristic slope as wind noise, were classified as contaminated.
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Fig. 3. Two-second spectra classification results for the same data shown in Fig. 1. While there are some high-level, low-frequency data classi-
fied as uncontaminated, seen in (a), much of the wind-contaminated data have been classified correctly. The low-level, low-frequency data are

seen to be classified as uncontaminated, as are nearly all data at frequencies above 50 Hz. For clarity, a few distinct spectral classification
results are shown in (b), where contamination is correctly classified below the low-frequency roll-off of the source.
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Further validation of the classification algorithm’s success can be obtained by calculating the correlation coeffi-
cient between the measured wind speed and the best-fit intercept value for each spectrum. Higher wind speeds should
result in larger best-fit intercept values, and perfect correlation would yield a value of 1. The correlation value calculated is
0.9, which indicates that this is indeed the case—an increase in wind speed results in a higher intercept value. The con-
tamination found is a result of wind noise.

4. Removing contamination

In addition to classifying data, a decontaminated average spectrum for a longer timescale can be calculated by using the
results of the contamination classification method on short-timescale spectra. As frequency bands are classified as contami-
nated or uncontaminated individually, the average spectrum is calculated for each frequency independently. Figure 4 shows
three different versions of an Lsy (median level): (1) using only the data with a measured wind speed of 0 m/s, (2) using
all of the data, and (3) using only the data classified as uncontaminated. The 0 m/s Lsy represents the sought-after result
where the signal is a result of the acoustic sources in the absence of wind noise. All three types of Lsy correctly measure
the speaker signal above 50 Hz, but below the speaker roll-off the 0 m/s Lsy represents the acoustic noise floor. The spectral
slope at low frequencies of the all-data Lsy is about —26.7 dB per decade, as there were no relevant acoustic sources in this
low frequency range, and so the data is a result of wind noise alone. The decontaminated Ls, is similar to the 0m/s Ls, in
both spectral slope and overall levels.

1t should be noted that removing several contaminated data can overemphasize short-timescale acoustic signals:
if a low-frequency source of similar level as the wind noise were emitting sound for only 20 min during an hour, but
50 min of data were contaminated at a particular frequency, the level at this frequency would not represent the true aver-
age non-wind-contaminated sound level for the entire hour; the source signal may be entirely removed, present in every
non-contaminated spectra, or anything in between the two. This is a risk of removing data, though if the data discarded
were contaminated, keeping them will also result in inaccurate sound levels.

These results show that by removing wind-contaminated data, the average spectrum calculated is much more
representative of what would be measured in the absence of wind noise. While the 0m/s Ls, was obtained by using the
measured wind speed, the decontaminated Ls, was found using only spectral data and does #ot require having a measured
wind speed. This method has myriad applications—while some measurements contain short-timescale measured wind
speeds, many others do not, and the recorded spectra may contain high levels of wind contamination. This method can be
applied to experimental data, past and future, that do not have measured wind speed, and can automatically detect and
remove the effects of wind noise.

5. Conclusion and broader applications

The wind noise contamination classification and reduction algorithm described herein has broad application for validating
and removing non-acoustic noise from experimental data. Computationally efficient and simple to apply, the method
requires only spectral levels, and thus can be applied to data whether or not wind speeds were recorded. Whether using
the highest quality recording equipment or a simple hand-held device, this method can improve measured spectra by
removing non-acoustic pressures.

Finding wind noise contamination in acoustic data is not a simple endeavor. While not without the possibility of
error, this method has proven useful in simply and elegantly identifying and removing wind noise from spectral data. For
data taken with a windscreen (and for frequencies within the inertial subrange), wind noise creates a characteristic slope
of —26.7dB per decade. By using this characteristic spectral slope, this method can determine which frequencies in a spec-
trum are likely contaminated by wind noise.

Detection of wind noise is performed automatically, and so the method can quickly indicate which frequencies
in a spectrum are probably contaminated. Beyond classification, when multiple short-timescale spectra are available, a
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Fig. 4. Average spectra for the duration of the measurement using data measured with no wind, using all of the data, and using only the data
classified as uncontaminated. Using the uncontaminated data alone results in a decontaminated average spectrum much nearer to the average
spectrum seen with no wind but does not require having a measured wind speed.
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decontaminated average spectrum can be calculated by removing contaminated data so that the non-acoustic wind noise
pressures do not erroneously increase average levels. Possible applications are extensive because the method does not
require measured wind speeds, and so can be performed on spectra for which other information is not readily available.
This wind noise contamination detection and reduction method allows for a simple yet efficient way to identify and
remove contaminated data.
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Chapter 3

Application of a spectral-based wind noise reduction method to acoustical
measurements

3.1 Introduction

This article focuses on applications of the spectral-based wind noise reduction method
described in Chapter 2. It was selected for first place in the Physical Acoustics Student Paper

Competition 2021 (Seattle, WA).
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here by rights granted in the Acoustical Society of America Transfer of Copyright document, item
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Wind-induced microphone self-noise is a non-acoustic signal that may contaminate outdoor acoustical
measurements, particularly at low frequencies, even when using a windscreen. A recently developed
method [Cook et al., JASA Express Lett. 1, 063602 (2021)] uses the characteristic spectral slope of wind
noise in the inertial subrange for screened microphones to automatically classify and reduce wind noise in
acoustical measurements in the lower to middling frequency range of human hearing. To explore its uses
and limitations, this method is applied to acoustical measurements which include both natural and
anthropogenic noise sources. The method can be applied to one-third octave band spectral data with
different frequency ranges and sampling intervals. By removing the shorter timescale data at frequencies
where wind noise dominates the signal, the longer timescale acoustical environment can be more accurately
represented. While considerations should be made about the specific applicability of the method to
particular datasets, the wind reduction method allows for simple classification and reduction of wind-
noise-contaminated data in large, diverse datasets.
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M. R. Cook et al. Spectral wind noise reduction

1. INTRODUCTION

Extrancous noise can contaminate or invalidate outdoor acoustical measurements. Contaminating noise
can be caused by both acoustic sources and by non-acoustic signals, and therefore correctly measuring a source
signal can be difficult. One particularly challenging source of outdoor contamination is wind, which not only
creates additional acoustic sources—such as the rustling of leaves—but also introduces non-acoustic pressures,
known as wind-induced microphone self-noise or hydrodynamic noise, that corrupt data.

Acoustic signals like the rustling of leaves caused by wind are a part of the acoustic environment and are
not addressed in this paper. Conversely, wind-induced microphone self-noise—hereafter referred to simply as
“wind noise”™—is a non-acoustic signal which should not be considered as indicative of the acoustic
environment.! For outdoor acoustic measurements in the audible frequency range, the dominant source of wind
noise is the stagnation pressure fluctuations caused by atmospheric turbulence interacting with the microphone
diaphragm or windscreen.>? While microphone windscreens can reduce the overall amount of contamination
measured by a microphone, they do not eliminate all wind contamination.

Various methods are used to mitigate the excess pressures resulting from wind noise,*’ such as using
multiple microphone coherence to eliminate uncorrelated noise.® Another possible solution relies on measuring
wind speeds along with acoustic data so that data taken during times of increased wind can be removed. For
example, the National Park Service (NPS) Natural Sounds and Night Skies Division typically removes any
data that were collected when the measured wind speed exceeds 5 m/s.> However, when considering datasets
that contain only a single-channel recording and that do not include measured wind speeds, or even for
relatively low but still relevant wind speeds, it is more difficult to determine which data are the result of
acoustic sources and which are wind-contaminated data.

A recent paper was published to describe the development of a wind contamination identification and
reduction method for one-third-octave band data taken with unobstructed, outdoor, screened microphones,
based on known spectral characteristics of wind noise contamination.!® The method uses the characteristic
spectral slope of wind noise to classify individual spectral frequencies as either contaminated or
uncontaminated. When several short-timescale measurements (e.g., several two-second spectra) are available,
a decontaminated long-timescale average spectrum can be calculated (e.g., a spectrum composed of one-hour
median spectral levels at each frequency, also known as an Lsg). This method allows for automatic calculation
of wind-noise-reduced or decontaminated spectra—and thus decontaminated overall sound pressure levels—
for single-microphone data where wind speeds were not measured. By removing the wind-noise-contaminated
data, the method can automatically estimate clean or decontaminated acoustic levels for a wind-noise-
contaminated sound field.

This paper further explores the usefulness and limitations of the classification and reduction method by
applying the method to spectral datasets where exact acoustic source characteristics and wind speeds are
unknown. Different sized windscreens are used, and both natural and anthropogenic sources are considered.
The method is able to remove not just high levels of low frequency wind noise contamination, but also lower-
level contamination and wind noise at frequencies between multiple band-limited acoustic sources.

2. WIND NOISE THEORY

Wind noise is caused by non-acoustic turbulent pressure fluctuations on a microphone diaphragm. The
sources of these pressure fluctuations may include turbulence that occurs naturally in the atmosphere or wake
turbulence generated by the microphone and windscreen. In outdoor measurements, atmospheric turbulence is
the dominant source of wind noise.> The magnitude of the pressure fluctuations produced by atmospheric
turbulence depends on the wind speed, height above the ground, stability of the atmosphere, and frequency.

The frequency spectrum of atmospheric turbulent pressure fluctuations can be grouped into three
frequency ranges: the energy-containing range, the inertial subrange, and the dissipation range. The energy-
containing range occurs at low infrasonic frequencies (often less that a few hertz), which are below the
frequencies of interest for the outdoor acoustic measurements considered in this paper. In the dissipation range,
turbulent fluctuations rapidly dissipate into heat, so wind noise is typically negligible compared with the
acoustic sources or instrumentation noise. The frequency of the dissipation range increases with wind speed
and typically occurs above 100-1000 Hz.

Proceedings of Meetings on Acoustics, Vol. 45, 045002 (2022) Page 2

18

4pd-auIuo™ L "Z00SY0/682 129 L/9TS L0002/ L2 L L 'O L/IopApd-sjoie/ewod ese/Bio die sqnd)/:dpy woly pepeojumod



M. R. Cook et al. Spectral wind noise reduction

For most outdoor acoustic measurements, contaminating wind noise in the inertial subrange is of primary
importance. The inertial subrange lies between the energy-containing range and the dissipation range and can
occur between high infrasonic and mid-range audible frequencies. In the inertial subrange, the stagnation
pressure fluctuations caused by atmospheric turbulence interacting with the microphone diaphragm or
windscreen are proportional to f~%/3, where f is the frequency. Turbulent-turbulent pressure fluctuations,
which are proportional to f~7/3, are negligible compared with the stagnation pressure fluctuations.3'! Thus,
the magnitude frequency spectrum of wind noise varies linearly with logarithmic frequency, i.e., SPL «
log(f), where SPL is the sound pressure level created by wind noise.

Windscreens are often used in an attempt to reduce wind noise in outdoor acoustic measurements. The
pressure measured by a microphone at the center of a windscreen is a combination of the acoustic pressure and
the turbulent pressure fluctuations as mitigated by the windscreen. Within the inertial subrange, the turbulent
pressure fluctuations vary linearly with the fractional-octave band, which produces a characteristic spectral
slope indicative of wind noise. However, the characteristic spectral slope changes at a crossover frequency of
f- =V/(3D), where V is the mean wind speed and D is the windscreen diameter.!?> At frequencies below f. in
the inertial subrange, the turbulent pressure fluctuations are coherent over the entire surface of the windscreen,
and the characteristic spectral slope is -6.7 dB per decade.® At frequencies above f. in the inertial subrange,
the turbulent pressure fluctuations are incoherent over the surface of the windscreen, and the characteristic
spectral slope is -26.7 dB per decade, shown in Figure 1.3!3 This result implies that a windscreen reduces wind
noise at these frequencies by “averaging out” incoherent turbulent pressure fluctuations over its surface.>?

Frequency

-6.7 dB/decade

on

-26.7 dB/decade

"7 "7 Dissipation Frequency

One-Third Octave Spectrum, dB

Crossover Frequency

1
'
1
1
1

Frequency, Hz

Figure 1. Visualization of spectral wind noise characteristics in the inertial subrange. Above the crossover
[frequency and before the dissipation range, the characteristic slope of wind noise is -26.7 dB per decade.

For many outdoor acoustic measurements with reasonably low wind speeds compared to the size of the
windscreen, the crossover frequency occurs at infrasonic frequencies, and so the characteristic spectral slope is
-26.7 dB per decade at audible frequencies. For example, for a windscreen with a diameter of 9 cm at a wind
speed of 5.4 m/s, the crossover frequency is f.= 20 Hz. Although an increase in wind speed results in higher
measured sound pressure levels, the characteristic spectral slope is independent of wind speed above the
crossover frequency. Thus, if the crossover frequency is generally below the lowest frequencies of interest, the
characteristic spectral slope can be used to detect the presence of wind noise in acoustic measurements without
requiring knowledge of the wind speed.

3. WIND NOISE CLASSIFIER

An implementation of the wind noise classification and reduction method is described in detail by Cook et
al.!'® Given a particular spectrum, the algorithm secks to find frequencies whose levels align with the
characteristic spectral slope of wind noise of -26.7 dB per decade. Frequency data that match this spectral
slope within a couple of decibels are classified as contaminated, while the other frequencies, which can be
between contaminated frequencies, are classified as clean. No knowledge of microphone and windscreen
setup, acoustic sources, suspected frequency range of wind contamination, or wind speed is necessary. By
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classifying multiple short timescale spectral data, longer timescale average spectra can then be calculated using
only clean data. The automatic classification and reduction of wind noise can give a more accurate
representation of the acoustic environment than that calculated using all the data.

To illustrate the effectiveness of this method, the variable wind speed was measured while recording a
constant acoustic source, as described in Cook et al.'. Each 1-second spectrum is shown in Figure 2, colored
by wind speed. At lower frequencies, increase in wind speed causes an increase in amplitude, though the
spectral slope remains the same. The maximum crossover frequency during the data collection, based on
windscreen size and maximum measured wind speed, was approximately 18 Hz, while on average was closer
to 4 Hz, which is below the lowest 1/3 octave band used of 6.3 Hz. While it is not necessary for the crossover
frequency of all 1-second spectra to be below the lowest frequency of interest, default algorithm parameters
should be changed if thre crossover frequency is too high due to high wind speeds.

The method is able to correctly classify the contamination, and remove contaminated data when
calculating the average spectrum. For comparison, two other average spectra are shown: one using all of the
data, where the high levels at lower frequencies are the result of wind noise, and a second using only spectra
where the measured wind speed was 0 m/s. The spectrum calculated using only the clean data approximates
the no-wind spectrum, which is a more accurate representation of the acoustic environment than the average
spectrum calculated from all of the data, as much of the data were contaminated by wind noise.

Calculated L50s

&
i«

No wind
All data
—-=-=—Clean data

»

e
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- N
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Measured wind speed, m/s
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Figure 2. Wind contamination reduction results for a constant brown noise source. Below 50 Hz measured levels
are primarily caused by wind contamination. The reduction method median level approximates the median level
when wind speeds of 0 m/s were measured, indicating that the method is able to correctly classify frequencies
where spectral data are a product of wind noise rather than acoustic noise.

In application, acoustic sources and wind speeds may not be known, and so while it has been shown that
this method is effective with a known source and known wind speed, it is also instructive to show how the
wind noise classification and reduction method works on spectral data of non-controlled sources with
unknown wind speeds. Two different microphone setups are considered, which use different sizes of wind
screens in different environments.

4. APPLICATION OF CLASSIFIER TO DATA

A. NATURAL AMBIENT ENVIRONMENT

Acoustic data were taken in the Bear River Migratory Bird Refuge using a ground-based microphone setup
with a 30 cm windscreen.'* While nearly 6 months of data were collected and run through the wind noise
classifier, this paper focuses on a particular 90-minute period on the afternoon of May 10%, 2021, when there
was evidence of variable amounts of wind noise contamination. Several natural and variable acoustic sources,
both biotic and abiotic, were measured during this period. The wind noise classification and reduction method
is applied to these spectral data and results are investigated.
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The left plot in Figure 3 shows a spectrogram for the 90-minute period. The wind noise classification
method is applied to each 1-second spectrum, and frequencies that show evidence of wind noise contamination
are removed, resulting in the spectrogram in the right plot of Figure 3. Wind noise contamination is primarily
found for frequencies below 160 Hz. While there appears to be higher-level wind noise after about 18:08, the
classifier is able to not only classify these high levels of contamination, but also lower levels of wind noise
contamination prior to this. With some exceptions, much of the visible wind noise in the spectrogram has been
automatically removed successfully.

Something important to note is that there is additional noise in the 160-2500 Hz range after about 18:08,
during periods of apparent high wind speed. This likely caused by the rustling of plants when there is wind,
which itself is not wind noise contamination (wind-induced microphone self-noise) but is an actual acoustic
source which is only present when there is wind. This noise is part of the acoustic environment, caused by
physical sound sources, and should not be considered wind noise contamination. Because it is a physical noise
source, it does not match the characteristic slope for wind noise and is not removed.
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Figure 3. Wind noise classification applied to 90 minutes of ambient acoustic recordings at the Bear River
Migratory Bird Refuge.

The classification alone, while useful in its own right, is further used to calculate median or Lsg acoustic
spectra. Median spectral levels are calculated for 15-minute intervals, as well as for the entire 90-minute
duration. These can be compared to the median spectral levels for each corresponding time period when using
all the data, and are shown in Figure 4. In each 15-minute period, it can be seen that the levels of the average
spectrum of the clean data are less than or equal to the levels of the average spectrum of all the data. When
applied to the entire 90-minute period, a reduction of up to 25 dB occurs at the lowest frequencies.
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Figure 4. Wind noise reduction applied to the spectral data shown in Figure 3. Results are shown for 15-minute
intervals, along with results for the entire collection period. For the clean data average, frequencies that were
contaminated for more than 75% of the measurement period are omitted.

It is important to note than when calculating average levels using only the clean data, each frequency can
be calculated using a different percentage of the total time period. Because wind noise contamination is not
found at frequencies above 200 Hz in these data, the average spectrum at those frequencies represents 100% of
the time duration; at lower frequencies, however, some of the data are contaminated. The exact amount of
contaminated data depends on the particular frequency. If a high percentage of the data are contaminated, then
it is possible that the ‘average” spectrum at a particular frequency could be dominated by a very short time
period. For this reason, frequenices where more than 75% of the data were classified as contaminated do not
return an average level. For example, this is the case for frequencies below 100 Hz between 18:15-18:30.

Notably, if all spectral data had been removed when wind noise contamination was present instead of just
the frequencies that were contaminated, the peak at 500 Hz—which is only present during time periods with
higher wind—would also have been removed. This evidences that spectra calculated by the wind noise
reduction method can give a more accurate representation of the acoustic environment than removing entire
spectra that contain wind-contaminated data, all without having a measured wind speed.

In this natural ambient environment, the observed acoustic sources varied during data collection, and some
acoustic sources were created by wind. Possible issues with too much of the data being contaminated by wind
noise were seen, as well as how average spectra are calculated for a different percentage of the data collection
time at different frequencies. The wind noise reduction method is able to preserve the acoustic sources while
removing wind noise contamination, even though the wind speed during the collection was unknown.

B. ANTHROPOGENIC NOISE

To investigate other successes and limitations of the wind noise classification and reduction method, data
containing anthropogenic noise is used. Acoustic data were taken on farmland using a microphone at a height
of 1.5 m with a 9 cm diameter ball windscreen. This setup is more prone to wind noise contamination, due
both to the microphone being higher off the ground, where wind speeds are greater, and to the smaller
windscreen, where the crossover frequency is higher. However, for this particular time period, wind speeds
were rather low, and so no more wind contamination is seen here than in the previous data set.
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Figure 5 shows spectrograms for the two hours of data used, where the right plot removes data that were
classified as contaminated. Sound sources observed include farm machinery, which exhibit some bandlimited
or tonal behaviour, primarily at 13-16 Hz, and also at 31.5 Hz and 50 Hz. Acoustic data are consistent and of
low level at higher frequencies, and so the frequency range shown is limited to below 315 Hz.

All data Clean data

Frequency, Hz
Frequency, Hz

0L I

| ’ I |
| L
15:00 15:30 16:00 16:30

Time Apr 06, 2020 Time Apr 06, 2020
Figure 5. Wind noise classification applied to 2 hours of spectral data taken on farmland near machinery.

35

Median spectral levels are obtained for 20-minute intervals, and are shown in Figure 6. For each interval,
the peaks at 13-16 Hz, 31.5 Hz, and 50 Hz are maintained, while wind noise at other frequencies—below,
above, and also between the peaks—is removed. Note particularly 15:35-15:55, where all frequencies below
31.5 Hz except for 13-16 Hz are removed. These results show that source signals that are in the same
frequency range as wind noise can be retained even when the wind noise is removed. This is significant,
because even when there is wind noise, if the source levels are of higher than wind noise, the source signal is
not removed with the wind noise.

In contrast to the previous data set, the average spectrum of the clean data is not always of equal or lesser
level than the average spectrum of all the data. This is seen in the 31.5-80 Hz range for several of the time
periods. This can happen in at least two possible situations: (1) when ambient sound levels are positively
correlated with wind speed, e.g., a wind vane creaking when wind speeds pick up, or (2) when low levels of
wind noise are removed but high levels of wind noise are not removed. In this case it is possible that the
machinery was slightly louder when wind speeds were higher, as the higher levels of wind noise contamination
appear to be removed successfully, though this is not certain. While results differ by less than 1 dB for this
data set, this is an important limitation of the method.

Opverall, sound levels at lower frequencies were reduced by up to 8 dB, while source levels were accurately
maintained even during periods with high wind noise contamination. By removing the wind noise
contamination, the peak at 13-16 Hz is seen to be more pronounced due to the reduction of wind noise at 10 Hz
and below.
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Figure 6. Wind noise reduction applied to the spectral data shown in Figure 5. Results are shown for 20-minute
intervals, along with results for the entire collection period.

S. CONCLUSION

This paper has explored some application and limitations of the wind noise classification and reduction
method published by Cook et al.'” to spectral data where wind speed is unknown. The wind noise classification
and reduction method is able to automatically detect and remove the negative effects of wind noise
contamination in spectral data. While some care must be taken to ensure that spectral data arc above the
crossover frequency (when the windscreen is small compared to the wind speed), and while data must be taken
using a windscreen, this method can be applied to many kinds of spectral data, even when specifics of data
collection are unknown.

By using the characteristic slope of wind noise, levels at different frequency bands are independently
classified so that acoustic data present during time periods with wind, and acoustic data in the same frequency
range as wind noise contamination, is retained. This allows average spectra to be calculated that are better
representative of the acoustic environment than those calculated by removing time periods of wind
contamination and can be performed automatically without requiring a measured wind speed.

In practice, it may be infeasible to measure wind speeds while taking acoustic data. Even when wind
speeds can be measured simultaneously, it is possible for wind speed measurement hardware to contaminate
acoustic measurements. While the wind noise classification and reduction method is not applicable in every
situation, it provides a simple, clegant way to classify and remove wind noise contamination in spectral data. It
can be applied to spectra during data processing, and is performed automatically with minimal to no user input.
This method can help anybody to improve outdoor measurements by removing wind noise from acoustic data.
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Chapter 4

Toward improving road traffic noise characterization: A reduced-order model
for representing hourly traffic volume dynamics

4.1 Introduction

This article describes the development of the traffic volume model, which is the
foundational model developed for VROOM, the Vehicular Reduced-Order Observation-based
Model. This model gives a concise way to represent and predict traffic volume anywhere, requiring

just nine principal components. This article describes the model itself, while model and prediction

errors are explored in the article in Chapter 5.
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spectra. A reduced-order model using only nine principal components represents much of the temporal vari-
ability in traffic counts while requiring only 0.1% as many values as the original hourly traffic counts. This
reduced-order model can be used in conjunction with sound mapping tools to predict traffic noise on hourly,
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1. INTRODUCTION

Road noise can be a significant component of total anthropogenic noise in many developed areas and can
have a large impact on diverse acoustic environments. Not only humans are adversely affected by loud road
noise,' but also other species.>* Road noise cannot be effectively measured along every roadside, so accurate
modeling of road noise is necessary for improving road noise characterization.

Because overall traffic noise is correlated with traffic volume rates, traffic noise characterization can depend
heavily on characterization of traffic volume, along with other parameters such as vehicle speed, pavement type,
road inclination, and land cover*’. The National Transportation Noise Map published by the Burcau of
Transportation Statistics uses annual average daily traffic (AADT) counts to predict an annually and daily
averaged sound level near major roads across the continental United States (CONUS)®. While this map is useful
for determining average sound levels, it lacks temporal variability, and so may not reflect the actual sound level
for a particular time of the day or night.

Traffic volume can show large variation, not only diurnally but also from weekday to weekend and from
summer to winter. A dynamically varying representation of traffic noise would be useful for determining hourly
sound levels across CONUS. Characterizing the dynamic nature of traffic volume is not only useful for
determining the changes in sound levels at locations where traffic counts are known but can also lead to a model
for predicting variable traffic volume at other locations, and therefore predicting sound levels across CONUS
for particular time periods.

Modeling traffic volume can be done in various ways, though a simple model can be made using vehicle
counts at various locations”®. Each year, the Federal Highway Administration tabulates hourly traffic counts
recorded at thousands of traffic monitoring sites across the United States. Each site can record up to 8760 traffic
counts corresponding to cach hour of the year (or 8784 for leap years). While this gives a detailed representation
of hourly traffic volume for individual sites, this representation requires thousands of individual hourly counts
for each location, and using vehicle counts to predict counts at other times or at other locations is not
straightforward. Methods such as wavelet decomposition? can be used to include temporal variability. In this
paper, another possible method that can be used to predict hourly vehicle counts, hereafter used synonymously
with traffic volume, at other locations is considered.

Treating the vehicle volume as a time-dependent signal enables signal processing techniques to be applied.
The approach explained in this paper uses Fourier analysis and principal component analysis to give a reduced-
order model to represent and predict vehicle counts'’. This representation requires a total of only nine variables
at a site to determine hourly traffic counts for any day of any year, a total of 0.1% as many variables as the hourly
counts for a single year.

The approach for this paper uses hourly-resolution vehicle counts, and does not consider shorter-term traffic
volume behavior, though it may be possible to adapt this approach for shorter timescales.!!!* This approach also
creates a method to predict hourly vehicle counts at other locations using geospatial or location-specific features.
This reduced-order model can be used in conjunction with sound mapping tools to predict traffic noise across
the continent on hourly, rather than time-averaged, timescales. '

2. DATA USED FOR ANALYSES

The Federal Highway Administration obtains hourly traffic counts from thousands of traffic monitoring sites
across the United States. Data reported between 1 January 2015 and 31 December 2018 are used in this paper.
However, not all stations report counts for each hour during this time period. Additionally, some of the data
reported contain erroneous counts. Initial automatic checks found probable errors in data reported at several
sites, which were entirely removed from the dataset. The remaining data come from 5695 sites across CONUS
and are further analyzed for useability.

Within the remaining data set, some sites can still contain possible erroneous counts, and site-reported data
are not equally reliable. For sites that report data consistently, reported values are more reliable, while sites that
only report counts intermittently can contain dubious values. This can be seen in the data counts shown in Figure
1. The data pictured in Figure 1(a) contain values for every hour of the 4-year period and reported counts show
high consistency. For the data pictured in Figure 1(b), however, shows several gaps where days, weeks, or even
months of hourly counts were not reported; additionally, the reported counts for some months seem to be shifted
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by up to a few hours. To mitigate doubts in data fidelity, and therefore in results, a further data validation step is
necessary. A site data confidence weighting is therefore used.

Generally, weights can be assigned based on the percentage of data present for each site. Sites with half as
many reported hourly counts could be given half the weight as sites where all four years of hourly counts were
reported. However, for processing purposes explained further on, cyclically missing data, or data missing
between times with reported data, can have a negative impact on analysis. Therefore, an adjusted weighting is
made based not on the total number of hourly counts reported, but by the maximum number of consecutive
hourly counts reported for each site. By weighting data in this manner, each site is given a relative weighting
between zero and one.

Figure 1. Reported hourly traffic counts for two locations (top). The horizontal axis shows the day of the year,
while the vertical axis shows the hours of each day, with the traffic count represented by the color. The normalized
Fourier transform of the vehicle counts for both locations, explained in Section 3, is also shown (bottom).
Amplitudes for integer multiples of daily cycles are marked in red, and amplitudes for integer multiples of weekly
cycles are marked in black.
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3. FOURIER ANALYSIS OF TRAFFIC VOLUME

While visual patterns are seen when viewing traffic volume in Figure 1(a-b) (such as the diurnal or day/night
patterns), in order to make use of this information—such as to predict traffic volume at other locations, or to
predict missing vehicle counts like the gaps seen in Figure 1(b)—it is necessary to characterize these traffic
volume patterns. By treating hourly traffic counts as time-dependent signals, Fourier analysis is used to identify
the temporal cycles present at each individual site’>. However, because a fast or discrete Fourier transform
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generally requires equally spaced and non-missing data, and because several sites contain some missing vehicle
counts, a non-uniform Fourier transform must be used.

A. NON-UNIFORM FOURIER TRANSFORM

Fourier transforms usually require equally spaced temporal data, with the sampling frequency determining
the maximum number of cycles that can be found for a time period. Most discrete Fourier transform algorithms
are ill-equipped to handle missing data, and so instead the non-uniform discrete fast Fourier transform is used to
analyze the traffic counts at each site!®. This yields a two-sided, complex-valued Fourier spectrum. The
magnitude of the single-sided spectrum for two sites is shown in Figure 1(c-d).

Clear peaks in the Fourier spectra appear at several relevant frequencies. One important peak is that seen at
0 cycles per day, which represents the average number of measured vehicles per hour (the AADT divided by
24), the value of which has been used to normalize the plotted spectra. Other strong peaks are seen at integer
multiples of 1 cycle per day (marked in red), which together represent the daily-repeating traffic volume pattern.
More peaks are seen at integer multiples of 1/7 cycle per day (marked in black), and together represent the
weekly-repeating traffic volume pattern. Though not visible on this scale, there are also peaks at integer multiples
of one cycle per year.

B. DENOISING FOURIER SPECTRA

Peaks in the Fourier spectra on integer multiples of daily, weekly, and yearly time periods are often quite
pronounced, but the spectra can also contain non-zero amplitudes at other time period cycles. This is because
the traffic pattern does not repeat exactly every day, week, or year. Because the present research is concerned
with average hourly behaviors, rather than a precise representation of the traffic counts, the small but non-zero
amplitudes are treated as noise in the Fourier spectra, and so are removed or zeroed out.

A representation of the average traffic volume pattern for a site is obtained using the Fourier amplitudes at
frequencies that are integer multiples of weekly and yearly cycles (daily cycle frequencies are captured using
integer multiples of weekly cycles). Due to missing data or machine precision errors, peaks in the Fourier spectra
can sometimes be found at frequencies that are adjacent to multiples of weekly and yearly cycles; when this is
the case, the peak amplitude at that frequency is used instead of the Fourier amplitude at the integer-multiple
frequency. This representation serves to decompose hourly traffic counts into a combination of sinusoidal traffic
patterns that repeat on weekly and yearly cycles. This representation has the benefit of removing noise in traffic
counts and requires a few hundred values instead of thousands of individual hourly vehicle counts.

C. PEAK VALUES REPRESENTATION

A smoothed, average hourly traffic volume pattern for each site is obtained by using an inverse Fourier
transform on the denoised Fourier spectrum peak values. For the reported traffic counts shown in Figure 2(a),
this approach yields a reasonable approximation as shown in Figure 2(c). However, for the reported counts
shown in Figure 2(b), the representation shown in Figure 2(d) is not especially accurate. Some of the main
reasons for the errors in the representation are considered below.

One reason for inaccuracy in the representation is caused by missing hourly counts at individual sites. That
is why Figure 2(d) is not an accurate representation of the data in Figure 2(b). Missing data causes noise in the
Fourier spectrum, which can alter the amplitude of the Fourier peaks which typically occur on integer multiples
of weekly and yearly time cycles. The site weighting discussed previously, while not altering the behavior at an
individual location, is important when looking at trends across sites, and will be discussed further on.

Another reason for inaccuracy is because, while traffic patterns contain both weekly and yearly repeating
patterns, the days of the week do not match the day of the year, e. g., the first day of 2015 was a Thursday while
the first day of 2017 was a Sunday. For generality, and to allow for traffic volume prediction for any day of the
week of any year, the weekly traffic pattern is separated from the yearly traffic pattern. This is done by separating
each Fourier spectrum into two separate data sets, one containing peaks on integer multiples of one cycle per
year (up to 12 cycles per year, as after this the peaks are effectively in the noise floor), and the other containing
peaks on integer multiples of 1/7 cycle per day (including the peak at 0 cycles per day so the average vehicle
count is not removed). This ensures that the former will result in a yearly-repeating traffic pattern, and the latter
in a weekly-repeating traffic pattern. These two patterns can then be combined to represent the traffic volume
for any specific day of the week and day of the year.

A third reason for inaccuracy is that peak amplitudes in the Fourier spectrum are not independent of one
another, and so noise in the Fourier spectrum that affects a single peak value, even by a small amount, can
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fundamentally change the overall temporal pattern found after performing an inverse Fourier transform. To state
this in another way, a weekly-repeating traffic pattern is not determined solely by a single Fourier peak
amplitude, and any irregularities in the data can cause changes in a single Fourier peak amplitude. For this reason,
representing traffic volume solely as the sum of independent sinusoidal patterns is not the best representation. A
better and more concise way to represent traffic volume is by using principal component coefficients of cyclic
traffic patterns.

Figure 2. A comparison of the reported traffic volume for two sites (top) with the traffic volume calculated using
the Fourier peak values repr tation (bott.
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4. PRINCIPAL COMPONENT ALANYSIS OF FOURIER SPECTRA

Principal component analysis (PCA) is used to find a lower-dimensional basis which can represent the
majority of multi-dimensional data points of a set. For the current research, cach dimension of a data point
consists of the Fourier amplitude at a particular frequency. By splitting the Fourier peaks into separate weekly
and yearly cycles, we create two separate data sets, each containing a point in a high-dimensional space for each
traffic measurement site. Because the Fourier peak amplitudes are interdependent, principal component analysis
is used to find a simpler basis to represent the most common combinations of cyclic traffic patterns found across
sites. This serves to reduce irregularities in the traffic pattern at a particular site by using the common traffic
patterns seen across multiple sites. What this means is that by using this approach, the weekly or yearly traffic
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pattern at any particular site can be represented as a combination of the most common cyclic weekly or yearly
traffic patterns found across all sites.

As mentioned in Section 2, the hourly counts from all sites are not equally reliable, and therefore the Fourier
peak amplitudes at one site are not as accurate as they are for another site. To avoid propagating these errors, a
weighted PCA is used to improve the accuracy of results, where the weighting used is described in Section 2.
The analysis is performed separately for the weekly and yearly cycles. The analysis returns principal
components, which each represents a linear combination of Fourier amplitudes or, by using an inverse Fourier
transform, a specific traffic volume pattern. The principal component coefficients, which are simply numeric
values, give the linear combination of these traffic volume patterns.

The first principal component vectors, one for the weekly data and another for the yearly data, are shown in
temporal space in Figure 3, and give the weighted average traffic volume pattern seen across sites. The yearly
pattern shows little variation across the course of a year. The weekly pattern shows the average hourly traffic
pattern found across CONUS, namely one where weekends show a smooth hourly variation during daytime
hours, while the weekdays show an increase in morning and evening hours higher than that during the middle of
the day, with less traffic activity during the nighttime hours. This type of traffic pattern is common for several
urban locations, and in particular shows high similarity to data shown in Fu et al. (2017).!7

To represent different traffic patterns seen at other sites, especially rural locations, a few more principal
components. By using an elbow analysis on the eigenvalue of the principal components, it was determined that
six principal components should be used to represent the weekly traffic pattern, and four principal components
to represent the yearly traffic pattern. In this manner, 73% of the weekly data is represented, and 83% of the
yearly data. The unique traffic pattern at a site can then be represented using just 10 principal component
coefficients (PCCs).

The first weekly and yearly principal components, as mentioned before, give the weighted average traffic
pattern scen across sites, and are shown in Figure 3. The coefficients for the first principal component, both
weekly and yearly, show high linear correlation with the AADT. This leads to a normalization approach based
on the first PCC. What this means is that rather than needing 10 PCCs to represent traffic volume at a site, five
normalized weekly PCCs and three normalized yearly PCCs, along with the AADT, can represent the total
vehicle counts for a site. This normalized approach is more useful, as representing traffic volume for any hour
of the week at a site, relative to its normal average number of vehicles, requires only five values, and only three
for any day of a year, and predictions can be made that match the overall AADT of a site when it is known. The
final reduced-order model therefore requires just nine total coefficients to represent hourly traffic counts for any
site, 0.1% as many variables as the total number of hourly counts for a single year.

Figure 3. Normalized principal components that represent the most common normalized traffic patterns found

across CONUS.
1st PC of weekly Fourier peaks 1st PC of yearly Fourier peaks
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By using just these nine coefficients for a site, modeled traffic volumes are obtained, examples of which are
shown in Figure 4(c-d) alongside the reported traffic counts in Figure 4(a-b). A comparison between the reported
and modeled traffic counts shows that the PCA representation effectively smooths out inconsistencies in the raw
data, while maintaining overall temporal trends. Additionally, because of the data weighting, missing data do
not adversely affect the modeled traffic counts. By requiring only nine coefficients, the PCA representation
allows for a simple way to both represent traffic volume data, which can not only be used to estimate traffic
volume at sites when numbers are not reported, but also—by way of predicting PCCs—to predict traffic volume
at other locations.
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Figure 4. A comparison of the reported traffic volume for two sites (top) with the traffic volume calculated using

the PCA representation (bott
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S. CONCLUSION

The number of vehicles on a road can change drastically from one time period to another. While knowing
the average number of vehicles is necessary to predict average noise levels caused by road traffic, a temporally
varying model of road traffic is more beneficial as it can be used to predict not just a general average number of
vehicles, but average numbers of vehicles for any time period of interest, whether that be an average Tuesday
evening in springtime or the noise level for a particular hour, day of the week, and date.

By using traffic counts reported at thousands of locations across CONUS, a simple model is created to
represent and predict traffic volume. This uses Fourier analysis to find temporal patterns in traffic counts at cach
site individually, and the principal component analysis to find the most common combinations of temporal
patterns across sites. The model requires only nine coefficients to represent the hourly-dynamic nature of traffic
volume for most locations.

This simplified model not only creates a concise way to represent traffic volume patterns, but also enables
simple prediction of traffic volume when counts are unknown. Because only nine coefficients are needed, further
methods can be created to predict these coefficients for locations where traffic counts are unknown. This remains
a topic of interest and will be explored further.

By better representing and predicting traffic volume, further improvements in the prediction of road traffic
sound levels can be made. While annual average expected traffic noise levels are important, increasing the
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temporal variability to enable hourly-expected noise levels, without drastically increasing complexity, can
greatly increase accuracy and reliability in predicting sound levels caused by road traffic.

Future research will include not just temporal variability of traffic volume as a whole, but also the temporal
variability of different traffic class types, such as large trucks, which have different expected spectral
characteristics and sound levels than do smaller vehicles. This increased traffic variability model can then be
used to predict sound levels and spectral characteristics of traffic noise across the continent on hourly, instead
of average, time scales.
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Chapter 5

Toward a dynamic national transportation noise map: Modeling temporal
variability of traffic volume

5.1 Introduction

This article describes the basic aspects of the traffic volume model, and gives expected
model errors, comparing them to expected errors when using the annual average daily traffic. It
shows the utility of VROOM, the Vehicular Reduced-Order Observation-based Model, which
predicts dynamic road traffic volume and road traffic noise, and shows how VROOM predictions

are much more accurate than using average vehicle numbers in predicting traffic volume.

5.2  Required Copyright Notice

The following article was submitted to the Journal of the Acoustical Society of America
on May 23, 2023, under the title “Toward a dynamic national transportation noise map: Modeling
temporal variability of traffic volume”. It is reproduced in its original submission format here by
rights granted in the Acoustical Society of America Transfer of Copyright document.

https://asa.scitation.org/pb-assets/files/publications/jas/jascpyrt-1485379914867.pdf

I hereby confirm that the use of this article is compliant with all publishing agreements.

5.3 Submitted Article
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Toward a dynamic national transportation noise map: Modeling temporal variability of
traffic volume
Mylan R. Cook," Kent L. Gee,' Mark. K. Transtrum,' and Shane V. Lympany®
" Department of Physics and Astronomy, Brigham Y oung University, Provo, Utah 84602, USA

? Blue Ridge Research and Consulting, ILC, Asheville, North Carolina 28801, USA

The National Transportation Noise Map (NTNM) gives time-averaged traffic noise across the
continental United States (CONUS) using annual average daily traffic. However, traffic noise varies
significantly with time. This paper outlines the development and utility of a traffic volume model
which is part of VROOM, the Vehicular Reduced-Order Observation-based Model, which, using
houtly traffic volume data from thousands of traffic monitoring stations across CONUS, predicts
nationwide hourly-varying traffic source noise. Fourier analysis finds daily, weekly, and yearly
temporal traffic volume cycles at individual traffic monitoring stations. Then, principal component
analysis uses denoised Fourier spectra to find the most widespread cyclic traffic patterns. VROOM
uses nine principal components to represent hourly traffic characteristics for any location,
encapsulating daily, weekly, and yearly variation. The principal component coefficients are predicted
across CONUS using location-specific features. Expected traffic volume model sound level errors—
obtained by comparing predicted traffic counts to measured traffic counts—and expected NTNM-
like errors, are presented. VROOM errors are typically within a couple of decibels, whereas NTNM-
like errors are often inaccurate, even exceeding 10 decibels. This work details the first steps towards
creation of a temporally and spectrally variable national transportation noise map. [Work supported

by U.S. Army SBIR.]
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I INTRODUCTION

Road noise comprises a significant component of total anthropogenic noise in many developed areas
and can have a large impact on diverse acoustic environments. Increased noise levels are correlated
with anything from mild annoyance to an increase in violent crime.' Not only are humans adversely
affected by loud road noise,> but so are many other species.*” Road noise cannot be effectively
measured along every roadside in the country, and long-time-averaged levels are seldom accurate for
particular times of day, so accurate modeling of road noise is necessary for improving road noise
characterization.

Because overall road traffic noise is directly related to traffic volume—the number of
vehicles per time period—road traffic noise characterization depends heavily on characterization of
traffic volume itself, along with other parameters such as vehicle class mix, vehicle speed, pavement
type, and road inclination.*” The National Transportation Noise Map published by the Bureau of
Transportation Statistics uses annual average daily traffic (AADT) counts to predict annually-
averaged A-weighted 24-hr equivalent sound levels near major roads across the continental United
States (CONUS).* While this map is useful for determining average sound levels, it lacks temporal
and spectral variability, and so may not reflect the actual sound level for a particular time period.

Traffic volume can show large variation, not only diurnally, but also from weckday to
weekend and from summer to winter. Characterizing the dynamic nature of traffic volume is not
only useful for determining the changes in sound levels at locations where traffic counts are known
but can also lead to a model for predicting variable traffic volume at other locations, and therefore
to predicting sound levels across CONUS for particular time periods.

Traftic volume can be modeled in various ways, though a simplified model can be made
using vehicle count data at various locations across CONUS.”™ The Federal Highway

Administration tabulates hourly traffic counts recorded at thousands of traffic monitoring stations
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across the United States. While hourly counts give a detailed representation of hourly traffic volume
for individual stations, this representation requires thousands of individual hourly counts for each
location, and using vehicle counts to predict traffic volume at other times or at other locations is not

straightforward. Other methods such as wavelet decomposition™

can be used to model temporal
variability. In this paper, the first part of an original model is introduced. This model is called
VROOM, which stands for the Vehicular Reduced-Order Observation-based Model. VROOM
predicts hourly traffic noise for roads across CONUS. The first part of VROOM, which is the focus
of this paper, predicts vehicle numbers—used synonymously with traffic volume—across CONUS.

Treating traffic volume as a time-dependent signal enables application of signal processing
techniques. VROOM was developed using Fourier analysis™ and principal component analysis,
PCA, to characterize traffic patterns common across CONUS. VROOM requires only nine values—
which are predictable from geospatial and road-specific feature values—at a location to fully
represent hourly traffic volume for any time period.

VROOM was developed using hourly-resolution vehicle counts, and does not consider
shorter-term traffic volume behavior, though it may be possible to adapt this approach for shorter
timescales."* VROOM predicts hourly traffic volume at any location using geospatial or location-
specific features. While predicting traffic counts is itself a useful result, VROOM is also able to
predict traffic noise across the continent on houtly, rather than time-averaged, timescales."”

To create a temporally and spectrally varying national transportation noise map, the
following steps are needed:

e Predict traffic volume along roads

e Predict time-varying traffic class mix along roads, e.g. heavy trucks vs smaller vehicles

e Calculating traffic noise emissions along roads based on vehicle class numbers

e Propagate source vehicle noise to other locations to create noise maps
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Figure 1 shows a schematic of these steps. The user inputs include road data and geospatial data.
Road data includes values such as the number of through lanes, the speed limit along road segments,
the f-system—or type of road, such as interstate, principal arterial, or local road—and whether the
location is urban or rural. Geospatial data™ can include features such as nighttime light brightness,

land cover, urban population, etc.

USER INPUTS: Geospatial data Road data
(x7) (xy)
Data Inputs Process Outputs
Traffic volume data Traffic volume model Total traffic volume
N(xs,t) N(xy,t)
J

= v

8 Traffic class mix data Trafficcliss i fodel Traffic volume by class
& N(t, cr ) N(x,,t,c)

I
v
TNM 3.0 equations Traffic noise source Traffic noise source level
Leg(f,cv) model LeqCos, )
. Traffic noise propagation Traffic noise map

OUTPUTS: shislal L t. )
VARIABLES:

Leq  Equivalent continuous sound level ¢, Road class X,  Position on a map

L, Sound level metric ¢, Vehicle class x,  Position on a road

N Number of vehicles per hour f  Frequency x;  Position of a station

Time

Figure 1. Flowchart outlining the steps towards creating a dynamic national road traffic noise map.
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This paper considers only the traffic volume model part of VROOM—the first line of
VROOM as shown in Figure 1—and does not consider the traffic class mix model or the traffic
noise source model parts of VROOM. Instead of considering the full model, a simplified error
metric for the traffic volume model is presented, which gives predicted decibel errors for VROOM-
predicted traffic volume. Predicted errors when using yearly averaged vehicle numbers are also
presented, which would be similar to expected errors in the Bureau of Transportation Statistics’
National Transportation Noise Map near roads. Errors are calculated by comparing predicted

vehicle numbers to reported vehicle numbers.

II. FOURIER ANALYSIS AND PRINCIPAL COMPONENT ANALYSIS OF

TRAFFIC VOLUME
Fourier analysis can be used to find repeating temporal cycles or patterns in data. Reported hourly
vehicle counts from 2015-2018 from by thousands of traffic monitoring stations located across
CONUS" were used; by investigating the Fourier spectra produced, strong temporal patterns were
found that represent daily, weekly, and yearly variation in traffic volume at individual stations.
Repeatable temporal cycles were isolated by removing noise from the Fourier spectra. For further
details, see “Toward improving road traffic noise characterization: A reduced-order model for
representing hourly traffic volume dynamics” by Cook et al, Proc. Mtgs. Acoust. 45, 055001
(2021).

While using a denoised Fourier spectrum does create a simplified model for temporal
variability of traffic volume at a particular location, PCA was also used to create a generalized model
that can predict traffic volume at other locations. Fourier spectra were split into separate weekly and

yearly cycles, and principal components were found to represent the most common combinations of

42



81  cyclic weekly and yearly traffic patterns found across stations. Because data from all stations were
82  not equally reliable, a weighted PCA was used. See Cook et al. for further details.” Each resulting
83  principal component represents a linear combination of several Fourier amplitudes or, by using an
84  inverse Fourier transform, a specific traffic volume pattern. The principal component coefficients,
85  which are simply numeric values, give the combination of these traffic volume patterns.

86 The first principal component vectors, one for the weekly data and another for the yearly
87  data, are shown in temporal space in Figure 2, and give the weighted average traffic volume pattern
88  scenacross all stations. The yearly pattern shows little variation across the course of a year. The

89  weekly pattern shows the weighted average hourly traffic pattern found across CONUS during the
90  course of a week; weekends show a smooth hourly variation during daytime hours, while weekdays
91  show an increase in morning and evening hours higher than that during the middle of the day

92 (during rush hours), with less traffic activity during the nighttime hours. This type of traffic pattern

93  is common for urban locations and is similar to data shown in Fu et al. (2017).*

94
1st PC of weekly Fourier peaks 1st PC of yearly Fourier peaks
1 1 1 1 1 1 1 1 I 1 1 -
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96 Figure 2. Normalized principal components which represent the most common normalized traffic
97 patterns found across CONUS.
98
99 By using a normalized approach, VROOM was created to model hourly traffic volume, and

100  requires just nine total coefficients to represent hourly traffic volume for any location. Fight of the
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values are the principal component coefficients and are used to calculate the variation of traffic
volume from the average traffic pattern. The other coefficient is the annual average daily traffic,
AADT, which scales the total traffic pattern to give the correct average number of vehicles and is
often known for any particular road. The methods for predicting VROOM coefficients are

considered in the following section.

III. PREDICTION OF YROOM COEFFICIENTS

VROOM predicts dynamic traffic volume by predicting nine coefficients—or eight coefficients
when the AADT is known. These coefficients can be predicted along any road by using location-
dependent features. Pedersen el. al.”* showed that several features (slope, distance to railroads, land
covet, etc.) for a location can be represented using a non-linear basis, called diffusion coordinates
(DCs). Because these DCs charactetize locations, they can also be used to predict traffic volume for
that location by predicting VROOM coefficients. For the current analysis, the first 12 DCs are used,
along with road data, including features such as speed limit and the number of through lanes.
Together these comprise the VROOM predictors.

Using the VROOM predictors and the known VROOM coefticients at traftic monitoring
stations, a weighted least-squares method is used to find a best-fit linear transformation from
predictors to coefficients. This yields a best-fit multiplying matrix X so that VROOM predictors at
arbitrary locations can be used to predict VROOM coefficients and therefore traffic volume at
arbitrary locations. Using P as a matrix containing the VROOM predictors at each traffic
monitoring station, W as a diagonal matrix for the station weightings, and € as a matrix containing

the coefficients at each, the matrix X can then be obtained and used to predict coefficients for
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arbitrary locations. The coefficient matrix for arbitrary locations Croc is given by multiplying the

matrix Pjoc, which contains the VROOM predictors for those locations, by Xp.

X, = m}n“PWX —Cl| = (P"wP)"L(PTWO), Cioc = PiocXo. )

The predicted coefficients Cioc can then be used to obtain predicted traffic volume for any hour
desired using the VROOM traffic volume model.

Figure 3 shows the normalized weekly and yearly VROOM predictions for stations in Idaho,
Wyoming, and Oklahoma, known respectively as Site A, B, and C. Also shown are the average
normalized traffic counts and the AADT representation, which uses the average value for all time
periods. The average normalized traffic counts across a year are obtained by using the mean number
of traffic counts for each week of the year, rather than each hour or day of the year. This is
necessary because with only four years of data (2015-2018), average daily or hourly counts across a
year would be heavily impacted by the days of the week for which data were available (at most 4
different days of the week). This approach removes this bias; unfortunately, it can also mask some of
the benefit of predicting hourly values when looking at yearly predictions but is necessary for
accurate comparison. Thus, comparisons show 168 hourly values for weekly results, and 52 weekly

values for yearly results.
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Figure 3. (Color online). For three sites, the weekly traffic patterns (left) and the yearly traffic
patterns (right) are shown. The average traffic counts can be compared with the VROOM

prediction.

Figure 3(a) shows the weekly patterns for site A, located in southern Idaho, with the
corresponding yearly patterns shown in Figure 3(d). There is high agreement between the averaged
data and the VROOM prediction. This site is typical of several locations across CONUS where the
VROOM prediction faithfully approximates reported vehicle counts.

Site B, which is located in northwest Wyoming and is shown in Figure 3(b) and Figure 3(e),
has a very different traffic pattern than Site A. The average reported traffic counts increase
dramatically in the summer and are higher on weekends than on weekdays, without any sort of rush
hout. This behavior, while not uncommon for seasonal roads like those near ski resorts or some
national parks, as this site is, is found in only a few locations across CONUS. While the VROOM
prediction is unable to fully capture the variability of the reported traffic counts, differing by up to
25%, it is still an improvement over the AADT approach, which can differ up to 57%.

Site C, located in Oklahoma and shown in Figure 3(c) and Figure 3(f), reported only counts
for April through December for a single year. As such, yeatly errors cannot be calculated from
January through March. Though errors cannot be calculated for this time period, VROOM can still
predict the traffic volume despite the missing traffic counts. This shows an example of how
VROOM predictions can be made not just where and when counts are reported, but at roads across
all of CONUS for any time period.

While looking at results for a few individual locations is insightful, it is infeasible to show an
adequate number of locations individually, since there are millions of road segments across the

country. Multimedia 1 shows the relative VROOM predicted weekly traffic volume and Multimedia
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2 shows the relative VROOM predicted yearly traffic volume at roads across the country, alongside
average traffic counts at traffic monitoring stations. Normalized traffic volumes are shown, and so
do not indicate total number of vehicles, but rather whether each location has more or less traffic
than it does on average. Differences between interstates and other roads can be seen, as well as
behaviors such as rush hours in cities. The AADT approach is not shown here, as it would give a

value of 100% for all time periods and locations.

Multimedia 1. Relative VROOM-predicted weekly traffic volume for locations across CONUS. Each

location is shown relative to its average weekly value of 100%.

Multimedia 2. Relative VROOM-predicted yearly traffic volume for locations across CONUS. Fach

location is shown relative to its average yearly value of 100%.

A. Sound level error metric
Model prediction accuracies of both the VROOM and the AADT approaches can be calculated by
comparing average reported normalized traffic counts Npeporteq to the predicted normalized traftic
volume Npregictea at traffic monitoring stations. The ‘prediction’ for the AADT approach is simply
the average number of vehicles. A normalized approach is taken so that errors are a result of the
model prediction, and not caused by differences between the reported AADT and reported hourly
counts. From an acoustics viewpoint, a useful error metric is a sort of expected sound level error in

decibels. Because different vehicles can be considered to be uncorrelated sound sources, the

expected sound level error, Eqp, at a site can be determined at a particular time by

EdB =10 logl() (Npr'edicted) (2)

N reported
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With this metric, an error of +3 dB means that the number of vehicles predicted is double the
average reported number of vehicles, and an error of -3 dB means that the prediction is half the
average reported value.® This error metric gives expected model sound level errors based solely on
the traffic volume representation and reported vehicle numbers, without considering things such as
vehicles types or vehicle speed, and as such assumes no temporal change in vehicle class mix or road
conditions. While incomplete, this error metric is still viable to show relative errors between
VROOM and the AADT approach because everything except total traffic volume is assumed to be
the same for both methods. The AADT errors are at least partially indicative of possible expected

errors of the National Transportation Noise Map at the locations and times considered.

B. Prediction accuracy
While the prediction accuracy cannot be obtained for all locations, the weekly and yearly errors for
predictions of both methods can be calculated at traffic monitoring stations. Errors for sites A, B,
and C are shown in Figure 4. VROOM prediction errors are much smaller than AADT prediction
errors for most time periods, more noticeably for hours across a week and most drastically during
nighttime hours. The largest consistent VROOM prediction errors occur near midnight on weekdays
at sites with low traffic volume and are a result of either the predicted normalized traffic volume or
the normalized reported traffic counts being close to zero. Errors for each station are shown
geographically and temporally in Multimedia 3, which shows the weekly etrors, and in Multimedia 4

which shows the yearly errors.
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Figure 4. (Color online). Predicted model errors, both weekly (left) and yearly (right), for three sites.
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Multimedia 3. VROOM weekly errors are shown alongside AADT weekly errors, shown
geographically and temporally. VROOM gives much smaller errors than the AADT method for

weekly errors.

Multimedia 4. VROOM yeatly errors are shown alongside AADT yearly errors, shown
geographically and temporally. VROOM gives slightly smaller errors than the AADT method for

yearly errors, though differences are not as extreme as the weekly errors.

While errors vary across both time and space, and so are shown in video format, median
absolute decibel errors, |Egp|so, averaged across either time or space, can be shown in static figures.
The absolute value is needed so that positive and negative errors don’t unjustly cancel one another
out. The median errors across all locations can be calculated for each time period and are shown in
Figure 5. The VROOM prediction etrors are much smaller errors than the AADT prediction errors,
again most noticeably across the hours of a week. While the absolute error does not show the sign,
AADT errors are generally positive during nighttime hours and during the winter months, and
negative during daytime hours and the summer months. VROOM errors may be either positive or
negative. The largest errors occur during nighttime hours for both methods, and median AADT

errors can exceed 10 decibels.
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Figure 5. (Color online). Median location-averaged absolute VROOM and AADT errors, shown
both weekly and yearly. The VROOM prediction errors are clearly smaller than AADT prediction
errors, most especially for weekly errors. Median nighttime AADT prediction errors can exceed 10

dB, and median daytime errors can exceed 3 dB.

Figure 6 shows the median absolute errors when, instead of averaging across location, the
absolute errors are averaged across time. The yearly expected errors for both methods are typically
within 1 dB. This is because traffic volume does not change drastically by week of the year for most
locations, with some notable exceptions, primarily in the northwest. While the VROOM prediction
errors are generally slightly smaller, the AADT approach is a valid representation for most locations.
The largest yearly errors for both methods can occur at sites near seasonal roads, like site B, which 1s
in Jackson, Wyoming. While the VROOM prediction does not always reproduce that amount of

variation faithfully, VROOM is still more accurate than the AADT method for nearly all locations.
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Figure 6. (Color online). Median time-averaged absolute VROOM and AADT errors, shown both
weekly and yearly. The VROOM prediction errors are clearly smaller than AADT predictions, most
especially for weekly errors. Notably, AADT weekly errors exceed 1.5 dB for 98.4% of locations

VROOM weekly etrors are less than 1.5 dB for 98.4% of locations.

A large difference between the methods is seen when considering the temporally averaged
weekly errors. The AADT prediction errors exceed 1.5 dB for 98.4% of locations and exceed 3 dB
for 4.3% of locations. In contrast, the VROOM prediction errors exceed 1.5 dB for only 1.6% of
locations and exceed 3 dB for only 0.2% of locations. By predicting traffic volume for each hour

with VROOM, errors are dramatically reduced across CONUS, with few significant errors.
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Further insight can be gained by viewing the full distribution of errors, without using
absolute median errors. Figure 7 shows histograms for both methods’ errors, both for weekly and
yeatly time periods. The yearly errots for both methods, seen in Figure 7(b), are typically within +1

dB, as was seen previously, with the AADT errors forming a slightly wider distribution with larger

tails.
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Figure 7. (Color online). Histogram of expected errors in decibels for the AADT approach and for

VROOM. Weekly errors in particular are significantly reduced using VROOM.

The weekly errors tell a more interesting story. The weekly VROOM errors form a tight
distribution, as do the yeatly errors. However, the AADT error distribution is much different,
peaking around -2 dB with a long, flat tail of positive errors. This indicates that hourly-averaged
traffic volumes very poorly represent reported hourly traffic volumes. Expected errors evidence that
average sound levels are seldom indicative of actual sound levels across the hours of a week.
Modeling houtly traffic volume with VROOM can vastly improve expected hourly sound level

predictions.
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IV. CONCLUSION

The hourly-dynamic nature of traffic volume in its variety across CONUS can be represented in a
concise manner using VROOM, which also enables prediction of traffic volume. Requiring just nine
values—predictable from geospatial and road data—vehicle counts can be accurately represented
and predicted with full temporal variability. By improving representation of traffic volume, road
traffic sound levels can be better represented and predicted.

While using annual average daily traffic counts can give a decently accurate representation of
traffic volume for most days of the year, daily and yearly averaged traffic counts do not accurately
represent particular hourly traffic volumes. This means that annual average daily sound levels do not
accurately portray what the actual sound level would be for most hours—not just during nighttime
hours, where errors can often exceed 10 dB—but also for many daytime hours. By instead modeling
traffic volume using reported hourly traffic counts with VROOM, sound levels can be more
accurately predicted.

The approach outlined in this paper is the first step towards a dynamic national
transportation noise map. In future, advancements towards predicting hourly road traffic noise can
be made by accounting for dynamic differences in different vehicle classes, such as medium or heavy
trucks, as different vehicle classes have different characteristic sound emission spectra. By
accounting for differences in vehicle classes, both spectral and temporal variability of traffic noise

can be better modeled and is a topic of ongoing analysis.
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Chapter 6

Toward a dynamic national transportation noise map: Modeling spectral traffic
noise emission levels

6.1 Introduction

This article expands upon the article in Chapter 5, going on to describe the traffic class mix
model and how vehicular source noise is obtained from predicted traffic volume by class type. It
shows how VROOM, the Vehicular Reduced-Order Observation-based Model, predicts traffic

noise with hourly resolution and gives predicted traffic noise nationwide.

6.2 Required Copyright Notice
The following article is being prepared for submission to the Journal of the Acoustical
Society of America, under the title “Toward a dynamic national transportation noise map:
Modeling traffic class mix dynamics and traffic noise spectral source emission levels”. It is
reproduced in the format intended for submission, with rights granted in the Acoustical Society of
America Transfer of Copyright document.
https://asa.scitation.org/pb-assets/files/publications/jas/jascpyrt-1485379914867.pdf

I hereby confirm that the use of this article is compliant with all publishing agreements.

6.3  Article for submission
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Toward a dynamic national transportation noise map: Modeling spectral traffic noise
emission levels
Mylan R. Cook," Kent L. Gee,! Mark. K. Transtrum,' Shane V. Lympany,” and Matthew F. Calton®
’Dqﬁamﬁem‘ of Physics and Astronomy, Brigham Y oung University, Provo, Utah 84602, USA

2 Blue Ridge Research and Consulting, ILC, Asheville, North Carolina 28501, USA

The National Transportation Noise Map predicts time-averaged road traffic noise across the
continental United States (CONUS) based on annual average daily traffic counts. However, traffic
noise varies temporally. This paper outlines a method for predicting nationwide hourly-varying
source traffic sound emissions called VROOM, the Vehicular Reduced-Order Observation-based
Model. VROOM includes three models that predict temporal variability of traffic volume, predict
temporal variability of different traffic classes, and utilize equations from the Traffic Noise Model
(TNM) 3.0 to give traffic noise emission levels based on vehicle numbers and class mix. Location-
specific features are used to predict average class mix across CONUS. VROOM then incorporates
dynamic traffic class mix data from the Federal Highway Administration’s report “Vehicle Volume
Distributions by Classification” by Hallenbeck et al (1997) to obtain dynamic traftic class mix. TNM
3.0 equations then give estimated equivalent sound level emission spectra near roads. Important
temporal traffic noise characteristics are modeled, including diurnal traffic patterns, rush hours in
urban locations, and yearly variation, for which a few examples are considered. Areas of uncertainty
are identified. Altogether, VROOM can be used to map national transportation noise with temporal

and spectral variability.
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I INTRODUCTION

Road traffic noise comprises a significant component of total anthropogenic noise in many
developed areas and can have a large impact on diverse acoustic environments. Increased noise
levels are correlated with anything from mild annoyance to an increase in violent crime, and
evidences of the negative effects of traffic noise abound." Humans are not the only species that is
adversely affected by loud road noise, as many other species are also sensitive to noise.*” Road noise
cannot be effectively measured along every roadside in the country, and long-time-averaged levels
are seldom accurate for particular times of day, so accurate modeling of road noise is necessary for
improving road noise characterization.

Because overall road traffic noise is directly related to traffic volume—the number of
vehicles per time period—road traffic noise characterization depends heavily on characterization of
traffic volume itself, along with other parameters such as vehicle class mix, vehicle speed, pavement
type, and road inclination.*” The Federal Highway Administration’s (FHWA) National
Transportation Noise Map (NTNM) uses annual average daily traffic (AADT) counts to predict
annually-averaged A-weighted 24-hr equivalent sound levels near major roads across the continental
United States (CONUS)." While this map is useful for determining average sound levels, it lacks
temporal variability, and so may not reflect the actual sound level for a particular time of the day or
night. This is important not only for calculating average traffic noise exposure, but hourly traffic
noise exposure, as some areas have higher noise levels at night as well as during the daytime.

In Cook et al (2021)," a method to represent traffic volume dynamics was outlined. This
traffic volume model is the first part of VROOM, the Vehicular Reduced-Order Observation-based
Model, a flowchart of which is shown in Figure 1. By using a combination of road data (e.g., speed
limit, through lanes, road classification) and geospatial data (e.g., combinations of features like

nighttime light brightness, land cover, and population), the VROOM traffic volume model predicts
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dynamic traffic volume across CONUS. Further developments of the tratfic volume model, along
with expected sound level errors in decibels based on total traffic volume were presented and
compared to expected errors when using time-averaged traffic volume in Cook et al. (2023)". 'The
VROOM predictions were shown to have much smaller errors than the errors obtained from using

time-averaged traffic volume.
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USER INPUTS: Geospatial data Road data
(x;) (x,)
Data Inputs Process Outputs
Traffic volume data Truftic volii mods Total traffic volume
N(xs,t) N(xy,t)
I
= v
8 Traffic class mix data L N —— Traffic volume by class
§ N(t, ¢y, cp) N(x,,t,cp,)
I
\ 2
TNM 3.0 equations Traffic noise source Traffic noise source level
Leq(f, cv) model Log(xiit.f)
OUTPUTS: Traffic noise propagation Traffic noise map
model Lp (e, t, )
VARIABLES:
Leq  Equivalent continuous sound level ¢,  Road class X, Position on a map
L, Sound level metric ¢, Vehicle class x,  Position on a road
N Number of vehicles per hour f  Frequency xs;  Position of a station

Time

Figure 1. Flowchart outlining the steps towards creating a dynamic national road traffic noise map.

For further information on the traffic volume model piece of VROOM, see Cook et al.» The traffic

class mix model and traffic noise source model are presented in this paper.

While the traffic volume model aspect of VROOM is an important step towards calculating

dynamic sound levels characteristic of road traffic, another important step is to characterize traftic
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class mix, or the different types of vehicles that compose the total traffic volume. Heavy trucks
produce much higher sound pressure levels than smaller vehicles, and their characteristic sound
spectra also differ. This paper outlines the traffic class mix model and the traffic noise source model
utilized by VROOM, as shown in Figure 1. By combining hourly class mix predictions with total
vehicle number predictions, hourly vehicle numbers for each traffic class type are predicted.

When vehicle class numbers are known, either reported or predicted by VROOM, the
Federal Highway Administration’s (FHWA) Traffic Noise Model (TNM) 3.0 equations can be used
to predict hourly spectral traffic noise source levels."” Spectral traffic noise source levels, or traffic
noise emission levels, are the predicted one-third octave band A-weighted equivalent levels, or
LAcq, produced by a given number of vehicles of each traffic class type. As defined by the TNM 3.0
equations,” the traffic noise emissions give an estimate of the spectral levels that would be measured
15 m (15 ft) from a road segment at a height of 1.5 m (5 ft), dependent on vehicle traffic class
numbers, speed, and road type.

By incorporating the TNM 3.0 equations,” given road data and geospatial data, VROOM
predicts traffic noise source levels across CONUS. As shown in Figure 1, the predicted traffic noise
source levels can then be used in conjunction with traffic noise propagation models to predict traffic
noise across the continent with spatial, spectral, and temporal variation. VROOM-predicted noise
levels do not include propagation of sound to acoustic receivers at different distances from
roadways, but instead give predicted traffic noise source levels for individual road segments.
Propagating source levels to get full spatial variability remains a topic of future consideration.

VROOM can be useful for many different applications beyond the noise applications
mentioned previously. Urban planning uses traffic congestion, and so can benefit from additional

insights into traffic dynamics.'*" Similarly, freight analysis framework forecasting could be aided by
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the VROOM framework.'"" Beyond characterizing noise emissions, VROOM could also be helpful

for traffic planning in reducing greenhouse gas emissions."

II. GEOSPATIAL AND ROAD DATA

VROOM uses a combination of geospatial and road data to predict temporal variability of traffic
volume. In this section, these input variables are considered. While the geospatial data values are
known everywhere across CONUS, road data may or may not be reported, so VROOM accounts
for missing road data by using default values utilized by TNM, and when default AADT values are
not available, VROOM predicts road data using known road data at other locations.

A. Geospatial data

The geospatial data used by VROOM comprise 13 values for each location and are known
everywhere across CONUS. One is a Boolean value indicating whether or not a location is classified
as urban (including suburban), or as rural. The other 12 values are known as Diffusion Coordinates
(DCs) and are explained in Pedersen et al. (2021).* The DCs are a reduced-order model representing
a combination of 51 geospatial features, including brightness of nighttime lights, population density,
land use, etc. The values for the first DC are shown across CONUS in Figure 2. For maps of these

13 geospatial values at roads across CONUS, see the appendix.
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Figure 2. (Color online).Values for the 1% diffusion coordinate are shown geographically. For all 12

DC values, see the appendix.

B. Road data

While hourly traffic counts are only reported at a few thousand locations across CONUS, road
data are reported for millions of road segments across CONUS. However, for locations where road
data are unknown, TNM default values can be used for the number of through lanes, the f-system,
pavement type, and speed limit. Additionally, VROOM limits these values in computation to avoid
unnecessary complexity, such as limiting the maximum number of through lanes to be eight. To see
the reported values alongside the values used by VROOM, see the appendix.

1. AADT

Dealing with missing AADT values, and also with missing average class mix data, is more
difficult, because default values are not available. Instead, values must be predicted. Several methods

were investigated for predicting the AADT. Ultimately, separate models were created for different f-
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system values (which distinguish interstates, other freeways, etc.), urbanization (urban or rural), and
for each individual state, since states tend to have very different AADT values, even when other
road and geospatial values are similar. For each model, a least-squares fit of the logarithmic value of
the AADT, with the DCs as the predictive variables, was found to give reasonable results.

Mathematically, for D,y r, being the diffusion coordinates for all roads with a particular set of
state, urbanization, and f-system values, and Ag, 4, ¢, being the logarithm of the known AAD'T, the

predicted logarithmic AADT values Asi.ui. £; are given by:

-1
— wind _ —(pT T
XSirUi'fi - m}n ||D5i’ui'fiX Asi:uirfill - (Dsi'ui-fiDsi'U—i:fi) (Dsi,uirfiASi:ui:fi)

Asuuti = DsguyriXsyuit )
u = {urban, rural}, s = {US states}
f = {Interstate, Other freeway, Principal arterial, Other}.

The AADT for all reported locations is shown alongside the AADT used by VROOM in

Figure 3. By design, predictions are always positive. While many locations do report AADT values,

VROOM can predict the AADT at all roads. The locations with predicted AADT values are better
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seen in the western states, where road density is less than in eastern states. Results appear

reasonable, and possible prediction biases are considered in Section V.

Reported
AADT

Figure 3. Reported AADT values are shown alongside AADT values used by VROOM. VROOM is

able to predict reasonable results at locations where AADT values are not reported.

2. Average traffic class mix

Average traffic class mix, like AADTSs value, are not reported along all road segments.
Before a dynamic class mix can be predicted, the average class mix must be predicted when it is
unknown. A similar method to the AADT prediction method is used, but with a few additional
constraints.

To be physically meaningful, individual traffic class mix percentages must always be between
0% and 100%. Additionally, the sum of all traffic class mix predictions must be equal to 100%.
While these constraints can be met in various ways, such as ensuring non-negativity and regularizing
predictions, another option is to convert traffic class mix percentages into n-dimensional spherical
coordinates on a hyperplane.” For a particular traffic class mix of the three main traffic class types
(combination trucks, single-unit trucks, and other vehicles), this can be represented as a point on the

plane X +y + z = 1, which is characterized by the two angular coordinates 6; and 8, where 0 <
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123 6, < E, as shown in Figure 4. This approach is generalizable to any number of traffic class types, and
> gu pPp g y typ

124 is not limited to just the main three traffic class types.

125
1
0.8
0.6 (x,y,2)=(0.5,0.25,0.25)
N 0.4 (0,.,0,)=(65.9°,26.6°)
0.2 ™
. =t
o
0.5
W
" ™ 0.2 0.4 0.6 0.8 1
126 x
127 Figure 4. (Color online). A visual representation of a particular traffic class mix. The sum of the
128 three percentages, represented by x, y, and z, must equal 100% (or a value of 1), and so lie on the
129 plane shown. Any point is uniquely identified by two angular coordinates.
130
131 The average traffic class mix is predicted in the same way as the AADT, but by way of

132 predicting angular coordinates rather than values or percentages directly. The angular coordinates
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are then converted to percentages for each traftic class type. Figure 5 shows the reported

percentages of both single-unit and combination trucks alongside the percentages used by VROOM.

combination ] N combination
trucks > trucks

single-unit
trucks

(b)
Figure 5. (Color online). Reported percentage of traffic that are combination (a) or single-unit trucks
(b) shown alongside the percentages used by VROOM. Predicted percentages are only needed at
locations where traffic class mixes are not reported. Differences in reported values by different

states explain the need for creating models for each state separately.

III. TRAFFIC CLASS MIX MODEL
With either reported or predicted average traffic class mix values, VROOM can then model

temporal variation in traffic class mix numbers. In 1997, a FHWA report was published by
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Hallenbeck et al.” This report includes observed characteristic temporal variation of the three main
traffic class types for both urban and rural locations, and, despite its age, is still used by the FHWA
for traffic volume by vehicle classification. The results of this report can be used together with
VROOM’s traffic volume model to predict temporal variation in each traffic class type on roadways

across CONUS. Yearly variation is predicted separately from weekly variation, as outlined below.

A. Yearly variation

Observed yearly traffic characteristics of different traffic class types from Hallenbeck et al.
(1997)* are reported on a month-by-month basis for both urban and rural locations (see Table 7 in
the report). The monthly resolution reported is a discreet representation of just twelve values.
However, using VROOM’s traffic volume model, smooth yearly tratfic variation can be represented
with just three values. For further details, see Cook et al. (2021)."" The three coefficients to represent
the relative amount of combination trucks across a year (and three to represent single-unit trucks,
and three more to represent other vehicles), are found by using an optimization method, yielding the
coefficients which create the yearly traffic flow pattern which most closely matches the step-wise
reported yearly traffic variation of each traffic class type in the Hallenbeck data.

The Hallenbeck data represent the compilation of traffic counts at 99 geographic locations,
and the reported values are given for each month of a year. The VROOM representation was
obtained from traffic count data at thousands of geographic locations, with values for each hour of a

year. By finding a VROOM representation to approximate the Hallenbeck data, a smoothed traffic
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pattern based on nationwide reported traffic flow behavior is obtained. The Hallenbeck data are

shown together with the fitted pattern in Figure 6.

Vehicles

“ "
11

e 1

Sos

‘I—Hnllenheck —— Fitted pattern
12

)

Rural
° e
o D

Figure 6. (Color online). Average relative amount of each traffic class type on both urban and rural
roads, as seen in Hallenbeck et al. and the fitted pattern using VROOM’s yearly traffic volume

model representation.

Note that because the mean average relative amount is equal to one, the fitted value can be
used as a yearly traffic class multiplier. When multiplied by the average traffic class percentage and
the predicted total traffic volume, the product gives the predicted traffic volume for that particular
traffic class type (e.g., the number of combination trucks) at that time period.

B. Weekly variation

Observed weekly traftic characteristics of different traffic class types from Hallenbeck et al.
(1997)* are reported on a day-of-week basis and an hour-of-day basis for both urban and rural
locations (see Table 3 and Figure 6, respectively, in the report). By combining the two, a total hour-
of-week characteristic variation is obtained. While this makes for a relatively smoothly varying

representation, there is some discontinuity when transitioning to and from the weekends, most
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204

notably for heavy/combination trucks. Further refinements, such as accounting for the lack of rush
hour traffic for urban vehicles on weekends, are made in Hallenbeck et al.**

Rather than refining each class type and time period, the approach taken in this paper is to
use VROOM’s traffic volume model to find a similar VROOM representation for weekly traffic
patterns of each traffic class type. The same approach outlined to fit the yearly data is used to find
five coefticients for vehicles and five coefficients for single-unit trucks.

For combination trucks, a five-coefficient VROOM representation does not accurately
represent observed patterns. This is because the number of combination trucks does not decrease
significantly during nighttime hours. This highlights a potential weakness of the VROOM weekly
representation; because observed total traffic volume always decreases during nighttime hours, the
VROOM representation cannot accurately represent traffic patterns that do not decrease during
nighttime hours. Instead of using the VROOM representation for combination trucks, the transition
to and from weekend combination truck numbers is simply smoothed by adjusting the hours around
midnight, which removes the large discontinuities in reported numbers.

The reported and fitted weekly traffic patterns for each traffic class type are shown in Figure
7. The fitted patterns shown approximate the combined patterns of the Hallenbeck data on
weekdays for all traffic class types. On weekends for single unit trucks, and more obviously for
vehicles, a more smoothly varying pattern is found, which does not include the artificial morning
and evening rush hours. While the Hallenbeck data are further refined using additional methods (to
remove erroneous rush hour patterns on weekends), the VROOM representation is automatically

able to remove such artifacts since the representation was created using observed traffic counts. The
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smoothed pattern shown for combination trucks does not entirely vary smoothly, but does account

for the temporal variation, and removes discontinuities on weekday/weekend transitions.

Vehicles SingleUnitTrucks CombinationTrucks
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Figure 7. (Color online). Observed and fitted hour-of-week traffic patterns for each of the three

major traffic class types.

Figure 5 showed time-averaged reported and modeled traftic class mix percentages without
accounting for temporal variation. VROOM predicts the dynamic class mix percentage at any
location by multiplying the predicted temporal variation with the average class mix at that location,
explained further in the next section. Multimedia 1 shows an example of the temporal variability
across the hours of a week by showing the predicted percentage of trucks (the sum of both
combination trucks and single-unit trucks). Urban locations often have a low percentage of trucks

both day and night, while freeways often have larger percentages, as expected.

Multimedia 1. The predicted percentage of trucks (both combination and single-unit trucks) for

hours across a week. Averaged hourly predictions across time match reported time-averaged

percentages by design.
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C. Combining with average predictions

Because the weekly and yeatly traffic class predictions are normalized, combining them with
the average traffic class for any time period desired requires only simple multiplication. The
predicted number of heavy trucks for a particular time is calculated by multiplying the relative
weekly prediction for that time, the relative yearly prediction for that time, the average percentage of
combination trucks at that location, and the average predicted traffic volume at that location (the
AADT divided by 24). Due to the constraints, the predicted number of vehicles of each class type
will always be non-negative, and the sum of vehicles of each class type for any hour will be the total
number of vehicles predicted for that hour. In this manner annual average daily traffic values are

maintained.

IV. SOUND EMISSION SPECTRA

With the predicted number of vehicles of each class type for any time period, calculating the
predicted sound emission spectra requires use of the Traffic Noise Model or TNM 3.0 equations
(see Appendix A in the technical manual, particularly Equation 5)," as was outlined in Figure 1. With
these equations, the predicted number of vehicles of each class, the speed limit (whether or not this
is a good indication of how fast vehicles are actually going), and pavement type at each location,
sound emission spectral levels can be predicted for any time period, with up to hourly resolution.
The predicted overall sound pressure levels give a predicted 1-hour A-weighted equivalent sound
level, LAeq, at a distance 15 m (50 ft) from each road at a height of 1.5 m (5 ft), which is the
predicted traffic noise source level.

Figure 8 shows the time-averaged predicted 1-hr LAeq across CONUS. Interstates and other

freeways are seen to be the dominant sources of traffic noise across the country, and on several
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247  freeways sound levels exceed 85 dBA, while smaller roads are much quieter, some with sound levels

248  below 35 dBA.

249
Time averaged 1-hr LAeq iR

8s
80
75
70
65
60
55
50
as
a0
35

250

251 Figure 8. (Color online). Time-averaged predicted traffic noise source levels across CONUS.

252

253 While the VROOM-predicted average sound levels are useful, the NTNM already gives

254 time-averaged levels for geographic locations.' The utility of VROOM is that it can predict source
255  levels for any time period and frequency of interest. VROOM-predicted sound levels are more easily
256  understood using multimedia, so that results can be seen both spatially and temporally. Subsection A

257  shows the weekly and yearly temporal variability of VROOM-predicted sound levels across CONUS
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using multimedia. Subsection B shows VROOM predictions for two specific time periods, and

Subsection C explains spectral variability of VROOM predictions.

A. Temporal variability
Multimedia 2 shows the predicted levels for each hour across a week, with the time given
being the local time for each location. Most locations, especially more rural locations, have a
significant decrease in sound level during nighttime hours (see Subsection B below for specific
examples). For most locations, weekends show smooth increases and decreases in overall level.
Rural weekday locations show a similar pattern, while urban weekdays show rush hours both
morning and afternoon, rather than smooth increases and decreases over the day. Friday evenings

also show a more protracted decrease in sound levels.

Multimedia 2. Predicted sound levels at locations across CONUS for each hour across a week, in

local time for each location.

In general, sound levels do not change as drastically across days of a year as they do across
the hours of week. Instead of showing the predicted sound levels across the days of a year,
Multimedia 3 shows the predicted yearly levels relative to the time-averaged sound level for each
location. A value of 3 dBA means that for that particular location, the noise level for that time
period is 3 dBA louder than the time-averaged level at that location. Note that since some locations
have higher sound levels than others on average, a location with a value of -5 dBA may still have a
higher overall level than a location with a value of -2 dBA. The differences should not be confused
with absolute levels. With this in mind, the changes across the year in different parts of the country
are more casily seen in this manner. In the west, especially in locations where national and state parts

are common, large changes can be observed from the summer to the winter. In more urban
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locations, there is less variation across the year. Adjacent locations show similar trends, with smooth

spatio-temporal variation.

Multimedia 3. Predicted sound levels at locations across CONUS for each day across a year, shown

relative to the average sound level for each location.

B. Examples of specific time periods

Predictions for two different time periods are given in this subsection. Note that in all
results, local time is used for all locations. Additionally, as was done in Multimedia 3, levels are
shown relative to the time-averaged LLAeq (which was given in Figure 8), and so two locations with
the same difference value do not necessarily have the same total level.

For the first example, Figure 9 shows relative predicted levels for a weekday nighttime in
December. Results therefore show a combination of the weekly behavior and the yearly behavior for
a location. Sound levels are seen to be lower than average for all locations, which is a result of the
hourly variation across a week, as well as the absence of weekday traffic. There is more variation in
the western states, as was seen in Multimedia 3, and so is likely a result of decreased traffic in
December. While some urban areas show more variation than surrounding areas, cities generally still

have higher sound levels at all times since they have much higher time-averaged levels. This shows
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that sound level variability is not equal, and some locations exhibit large changes in sound level while

others show only small changes.

Figure 9. (Color online). VROOM predicted sound levels for a weekday nighttime in December

relative to the time-averaged levels for each location.

For the second example, Figure 10 shows the relative predicted levels for a weekend
afternoon in July. For many locations sound levels are higher than average, most notably in the

Rocky Mountain areas from Montana to New Mexico, as the mountainous areas are much more

popular destinations during summer weekends than during wintertime. For some of the larger cities,
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sound levels are lower than on average. This could be a result of less traffic in cities due to more

people being outside of cities for summer vacations.

Figure 10. (Color online). VROOM predicted sound levels for a weekend afternoon in July relative

to the time-averaged levels for each location.

C. Spectral variation

Consideration has been given thus far primarily to the temporal variability of traffic noise. The
spectral variability of traffic noise is also important to consider. Not only do combination trucks
produce higher sound levels than smaller vehicles, but they also have fundamentally different
spectral characteristics. Predicted time-averaged spectral characteristics are seen in Multimedia 4,

which shows differences from the overall sound pressure level for each location and frequency.

Differences in spectral characteristics seen between interstates and small roads are primarily a result

of different percentages of the vehicle class types, though the speed limit does contribute to spectral
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differences as well. This primarily shows that spectral shapes of noise from interstates differs from
the spectral shape of noise from smaller roads. Multimedia 4 shows only the time-averaged spectral

characteristics, while in reality VROOM predicts spectral characteristics in a dynamic manner.

Multimedia 4. Characteristic spectral differences from the overall sound pressure level for each

location across third-octave bands.

V. UNCERTAINTY QUANTIFICATION

The National Transportation Noise Map NTNM) gives a 24-hr LAeq for road noise across
CONUS. VROOM was created to address the temporal and spectral variability of road traffic noise,
and so gives a 1-hr LAeq traffic noise source level for individual road segments. To truly create a
temporally and spectrally varying traffic noise map, source levels would need to be mapped to
physical locations using sound propagation methods (see Figure 1). Additional adjustments due to
objects like sound bartiers should also be considered. Thus, a direct comparison of NTNM to
VROOM-predicted noise levels is not useful at this time. However, the time-averaged 1-hr LAeq
shown in Figure 8 was calculated directly using the TNM 3.0 equations, and as such gives the source
levels like those used to create the NTNM.

Instead of comparing predicted vehicle emission levels to time-averaged levels, the uncertainty
of VROOM is considered in regard to the location of traffic monitoring stations (TMSs). The
VROOM traffic volume model was created using hourly vehicle counts from TMSs across CONUS.
The locations of these stations are shown in Figure 11. The VROOM coetftficients which represent
the weekly and yearly traffic flow variability for any location are calculated using the DCs for that
location, and values are shown spatially in the appendix. Much of the uncertainty in VROOM comes
from the dissimilarity of geospatial and road data values at traffic monitoring stations compared to

value found across CONUS.

22

81



347

348

349

350

351

352

353

354

355

356

357

358

359

360

'ﬁ\?w Locations of traffic monitoring stati f :

Figure 11. TMS locations across CONUS.

A. Uncertainty based on road data

One form of uncertainty is caused by the bias of TMS locations relative to road data. Ideally, the
distribution of any road data at TMS locations should match the distribution seen across CONUS. If
the TMS distribution is more weighted towards a particular value than the CONUS distribution,
then that value will have more impact on VROOM, and other locations will be underrepresented.
For categorical road data such as urbanization, f-system, and pavement type, the distributions can be
characterized simply by comparing what percentage of locations are in cach category. These results

are tabulated in Table 1.

Table 1. Comparisons of the distributions of urbanization, f-system, and pavement type across TMS

locations and across roads throughout all of CONUS.
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374

Distribution of urbanization

™S 46.2% urban 53.8% rural
CONUS 38.8 % urban 61.2% rural
Distribution of f-system

TMS 26.6% Interstate | 9.3% Other freeway | 31.7% Principal arterial | 32.4% Other
CONUS | 4.0% Interstate | 1.7% Other freeway | 13.0% Principal arterial | 81.3% Other
Distribution of pavement type

T™MS 29.6% Average 60.1% Asphalt 10.3% Concrete
CONUS 66.7% Average 30.2% Asphalt 3.1% Concrete

These results show that there is some bias towards urban traftic patterns because TMS
locations are more common in urban locations than there are urban roads across CONUS. To
reduce bias, more TMSs could be placed along rural roads. Similarly, TMS locations are much more
heavily weighted towards interstates, freeways, and principal arterial roads than CONUS, and so
smaller roads are underrepresented, as stations are often more interested in intercity travel rather
than intracity travel. There are also some differences in pavement type distribution.

Other types of road data are numeric rather than categorical, such as the number of through
lanes. Since VROOM uses a maximum number of only eight through lanes, this could still be
summarized in table format. However, when moving to a variable with more possible values like the
speed limit, a probability density plot can be used to show results more concisely. Therefore,
comparisons for through lanes, speed limit, and logarithmic AADT are shown as probability

densities in Figure 12.
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Figure 12. (Color online). Comparisons of the distributions of through lanes (a), speed limit (b), and
logarithmic AADT (c) for TMS locations and all roads across CONUS. TMS locations are more
heavily weighted towards a greater number of through lanes, higher speed limits, and higher AADT

values than the CONUS distributions.

These distributions show that there is a bias towards a greater number of through lanes, higher
speed limits, and higher AADT values. While not surprising, as TMS locations are more likely to be
located where there is more traffic, this does show that VROOM could be improved, and

uncertainty reduced, by obtaining hourly traffic volume for locations where there is less total traffic.
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B. Uncertainty based on DCs

VROOM’s traffic volume model uses DCs to predict the temporal variability of traffic volume
and is based on hourly counts taken at TMSs across CONUS. Therefore, in addition to comparing
road data distributions at TMS locations to CONUS, the DC distributions should be considered.
For maps of all DC values, see the appendix.

If certain DC values were not represented at TMS locations, then predictions for locations
with those diffusion coordinate values would have large uncertainty, as with road data. Fortunately,
despite being sparse in some geographic locations like South Carolina, TMS locations span the range
of, and have similar distributions to, the DC distributions across CONUS. Figure 13 shows the
distribution of the first DC value at TMS locations together with the distribution of the first DC
value at roads across CONUS. Distributions for the other DCs are similar and are given in the

appendix.
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Figure 13. (Color online). A comparison of the distributions of the first diffusion coordinate at TMS
locations compared to across CONUS. The distributions show high agreement. A spatial map of the

tirst DC is shown in Figure 2, and maps for all DCs are shown in the appendix.
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403 In addition to comparing distributions for individual DCs, an uncertainty measure for an
404  individual location in CONUS can be obtained by calculating the standard deviance, or the root-

405  mean-square distance, between that location’s DC values and the DC distributions across TMS
406  locations. This is calculated mathematically for a location [ by using the mean (i;) and standard
407  deviation (0;) of the DC values at all N traffic monitoring stations, with DC; being the value of the

408 ™ diffusion coordinate, as:

409
1 DC; -1\ 2 1 1 2
410 €= |52 (%) s i =2 X DG, 0 = \/EZISV:JDCLS — | (2)
411
412 The values of €; can be calculated for each road segment across CONUS, and values are

413  plotted geographically in Figure 14. The value is the RMS standard deviation, and so a value of 3
414  means that the DCs for that location are on average 3 standard deviations away from the

415  distribution of DC values represented at TMS locations. VROOM has lower uncertainty at locations
416  with a lower RMS standard deviation. While there is some moderate uncertainty at locations such as
417  southern Florida and northern Minnesota, RMS standard deviation values are generally relatively
418  low, which shows that VROOM is likely to have low uncertainty for most geographic locations

419  across CONUS.

420
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RMS standard deviation using DCs

Figure 14. RMS standard deviation of the DCs for each location relative to the distribution across
TMS locations are shown geographically. Most locations have small RMS standard deviations, with

the most uncertainty seen in locations such as northern Minnesota and southern Florida.

C. Additional uncertainty

Additional uncertainty in VROOM can be caused not just by TMS locations relative to input
data, but by uncertainty in the reported data. To mitigate this uncertainty, TMS locations with
unreasonable data (e.g., traffic volume that showed strange shifts in reported values so that traffic
volume was larger during nighttime hours at irregular intervals) were given a lower weight when
creating VROOM coefficients. For morte details, see Cook et al (2021)." Values for and distributions
of VROOM coefficients are shown in the appendix along with the temporal patterns of VROOM

cornponents .
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Other forms of uncertainty that are not included but could be considered are the locations at
which the Hallenbeck dynamic traffic class mix data were taken,” and uncertainty in the source
traffic noise emission equations in TNM 3.0.” Additionally, modern changes can also create
uncertainty. Accounting for the increase in numbers of electric vehicles and especially electric trucks
in recent years, could be made to improve reliability of predicted sound emission levels. Adding new
housing developments could change the diffusion coordinates for a location, which would also
change the VROOM predictions.

Further modifications could be made to account for changes in vehicle speed with traffic
volume, rather than just using reported or predicted speed limits. Road segments are also considered
separately, so treating locations as a network rather than individual points would improve reliability
of predictions. Adding other parameters beyond the road data and the geospatial data considered

could likewise improve reliability.

VI. CONCLUSION

The hourly-dynamic nature of traffic noise across CONUS can be predicted using VROOM.
The included traffic volume model was first shown in Cook et al. (2021)," and using geospatial and
road data, VROOM predicts total traffic volume with houtly resolution. Expected errors based on
total traffic volume were shown in Cook et al. (2023)."* The traffic class mix model shown in this
paper expands upon previous results to include prediction of tratfic volume by vehicle class, which

is necessary to account for differences in emitted sound spectra and levels produced by different

29

88



454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

types of vehicles. Using TNM 3.0 equations, the traffic noise source model is used to predict traffic
noise source levels with hourly resolution.

Without a major nationwide validation study, either recording the traffic volume by class or
recording sound levels 50 feet/15 meters from roads, expected model etrors cannot be obtained
directly. Instead, this paper shows locations of highest uncertainty, as related to geospatial and road
data bias in traffic monitoring stations. While not a fully robust way of calculating expected sound
level errors, the results illustrate how VROOM predicts temporal and spectral variability of traffic
noise with relatively low uncertainty for most locations. The VROOM-predicted sound levels should
not be seen as a fully comprehensive analysis of traffic noise predictions, but rather as a way to
account for temporal variability—and by using the TNM noise emission spectra equations, spectral
variability—of traftic noise near roads.

VROOM-predicted noise source levels give expected spectrally varying sound levels near
roads, and all VROOM predictions shown in this paper give results in the form of predicted source
noise levels, which are valid 50 feet/15 metets from roads. To create true sound maps, the emitted
spectral sound levels would need to be used as inputs in a traffic noise propagation model, and other
types of noise levels beyond an equivalent noise level, such as percentile exceedance levels, would
need to be considered. These are topics of future research.

While not without its limitations, VROOM is a powerful tool for predicting temporal and
spectral variability of traffic noise. Predictions are based on observed traffic volume across CONUS
and on TNM 3.0 traffic noise source emission equations. Expected errors, based on predicted and
observed traffic volume where available, are smaller than errors obtained using time-averaged traffic

volume, and model uncertainty is low for most locations. By accounting for the temporal variability
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of traftic volume, VROOM is able to predict traffic noise, not just for an averaged time period, but

with hourly resolution.
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483 APPENDIX

484 This appendix includes additional figures, both spatial maps and distributions, which give a
485  greater understanding of the underlying values used in VROOM. These figures include reported
486  road data alongside VROOM road data, diffusion coordinate values, urbanization status, and

487  VROOM components and coefficient values.

Reported
f-system

488
489
Reported
pavement-type
490

491 Figure 16. (Color online). Reported pavement type alongside pavement types used by VROOM.
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492
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499

Reported
speed-limit

Reported )
through-lanes

Figure 18. (Color online). Reported number of through lanes alongside number of through lanes

used by VROOM.

Urban
locations

Rural
locations

(a) (b)

Figure 19. Road locations which are classified as rural (a) and urban (b). This comes from results of

clustering analyses explained in Pedersen et al. (2021).”
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Figure 23. (Color online). Spatial maps of VROOM coefficients across CONUS.
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Chapter 7

An app for nationwide dynamic traffic noise prediction

7.1 Introduction

This article describes the VROOM (Vehicular Reduced-Order Observation-based Model)
app, which was developed using the techniques and models described in Chapter 4, Chapter 5, and
Chapter 6. The app allows for real-time prediction of traffic noise and utilizes user inputs to predict
traffic noise with the spatial, spectral, and temporal resolution desired. It was accepted for the
INTER-NOISE and NOISE-CON Congress and Conference Proceedings, with the publication

forthcoming.

7.2  Required Copyright Notice

The following is the author-submitted version of an article for the INTER-NOISE and
NOISE-CON Congress and Conference Proceedings, entitled “An app for nationwide dynamic
traffic noise prediction”. It is reproduced in its original author-submitted format here by rights
granted in https://www.ieee.org/publications/rights/#author-posting-policy.

I hereby confirm that the use of this article is compliant with all publishing agreements.

7.3  Accepted Article

103



L""'AL

X ~

NOISE-CON 2023

An app for nationwide dynamic traffic noise prediction

Mylan R. Cook!, Kent L. Gee?, Mark K. Transtrum?
Brigham Young University
N283 ESC, Provo, UT 84602

Shane V. Lympany*
Blue Ridge Research and Consulting, LLC
29 N Market St #700, Asheville, NC 28801

ABSTRACT

Despite being so pervasive, road traffic noise can be difficult to model and predict on a national scale.
Detailed road traffic noise predictions can be made on small geographic scales using the US Federal
Highway Administration’s Traffic Noise Model (TNM), but TNM becomes infeasible for the typical user
on a nationwide scale because of the complexity and computational cost. Incorporating temporal and
spectral variability also greatly increases complexity. To address this challenge, physics-based models
are made using reported hourly traffic counts at locations across the country together with published
traffic trends. Using these models together with TNM equations for spectral source emissions, a
streamlined app has been created to efficiently predict traffic noise at roads across the nation with
temporal and spectral variability. This app, which presently requires less than 700 MB of stored
geospatial data and models, incorporates user inputs such as location, time period, and frequency, and
gives predicted spectral levels within seconds.

1. INTRODUCTION

Noise from road traffic contributes heavily to ambient noise levels in urban and even rural areas.
Increased noise levels are correlated with anything from mild annoyance to an increase in violent crime.!
Noise can also negatively impact other species.>® Characterizing road traffic noise levels is therefore
important for anything from urban planning to species conservation and human wellbeing.

Despite being so pervasive, even when they are known or predicted, road traffic noise levels on
a national scale are reported only for large-period average time scales, such as a yearly averaged 24-hr
LAeq (A-weighted equivalent overall sound pressure level), like in the National Transportation Noise
Map.® Noise levels and spectra vary with traffic volume and traffic class composition, as well as with
other factors such as vehicle speed, pavement type, road inclination, and land cover.%” Temporal changes
can be drastic, particularly from daytime to nighttime, though also by day of week and time of year.

1 mylan.cook@gmail.com

2 kentgee@byu.edu

3 mktranstrum@byu.edu

4 shane.lympany @blueridgeresearch.com
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Using hourly traffic counts across the continental United States (CONUS) together with reported
temporal variation of traffic classes, the Vehicular Reduced-Order Observation-based Model, or
VROOM, has been developed to predict hourly-varying spectral source road traffic noise.>!° VROOM
uses a concise set of location-specific features and developed models to allow for fast and efficient
prediction of source noise levels for roads across CONUS. The VROOM app enables user inputs such
as specific location, time period, and frequency, and can calculate and geographically plot source noise
emissions within seconds.

2. PREDICTING TRAFFIC WITH VROOM

To predict temporally varying traffic noise, temporally varying traffic volume must be predicted.
Additionally, the traffic class mix must also be predicted, as different types of vehicles can produce very
different spectral sounds. VROOM predicts total hourly traffic volume using reported hourly vehicle
counts from thousands of traffic monitoring stations across CONUS, and hourly traffic class mix is
predicted using published traffic class mix characteristics. Traffic noise emissions are then calculated
using TNM source noise emission equations for each vehicle class.

2.1. Predicting hourly traffic volume

The Federal Highway Administration tabulates reported hourly vehicle counts from thousands of traffic
monitoring stations across CONUS. Using data from 2015-2018, Fourier analysis was used to find
weekly and yearly patterns.!! Principal component analysis was then used on the denoised Fourier
spectra. This resulted in a simplified representation for traffic volume dynamics at traffic monitoring
stations, which includes a set of traffic volume representative coefficients and principal component
vectors. For further details, see “Toward improving road traffic noise characterization: A reduced-order
model for representing hourly traffic volume dynamics” by Cook et. al.!?

To enable prediction of traffic volume at other locations, regression was used to find a
transformation from location-specific values to coefficients. The location-specific features include 12
diffusion coordinates,'® urban or rural designation, and road features such as road classification
(interstate, principal arterial, etc.), through lanes, speed limit, and the annual average daily traffic
(AADT). The resulting predictive traffic volume model, which is the first part of VROOM, uses
location-specific features to predict coefficients, and therefore traffic volume, anywhere across CONUS.

2.2. Predicting hourly traffic volume of each traffic class

Like average annual sound levels, average annual traffic class mix is known for many locations across
CONUS. However, where the class mix is unknown, it must be predicted. This is done using regression
with the same location-specific features as are used to predict traffic volume representative coefficients.
Due to physical constraints, there is some additional nuance. Each traffic class mix percentage must be
between 0% and 100%, and the sum of each class mix percentage must equal 100%. One way to ensure
this is by using angular coordinates. This approach is generalizable to any number of traffic classes,
though most often three traffic classes—vehicles, medium trucks, and heavy trucks—are used.

Regression on the angular coordinates where traffic class mix is known yields a transformation
from location-specific features to angular traffic class mix. This enables VROOM to predict traffic class
anywhere using location-specific features, much the same as VROOM predicts traffic volume dynamics
by predicting traffic volume representative coefficients.

Average annual class mix is necessary to determine traffic noise characteristics, but, as with
traffic volume, traffic class mix varies temporally. Traffic class mix is not reported with temporal
variation at thousands of traffic monitoring stations, and so published trends of national temporal
variallaility of traffic classes from a Federal Highway Administration report by Hallenbeck, et al. are
used.
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Average temporal variability of individual traffic classes is reported for different types of road
designations (such as freeways or local roads) in either urban or rural locations across hours of the day,
days of the week, and months of the year. By combining and normalizing the temporal variation,
temporal multipliers for the traffic class mix are obtained.

VROOM predicts the total number of vehicles of a particular traffic class for any particular hour
by multiplying the following values:

. The annual average total hourly traffic volume (AADT/24)
. The predicted normalized hourly traffic volume

. The average traffic class mix percentage

. The predicted hourly traffic class mix percentage

The product is calculated for each traffic class individually and gives the predicted number of vehicles
of that class type. With the number of vehicles of each class type, the noise emissions for each class can
be calculated.

2.3. Calculating noise emissions
For a known number of vehicles of a particular vehicle class type, the spectral noise emissions are
calculated using equations from the Traffic Noise Model (TNM). These equations give the noise
emissions at 50 feet from the road at a height of 5 feet based on traffic class numbers, pavement type,
and vehicle speed. These equations can be found in Appendix A of the TNM Technical Manual.'®

For any time period greater than one hour, average hourly noise emissions are calculated by
averaging the relevant hourly VROOM-predicted vehicle numbers. The TNM equations are then used
on the average numbers of vehicles of each class type, which results in the predicted spectral levels for
the desired time period. Figure 1 shows the predicted 1-hr LAeq for a fully averaged time period, without
regard for the time of day, day of week, or time of the year. This can be compared to TNM-predicted
average sound levels and the National Transportation Noise Map’s sound levels 50 feet from each road.

Time averaged 1-hr LAeq

- 65

- 60

50

a5

40

35

Figure 1. Temporally averaged VROOM-predicted A-weighted 1-hr LAeq.
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The average sound levels, while important to know, are given in the National Transportation
Noise Map. The utility of VROOM is that it can predict not just time-averaged levels, but levels for any
time period and frequency of interest, down to hourly time scales. This is important because sound levels
can change drastically across the course of a single day. Predictions for two different time periods are
shown in Figure 2 and in Figure 3. Differences of a few decibels are hard to see with a large range, like
the 70 dBA range used in Figure 1, and so the figures show not overall levels, but differences from the
average sound levels shown in Figure 1. Across the country, sound levels are much lower than average
during nighttime hours on weekdays in December, and for many locations sound levels are higher on
weekend afternoons in July.

Hl
TRV 2 j -
& ; ; ‘

Figure 2. 1-hr LAeq for an average weekday nighttime in December, relative to the average sound level.
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1-hr LAeq, Weekend, Afternoon, July

Figure 3. 1-hr LAeq for an average weekend afternoon in July, relative to the average sound level.

3. THE VROOM APP

VROOM can predict hourly sound emissions for roads across the country in a computationally simple
manner. By using about 18 features for each location of interest, a few matrix and linear multiplications
and additions yield the predicted hourly source noise emissions. While computer RAM and memory can
limit the number of parallel computations for millions of road locations—and especially the number of
locations for which results can be plotted—using VROOM to calculate and plot results for even state-
wide scales can be done in a relatively short amount of time for even a simple laptop computer.

The VROOM app was developed using the methods described in this paper to allow calculation
and plotting of source road traffic noise using user inputs. The models consist of a few streamlined codes,
and the ~18 location-specific features for millions of locations across CONUS can be stored using less
than 700 MB of memory. Thus, predicted sound characteristics for geographic areas as large as
individual states can be shown using a simple computer.

The VROOM app performs calculations and plots results in real time. Because of the speed of
calculation, user inputs can be utilized. Figure 4 shows a snapshot of the user interface for the VROOM
app, together with the predicted sound levels in Grand Rapids, Michigan at 5:00 pm on a spring weekday.
Users can input the location by state, county, and city, or by latitude and longitude. When a state is
selected, the county options are updated automatically. Likewise, the cities options are updated when the
county is selected. Alternatively, the user can select latitude and longitude limits, which are
automatically updated when states, counties, or cities are selected.
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Figure 4. The user interface for the VROOM app, alongside the predicted overall sound pressure level
for roads near Grand Rapids, Michigan on a spring weekday at 5:00 pm.

Users can also input the desired time period, which can be as specific as a particular hour of the
day, day of the week, and month or season of the year. Individual one-third octave band frequencies or
overall sound pressure levels can likewise be selected, along with flat or A-weighted levels. Additional
inputs, such as vehicle throttle—which indicates whether or not vehicles are accelerating—and
additional mapping preferences are also incorporated.

The VROOM app is a powerful tool that allows users to predict source traffic noise emissions
quickly and efficiently for roads across CONUS. The versatility and simplicity for the user make this
app useful for a variety of applications.

4. CONCLUSIONS

The VROOM app allows users to input parameters such as location, time period, and frequency, and
predicts and plots predicted traffic noise along roads throughout the country. The app uses a concise set
of location-specific features and physics-guided, observation-based models totaling less than 700 MB to
efficiently predict traffic noise for the user-defined inputs.

While predicted average sound levels agree with national average levels, and the models used
were made with reported vehicle numbers and traffic class mix, noise emission error validations have
yet to be performed. Improvements to the VROOM app, such as incorporating minor roads and reducing
overhead computation and memory storage, are being made. Work is also being done to propagate source
noise levels to surrounding areas, as well as to predict noise characteristics such as median or percentile-
based noise emissions in addition to equivalent sound levels.

While standard national traffic noise levels are only given for average time scales, the VROOM
app can predict noise levels with hourly resolution, and can do so in real time. With a simple user
interface, desired temporal and spectral characteristics can be highlighted. VROOM is a powerful tool
for predicting traffic noise across the country.
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Chapter 8

Conclusions

Physics-guided approaches for modeling spatio-spectro-temporal data allow for more
accurate characterization of acoustic environments. By ensuring that spatial, spectral, and temporal
relationships are maintained, models are able to not just represent the data, but are better able to
give physically meaningful predictions. By using physics-guided approaches, wind noise can be
automatically detected and reduced, and both traffic volume and traffic noise are better
characterized and predicted on a nationwide scale.

Much of the research performed for this dissertation was done in collaboration with Blue
Ridge Research and Consulting, LLC, under a U.S. Army SBIR. Results have been instrumental
in furthering characterizing outdoor acoustic environments on a nationwide scale. This research
has applications in many areas, including human health and wellness, bioacoustics, wildlife
conservation, urban and roadway planning, land development and conservation, noise ordinance
legislation, homebuying, and more.

While limitations of the different models were considered in the papers, a few additional
notes should be made. With regard to the wind noise classification and reduction method, the
classifier can fail for high wind speeds. This is because only above the crossover frequency does
the characteristic slope of wind noise approach -26.7 dB per decade. Additional improvements
could be made by searching not just for this slope, but by also searching for the crossover frequency

itself. This could be further improved by explicitly accounting for the temporal variability of wind
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speed. Each time interval was treated independently in the classifier, rather than accounting for
spectra that were temporally adjacent.

For VROOM, the Vehicular Reduced-Order Observation-based Model, the major
limitation is the lack of experimental validation. Analyses were performed to quantify the
uncertainty of the model, though this is not a substitute for experimental validation. Because source
traffic noise levels cannot be measured directly, it is necessary to account for sound propagation
(as well as for barriers and other obstructions near roadways) to compare model predictions with
acoustic measurements. A detailed comparison with measured acoustic data is necessary to
validate the VROOM predictions and remains a topic of further research.

Of particular note, as implied by the title of and the paper presented in Chapter 7, an app
for nationwide dynamic traffic noise prediction has been developed utilizing VROOM. Since the
submission of the article, improvements have been made, and many additional road segments have
been included. The app is now approximately 1.5 GB and is being tested for errors. Efforts are
being made to develop this app for commercial use, and applications of the methods and models
developed are being considered for other private and commercial applications.

VROOM should not be considered as the epitome of traffic noise prediction, but rather as
a tool to improve understanding of the temporal variability of road traffic noise. Further
improvements, particularly in treating road segments as a network rather than independent points,
could improve reliability and accuracy of road traffic noise predictions.

The research and the models presented herein outline some of the present limitations when
dealing with limited data, as well as the advantages of using a physics-guided modeling approach.
While predictions may or may not be proven correct in future, these models are tools for increasing

understanding of some of the most prevalent sources of noise in this present-day world. This
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research can be used to assist others in understanding the usefulness of physics-guided modeling

of acoustic environments using limited spatio-spectro-temporal data.
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