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ABSTRACT

A Colorfully Natural Twin Higgs Model

Logan Coleman Page
Department of Physics and Astronomy, BYU

Master of Science

Twin Higgs models have the potential to explain phenomena outside of the Standard Model
and provide an natural explanation of the Higgs mass. Here I explore a new realization of the twin
Higgs concept with an SU(4)c symmetry that is spontaneously broken in the Standard Model sector,
but remains unbroken in the Twin sector. I detail the phenomenological results produced by this
model. I show that this construction leads to a qualitatively new behavior regarding the fine-tuning
of the Higgs mass due to the top-quark sector.
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Chapter 1

Introduction

Particle physics seeks to describe the universe in terms of its most fundamental, indivisible elements.

This process consists of two parts: theory and experiment. Theory works within the constraints of a

mathematical framework to provide predictions of potential new phenomena, which may or may

not be experimentally observed. Experiment measures data to identify new phenomena, which may

or may not match an existing theory. When the two coincide to describe a new phenomenon with

high accuracy and precision, a discovery is made.

The accepted framework for particle physics model building is Quantum Field Theory, the

combination of special relativity and quantum mechanics. This framework describes every particle

as a fluctuation in a field. Couplings between fields result in all particle interactions. These fields can

exhibit global and/or local symmetries. Global symmetries lead to conserved charges, like baryon

number, that are not associated with a force. Local or “gauge" symmetries, described by Lie groups,

are related to the fundamental forces and their associated charges. An additional consideration is

Lorentz invariance, the relativistic requirement that space have no preferred direction and that all

inertial frames be equivalent. A model must account for each of these considerations and describe

phenomena in a testable way.

Particle physics experiments are usually carried out in particle colliders such as the Large

1
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Hadron Collider. Collisions are recorded, and the output particles from each collision are analyzed

for patterns that match theoretical expectations. When a detected signal varies from expected

background values by five standard deviations (5σ ) or more, it is considered a discovery. Although

this benchmark is somewhat arbitrary, it is well agreed-upon and encourages rigorous verification

of claims.

The last century of nuclear and particle physics has provided evidence for a set of particles and

forces now known as the Standard Model (SM) of particle physics. This model has been compiled

over time to describe fundamental particles: quarks, leptons, the photon, the gluon, and the W±,

Z, and Higgs bosons. Quarks make up protons and neutrons and experience the strong nuclear

force, which is communicated by gluons. Leptons include electrons and neutrinos. The photon is a

massless particle which communicates electromagnetism. The W± boson can be either positively or

negatively charged, and along with the neutral Z boson carries the weak force. The Higgs boson is

not directly evident in atomic structures, but is essential in providing mass to other fundamental

particles in a way we explore later on.

Each of these particles and the interactions between them have been described by theory and

observed experimentally. At times, such as for the discovery of electrons, experiment has provided

evidence which was later described by theory. More recently however, with the top quark and

the Higgs boson, experiment has taken decades to confirm what was theoretically expected. The

discovery of the Higgs Boson [1, 2] completed the SM as the final experimental verification of the

model’s predicted particles.

The SM contains several sets of particles and three fundamental forces. Each of these particles

is represented by a field. Each field is represented in Lorentz space according to its spin as a scalar,

vector, or tensor. Fermions, including quarks and leptons, are spin-1
2 particles. The photon and the

W± and Z bosons have spin 1. The Higgs field, having zero spin, is the only Lorentz scalar. Each

term of the Lagrangian must be invariant under Lorentz transformations.
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Quarks and leptons are both paired into two types. Quarks are either up-type or down-type,

depending on their electric charge. Leptons are either electrically charged (electron-type) or neutral

(neutrino). Each of these types is further subdivided into three generations. Two particles of the

same type but different generations have the same charge properties, but different masses. The

three generations of up-type quarks are, in order of increasing mass: up, charm, and top. The three

down-type quarks are, similarly: down, strange, and bottom. The three generations of charged

leptons are: electron, muon, and tau. The three neutral lepton generations are: electron neutrinos,

muon neutrinos, and tau neutrinos. When differentiating between these particles, we often refer to

the quarks and leptons as each having six flavors.

The “gauge bosons" are those which carry fundamental forces. The photon and gluon are

massless spin-1 bosons which carry the electromagnetic force and strong force, respectively. The

W± and Z bosons are massive spin-1 bosons which carry the weak force.

The Higgs boson is unique as the only spin-0 boson in the SM. This has an effect related to the

requirement of Lorentz invariance given by Quantum Field Theory. Lorentz invariance requires

space-time to have no preferred direction or velocity; all inertial frames of reference are equivalent.

Thus, any field with a non-zero spin must have an average value of zero throughout space. The

Higgs field, with zero spin, can have a non-zero average value without disrupting Lorentz invariance.

This average value is referred to as the vacuum expectation value, or VEV.

Each field exhibits gauge symmetries, invariances under Lie group transformations, which are

related to the observed fundamental forces of nature. There are three gauge groups that act on

SM fields: SU(3)c for fields with color charge, SU(2)L for fields that experience the weak nuclear

force, and U(1)Y for fields with hypercharge. A field will interact with each of these symmetries

depending on the charges it has under each. For more detail on Lie groups, see Appendix A.
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The primary equation describing the SM is its Lagrangian:

LSM =− 1
4

Ga
µνGaµν − 1

4
W a

µνW aµν − 1
4

BµνBµν

+ iL /DL+ iE /DE + iQ /DQ+ iD /DD+ iU /DU

+(λl)
i
jLiHE j +(λd)

i
jQiHD j +(λu)

i
jQiH̃U j +H.c.

+(DµH)†DµH +M2
H |H|2 −λH |H|4 . (1.1)

The first line of Eq. (1.1) contains terms unique to each of the three gauge groups SU(3)c, SU(2)L,

and U(1)Y . The terms Ga
µν , W a

µν , and Bµν represent the field strength tensors of each gauge group,

respectively. A field strength tensor Fa
µν corresponding to a Lie group SU(N) is defined as

Fa
µν = ∂µAa

ν −∂νAa
µ −g f abcAb

µAc
ν , (1.2)

where Aa
µ is a gauge field associated to the ath generator of SU(N), g is the gauge coupling that

determines the strength of its interactions, and f abc gives the structure constants. The group SU(3)c

has eight generators, the Gell-Mann matrices T a, which correspond to the eight varieties of gluon

fields. The group SU(2)L has three generators, proportional to the three Pauli matrices. The group

U(1)Y has only one generator, Bµ . For more detail on Lie groups and their generators, see Appendix

A.

The terms in Eq. (1.1) that contain Dµ and /D are the kinetic terms, which describe the kinetic

energy of each field individually. /D or Dµ represents the covariant derivative. This is a derivative

which has added terms to make it transform in the same way as the field under gauge transformations.

For a field ψ that acts under all three gauge groups, the complete gauge covariant derivative is given

by

Dµψ =
(

∂µ − ig′YψBµ − i
g
2

σ
aAa

µ − i
gs

2
T aCa

µ

)
ψ , (1.3)

and /D = Dµγµ to account for the spinor nature of fermion fields. The constants g′,g, and gs are the

gauge couplings corresponding to the gauge symmetries U(1)Y , SU(2)L, and SU(3)c respectively.

These factors characterize the strength of the associated force.
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The field E represents right-handed charged leptons from each of the three generations via a

suppressed flavor index. Expanding it in flavor space would yield:

E =


eR

µR

τR

 . (1.4)

The field L represents left-handed lepton doublets of SU(2)L. These fields, not E, experience

SU(2)L interactions. Each doublet contains a charged lepton and a neutrino from the same generation.

For example, the first generation of L is

L =

νe

e−

 . (1.5)

The fields D and U represent right-handed up-type and down-type quarks respectively, of all

three generations. Just like E, these two are singlets under SU(2)L and do not experience weak force

interactions. Q represents left-handed pairs of up and down quarks which transform under SU(2)L.

We represent these in an SU(2)L doublet structure, similar to that of L:

Q =

UL

DL

 . (1.6)

The field H represents the Higgs field, which is unique as the only scalar field in the model. The

terms in the third line of Eq. (1.1) describe the interactions of H with the fermions. The coupling of

a scalar to a fermion bilinear is a Yukawa interaction, and λ is the Yukawa coupling. The |H|2 and

|H|4 terms are the Higgs potential, which describe the mass and self-interactions of the Higgs field.

H.c. stands for Hermitian conjugate, indicating that the conjugate of the preceding terms in the line

are also included.
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1.1 Color Physics

We use color physics as a brief introduction to gauge symmetries in the Standard Model. SU(3)c

is the symmetry which governs colored particles, i.e. quarks and gluons. The strong force is the

fundamental force which acts on color charges. The strong force, much like electromagnetism,

can bind together complementary charges or separate like charges. In contrast to electric charge,

however, there are three variations of color charge, each with its own anti-charge. Because these

three charges combine in ways reminiscent of color, they are assigned the values red, blue, and

green. Similar to electric charge, a stable, neutral configuration of color charges can consist of a

charge and its opposite, e.g. red and anti-red. However, color charge can also be neutral when all

three colors are present. This happens when a red, a blue and a green quark bind to form a proton or

neutron. Just as red, green and blue light mix to show white, the three color charges together are

neutral.

These combination rules are the result of the SU(3)c symmetry. SU(3) is the Lie group composed

of special unitary 3×3 matrices. A special matrix has a determinant of 1. A unitary matrix times

its Hermitian conjugate is the identity. Thus, any matrix U in SU(3) has the properties

Det[U ] = 1 , U†U = I . (1.7)

The group elements are generated by the exponentiation of a related set of matrices, su(3), which

are a basis of the associated Lie algebra. When the Lie group is special and unitary, the elements of

the Lie algebra are traceless and Hermitian. Thus, any matrix T in su(3) has the properties

Tr[T ] = 0 , T † = T . (1.8)

In this discussion we prefer to work directly with the algebra. The set of 3×3 matrices with

these constraints can be specified by eight real parameters. These become the eight gluon fields,

which we can label as Ga, with a running from 1 to 8. Rather than writing each of the matrices
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separately, we can display all eight simultaneously with the use of superscripts and a summation

over a as

GaTa =


G3 + 1√

3
G8 G1 − iG2 G4 − iG5

G1 + iG2 −G3 + 1√
3
G8 G6 − iG7

G4 + iG5 G6 + iG7 − 2√
3
G8

 . (1.9)

Although quarks and gluons both interact with the Lie group SU(3)c, they do so in different

ways. A quark is in the fundamental representation of the group SU(3)c, the 3 representation, and

as such can be written as a triplet in color space as

q =


qred

qgreen

qblue

 . (1.10)

Because this triplet is in the fundamental representation, action by any element Ua of the group

SU(3)c transforms the triplet as

qa →Ua
b qb . (1.11)

A quark-antiquark pair being acted on by the group would transform as

qaqa → qa(U†)c
aUb

c qb → qaIb
aqb → qaqa , (1.12)

and is thus invariant under action by the color group. This result is equivalent to the quark-antiquark

pair being neutral under color charge, as described earlier. Describing this multiplication in

representation notation shows the same neutral result

3⊗3 = 888⊕1 . (1.13)

This multiplication is expanded using representation theory, as described in Appendix A.

Because the result contains the singlet representation 111, it has a charge neutral part.

A gluon, on the other hand, is in the eight-dimensional adjoint representation, 888, of the color

group. This means that instead of a vector-like triplet with 3 degrees of freedom, we represent it
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as a matrix with 8 degrees of freedom, in the same form as the generators of the group elements.

This correctly implies that there are 8 unique varieties of charge that a gluon can take on. A gluon

has one color and one anti-color of charge, with rr+gg+bb = 0. Thus, we can map out the gluon

types in the following matrix:

Ga
b =


grr ggr gbr

grg ggg gbg

grb ggb −grr −ggg

 . (1.14)

An object Ga
b in the adjoint representation of a group such as SU(3) transforms as

Ga
b →Ua

c Gc
d(U

†)d
b . (1.15)

This leads to different requirements for gauge invariance and charge neutrality than for the quark

color triplets. For example, a gluon interacting with a quark-anti-quark pair is color invariant, as:

qaGb
aqb → qb(U†)a

cUb
d Gd

e (U
†)e

aU f
b q f → qaGb

aqb , (1.16)

or, using representation theory:

333⊗888⊗333 = 222777⊕111000⊕111000⊕888⊕888⊕888⊕111 . (1.17)

Because the result contains a singlet under SU(3)c, it is invariant under color charge transformations.

It transforms only by the identity element, i.e. not at all, when acted on by the group.

These principles of group interactions also hold for SU(2)L and U(1)Y , though in simpler ways.

The generator for U(1)Y is a number, a rank one matrix. States that are charged under U(1)Y

transform as eiθ . The fundamental states of SU(2) are doublets, 222, rather than triplets, and its

generator matrices can be written as 1
2σa, where σa are the three Pauli matrices

σ
1 =

0 1

1 0

 , σ
2 =

0 −i

i 0

 , σ
3 =

1 0

0 −1

 . (1.18)
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1.2 Spontaneous Symmetry Breaking

An aspect of the SM which is important throughout this discussion is the spontaneous symmetry

breaking caused by the Higgs. Because the Higgs field is a Lorentz scalar, it is allowed to have a

non-zero VEV without breaking Lorentz invariance. The VEV interacts with gauge transformations

in such a way that some of the symmetry is lost. The Higgs, being charged under SU(2)L ⊗U(1)Y ,

breaks these two symmetries down to a new, smaller symmetry, U(1)E&M. We now examine the

mathematical method by which these symmetries break. Because the Higgs is not charged under

color, the color symmetry does not appear in this calculation. We express the Higgs field as a

doublet under SU(2)L ⊗U(1)Y , which is

H =

H+

H0

 . (1.19)

The terms in the SM Lagrangian defining the Higgs field are

L = (DµH)†DµH −VH , (1.20)

where the Higgs potential, VH , is

VH =−µ
2|H|2 +λ |H|4 . (1.21)

In order to see how the Higgs field’s VEV disrupts symmetries, we first find its value. The VEV

is the value it takes when energy is at a minimum, so we minimize the Higgs potential and find

⟨H⟩V EV =
µ√
2λ

. (1.22)

Since H transforms under SU(2)L ⊗U(1)Y as a two component object, we can choose a convenient

gauge transformation to put the entire magnitude of the VEV in the lower component. This becomes

⟨H⟩V EV =

 0

µ√
2λ

 , or using conventional notation, ⟨H⟩= 1√
2

0

v

 , (1.23)
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where v = µ√
λ

.

We now can use this form of H and the covariant derivative in Eq. (1.3) to evaluate the kinetic

term containing DµH. We can also assign to Yψ the Higgs’ hypercharge value in the SM, 1
2 .

1√
2

Dµ

0

v

=
1√
2
(∂µ + i

g
2

σ
aAa

µ + i
g′

2
IBµ)

0

v


=

1√
2

∂µ + i
2(g

′Bµ +gA3
µ)

ig
2 (A

1
µ − iA2

µ)

ig
2 (A

1
µ + iA2

µ) ∂µ + i
2(g

′Bµ −gA3
µ)


0

v


=

1√
2

 ig
2 (A

1
µ − iA2

µ)

∂µ + i
2(g

′Bµ −gA3
µ)

v . (1.24)

From this result, we expand the full kinetic term, noting that ∂µν = 0: 1√
2

Dµ

0

v




†

1√
2

Dµ

0

v

=
v2g2

8
(A1

µ + iA2
µ)(A

1µ − iA2µ)+
v2

8
(g′Bµ −gA3

µ)
2 . (1.25)

When the symmetry SU(2)L⊗U(1)Y breaks to U(1)E&M, the size of its set of generators must

decrease from four to one. Within the unbroken symmetry, A1−3
µ and Bµ represented massless

vector fields which carried associated forces. After breaking to U(1), however, three of the four

basis vectors lose their symmetry and need not remain massless. The Higgs field also began with

four real degrees of freedom (two in each complex component), and is now left with only one in the

direction of v. The three broken symmetry dimensions become massive vector fields by absorbing

degrees of freedom previously held by the Higgs field.

We see that the previously massless vector fields A1−3
µ and Bµ have been grouped into two

quadratic terms as a result of multiplication by the VEV. The factor v2 multiplying them creates

mass terms from previously massless vectors. The quadratic terms show the linear combinations

which result in three massive particles, W+,W−, and Z. The state orthogonal to these is a massless

particle. It is a linear combination of the original basis vectors, which remains massless and becomes
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the vector field associated with the the residual U(1)E&M gauge symmetry. This is defined to be the

photon, Aµ . We also define cosθW and sinθW for notational simplicity,

cosθW ≡ g√
g2 +g′2

, sinθW ≡ g′√
g2 +g′2

, (1.26)

W±
µ =

1√
2
(A1

µ ∓ iA2
µ) , (1.27)

Zµ =
1√

g2 +g′2
(g′Bµ −gA3

µ) = sinθW Bµ − cosθW A3
µ , (1.28)

Aµ =
1√

g2 +g′2
(gBµ +g′A3

µ) = cosθW Bµ + sinθW A3
µ . (1.29)

These new particles define the mass basis, the basis in which particles will propagate energy

through space and time. To see how the other fields will interact with these new particles, we rewrite

the covariant derivative in the new basis. To do this we substitute the original generators for linear

combinations of the new massive particles, using

A1
µ =

1√
2

(
W+

µ +W−
µ

)
, A2

µ =
i√
2

(
W+

µ −W−
µ

)
, (1.30)

A3
µ = sinθW Aµ − cosθW Zµ , (1.31)

Bµ = cosθW Aµ + sinθW Zµ . (1.32)

Substituting these into the general covariant derivative (1.3), we see:

Dµ =∂µ − i
g
2

σ
aAa

µ − ig′YIBµ

=∂µ − ig
2
(σ1A1

µ +σ
2A2

µ +σ
3A3

µ)− ig′YIBµ

=∂µ − ig
2
√

2
σ

1
(

W+
µ +W−

µ

)
− i2g

2
√

2
σ

2
(

W+
µ −W−

µ

)
− ig

2
σ

3 (sinθW Aµ − cosθW IZµ

)
− ig′

(
cosθW Aµ + sinθWYIZµ

)
=∂µ − ig

2
√

2
(σ1 + iσ2)W+

µ − ig
2
√

2
(σ1 − iσ2)W−

µ

−
(

ig
2

sinθW σ
3 + ig′ cosθWYI

)
Aµ −

(
− ig

2
cosθW σ

3 + ig′ sinθWYI

)
Zµ . (1.33)
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The coefficient of Aµ is useful because it relates hypercharge to electric charge. Naming the electric

coupling e ≡ gsinθW = g′ cosθW = g′g√
g2+g′2

, the coefficient becomes

ie
(

1
2

σ
3 +YI

)
Aµ . (1.34)

Thus the electric charge of an SU(2) doublet is

q =
1
2

σ
3 +YI . (1.35)

The Higgs’ kinetic term can now be expressed in terms of massive gauge bosons with the

absence of SU(2)L⊗U(1)Y symmetry: 1√
2

Dµ

0

v




†

1√
2

Dµ

0

v

=
v2g2

4
W+

µ W−µ +
v2

8
(
g2 +g′2

)
ZµZµ . (1.36)

And so spontaneous symmetry breaking has dismantled the SU(2)L⊗U(1)Y symmetry. We began

with four massless vectors: A1
µ ,A

2
µ ,A

3
µ , and Bµ . Those have now been rearranged into three massive

particles, W± and Z, a massless photon Aµassociated with the remaining U(1)E&M symmetry.

1.3 Beyond the Standard Model

Although the Standard Model is successful in describing many natural phenomena, there are still

unanswered questions. A complete model of the universe would therefore include more than is

currently described in the SM. Beyond the Standard Model (BSM) research seeks to add to the

SM by identifying possible model extensions and testing them against experimental data. In this

discussion we focus on two of these unanswered questions: the nature of dark matter and the

naturalness of the Higgs VEV.

Astronomical data points to the existence of Dark Matter (DM) which has very limited interaction

with SM matter through any force except gravity. Several observations provide evidence for the
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existence of DM throughout the universe. These include gravitational lensing in galaxy clusters [3,4],

rotation curves of spiral galaxies [5], and in the cosmic microwave background [6]. A Quantum

Field Theory (QFT) model which describes DM would ideally provide fields which have little or no

interaction with the gauge symmetries SU(3)c⊗SU(2)L⊗U(1)Y , but which still provide some sort of

detectable signals in order to check the model. There are unlimited possibilities for the structure

of DM, from a single particle to hundreds of new fields. We therefore wish to include additional

considerations which help motivate certain regions of this huge possibility space, such as Higgs

physics.

The mass parameter µ of the Higgs potential is a free parameter in the SM. Measurements have

determined the mass of the Higgs to be 125 GeV [7, 8], where m2
h = 2µ2. This is the only explicit

scale in the SM, but has no apparent cause for its value. The only other known scale is the Planck

scale, which is bigger by a factor of 1017. While there is no inherent problem with the value of µ ,

physics associated with the Planck scale is generically expected to produce a Planck scale mass for

the Higgs. This large, arbitrary discrepancy appears fine-tuned or “unnatural". It is therefore an

appealing quality of a BSM model to provide an explanation or mechanism by which the value of µ

is limited to its low scale, thus making its value “natural."

1.3.1 Twin Higgs Models

A promising BSM theory called the Twin Higgs [9] model presents some possibilities that we

explore here. The Twin Higgs model supposes a new set of fields that are similar in structure to the

Standard Model, but distinct from the SM gauge symmetries. This new sector provides excellent

DM candidates, as it contains a variety of fields which are explicitly separated from the SM forces.

Although there are many possibilities for the structure of DM, we choose to mirror the SM both

because it is a known structure and because it appeals to the prevalence of symmetry in nature.

The twin sector is described by a contribution added to the SM Lagrangian. In the “Mirror Twin
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Higgs" model, the additional Lagrangian contains identical fields describing mirror quarks, leptons,

bosons, and gauge symmetries. The two sectors are connected through interactions between the

Higgs field and its twin. The full scalar potential of the two sectors exhibits an approximate global

U(4) symmetry. This can be seen by considering a four component scalar field:

H =

HA

HB

 , (1.37)

where

HA =

H+

H0


SM

HB =

H+

H0


dark

. (1.38)

Here the Higgs potential takes the form

VH =−M2
H |H|2 +λH |H|4 +δH(|HA|4 + |HB|4)+m2 (|HA|2 −|HB|2

)
, (1.39)

where MH and λH are constants similar to those in Eq. (1.21), δH and m determine the strength of

the symmetry-breaking terms, and

|H|2 = |HA|2 + |HB|2 . (1.40)

This approximate symmetry results in the creation of the observed Higgs boson as a pseudo-

Nambu-Goldstone boson, which naturally has a low mass scale. In this way, the Twin Higgs model

also provides naturalness to the Higgs mass parameter.

The Lagrangian for this model can be written as

L = LA,MTH +LB,MTH −VH (1.41)

where LA,MTH contains the Standard Model sector, LB,MTH is a mirror of A, and the potential VH

contains the interaction terms between the A and B sectors. As the Mirror Twin Higgs model copies



1.3 Beyond the Standard Model 15

the exact Lagrangian from the SM, we have

LA,MTH =− 1
4

T a
µνAT aµν

A − 1
4

W a
µνAW aµν

A − 1
4

BµνABµν

A

+ iLA /DLA + iEA /DEA + iQA /DQA + iDA /DDA + iUA /DUA

+(λl)
i
jLiAHAE j

A +(λd)
i
jQiAHAD j

A +(λu)
i
jQiAH̃AU j

A +H.c.

+(DµHA)
†DµHA , (1.42)

and

LB,MTH =− 1
4

T a
µνBT aµν

B − 1
4

W a
µνBW aµν

B − 1
4

BµνBBµν

B

+ iLB /DLB + iEB /DEB + iQB /DQB + iDB /DDB + iUB /DUB

+(λl)
i
jLiBHBE j

B +(λd)
i
jQiBHBD j

B +(λu)
i
jQiBH̃BU j

B +H.c.

+(DµHB)
†DµHB . (1.43)

There are many possible variations, however, which alter the twin sector in some way. For

instance, in the so-called fraternal twin Higgs [10] the twin sector only includes the third generation

and may not include a photon. Others have considered situations where the gauge symmetry of the

twin sector is modified through spontaneous symmetry breaking [11–14]. A more comprehensive

review of the spectrum of possibilities is given in [15].

The Mirror Twin Higgs model has some side effects which make it naively in tension with

experiment. The cosmological measurement Neff describes the number of relativistic degrees of

freedom measured to contribute to the energy density of the Universe. For a BSM model, we

require that ∆Neff, the variation from the SM’s value for Neff, not exceed observational bounds. By

doubling the Standard Model with no changes, we introduce a new set of three neutrinos and a

photon. By adding these four new degrees of freedom, ∆Neff approaches 5.5 [16–18]. This is well

outside observational limits [6, 19], and so the Twin Higgs model requires some alteration from

the Mirror formulation in order to match experiment. This has been successfully accomplished in

several ways [12, 16–18, 20–23].
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The Twin Higgs framework also accommodates many BSM cosmological successes. These

include viable baryogenesis [14,22,24–29] and many dark matter possibilities [14,16,22–24,29–45].

There have also been efforts to explain the tension between various measurements of the Hubble

parameter within the Twin Higgs framework [35, 46, 47].



Chapter 2

A More Colorful Twin Higgs

In order to resolve some of the issues with the Mirror Twin Higgs, we begin by altering just one

aspect of the model: SU(3)c is extended to become SU(4)c. This expanded SU(4) color group with

no Twin Higgs [48, 49], along with SU(5)c [50, 51], were explored by Foot et. al. A 4-dimensional

color symmetry would alter the interactions between quarks and the way they form hadronic matter.

Because experiment has clearly shown 3-color interactions, a fourth color must be found only at

higher energy levels. The SU(4) symmetry would then be spontaneously broken into SU(3) and

some residual pieces, just as the SM Higgs broke SU(2)L⊗U(1)Y . For this to happen, we introduce

a new Higgsing scalar field which behaves similarly to the SM Higgs. In this discussion, we name

this new field φ . However, since we only have observations of the SM sector, there is no such

requirement for φ to break SU(4) in the twin sector. This allows for unique interactions in the twin

sector, which may provide interesting effects for dark matter and Neff.

We add to our Lagrangian this φ field and its twin via kinetic terms in their respective sectors,

as well as a potential which both mimics and interacts with that of the SM Higgs. Just as with the

Mirror Twin Higgs, we separate the Lagrangian into three pieces:

L = LA +LB +Linter , (2.1)

17



18

where LA and LB add only one term to the Mirror Twin Higgs’ Lagrangian. Linter contains an

expanded potential with terms for both H and φ :

LA =LA,MTH +(DµφA)
†DµφA , (2.2)

LB =LB,MTH +(DµφB)
†DµφB , (2.3)

Linter =−M2
H |H|2 +λH |H|4 −M2

φ |Φ|2 +λφ |Φ|4 +λHφ |H|2|Φ|2

+δH(|HA|4 + |HB|4)+δφ (|φA|4 + |φB|4)

+δHφ (|HA|2 −|HB|2)(|φA|2 −|φB|2)

+LΦ . (2.4)

Where |Φ|2 is similar to |H|2, with its specific form being discussed further on. LΦ is a placeholder

for the φ interaction terms, which we also determine later. Note that there is no explicit twin

Z2 breaking term in Linter, meaning that an exchange of A and B subscripts leaves the potential

unchanged. This breaking is generated spontaneously when φA acquires a VEV, while φB does not.

This differentiates the resulting forms of the two sectors, allowing for new, non-SM structures in the

twin sector. Similar potentials with spontaneous twin symmetry breaking were explored previously

in [11–13, 52].

The SU(3)c×SU(2)L×U(1)Y gauge symmetry of the SM has passed all experimental scrutiny.

We ensure that this model produces the identical structure, including hypercharge, by including

U(1)Y in the breaking pattern. To this end, our breaking pattern is SU(4)c⊗U(1)X →SU(3)c⊗U(1)Y ,

where X is posited as an unbroken Abelian gauge symmetry. The breaking field φ must therefore

interact with the SU(4)c⊗U(1)X symmetries and acquire a VEV.

Using group theory, we explore two different ways in which SU(4) can break into SU(3).
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First, we represent the SU(4) generators as a 4×4 square matrix with 15 unique elements:

Ca
µTa =

C3
µ+

1√
3
C8

µ+
1√
6
C15

µ C1
µ − iC2

µ C4
µ − iC5

µ C9
µ − iC10

µ

C1
µ + iC2

µ −C3
µ + 1√

3
C8

µ + 1√
6
C15

µ C6
µ − iC7

µ C11
µ − iC12

µ

C4
µ + iC5

µ C6
µ + iC7

µ − 2√
3
C8

µ + 1√
6
C15

µ C13
µ − iC14

µ

C9
µ + iC10

µ C11
µ + iC12

µ C13
µ + iC14

µ −
√

3
2C15

µ


. (2.5)

Notably, within the top left 3×3 section of this matrix we can see the equivalent SU(3) matrix using

C1−C8 as described in Sec. 1.1. On their own, the 8 generators of SU(3) have an identical structure.

Their presence within SU(4) indicates that a VEV which isolates them would also break SU(4)

into SU(3) as desired. Just as the SM symmetries were broken by the Higgs acquiring a VEV, we

do the same here with a VEV in the φ field. There are two forms the φ can take that break the

symmetry correctly:

⟨φ⟩=



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 w


, ⟨φ⟩=



0

0

0

w


. (2.6)

For our initial symmetry breaking calculations, the choice of form has no effect on the result, as

it does not change |φ |2 or (Dµφ)†Dµφ . In our exploration of additional terms in the Lagrangian,

we refer to the 4×4 matrix form and the 4×1 vector form as models I and II respectively.

2.1 SU(4)c⊗U(1)X Symmetry Breaking

To begin exploring the effects of the φ field’s VEV on the SU(4)c symmetry, we first examine the

kinetic term (DµφA)
†DµφA. In the SM, the breaking of the Higgs kinetic term resulted in gauge

bosons W± and Z. Here, we find a similar result.
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The covariant derivative in Eq. (1.3), after replacing SU(3)c → SU(4)c and U(1)Y → U(1)X ,

reads:

Dµ = ∂µ − igX XXµ − i
g
2

σ
aAa

µ − i
gs

2
T aCa

µ (2.7)

We begin by writing Dµ in matrix form, making changes to include SU(4)c⊗ U(1)X :

Dµ =



∂µ−
igX

2 Xµ Xφ

− igs
2 (C3

µ+
1√
3
C8

µ+
1√
6
C15

µ )

igs
2 (C1

µ − iC2
µ)

igs
2 (C4

µ − iC5
µ)

igs
2 (C9

µ − iC10
µ )

igs
2 (C1

µ + iC2
µ)

∂µ−
igX

2 Xµ Xφ− igs
2 (−C3

µ

+ 1√
3
C8

µ+
1√
6
C15

µ )

igs
2 (C6

µ − iC7
µ)

igs
2 (C11

µ − iC12
µ )

igs
2 (C4

µ + iC5
µ)

igs
2 (C6

µ + iC7
µ)

∂µ−
igX

2 Xµ Xφ

− igs
2 (− 2√

3
C8

µ+
1√
6
C15

µ )

igs
2 (C13

µ − iC14
µ )

igs
2 (C9

µ + iC10
µ ) igs

2 (C11
µ + iC12

µ ) igs
2 (C13

µ + iC14
µ )

∂µ−
igX

2 Xµ Xφ

+igs

√
3
8C15

µ


.

(2.8)

Either form of ⟨φ⟩ in Eq. 2.6 gives the result (sans zeroes):

Dµφ =



igs
2 (C9

µ − iC10
µ )

igs
2 (C11

µ − iC12
µ )

igs
2 (C13

µ − iC14
µ )

− igX
2 XµXφ + igs

√
3
8C15

µ


. (2.9)

This result indicates the usefulness of the definition:

ξ =


i√
2
(C9

µ − iC10
µ )

i√
2
(C11

µ − iC12
µ )

i√
2
(C13

µ − iC14
µ )

 , (2.10)

which allows us to write simply:

Dµ⟨φ⟩=

 1√
2
gsξ

− igX
2 XµXφ + igs

√
3
8C15

µ

w . (2.11)

It is now clear to see the kinetic term result in:

(
Dµ⟨φ⟩

)† Dµ⟨φ⟩=
1
2

g2
s w2

ξ
†
µξ

µ +

(
1
2

gX XµXφ −gs

√
3
8

C15
µ

)2

w2 (2.12)
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As we did in the SM case, we introduce here a notational shorthand

cosθX =
gs

√
3
8√

g2
X X2

φ
+ 3

8g2
s

, sinθX =
gX Xφ√

g2
X X2

φ
+ 3

8g2
s

(2.13)

which allows us to rewrite our result in a normalized form:

(
Dµ⟨φ⟩

)† Dµ⟨φ⟩=
w2g2

s
2

ξ
†
µξ

µ +w2
(

g2
X X2

φ +
3
8

g2
s

)(
C15

µ cosθX −Xµ sinθX

)2
. (2.14)

We can now identify the massive state similar to the Z in the SM:

B′
µ ≡C15

µ cosθX −Xµ sinθX , m2
B′ = 2w2

(
g2

X X2
φ +

3
8

g2
s

)
, (2.15)

and a massless, orthogonal state associated with SM hypercharge U(1)Y :

Bµ = Xµ cosθX +C15
µ sinθX . (2.16)

We invert this relationship and find

Xµ =Bµ cosθX −B′
µ sinθX , C15

µ =B′
µ cosθX +Bµ sinθX , (2.17)

With this, we can rewrite the SU(4) terms of our broken covariant derivative:

gs

2
T aCa

µ =
gs

2
λ

aGa
µ +

gs√
2

 0 ξµ

ξ
†
µ 0

+gs

√
3
8

Tc

(
B′

µ cosθX +Bµ sinθX

)
, (2.18)

where the λ a matrices are the generators of SU(3)c and

Tc =



1
3 0 0 0

0 1
3 0 0

0 0 1
3 0

0 0 0 −1


. (2.19)

By including the U(1)X part we find

Dµ ⊃− iB′
µ

[
gs

√
3
8

cosθX Tc −gX Xψ sinθX

]
− ig′Bµ

[
Xψ +Xφ Tc

]
, (2.20)
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where the hypercharge gauge coupling is given by

g′ ≡
gX gs

√
3
8√

g2
X X2

φ
+ 3

8g2
s

. (2.21)

The relationship in (2.21) can also be inverted, giving us the value of gX in terms of known

quantities:

gX =

√
3
8gsg′√

3
8g2

s −g′2X2
φ

. (2.22)

We have now found the SM hypercharge and coupling in terms of the SU(4) and X charges and

couplings. The coefficient of Bµ allows us to translate between X charge and Y hypercharge, such

that a state in the (444,X) representation of SU(4)c×U(1)X becomes

(444,X)→
(

333,X +
Xφ

3

)
⊕ (111,X −Xφ ) , (2.23)

under SU(3)c×U(1)Y .

In the SM, the quark fields transform under SU(3)c×SU(2)L×U(1)Y as

D ∼
(

333,111,−1
3

)
, U ∼

(
333,111,

2
3

)
, Q ∼

(
333,222,

1
6

)
. (2.24)

Using the relation in Eq. (2.23) and the required Y hypercharge values of the SM, we find that

under the original unbroken SU(4)c×SU(2)L×U(1)X symmetry the quarks must transform as

D ∼
(

444,111,−
Xφ +1

3

)
, U ∼

(
444,111,

2−Xφ

3

)
, Q ∼

(
444,222,

1−2Xφ

6

)
. (2.25)

For completeness we record the lepton and Higgs fields, though their values do not change from the

SM,

E ∼ (111,111,−1) , L ∼
(

111,222,−1
2

)
, H ∼

(
111,222,

1
2

)
. (2.26)

The quark definitions imply that after symmetry breaking, the broken fourth color component of

each quark becomes a new fermion with SM charges

D4 ∼
(

111,111,−
1+4Xφ

3

)
, U4 ∼

(
111,111,

2−4Xφ

3

)
, Q4 ∼

(
111,222,

1−8Xφ

6

)
. (2.27)
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Using the relation in Eq. (1.35), we find the fermions have electric charges of

qD =−
1+4Xφ

3
, qU =

2−4Xφ

3
. (2.28)

As there is no choice of Xφ such that these both vanish, it must be that this construction predicts at

least one new electrically charged state. Experimental bounds on new charged states are at least

as high as about 100 GeV [53]. If these charged fermions were on the same mass scale as SM

fermions, they would certainly have been discovered. Therefore, they must have additional mass

terms provided by the φ VEV within Linter in Eq. (2.2). The form of these terms varies depending

on the representation chosen for φ , so we now divide our discussion between models I and II.

2.1.1 Model I

In model I, we introduce the φ field in the 10 representation of SU(4)c. A 10-dimensional object

that can be multiplied by the 4×4 SU(4) matrices is most easily represented as a symmetric matrix,

as shown in Equation (2.6). Labelling this field by its representations under each of the gauge

symmetries SU(4)c⊗SU(2)L⊗U(1)X represents it as

φ ∼
(
111000,111,Xφ

)
, (2.29)

where we can also see that it is a singlet under SU(2)L and has a U(1)X charge of Xφ .

With φ in the 10 representation of SU(4)c, we are ready to determine the terms of Lφ from Eq.

(2.2). Coupling between φ and quarks is allowed in combinations which produce gauge-invariant

multiplets of all gauge groups. For the 10 representation, we can include the Lagrangian terms:

Lφ = λA1uRφ(dR)
c +λA2QLφ(QL)

c +H.c. . (2.30)
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Let’s examine the gauge invariance of these terms in SU(4):

uRφ(dR)
c → 4⊗10⊗4

= (36⊕4)⊗4

=
(
36⊗4

)
⊕
(
4⊗4

)
=
(
36⊗4

)
⊕15⊕1 . (2.31)

Since this multiplication produces a gauge singlet,the 1 portion, it is an allowed coupling. In U(1)Y ,

hypercharges must sum to zero:

Yφ −2YQ = 0 . (2.32)

When φ takes on its VEV, the terms in Eq. (2.30) become mass terms, giving the 4th component

mass:

λA1wu4(d4)
c +λA2wQ4(Q4)

c +H.c. . (2.33)

Unfortunately, it was shown in [49] for the case of three generations of quarks that the λA2 mass

term leads to a new state of about 20 GeV. As we shall see, these states have nonzero electric

charge. Such a particles would have been discovered at LEP [53]. Thus, model I with φ in the 10

representation is ruled out, and we do not consider it further.

2.1.2 Model II

In model II, which we use throughout the rest of this discussion, we instead introduce the φ field

in the fundamental 4 representation of SU(4)c. In this case, gauge invariant coupling between

φ and the quarks requires the introduction of new fields with appropriate quantum numbers. To

correctly form gauge invariant mass terms of that type, we must introduce new color singlet fields,

which we name Fc, Pc, V c. These allow us to describe Yukawa interactions between φ and the

fourth-component quarks:

λFQφFc +λPUφPc +λV DφV c +H.c. . (2.34)
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The charge structures dictate that the new fields have quantum numbers:

Fc ∼
(

111,222,
1−8Xφ

6

)
, Pc ∼

(
111,111,

2−4Xφ

3

)
, V c ∼

(
111,111,−

1+4Xφ

3

)
. (2.35)

so that each term is neutral under all charges. F is left-handed while P and V are right-handed. The

charge conjugation has been used to keep the SM-like situation that SU(2)L couples to left-handed

fields and not to right-handed ones.

The left- and right-handedness of these new particles has the potential to introduce anomalies

into the theory. Anomalies are the result of a classically valid symmetry being disrupted in a

quantum theory, introducing unexpected interactions. Here, we require new anomalies to vanish so

as to not alter observed signals. The SU(2)L anomaly is governed by the sum over hypercharges of

the fields which are in the 2 representation of SU(2)L. As we have only introduced one such field,

F , we require its charge XF to vanish. From Eq. (2.35), this implies that

Xφ =
1
8
. (2.36)

The remaining anomalies cancel if

X3
P +X3

V = 0 and XP +XV = 0 . (2.37)

This is indeed satisfied for this same choice of Xφ , which also provides

XP =−XV =
1
2
. (2.38)

We note that this also implies the fourth component quark fields have electric charges of ±1
2 .

The additional fermion fields gain mass by the same Higgs mechanism as SM particles, through

the Higgs couplings

λFV FcHV c +λFPFcH̃Pc + H.c. , (2.39)

where H̃ is defined as in the up-type quark Higgs Yukawa coupling in the SM. These provide

another source of mass for these fermions. More importantly, in the twin sector, where φB does not

get a VEV, these mass terms prevent the introduction of new light states.
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2.2 Symmetry Breaking and Gauge Bosons

Now that model II is described in terms of the SM symmetries plus residual pieces, we are ready

to once again break SU(2)L⊗U(1)Y →U(1)E&M using the Higgs field. As the Higgs field is now

charged under X charge rather than Y hypercharge, there are slight differences to account for. The

applicable covariant derivative matrix for the Higgs under SU(2)L⊗U(1)X is

Dµ = ∂µ − i
g
2

σ
aAa

µ − i
gX

2
IXµ

=
1√
2

∂µ − i
2(gX Xµ +gA3

µ)
ig
2 (A

1
µ − iA2

µ)

ig
2 (A

1
µ + iA2

µ) ∂µ − i
2(gX Xµ −gA3

µ)

 (2.40)

The W± bosons form in the same way as in the SM case, so we define them here and omit them

from future calculations:

W±
µ =

1√
2

(
A1

µ ∓ iA2
µ

)
. (2.41)

The remaining terms correspond to the bottom right element of the derivative matrix. We adjust the

covariant derivative to show the broken symmetry and group the massless vectors

Dµ

0

v

=∂µv− i
gX

2
Xµv+ i

g
2

A3
µv

=i
g
2

A3
µv− i

gX

2

(
Bµ cosθX −B′

µ sinθX

)
v

=i
vgX

2
sinθX B′

µ +
i
2

(
gA3

µ −g′Bµ

)
v . (2.42)

Note that from Eqs. (2.13) and (2.21), we see that gX cosθX = g′.

We can now define a massless photon and a massive boson in anticipation of expanding the

kinetic term:

Zµ =
1√

g2 +g′2

(
gA3

µ −g′Bµ

)
, Aµ =

1√
g2 +g′2

(
g′A3

µ +gBµ

)
. (2.43)
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Then the mass term from |Dµφ |2 is easily identified as:

1
2

Dµ

0

v




†

Dµ

0

v

⊃ v2

8

(
gX sinθX B′

µ +
√

g2 +g′2Zµ

)(
gX sinθX B′µ +

√
g2 +g′2Zµ

)
.

(2.44)

We now see that B′ and Z both gain mass from the Higgs VEV. Due to the cross terms in

multiplying the above mass term, B′ and Z are not actually in their mass basis yet. By diagonalizing

their mass matrix, we can see two distinct massive neutral bosons. First we substitute the SM Z

mass, mZ0 , and write the terms in a matrix. As a shorthand, sX ≡ sinθX ,

mZ0 =
v
2

√
g2 +g′2 , (2.45)

1
2

(
B′

µ , Zµ

) m2
B′ +

v2

4 g2
X s2

X mZ0
v
2gX sX

mZ0
v
2gX sX m2

Z0


 B′µ

Zµ

 . (2.46)

The diagonal masses are

m2
± = (2.47)

1
2

(
m2

B′ +m2
Z0
+

v2

4
g2

X s2
X ±

√
(m2

B′ −m2
Z0
)2 +(m2

B′ +m2
Z0
)
v2

2
g2

X s2
X +

v4

16
g4

X s4
X

)
.

The mass eigenstates are defined by

Z′
µ =B′

µcM −ZµsM , Zµ =B′
µsM +ZµcM , (2.48)

where m+ = mZ′ and m− = mZ . The mixing angles, sinθM ≡ sM and cosθM ≡ cM , are defined by

cos2θM =
m2

B′ +
v2

4 g2
X s2

X −m2
Z0

m2
Z′ −m2

Z
, sin2θM =−mZ0vgX sX

m2
Z′ −m2

Z
. (2.49)

We note that as the energy scale of color breaking by φ must be much greater than that of electroweak

breaking by H, v ≪ w. Using this, we can expand the mass eigenstates to find, to leading order in

v/w, that

m2
Z′ ≈ m2

B′ +
v2

4
g2

X s2
X , m2

Z ≈ m2
Z0
−

m2
Z0

v2g2
X s2

X

4m2
B′

. (2.50)
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The mixing angle to the same order in v/w, is

θM ∼− mZ0vg′2

3w2g3
s
√

6
≈−2×10−4

(
1 TeV

w

)2

. (2.51)

We rewrite the unbroken gauge fields in terms of the mass eigenstate fields, in order to rewrite

the broken covariant derivative:

Xµ =cX cW Aµ − (sX sM + cX sW cM)Zµ +(cX sW sM − sX cM)Z′
µ (2.52)

A3
µ =sW Aµ + cW cMZµ − cW sMZ′

µ (2.53)

C15
µ =sX cW Aµ +(cX sM − sX sW cM)Zµ +(sX sW sM + cX cM)Z′

µ . (2.54)

From the covariant derivative we can use these relations to determine the couplings of the

various fields. We find that

gX XψXµ +gT 3A3
µ +gs

√
3
8

TcC15
µ =

Aµ

[
gX cX cW Xψ +gsW T 3 +gs

√
3
8

sX cW Tc

]

+Zµ

[
−gX(sX sM + cX sW cM)Xψ +gcW cMT 3 +gs

√
3
8
(cX sM − sX sW cM)Tc

]

+Z′
µ

[
gX(cX sW sM − sX cM)Xψ −gcW sMT 3 +gs

√
3
8
(cX cM + sX sW sM)Tc

]
. (2.55)

We note that many constants in the Aµ term can be simplified, since

e = gsW = g′cW , g′ = gX cX = 8

√
3
8

gssX . (2.56)

This lets us define the electric charge from the coefficient of Aµ as

Qψ = Xψ +T 3 +
1
8

Tc . (2.57)
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So, we find

gX XψXµ +gT 3A3
µ +gs

√
3
8

TcC15
µ =

eQψAµ +Zµ

g
cW

[
cM(T 3 − s2

W Qψ)+
sMsW cX

sX

(
Qψ −T 3 −

Xψ

c2
X

)]
+Z′

µ

g
cW

[
cMsW cX

sX

(
Qψ −T 3 −

Xψ

c2
X

)
− sM(T 3 − s2

W Qψ)

]
. (2.58)

The coefficients of these terms tell us all of the interactions between charged particles and

gauge bosons. The photon couplings are as expected. Because the photon is the carrier of the

electromagnetic force, its coupling to any particle is simply e times that particle’s electric charge.

The SM Z couples primarily through the weak force. Here, the Z has small modifications from

the SM couplings; as sM → 0, it matches the SM exactly. Z′, which does not appear in the SM, is

mainly the result of color breaking. Intuitively, then, it couples most strongly to quarks due to the

first Tc term depending on color.

2.3 Charged Gauge Bosons

The remaining gauge bosons in the model are the W± and the ξ . These formed as the result

of symmetry breaking, when the off-diagonal terms of the covariant derivative grouped together

with their Hermitian conjugates. Their mass terms in Eqs. (1.36) and (2.12) show this, being

∼ m2
WW+W− and ∼ m2

ξ
ξ †ξ . The W± boson shows no new interactions from the SM, as SU(2)L

was unaltered. The ξ boson, however, has new interactions with the quarks.

In the kinetic terms of the quark fields, they are acted on by the covariant derivative. We have

now seen that this covariant derivative carries gauge bosons after symmetry breaking. These kinetic

terms are:

iD /DD+ iU /DU + iQ /DQ . (2.59)

Because the ξ appears in the off-diagonal quadrants of /D, we will focus only on those.
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For these terms, we denote the quarks in two components: the SM color triplet and the fourth

color component, as follows:

U =

Ui

U4

 , D =

Di

D4

 , Q =

Qi

Q4

 . (2.60)

Expanding the kinetic terms like this, we find interactions in which the ξ interacts with one SM

quark and one fourth-color quark:

gs√
2

[
U i/ξU4 +Di/ξ D4 +Qi/ξ Q4

]
+ H.c. . (2.61)

Gauge invariance, as always, holds for these terms. ξ and U i are in the fundamental and

anti-fundamental representations of SU(3)c, so they are color-neutral. Because the total electric

charge of any term must be zero, we can quickly see that ξ µ has an electric charge of Qξ = 1
6 . This

combination of color and electric charge is unique. Therefore, ξ µ can only be pair-produced in

collider experiments through ξ µξ
†
µ couplings to electrically neutral states, such as gluons and other

gauge bosons.

2.4 New Fermion Masses

In this section we determine the mass eigenstates of the new BSM fermions: Fc, Pc, V c, and the

fourth-color quarks. We express the SU(2)L doublet fields as

Fc =

 Fc
u

Fc
d

 , Q4 =

 UL4

DL4

 . (2.62)

From the interactions in Eqs. (2.34) and (2.39), we put together the fermion mass matrices

(U4, Fc
u )Mu

 Pc

UL4

 , (D4, Fc
d )Md

 V c

DL4

 , (2.63)
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with coefficients (from the highest generations where available)

Mu =

 λPw mtA

λFP
vA√

2
λFw

 , Md =

 λV w mbA

λFV
vA√

2
λFw

 , (2.64)

where we denote the Higgs VEV vA and fermion masses of the visible sector with an A. By

diagonalizing these mass matrices, we find the physical masses are

m2
u± =

1
2

w2(λ 2
P +λ

2
F)+m2

tA +λ
2
FP

v2
A
2

±

√(
λ 2

Pw2 +λ 2
Fw2 +m2

tA +λ 2
FP

v2
A
2

)2

−4
(

λFλPw2 −λFPmtA
vA√

2

)2
 . (2.65)

To leading order in v2
A/w2 these become

m2
u+ = w2

λ
2
P +O

(
v2

A
w2

)
, m2

u− = w2
λ

2
F +O

(
v2

A
w2

)
. (2.66)

This shows that these fermions have masses on the order of the φ VEV w, as long as the Yukawa

couplings λP and λF are not too small. This is in contrast to the low-mass charged fermions in

model I.

We use the physical states of these fermions for naturalness considerations. They are given by

UL+ =cosθULPc − sinθULUL4 , UL− =sinθULPc + cosθULUL4 , (2.67)

UR+ =cosθURU4 − sinθURFc
u , UR− =sinθURU4 + cosθURFc

u , (2.68)

where

cos2θUL =
w2(λ 2

P −λ 2
F)+m2

tA −λ 2
FPv2

A/2
m2

u+−m2
u−

, sin2θUL =−2w
mtAλF +λPλFvA/

√
2

m2
u+−m2

u−
, (2.69)

cos2θUR =
w2(λ 2

P −λ 2
F)−m2

tA +λ 2
FPv2

A/2
m2

u+−m2
u−

, sin2θUR =−2w
mtAλP +λFλFvA/

√
2

m2
u+−m2

u−
. (2.70)

A similar set of equations holds for Md with U → D, u → d, mt → mb, and P →V .
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In the twin sector the SU(4)c color is unbroken, so there are no w contributions to the mass.

The fourth-component of the quark does not separate from the rest of the multiplet, and gets the

same mass. The Fc, Pc, and V c states also get masses from the normal Higgs symmetry breaking

mechanism. These are given by

mFP ≡ λFP
vB√

2
, mFV ≡ λFV

vB√
2
. (2.71)

2.5 Vacuum Expectation Value

Having verified that this model is not excluded in the same way as model I, we now include

calculations to find its VEV. The scalar potential in Linter can have non-zero local minima, to

which the fields H and φ can settle at low energies. Minimizing the potential in its four fields

simultaneously yields the values of these minima.

Having chosen the fundamental 4 representation for φ , the VEVs take the forms:

⟨H⟩=

0

v

 and ⟨φ⟩=



0

0

0

w


. (2.72)

Using subscripts to differentiate A and B sectors, and inserting these into the scalar potential given

in Eq. (2.2) yields:

Vscalar(va,vb,wa,wb) =−M2
H(v

2
a + v2

b)+λH(v2
a + v2

b)
2

−M2
φ (w

2
a +w2

b)+λφ (w2
a +w2

b)
2 +λHφ (v2

a + v2
b)(w

2
a +w2

b)

+δH(v4
a + v4

a)+δφ (w4
a +w4

b)+δHφ (v2
a − v2

b)(w
2
a −w2

b) . (2.73)
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Next we differentiate in terms of each variable, finding a system of equations which gives the

simultaneous minimum for all fields.

∂HA : 0 = va
[
−M2

H +2λH
(
v2

a + v2
b
)
+λHφ

(
w2

a +w2
b
)
+2δHv2

a +δHφ

(
w2

a −w2
b
)]

, (2.74)

∂HB : 0 = vb
[
−M2

H +2λH
(
v2

a + v2
a
)
+λHφ

(
w2

a +w2
b
)
+2δHv2

b −δHφ

(
w2

a −w2
b
)]

, (2.75)

∂φA : 0 = wa

[
−M2

φ +2λφ

(
w2

a +w2
b
)
+λHφ

(
v2

a + v2
b
)
+2δφ w2

a +δHφ

(
v2

a − v2
b
)]

, (2.76)

∂φB : 0 = wb

[
−M2

φ +2λφ

(
w2

a +w2
b
)
+λHφ

(
v2

a + v2
b
)
+2δφ w2

b −δHφ

(
v2

a − v2
b
)]

. (2.77)

To restrict the set of possible solutions to those that do not contradict the SM but still provide new

phenomena, we are interested in only cases in which va,vb,wa ̸= 0 and wb = 0. This simplifies the

equations to:

∂HA : 0 =−M2
H +2λH

(
v2

a + v2
b
)
+λHφ w2

a +2δHv2
a +δHφ w2

a , (2.78)

∂HB : 0 =−M2
H +2λH

(
v2

a + v2
b
)
+λHφ w2

a +2δHv2
b −δHφ w2

a , (2.79)

∂φA : 0 =−M2
φ +2λφ w2

a +λHφ

(
v2

a + v2
b
)
+2δφ w2

a +δHφ

(
v2

a − v2
b
)
, (2.80)

∂φB : 0 = wb . (2.81)

Adding and subtracting the equations gives the relations:

∂HA −∂HB : 0 = δH
(
v2

a − v2
b
)
+δHφ w2

a , (2.82)

∂HA +∂HB : 0 =−M2
H +(2λH +δH)

(
v2

a + v2
b
)
+λHφ w2

a , (2.83)

which yields

v2
a − v2

b =−
δHφ

δH
w2

a , (2.84)

v2
a + v2

b =
M2

H −λHφ w2
a

2λH +δH
. (2.85)
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Using these relations as we solve Eq. (2.76) now gives:

w2
a =

1
2(λφ +δφ )

[
M2

φ −λHφ (v2
a + v2

b)+δHφ (v2
a − v2

b)
]

=
M2

φ
(δH +2λH)−M2

HλHφ

δ 2
Hφ

(1+2λH
δH
)−λ 2

Hφ
+2(δH +2λH)(λφ +δφ )

. (2.86)

We can now use wa to solve for H VEVs:

v2
a =

M2
H

4λH +2δH
−

δHφ M2
φ

4δH(λφ +δφ )−2δ 2
Hφ

, (2.87)

v2
b =

M2
H

4λH +2δH
+

δHφ M2
φ

4δH(λφ +δφ )−2δ 2
Hφ

. (2.88)

2.6 Exclusion Criteria

Now that all of the features of the model have been determined, it is useful to determine the current

experimental bounds on these phenomena. As a simple first example of the criteria, the model

predicts a change to the mass of the Z boson from the SM value. From Eq. (2.50), we find that

m2
Z −m2

Z0
≈

m2
Z0

v2g2
X sinθ 2

X

4m2
B′

. (2.89)

The most current estimate of the Z mass, mZ0 , from the Particle Data Group (PDG) is 91.1876±

0.0021 GeV [54]. This, using substitutions from Eqs. (2.13), (2.15), and (2.22), shows that our

predicted Z mass is within 2σ of the experimental value when

w ≳ 275 GeV . (2.90)

This provides a lower limit on the energy scale of color breaking. This is well below the TeV

scale we expect, so the Z mass does not meaningfully limit the theory.

The couplings of the Z′ boson shown in Eq. (2.58) give insight to the production and detection

of this new boson. The couplings show that Z′ can be produced through Drell-Yan processes or
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similar, in which a quark and anti-quark annihilate and produce a neutral boson. It can then decay

into either a pair of SM fermions, new BSM fermions, Zh, or W±. Of these signals, the cleanest

channel to observe is a pair of SM leptons. However, as noted following Eq. (2.58), the coupling to

leptons is much smaller than for the the coupling to quarks and other bosons. A search done for

similar neutral bosons for other theories determined that the mass of such a boson is unlikely to be

less than ≈ 3 TeV [55]. In conjunction with Eq. (2.50), this sets a lower limit on the φ VEV w in

the TeV range.

The ξ µ bosons, due to their unusual color charge, can only be pair-produced, which requires

double the energy as producing a single particle like the Z′. Therefore, the signals detectable from

ξ µ production are expected to be much weaker than those from the Z′, giving it a less significant

role in establishing bounds.

The BSM fermions Fc, V c, and Pc can be analyzed similarly. These have electric charge ±1
2 .

From Eq. (2.58) we see these fermions couple to Aµ , Zµ , and Z′
µ with significant strength. They

can also be pair produced through Drell-Yan processes at the LHC. Initial estimates of the bounds

on states with exotic charges, from review of [56, 57], indicate that they are absent up to ∼500 GeV.

Taken together, these varying criteria seem to point to TeV range energies for the w VEV and

the newly introduced particles. As all of these bounds are tied to w in some way, any experimental

bound can be evaded by making the VEV larger. However, this increase tends to make the model

less natural, as discussed below.

2.7 Naturalness Considerations

As a final consideration, we determine the potential of the observed Higgs boson by way of the

Coleman-Weinberg [58] potential. This potential aggregates all one-loop corrections to the Higgs’
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potential up to a UV cutoff Λ from our Lagrangian:

VCW =− Nc

8π2 Λ
2TrM 2 − Nc

16π2 Tr
[
M 4

(
ln

M 2

Λ2 − 1
2

)]
, (2.91)

where Nc is the number of colors of the included fermions and M is the matrix of scalar field

dependent fermion masses.

As a warm-up, we consider the generated potential in the standard Mirror Twin Higgs framework.

We use a nonlinear parameterization of the Higgs boson (see for instance [59]) such that

HA =
f√
hhh†hhh

hhhsin

(√
hhh†hhh
f

)
, HB =

 0

f cos

(√
hhh†hhh
f

)
 , (2.92)

where f is the VEV of the four-component H given in Eq. (1.39). The fermion mass matrix in the

top-quark sector is given by

(tRA, tRB)

 λt f H̃A 0

0 λt f H̃B


 QA

QB

 . (2.93)

Note that the quark masses are given by

mtA = λt f sinϑ , mtB = λt f cosϑ , (2.94)

where ϑ ≡ v/( f
√

2).

The Λ2 term of the potential is independent of hhh, because the trace combines sin2(
√

h†h/ f )+

cos2(
√

h†h/ f ) from the parameterized values of HA and HB:

TrM †M = λ
2
t f 2Tr

 sin2
(√

hhh†hhh
f

)
0

0 cos2
(√

hhh†hhh
f

)
= λ

2
t f 2 = m2

tA +m2
tB . (2.95)

Because this value is a constant, it does not contribute to the hhh†hhh part of the Higgs potential, and in
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particular does not lead to a mass proportional to Λ2. We next evaluate

Tr
[
M 4

(
ln

M 2

Λ2 − 1
2

)]
=

λ
4
t f 4

sin4

(√
hhh†hhh
f

)ln
λ 2

t f 2 sin2
(√

hhh†hhh
f

)
Λ2 − 1

2

+ cos4

(√
hhh†hhh
f

)ln
λ 2

t f 2 cos2
(√

hhh†hhh
f

)
Λ2 − 1

2




≈ constant +2hhh†hhhλ
2
t (m

2
tA +m2

tB) ln
Λ2

m2
tA +m2

tB
+O

(
hhh†hhh
)2

. (2.96)

Therefore, we find only a logarithmic contribution to the Higgs mass parameter. In other words, the

corrections to the Higgs mass parameter µ2 from all additional one-loop interactions is

δ µ
2 =−3λ 2

t
8π2 (m

2
tA +m2

tB) ln
Λ2

m2
tA +m2

tB
, (2.97)

where the 3 in the numerator comes from the number of SM colors. We then define the tuning in

the Higgs mass [60] as

∆ =

∣∣∣∣2δ µ2

m2
h

∣∣∣∣−1

, (2.98)

where mh is the mass of the Higgs. In Fig. 2.1 this tuning is plotted for cutoffs of 2 TeV and 5 TeV

as a function of mtB. We see that as the cutoff gets higher the tuning becomes more stringent, as

indicated by a lower value of percent tuning for the blue line than for the yellow line. As the twin

top mass gets larger, moving along the x-axis, the tuning also becomes more stringent as expected.

This means that the lower the mass of the top partner, the more natural and less fine-tuned the model

is.

In our expanded SU(4)c model this analysis is changed in a few significant ways. First, in the

twin sector the SU(4)c color group is unbroken, so Nc is 4 rather than 3 as it is in the SM quark

sector. This mismatch is compensated at still higher scales by the missing components of the SU(4)c

quark multiplets.

We first consider the NcTrM 2 part of the potential. In the twin section this is fairly straightfor-

ward. We have that Nc = 4. Also, the trace of the squared matrix is independent of the Higgs, while



2.7 Naturalness Considerations 38

Λ = 5 TeV

Λ = 2.5 TeV

200 400 600 800 1000 1200 1400
0

20

40

60

80

mtB (GeV)

%
T
un
in
g

Figure 2.1 Plot of percent tuning in twin Higgs models for a range of cutoffs as a function
of the twin top mass. A higher value on the y-axis indicates a more natural result.

the same is not true for the matrix to the fourth contribution. Isolating the twin sector matrix MB,

we find

NcTrM 2∣∣
B = (4λ

2
t +λ

2
FP +λ

2
FV ) f 2 cos2

(√
hhh†hhh
f

)
, (2.99)

where we have dropped SM Yukawas smaller than λt . In the visible sector we find

NcTrM 2∣∣
A = (3λ

2
t +λ

2
t +λ

2
FP +λ

2
FV ) f 2 sin2

(√
hhh†hhh
f

)
+w2(λ 2

P +λ
2
V +2λ

2
F) . (2.100)

While somewhat more complicated, the sum of the contributions from each sector does lead to a hhh

independent contribution to the potential through the addition of sin2(
√

h†h/ f )+ cos2(
√

h†h/ f ).



2.7 Naturalness Considerations 39

The M 4 contribution from the hidden sector is simply

NcTr
[
M 4

(
ln

M 2

Λ2 − 1
2

)]∣∣∣∣
B
= 4λ

4
t f 4 cos4

(√
hhh†hhh
f

)ln
λ 2

t f 2 cos2
(√

hhh†hhh
f

)
Λ2 − 1

2



+λ
4
FP f 4 cos4

(√
hhh†hhh
f

)ln
λ 2

FP f 2 cos2
(√

hhh†hhh
f

)
Λ2 − 1

2



+λ
4
FV f 4 cos4

(√
hhh†hhh
f

)ln
λ 2

FV f 2 cos2
(√

hhh†hhh
f

)
Λ2 − 1

2

 . (2.101)

The M 4 terms are more complicated in the visible sector, where we must use the mass eigenstates

given in Eq. (2.66) with v →
√

2 f sin(
√

hhh†hhh/ f ). Employing this substitution we have

NcTr
[
M 4

(
ln

M 2

Λ2 − 1
2

)]∣∣∣∣
A
= 3λ

4
t f 4 sin4

(√
hhh†hhh
f

)ln
λ 2

t f 2 sin2
(√

hhh†hhh
f

)
Λ2 − 1

2


+m4

u+

(
ln

m2
u+

Λ2 − 1
2

)
+m4

u−

(
ln

m2
u−

Λ2 − 1
2

)
+m4

d+

(
ln

m2
d+

Λ2 − 1
2

)
+m4

d−

(
ln

m2
d−

Λ2 − 1
2

)
.

(2.102)

Putting the two sectors together we do find logarithmic contributions to the Higgs mass parameter

δ µ
2 =− 1

8π2

{
4λ

2
t (m

2
tA +m2

tB) ln
Λ2

m2
tA +m2

tB
+λ

4
FP f 2 ln

Λ2

λ 2
FP f 2 +λ

4
FV f 2 ln

Λ2

λ 2
FV f 2

+w2
λP

λP(λ
2
FP +λ 2

t )+2λFλFPλt

λ 2
F −λ 2

P
ln

Λ2

w2λ 2
P
+w2 λ 2

FV λ 4
V

λ 2
F −λ 2

V
ln

Λ2

w2λ 2
V

−w2
λF

λF(λ
2
FP +λ 2

t )+2λPλFPλt

λ 2
F −λ 2

P
ln

Λ2

w2λ 2
F
−w2 λ 2

FV λ 4
F

λ 2
F −λ 2

V
ln

Λ2

w2λ 2
F

}
. (2.103)



2.7 Naturalness Considerations 40

w = 2 TeV

w = 4 TeV

200 400 600 800 1000 1200 1400
0

20

40

60

80

mtB (GeV)

%
T
un
in
g

λF=0.75 λP=0.25

w = 2 TeV

w = 4 TeV

200 400 600 800 1000 1200 1400
0

20

40

60

80

mtB (GeV)

%
T
un
in
g

λF=1 λP=0.1

Figure 2.2 Percent tuning as a function of mtB for a cutoff of 5 TeV for a range of w VEVs.
We see that tuning is reduced in a central region where the different contributions cancel.
The twin top mass with mild tuning depends on the Yukawa couplings.

The λFV and λFP couplings primarily serve to ensure there are not more light degrees of freedom

in the twin sector. Hence, we take them to be about the size of λb and neglect their effects, finding:

δ µ
2 =− λ 2

t
8π2

[
4(m2

tA +m2
tB) ln

Λ2

m2
tA +m2

tB
+

w2λ 2
P

λ 2
F −λ 2

P
ln

Λ2

w2λ 2
P
− w2λ 2

F

λ 2
F −λ 2

P
ln

Λ2

w2λ 2
F

]
=− λ 2

t
8π2

[
4(m2

tA +m2
tB) ln

Λ2

m2
tA +m2

tB
−w2 ln

Λ2

w2λ 2
F
+

w2λ 2
P

λ 2
F −λ 2

P
ln

λ 2
F

λ 2
P

]
. (2.104)

Without loss of generality, suppose that λF > λP. We see that there is at least a partial cancella-

tion between the top-sector contributions. In Fig. 2.2 we plot the tuning as a function of mtB for a

few values of w. The cutoff is taken to be 5 TeV. One sees that the tuning at low mtB is about 10%,

as the fourth component of the top field has a w scale mass. At larger masses, however, the tuning

lessens dramatically, before returning to percent level values. In the plot on the left both λF and λP

are taken order 1 and with order one difference. In this case the region of reduced tuning depends

on w. In the plot on the right there is a mild hierarchy between the Yukawa couplings and so the

region of reduced tuning does not change much with the color breaking VEV.

We note also that regions of exact cancellation may seem fine tuned themselves. However, the

regions of reduced tuning are more generic and do not depend on exact cancellation of independent

parameters. Therefore, we feel that this reduction in tuning for higher mtB is an accurate charac-
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terization, at least within the low energy theory. It is also the case that the color breaking VEV w

produces both of the new mass scales. It directly gives mass to the new fermions (modulated by a

Yukawa coupling) and provides the Z2 breaking mass term in the Higgs potential, being multiplied

by the small quartic coupling δHφ .



Chapter 3

Conclusion

The potential signals and tuning measurements of this model have proven interesting. Our explo-

ration of this model has resulted in updated phenomenology of Twin Higgs models. We discovered

that model I using SU(4)c is excluded due to its low-mass states with electric charge. We have also

improved the calculation of bounds for model II, finding lower limits for the new charged fermions.

Most interestingly, there are new, less-studied signals which can be tested at the LHC in the form of

fractionally charged particles.

The most qualitatively novel result from this model lies in the tuning measurements assessment

found from the calculations of the Coleman-Weinberg potential. In most models that introduce a

symmetry partner for the top quark, the tuning of the model becomes more severe as the partner

mass increases. This lowers the motivation of the models as higher energies fail to discover a new

partner. Using SU(4) model II, however, we see in Fig. 2.2 a region of increasing top partner

mass in which the tuning improves. Current experimental methods aim to test to high precision the

deviations of Higgs parameters from the SM. In the case that little to no deviation is found, many

models be pushed into fine-tuned regions of parameters space. With the new pattern of improved

tuning at higher masses, however, a lack of deviation would not make the model unnatural.

42
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Our future work includes more precise testing of the limits of this model. One aspect of that will

be through improved calculations on bounds from collider experiments. We expect that di-lepton

resonance searches with provide the most powerful probe of the color breaking scale w through

the Z′. We also anticipate that the bounds on fractionally charged particles can be strengthened

significantly. Additionally, we will explore in more detail the limits provided by cosmology through

Dark Matter and ∆Neff. Further analysis of the Dark Matter candidates of this model, especially the

baryons of the unbroken twin color, will likely provide additional interesting phenomena.



Appendix A

Representations of SU(4)

This appendix provides a more detailed description of the Lie Group SU(4) and its representations.

The principles and some of the matrices included are also valuable in understanding other Lie

Groups used in the Standard Model.

The generator matrices of SU(4) are:

44
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λ1 =



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


λ2 =



0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0


λ3 =



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


(A.1)

λ4 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


λ5 =



0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0


λ6 =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


(A.2)

λ7 =



0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0


λ8 =

1√
3



1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0


λ9 =



0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0


(A.3)

λ10 =



0 0 0 −i

0 0 0 0

0 0 0 0

i 0 0 0


λ11 =



0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


λ12 =



0 0 0 0

0 0 0 −i

0 0 0 0

0 i 0 0


(A.4)

λ13 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


λ14 =



0 0 0 0

0 0 0 0

0 0 0 −i

0 0 i 0


λ15 =

1√
6



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


(A.5)

These matrices are all orthogonal to each other, and Tr(λ 2
i ) = 2. To normalize all 15 generators in

Killing form, we define:

Ti =
1
2

λi (A.6)
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Note also that 3 of these are simultaneously diagonalizable: T3, T8, and T15. These 3 form the

Cartan subalgebra of the group:

T3 =
1
2



1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0


T8 =

1
2
√

3



1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0


T15 =

1
2
√

6



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


(A.7)

The structure constants of the 15 generator matrices are defined by:

[Ti,Tj] = i f i jkTk

Many of these f i jk values are zero. For the commutators which obtain a diagonal generator matrix,

the sum over f i jkTk gives us multiple non-zero terms, such that

[Ti,Tj] = i f i j3T3 + i f i j8T8 + i f i j15T15

.
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With the non-zero structure constants being:

i j k f i jk

1 2 3 1

1 4 7 1
2

1 5 6 −1
2

1 9 12 1
2

1 10 11 −1
2

2 4 6 1
2

2 5 7 1
2

2 9 11 1
2

2 10 12 1
2

3 4 5 1
2

3 6 7 −1
2

3 9 10 1
2

3 11 12 −1
2

4 5 8
√

3
2

4 9 14 1
2

i j k f i jk

4 10 13 −1
2

5 9 13 1
2

5 10 14 1
2

6 7 8
√

3
2

6 11 15 1
2

6 12 14 −1
2

7 11 13 1
2

7 12 14 1
2

8 9 10 1
2
√

3

8 11 12 1
2
√

3

8 13 14 − 1√
3

9 10 15
√

2
3

11 12 15
√

2
3

13 14 15
√

2
3

(A.8)

The Cartan elements can help us define important representations of the group. Starting with

the fundamental representation known as 4, we define its basis vectors simply as:

f1 =



1

0

0

0


f2 =



0

1

0

0


f3 =



0

0

1

0


f4 =



0

0

0

1


(A.9)

To find the weights of this representation, we find the eigenvalues of each of these vectors when
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acted on by each of the Cartan generators T3, T8, and T15.

T3 f1 =
1
2

f1 T8 f1 =
1

2
√

3
f1 T15 f1 =

1
2
√

6
f1 (A.10)

T3 f2 =−1
2

f2 T8 f2 =
1

2
√

3
f2 T15 f2 =

1
2
√

6
f2 (A.11)

T3 f3 = 0 f3 T8 f3 =− 1√
3

f3 T15 f3 =
1

2
√

6
f3 (A.12)

T3 f4 = 0 f4 T8 f4 = 0 f4 T15 f4 =− 3
2
√

6
f4 (A.13)

We then assign each fi an associated vector µi, containing its 3 eigenvalues. This µ vector is

called the weight vector, which we write in the order T3, T8, T15.

µ1 =

(
1
2
,

1
2
√

3
,

1
2
√

6

)
(A.14)

µ2 =

(
−1

2
,

1
2
√

3
,

1
2
√

6

)
(A.15)

µ3 =

(
0,− 1√

3
,

1
2
√

6

)
(A.16)

µ4 =

(
0,0,− 3

2
√

6

)
(A.17)

We now define the complex conjugate representation of the fundamental. The Lie algebra is

defined as:

T i =−(Ti)
∗

The basis vectors f remain the same, because the dimension of the representation has not

changed. Acting on these basis vectors with the Cartan subalgebra of T yields the weights of the

conjugate representation of the fundamental.
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µ1 =

(
−1

2
,− 1

2
√

3
,−− 1

2
√

6

)
(A.18)

µ2 =

(
1
2
,− 1

2
√

3
,− 1

2
√

6

)
(A.19)

µ3 =

(
0,

1√
3
,− 1

2
√

6

)
(A.20)

µ4 =

(
0,0,

3
2
√

6

)
(A.21)

The highest of these weights is µ2.

Next, we want to find the adjoint representation. The adjoint is a representation in which the

generators are also the basis states. Their action on each other is defined as:

[X ,Y ] = X |Y ⟩

To find the adjoint representation, we change our basis such that each of our generators are

eigenvectors of our Cartan subalgebra. This is done by taking the nonzero structure constants

involving any Cartan subalgebra element and combining its associated pair of generators into a new

normalized eigenstate. For example:

f 123 = 1 (A.22)

[T3,T1] = iT2 (A.23)

[T3,T2] =−iT1 (A.24)

[T3,
1√
2
(T1 ± iT2)] =± 1√

2
(T1 ± iT2) (A.25)
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Following the same pattern shown above, we find:

[T3,
1√
2
(T1 ± iT2)] =± 1√

2
(T1 ± iT2) (A.26)

[T8,
1√
2
(T1 ± iT2)] = 0 (A.27)

[T15,
1√
2
(T1 ± iT2)] = 0 (A.28)

[T3,
1√
2
(T4 ± iT5)] =±1

2
1√
2
(T4 ± iT5) (A.29)

[T8,
1√
2
(T4 ± iT5)] =±

√
3

2
1√
2
(T4 ± iT5) (A.30)

[T15,
1√
2
(T4 ± iT5)] = 0 (A.31)

[T3,
1√
2
(T6 ± iT7)] =∓1

2
1√
2
(T6 ± iT7) (A.32)

[T8,
1√
2
(T6 ± iT7)] =±

√
3

2
1√
2
(T6 ± iT7) (A.33)

[T15,
1√
2
(T6 ± iT7)] = 0 (A.34)

[T3,
1√
2
(T9 ± iT10)] =±1

2
1√
2
(T9 ± iT10) (A.35)

[T8,
1√
2
(T9 ± iT10)] =± 1

2
√

3
1√
2
(T9 ± iT10) (A.36)

[T15,
1√
2
(T9 ± iT10)] =±

√
2
3

1√
2
(T9 ± iT10) (A.37)

[T3,
1√
2
(T11 ± iT12)] =∓1

2
1√
2
(T11 ± iT12) (A.38)

[T8,
1√
2
(T11 ± iT12)] =± 1

2
√

3
1√
2
(T11 ± iT12) (A.39)

[T15,
1√
2
(T11 ± iT12)] =±

√
2
3

1√
2
(T11 ± iT12) (A.40)

[T3,
1√
2
(T13 ± iT14)] = 0 (A.41)

[T8,
1√
2
(T13 ± iT14)] =∓ 1√

3
1√
2
(T13 ± iT14) (A.42)

[T15,
1√
2
(T13 ± iT14)] =±

√
2
3

1√
2
(T13 ± iT14) (A.43)
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This identifies 12 eigenvectors of the Cartan subalgebra. We can relabel these states for

simplicity, in an order which will become clear momentarily, as follows:

X±
1 =

1√
2
(T4 ± iT5) (A.44)

X±
2 =

1√
2
(T13 ± iT14) (A.45)

X±
3 =

1√
2
(T11 ± iT12) (A.46)

X±
4 =

1√
2
(T9 ± iT10) (A.47)

X±
5 =

1√
2
(T6 ± iT7) (A.48)

X±
6 =

1√
2
(T1 ± iT2) (A.49)

These 12 vectors, as well as the Cartan subalgebra T3, T8, and T15, we define to be the basis

states of our adjoint representation. The weights of this basis are important to all representations,

and are called the roots of the algebra. The root vectors are found in the same way as the weights of

the fundamental were, using the eigenvalues determined above. They are:

α±1 =

(
±1

2
,±

√
3

2
,0

)
α±2 =

(
0,∓ 1√

3
,±
√

2
3

)
(A.50)

α±3 =

(
±1

2
,∓ 1

2
√

3
,∓
√

2
3

)
α±4 =

(
±1

2
,± 1

2
√

3
,±
√

2
3

)
(A.51)

α±5 =

(
±1

2
,∓

√
3

2
,0

)
α±6 =(±1,0,0) (A.52)

We now want to select a subset of these as our positive roots. Positive roots are a subset of the

roots that obey the following rules:

1) multiplying a positive root by -1 does not yield another positive root

2) if the sum of any two positive roots is also a root, that root is positive
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Displaying the roots graphically as vectors, this is equivalent to choosing one half of the unit

sphere and setting its contained roots as positive. In our case, we will choose our set of positive

roots to be:

α+1 =

(
1
2
,

√
3

2
,0

)
α+2 =

(
0,− 1√

3
,

√
2
3

)
(A.53)

α+3 =

(
1
2
,− 1

2
√

3
,−
√

2
3

)
α+4 =

(
1
2
,

1
2
√

3
,

√
2
3

)
(A.54)

α+5 =

(
1
2
,−

√
3

2
,0

)
α+6 =(1,0,0) (A.55)

Having chosen the positive roots, we now take a subset of them to be the positive simple roots.

Simple roots are positive roots that cannot be written as the sum of two other positive roots. By

checking which of these positive roots sum to give another positive root, we find that:

α+4 = α+1 +α+2 α+5 = α+2 +α+3 (A.56)

α+6 = α+3 +α+4 α+6 = α+1 +α+2 +α+3 (A.57)

This means that we can exclude α+1, α+3, and α+4 from the positive simple roots, and we are left

with the set of α+2, α+5, and α+6. We can now write all roots as linear combinations of the positive

simple roots.

±α1 ±α2 ±α3 (A.58)

± (α1 +α2) ± (α2 +α3) ± (α1 +α2 +α3) (A.59)

Using these roots, the eigenvectors of the Cartan subalgebra, defined above as Xα , are identified as

the raising and lowering operators. Relabeling them using our linear combinations of simple roots,

they are:
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X±
1 =

1√
2
(T4 ± iT5) (A.60)

X±
2 =

1√
2
(T13 ± iT14) (A.61)

X±
3 =

1√
2
(T11 ± iT12) (A.62)

X±
12 =

1√
2
(T9 ± iT10) (A.63)

X±
23 =

1√
2
(T6 ± iT7) (A.64)

X±
123 =

1√
2
(T1 ± iT2) (A.65)

These operators relate vectors with weight µ to vectors with weight µ ±α .

It is important to note that the highest weight of the adjoint representation, the root (1,0,0), is

the sum of the highest weights of the fundamental and conjugate representations. This is an example

of a general result. A representation can be defined by a pair of integers (m,n) which indicate its

highest weight as a linear combination of the highest weights of the fundamental and its conjugate.

In other words, the highest weight of the (m,n) representation of SU(4) equals mµ1 +nµ2. Written

this way, the fundamental is (1,0), its conjugate is (0,1), and the adjoint representation is the (1,1)

representation. We will use this fact to identify further representations.

J Classifying Vector

In addition, each of the raising and lowering operators X± has an associated X3
α operator analogous

to the σ3 angular momentum operator, defined by:

X3
α =

1
α2 (α1T3 +α2T8 +α3T15) (A.66)

X3
α |µ⟩=

α ·µ

α2 |µ⟩ (A.67)

We can also use the simple positive roots to identify and label all representations of SU(4), by

defining a list j which classifies the highest weight of the representation. Using Notes 9.201.
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We take a representation, find its state with the highest weight µ1, and act on that state with the

X3
α operator for each simple root.

j(1) =
α(1) ·µ1

|α(1)|2
j(2) =

α(2) ·µ1

|α(2)|2
j(3) =

α(3) ·µ1

|α(3)|2
(A.68)

These eigenvalues then go into a list j =
(

2 j(1),2 j(2),2 j(3)
)

to label the representation.

Using this method on the fundamental representation, we find:

µ1 =

(
1
2
,

1
2
√

3
,

1
2
√

6

)
(A.69)

j(1) =

(
1
2 ,

√
3

2 ,0
)
·
(

1
2 ,

1
2
√

3
, 1

2
√

6

)
12 =

1
2

(A.70)

j(2) =

(
0,− 1√

3
,
√

2
3

)
·
(

1
2 ,

1
2
√

3
, 1

2
√

6

)
12 = 0 (A.71)

j(3) =

(
1
2 ,−

1
2
√

3
,−
√

2
3

)
·
(

1
2 ,

1
2
√

3
, 1

2
√

6

)
12 = 0 (A.72)

(A.73)

Thus the fundamental representation gives us j = (1,0,0). Repeating this process with the adjoint:

µ1 = (1,0,0) (A.74)

j(1) =

(
1
2 ,

√
3

2 ,0
)
· (1,0,0)

12 =
1
2

(A.75)

j(2) =

(
0,− 1√

3
,
√

2
3

)
· (1,0,0)

12 = 0 (A.76)

j(3) =

(
1
2 ,−

1
2
√

3
,−
√

2
3

)
· (1,0,0)

12 =
1
2

(A.77)

We find j = (1,0,1).
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