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ABSTRACT

Understanding the Origin, Evolution, and Dynamics of Transneptunian Binaries

Benjamin C. N. Proudfoot
Department of Physics and Astronomy, BYU

Doctor of Philosophy

This dissertation discusses research that focuses on understanding transneptunian objects (TNOs)
using a variety of techniques and approaches. In Chapter 1, I introduce the main concepts used
throughout this dissertation and discuss the current understanding of the transneptunian region. In
Chapter 2, I discuss my efforts to understand how Neptune’s late stages of migration affect the
Haumea family, the only known collisional family in the transneptunian region. Using advanced
simulations of Neptune migration, I find that the Haumea family can plausibly form before the
termination of giant planet migration and show that this extensively mixes the family. The simplest
explanation for the formation of Haumea and its family is a slow disruption of a large, primordial
binary system. In Chapter 3, I examine the detectability of non-Keplerian effects in the mutual
orbits of transneptunian binaries. I find non-Keplerian effects are common, with 20% of TNBs best
explained by a non-Keplerian orbit. I also demonstrate that one of the components of TNB (66652)
Borasisi-Pabu is a contact binary. In Chapter 4, I examine the non-Keplerian orbits of Hi’iaka and
Namaka, the satellites of Haumea, showing that they are strongly affected by both inter-satellite
gravitational interactions and precession caused by Haumea’s nonspherical gravitational field.
Future observations of the Haumea system, combined with non-Keplerian fitting, will sensitively
probe Haumea’s interior. Lastly, in Chapter 5, I explore the mutual orbits of Cold Classical TNO
binaries using non-Keplerian orbit fitting. Out of a sample of 18 binaries, 6 have significantly
non-Keplerian orbits, allowing detailed characterization of their system architecture. I find that 3 of
these systems are best explained as hierarchical systems, while the remaining 3 are consistent with
precession due to the Sun’s gravitational influence. The hierarchical systems I find strongly support
the streaming instability theory of planetesimal formation.

Keywords: Transneptunian objects, Binary Objects, Orbit Fitting, Dwarf Planets, Planet Formation
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Chapter 1

Introduction

The processes governing planet formation and evolution are extremely difficult to ascertain. Humans

have observed the end products of planet formation since before written history, yet understanding

planet formation is still an ongoing work. Great effort has been recently been made to observe

planets–and their ongoing formation process–outside of our solar system, but observations and study

of objects within our solar system can still provide deep insight into planet formation. As planet

formation is a messy process, leftover planet-building material still resides within our solar system.

Studying these leftovers, commonly called planetesimals, is a highly effective way to understand

planet formation.

In this sense, planet formation is intimately connected with the physical characteristics of the icy

bodies orbiting beyond Neptune–commonly known as transneptunian objects (TNOs). These bodies,

and their physical characteristics, are still poorly understood as a whole. While New Horizons, has

studied two examples in detail, the composition, shape, surface, density, and spin pole direction of

thousands of known TNOs remain a mystery. For lone TNOs, these characteristics are extremely

difficult to measure as current telescopes do not have the resolution to adequately resolve them.

As a result, TNO characterization most often focuses on the most information-rich TNOs–those

that are part of a binary system. A transneptunian binary (TNB) is a system of two gravitationally

1
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bound TNOs. Understanding their mutual orbit permits characterization of mass, density, shape,

and spin–all important physical characteristics which aid in understanding its formation. Through

the study of TNBs, much can be learned about the formation and evolution of TNOs themselves,

and consequently, planet formation in general.

1.1 TNB Mutual Orbits

Of the thousands of known TNOs, over 100 are known to be binary in nature. The known binaries

can be divided into two separate categories: planet-moon binaries and near-equal binaries. With

no exception, the largest known TNBs (in overall mass, size, brightness, etc.) are made up of

one large object around which a much smaller moon orbits. Some TNOs have multiple moons,

although here we still refer to these as TNBs. These systems are analogous to a planet and a moon,

although Eris, the largest such TNB is still smaller than the Earth’s Moon. On the other hand,

near-equal binaries tend to be small. Possible formation mechanisms for each different type of TNB

are discussed in Chapter 1.3. In addition to different system morphologies, the mutual orbits (i.e.

the binary components orbits around each other) of the two types of TNBs are also quite distinct.

The planet-moon TNBs tend to be on tighter, more circular orbits, than the near-equal TNBs, which

tend to be on wider, and more eccentric orbits.

Determining the mutual orbit of a TNB is an extremely crucial step in characterization of the

system. It allows a precise measurement of orbital parameters (semi-major axis, eccentricity, and

inclination) and the orbit period. Knowledge of the orbital period, paired with the semi-major axis,

can leverage Kepler’s laws to determine the system mass. The mass, along with estimates of the

sizes of the system components, further provides a measurement of the system’s overall density.

This is the first step in the characterization of a TNB system. But how is a TNB’s mutual orbit

established?
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Figure 1.1 (148780) Altjira as seen by the Hubble Space Telescope on 2023-10-23. This image

was acquired as part of my ongoing HST program (Program 17206).

Mutual orbit determination relies on high-resolution imaging of a TNB system across its entire

orbital period. A typical observation of a TNB with the Hubble Space Telescope (HST) is shown

in Figure 1.1. Images are precisely analyzed using point spread function (PSF) fitting techniques

to extract the exact relative positions of each TNB component for use in orbit fitting. The relative

positions of TNB components are usually referred to by the name ‘relative astrometry,’ or simply

astrometry.
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With the astrometry of the TNB components in hand, a simple Keplerian orbit model can be

fit with a few simple inputs. The most important input is the position (i.e., distance and direction)

of the TNB with respect to the Earth, often called the ephemeris. The ephemeris accounts for the

motion of both the Earth and the TNB, which subtly change the angle at which the TNB is viewed.

This allows a full 3-dimensional model of the TNB’s motion to be created. Then, using a variety

of model fitting techniques, the parameters of the orbit can be found, given the system’s relative

astrometry. A variety of smaller considerations need to be taken into account for the best possible

accuracy. These include accounting for changes in light travel time between the observer and the

TNB and correcting for aberrations in astrometry due to Earth’s orbital motion. An example of a

simple Keplerian orbit model fit to a series of relative astrometry measurements is shown in Figure

1.2. The figure shows the path of the orbit on the sky with relative astrometry overlaid.

Since the orbital period of a given TNB is not a priori known, careful scheduling of imaging

is necessary to accomplish the task in as few observations as possible [1]. Typically for TNBs, a

minimum of five high-resolution images (precision of ≲10 milliarcseconds) are required to fully

determine a mutual orbit [1]. With random sampling in time, the number could be somewhat higher.

Some orbit orientations introduce additional difficulties in orbit fitting, such as edge-on orbits where

the two components are regularly close to each other on the sky. In this orientation, telescopes may

not be able to resolve the individual components during every observation. Hence, these orbits

require substantially more observations to determine the TNB’s mutual orbit.

Another difficulty that arises in TNB mutual orbit fitting is an ambiguity in the orbit plane when

observations are taken from too few aspect angles. The so-called ‘mirror ambiguity’ results in

two acceptable orbit solutions (with similar period, semi-major axis, and eccentricities) that are

mirror images of one another. Breaking the mirror ambiguity requires observations of the system at

enough aspect angles to constrain the system geometry. Practically, this is achieved by acquiring

observations well-separated in time.
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Figure 1.2 An orbit fit to relative astrometry acquired of TNB 1998 WW31. The solid line represents

the orbit on the sky, over one mutual orbit period, where changing color indicates time. The circles

represent the relative astrometry of the system taken between 2001-2003. Note the solid line does

not reconnect with itself due to the changing viewing angle over time.
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While the process outlined above uses a simple, well-justified model, it makes several assump-

tions. Firstly, it assumes the mutual orbit is not influenced by the gravitational pull of other sources

(e.g. the Sun, passing TNOs, or additional system components). This is probably justifiable for

most TNBs, but it is certainly not true for the widest TNBs [2]. Likewise, systems with multiplicity

higher than 2 (like Haumea, Pluto, or Lempo) require additional consideration. Secondly, by using

a Keplerian orbit, there is an implicit assumption that the components of the modeled TNB are

spherical, or–more generally–that their shapes have no bearing on the mutual orbit. This may be

important for many TNBs as most TNOs are known to be far from spheres (e.g., [3–5]). Relaxing

these assumptions allow for the possibility of non-Keplerian orbital motion. Addressing these

assumptions using a non-Keplerian orbit model is core to the work I present in this dissertation.

Chapters 3-5 are fully dedicated to fitting TNB orbits with a more general orbital model which

accounts for N-body dynamics and arbitrary shapes.

1.2 TNO Subpopulations

In addition to categorizing TNBs by their mutual orbits or physical properties, they can also be

categorized by their heliocentric orbits. The transneptunian region can be broken down into roughly

five subdivisions: cold classical Kuiper belt, the hot classical Kuiper belt, the Scattered Disk,

Centaurs, and resonant populations. In Figure 1.3, we show these subpopulations in orbital element

space.

The cold classical Kuiper belt (CCKB) is a population of TNOs on dynamically ‘cold’ orbits

between 42 and 47 au. In this context, ‘cold’ refers to dynamical excitation where it implies orbits

with low inclinations (with respect to the ecliptic plane). This population is thought to have been

formed in situ and is relatively untouched since formation [6–8]. Compositional studies of the

CCKB show that objects there are compositionally distinct from other TNO subpopulations [9–11].
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Classical  
Kuiper belt

Scattered 
Disk

Centaurs

Figure 1.3 A schematic of the five different transneptunian populations. Gray vertical dashed lines

show prominent orbital resonances, while the red dashed curves show lines of constant perihelion

distances of 30 and 38 au. Between the red dashed lines is the scattered disk. The red rectangle

roughly delineates the Classical Kuiper belt, which can be broken into the cold (low inclination)

and hot (high inclination) components. Note that there is some overlap between subpopulations,

especially the Hot Classical Kuiper belt and the Scattered Disk.
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The CCKB is home to many binaries, with a binary fraction of ∼30% [12, 13]. All binaries in the

CCKB are near-equal binaries [14], indicating that the processes that form planet-moon TNBs are

not effective in the CCKB. This is likely due to the low overall density of TNOs in this population.

The CCKB is the prime location to study planetesimals as they are virtually unaltered since their

formation.

The hot classical Kuiper belt (HCKB) lies between 40 and 47 au and contains dynamically ‘hot’

objects (i.e., those with inclined orbits). Most studies agree that HCKB objects could not have

been formed in situ, but instead were formed in a high density (relative to the CCKB) disk of gas,

dust, and planestesimals interior to Neptune’s current orbit [15, 16]. After the giant planets formed

and began migrating, this disk was disrupted, scattering planetesimals to the HCKB [8, 17, 18].

This history is backed up by a variety of evidence including compositional studies, dynamical

arguments, and the orbital structure of the hot classical region [9, 15, 19]. As the hot classicals were

formed in a far denser environment–inside which collisional processes are effective–planet-moon

TNBs are present in this population alongside near-equal TNBs [14]. The presence of both types

of TNBs is likely due to either incomplete collisional processing, lack of collisional processing

in different source populations, or contamination by the CCKB. The binary fraction in the HCKB

is appreciably lower than the CCKB [12], presumably due to the violent scattering process that

produced their current heliocentric orbits [20]. Although there is a low binary fraction, almost all

of the largest TNOs found in this population are known to have small moons [21–25], hinting at

common underlying planet formation processes.

The Scattered (or Scattering) Disk (SD) is a population of dynamically excited TNOs with

perihelion distances between 30 and 38 au, enabling dynamical interactions between SD objects

and Neptune. The SD is the largest subpopulation by mass and is home to many large TNOs

(and TNBs). The origin of the SD is generally thought to be similar to the HCKB, with objects

forming in the now-dispersed primordial disk [8, 26, 27]. In that sense, the SD can be thought of
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as a high-eccentricity and high-semi-major axis tail of the classical Kuiper belt, extending out to

well over 100 au. As with the HCKB, both planet-moon and near-equal TNBs are present in the

SD. Due to the similarities between the SD and HCKB, they are often collectively referred to as the

excited TNOs.

Centaurs are a population of objects with perihelia < 30 au, inside Neptune’s orbit. Although

many Centaurs actually orbit completely within Neptune’s orbit, they are often regarded as a

transneptunian subpopulation. Centaurs orbital dynamics are completed dominated by their interac-

tions with the giant planets, and are thus quite unstable [28]. With dynamical lifetimes of only a

few million years, the continued existence of Centaurs requires a source population from which

Centaurs are created. It is generally believed that the SD is this source population, where slow

dynamical erosion of the SD produces a population of Centaurs in a sort of quasi-equilibrium [8].

Binary centaurs are uncommon, with only three known [1, 14, 29]. The low binary fraction is due to

frequent interactions with the giant planets which efficiently disrupts binaries [8].

Lastly, the resonant TNOs comprise all TNOs that reside in mean motion resonances (MMRs)

with Neptune. MMRs, or simply just resonances, occur when the orbital periods of two orbiting

bodies are a simple integer ratio of each other. MMRs often provide a stable location in which to

orbit. For example, Pluto is in the 3:2 MMR with Neptune, with Neptune orbiting three times for

every two Pluto orbits. This enables Pluto to remain stable, even though its orbit crosses Neptune’s.

Although not every MMR necessarily provides stability (see Figure 1.3), many Neptune MMRs are

heavily populated with TNOs [30, 31], most prominently the 3:2 and 2:1 MMRs. The existence

of TNOs trapped in MMRs is closely tied to the formation of the entire TNO population, and is

especially dependent on the migration of Neptune during the early phases of the solar system (see

Section 1.4 for further details). The population of Neptune’s MMRs is also likely to be drawn from

the primordial disk [30], and, like the HCKB and SD, is home to both types of TNBs, and most

notably, Pluto.
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1.3 TNO Formation Theory

Current study of TNO formation is centered on a formation model commonly called the Streaming

Instability (SI) model. The SI model posits that gas drag felt by ‘pebbles’ in the protoplanetary

disk cause clumping. Once enough mass clumps together, planetesimals can directly from by

gravitational collapse [32–34], in a process very similar to star formation. This allows small TNOs

to be formed directly from the small particles in the protoplanetary disk, bypassing various long-

unsolved problems regarding traditional planetesimal forming processes. The size of planetesimals

created by the SI can vary from small km-scale planetesimals up to ∼100 km planetesimals [35,36].

While the SI model is theoretically useful, predictions from it also produce a compelling match

to the TNO population. The SI model reproduces the size distribution of small TNOs without

requiring any collisional evolution [37, 38], which other planetesimal formation models have failed

to do. Another source of strong support for the SI model comes from the TNB population. When

looking at the primordial, unaltered CCKB, the large fraction of binaries can be easily explained

by the SI model, which is extremely efficient at creating near-equal binary systems [33, 34, 39].

Accounting for collisions and other disruptive events, some authors posit that almost all TNOs are

born as binary systems via the SI [8, 40]. Additional evidence is drawn from the similar colors of

individual TNB components [41], which cannot be explained by any other binary formation models.

One of the strongest pieces of evidence for the SI model comes from analysis of TNB mutual

orbits. The SI model predicts that TNB orbits will be predominantly prograde (i.e., the binary orbits

in the same sense as its heliocentric orbit) [42], while other formation models significantly favor

retrograde orbits [43–45]. Recent works analyzing TNB mutual orbits show that prograde orbits are

overrepresented by 4:1, strongly favoring the SI model [42, 46].

A collapsing cloud of particles, triggered by the SI, is typically a low-velocity environment,

which can lead to the production of close or contact binaries across a variety of size ranges [34, 39],

especially when other dynamical effects are accounted for (e.g., gas drag, tidal interactions, Kozai
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cycles, etc.) [47]. Surveys of TNO light curves have revealed that close/contact binaries are

extremely common [48–52], lending further credibility to the SI model. In addition, images returned

from the New Horizons flyby of Arrokoth, a member of the CCKB, show a pristine contact binary

whose formation is consistent with the SI model [47, 53]. Likewise, the significantly flattened

shapes of its two lobes could be a consequence of formation during gravitational collapse. Recent

high-resolution simulations have also shown that unusual hierarchical triple systems (i.e., a tight

binary system orbited by a more distant third component) are unique outcomes of gravitational

collapse triggered by the SI [34]. In Chapters 3 and 5, I revisit some of these findings and find that

the shapes/morphologies of TNBs also strongly point towards formation in the SI paradigm.

While TNO/TNB formation by the SI model is crucial for understanding the smaller TNOs/TNBs,

to produce larger TNOs, additional processes are required [8, 35, 36]. Large TNOs (≳100 km)

presumably form similar to small TNOs, after which the process of collisional coagulation pro-

ceeds [8, 54, 55]. Collisional coagulation is the process by which pairwise collisions create con-

tinually larger planetesimals. Once large enough (300-400 km), planetesimals can then begin to

efficiently accrete loose, individual pebbles from the protoplanetary disk in a process known as

pebble accretion [56]. Pebble accretion is the final stage of formation for TNOs, which have a

maximum radius of ∼1000 km.

The formation of planet-moon TNBs is naturally explained as part of the collisional coagulation

process. As in the case for the Earth-Moon system [57], it is widely believed that TNO moons form

in the aftermath of large collisions [21, 58–60]. Since moons are extremely common around the

largest TNOs (8 of largest 10 have moons), moon-forming collisions must have been common [21–

25,61–65]. Despite the consensus on their necessity, efforts to model these planetary-scale collisions

have been few and far between. The required smoothed particle hydrodynamics (SPH) simulations

are extremely computationally expensive. In addition, the parameter space to be explored is

vast. Collisions strongly depend on impact velocity, impact parameter, target and impactor size,
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composition, temperature, equation of state, initial rotation, and many more parameters. As such,

only a few TNOs have been modeled in any detail [66–69]. Recent effort has moved towards

general simulations from which broad implications can be drawn [60]. For example, a recent study

has shown that many TNO moons could actually be remnants of the impactors themselves [60].

Unfortunately, many mysteries remain in explaining planet-moon TNBs. In the future, more SPH

modeling of TNO formation is required to fully understand the production of planet-moon TNBs

across the range of TNOs.

Another strong indicator of the importance of collisions in TNO formation is the existence

of the Haumea family [70–72]. Haumea is the third largest TNO [4], has two impact-generated

moons [21, 73], and is the largest remnant of the Haumea collisional family. A collisional family

is a group of objects clustered in orbital element space that are likely to have originated in a

collision. The Haumea family is tightly clustered, and each family member shows an extremely

unique water-ice feature in its near-infrared reflectance spectrum. Haumea, its moons, and its family

probably formed in a giant collision near the end of Neptune’s migration [74]. Understanding its

family and moons are studied in detail in Chapters 2 and 4.

1.4 Neptune Migration

Evidence strongly points towards the fact that the solar system’s planets did not form where

they currently reside [26, 27, 75–78]. While details and timings are vigorously debated, broad

consensus has formed around the idea of planet migration. That is, after formation, planets migrate

to their current locations, driven by gravitational interactions with other planets [26], disks of

planetesimals [79], or the gas present in the protoplanetary disk [80]. Most notably for the study of

TNOs, Neptune is believed to have migrated after its formation, driven outwards by the primordial
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disk of leftover planetesimals [27]. This episode of migration is the defining process that sculpted

the transneptunian region.

As Neptune migrated into the primordial disk, it scattered the planetesimals contained within

it, which went on to form the excited TNO populations (SD and HCKB) [17]. In addition to

scattering, Neptune was also able to trap TNOs into its MMRs as it slowly moved outwards [75,81].

Determining the overall distance migrated and the time it took has been the focus of many studies

over the past decade (for a review, see [8, 27]). Although specifics are still uncertain, it has become

clear that the migration must have been long-range and taken place slowly (∼10s of Myr) [19].

Studies have also revealed that the migration was grainy (i.e., characterized by many discrete

jumps), indicating that the planetesimals scattered were Pluto-sized. The primordial disk that was

scattered was likely composed of ∼1000s of Pluto-sized objects, with a total mass of 15-20 M⊕ [82].

Compared to the current mass contained within the entire transneptunian region, this implies a

survival rate of ∼ 10−3, meaning that the TNOs we see today are 0.1% of the original primordial

disk. Simulations of the migration process have been key to understanding the primordial solar

system, giving insight into compositional gradients in the primordial disk [83], the population of

binaries prior to scattering [20], and even the existence of planets that were ejected early in the solar

system [84, 85].

For this dissertation, Neptune migration is discussed, in the context of the Haumea family, in

Chapter 2.

1.5 Dissertation Summary

This dissertation is primarily composed of four separate chapters, each detailing a single project.

The first three body chapters (Chapters 2-4) are made of fully completed articles in various stages

of publication. As such, the chapters are in journal specific format and style. The final chapter
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(Chapter 5) details work which will eventually be published pending the observations from an

ongoing Hubble Space Telescope program. As such, the chapter is written in the normal format of a

dissertation chapter.

Chapter 2 focuses on how the Haumea family could have been formed, when placed in the

context of Neptune migration. Understanding the Haumea family is an ideal way to probe how

collisions work in the outer solar system. I find that the Haumea family can best be explained

as a collision between the two components of a destabilized TNB. This would be most likely to

happen in the aftermath of the proto-Haumea’s scattering by Neptune as it migrates outwards.

Neptune migration subsequently mixes the family, only slightly eroding it, and produces the

strongly dynamically sculpted family we see today. This work emphasizes the importance of

dynamical context when studying the creation of collisional families. It also motivates future work

on understanding collisions, as they pertain to large TNBs.

Chapter 3 describes a study on the possible detectability of non-Keplerian orbital motion in

TNB mutual orbits. Understanding if non-Keplerian motion is prevalent in TNB both validates (or

challenges) the assumptions of past work, and it opens a new path towards learning more about

the shapes of TNB components. I find that a significant fraction of TNBs have detectable non-

Keplerian motion (∼20%), however, I show that, even when non-Keplerian motion is detectable, the

assumptions made in past work are justifiable. This further solidifies TNB analysis as a method for

understanding planetesimal formation. The survey completed in this work lays the groundwork for a

series of future studies that can reveal the shapes of TNB components. Just as the shape of Arrokoth

provided evidence for the SI model of planetesimal formation [47], future studies predicated on this

work will continue to aid our understanding of planet formation processes.

Chapter 4 revisits the Haumea system and is dedicated to understanding the orbits of Haumea’s

moons. Its goal is to measure Haumea’s nonspherical gravitational field using the moons as

‘probes’. This measurement is able to remotely examine Haumea’s interior, possibly constraining
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the size/density of Haumea’s core. Planetary core formation (or differentiation) is a crucial aspect of

planet formation, which is completely unconstrained for TNOs. Differentiation is intimately linked

with a variety of formation processes (e.g., collisions, inclusion of radioactive isotopes, chemical

alteration of minerals, etc.). Unfortunately, despite new data and a suitably complex model, I show

that current data is not enough to accomplish the stated goal. Although disappointing, the analysis

is still useful for exploring the dynamics of the Haumea system. Given more data, future analysis

using the same methods will be able to fully characterize Haumea’s gravitational field and place

strong constraints on Haumea’s formation history.

Lastly, Chapter 5 contains an in-depth, non-Keplerian analysis of CCKB binary (CCKBB)

mutual orbits in an effort to provide evidence for (or against) the SI model of planetesimal formation.

I find that 6 CCKBBs show compelling evidence of non-Keplerian motion. Of these, three are

consistent with hierarchical systems. As the SI model strongly favors the production of hierarchical

systems, this discovery lends credibility to the SI model. In addition to characterizing several

systems, I also find that upper limits can be placed on the non-Keplerian nature of a large fraction

of other CCKBB components. I lastly describe an ongoing HST program aimed at characterizing

CCKBBs further, which should produce more evidence of CCKBB formation via the SI.



Chapter 2

The Formation of Haumea and its Family via

Binary Merging
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Version of Record here in accordance with the article’s Creative Commons CC BY license and

Springer Nature’s author reuse standards. The full citation and link to the article are shown below.
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Dozens of families of asteroids in the asteroid belt have similar orbits and compositions

because they formed through a collision. However, the icy debris beyond the orbit of Nep-

tune, called the Kuiper Belt, contains only one known family, the Haumea family. So far, no

self-consistent explanation for the formation of the Haumea family can match all geophysical

and orbital characteristics of the family without invoking extremely improbable events. Here,

we show that the family is adequately explained as the product of a merging binary near the

end of Neptune’s orbital migration. The unique orbital signature of a merging binary, which

was not found in extensive searches, is effectively erased during the final stages of migration,

providing an explanation for all aspects of the Haumea family. By placing the formation of the

Haumea family in the broader context of solar system formation, we demonstrate a proof-of-

concept model for the formation of Haumea.

https://doi.org/10.1038/s41467-022-29901-5 OPEN

1 Department of Physics and Astronomy, Brigham Young University, N283 ESC, Provo, UT 84602, USA. ✉email: benp175@gmail.com

NATURE COMMUNICATIONS |         (2022) 13:2262 | https://doi.org/10.1038/s41467-022-29901-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

17



S tudies of the asteroid belt reveal that asteroid families are
most commonly the result of catastrophic collisions
between two bodies. In catastrophic collisions, the target is

gravitationally disrupted, ejecting collisional family members
outwards at velocities large compared to the escape velocity of the
asteroid, but small compared to their heliocentric orbital velocity.
Despite collisional families being common among the asteroids,
only one family is known in the Kuiper belt. The Haumea family,
first discovered in 20071, was originally hypothesized to be the
product of a catastrophic collision, much like the known asteroid
families. However, a catastrophic collision like those that form
asteroid families cannot be supported by the observations of
Haumea for three reasons. First and foremost, the distribution (in
semi-major axis, inclination, and eccentricity [a-e-i] space) of
family member orbits is ~20 times too small2,3. Typical cata-
strophic collisions impart a change in velocity, Δv, of a few times
the escape velocity of the largest remnant, in the case of Haumea,
a Δv of ~2000 m s−1 3,4. The family’s current velocity distribution
is ~100 m s−1 3,5. Indeed, for collisions large enough to have
debris detectable by current surveys of the Kuiper belt, the spread
in proper orbital elements should be comparable to the whole
Kuiper belt6. Second, the size distribution of Haumea family
members is very shallow, with most of the mass concentrated in
the largest objects, inconsistent with any kind of catastrophic
disruption event3,7. Third, these size distributions allow us to
estimate that the original mass of the family is a few percent of
the mass of Haumea7, in contrast to tens of percent ejected in a
typical catastrophic asteroid collision4. Various hypotheses for
the formation of the Haumea family have been proposed to
explain the small spread in orbital elements8–11, but all
hypotheses that rely on a catastrophic collision are inconsistent
with the data7. Indeed, even the destruction of an object with the
total mass of the known family members (not including Hau-
mea) would already produce a spread in orbits well beyond what
is currently seen.

One of the most promising non-catastrophic formation
mechanisms is the graze-and-merge collision proposed by Lein-
hardt et al.9. In this mechanism, two large (~650 km) objects
suffer a grazing collision at low velocity creating a rapidly spin-
ning body which then sheds mass due to excess angular
momentum, forming both the Haumea family and Haumea’s two
satellites. This mechanism readily creates a compact low-mass
family, made primarily from the water ice mantle of already
differentiated impactors. The creation of nearly pure water ice
family members, consistent with their spectra12,13 and
albedos14,15, is a strong geophysical constraint on family-
formation hypotheses that is well-matched by graze-and-merge
style impacts. In this scenario, as family members are ejected due
to an excess of angular momentum, their ejection vectors will lie
along a tight plane. The previous work3 showed that this type of
ejection does indeed have a detectably unique correlation in a-e-i
space, but ruled out a planar ejection at the ~2.5-σ level. Addi-
tionally, a slow graze-and-merge collision between two indepen-
dent large bodies in the excited part of the Kuiper Belt suffers
from an extremely low probability16.

The low probability of an independent collision can be cir-
cumvented, if Haumea was originally a binary, probably near-
equal mass with each body with a radius of ~650 km, where the
components eventually collide in a graze-and-merge style colli-
sion, as originally suggested by Marcus et al.6 Kozai cycles, a
dynamical effect that allows a binary to exchange angular
momentum between the binary eccentricity and inclination,
combined with tidal friction17,18 (Kozai cycles with tidal friction
(KCTF)) is a natural mechanism for explaining this collision
although other mechanisms are possible19, such as encounters
with Neptune, geophysical evolution20, and others.

While the probability of having a near-equal (mass ratio
>~10%) binary with a total mass near that of Haumea is not well
studied, we view it as plausible, based on formation models and
comparisons to other large objects. Formation models21 show
that large ~equal-mass binaries are capable of forming from the
gravitational collapse of pebble clouds, though the proto-Haumea
binary would occupy the upper mass range of these models.
Other models show that a near-equal mass binary could survive
implantation into the dynamically excited population of the
Kuiper belt22. Comparison with other objects provides another
indication that large binaries are plausible. Triton, currently a
moon of Neptune, is hypothesized to have been a large near-equal
binary from the same parent population as the Kuiper belt23. The
Pluto–Charon system is ~4 times larger than the proposed proto-
Haumea binary, with a mass ratio that is amenable to a graze-
and-merge type collision formation. It has recently been proposed
that the Pluto–Charon system was formed in a similar manner,
where the destabilization of a binary system allows for a far
higher collision probability19. Despite the indications that a near-
equal binary proto-Haumea is plausible, the occurrence of large,
near-equal mass binaries should be explored further.

With the probability of the graze-and-merge collision thus
addressed, we turn to the question of why the observed Haumea
family does not exhibit the expected a-e-i correlation from planar
ejecta. The previous work3 showed that this planar ejecta dis-
tribution would survive dynamical interactions for 4.5 GYr and is
inconsistent with the observed family at the 2.5-σ level. However,
these dynamical interactions assumed the planets were in their
current orbits and did not place the Haumea family in the context
of solar system formation which includes a long (~100MYr) final
stage of Neptune migration. Previous studies speculated that any
Neptune migration would likely destroy the tight clustering of
family members3,11. This led to the supposition that Haumea
must have formed after Neptune’s migration was completely over,
even though age estimates can only say that the Haumea family is
>~1 GYr old.

In this work, we show that this assumption is not supported by
using migration simulations that show that the compact nature of
the Haumea family can be maintained during the late stages of
Neptune migration proposed by other investigations. Our simu-
lations additionally reveal that during Neptune migration, the
orbital distribution of family members is mixed so that an ori-
ginally planar family can appear very similar to the family seen
today. With this fact in mind, we propose that the proto-Haumea
formed as a near-equal binary in the primordial trans-Neptunian
belt. Following the standard formation model for the dynamically
excited Kuiper Belt24, the proto-Haumea was first scattered onto
a dynamically unstable orbit, captured into one of Neptune’s
mean motion resonances (MMRs), and subsequently dropped out
of resonance near its current orbit. The strong processes in this
dynamical excitation and depletion event are too chaotic to
expect that the Haumea family formed in the primordial trans-
Neptunian belt and was then placed into its observed tight cluster.
While we do not specifically propose the MMR from which
Haumea was dropped out of, there are several low-order MMRs
that could have placed Haumea in its current position (e.g., 3:1,
5:2, 9:4, etc.). The large change in Haumea’s heliocentric incli-
nation during this process could have naturally initiated Kozai
cycles. KCTF leads to a merger of the proto-Haumea binary; this
can take thousands to millions of years depending on the
conditions18,25. The graze-and-merge collision puts too much
angular momentum into the proto-Haumea, which sheds a small
amount of mass in the form of icy bodies from its tips. This
explains Haumea’s near-critical rotation rate, two near-coplanar
moons, the small mass of the family, its shallow size distribution,
and the low ejection velocities required to form a compact family,
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as have been shown in other studies3,7,9. The final part of Nep-
tune migration, especially a jump of eccentricity like that already
proposed26,27, then mixes the objects into the presently observed
orbital configuration.

Results
In the framework of our proposed model, the family originally
contains a planar ejection with strong correlations in the a-e-i
distribution of family members (see Fig. 1). Whether by KCTF or
another means, destabilization of this proto-binary is most likely
to happen soon after Haumea reaches the hot classical belt.
During this time, Neptune is still completing its final stages of
migration, which has not been accounted for in previous models.
Our results show that as long as Neptune gets a modest
(~0.05–0.1) eccentricity kick after the formation of the Haumea
family, the planar distribution is mixed sufficiently to be similar
to the presently-observed Haumea family. Modern migration
models developed independently to explain other features of the
Kuiper belt have such eccentricity kicks and these same models
mix the Haumea family enough to produce the uncorrelated a-e-i
distribution that is observed while maintaining its compact size.
The minimal influence of the tail-end of Neptune migration on
the compact nature of the Haumea family allows far more flex-
ibility in explaining the family forming collision. The timeframe
for this proposed Haumea family formation is potentially quite
long based on current models of the formation of the trans-

Neptunian belt, which we adopt without modification in our
proposed model.

Numerical integrations. Using the n-body integrator
REBOUND28, we have performed a suite of integrations
recreating some models of Neptune migration found in the lit-
erature. Crucially, many of these models26,29,30 show Neptune
having an instability where the orbital elements can abruptly
change in short amounts of time. These abrupt changes, often
called jumps, can be modeled via instantaneous changes in the
orbital elements of Neptune. In our integrations, we test whether
jumps in semi-major axis and eccentricity can enhance mixing.

In each of these integrations, a prototypical planar family was
integrated along with the outer planets while Neptune migrated
outwards. The initial state of the family is shown in Fig. 1. Upon
qualitative analysis of our integrations, it is clear that mixing of
the family does indeed occur without excessive erosion. Figure 1
shows the initial state of the family, immediately after creation
and when compared to Fig. 2, it is clear that the diffusion of
family members is extensive.

Mixing mechanisms. While it is clear that our integrations
demonstrate the feasibility of mixing due to Neptune migration, it
is not immediately clear why the family members are mixed so
efficiently. To find the specific mixing mechanisms, we performed
some additional integrations to determine the exact mixing
mechanisms (see “Methods” subsection “Numerical integrations”).

The most intuitive mechanism for mixing before the jump in
orbital elements is the transport of the semi-major axes of family
members within mean-motion resonances (MMRs). Objects that
are captured in MMRs during Neptune’s migration are pushed to
higher semi-major axes. At the same time, these captured family
members typically diffuse to higher eccentricity and lower
inclination, as has been seen in many previous analyses. When
our final integrations are compared with the exploratory
integrations, it is clear that resonant capture, transport, and
subsequent removal from MMRs are not responsible for the bulk
of the mixing.

The majority of mixing in our simulations occurs after
Neptune’s jump, which causes a period of enhanced mixing.
While not immediately clear whether the jump in semi-major axis
or eccentricity is responsible, our exploratory integrations
definitively showed that the jump in eccentricity is the dominant
factor. Dynamically, the increased eccentricity of Neptune has
strong effects on both the strength and size of resonances.
Higher-order resonances of the form p+ q:p, several of which are
located near the Haumea family, are composed of q subreso-
nances with strengths proportional to eNjek where j+ k= q. Prior
to Neptune’s jump, its eccentricity is small and only the k= q
subresonance is active for family members near MMRs.
Increasing Neptune’s eccentricity activates the other subreso-
nances, enhancing chaotic diffusion, leading to the period of
mixing after a jump in Neptune’s eccentricity.

Combined with the numerical integrations discussed here, our
exploratory integrations showed that smooth migration at low
eccentricity is probably not sufficient to mix a planar family.
Despite this, we expect that many types of Neptune migration
models could be capable of mixing a planar family, including ones
where Neptune doesn’t experience any jumps. Some of our
preliminary integrations had Neptune cross a MMR with another
planet, temporarily increasing its eccentricity, and subsequently
efficiently mixing a planar family. Alternatively, a hard dynamical
instability30 may have a tail end where Neptune’s eccentricity is
sufficiently elevated to mix a family that forms while Neptune’s
eccentricity is still non-zero. Despite the wide variety of models,

a

b

Fig. 1 A synthetic planar family. A realization of a graze-and-merge
(planar) Haumea family. In panel a, the family is shown in a-e-i space. The
family shape and distribution are typical for a graze-and-merge collision,
with the planar distribution of family members visible as a distinct
correlation between semi-major axis, eccentricity, and inclination. In panel
b, the ejection direction of each family member is shown in ecliptic latitude
and longitude. Here the size of each family member corresponds to the size
of the point. This demonstrates that the family members are ejected in a
planar manner, with a typical planar dispersion of ~2°, consistent with the
properties of a graze-and-merge family. Source data for this figure are
provided as a Source data file.
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many have periods of increased eN which is thought to be an
essential component of successfully reproducing features in the
Kuiper belt31. Thus we believe that the results presented here
could be reproduced with different migration scenarios, though
we hope that future observations of Haumea family members will
be able to place specific constraints on outer solar system
formation models.

Quantitative assessment of the mixing. In addition to qualitative
assessment, the mixing efficiency was also evaluated using the
state-of-the-art Bayesian fitting routine outlined in Proudfoot and
Ragozzine3. This fitting routine takes an observed family and
determines posterior distributions for the properties (location,
extent, angular dispersion, etc.) of a model family designed to
match a variety of formation hypotheses, without any dynamical
evolution. While these fits produce posterior distributions for
over a dozen parameters, we focus on the angular dispersion
parameter κ as a measurement of the planar-ness of the family.
When κ > 250, the family has an angular dispersion <5°, which
we call planar. We find that only ~3.5% of the resulting posterior
distribution was consistent with a planar ejection, while the vast
majority of the posterior was consistent with an isotropic (non-

planar) ejection. The rejection of a planar ejection at a ~2-σ level
and the distinct shape of the posterior distribution are both
extremely similar to results found in previous work based on the
present-day observed family3. In Fig. 3, we compare these dis-
tributions. In Fig. 3, all the posterior distributions show a large
peak at κ ~ 10. This has been previously explained as a result of
overfitting, but may indicate that the model is trying to reproduce
the boxy shape of the family produced by Neptune migration.

Erosion and expansion of the family. We measured the extent of
the erosion and expansion of the family after being subjected to
Neptune’s migration. We found that 35–40% of family members
are removed by Neptune’s effects. Given the current estimates for
the mass of the family (~3% of Haumea’s mass7), we estimate that
the mass of the Haumea family was initially ~5% of Haumea’s
mass. This is in closer agreement with smoothed particle
hydrodynamic models which estimated a family mass of ~7% of
Haumea’s mass, given a graze-and-merge formation9. We do
note, however, that the real-world strengths of each MMR pas-
sage are likely underestimated, and the number provided here is
likely a lower bound on the mass removed.

Fig. 2 Mixing of family members during migration. The averaged orbital elements throughout our integration. The orbital elements are found using a
50Myr centered moving average of the instantaneous orbital elements of each object; this corresponds roughly to proper elements for non-resonant
objects, though technically proper elements are not well-defined for migrating planets. Each panel is labeled with the time in the top left, with Neptune’s
jump occurring at 35Myr. Note that the color bar deviates slightly from Fig. 1. In each frame, dashed, gray lines show the instantaneous locations of some
of Neptune’s mean-motion resonances (MMRs). The diagonal, solid black line is an estimate of where scattering with Neptune becomes strong enough to
remove objects (7/6 aN, corresponding to 35 au with aN= 30 au). For a comparison to the family without migration, see Fig. 1. In the first panel, objects
which have been captured into the 2:1 MMR are clearly migrating to higher eccentricities and lower inclinations (darker colors). In the second panel, at the
time of the jump, the objects which were previously inside the 2:1 MMR have now been dropped out of resonance. Additional resonances passing through
the family create chaotic diffusion in eccentricity over the next several panels, removing some of the a-e-i correlation and changing the tilted elliptical
shapee5. Throughout this process, objects near resonances sometimes have their eccentricity excited, moving them into the unstable region where
scattering becomes dominant. By the end of the integration, the original a-e-i correlation present in the planar family has been substantially obscured.
Source data for this figure are provided as a Source data file.
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Despite the removal of much of the family, the family does not
expand a great deal. We find that the median Δv of family
members is approximately doubled, but most family members
retain a Δv < 150 m s−1, as is observed in the current family (see
“Methods” subsection “Δv comparisons”). This is partly due to
the Haumea family’s proximity to orbits that are long-term
unstable due to Neptune interactions.

Discussion
A variety of observational constraints suggest a graze-and-merge
collision origin for the Haumea family: very small ejection velo-
cities, Haumea’s unusually rapid rotation, and the extreme water
ice spectra of family members. Previous works’ primary objection
to the graze-and-merge collision was its ~2.5-σ inconsistency with
the observed a-e-i distribution of family members3 (and all other
hypotheses were also rejected). By adding the expected mixing
due to Neptune migration, we have shown that the expected
shape of the family is consistent with the observations, turning
this weakness into a strength. As a result, the graze-and-merge
formation hypothesis, augmented with a collision of a proto-
binary, satisfactorily matches all the observational constraints
without invoking improbable events, unlike previously proposed
hypotheses. In addition, our integrations clearly show that the
Haumea family, after formation near its current location, can
survive some forms of Neptune migration. This opens up the
possibility that family formation mechanisms besides our pro-
posed mechanism could conceivably match the known con-
straints on the Haumea family. In the future, the loosened
constraints on the timing of the family formation should be
incorporated into proposed mechanisms.

Family models without Neptune migration already suffered
from the small number of known Haumea family members.
Attempting to match post-migration models to the observed
family would have been computationally challenging and
underconstrained. However, as the Vera C. Rubin Observatory’s
Legacy Survey of Space and Time (LSST) is expected to discover
and characterize ~80 new Haumea family members within the
first ~2 years of the survey, future analyses could potentially
identify properties of the original ejection of family members. For
example, future work could identify a subset of family members
relatively unaffected by Neptune migration that retain the original
planar ejection characteristics.

At present, our results do not provide strong evidence for one
migration scheme over another. In testing, we found that several
different schemes worked well to mix the family, including a
jumping Neptune with moderate eccentricity jumps, a four-planet
model with a period of excited eccentricities due to resonances
between the outer planets, and increased eccentricity with Nep-
tune at its current location. Our integrations are not all appro-
priate for the actual solar system but are varied enough to show
that mixing is not an unusual outcome. With more known family
members and detailed modeling, the shape and size of the Hau-
mea family may provide valuable constraints on models of
Neptune migration.

Future work should also explore the details of various com-
ponents of this hypothesis such as the frequency of proto-binaries
large enough to explain Haumea; geophysical evolution of the
interiors of proto-Haumea binary components and Haumea itself;
formation of Haumea’s moons from ejected debris; expected
family ejection directions generated by binary collision (possibly
caused by KCTF); relative chronology of Haumea’s formation
within the phases of Neptune migration; new hydrodynamics
simulations of relevant graze-and-merge collisions; and compar-
isons to other mantle-stripping collisions. For example, a differ-
entiated proto-Haumea should have had a crust of other volatiles,
which crust appears to be missing from present family members.
Can hydrodynamical models explain what happened to this
crust? Was it volatilized and thus absent never formed into solid
family members? Are these crust pieces much darker and thus
simply harder to find in present surveys?

Despite our simple integrations, which neglected to model
some of the complexities involved in the phase of giant planet
migration, our integrations show, as a proof-of-concept, that
compact families can persist throughout the final migration of
Neptune. Further works should explore the survivability/mixing
efficiency when more realistic conditions are added. Some of
these could include simultaneous migration of the other planets
(Jupiter, Saturn, and Uranus), effects of an inclination jump
during the dynamical instability, differing migration timescales,
differing eccentricity damping timescales, and others.

Another important effect that was not taken into account was
the collisional evolution of the family after formation, both from
family member–family member and family member–interloper
collisions. However, given the shallow size distribution of the
family3,7, there is no evidence for significant collisional grinding
after the creation and mixing of the family. This may be due to
the lack of major collisions (which are quite improbable) or the
low observability of sub-families. Even if evidence for collisional
grinding was present, we believe that it would likely only enhance
the effective mixing. Each collision would create more (sub-)
family members with a spread in a-e-i space, enhancing the
mixing of particles when taken as a whole, although it may lead to
an even more mass-depleted family. One interesting avenue of
research would be to look for sub-families (or pairs) among the
members of the Haumea family to find evidence of any putative
collisional evolution.

Fig. 3 Comparing our integrations to the true family. A comparison
between the posterior probability distribution of κ—the planar
concentration parameter—of our two integrations (in orange and green)
and the κ distribution from PR19 found for the true family (in blue). Marked
with a gray dashed line is the value of κ above which a synthetic family
could be explained by a graze-and-merge collision (σ ≲ 5°). We also mark
in brown the value of κ which the planar family was created with. Only
~3.5% of the posterior distribution of our integrations is consistent with a
graze-and-merge formation, similar to the 1% found for the actually
observed Haumea family. All three posteriors display a large peak near
κ= 10, which is attributable to overfitting. This demonstrates that Neptune
migration can mix a graze-and-merge family into an a-e-i distribution
similar to the observations, though we emphasize that it is not equivalent to
fitting the proposed model to the observational data. Source data for this
figure are provided as a Source data file.
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While the majority of the confirmed family lies within
~150 m s−1, there are two spectrally confirmed family members
which lie further from the family, 1999 OY3 and 2003 SQ317 in
addition to Haumea itself. The previous work5 showed that these
objects could diffuse in nearby MMRs, thereby reducing their Δv
to be well within the family. However, more accurate orbit
determinations, alongside new dynamical integrations, show that
only Haumea is presently affected by MMRs: 1999 OY3 is 0.6%
wide of the 7:4 and 2003 SQ317 is 1.2% wide of the 5:3. While
unexpected in previous hypotheses, these two objects can be
easily explained in the framework of our integrations. In both of
our integrations, at the time of the dynamical instability, many
family members begin diffusing chaotically in eccentricity. This
chaotic diffusion lasts for a short time while Neptune’s eccen-
tricity is still excited. Once the period of diffusion ends, the
eccentricity distribution of the family has broadened significantly,
leaving a fuzzy edge to the family at high eccentricities, especially
near present-day MMRs. The bulk of the synthetic family
members remains between about e= 0.1–0.145, while the edges
of the e-distribution extend to e= 0.08 and 0.18. This naturally
explains the distribution of confirmed family members, which has
a similar morphology. Identifying larger numbers of family
members should reveal this fuzzy edge which may help to con-
firm/constrain the formation mechanism we have proposed.

In the broader context of family finding in the Kuiper belt, our
results may hold a clue as to why other large Kuiper belt families
have yet to be identified. In our integrations, we find that 35–40%
of family members are removed from the family; most of these
removed family members are eventually ejected from the solar
system, helping to keep the compositional signature of Haumea
family members confined to one region in a-e-i space. This
confinement is due to the Haumea family’s (otherwise unrelated)
proximity to the perihelion stability limit (q ~35 astronomical
units [au]), below which Kuiper belt objects (KBOs) quickly
become unstable. If the Haumea family was formed at lower
eccentricity, the effects of Neptune’s migration (and jump) would
cause the family to expand greatly in eccentricity, with far fewer
family members being ejected from the solar system. While the
circumstances of the Haumea family’s formation obviously con-
tribute to its detectability (large, bright family members with
extremely unique surfaces), its location near the perihelion sta-
bility limit also likely plays a role in its early identification. Other
(currently hypothetical) KBO families formed at this time may
have been significantly diluted by Neptune’s migration, rendering
them undetectable.

In summary, we have identified a formation mechanism that
can match all known aspects of the Haumea family. We propose
that Haumea and the family were formed in the aftermath of a
binary collision. This family, due to the conditions of the graze-
and-merge collision, was ejected at low velocity (Δv ~ 150m s−1)
in a planar ejection pattern. This ejection pattern, which is not
found in the observed family members, was subsequently erased
by Neptune’s outward migration. Our integrations outlined here
show that the mixing of a family from Neptune migration is a
common and expected outcome in the final stages of planetary
migration, despite previously held beliefs that Neptune migration
would destroy the family. Even though we found a significant
mixing effect, the family is not excessively eroded or expanded.
We expect that these results and conclusions will significantly
shape any future study of the Haumea family, and may even help
to place constraints on Neptune’s final stages of migration.

Methods
Numerical integrations. In our numerical integrations, the motions of the outer
planets are tracked, along with 250 test particles representing a simulated graze-
and-merge family. The Neptune migration model we use follows Nesvorny26. This

model has Neptune migrating outwards and having a discontinuous jump at ~28.0
au. It can be easily parameterized to create any size jumps in Neptune’s orbital
parameters aN and eN. This allows for easy comparison to previous works, where
testing in a very similar manner was done.

This jump, or more accurately a mild instability, is thought to be required to
create the so-called kernel in the cold classical population26. The jump in these
models is the consequence of a planet–planet scattering event after Neptune has
ejected another ice giant planet out of the solar system, which has been shown to
reliably create a final solar system architecture similar to ours today29. The
existence of such a jump has been supported across a variety of works27,31–33.

To set up these integrations, Jupiter, Saturn, and Uranus are placed on orbits
with semi-major axes and inclinations equal to their current semi-major axes and
inclinations. We place Neptune interior to its current orbit (aN,0= 26.0 au) with
zero inclination. All the outer planets are started with zero eccentricity. In addition
to the outer planets, we place a prototypical graze-and-merge type family into the
integrations as test particles.

Our numerical integrations rely on REBOUND28, using the WHFAST
symplectic integration scheme34. In it, we insert additional forces35 to migrate
Neptune’s semi-major axis and damp its eccentricity on a single e-folding
timescale, τ= 50Myr. The timescale used here is similar to timescales shown to
match the properties of the outer solar system26,27. Neptune was migrated
outwards until aN ~ 28.0 au. We then instantaneously change Neptune’s orbit such
that aN= 28.5 au and eN= 0.05 or 0.1. This brackets the range of Δe that was
found to be suitable for producing the Kuiper Belt kernel. After this change, the
integration was allowed to continue until the total duration was 1 Gyr. In each case,
multiple runs were considered, with each run adjusting the migration amplitude so
that Neptune’s final semi-major axis was within 1% of its current semi-major axis.
This was specifically done to best reproduce the locations of Neptune’s MMRs with
respect to the family. The most promising integrations were extended in a pure
n-body model by 4.5 GYr to show how the family would appear today. These long-
term integrations showed very little additional evolution except for some resonant
diffusion, consistent with previous analyses36,37.

One shortcoming of our integrations was the non-realistic outer planet
eccentricities. Jupiter, Saturn, and Uranus were placed on circular orbits to reduce
the chances of massive dynamical instabilities among the outer planets. When
tested against integrations with realistic eccentricities, the integrations were almost
identical. As Neptune is subject to eccentricity damping throughout the
integrations, the coupling between the eccentricities of Jupiter/ Saturn/Uranus and
Neptune was broken. This allows for the survival of the family through Neptune’s
migration, even during the strong resonance sweeping the family is subjected to.
Furthermore, only Neptune’s eccentricity is important for Kuiper Belt dynamics.
We remind the reader that these integrations are a proof of concept to show that
the Haumea family could have survived Neptune’s migration.

In addition to these integrations with a jumping Neptune, we also completed
several exploratory integrations to determine the dominant mechanism for family
mixing observed in the other integrations. These were not designed to match
existing proposed Neptune migration schemes, unlike our nominal model. We had
three classes of integrations to test this.

First, we completed many integrations where we have Neptune migration but
no jump in eccentricity. Initial conditions of Neptune were the same as above, with
the inclusion of a jump of 0.5 au when Neptune reached ~28.0 au. This determines
whether a jump in the semi-major axis only is responsible for the mixing observed
in our jumping Neptune model.

Secondly, we performed several integrations with a smoothly migrating
Neptune with no jumps in semi-major axis or eccentricity. Allowing us to
determine if smooth migration was key to the mixing.

Lastly, we completed integrations with eccentricity jumps without Neptune
migration. In these integrations, Neptune has its current semi-major axis but was
started with e= 0.1, 0.05, 0.025. This (somewhat) separates the effect of heightened
eccentricity in the immediate aftermath of Neptune’s jump from both the
migration of Neptune and the jump in Neptune’s semi-major axis. Eccentricity
damping was implemented to match Neptune’s current eccentricity of near zero.

Using these additional integrations, we found that the majority of mixing was
caused by increased eccentricity immediately after Neptune’s jump. While the
semi-major axis jump did enhance the mixing when compared to smooth
migration, it was not as clear as the eccentricity-driven mixing.

Synthetic families. In each integration, a simulated graze-and-merge family was
inserted. To facilitate comparison between integrations, the same family was used
in all the integrations. This family was chosen as a representative and likely
example of a graze-and-merge collision that would be relatively difficult to mix.
Using a family generation method, as outlined in Proudfoot and Ragozzine3

(hereafter PR19), we created a family consisting of 250 simulated family members
ejected with a planar concentration parameter corresponding to a vertical disper-
sion from a plane of ~2° and with collision center orbital elements (43.1 au, 0.125,
28.2°). The method described in PR19 takes the collision center orbital elements,
along with a number-size-velocity distribution for ejected family members and
creates a simulated collisional family. The other parameters used to specify the
number–size–velocity distribution of simulated family members are α= 0.2,
ß= 0.1, S= 0.8, k= 1.5, and λ= 1.7; see PR19 for full details.
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Although all of the integrations we show in this work contain the planar prototype
family, many of the exploratory integrations, as well as preliminary runs of our a, e
jump integrations were completed with other realizations of a graze-and-merge
family. Throughout our testing process, while using other graze-and-merge families,
some families were easier to mix than others, but we conclude that a wide variety of
graze-and-merge families are susceptible to mixing through Neptune migration. The
chosen family represents a fairly typical graze-and-merge family, with the planar
ejection direction chosen to create an initially strong a-e-i correlation.

PR19-style testing. To determine whether Neptune migration erased the a-e-i
correlations of a graze-and-merge family, we fit each family using the methods of
PR19. That method uses a Bayesian parameter inference framework to infer orbital
elements of the collision center, the number-size-velocity distribution of the ejec-
tion, and the shape of the ejection field. This is done by creating synthetic families,
characterizing them with multivariate normal distributions, and comparing them
to a random set of 22 family members chosen from our integrations. The synthetic
families are parameterized by 13 parameters (3 parameters describing the planar
shape of the family, 5 parameters for the orbital elements of the collision center,
and 5 parameters describing the number-size-velocity distribution of family
members following Lykawka et al.38. The key parameter that is important to our
analysis is the angular dispersion parameter, κ, which characterizes the isotropy/
planar-ness of the family. Practically everything about these fits was identical to the
method in PR19. As our model is composed entirely of known family members, we
do not include the interloper fraction used in PR19. We use the same priors, a 105

step burn-in, and 105 step sampling which showed excellent convergence. For a
more in-depth treatment of these methods, see PR19.

Δv comparisons. We compare the Δv distributions of the family at the earliest
point in the integration with the Δv distribution at the end of the integration. To do
this, we do not a priori choose the collision orbital elements, as there is significant
uncertainty to the true collision orbital elements of the Haumea family. Instead, we
choose the collision orbital elements by minimizing the sum of the Δv of each
family member, similar to the previous works5. This comparison is shown in Fig. 4,
for the integration. The comparison is extremely similar to our other preliminary
integrations. In both integrations, the Δv distribution is somewhat broadened
throughout the integration, roughly doubling the median Δv of the family, but
keeping most within Δv < 150 m s−1 as is observed.

Data availability
All data used and generated in this work have been permanently stored and backed up on the
authors' local drives and backups. This includes Simulation Archive files containing all details
of our simulations and chain files produced in our PR19-style analysis. While these data are
not stored publicly due to their large sizes, it is available to anyone, without condition, upon
request from the corresponding author. Source data are provided with this paper.

Code availability
REBOUND (and its integrator WHFAST) is publicly available code made available at
https://github.com/hannorein/rebound. All other codes, including plotting codes,
integration codes, and PR19 testing codes, were custom developed for this work. It is
available, without conditions, upon request from the corresponding author.
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ABSTRACT

About 40 transneptunian binaries (TNBs) have fully determined orbits with about 10 others being

solved except for breaking the mirror ambiguity. Despite decades of study almost all TNBs have only

ever been analyzed with a model that assumes perfect Keplerian motion (e.g., two point masses). In

reality, all TNB systems are non-Keplerian due to non-spherical shapes, possible presence of undetected

system components, and/or solar perturbations. In this work, we focus on identifying candidates for

detectable non-Keplerian motion based on sample of 45 well-characterized binaries. We use MultiMoon,

a non-Keplerian Bayesian inference tool, to analyze published relative astrometry allowing for non-

spherical shapes of each TNB system’s primary. We first reproduce the results of previous Keplerian

fitting efforts with MultiMoon, which serves as a comparison for the non-Keplerian fits and confirms

that these fits are not biased by the assumption of a Keplerian orbit. We unambiguously detect

non-Keplerian motion in 8 TNB systems across a range of primary radii, mutual orbit separations,

and system masses. As a demonstration of the usefulness of our results, we perform detailed fits for

(66652) Borasisi-Pabu, revealing a J2 ≈ 0.44, implying Borasisi (and/or Pabu) is a contact binary or

an unresolved compact binary. This work begins the next generation of TNB analyses that go beyond

the point mass assumption to provide unique and valuable information on the physical properties of

TNBs with implications for their formation and evolution.

Keywords: planetary systems

1. INTRODUCTION

Since the discovery and characterization of the mu-

tual binary orbit of the transneptunian object (TNO)

1998 WW31 (Veillet et al. 2002), transneptunian bina-

ries (TNBs) have been recognized as sensitive tracers

of the history of the solar system. Acting as a detailed

Corresponding author: Benjamin Proudfoot

benp175@gmail.com

laboratory that enables mass measurements, TNBs open

the door for remote characterization of TNOs as a whole

(e.g., Grundy et al. 2007; Grundy et al. 2009; Fraser &

Brown 2010; Barr & Schwamb 2016). In addition, the

mutual orbital properties of a binary system provide

insight into the formation and history of that binary

system, as those properties encode information about

the binary’s formation (e.g., Brown & Schaller 2007;

Brown et al. 2010), past tidal evolution (e.g., Porter

& Grundy 2012; Arakawa et al. 2021), collisional his-

tory (e.g., Ragozzine & Brown 2009; Parker & Kavelaars
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2011), and encounters with other bodies (e.g., Campbell

et al. 2022). The statistical ensemble of mutual orbit

properties of TNBs also hold valuable clues about the

conditions of the protoplanetary disk from which TNBs

originally formed and have revealed groundbreaking in-

sights into the dominant formation processes in that disk

(e.g., Nesvornỳ et al. 2010; Grundy et al. 2019; Nesvornỳ

et al. 2019).

While the numerous studies of TNBs have enabled

unprecedented understanding of processes in the outer

solar system, it has become clear that current state-of-

the-art methods are lagging behind the growing observa-

tional baselines of TNBs. These methods, for the most

part, rely on simple Keplerian orbital models, with only

a few exceptions. In recent years, however, many au-

thors have found that the observed relative astrometric

positions of TNBs show statistically significant devia-

tions from plain Keplerian orbits (Salacia-Actaea 3.7σ,

Orcus-Vanth 2.2σ, Grundy et al. (2019); Eris-Dysnomia

6.3σ, Holler et al. (2021)). An analysis of the distribu-

tion of χ2 values of all TNB fits also shows a statistically

significant excess of poor fits. While these deviations

could be the result of unidentified systematic errors in

data collections/measurement, it is also likely that the

deviations are the manifestation of inaccurate models

including non-Keplerian gravitational effects acting in

TNB systems.

Non-Keplerian gravitational effects are any gravita-

tional effect that forces an orbit to deviate from a

pure Keplerian orbit. Generally, non-Keplerian effects

result in slow precession of an orbit’s orientation an-

gles. Precession of the direction of periapse is called

apsidal precession, and precession of the orbit pole is

called nodal precession. While there are many possi-

ble sources of non-Keplerian effects, the most relevant

sources for TNBs are the non-spherical shapes of in-

dividual TNB components, systems with more than 2

components (whether known or unknown), and the ex-

ternal gravitational influence of the Sun (see Ragozzine

et al. (2023) for more details).

In this paper, we will focus on detecting and measur-

ing the strength of non-Keplerian effects attributable to

shape or unknown components, leaving non-Keplerian

effects from solar influences to future study. In Sec-

tion 1.1, we discuss the causes and consequences of non-

Keplerian shape effects. Next, in Section 1.2, we explain

the general process of our non-Keplerian orbit fitting.

In Section 2.2 and Section 2.3, we discuss our methods

for both Keplerian and non-Keplerian orbital fitting ap-

plied herein. In Section 2.1, we detail our TNB sample

and gather publicly available relative astrometric data.

In Section 3, we discuss the results of our Keplerian

orbit fits and reproduce past fitting results. Next, in

Section 4, we present the results of our search for non-

Keplerian effects, discuss the implications of these re-

sults, and identify the most promising targets for future

investigation. Then, in Section 5, we perform a full non-

Keplerian analysis of TNB (66652) Borasisi-Pabu, one of

the most promising cases of non-Keplerian motion in a

TNB, as a proof-of-concept of full non-Keplerian fitting.

Lastly, in Section 6, we discuss our conclusions.

1.1. Non-Keplerian Shape Effects

Keplerian orbital models implicitly assume that the

individual components of a TNB system are point

masses (or equivalently perfect spheres). However, it

is well-documented that the shapes of TNOs can be sig-

nificantly non-spherical (e.g., Sheppard & Jewitt 2004;

Ortiz et al. 2017). Moving beyond point masses, non-

spherical shapes must cause non-Keplerian deviations in

TNB orbits, though the importance of these deviations

relative to present or future observational data has not

yet been previously examined in detail.

Gravitational potentials of non-spherical bodies can

be modeled using a spherical harmonic expansion of the

gravitational potential. Current data warrant explor-

ing the gravitational potential only at second order; by

construction, higher order corrections are less important

and neglected in our analysis. Ragozzine et al. (2023)

provide a detailed discussion of these and other effects

and how they can be modeled which we summarize here.

The second-order gravitational potential, U , of a mass

M at distance r, can be written:

(1)

U(r, θ, φ) = −GM
r

[
1− J2

(
R

r

)2(
3

2
sin2 θ − 1

2

)

+ C22

(
R

r

)2

cos2 θ sin 2φ+O
(
r−3
)
]

where J2 is the second-order zonal gravitational har-

monic and C22 is the second-order sectoral gravitational

harmonic coefficient, θ is the body-fixed latitude-like an-

gle, φ is the body-fixed longitude-like angle (chosen to

eliminate other terms), and R is a reference radius (Yo-

der 1995; Scheeres et al. 2000). J2 is a measure of the

oblateness of the potential and C22 is related to the pro-

lateness, or the ellipticity of the equator. Generally, for

extremely spherical bodies (like the Earth) J2 . 0.001,

extremely oblate bodies (like Haumea) J2 ∼ 0.1, and

contact binaries have J2 ∼ 0.3.

For most TNBs, where the TNBs mutual orbit is much

slower than the rotations of the individual components,

C22 has little effect on the dynamics of the mutual orbit,

as the contribution from C22 averages out. However,
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near spin-orbit resonances, which may be present among

some TNB systems, C22 may not fully average out and

may play a significant role in the dynamics of the system

(Proudfoot & Ragozzine 2021). We consider this to be

a special case not relevant to most TNBs. Since we are

exploring the entire ensemble of TNBs, we focus this

analyses on J2 alone. Implications for this choice are

discussed further in Section 5.

The dynamics of a system with a J2 can be described

by slow apsidal and nodal precession. For a test particle

orbiting around a body with a J2, the apsidal and nodal

secular rates can be written:

ω̇ = − 3nJ2R
2

2a2(1− e2)2

(
5

2
sin2 i− 2

)
(2)

Ω̇ = − 3nJ2R
2

2a2(1− e2)2
cos i (3)

where n is the mean motion, a is the semi-major axis, e

is the eccentricity, and i is the inclination of the orbit rel-

ative to the body’s equator. As discussed in Ragozzine

& Brown (2009), and is clear from Equations 2 and

3, the non-Keplerian motion induced by the gravita-

tional harmonics require knowledge of both the strength

of the gravitational harmonics and the direction of the

spin axis (to determine the appropriate θ and φ val-

ues in Equation 1 or to determine the appropriate incli-

nation in equations 2 and 3). Thus, detection of non-

Keplerian effects allows constraints to be placed on both

TNO shapes and spin poles (assumed to be identical to

the quadrupolar gravitational harmonic pole appropri-

ate for TNOs which are too large to sustain long-term

non-principal axis rotation).

From Equations 1, 2, and 3, it can be seen that the

measurable quantity is J2R
2 (and C22R

2) and not J2
independently. This is extremely similar to the quan-

tity GM , where the gravitational constant and mass

are always paired together. The interpretation of J2R
2

in terms of an object’s shape requires first the choice

of a shape model. For example, assuming a homoge-

neous oblate ellipsoid with semi-axes a = b ≥ c gives
a
c = b

c =
√

5J2R2

c2 + 1. Different shape models can

match the observed J2R
2 even given a specific mass (see,

e.g., Marchis et al. 2005b; Ragozzine et al. 2023) and

the shape model influences the choice of R and thus J2.

Unknown contact and compact binaries can also result

in an apparent J2R
2, as discussed below. Except for the

largest TNOs, J2R
2 is dominated by the overall shape

of the object and not the interior density distribution.

However, the inability to determine a precise shape or

interior composition with J2R
2 should not detract from

the fact that measuring a significant J2R
2 has impor-

tant implications for the object. For example, different

formation modes can result in different J2R
2 values with

catastrophic collisions reaccumulating into nearly spher-

ical objects while high angular momentum formation

processes tending to form more non-spherical shapes.

Of course, the strength of J2R
2 affects long-term spin-

orbit-tidal dynamics and evolution of the TNBs them-

selves (e.g., Correia 2018). The measurement of J2R
2

also provides mostly orthogonal constraints on shape

properties, so that it improves the interpretation of light

curves, occultations, and thermal measurements.

The rotation poles of TNOs have also proved to be

difficult to constrain, although some success has been

seen among the Centaurs (e.g., Tegler et al. 2005; Duf-

fard et al. 2014). Until now, determination of shape

has relied on both light curve and occultation studies.

While light curves are powerful tools for understanding

shape and spin, the shape and spin solutions produced

are non-unique (Harris & Warner 2020). Additionally,

light curve inversion requires observations of the target

at a variety of aspects, which is implausible for most

TNOs due to their centuries-long heliocentric orbital

periods. On the other hand, occultations can directly

observe the shape of a TNO in a projected plane (e.g.,

Elliot et al. 2010; Benedetti-Rossi et al. 2016; Ortiz et al.

2017), placing limits on the full 3-dimensional shape of

a body when combined with a light curve. However,

due to the random timing of the events and difficulty of

observation, occultations cannot yet be used to system-

atically understand the shapes and spins of TNOs at a

population level.

Detection and measurement of non-Keplerian effects

thus opens the door to a deeper understanding of TNB

systems. While Keplerian orbital fitting allows for deter-

mination of mass (and therefore density), non-Keplerian

orbit fitting in theory allows for study of the three di-

mensional shape and spin orientation of the two system

components. It is able to provide unique constraints on

both the shapes of TNB components and their obliq-

uities1 (Ragozzine & Brown 2009; Vachier et al. 2012)

which are sensitive tracers of formation and evolution

(e.g., McKinnon et al. 2020).

1.1.1. Unknown Components

Another area where non-Keplerian analysis has signif-

icant potential for unique insight is in the detection of

unknown components whether in “contact binaries” or

simply closely separated objects (“compact binaries”).

Many channels of evidence suggest that these are com-

1 Throughout this paper, obliquity will refer to the inclination of
the mutual orbit with respect to the primary body’s equator.
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mon in the TNO population, including light curve stud-

ies (Rabinowitz et al. 2019; Thirouin & Sheppard 2018,

2019; Showalter et al. 2021), occultations (Leiva et al.

2020), and imaging from within the TNO population as

enabled by the New Horizons spacecraft (Weaver et al.

2022). Indeed, the only small TNO ever visited by a

spacecraft, Arrokoth, was a contact binary (Stern et al.

2019; McKinnon et al. 2020). Discovering and charac-

terizing contact or tight components in binaries provides

unique insight into the angular momentum and mass

budget of TNBs.

There is a huge range of parameter space where addi-

tional components would be too far away to be seen in

light curves or occultations (&3 primary radii away) but

too close to be resolved in direct imaging (.20 primary

radii away for most TNBs). Non-Keplerian effects, on

the other hand, are highly enhanced in both contact and

unresolved binaries.

Both non-spherical shapes and additional compo-

nents primarily cause orbital precession. Indeed, to

quadrupole order, the gravitational potential of a close-

in, previously undetected satellite is effectively the same

as unusually large gravitational harmonics. This means

that exploration of non-Keplerian effects using a J2
shape model is a good starting approximation for de-

tecting additional components. Detecting anomalously

large values for J2 (e.g., J2 & 1 when assuming a triax-

ial shape model), may indicate that there are additional

undetected system components.

Using the definitions of the gravitational harmonics

from Yoder (1995), we find that the ‘effective’ J2 and

C22 of a close-in satellite would be

J2R
2 =

1

2

q

(1 + q)
2 a

2
s (4)

C22R
2 =

1

4

q

(1 + q)
2 a

2
s (5)

where q = ms/mp, mp and ms are the masses of the

masses of the primary and (unresolved) secondary, re-

spectively, and as is the semi-major axis of the sec-

ondary’s orbit. In this equation, we leave the combi-

nations J2R
2 and C22R

2 since these are the physically

meaningful parameters (see Equation 1). It is possible to

understand these contact/compact binaries as one end

of the continuum of shape modeling that converts the

measurement of J2R
2 into a physical configuration of

mass.

These contact and compact binaries describe one (or

both) of the components of an existing TNB, convert-

ing binaries into hierarchical triples (or quadruples).

These systems, only one of which was previously known

(Lempo; Benecchi et al. 2010), are common outcomes of

gravitational collapse simulations (Nesvornỳ et al. 2010;

Robinson et al. 2020; Nesvornỳ et al. 2021), although

they may also be able to form through capture mecha-

nisms (Brunini & López 2020). Regardless of their ori-

gin, discovering additional Lempo-like systems will aid

in understanding the formation of TNBs.

1.1.2. Expectations for Non-Keplerian Effects

While non-Keplerian fitting does have a variety of

drawbacks and degeneracies (see further discussion in

Ragozzine et al. (2023)), it is another powerful tool for

understanding TNOs at a deeper level. Detecting non-

Keplerian effects may allow for a new suite of unique

measurements leading to a significant improvement in

understanding TNBs, but the fraction of systems with

detectable effects (with current or potentially future

data) has been unknown. Non-Keplerian effects of mul-

tiple moons has been robustly detected in the Haumea

system (Ragozzine & Brown 2009), but no J2 precession

has ever been robustly detected in any TNB system, de-

spite attempts (e.g., Ragozzine & Brown 2009; Gourgeot

et al. 2016).

There is good reason, however, to expect that non-

Keplerian shape effects are common and detectable.

Firstly, aspherical shapes are common among TNOs, as

shown by the results of occultation observations (e.g.,

Elliot et al. 2010; Benedetti-Rossi et al. 2016; Ortiz et al.

2017). These shapes, assuming that TNOs are not all

differentiated, should produce detectable non-Keplerian

effects over the current observational baselines. Sec-

ondly, detection of J2 is common in both main-belt as-

teroids and near-Earth asteroids (e.g., Marchis et al.

2005a,b; Fang et al. 2011, 2012; Vachier et al. 2012;

Beauvalet & Marchis 2014; Marchis et al. 2014). For ex-

ample, Marchis et al. (2005b) unambiguously detected

the J2 of the asteroid (121) Hermione based on the orbit

of its small companion, with observations spanning less

than a single year. While TNBs generally have longer

period orbits than asteroid binaries, several TNBs have

relative astrometric measurements now reaching decade

long timescales. The observational baselines and high

quality data strongly suggest that non-Keplerian effects

would be detectable in at least a few TNBs.

To test the detectability of non-Keplerian effects in

TNBs, we created synthetic relative astrometry for all

TNBs, assuming the primary and secondary were inter-

acting triaxial bodies with realistic shapes. The syn-

thetic astrometry had realistic uncertainties added and

was made to simulate the quantity and quality of real

TNB relative astrometry by using existing datasets as

templates. We then fitted the astrometry with Keple-

rian orbits to find if a Keplerian model provided ade-
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quate fits to the data. In many cases, we found that our

synthetic astrometry was significantly inconsistent with

a simple Keplerian model. We found the inconsisten-

cies were strongest among TNBs with large primaries,

although many near-equal sized binaries also exhibited

inconsistencies. These results imply that non-Keplerian

shape effects should be detectable and relatively com-

mon among TNBs.

If it is indeed true that non-Keplerian effects are com-

mon in TNBs, it also raises questions about the validity

of past results based on Keplerian orbital analyses. In

most scenarios, Keplerian fitting should yield a similar

orbit to a non-Keplerian fit, especially in the parameters

not describing the orbit’s orientation (e.g., total system

mass, semi-major axis, and eccentricity). Some results,

however, depend on the orientation of the orbits (e.g.,

Grundy et al. 2019), which slowly precess over time in

a non-Keplerian framework. The systematic error intro-

duced by this model misspecification needs to be eval-

uated to determine whether past research needs to be

reevaluated.

1.2. Non-Keplerian Orbit Fitting

For all of its benefits, orbit fitting of non-Keplerian

orbits can be a difficult task. While the potential of

triaxial body, given in Equation 1, is relatively sim-

ple and could be integrated without much trouble2, the

actual dynamics of TNBs can be much more compli-

cated. Not only can both a TNB’s primary and sec-

ondary both have aspherical shapes with arbitrary ro-

tation poles, but the gravitational interactions between

the bodies cause a torque on those bodies, forcing pre-

cession of those rotation poles. The torques, which we

call “back torques,” can make the dynamics of a TNB

system much more complicated, especially when the bi-

nary is near-equal mass. Many past studies – both ob-

servational and theoretical – of non-Keplerian motion

in asteroid binaries have neglected the effects of back

torques. While this assumption is valid for very small

secondaries (like many asteroid binaries), TNBs are of-

ten near-equal mass. The complexity involved in TNB

spin-orbit dynamics requires the use of a coupled spin-

orbit integrator, which can simultaneously integrate the

translational and rotational equations of motion.

For this reason, we developed a new spin-orbit inte-

grator, named SPINNY, which is able to self-consistently

model coupled spin-orbit motion of an arbitrary num-

ber of gravitationally interacting triaxial ellipsoids, in-

2 using Equations 2 and 3 to calculate time-dependent orbital pa-
rameters is actually not much more efficient than full calculations
of interacting quadrupoles (Ragozzine et al. 2023)

cluding the effect of back torques on the spinning

bodies. SPINNY makes up the core of MultiMoon, a

package designed for non-Keplerian orbit fitting using

state-of-the-art Bayesian techniques. Both SPINNY and

MultiMoon are described in full detail in Ragozzine

et al. (2023) and are publicly available at https://

github.com/dragozzine/multimoon, though we discuss

the main ideas here. MultiMoon’s advanced statistical

techniques and orbital model, combined with about a

decade worth of relative astrometry for TNBs and ex-

tensive parallel computations, now make it possible to

conduct a systematic survey to search for non-Keplerian

shape effects in TNBs.

Exploration of possible non-Keplerian parameters is

generally a difficult task, requiring at least an order of

magnitude more computational power than a simple Ke-

plerian analysis. As such, the most interesting targets

need to be identified to focus future work. Here, we

perform a broad search for the best targets for more de-

tailed non-Keplerian analyses. We focus our efforts on

identifying TNBs with the most detectable and statisti-

cally significant non-Keplerian effects.

2. METHODS

In this work, for all orbit fitting procedures, we use

MultiMoon. MultiMoon is a Python-based Bayesian or-

bit fitting package specifically designed to complete Ke-

plerian and non-Keplerian orbit fitting of TNBs and

other small solar system binaries (Ragozzine et al. 2023).

For Keplerian orbit fitting, it uses the SpiceyPy (An-

nex et al. 2020), a Python implementation of SPICE

(Acton Jr 1996), to analytically solve the two-body

problem. For non-Keplerian orbits, MultiMoon uses

SPINNY which numerically integrates the coupled spin

and orbit equations of motion for an arbitrary number

of interacting triaxial ellipsoids. These processes pro-

duce the position of the secondary relative to the pri-

mary. These are projected into the plane of the sky

using ephemerides of the TNB system (relative to the

Earth) from JPL Horizons, as queried by astroquery

(Ginsburg et al. 2019). These ephemerides are cor-

rected for light-time variations and other astrometric

aberrations due to Earth’s orbital velocity. Light-travel

time and conversion to ecliptic coordinates is done as

part of the data preparation. For more details, see

Ragozzine et al. (2023) or the MultiMoon code itself at

https://github.com/dragozzine/multimoon. The analy-

sis herein uses a version of MultiMoon equivalent to Ver-

sion 1.0. Since our fitting was completed, MultiMoon

has been updated to more accurately model the spin

dynamics of small secondaries. We have confirmed that
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this small change has no impact on any of the results

presented in this work.

The Bayesian parameter inference at the heart of

MultiMoon is performed by emcee (Foreman-Mackey

et al. 2013, 2019), a Python-based Markov Chain Monte

Carlo (MCMC) ensemble sampler. This allows us to ro-

bustly fit orbits in a Bayesian manner. MultiMoon uses

the same weighted least squares orbit fitting likelihood

function that is ubiquitous in TNB orbit fitting (e.g.

Grundy et al. 2008, 2009; Ragozzine & Brown 2009;

Kiss et al. 2019; Holler et al. 2021, etc.). MultiMoon

differs from past orbit fitters, however, in that it does

not use a downhill optimization technique, but instead

uses ensemble MCMC techniques that are robust to lo-

cal minima. This avoids problems that have occured

when using problematic simple minimization techniques

(Beauvalet & Marchis 2014). Data weights in our like-

lihood functions are equal to the inverse square of the

measurement uncertainty.

Briefly, the outputs from MultiMoon are a posterior

probability distribution of inferred parameters given the

observational data and priors (which are generally flat

and uninformative). Based on the output posteriors,

MultiMoon produces a variety of different output plots,

including both diagnostic plots (e.g., walker trace plots,

likelihood plots, etc.) and publication-ready plots (e.g.,

corner plots, Foreman-Mackey et al. 2016). For more

discussion, see Ragozzine et al., submitted.

2.1. Data

For all orbital fits completed in this paper, we use

publicly available relative astrometric data and orbital

fits catalogued in Will Grundy’s online TNO database3,

providing the relative astrometry and orbital solutions of

45 TNBs with solved or mirror ambiguous orbits. The

list of all the TNBs in our analysis is given in Table

1; note that the meaning of some columns is explained

in more detail below. With both relative astrometry

and orbital solutions in hand, both are converted into

ecliptic coordinates and used in our analysis as described

above. All inputs and outputs from our fits are available

online4.

Although the majority of our sample consists of the

TNBs whose mutual orbits have been previously stud-

ied in the literature, we exclude two systems, (136199)

Eris-Dysnomia and (469514) 2003 QA91. The Eris-

Dysnomia system, whose Keplerian orbit has been ex-

tensively studied in the past (Brown & Schaller 2007;

3 http://www2.lowell.edu/users/grundy/tnbs/status.html, data
retrieved September 26, 2020

4 https://doi.org/10.5281/zenodo.7636946

Holler et al. 2021), is known to be > 6σ inconsistent

with a single Keplerian orbit (Holler et al. 2021). Non-

Keplerian orbit fitting (completed with MultiMoon) is

discussed in Spencer et al., in prep. For 2003 QA91, the

publicly available relative astrometry (which are com-

piled in Grundy et al. 2019) are clearly inconsistent with

the given orbit solution. We believe that a typographi-

cal error is present in the publicly available astrometry.

For these reasons, we exclude these systems from our

analysis.

Most of the relative astrometry we use is derived from

precise images from HST, although significant contri-

butions are made from a variety of other ground-based

observatories. Typical error bars on the astrometry from

HST are less than 10 milliarcseconds, although they

can even be sub-milliarcsecond when observations were

taken with HST’s High Resolution Camera. We also use

many observations from Keck using its adaptive optics

system, which typically give measurements with similar

precision to HST. For some of the wider TNBs, obser-

vations can be obtained with smaller ground-based tele-

scopes like Gemini, Magellan, and the Canada France

Hawaii telescope. Given the lower resolution of these

telescopes, typical uncertainties can be 100s of milliarc-

seconds. To get a sense of the typical precision of the

observations used for our orbit fitting, we list the median

uncertainty of the astrometric measurements in Table 1.

2.2. Keplerian Orbital Fits

As a preliminary step to completing non-Keplerian

fits, we first completed a round of Keplerian fits to

validate our orbit fitting techniques and provide full

Bayesian posteriors for the Keplerian orbits of TNBs.

This allows us to analyze the quality of the Keplerian

fits and provide a baseline for comparison when com-

pleting non-Keplerian fits.

Our Keplerian orbital model has seven parameters, in-

cluding the usual six orbital elements (a, e, i, ω, Ω, and

M) and total system mass (Msys). All angles are ref-

erenced to the J2000 ecliptic plane (unlike many pub-

lications of these TNB orbits which use angles in the

equatorial reference frame). We also consider a model

with constant photocenter-barycenter offests which is

discussed in Section A.

Our Keplerian fits were run with 100 walkers in the

MCMC ensemble, with a 5000 step burn in, pruning of

walkers significantly far away from the best parameter

space (similar to Proudfoot & Ragozzine 2019; Hou et al.

2012), a 1000 step post-pruning burn in, and a 5000 step

sample. We initialized walker positions for all parame-
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Table 1. System Properties of TNBs

Object Primary Rotation Reference Radius Reference Epoch Uncertainty

Period (h) (km) (JD) (arcsec)

(26308) 1998 SM165 8.4 Spencer et al. (2006) 134 Stansberry et al. (2008) 2452700.0 0.001

(42355) Typhon-Echidna 9.67 Duffard et al. (2009) 81 Santos-Sanz et al. (2012) 2454000.0 0.003

(50000) Quaoar-Weywot 8.839 Fornasier et al. (2013) 535 Fornasier et al. (2013) 2454000.0 0.008

(55637) 2002 UX25 14.382 Rousselot et al. (2005) 332.5 Fornasier et al. (2013) 2454000.0 0.002

(58534) Logos-Zoe · · · · · · 41 Grundy et al. (2011) 2452600.0 0.003

(60458) 2000 CM114 · · · · · · 83.5 assumed 2457000.0 0.004

(65489) Ceto-Phorcus 4.43 Dotto et al. (2008) 111.5 Santos-Sanz et al. (2012) 2453880.0 0.003

(66652) Borasisi-Pabu 6.4 Kern (2006) 63 Vilenius et al. (2014) 2451900.0 0.002

(79360) Sila-Nunam 300.2388 Thirouin et al. (2014) 124.5 Vilenius et al. (2014) 2454400.0 0.004

(80806) 2000 CM105 · · · · · · 80 assumed 2457000.0 0.004

(88611) Teharonhiawako-Sawiskera 9.505 Osip et al. (2003) 89 Vilenius et al. (2014) 2452000.0 0.015

(90482) Orcus-Vanth 13.188 Rabinowitz et al. (2006) 458.5 Brown & Butler (2018) 2454000.0 0.001

(119979) 2002 WC19 · · · · · · 169 Lellouch et al. (2013) 2457000.0 0.006

(120347) Salacia-Actaea 6.5 Thirouin et al. (2014) 427 Brown & Butler (2017) 2454300.0 0.005

(123509) 2000 WK183 · · · · · · 58 Grundy et al. (2011) 2454300.0 0.003

(134860) 2000 OJ67 · · · · · · 69 Grundy et al. (2009) 2457000.0 0.003

(148780) Altjira · · · · · · 123 Vilenius et al. (2014) 2454300.0 0.002

(160091) 2000 OL67 · · · · · · 37 assumed 2457000.0 0.011

(160256) 2002 PD149 · · · · · · 93 assumed 2457000.0 0.007

(174567) Varda-Ilmarë 5.91 Thirouin et al. (2014) 370 Vilenius et al. (2014) 2455300.0 0.005

(225088) Gonggong-Xiangliu 44.81 Pál et al. (2016) 767.5 Pál et al. (2016) 2457000.0 0.006

(229762) G!kún{’hòmd́ımà-G!ò’é !hú 11.05 Thirouin et al. (2014) 295 Schindler et al. (2017) 2457000.0 0.004

(275809) 2001 QY297 11.68 Thirouin et al. (2012) 84.5 Vilenius et al. (2014) 2454200.0 0.002

(341520) Mors-Somnus 9.28 Thirouin et al. (2014) 51 Sheppard et al. (2012) 2454300.0 0.030

(364171) 2006 JZ81 · · · · · · 61 Parker et al. (2011) 2453400.0 0.026

(385446) Manwë-Thorondor 11.88 Rabinowitz et al. (2019) 80 Grundy et al. (2014) 2454400.0 0.004

(469705) }Ká,gára-!Hãunu 9.65 Benecchi & Sheppard (2013) 69 Vilenius et al. (2012) 2455600.0 0.005

(508788) 2000 CQ114 · · · · · · 66 assumed 2454100.0 0.003

(508869) 2002 VT130 · · · · · · 125.5 Mommert (2013) 2455900.0 0.002

(524366) 2001 XR254 · · · · · · 85.5 Vilenius et al. (2014) 2454300.0 0.002

(524531) 2002 XH91 · · · · · · 149 assumed 2457000.0 0.005

(525462) 2005 EO304 · · · · · · 152 Parker et al. (2011) 2453400.0 0.042

(612095) 1999 OJ4 · · · · · · 37.5 Grundy et al. (2009) 2454000.0 0.003

(612147) 2000 CF105 · · · · · · 32 Parker et al. (2011) 2454881.0 0.024

(612176) 2000 QL251 · · · · · · 74 Grundy et al. (2009) 2454200.0 0.003

(612239) 2001 QC298 7.78 Thirouin et al. (2014) 117.5 Vilenius et al. (2014) 2452000.0 0.002

(612687) 2003 UN284 · · · · · · 62 Parker et al. (2011) 2452963.8 0.072

1998 WW31 · · · · · · 74 Veillet et al. (2002) 2452300.5 0.006

1999 RT214 · · · · · · 50 assumed 2457000.0 0.005

2001 QW322 · · · · · · 64 Parker et al. (2011) 2452000.0 0.076

2003 QY90 3.4 Kern (2006) 40.5 Grundy et al. (2011) 2453500.0 0.006

2003 TJ58 · · · · · · 32.5 Grundy et al. (2009) 2454300.0 0.003

2004 PB108 · · · · · · 121.5 Grundy et al. (2011) 2454200.0 0.003

2006 BR284 · · · · · · 45 Parker et al. (2011) 2455000.0 0.031

2006 CH69 · · · · · · 50 Parker et al. (2011) 2455000.0 0.034

Note—The list of 45 Trans-Neptunian Binaries which we study with both Keplerian and non-Keplerian models. This includes all TNBs (except two unusual
cases) that had known orbits or mirror-ambiguous orbits. Rotation periods and primary radii used in our non-Keplerian fits (and their references) are also
listed. The epoch of the fit is also listed; this is the time at which the orbital element parameters are set in non-Keplerian fits (which have time-varying
orbital elements). Uncertainty refers to the typical uncertainty in the relative astrometry used to produce orbit fits.
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ters by drawing random, normally-distributed samples

from the orbital solutions listed in the Grundy database,

although we inflated uncertainties to allow for a broader

search of parameter space. For systems with mirror am-

biguous orbits, we ran two different fits to explore both

orbital solutions.

We set uninformative priors for these fits, using uni-

form distributions for each parameter (see Ragozzine et

al. for more details). Similar to other orbit fitting proce-

dures, we compared our model to the relative astrometry

using the χ2 statistic (c.f. Grundy et al. 2019). After

completion of the runs, we checked for convergence of

the MCMC chains based on trace plots and the smooth-

ness of the marginal and joint posterior distributions

of each parameter. In a few cases where we could not

clearly confirm the MCMC chains were converged, we

reran the fits with more burn in and sampling steps,

until we were confident the chains were converged.

2.3. Non-Keplerian Orbital Fits

Using MultiMoon’s non-Keplerian orbit fitter, we com-

pleted non-Keplerian fits to all 45 TNB systems. Al-

though MultiMoon is capable of fitting the gravitational

harmonics of all bodies in TNBs system, for this analy-

sis, we only fit the J2 gravitational harmonic of the sys-

tem’s primary with an assumed size and rotation rate.

This greatly reduces the complexity of the model as only

3 parameters are added (J2 and two spin pole direc-

tion angles) rather than 14 (ellipsoid polar axis length

c, J2, C22, two spin pole direction angles, a spin lon-

gitude angle, and a rotation rate, all for both objects).

Since non-Keplerian effects can break the usual mass

degeneracy in Keplerian fits, we also allow both masses

to float, adding one more parameter. In many TNB

systems, the dominant source of non-Keplerian effects

should come from the J2 of the primary, but even if this

is not the case, using a single J2 is a good approximation

to the modeling the system’s “total” J2, as measured by

the orbital precession. It also provides a way to model

non-Keplerian orbital precession whatever its source, as

discussed above and in Ragozzine et al. (2023). While

neglecting C22 can provide worse fits, this is only the

case when a TNB is near a low-order spin orbit reso-

nance. Given that most TNOs rotate in ∼10s of hours

and TNB orbit periods are &10 days, low-order spin-

orbit resonances among our sample will be extremely

rare. The only known TNB in our sample which is at

spin-orbit resonance is Sila-Nunam. We discuss the con-

sequence of neglecting C22 for the Sila-Nunam system

in Section 4. As our goal is identifying objects with the

most statistically significant non-Keplerian effects, even

if our assumptions do not hold, the improvement in or-

bital fit from the wrong model would still indicate the

need for higher fidelity and more advanced fits.

Given these assumptions, our non-Keplerian orbital

model has 11 free parameters, the six Keplerian orbital

elements at a given epoch, the masses of the individual

system components (M1 and M2), two angles describing

the rotation pole of the primary at epoch (isp and Ωsp,

which are Euler angle representations of the spin pole),

and ln
(
J2R

2
)
. We opt to use the ln of J2R

2 to enable

easier exploration over many orders of magnitude. Ad-

ditionally, we use the combination J2R
2 instead of just

J2 so results can be interpreted with a variety of shape

models.

In our MCMC ensembles, we used 100 walkers run-

ning for 26000 total steps, split between 15000 burn in

steps, pruning of poorly performing walkers, 1000 post-

pruning burn in steps, and 10000 sampling steps. We set

integration tolerance value at 10−10 for all runs. This

was chosen to balance integration quality/accuracy and

computational expense. In all our testing, this tolerance

level was found to be sufficient for our needs.

We initialized walker positions for mass and orbital

elements identically to the Keplerian fits. In addition,

we initialized walker positions for log
(
J2R

2
)

by draw-

ing random samples from a normal distribution centered

at log (10R), where R is the object’s estimated radius,

a rough approximation of typical J2values due to non-

spherical shapes over a large size range. Lastly, we ini-

tialized walker positions for the spin pole direction to

be generally aligned with the orbit, within ∼10-30◦ of

perfectly aligned. For other required MultiMoon inputs

(approximate radius and rotation period), we used val-

ues previously published in the literature (see Section

2.1 for more details). For objects with no known rota-

tion period, we used a default value of 10 hours (similar

to those found in Thirouin et al. 2014). For the few

TNBs that did not have estimated radii published in

the literature, we assumed a value based on an assumed

albedo and the system’s absolute magnitude. Informa-

tion on all TNBs considered in our analysis, along with

the input for approximate radius and rotation period, is

located in Table 1. Our testing indicates that changing

these assumed values does not substantially affect the

results of our fits. Like the Keplerian orbit fits, mirror

ambiguous TNBs had two orbit fits run to explore both

orbital solutions.

Our priors on each parameter were uniform with the

goal of being uninformative, except in a few cases.

Firstly, we enforced a(1 − e) > qmin, where qmin was

chosen to be equal to a factor of a few times the primary

radii. This helped to reduce the chances of unphys-

ical close encounters that were occasionally explored

3.2 Methods 33



TNO Binary Shapes 9

in extreme non-Keplerian integrations. We also force

M2 < M1. This practice reduces the effects of degen-

eracies between mass and J2.

Finally, ln
(
J2R

2
)
< 15 was enforced to limit explo-

ration in J2 space. At large values of J2R
2, some TNB

systems can become unstable, placing this constraint

prevents exploration of these unstable models. While

this may prevent exploration of relevant parameter space

for some systems, we found that this prior appropriately

balances stability and our goal of broad exploration. In

a small number cases, the prior had to be further re-

duced after confirming that large values of J2 caused

unphysical models5. A uniform prior in ln
(
J2R

2
)

is not

meant to signify our actual prior knowledge of the J2
distribution of TNBs, but rather to encourage explo-

ration of this new parameter. We adopt as meaningful

only those fits where the likelihood (calculated based

on χ2 as with Keplerian modeling) of a non-Keplerian

fit strongly prefers a particular value of J2and thus is

relatively independent of the prior.

As our goal of this project was to identify systems

with the most statistically significant non-Keplerian ef-

fects, we did not aim for full convergence of our MCMC

chains. Rather, we focused on achieving the best non-

Keplerian fit possible in a fixed number of model evalua-

tions. While this results in unconverged fits – so that the

full posterior probability distributions are not expected

to be completely accurate – the unconverged chains can

still be informative, especially in light of our goal of

identifying targets for future investigations. In essence,

our runs are set up to determine which TNBs have the

most easily detectable non-Keplerian effects. We refer

to these potentially unconverged fits as “exploratory”

and consider them valuable at the full catalog level of

this analysis.

These fits and their implications were studied individ-

ually in detail by various co-authors as part of Brigham

Young University’s Physics 227 (“Solar System Astron-

omy”) Class Project.

2.4. Non-Keplerian Orbital Fits for Borasisi-Pabu

To show that unconverged fits described above are

able to identify targets worthy for future investigation,

we completed a full non-Keplerian orbit analysis of the

Borasisi-Pabu system, one of the more promising targets

identified in our exploratory fits, as a proof-of-concept.

In this fit, we relaxed several of the assumptions made

in the non-Keplerian exploratory fits, most notably our

assumptions regarding the C22 of the primary. Our non-

5 These unphysical models could sometimes cause MultiMoon to
crash unexpectedly, this has since been fixed.

Keplerian orbital model has 13 parameters, six Keple-

rian orbital elements at epoch, the masses of both sys-

tem components, the direction of the primary’s rota-

tion pole at epoch, the J2R
2 and C22R

2 of the primary,

and the longitude of the primary’s prolate axis at epoch

(ωsp). For Borasisi’s rotation period we used 6.4 hours

(Kern 2006) and a radius of 63 km (Vilenius et al. 2014).

After our analysis was completed, Kecskeméthy et al.

(2023) found a different light curve period for the com-

bined system, we discuss the minor implications of this

in Section 5.

For this full orbit fit, we ran MultiMoon with 980 walk-

ers for 23500 steps, split between 15000 burn in steps,

1000 post-pruning burn in steps, and 7500 sampling

steps. Integration tolerance was set to 10−11 to pro-

duce the best quality of fits possible, with less regard

for optimizing computational expense than the previ-

ous round of fits. Initial walker positions were drawn

based on preliminary orbital fits and the results of our

exploratory fits, but otherwise the fitting process was ef-

fectively identical to that above. We confirmed conver-

gence of the MCMC chain by inspection of trace plots

and marginal and joint posterior distributions of each

parameter.

Our quadrupolar approximation cannot distinguish

between models rotated by 180 degrees (e.g., it cannot

distinguish the North pole from the South pole), result-

ing in a two-fold degeneracy. Since the degeneracy is

fairly well-understood, we decide to fit only the prograde

rotation solution, where the rotation axis is required to

be inclined < 90◦ relative to the binary’s mutual orbit

plane.

2.5. Evaluating Fit Quality

To ensure the quality of all of our fits (both Keplerian

and non-Keplerian), we have thoroughly evaluated each

fit using a variety of statistical techniques. Most simply,

and easily output from MultiMoon is the calculation of

reduced χ2, which is equivalent to the best fit parameter

set’s χ2 per degree of freedom. For almost all of our fits,

reduced χ2 was . 1, indicating good quality fits. For

8 of our Keplerian fits, however, we found statistically

significant cases of elevated reduced χ2. Several of these

systems have been previously identified as inconsistent

with Keplerian orbits (e.g. Grundy et al. 2019). These

systems all had significant, or nearly significant, non-

Keplerian effects detected (see Section 4).

Another way we can analyze the quality of our orbit

fits is to calculate the root-mean-square (RMS) residual

of the fit. For our fits, we find that most of our fits

have RMS residuals . 15 milliarcseonds, indicating an

excellent fit to the data. Compared with the typical un-
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certainties in the astrometry we fit to (see Table 1), we

find that our fits are very robust. A few systems have

much larger RMS residuals, but this is caused by large

uncertainties in the data. As discussed in Section 2.1,

the ultra-wide TNBs tend to have many observations

taken with relatively imprecise ground-based observato-

ries, which can result in large RMS residuals. Combined

RMS residuals (with each dimension added in quadra-

ture) are reported in all tables below.

Like RMS residuals, we also looked at the weighted

RMS residuals. These residuals are essentially in units

of observational error bars (as shown in Table 1). We

find that all of our fits have weighted RMS residuals

< 1.4, with most being < 1. This confirms the quality

of our fits.

We also closely examined the residual plots for each fit

(see Figures 2 and 7 for examples). These plots show the

normalized residuals (residual divided by measurement

uncertainty) and were examined to ensure no system-

atic trends were visible in the residuals (e.g., uncentered

residuals, significantly larger residuals in one dimension,

correlations among subsets of the data taken with differ-

ent facilities, etc.). We found no serious issues with any

of our fits in individual fits, and also found no problems

at the ensemble level. These normalized residuals are

available for both our Keplerian and non-Keplerian fits

publicly available on Zenodo.

Another sign of the quality of our fits is their close

match to orbit fits published in the literature. In Section

3, we show that our orbit fits closely reproduce fits in

the literature. This close agreement is strong evidence

that our orbit fits are of high quality.

3. KEPLERIAN FITS

The results of our Keplerian fits are contained in Ta-

ble A1. It contains information regarding the posterior

distributions of the mass and orbital elements of each

TNB (median values with 1σ confidence intervals). In

addition to values from the marginal (single variable)

posterior distributions (as seen in the table), the full

posterior distribution can be displayed as a corner plot.

As an example, we show the corner plot of the Kep-

lerian posterior for (66652) Borasisi-Pabu in Figure 1

and a residual plot in Fgiure 2. The results for all

45 TNBs (including MCMC chains, diagnostic plots,

statistical information, etc.) are publicly available at

https://doi.org/10.5281/zenodo.7636946.

For all mirror ambiguous TNBs, two orbit solutions

are shown in Table A1, with the exception of 2002

WK183 and 2000 OJ67. For both of these objects, de-

spite attempting two orbit fits for the separate solutions,

the mirror ambiguous solutions are so close together that

the posteriors of each solution significantly overlap. Sep-

arating the two distributions in a statistically rigorous

way is difficult due to the blended nature of the pos-

terior. Note that the emcee algorithm at the heart of

MultiMoon is not optimized for rigorous exploration of

multi-modal posterior distributions. As such, we report

the statistics of the blended distribution and urge cau-

tion when using the orbit fits for these objects.

As a test of MultiMoon’s performance in completing

Keplerian fits, the posterior distributions of the ensem-

ble of fits can be compared to the best fits from the

Grundy database. We calculated the z -score of every

Grundy best fit for every parameter and every object,

using our posterior distribution as the reference distri-

bution. The distributions of these scores for each param-

eter is shown in Figure 3 using kernel density estimates.

The z -score distributions clearly show that the Grundy

best fits are consistent with the MultiMoon posteriors.

Technically, since we are analyzing the same data with

the same model, the agreement should be much better

than drawing parameters from a random distribution.

While not a perfect match, the fact that the vast ma-

jority of parameters are within 1-σ means that any sys-

tematic errors are minimally important compared to the

statistical errors. We note that a similar analysis of an

ensemble of Keplerian TNB orbit fits also found consis-

tency with the Grundy results (Emelyanov & Drozdov

2020), further supporting that these results are robust

to the analysis method.

Likewise, when comparing the Grundy database pa-

rameter uncertainties (which are determined via Monte

Carlo techniques) to the MultiMoon Keplerian poste-

rior distributions, we find excellent agreement. For all

parameters (except argument of periapsis ω and mean

anomalyM), the error bars are similarly sized for all the

TNBs. For ω and M, our model is differently param-

eterized, where the Grundy database uses longitude of

periapse ($) and longitude at epoch (ε). This slightly

different parameterization obscures a like-to-like com-

parison.

For those interested in precise understanding of the

uncertainties in Keplerian fit parameters, our report-

ing of full posteriors provides an improvement to the

state-of-the-art which approximates parameters as hav-

ing a mean value and uncertainty. Posterior samples

are also particularly useful for scheduling of follow-up

observations. Each sample in the chain provides a pre-

dicted position of the binary components at any given

time. Taken together, the ensemble of samples (or a

sufficiently large subset of the ensemble) then provides

a probability distribution for the predicted positions of

the binary components, as further discussed below.
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Figure 1. Corner plot for the Borasisi-Pabu Keplerian orbit fit. Along the tops of the columns are the marginal posterior
distribution for each parameter; in the case of a Gaussian distribution, this can be used to determine the best-fit and uncertainty.
The contour plots show the joint posterior distribution between every pair of parameters. For example, the system-mass semi-
major axis degeneracy is seen in the top left which is a result of measurement of only the orbital period and Newton’s Version
of Kepler’s Third Law. Contours show the 1, 2, and 3σ levels of each joint posterior distribution. The horizontal and vertical
lines show the orbit solution publicly available in the Grundy database. Of particular interest is the strong agreement between
the Grundy solution (horizontal and vertical lines) and the solution derived by MultiMoon. The best fit in the MultiMoon fit
corresponded to a χ2 of ∼21. RMS residuals are 2 milliarcseconds in both longitude and latitude. All angles are relative to the
J2000 ecliptic plane on JD 2451900.0 (2000 December 21 12:00 UT).
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Figure 2. Residual plot for the Borasisi-Pabu Keplerian or-
bit fit. Plotted are the normalized residuals (residual divided
by measurement uncertainty) in longitude (x) and latitude
(y) with color corresponding to observation date. The three
large circles correspond to 1, 2, and 3 σ error contours. The
best fit in the MultiMoon fit corresponded to a χ2 of ∼21.
RMS residuals are 2 milliarcseconds in both longitude and
latitude. The radius of a typical 1σ error contour is ∼2
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Figure 3. Kernel density estimates (KDEs) for the distri-
butions of z -scores of Grundy best fits (when compared to
the MultiMoon posteriors) for each fitted parameter. The
dashed black line shows a normal distribution with a width
of 1 as a comparison. It is clear that for all fitted parameters,
the Grundy best fits are well within our posterior distribu-
tions, with the majority being < 1σ away from our poste-
riors. MultiMoon’s Keplerian fitting algorithm produces es-
sentially identical results to those previously published in the
literature.

The results for the Keplerian model with constant

photocenter-barycenter offsets are discussed in Section

A. We find that the offsets presented are attributable to

overfitting. We also find that they do not significantly

affect the Keplerian results, except for possibly adjust-

ing the eccentricity.

The agreement of our Keplerian outputs with previ-

ously published fits confirms that MultiMoon can effec-

tively fit TNB orbits, despite the different parameteri-

zation and methods used. This validates MultiMoon’s

fitting procedures and techniques, lending confidence in

our non-Keplerian fits presented in Sections 4 and 5.

4. NON-KEPLERIAN FITS

Aligned with our goal of identifying candidates for

future non-Keplerian analysis, we present the non-

Keplerian best fit model for each TNB in Table A2.

The best fits in the table do not have uncertainties

attached to them because our MCMC chains are not

converged. In an MCMC framework, uncertainties are

drawn from the 16th and 84th percentiles of the out-

put chains. Without convergence, the resulting 16th

and 84th percentiles are extremely unreliable estima-

tions of the true uncertainties. Despite this, we still

believe that the best fits are still useful for showing that

non-Keplerian effects are detectable. To evaluate the

detectability of non-Keplerian effects, we can find the

statistical significance of each non-Keplerian fit by cal-

culating the likelihood ratio between the Keplerian and

non-Keplerian fits. The likelihood ratio test can com-

pare the goodness-of-fit of two nested physical models.

In our case, the Keplerian model is a subset of a non-

Keplerian model where J2 = 0. Under the likelihood

ratio test if the null hypothesis (no currently detectable

non-Keplerian effects) is supported by the data, the like-

lihood ratio, LK

LNK
≈ 1, where LK and LNK are the Ke-

plerian and non-Keplerian likelihoods, respectively. If

the null hypothesis can be rejected (non-Keplerian ef-

fects are currently detectable) LK

LNK
� 1.

Traditionally, some threshold is chosen at which the

improvement in fit is deemed significant and the null

hypothesis is formally rejected. However, the fits pre-

sented here are exploratory in nature and may not have

reached the global maximum likelihood, as evidenced

by our results in Section 5. Further analysis would only

strengthen the significance of non-Keplerian results, as

these fits act as an lower limit on the improvement of the

fit. We choose to give special attention to cases where
LK

LNK
< 0.1 which are bolded in Table A2. Inspection of

the posterior distributions (though not necessarily con-

verged) also show that in these systems, J2R
2 = 0 is

excluded at high confidence. The improvement in the
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likelihood is also significant compared to the number of

additional parameters.

We do find that change in RMS residuals between our

Keplerian and non-Keplerian fits are not strongly cor-

related with improvement in fit as measured by LK

LNK
.

Some exploration of possible reasons as to why this

is the case showed that the result is due to heteroge-

neous uncertainties in the data. When instead using

normalized/weighted residuals (as in Figure 2), we see

the expected correlation between change in fit quality

and change in weighted RMS residuals.

The 8 TNBs satisfying this threshold have non-

Keplerian effects that are currently detectable. In this

section, we will first discuss population-level trends iden-

tified in our fits, and then individually discuss the 8

TNBs we identify as prime targets for non-Keplerian

analysis.

In addition to Table A2, we display the ensemble of

non-Keplerian fits in Figure 4 where we plot the best

fit J2 value against the likelihood-ratio statistic. In this

figure, we assume a triaxial shape model for easy com-

parison between our fits and to the literature. From

this we can identify several broad trends among our best

fits. TNBs with large primaries are more likely to have

smaller best fit J2 values than small primaries, in line

with theoretical predictions and observations of small

bodies across the solar system. Another striking trends

is that larger objects are more likely to have significant

non-Keplerian effects, with the three most significant

detections (Salacia, Orcus, and Gonggong) being among

the largest TNBs in our sample (which excludes Pluto,

Eris, Haumea, and Makemake). This is likely because

TNBs with large primaries tend to have shorter orbital

periods (and thus stronger and faster non-Keplerian ef-

fects) in addition to having more high quality data.

Another interesting discovery is a group of objects

with significant non-Keplerian detections at relatively

high J2 (Borasisi, Altjira, 1999 RT214). The high J2
indicated by our exploratory fits potentially hint that

one of the system components may be a contact bi-

nary. While this is an unusual configuration, among

asteroid binaries several primaries have been found with

extreme values for J2, perhaps most notably Kleopatra,

with J2 = 0.765 (Brož et al. 2021). Their prevalence in

our findings, however, may be attributable to selection

bias. Since these systems have large J2 values, their non-

Keplerian effects are far easier to detect, when compared

to objects with similar data quality and quantity, and

observational baseline. As such, these systems may not

be as common as would be suggested by our findings.

Similar to a possible discovery of contact binaries,

our results show three TNBs with unresolved binary-

like J2 values (2005 EO304, Teharonhiawako (“QT297”),

and 2006 BR284), although none of the fits for these

bodies cross our strict significance threshold. As dis-

cussed above, hierarchical triple systems may be sensi-

tive tracers of planetesimal formation in the early so-

lar system, making a discovery of additional hierarchi-

cal triple systems an important goal. In fact, Nesvornỳ

et al. (2021) conclude that Lempo-like triple systems

“should be found in the Kuiper Belt when observations

reach the threshold sensitivity.” More observations of

these bodies, and subsequent orbit reanalysis, are re-

quired to find if these systems can be confirmed as hav-

ing detectable non-Keplerian effects. Preliminary inves-

tigations suggest that these hierarchical triples are not

resolvable with imaging.

Another possible explanation for the large J2 values

found here is that these TNBs are strongly affected

by the Sun’s gravitational influence, with this influence

manifesting as a large measured J2. All three of these

TNBs are ultra-wide binaries, a class of TNBs with ex-

tremely large separation. Ultra-wides are most affected

by the Solar tide due to their extremely long orbital pe-

riods. Future modeling efforts should aim to include the

effects of the Solar tide to more fully model all gravita-

tional dynamics at play.

Our ensemble of exploratory fits is also able to iden-

tify systematic errors which may stem from the use of

Keplerian fits in a variety of past analyses. To do this,

it is most useful to compare our non-Keplerian best fits

with the full Keplerian posteriors discussed in Section

3. Using the same methods as the comparisons to the

Grundy best fits, we compare our fits in Figure 4, using

our Keplerian posteriors as the reference distribution.

As can be seen, our non-Keplerian best fits are some-

what different to our Keplerian posteriors, especially for

ω and Ω. This is expected for non-Keplerian analyses

since the addition of J2 shape effects allows for preces-

sion of these orbital angles. The absolute difference in

these angles (at epoch), which can be several standard

deviations from the Keplerian fit, are usually only a few

degrees.

Notably, the masses, semi-major axes, and eccentrici-

ties found in our non-Keplerian best fits are consistent

with the Keplerian posteriors. This shows that system-

atic errors in orbital orientations can occur when assum-

ing Keplerian orbits, but that masses, semi-major axes,

periods, eccentricities, and inclinations are not signifi-

cantly affected. Thankfully, the large number of analy-

ses that rely on Keplerian fits are unaffected by system-

atic errors from non-Keplerian fits.

4.1. Identified Targets
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Figure 4. Improvements in fit quality by adopting a non-Keplerian model. The best fit J2 presented here is found by
assuming a triaxial shape and dividing our measured J2R

2 by the resulting body’s volumetric radius squared. The ratio LK
LNK

compares the Keplerian models presented in Section 3 to the best exploratory fit presented in this section. If the likelihood
ratio is � 1, the null hypothesis (no detectable non-Keplerian effects) could be rejected, and non-Keplerian effects are indeed
detected. In general, throughout this paper, we adopt a significance threshold of LK

LNK
< 0.1 to indicate significant detections.

We have labeled all of the significant detections of non-Keplerian effects, as well as several systems with almost significant
detections. Asterisks in labels indicate either a prograde (*) or retrograde (**) orbital solution for mirror ambiguous TNBs.
Color corresponds to the radius of the TNB’s primary. We find that many TNBs have a significant detection of non-Keplerian
effects, with many near significant detections as well. We also find a wide range of acceptable J2 values, ranging from oblate
spheroids to unresolved binaries. Future work and observations should focus on confirming the significant detections we find
and getting more observational data to confirm nearly significant detections.

Here, we discuss in turn each of the eight TNBs iden-

tified as having detectable non-Keplerian effects.

4.1.1. (120347) Salacia-Actaea

Salacia-Actaea is one of the largest and most mas-

sive TNBs in our sample. Our fits used 14 individual

observations over a 10 year time span. Detection of

non-Keplerian effects is expected as previous analyses

showed that observations were 3.7σ inconsistent with a

Keplerian orbit (Grundy et al. 2019).

Our analysis had a best fit J2 = 0.0195, which corre-

sponds to a slightly oblate spheroid, but fits with similar

likelihoods (although slightly worse) were different by a

factor of a few. This large range of possible values for

J2 is expected for systems where only apsidal or nodal

precession is detected. In this case, Salacia’s J2 is de-

generate with its obliquity with respect to the mutual

orbit. Since Salacia-Actaea’s mutual orbit is nearly cir-

cular (e = 0.0062+0.0031
−0.0027, Table A1) the non-Keplerian

effects present in the system are likely to be nodal pre-

cession, since apsidal precession is difficult to detect at

low e. Detection of nodal precession implies that Sala-

cia’s rotation pole is misaligned with the binary’s mutual

orbit, but the degree of misalignment is not possible to

determine without further analysis.

Future observations of the Salacia-Actaea system may

be able to detect apsidal precession, allowing for a more

full determination of the system’s properties. Addition-

ally, constraints provided by Salacia’s low amplitude

light curve (Thirouin et al. 2014) and future occulta-

tions may aid in this effort.
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Figure 5. Kernel density estimates in the style of Figure 3.
In this figure, we compare the non-Keplerian best fits found
in our exploratory fits to the Keplerian posteriors presented
in Section 3. We find that significant deviations are present
in the argument of periapsis (ω) and longitude of ascending
node (Ω) when assuming a non-Keplerian model. This is ex-
pected since this model allows for precession of these two an-
gles. The distributions are still centered at zero presumably
because we are comparing the non-Keplerian angles at an
epoch typically near the middle of the observations and be-
cause many systems show insignificant non-Keplerian effects.
Notably, however, the system mass, semi-major axis, eccen-
tricity, and inclination are still consistent with Keplerian fits,
implying that systematic errors due to non-Keplerian effects
are small in most previous analyses.

4.1.2. (90482) Orcus-Vanth

Orcus-Vanth is another large, high mass TNB. Our

fits used 12 individual observations taken over an almost

10 years. Like Salacia-Actaea, past analyses showed

Orcus-Vanth was 2.2σ inconsistent with a Keplerian

orbit (Grundy et al. 2019), making detection of non-

Keplerian effects unsurprising.

Our analysis had a best fit J2 = 0.016, corresponding

to a slightly oblate spheroid. Similar to Salacia-Actaea,

due to Orcus-Vanth’s nearly circular orbit only nodal

precession was detected, introducing large uncertainties

on our J2 and obliquity measurements.

In the future, observations of Orcus-Vanth may help

understand the system better, however, our prelimi-

nary results show that detection of apsidal precession

may be an order of magnitude more difficult than for

Salacia-Actaea. Understanding the shape of Orcus (or

Vanth) will probably require additional multi-chord ob-

servations of stellar occultations, similar to the 2017 oc-

cultation of Vanth (Sickafoose et al. 2019).

4.1.3. (225088) Gonggong-Xiangliu

Gonggong-Xiangliu, the most massive binary in our

sample, is the most surprising target with detection of

non-Keplerian shape effects. Our fits only used 6 indi-

vidual observations over about 8 years. The dearth of

data, especially when compared to other TNBs, is due

to the discovery of the moon in 2016 (Kiss et al. 2017),

although subsequent reanalysis found the moon in 2009

and 2010 HST images. Our detection is only robust

when considering the prograde orbit solution.

Our analysis had a best fit of J2 = 0.084, correspond-

ing to a fairly oblate spheroid. The high J2 we find

is quite unexpected, and may possibly contradict light

curve measurements (Pál et al. 2016). In our analysis,

we believe we have detected both apsidal and nodal pre-

cession, allowing us to place constraints on Gonggong’s

obliquity. Our best fit obliquity is 116.4◦, however, our

fits cannot distinguish between north and south pole.

By folding the obliquities of our best fit solutions (the

best fit and those with similar likelihoods) we find obliq-

uities between 55◦ and 65◦ are favored. The large obliq-

uity is surprising, but the binary’s mutual orbit is also

quite eccentric (e = 0.2852+0.0086
−0.0079), possibly implying

a complicated history of unusual tidal pumping (Kiss

et al. 2019; Arakawa et al. 2021). We note that Gong-

gong’s density has significant uncertainty that can be

resolved when the obliquity of the satellite is clearly de-

tected (Kiss et al. 2019), making Gonggong-Xiangliu an

extremely promising observational target.

Based on the small dataset, another possible explana-

tion for this detection is overfitting by our model. With

small amounts of data, model fitting can become more

susceptible to overfitting. In general, 5 or more obser-

vations are required to fit a Keplerian orbit (Grundy

et al. 2008), so it seems suspicious that we find such

high confidence detections of non-Keplerian effects, es-

pecially with no previously detected deviation from a

Keplerian orbits (like Salacia and Orcus). As such, we

do not place much confidence in this detection and con-

sider the detection potentially spurious.

To better understand Gonggong-Xiangliu’s unex-

pected eccentricity and obliquity, resolve the mirror am-

biguity, and/or understand issues with overfitting, ad-

ditional observations need to be taken of this interest-

ing system. The large difference in brightness between

Gonggong and Xiangliu make these observations diffi-

cult without using the most advanced telescopes (e.g.,

HST, JWST, or possibly Keck).

4.1.4. (66652) Borasisi-Pabu

Borasisi-Pabu, a small near-equal size binary in the

Cold Classical Kuiper belt, was fit using 9 observations

taken over about 8 years. No previous indications of
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poorly fitting Keplerian orbits have been reported in

the literature, but our Keplerian analysis, which was

consistent with past analyses, showed a Keplerian fit

with a reduced χ2 of 1.9, indicating a somewhat poor fit

to the data.

We find a best fit J2 = 0.279, consistent with an

extremely elongated object, possibly similar to a con-

tact binary. We also found an obliquity of ∼50◦ for

Borasisi, after detecting both apsidal and nodal preces-

sion. For Borasisi, the detectability of apsidal precession

was enhanced by the mutual orbit’s large eccentricity

(e = 0.4696+0.0017
−0.0017).

We discuss Borasisi-Pabu in detail in Section 5 and

present fully converged, high quality non-Keplerian fits.

4.1.5. (148780) Altjira

Altjira (and its unnamed secondary), a small equal-

size binary just outside the Cold Classical belt, was fit

with 8 observations taken over about 4 years. No past

analysis indicated poor quality Keplerian fits, but our

Keplerian analysis indicated a marginally bad fit (re-

duced χ2 of 1.4).

Our analysis resulted in a best fit J2 = 0.479, roughly

consistent with a contact binary. The measured J2 may

also be caused by an unresolved system component, pos-

sibly making this a hierarchical triple system. We are

able to constrain Altjira’s obliquity to be between ∼ 30◦

and 60◦ by detecting both apsidal and nodal precession.

With V = 23 mag, little more is known about this

system, with no known light curve or occultation mea-

surements. Any additional constraints on this system

will contribute to understanding the configuration of

this system.

4.1.6. (174567) Varda-Ilmarë

Varda-Ilmarë is a somewhat high mass TNB; how-

ever, unlike the other high mass TNBs with detected

non-Keplerian motion, the primary-to-secondary bright-

ness ratio is far more equal, putting it in a class that

is somewhat intermediate between the low-mass (with

near-equal masses) and high-mass (large primary-to-

secondary mass ratio) TNBs. Our analysis used 12 ob-

servations taken over about 4 years. Previous Keplerian

analyses did not indicate a significant deviation from

Keplerian motion, but our Keplerian analysis showed

that Keplerian orbits were somewhat poor quality fits

for both the prograde and retrograde orbital solutions

at the ∼1σ level. Like with Gonggong-Xiangliu, our

detection of non-Keplerian effects is significant for only

the prograde orbital solution, although the retrograde

solution almost reaches our significance threshold.

Our fits find a best fit J2 = 0.07, consistent with a

significantly flattened body. As with other large TNBs

with near-circular orbits, we have only robustly detected

nodal precession, leaving a degeneracy between J2 and

obliquity..

Varda-Ilmarë is somewhat unique in having a mirror

ambiguous orbit given the large quantity of high-quality

data. This is primarily caused by the system’s orbit

which is viewed nearly face-on. Understanding Varda’s

role as a possible transitional system, may enable better

understanding of the internal structure and composition

of TNOs.

4.1.7. 1999 RT214

1999 RT214, a small near-equal size TNB in the Cold

Classical belt, was fit using 6 observations taken over

about 10 years. Past analysis did not show a signifi-

cant deviation from a Keplerian orbit, but our Keple-

rian analysis indicated an extremely poor fit (reduced

χ2 of 3.2), although with so few data points, such a re-

sult is possible ∼1% of the time. With this amount of

data, a detection of non-Keplerian motion is surprising,

but the long observational baseline allows a fairly robust

detection.

Our best fit analysis for this system gave J2 = 0.436,

corresponding to a contact binary-like shape. Another

possible explanation is that a system component is an

unresolved binary, possibly implying that 1999 RT214 is

a hierarchical triple. A wide range of permissible obliq-

uities are allowed by our exploratory fits, with a range

of ∼ 30−55◦ being most likely. Our fits imply that both

nodal and apsidal precession are visible.

Additional observations are needed to confirm our de-

tection and to further characterize this system. These

will have to be completed by HST, JWST, or large

ground-based observatories since V = 24 mag for the

system. Combined with new observations, high qual-

ity non-Keplerian fits may be able to enable a better

understanding of this system.

4.1.8. (79360) Sila-Nunam

Sila-Nunam, the largest near-equal mass binary in the

Cold Classical belt, was fit using 20 individual observa-

tions taken over 11 years. Uniquely, six of those ob-

servations are mutual events, where one system com-

ponent passes in front of the other, from our view on

Earth, producing a measurable drop in light. No previ-

ous modeling, including our Keplerian fits, hinted that

non-Keplerian effects were detectable in this system,

although previous measurements of Sila-Nunam’s com-

bined light curve showed that one, or both, components

were flattened by ∼12% (Rabinowitz et al. 2014).

Our fits find a best fit J2 = 0.199, consistent with

a considerably flattened body. In this case, since both

components are possibly flattened, it is possible that
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both bodies contribute significantly to the overall sys-

tem’s J2. Roughly speaking, a system where both bod-

ies have a J2 ∼ 0.1 would match our results. Our

exploratory fits cannot confidently determine whether

nodal or apsidal precession (or both) are detected with

high confidence, especially since the geometry of the sys-

tem introduces several degeneracies in the model param-

eters. For example, ω and M had solutions that were

good fits 180◦ away from our best fit. These issues re-

sulted in quality issues in our fits. Future non-Keplerian

fits may be helped by introducing priors or reparame-

terizations which reduce the effects of degeneracy.

In a tidally evolved system where the primary and

secondary are locked in a spin-orbit resonance, like Sila-

Nunam is thought to be, C22 can play a prominant role

in the system’s dynamics (Proudfoot & Ragozzine 2021).

This tidally evolved state is at odds, however, with the

small, but potentially non-zero, eccentricity measured in

a variety of analyses (Grundy et al. 2012; Benecchi et al.

2014), including both our Keplerian and non-Keplerian

fits (e = 0.0158+0.0167
−0.0098). This may be the result of rela-

tively recent excitation which has yet to be damped out,

or may be caused by unusual tidal dynamics.

Another explanation for the improvement in fit is

overfitting. Sila-Nunam is unique in its use of mutual

event data. Using mutual event data to aid in orbit

fitting is unusual, but has been used in previous stud-

ies of this system without issue (Benecchi et al. 2014).

We do, however, acknowledge that this data may in-

troduce unforeseen systematic errors into our analysis,

which may somehow result in better fits with a non-

Keplerian model. Additionally, we found that a Kep-

lerian model was a reasonably adequate fit to the data

(reduced χ2 ≈ 1), calling into question the need for a

more complicated model.

The Sila-Nunam system is a prime target for future

non-Keplerian analysis, especially with more compli-

cated models that include the effects of C22. This future

analysis should also rigorously test if any systematic ef-

fects are introduced by the use of mutual event data and

test whether overfitting may effect any resulting non-

Keplerian fits. Given the mutual events and large set

of photometric data, Sila-Nunam an ideal target for a

thorough orbital analysis.

4.2. Non-Keplerian Fitting of Other TNBs

While the goal of this work is to identify the targets

with the most detectable non-Keplerian shape effects,

and considerable work needs to be done to complete con-

verged, high quality fits for these systems, other TNBs

should not be ignored. Although the current data is

not able to robustly detect non-Keplerian shape effects

in systems not meeting our significance threshold, full

non-Keplerian fits can still be used to place upper lim-

its on the presence of those effects. These upper limits

may, in some cases, provide valuable constraints on the

shapes of TNB components.

To illustrate this, we consider our non-Keplerian fits

to the 2002 UX25 system. While our analysis only shows

a slight improvement with the addition of a J2 and ro-

tation pole, our fits show a rough upper limit on J2 of

∼ 0.05. While this rough estimate of an upper limit can-

not be fully verified without converged non-Keplerian

fits, it requires that 2002 UX25 must have a remark-

ably spherical shape. When combined with its unusu-

ally small density (0.82 ± 0.11 g cm−3, Brown 2013),

2002 UX25 proves to be an unusual object and is pos-

sibly a touchstone for TNO formation (e.g. Bierson &

Nimmo 2019). The low density suggests a significant

porosity (potentially both macroporosity and microp-

orosity) which seems unusual given its large size (>300

km radius), though central pressures are still relatively

small as discussed by Grundy et al. (2019). Additional

formation modeling is needed to explain the presence of

a small (collisionally-formed?) eccentric satellite around

a large nearly-spherical rubble-pile.

4.3. Future Observations

Based on our results, we believe that future obser-

vations should focus on those TNBs with detectable

non-Keplerian effects (those described in the last sec-

tion) and, possibly more importantly, TNBs that are

near our significance threshold. These TNBs show the

most promise for future detections of non-Keplerian ef-

fects and provide the most efficient route for constrain-

ing the shapes of the largest number of objects. As

observational baselines are extended, non-Keplerian ef-

fects become more detectable and uncertainties on the

fits shrink. Observations can also be targeted at cer-

tain times when the uncertainty of the predicted position

is largest, providing the most constraining observations

(see Section 5 for more details).

In addition to high resolution imaging to resolve bi-

nary components, other types of observations, like light

curves or occultations still provide important, orthogo-

nal channels of information on the shapes and spins of

TNBs. The constraints given by these observations are

able to be meaningfully used as additional data sources

in future more complicated models of TNB orbits. For

example, the axial precession of a TNB primary due to

back torques from the secondary, may be detectable in

certain scenarios, which may enable a direct measure-

ment of the primary-secondary mass ratio. Likewise,

precession of the axes of TNO moons may provide in-
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formation about the shapes and rotation poles of those

moons (as suggested by Hastings et al. 2016).

5. BORASISI-PABU

As a proof-of-concept we have performed detailed non-

Keplerian fits to the orbit of Borasisi-Pabu, accounting

for non-Keplerian effects due to both J2 and C22. The

marginal posterior distributions for each parameter are

displayed in Table 2 and joint posterior distributions

are shown as a corner plot in Figure 6. We also show a

residual plot in Figure 7.

Using the framework introduced in Section 4, we can

assess the statistical significance of our non-Keplerian

fit, when compared to the Keplerian fit from Section 3

(see also Table A1 and Figure 1). As before, the Ke-

plerian model we use is a subset of our non-Keplerian

model (where J2 and C22 are 0). Using a likelihood-ratio

test, we find that LK

LNK
= 8.34× 10−3, giving confidence

that the non-Keplerian model is statistically significant.

This likelihood ratio statistic is somewhat smaller than

that found in our exploratory fits (compare with Table

A2). Both Table 2 and Figure 6 show that a Keplerian

orbit (J2, C22 = 0) for the mutual orbit of Borasisi-Pabu

is strongly excluded with a significance > 3σ, again

strongly confirming that a non-Keplerian model is pre-

ferred.

To test how robust these results are to our input val-

ues (rotation period of Borasisi, c-axes of Borasisi and

Pabu, integration tolerance), we also performed many

additional non-Keplerian fits with these values substan-

tially changed. These tests produced posteriors that are

nearly identical to the one presented here, except when

integration tolerance was set to a too high level. These

tests showed that the choices we made for input values

did not affect the fit presented here, and validate the

inputs used in our exploratory fits.

In addition to validating input parameters, we also ran

a series of recovery tests on MultiMoon. These tests used

MultiMoon to fit synthetically generated data (with arti-

ficially added uncertainties) using the best fit solution in

Table 2, allowing us to determine if MultiMoon could re-

cover the input parameters. These tests returned similar

fits to the one presented in this section, showing simi-

lar uncertainties and degeneracies, justifying the use of

MultiMoon given our current data and mitigating the

risk of overfitting for this system.

For most parameters, there is agreement with both

our Keplerian solution and the Grundy best fit, at the

∼1σ level, except for Ω, which shows a strong disagree-

ment with Keplerian fits. This is an expected result

of non-Keplerian fitting as the orbital model now al-

lows for precession of the node. Our posterior shows

J2 = 0.4446+0.1192
−0.0928 implying an extremely non-spherical

shape of Borasisi. The spin pole direction is nearly per-

pendicular to the ecliptic.

Our fits show no preference for a certain value of C22,

as can be seen in Table 2 and the posterior distribution

in Figure 6. The posterior for C22 is purely a reflection

of the prior limiting C22 ≤ 1
2J2R

2. Since C22 is not

detected, the corresponding spin longitude parameter,

ωsp, is unconstrained, with a uniform distribution be-

tween 0-360◦. This is expected since the mutual orbit is

much longer than Borasisi’s rotation period (∼46 days

and ∼20 hours, respectively). In future analyses, exclu-

sion of C22 may be appropriate, when the orbit to spin

period ratio is large. This may reduce the computational

expense of the fitting process.

In addition to constraining Borasisi’s J2, and by proxy,

its shape, we can also place constraints on Borasisi’s

obliquity w.r.t. the mutual binary orbit. Our anal-

ysis shows an obliquity of εsp,orb = 45.04+6.65
−4.66. This

fit is only the prograde obliquity solution, where Bora-

sisi’s rotation pole and the binary’s mutual orbit lie in

the same hemisphere. Another obliquity solution (with

εretrograde = 180◦−εprograde) exists and provides a sim-

ilar fit to the data. Distinguishing between these solu-

tions may be possible with additional relative astrome-

try, depending on how the system’s angular momentum

is partitioned. In a future work, we will explore why two

solutions exist and when they are distinguishable.

Although we do present the individual mass posteri-

ors in Table 2, these are highly degenerate in the current

fits and should not be used individually. Prospects for

breaking the mass degeneracy will be examined in a fu-

ture work.

The match between this full non-Keplerian fit and

our exploratory fits supports our conclusion that the ex-

ploratory fits have identified promising targets for future

non-Keplerian analysis and additional observations.

5.1. Discussion on the inferred J2 of Borasisi

Based on the large value of Borasisi’s J2 from our anal-

ysis, several interpretations of the results are possible.

First, and most simply, Borasisi is extremely flattened,

and probably elongated, with a shape most likely resem-

bling a contact binary. Contact binaries are common

among the TNOs (Thirouin & Sheppard 2018, 2019;

Showalter et al. 2021) and can be part of TNB systems

(Rabinowitz et al. 2019). With current constraints on

the J2, it is difficult to say more about Borasisi’s shape,

but with narrowed uncertainties, detailed shape model-

ing may be able to distinguish between snowman (like
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Figure 6. Corner plot for the Borasisi-Pabu non-Keplerian orbit fit in the style of Figure 1. Horizontal and vertical lines
correspond to the best fit solution in the Grundy database. The best fit in the MultiMoon non-Keplerian fit corresponded to a
χ2 of ∼11.5 (compared to 21 for the Keplerian fit). Instead of individually plotting the primary and secondary masses, which
are completely degenerate, the system mass (Msys) is plotted to better show parameter correlations. Additionally, to allow for
comparison with the literature, we show J2 and C22 rather than J2R

2 and C22R
2, where we take the shape to be a triaxial

ellipsoid with R as the volumetric radius. Of particular interest is the marginal distribution for J2 that clearly shows a high
value of J2 is preferred, with J2 = 0 (equivalent to Keplerian motion) being excluded with a significance > 3σ.
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Table 2. Non-Keplerian Orbit Solution for (66652) Borasisi-Pabu

Parameter Posterior Distribution Best Fit

Fitted parameters

Primary mass (1018 kg) M1 2.293+0.667
−0.416 2.704

Secondary mass (1018 kg) M2 1.159+0.416
−0.668 0.747

Semi-major axis (km) a 4538+13
−13 4535

Eccentricity e 0.4690+0.0018
−0.0018 0.4694

Inclination (◦) i 51.285+1.920
−1.278 50.356

Argument of periapse (◦) ω 139.31+1.03
−1.32 139.57

Longitude of the ascending node (◦) Ω 86.02+1.17
−1.20 85.90

Mean anomaly at epoch (◦) M 336.24+0.98
−0.85 336.00

Primary zonal gravitational harmonic J2 0.4446+0.1192
−0.0928 0.3560

Primary sectoral gravitational harmonic C22 0.1033+0.1149
−0.0735 0.096

Primary rotation axis obliquity (◦) isp 84.85+11.30
−11.71 91.87

Primary rotation axis precession (◦) Ωsp 117.60+15.84
−25.85 98.75

Primary rotation axis longitude (◦) ωsp 184.40+120.10
−126.35 73.24

Derived parameters

System mass (1018 kg) Msys 3.451+0.029
−0.029 3.451

Primary obliquity w.r.t. mutual orbit (◦) εsp,orb 45.04+6.65
−4.66 43.15

Orbit pole longitude (◦) λorb 356.02+1.17
−1.20 355.90

Orbit pole latitude (◦) βorb 38.72+1.28
−1.92 39.64

Primary rotation pole longitude (◦) λrot 27.60+15.84
−25.85 8.75

Primary rotation pole latitude (◦) βrot 5.15+11.71
−11.30 −1.87

Note—All fitted angles are relative to the J2000 ecliptic plane on JD 2451900.0 (2000 December
21 12:00 UT). Assumed c-axes for primary and secondary are 63 km and 54 km, respectively
(Vilenius et al. 2014). We use a rotation period of 6.4 hours (Kern 2006). Our fit presented
here is only to the prograde obliquity solution, another solution with obliquity of ∼ 135◦

also exists. Our fitted parameters J2R2 and C22R2 are presented here as J2 and C22 to
make comparison with the literature easier; in this transformation we take R to be volumetric
radius. As mentioned in the text, we are not able to break the primary-secondary mass
degeneracy, so we urge caution in using our fits for the masses. The best fit in the MultiMoon

non-Keplerian fit corresponded to a χ2 of ∼11.5 (compared to 21 for the Keplerian fit). We

find that using our best fit Keplerian case, for this fit we find LK
LNK

= 8.34× 10−3. RMS

residuals are 2 milliarcseconds in both longitude and latitude.
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Figure 7. Residual plot for the Borasisi-Pabu non-
Keplerian orbit fit in the style of Figure 2. The best fit
in the MultiMoon non-Keplerian fit corresponded to a χ2 of
∼11.5. RMS residuals are 2 milliarcseconds in both longi-
tude and latitude. Error contours here are the same size as
in Figure 2.

Arrokoth) or peanut contact binaries (like Kleopatra)

(as in Marchis et al. 2005b).

Our measurement of Borasisi’s obliquity (∼ 45◦) is

somewhat surprising, as most asteroid binaries have or-

bits fairly well-aligned with the rotation pole of the pri-

mary. TNBs, however, are formed differently and ex-

hibit properties not seen in asteroid binaries. The clos-

est comparison to Borasisi-Pabu is Manwë-Thorondor;

Manwë is possibly a contact binary inclined to its mu-

tual orbit by 27◦ (Rabinowitz et al. 2019). Both are Cold

Classicals. Combined with a similar mutual orbit eccen-

tricity, total system mass, and separation, the Manwë-

Thorondor system is strikingly similar to the Borasisi-

Pabu system. Indeed, if we calculate Manwë’s J2 (based

on the shape model from Rabinowitz et al. (2019)), we

find a value very similar to Borasisi’s. These objects may

be part of a larger population of contact (or compact)

binaries with oblique satellites.

The study of this population of objects should focus

on explaining how these objects formed and evolved over

the history of the solar system. One possible hypothe-

sis is that these systems formed with relatively circu-

lar and coplanar orbits. Then, due to their somewhat

loose separations, close encounters with other TNOs (or

TNBs) may have excited their mutual orbits (similar to

Campbell et al. 2022). Tidal dissipation is unlikely to

be effective at damping eccentricity and inclination in

these systems due to the system’s large separation and

J2 (Porter & Grundy 2012), so any past excitation would

remain visible in their orbits today. Alternatively, these

systems may have formed with eccentric and inclined

orbits. More advanced simulations of TNB formation,

especially of gravitational collapse of pebble clouds, need

to be completed before distinguishing between these (or

other) possibilities.

One shortcoming of our model, that may affect our in-

terpretation, is the assumption that Pabu’s shape does

not contribute to the system dynamics. This is likely an

oversimplification given Pabu’s large relative size. How-

ever, assuming that Borasisi and Pabu have the same

obliquities (w.r.t. the mutual orbit) and shapes, we can

calculate the required J2 for each body to match our

median J2R
2, assuming the volumetric radius ratio of

Borasisi and Pabu is ∼0.8 (Vilenius et al. 2014). We

find that each body would have J2 ∼ 0.3, still a shape

that is consistent with a contact binary (see Figure 9

of Marchis et al. 2005b). In the case where the obliqui-

ties are not aligned, J2 for each object would have to be

even higher. This still implies that at least one system

component must be a contact or compact binary. In the

future, if more data becomes available for the Borasisi-

Pabu system, a more complicated model of the system’s

dynamics including quadrupole gravity for Pabu may be

warranted.

A second possible interpretation of the large J2 value

found in our analysis is that the Borasisi-Pabu sys-

tem hosts another unresolved component. The possi-

ble properties of this unresolved component, assuming

all three components are spheres, can be explored us-

ing Equation 4. In Figure 8, we plot the possible con-

figurations (in terms of mass ratio and separation) of

the unresolved component based on our median J2R
2

and its 1, 2, and 3σ uncertainties. It clearly shows

that a wide range of allowed system configurations ex-

ist. While some are potentially resolvable with HST’s

Wide Field Camera 3 (WFC3), it is unlikely that re-

solvable satellites (with separations of &2000 km) would

be dynamically stable for long times with Pabu (peri-

apse of 2400 km). However, unresolvable near-equal-

mass inner binaries with separations of a few hundred

kilometers are quite possible. We also draw compar-

isons with other known tight binaries 2011 JY31, 2014

WC510, and Lempo-Hiisi, the inner binary in the Lempo

triple system. These three comparisons have a range

of masses, with Lempo being much more massive than

Borasisi-Pabu and 2011 JY31 being much less massive,

but they illustrate that an unresolved system component

is a plausible explanation for the detected non-Keplerian

effects.

Under the unresolved binary interpretation, the obliq-

uity measured in our analysis is a proxy for the inclina-

tion of the unresolved object’s orbit w.r.t. the orbit of
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Figure 8. Constraints on the mass-ratio and separation of a putative unresolved binary in the Borasisi system. The thick black
line shows the mass ratio and separation given by the median value of the inferred J2 implied by equation 4. Colored contours
indicate the 1, 2, and 3σ ranges from the J2 posterior. Gray dashed lines show several separations for reference. Here, we adopt
a radius of 63 km for Borasisi, but this could be smaller, especially at mass ratios close to 1. The separation equivalent to a
single Wide Field Camera 3 (WFC3) pixel on HST is calculated based on Borasisi-Pabu’s typical distance from Earth and the
instrument’s 0.04” px−1 pixel scale. The separation of Pabu’s orbit is shown in Table 2. The black points show other close
binaries known in our solar system. Data for Lempo-Hiisi is from Ragozzine et al. (2023), 2014 WC510 is from Leiva et al.
(2020) and assumes equal densities and albedos, and for 2011 JY31 is from Weaver et al. (2022) and assumes equal masses. The
J2 found in our analysis is consistent with an unresolved binary interpretation, as the separation of the binary would be less
than a single HST pixel across a wide range of mass ratios.

Pabu. An inclination of ∼ 45◦ is above the critical incli-

nation where the Kozai-Lidov mechanism can be active

(icrit ≈ 39.2◦), but if the central components are signif-

icantly aspherical, Kozai-Lidov cycling can be avoided.

The short- and long-term dynamics of triple systems are

extremely interesting and complex, but we leave a full

investigation of them to future work.

Assessing the relative probability of each of our inter-

pretations (contact binary and unresolved component)

is impossible at the 2-quadrupole level. However, ad-

ditional 3-body analysis with MultiMoon may allow us

to infer the orbit of an undetected system component

since it would induce somewhat different non-Keplerian

motion. Additionally, other observations of light curves,

thermal emission, or occultations may enable us to dis-

tinguish between these two interpretations.

Alternatively, our results could be caused by system-

atic errors stemming from the data acquisition, reduc-

tion, or fitting processes. When comparing Figures 2

and 7, it seems that the improvement in orbit fit is due

to enhancing the fit for the last few data points. This

is expected from a true non-Keplerian orbit, as non-

Keplerian deviations grow linearly in time, but could

also indicate unknown systematics. As we are using
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only 9 independent observations, distinguishing between

these possibilities is difficult. We do point out how-

ever, that our non-Keplerian model is able to match the

observations taken extremely well, which would be un-

likely to occur given randomly distributed systematics.

Additionally, our model outputs are physically realistic

and similar to other known binary systems containing a

contact binary (e.g., Manwë). Understanding if system-

atic errors can masquerade as non-Keplerian effects for

the Borasisi-Pabu system will require additional obser-

vations of the system.

After completing all the analysis discussed in this Sec-

tion, a new study of TNO light curve found a different

light curve period for Borasisi of 19.868 ± 0.032 hours

with an amplitude of ∆m = 0.216±0.057 (Kecskeméthy

et al. 2023). However, our testing showed that our re-

sults were robust to different primary rotation periods,

so we do not include this new rotation period in our anal-

ysis. The fairly high amplitude light curve, however, is

generally compatible with our results.

5.2. Potential For Future Observations

Future observations are key to confirming the results

we present here, and will enable us to significantly nar-

row the uncertainties associated with our modeling. Any

additional observations will strengthen the detection of

non-Keplerian effects, and may enable us to break the

degeneracies associated with our modeling. To illustrate

the ability of future observations to improve our orbital

models, in Figure 9 we have plotted the “information

gain” as a result of additional observations at any given

time during the first quarter of 2023, along with the

separation of the binary. We define information gain as

the size of the cloud of projected positions of the sec-

ondary, in units of typical HST observations. This can

be written:

I.G.(t) =

√(
σx,pred(t)

σx,typ

)2

+

(
σy,pred(t)

σy,typ

)2

(6)

where σx,pred, σy,pred are the standard deviations of

the projected positions from a sample of posterior draws

and σx,typ, σy,typ are typical error measurements of

Pabu’s position, based on past HST observations of

Borasisi-Pabu. To calculate this, we have taken 1000

random samples from our MCMC chain and used them

to predict the position of Pabu at a given time. We then

use the ensemble to calculate the information gain.

This is equivalent to calculating the average expected√
χ2 of a new relative astrometric observation given

the current posterior distribution (as listed in Table

2). For an observation with no additional constrain-

ing power, information gained is
√

2. Observations can

be optimized to best shrink uncertainties by scheduling

when information gain is at its maximum. In the case

of Borasisi-Pabu, observations in 2023 can significantly

shrink measurement uncertainties, which is unsurprising

given that Borasisi-Pabu was last observed by HST in

2008. Targeting observations at times of high informa-

tion gain allow for optimization of observing schedules.

In addition, observing when Borasisi and Pabu have the

greatest separation ensures high data quality, further

motivating observations at certain times.

6. CONCLUSIONS

Using a new non-Keplerian Bayesian orbit fitter,

MultiMoon, we have completed a set of Keplerian and

non-Keplerian orbit fits to 45 TNBs. Our Keplerian

orbit fits are in close agreement with those previously

completed in the literature, validating MultiMoon’s or-

bit fitting procedures. Our exploratory non-Keplerian

fits were run with the goal of identifying targets for full

non-Keplerian analysis and possible observational cam-

paigns. Almost 20% (8/45) of TNBs analyzed have de-

tectable non-Keplerian effects altering their orbits, with

many systems with nearly significant detections. The 8

systems we identify for future analysis and observation

are Salacia-Actaea, Orcus-Vanth, Gonggong-Xiangliu,

Borasisi-Pabu, Altjira, Varda-Ilmarë, 1999 RT214, and

Sila-Nunam.

Our analysis is consistent with previous expectations

that large TNOs are nearly spherical. The large TNB

systems with detectable non-Keplerian effects are all

consistent with an oblate spheroidal shape. We find that

small TNBs host extremely aspherical components. Of

the small TNBs with detectable non-Keplerian effects,

almost all are consistent with contact binary shapes,

though we are biased to highly non-spherical objects.

We also identify a possible population of widely sepa-

rated hierarchical triples, although these detections in-

dividually do not quite reach our detection significance

threshold. Our ensemble of exploratory non-Keplerian

fits is consistent with their Keplerian counterparts for

the TNB system’s mass, semi-major axis, eccentricity,

and inclination. This indicates that there are no sys-

tematics introduced by non-Keplerian effects that may

invalidate past Keplerian orbital analyses of TNBs.

As an illustration of how our target list can be used

to inform future non-Keplerian analyses, we have com-

pleted a full non-Keplerian fit to the mutual orbit of

Borasisi-Pabu. Our analysis confirms the finding of our

exploratory fits, finding that non-Keplerian motion is

detectable in the system at the > 3σ level. We find

that, assuming a triaxial shape, Borasisi (and/or Pabu)
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Figure 9. A plot showing the change in “information gained” by a single HST observation (in gray) and separation of Borasisi
and Pabu (in red) in the first quarter of 2023. The information gained by single observations is a statistic which compares
the uncertainty in the projected position of a system’s secondary to the uncertainty of a typical observation (Equation 6).
Information gained clearly shows large variations; observing at times of maximum information gained allows for maximum
leverage over reducing uncertainties. Additionally, avoiding times of close separation can ensure high quality data.

is extremely flattened and elongated, and may be a con-

tact binary. Another interpretation of our results is that

Borasisi (and/or Pabu) may themselves be a compact bi-

nary, making the system a hierarchical triple system like

Lempo.

Future observations of potentially non-Keplerian

TNBs are of high priority since these effects are a unique

probe into TNB shapes and sizes. Many of the systems

we have identified as having currently detectable non-

Keplerian effects have not been observed in more than a

decade allowing significant orbital precession to accumu-

late. High resolution relative astrometry combined with

non-Keplerian models can further confirm our results,

narrow uncertainties, and break degeneracies.
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APPENDIX

A. KEPLERIAN FITS WITH CONSTANT OFFSETS

In addition to regular Keplerian fits, we completed another set of Keplerian fits in which the model allows for a

constant offset between a TNB primary’s center of light (photocenter) and center of mass. When observing TNOs,

photocenter offsets can be caused by three different mechanisms. Firstly, at non-zero phase angles, the photocenter

and center of mass of an object will be slightly misaligned, even for a spherical object, due to the viewing geometry.

This effect is enhanced when objects are aspherical or have drastic albedo features (e.g., Sputnik Planitia on Pluto).

The misalignment, however, even for extremely aspherical shapes and extreme albedo variations will generally only

amount to a small fraction of the object’s overall angular diameter. The angular diameters of the TNB components

in our dataset are .40 milliarcseconds, therefore, constant misalignments between the photocenter and center of mass

of an object will be .5 milliarcseconds for the largest objects in our sample, and much smaller for the majority of

objects. This is comparable to the observational uncertainty of a few milliarcseconds for most objects.

Secondly, previously undetected close-in satellites can also cause photocenter offsets, due to light contamination from

the secondary. For single observations the offset could be sizeable, depending on the mass, density, and albedo of the
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undetected satellite, but given a series of observations, the misalignment from a close-in satellite on a circular orbit

will generally average out to zero. For an eccentric satellite however, the satellite will spend more time near apoapse,

naturally causing an average photocenter-barycenter misalignment. Incomplete sampling of the putative undetected

satellite’s orbit and an eccentric orbit can both cause an average change in the primary’s photocenter.

Third, objects with complex shapes and potentially heterogeneous interiors can have center-of-mass–center-of-figure

offsets. Even neglecting the above effects, this would lead to a center-of-light offset.

A full model of potential center-of-light/center-of-mass/center-of-figure variations for non-spherical shapes under

varying illumination and observation conditions would be highly complex. Most of this complexity would be well

below the detectability threshold. However, to explore these effects we add two parameters to our Keplerian model

that represent a simple constant offset to the modeled astrometry (in ecliptic longitude and latitude). These fits allow

us to consider any potential astrometric offsets produced by aspherical objects (e.g., the center of reflected light from

an object may be offset from the center of mass) or contamination from previously undetected components of the TNB

system (e.g., small moons close to the primary that are unresolvable with current telescopes). These fits were run and

analyzed identically to the normal Keplerian fits.

In our ensemble of Keplerian fits with constant offsets, results were varied. In most cases, the fits, when compared

to the normal Keplerian fits, showed little to no improvement in quality. Despite this, a few objects had large

improvements to the quality of the fits. However, the majority of these large improvements came at the cost of

unrealistically large constant offsets (no significant improvements were obtained with offsets less than 5 mas). While

this may indicate the presence of undetected components in the TNB system, many of the offsets were probably much

too large to be caused by plausible undetected system components (offsets could be as large as ∼90 mas).

The improvement in fit is most likely due to overfitting. Our parametrization will always enable an improvement in

fit by shifting the 2-dimensional residual cloud towards the origin. This is amplified by the small dataset used, with

some TNBs only having 5 observations. This, combined with the physically unrealistic offsets found, convince us that

the use of constant photocenter offsets is not warranted at this time.

Although we discard these fits, some insights can still be learned from examining their results (which are available

upon request). In cases where there is improvement to the quality of the fit over the Keplerian (small or large

improvements), the inclusion of constant offsets generally alters the fitted eccentricity of the TNB’s orbit. In most

cases, the fits with offsets show a small decrease in the fitted eccentricity, although increases can occur. When the

Grundy best fits (without offsets) are compared to the posterior distributions from the constant offset fits (in a similar

way to the data in Figure 3), the z -scores are similarly small for all parameters except eccentricity. This indicates that

even if constant photocenter offsets are present in TNB relative astrometry, results based on the ensemble of TNB

orbits (e.g., the mutual inclination distribution) are unaffected.

The non-detection of any believable constant photocenter offset, is not overly surprising. In reality, photocenter

offsets (from any source) are time-varying. For offsets due to viewing geometry, most of the variation is caused by

the Earth’s orbit around the Sun, with the TNB’s heliocentric orbit making a small contribution. Offsets from albedo

variations and aspherical shapes will vary with the rotational period of the object in question. Future investigations

of photocenter offsets should use a more physically realistic model, which accounts for the phase angle and rotation

phase/rate of the modeled objects. These models may be able to constrain the shapes and albedo variations of TNB

components once sufficiently high resolution data is available.
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ABSTRACT

The dwarf planet Haumea is one of the most compelling transneptunian objects (TNOs) to study,

hosting two small, dynamically interacting satellites, a family of nearby spectrally unique objects, and

a ring system. Haumea itself is extremely oblate due to its 3.9 hour rotation period. Understanding the

orbits of Haumea’s satellites, named Hi’iaka and Namaka, requires detailed modeling of both satellite-

satellite gravitational interactions and satellite interactions with Haumea’s nonspherical gravitational

field (parameterized here as J2). Understanding both of these effects allows for a detailed probe of

the satellites’ masses and Haumea’s J2 and spin pole. Measuring Haumea’s J2 provides information

about Haumea’s interior, possibly determining the extent of past differentation. In an effort to un-

derstand the Haumea system, we have performed detailed non-Keplerian orbit fitting of the Haumea’s

satellites Hi’iska and Namaka using a decade of ultra-precise observations. Our fits strongly detect

Haumea’s J2 and spin pole at ≳ 2.5σ confidence. Degeneracies present in the dynamics prevent us

from precisely measuring Haumea’s J2 with the current data, but future observations should enable

a precise measurement. Our dynamically determined spin pole shows excellent agreement with past

results, illustrating the strength of non-Keplerian orbit fitting. We also explore the spin-orbit dynamics

of Haumea and its satellites, showing that axial precession of Hi’iaka may be detectable over decadal

timescales. Finally, we present an ephemeris of the Haumea system over the coming decade, enabling

high-quality observations of Haumea and its satellites for years to come.

1. INTRODUCTION

Almost all of the largest transneptunian objects

(TNOs) are known to host satellites (e.g. Christy & Har-

rington 1978; Brown et al. 2005, 2006; Brown & Suer

2007; Noll et al. 2007; Parker et al. 2016; Kiss et al.

2017). These satellites are generally small relative to

the system primary, and are thought to have formed by

collisions (Barr & Schwamb 2016; Arakawa et al. 2019).

The current density of the transneptunian region is far

too low to have formed so many satellites by collision

(Campo Bagatin & Benavidez 2012; Abedin et al. 2022),

implying that these systems must not have formed in-

situ. The emerging consensus is that large TNOs formed

in a relatively massive primordial disk exterior to the gi-

ant planets, which was subsequently scattered by Nep-

Corresponding author: Benjamin Proudfoot
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tune’s outwards migration (Nesvorný 2018; Gladman &

Volk 2021). The large TNOs we see today, which are on

excited orbits, are the remnants of this primordial disk.

By understanding the satellites of large TNOs, how they

formed, and how they evolve, we can probe the condi-

tions of the early primordial disk where these systems

formed.

(136108) Haumea (2003 EL61), the third most massive

TNO known, is host to two satellites: Hi’iaka on a ∼50

day orbit and Namaka on a ∼20 day orbit (Brown et al.

2005, 2006). Haumea’s satellites may have formed dur-

ing a collision, which simultaneously spun up Haumea,

created the satellites, and also formed Haumea’s unique,

icy collisional family (Leinhardt et al. 2010; Proudfoot

& Ragozzine 2022), but there remains some disagree-

ment on these circumstances (e.g., Ortiz et al. 2012;

Campo Bagatin et al. 2016; Noviello et al. 2022). De-

spite many proposals, connecting a formation model to

all of the system’s unique characteristics has been diffi-

cult (e.g., Proudfoot & Ragozzine 2019).
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Our understanding of the complex nature of the

Haumea system can be advanced by detailed study

of the satellites’ orbits. Study of the orbits poten-

tially allows for a measurement of the masses of each

component, as the two satellites strongly interact with

each other (Ragozzine & Brown 2009, hereafter RB09).

In addition to satellite-satellite interactions, interac-

tions with Haumea’s nonspherical gravitational poten-

tial from its highly elongated shape (due to rapid rota-

tion). Haumea’s gravitational potential is determined

both by its shape and internal density distribution.

Since Haumea’s shape is fairly well known (due to ob-

servations of a stellar occultation, see Ortiz et al. 2017),

measuring the gravitational harmonics of Haumea may

allow us to constrain its internal density distribution.

The internal density distributions of TNOs are almost

completely unconstrained, although large TNOs are ex-

pected to be differentiated (McKinnon et al. 2008; Dun-

ham et al. 2019).

Haumea, in particular, has evidence for differentia-

tion in the form of the collisional family. Haumea’s

family members are spectroscopically unique showing

strong water ice features and no other major con-

stituents (Souza Feliciano et al., in prep.). In combina-

tion with very high albedoes (Elliot et al. 2010; Vilenius

et al. 2014), it seems like the family members could be

made of pure water ice. This would suggest that the

proto-Haumea was a differentiated “ocean world” and

that Haumea family members are pieces of the water

ice mantle. The implication is that studying present-

day Haumea gives us unique insight into the interiors of

ocean worlds.

Haumea’s gravitational potential is described by a

spherical harmonic expansion. To quadrupole order, the

gravitational field of Haumea, U , with mass, M , at a

distance r can be written as:

(1)

U(r, θ, ϕ) = −GM

r

[
1− J2

(
R

r

)2(
3

2
sin2 θ − 1

2

)

+ C22

(
R

r

)2

cos2 θ sin 2ϕ+O
(
r−3
)
]

where J2 and C22 are the second-order gravitational har-

monic coefficients, θ is the body-fixed latitude angle, ϕ

is the body-fixed longitude angle, and R is an “refer-

ence” radius (Yoder 1995; Scheeres et al. 2000). In this

work, we assume that R is equivalent to volumetric ra-

dius. The coefficients J2 and C22 describe Haumea’s

shape and internal density structure. Taking the shape

found by Ortiz et al. (2017) and assuming a homoge-

neous density, Haumea is expected to have J2 = 0.24

and C22 = 0.05. However, when taking differentia-

tion into account and using the Dunham et al. (2019)

model of Haumea’s interior, these harmonics would be

J2 = 0.16 and C22 = 0.03. While both of these models

are simplified, they serve as a useful guide.

In the original work that determined the orbits

of Haumea’s satellites (RB09), Haumea’s nonspherical

gravitational field was not clearly detected, although

they were able to robustly detect satellite-satellite in-

teractions. Subsequent follow up studies have also been

unsuccessful in detecting the nonspherical field (Gour-

geot et al. 2016). However, with new ultra-precise HST

observations from the past decade, another analysis of

the satellites’ orbits is in order. By leveraging these ob-

servations, as well as new computational techniques, we

present a new, updated set of orbital fits to the Haumea

system. We are able to detect the nonspherical grav-

itational potential of Haumea, constrain the masses of

Haumea’s satellites, and study the spin-orbit evolution

of the system. The paper will proceed as follows. In Sec-

tion 2, we describe the observations used in our analysis.

Then in Section 3, we describe our non-Keplerian orbital

model and fitting procedure. Results of the fitting are

presented in Section 4, and discussed in Section 5. We

then conclude in Section 6 and discuss future work.

2. OBSERVATIONS AND DATA ANALYSIS

The data we use in our orbit fitting comes from a

variety of sources, but can be broadly broken into three

separate groups. The first dataset comes directly from

RB09, which extracted satellite positions from Keck and

HST observations. The second dataset consists of HST

observations from HST Programs 12243 and 13873. The

last dataset is made up of Keck observations from 2020-

2022. For our orbit fitting, we combined the relative

astrometry from each data set and simultaneously fit all

the data. Our compiled data is presented in Table 1.

The published astrometry from RB09 was found to

have a sign error in their listed RA offsets (in their Ta-

ble 1). This error can be seen in their Figure 1 as RA

decreases towards the east, opposite to convention. This

mistake affected their orbital modeling, preventing them

from correctly determining the orbital plane of the sys-

tem, although the rest of their analysis is relatively unaf-

fected. In our analysis, we use the RB09 data, although

we correct the error and use the mirrored RA values.

HST Programs 12243 and 13873 used HST’s Wide

Field Camera 3 (WFC3) to observe the Haumea sys-

tem with a combined 13 orbits of coverage. Program

12243 imaged the system, using 10 consecutive HST or-

bits, in an attempt to observe a Haumea-Namaka mu-

tual event. Program 13873 used 3 single-orbit visits to

measure satellite relative astrometry to better constrain
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orbit models. Both of these programs took ∼30 individ-

ual exposures per orbit, using the F350LP filter to max-

imize signal-to-noise. The images from these programs

were analyzed using the same method used in RB09,

although changes were made to fit the WFC3 data, re-

placing the older cameras used in previous programs.

Keck observations used the laser guide star adap-

tive optics system (LGS AO) (Wizinowich et al. 2006)

with the narrow camera of NIRC2 (https://www2.keck.

hawaii.edu/inst/nirc2). In the 2020 and 2021 observa-

tions, nearby field stars were used for tip-tilt correction,

since they were brighter than Haumea. All Keck ob-

servations were done in the infrared H filter, covering

wavelengths from ∼1.48 to 1.77 µm, with a series of

dithered exposures for sky subtraction and to minimize

the effect of bad pixels.

To extract relative astrometry of the satellites from

the Keck data, we simultaneously fit 2-dimensional

Gaussian PSFs to each object in individual images.

While a Gaussian is a relatively poor approximation for

the NIRC2 PSF, it is still able to measure the center of

each PSF quite accurately. Relative detector positions

were then converted to relative right ascension and dec-

lination assuming a mean plate scale of 9.952 mas/pixel

and an orientation offset of 0.252◦ (Konopacky et al.

2010; Yelda et al. 2010; Service et al. 2016). The me-

dian and standard deviation offsets of individual mea-

surements are used for the astrometric offsets and error

for each night, although we implemented a conservative

noise floor of 10 milliarcseconds to account for unknown

systematics. This method has been extensively used to

extract relative astrometry from Keck NIRC2 images

(e.g. Grundy et al. 2015).

As can be seen in Table 1, both satellites are not al-

ways detected at each epoch either due to lack of angu-

lar resolution when the satellite is close to Haumea or

insufficient exposure time. In principle, non-detections

can be used to help constrain the satellites’ orbits, but

in practice, given the already well-known orbits, they

barely constrain the fits. Hence, during our orbit fitting

process, we do not use non-detections in any way.

3. METHODS

For our orbit fitting, we use MultiMoon, a state-

of-the-art orbit fitter designed for use with TNOs

(Ragozzine et al., submitted). MultiMoon is built

around an n-quadrupole integrator that can simulate

the gravitational interactions of an arbitrary number

of quadrupoles. Internally, it uses emcee (Foreman-

Mackey et al. 2013, 2019), a popular Markov chain

Monte Carlo (MCMC) ensemble sampler, allowing us

to treat the orbit fit as a Bayesian inference problem.

In its simplest form, MultiMoon uses a least squares

method for evaluating the goodness-of-fit of a given or-

bital model, although it can accommodate a more com-

plicated goodness-of-fit metric, which we describe later

in this paper.

In our fits, we only consider the J2 and no other grav-

itational harmonics since it is by far the most dominant

harmonic. The other second order harmonic, C22 which

is related to the prolateness of Haumea, is relevant for

understanding dynamics of orbits around Haumea, but

only within a few times the corotation radius (Proud-

foot & Ragozzine 2021). Even within this range, C22

averages out over many orbits except when close to a

spin-orbit resonance (SOR). Haumea also certainly has

substantial higher-order harmonics (most notably J4),

but their effect is small due to the r−5 distance depen-

dence of the next level of harmonics. As further jus-

tification of this assumption, we can analytically esti-

mate the precession induced by Haumea’s J4, and find

it is only ∼0.1% the strength of J2 precession for Na-

maka, and even smaller for Hi’iaka. Thus we believe

that our simple model of Haumea’s gravitational poten-

tial is sufficient to describe the dynamics taking place in

the Haumea system.

For the orbit fits presented here, we only model the

gravitational harmonics of Haumea, ignoring the (pre-

sumably) nonspherical shapes of Hi’iaka and Namaka,

although we do revisit this assumption later. With this

in mind, our baseline orbit model has 18 free parameters,

including the mass, J2, and 2 spin pole direction angles

of Haumea, as well as the masses and 6 orbital elements

of both Hi’iaka and Namaka. In addition to these 18 free

parameters, our model requires the input of Haumea’s

rotational period, to correctly model any axial preces-

sion which the satellites may cause. Although this value

could, in principle, be a free parameter in the model, it

is known with high precision and has very little influ-

ence on the orbital dynamics of the system. Hence we

opt to use a fixed value of 3.915 hours (Rabinowitz et al.

2006).

To account for possible systematics arising from the

use of a variety of data sets, we have implemented a so-

phisticated likelihood function within MultiMoon. This

likelihood function is adapted from the outlier pruning

methods presented in Hogg et al. (2010). Since we, a pri-

ori, do not describe the systematic errors that may arise

in the fitting process, we use an extremely flexible frame-

work. Our likelihood model is a mixture model that

combines two least-squares terms. The first is a common

least-squares likelihood model, the standard technique
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Table 1. Observed Astrometric Positions of Haumea’s Satellites

Julian Date Date Telescope Camera ∆xN ∆yN σ∆xN
σ∆yN ∆xH ∆yH σ∆xH

σ∆yH

(”) (”) (”) (”) (”) (”) (”) (”)

2453397.162 2005 Jan 26 Keck NIRC2 · · · · · · · · · · · · −0.03506 −0.63055 0.01394 0.01394

2453431.009 2005 Mar 1 Keck NIRC2 −0.00992 0.52801 0.02986 0.02986 −0.29390 −1.00626 0.02291 0.02291

2453433.984 2005 Mar 4 Keck NIRC2 · · · · · · · · · · · · −0.33974 −1.26530 0.01992 0.01992

2453518.816 2005 May 28 Keck NIRC2 · · · · · · · · · · · · 0.06226 0.60575 0.00996 0.00996

2453551.810 2005 Jun 30 Keck NIRC2 0.03988 −0.65739 0.03978 0.03978 0.19727 0.52106 0.00498 0.00996

2453746.525 2006 Jan 11 HST ACS/HRC −0.04134 −0.18746 0.00267 0.00267 0.20637 0.30013 0.00256 0.00256

2453746.554 2006 Jan 11 HST ACS/HRC −0.03867 −0.19174 0.00267 0.00267 0.20832 0.30582 0.00257 0.00257

2454138.287 2007 Feb 6 HST WFPC2 0.02627 −0.57004 0.00702 0.00351 0.21088 0.22019 0.00252 0.00197

2454138.304 2007 Feb 6 HST WFPC2 0.03107 −0.56624 0.00210 0.00782 0.21132 0.22145 0.00095 0.00204

2454138.351 2007 Feb 6 HST WFPC2 0.03009 −0.55811 0.00527 0.00564 0.21515 0.23185 0.00301 0.00206

2454138.368 2007 Feb 6 HST WFPC2 0.03133 −0.56000 0.00482 0.00663 0.21402 0.23314 0.00192 0.00230

2454138.418 2007 Feb 6 HST WFPC2 0.03134 −0.54559 0.00385 0.00376 0.21705 0.24202 0.00103 0.00282

2454138.435 2007 Feb 6 HST WFPC2 0.02791 −0.54794 0.00571 0.00524 0.21449 0.24450 0.00323 0.00254

2454138.484 2007 Feb 6 HST WFPC2 0.02972 −0.53385 0.00797 0.01330 0.21818 0.25301 0.00153 0.00224

2454138.501 2007 Feb 7 HST WFPC2 0.03226 −0.53727 0.00531 0.00400 0.21807 0.25639 0.00310 0.00291

2454138.551 2007 Feb 7 HST WFPC2 0.03429 −0.53079 0.00497 0.00582 0.22173 0.26308 0.00146 0.00230

2454138.567 2007 Feb 7 HST WFPC2 0.03576 −0.52712 0.00270 0.00479 0.21978 0.26791 0.00202 0.00226

2454469.653 2008 Jan 4 HST WFPC2 0.02399 −0.28555 0.00670 0.00831 −0.23786 −1.27383 0.00404 0.00824

2454552.897 2008 Mar 27 Keck NIRC2 · · · · · · · · · · · · −0.19974 −0.10941 0.00930 0.00956

2454556.929 2008 Mar 31 Keck NIRC2 −0.00439 −0.76848 0.01239 0.01280 −0.32988 −0.77111 0.00455 0.00557

2454556.948 2008 Mar 31 Keck NIRC2 −0.01363 −0.76500 0.01976 0.01252 −0.33367 −0.77427 0.00890 0.00753

2454556.964 2008 Mar 31 Keck NIRC2 −0.00576 −0.77375 0.01212 0.01283 −0.33267 −0.77874 0.00676 0.00485

2454557.004 2008 Mar 31 Keck NIRC2 −0.00854 −0.77313 0.01199 0.00897 −0.33543 −0.78372 0.00404 0.00592

2454557.020 2008 Mar 31 Keck NIRC2 −0.00075 −0.76974 0.00907 0.01015 −0.33491 −0.78368 0.00374 0.00473

2454557.039 2008 Mar 31 Keck NIRC2 −0.00988 −0.77084 0.01793 0.01543 −0.33712 −0.78464 0.00740 0.00936

2454557.058 2008 Mar 31 Keck NIRC2 −0.01533 −0.76117 0.00765 0.01571 −0.33549 −0.78692 0.00868 0.00852

2454557.074 2008 Mar 31 Keck NIRC2 −0.00645 −0.76297 0.01639 0.01390 −0.33128 −0.78867 0.01431 0.01411

2454557.091 2008 Mar 31 Keck NIRC2 −0.00708 −0.76986 0.01532 0.00787 −0.33687 −0.79462 0.00803 0.00717

2454593.726 2008 May 7 HST NICMOS −0.00243 −0.75878 0.00576 0.00761 0.18297 1.08994 0.00354 0.00425

2454600.192 2008 May 13 HST WFPC2 0.02325 0.19934 0.00480 0.01161 −0.10847 0.17074 0.00508 0.00427

2454601.990 2008 May 15 HST WFPC2 0.02293 0.50217 0.00618 0.00614 −0.18374 −0.13041 0.00729 0.00504

2454603.788 2008 May 17 HST WFPC2 0.01174 0.59613 0.00366 0.00485 −0.24918 −0.43962 0.00207 0.00574

2454605.788 2008 May 19 HST WFPC2 −0.00006 0.29915 0.00425 0.00613 −0.29818 −0.75412 0.00467 0.00966

2455375.655 2010 Jun 28 HST WFC3 0.00735 0.19620 0.00168 0.00161 · · · · · · · · · · · ·
2455375.661 2010 Jun 28 HST WFC3 · · · · · · · · · · · · 0.26874 1.22502 0.00159 0.00154

2455375.673 2010 Jun 28 HST WFC3 0.00766 0.18829 0.00326 0.00336 · · · · · · · · · · · ·
2455375.719 2010 Jun 28 HST WFC3 0.00729 0.18426 0.00202 0.00778 · · · · · · · · · · · ·
2455375.727 2010 Jun 28 HST WFC3 · · · · · · · · · · · · 0.26632 1.22294 0.00126 0.00164

2455375.737 2010 Jun 28 HST WFC3 0.00612 0.17861 0.00170 0.00252 · · · · · · · · · · · ·
2455375.786 2010 Jun 28 HST WFC3 0.00926 0.16304 0.00144 0.00274 · · · · · · · · · · · ·
2455375.793 2010 Jun 28 HST WFC3 · · · · · · · · · · · · 0.26374 1.22053 0.00138 0.00193

2455375.859 2010 Jun 28 HST WFC3 · · · · · · · · · · · · 0.26187 1.21840 0.00131 0.00182

2455375.928 2010 Jun 28 HST WFC3 · · · · · · · · · · · · 0.25945 1.21625 0.00150 0.00175

2455375.993 2010 Jun 28 HST WFC3 · · · · · · · · · · · · 0.25813 1.21560 0.00137 0.00189

2455376.058 2010 Jun 28 HST WFC3 · · · · · · · · · · · · 0.25598 1.21306 0.00165 0.00136

2456995.589 2014 Dec 4 HST WFC3 −0.04910 −0.34609 0.00200 0.00222 0.17725 1.13669 0.00200 0.00200

2457155.338 2015 May 12 HST WFC3 −0.09964 −0.45547 0.00315 0.00433 −0.44571 −0.69806 0.00454 0.00568

2457203.995 2015 Jun 30 HST WFC3 0.14931 0.69611 0.00200 0.00200 −0.42272 −0.63347 0.00200 0.00200

2458885.090 2020 Feb 5 Keck NIRC2 0.21330 0.29118 0.01000 0.01000 −0.03064 −1.15403 0.01000 0.01000

2459272.041 2021 Feb 26 Keck NIRC2 · · · · · · · · · · · · −0.37255 −1.36839 0.01000 0.01000

2459598.127 2022 Jan 18 Keck NIRC2 · · · · · · · · · · · · −0.13988 0.80436 0.01000 0.01000

Note—The relative right ascension and declination positions of Haumea’s satellites. At some epochs, Hi’iaka or Namaka were not visible in the
images, for a variety of reasons. For these entries, no data is listed and our orbit fits were not constrained by their non-detection. Data from
before 2010 are taken from Ragozzine & Brown (2009), although we correct their sign error in the ∆x columns.
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for orbit fitting. This term is combined with another

least-squares model with an additional error term. The

error term, which we call σsys, is combined with the

measured uncertainties of our observations in quadra-

ture. Also included is a normalization factor (fsys) de-

scribing the fraction of data displaying systematic er-

rors, which also acts as a penalty for exclusion of data.

The entire likelihood function can be written:

(2)L =

N∏

i=1

[(
1− fsys√

2πσ2
i

)
exp

(
− (yi − yi,m)2

2σ2
i

)

+


 fsys√

2π(σ2
i + σ2

sys)


 exp

(
− (yi − yi,m)2

2(σ2
i + σ2

sys)

)]

where yi and σi are the N observations and uncertain-

ties, and yi,m is the model. Technically, yi,m and σi

are vectors where each have two dimensions (∆α cos δ,

∆δ) and there is an implied summation over both of

these dimensions. For brevity, however, we exclude this

summation, although it is implemented in its full form

internally. If there are significant outliers in the data,

this prescription downweights them relative to the typ-

ical least-squares assumptions and thus qualifies as a

“robust” (to outliers) statistical method. In this sense,

it operates similar to an automated sigma-clipping tech-

nique. It also allows for the expansion of systematic un-

certainties when the quoted statistical uncertainties are

too small to explain the scatter in residuals relative to

the model.

The factors (1−fsys) and fsys are critical for normal-

izing the two likelihood models and provide an implicit

prior that penalizes overestimation of systematic effects.

However, when σsys ≪ σi (i.e. there are no systematic

errors present in the data), fsys is not well defined as

both likelihood functions asymptotically approach one

another. To prevent this degeneracy from becoming

problematic, we implement a prior forcing σsys ≥ 1 mil-

liarcsecond. This likelihood model adds an additional

two free parameters to our model (σsys, fsys). However,

instead of fitting σsys, we opt to fit log10 σsys, allowing

the MCMC algorithm to more easily explore a greater

range of values. This “robust” likelihood model has now

been implemented into MultiMoon and is publicly avail-

able on GitHub1. We have extensively validated this

likelihood model using synthetically produced data sets

that have large systematics applied. We find that when

using this model, MultiMoon can recover the original

parameters even when systematic uncertainties of 10s of

milliarcseconds are applied to ∼50% of the data set.

1 github.com/dragozzine/multimoon

During our data fitting process, we found that large

systematics were present when combining both the Keck

and HST data that necessitated the use of this robust

likelihood model. Unfortunately, our model could not

resolve these issues and unusual systematics remained

unaccounted for. To remain as conservative as possible,

we elected to complete an orbit fit using the HST data

only with a standard least-squares likelihood model. We

discuss the drawbacks of the HST+Keck fit further in

Section 4 and 5.

As part of the Bayesian framework MultiMoon uses,

we set priors for all parameters to be uninformative (ex-

cept for σsys as discussed above), allowing the data to

constrain the posterior distribution. However, in our

HST only fit, we set priors on the spin pole direction

of Haumea to prevent walkers from getting stuck in a

lower dimensional subspace. The priors were chosen to

bracket the best region of likelihood space within ∼ 10◦,
as identified in preliminary fits. After the fit was com-

pleted, we confirmed that this prior did not significantly

prevent walkers from exploring favorable parts of likeli-

hood space.

We drew initial walker positions from Gaussian distri-

butions centered near the location of highest likelihood

that was identified in preliminary runs. These prelimi-

nary runs were conducted to broadly search parameter

space and used very broad initial guesses, allowing for

a rigorous search of the 18-dimensional parameter space

(20-dimensional for the HST+Keck fits). Our prelim-

inary fits showed no signs of other likelihood maxima

with acceptable fit quality. Our baseline orbit fits used

960 walkers in the MCMC ensemble, which were run

for 5000 burn-in steps. We then pruned underperform-

ing walkers, replacing them with random linear combi-

nations of highly performing walkers, after which the

ensemble was run for 1000 more burn-in steps. The

ensemble was then run for 20000 steps to sample the

posterior distribution. We confirmed that the result-

ing chains were converged by visual inspection of walker

trace plots and marginal parameter-likelihood plots.

4. RESULTS

When comparing our different orbit fits, we find that

there is strong disagreement between the two datasets

(HST+Keck and HST only). When fitting to the com-

bined dataset, we find that the most recent Keck ob-

servations of the system are at odds with the 2014-2015

HST observations. Using our robust likelihood model

and the combined HST+Keck dataset, we find that our

best fit is ∼10σ inconsistent with the 2014 HST obser-
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Figure 1. A corner plot for the HST only orbit fit to the Haumea system. We include all 18 fitted parameters along with 2
derived parameters. To facilitate easy interpretation, we list J2 rather than J2R

2 by taking the volumetric radius R from the
occultation derived shape model (Ortiz et al. 2017). We also show the inclinations of each satellite with respect to Haumea’s
equator in the last two columns. Along the top of each column is the marginal posterior distribution for each parameter in our
fit. Below the marginal distributions are the 2-dimensional joint posterior distributions for every pair of parameters. Contours
correspond to 1, 2, and 3σ levels. Small black points mark individual samples from our MCMC chains. The best fit parameter
set in our MCMC chains corresponds to a χ2 of 99.1 with 90 degrees of freedom. Of particular note is the strong exclusion of
J2 = 0 in the marginal posterior for Haumea’s J2, alongside strong correlations between J2 and a variety of other parameters.
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Table 2. Non-Keplerian Orbit Solutions for Haumea’s Satellites

Parameter HST only fit HST+Keck fit

Fitted parameters

Mass, Haumea (1018 kg) MP 3952.44+11.09
−11.03 3952.62+9.33

−9.09

Mass, Namaka (1018 kg) MN 1.18+0.25
−0.25 1.1+0.17

−0.18

Semi-major axis, Namaka (km) aN 25506+36
−36 25548+27

−28

Eccentricity, Namaka eN 0.2179+0.0032
−0.0033 0.2137+0.0042

−0.0043

Inclination, Namaka (◦) iN 69.005+0.108
−0.107 69.048+0.103

−0.103

Argument of periapse, Namaka (◦) ωN 118.35+0.39
−0.42 117.82+0.58

−0.60

Longitude of the ascending node, Namaka (◦) ΩN 23.725+0.149
−0.15 23.606+0.162

−0.154

Mean anomaly at epoch, Namaka(◦) MN 185.19+0.69
−0.65 186.32+0.73

−0.70

Mass, Hi’iaka (1018 kg) MH 12.13+3.22
−3.11 6.65+1.67

−1.52

Semi-major axis, Hi’iaka (km) aH 49371+45
−45 49352+37

−35

Eccentricity, Hi’iaka eH 0.0542+0.0012
−0.0012 0.0545+0.0009

−0.0009

Inclination, Hi’iaka (◦) iH 77.394+0.038
−0.038 77.376+0.035

−0.035

Argument of periapse, Hi’iaka (◦) ωH 98.34+2.02
−2.06 99.05+1.48

−1.49

Longitude of the ascending node, Hi’iaka (◦) ΩH 13.11+0.030
−0.031 13.071+0.030

−0.029

Mean anomaly at epoch, Hi’iaka (◦) MH 154.53+2.05
−2.00 153.88+1.48

−1.47

Second zonal gravitational harmonic J2 0.262+0.103
−0.112 0.431+0.046

−0.051

Rotation axis obliquity (◦) isp 76.83+1.03
−0.59 75.32+0.68

−0.59

Rotation axis precession (◦) Ωsp 13.1+0.65
−0.75 13.4+0.57

−0.52

Systematic error fraction fsys · · · 0.122+0.115
−0.065

Systematic error uncertainty log10(σsys/1′′) · · · −2.085+0.169
−0.201

Derived parameters

Inclination w.r.t. Haumea’s equator, Namaka (◦) εN 12.79+1.01
−0.58 11.56+0.70

−0.65

Inclination w.r.t. Haumea’s equator, Hi’iaka (◦) εH 1.01+0.66
−0.47 2.13+0.63

−0.68

Haumea pole right ascension (◦) αp 282.9+0.6
−0.7 283.1+0.5

−0.5

Haumea pole declination (◦) δp −9.7+0.6
−1.0 −8.1+0.6

−0.7

Orbit pole right ascension, Namaka (◦) αN 292.1+0.1
−0.1 292.0+0.1

−0.1

Orbit pole declination, Namaka (◦) δN −0.6+0.1
−0.1 −0.7+0.1

−0.1

Orbit pole right ascension, Hi’iaka (◦) αH 283.00+0.03
−0.03 282.96+0.03

−0.03

Orbit pole declination, Hi’iaka (◦) δH −10.24+0.04
−0.04 −10.23+0.04

−0.04

Note—Reported values represent the median value taken from the posterior distribution, while the stated
uncertainties represent the 16th and 84th percentiles. All fitted angles are relative to the J2000 ecliptic plane
on Haumea-centric JD 2454615.0 (2008 May 28 12:00 UT), chosen to match the epoch used in Ragozzine
& Brown (2009). Assumed c-axis for Haumea is 537 km (Dunham et al. 2019) and spin period is 3.915
hours (Rabinowitz et al. 2006), however, altering these values produces no meaningful change to the fit.
To transform to J2 from only the more physically meaningful J2R2, we use a volumetric radius of 798 km
(Ortiz et al. 2017).
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vation of Namaka. This inconsistency was attributable

to the data rather than the model, as shown by fits both

with and without our robust likelihood model. Our ro-

bust likelihood model parameters indicated that approx-

imately 10% of the data had uncertainties underesti-

mated by ∼10 milliarcseconds. Fits without the robust

likelihood model were extremely similar to those with

it, except the fit quality was much worse. When closely

examined, no obvious problems were seen in the Keck or

HST images, and no difficulties arose during our analysis

of the images. To examine whether our image analysis

techniques were to blame, we attempted to extract as-

trometry from the images with a variety of techniques

(e.g., Gaussian PSF fitting, WFC3 model PSF fitting,

etc.), all of which yielded similar results.

In addition to the internal inconsistency, the HST-

Keck combined fit also produced a measurement for

Haumea’s J2 that was too high to be compatible with

other observations of the Haumea system (see Section

5 for more discussion). In comparison, the HST only

fit showed no such issues. When the orbit fits are com-

pared, very little changes between the models with the

exception of Hi’iaka’s mass, Haumea’s J2, and Haumea’s

spin pole direction. As unknown systematic errors are

affecting our orbit fit, we choose to proceed by elimi-

nating possible sources of these systematic errors. Since

HST’s PSF is extremely stable and has been extensively

cross-calibrated across instruments, we adopt the HST

only orbit fits for the purpose of this work. This choice

results in larger uncertainties within the model, but al-

lows us to be more confident that our results are not

affected by systematics. Although we adopt the HST

only fit, we still discuss the implications of our combined

orbit fit in Section 5, as well as reporting its results in

Table 2.

The results presented here are our most refined orbital

fits. Including our preliminary analysis, exploratory fits,

and fits using different likelihood models, our nominal

orbit model is the result of well over 109 individual likeli-

hood evaluations. We show the HST only orbit model in

it entirety as a corner plot (Foreman-Mackey et al. 2016)

in Figure 1. Each column in the corner plot displays the

marginal posterior distribution for each parameter as a

histogram (at the top) and 2-dimensional joint posterior

distribution as a contour plot. In addition, we display

the marginal posteriors for both fits in Table 2. Both

Figure 1 and Table 2 also contain several derived param-

eters, parameters that are functions of our fitted param-

eters. To display the fit quality, we show the residuals of

the best fit parameter set in Figure 2, alongside 1, 2, and

3 σ error contours. While this best fit parameter set is
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Figure 2. The normalized residuals of the best parameter
set from our HST-only (non-robust) orbit fit. x and y corre-
spond to ecliptic longitude and latitude, which is the primary
coordinate system used in MultiMoon. Hi’iaka residuals are
shown as circles and Namaka with triangles. The color of
each point corresponds to the observation date. The circles
correspond to 1, 2, and 3σ error contours. As reported in
the text, this fit corresponded to a reduced χ2 ∼ 1.10. We
find that although the fit quality is worse than would be de-
sired, the p-value of associated with the χ2 statistic is 0.23,
indicating an acceptable fit.

only one realization of our entire posterior distribution,

it illustrates the overall quality of our fit.

One of the outstanding features of our orbit fit is our

detection of Haumea’s J2. When assuming the shape

model derived from stellar occultation measurements

(Ortiz et al. 2017), we find J2 = 0.262. However, our

orbit fit shows that Haumea’s J2 and Hi’iaka’s mass

are highly degenerate with one another. In Figure 3,

we show, in detail, the degeneracy between these pa-

rameters as a function of reduction in fit quality. It is

clear that a large range of values for these two parame-

ters are acceptable, with nearly no reduction in fit qual-

ity. In our HST+Keck orbit fit, we find that Haumea’s

J2 has much lower uncertainties, but is unexpectedly

high, J2 = 0.431. Although probably attributable to

unidentified systematic errors in our dataset, we will

discuss possible causes/interpretations of this unusual

measurement in Section 5. Our detection of Haumea’s

J2 is significant in both orbit fits. The HST only fit

detects J2 at ∼2.5σ confidence, while the HST+Keck

fit detects it at > 5σ confidence. Alongside our de-

tection and measurement of Haumea’s J2, we also pro-

vide a measurement of Haumea’s rotation pole. We

find that Haumea’s pole (or more precisely, the pole

of Haumea’s gravitational quadrupole) points toward
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Figure 3. The joint Haumea J2–Hi’iaka mass posterior dis-
tribution. Instead of displaying the density of sampled points
as in Figure 1, we show the maximum fit quality (as mea-
sured by reduced χ2) in a small bin. Bins without any sam-
pled points, indicating extremely poor quality fits, were set
to the minimum bin value, although the true value is likely
much worse. We find that the best fit with χ2

ν ∼ 1.1 has a
p-value of 0.23, meaning there is a 23% chance that random
chance would produce a worse fit. A χ2

ν ∼ 1.25 corresponds
to a p-value of 0.05. Dashed red lines show the expected J2

values from different internal density models. The undiffer-
entiated model assumes a homogeneous interior along with
the occultation derived shape model (Ortiz et al. 2017). The
differentiated model is a two layer model proposed by Dun-
ham et al. (2019). The posterior shows that both models are
consistent with the data, although the differentiated model
is slightly disfavored.

(αp, δp) = (282.9+0.6
−0.7,−9.7+0.6

−1.0), very close to the oc-

cultation derived rotation pole (Ortiz et al. 2017).

In our orbit fit, we are able to significantly detect the

masses of both satellites at significance > 3σ. RB09 pre-

viously detected Namaka and Hi’iaka’s masses, but only

with 1.2σ confidence for Namaka. While our fit strongly

detects both, the uncertainty on Hi’iaka’s mass is sub-

stantial due to its degeneracy with Haumea’s J2. Along-

side mass measurements, we are also able to constrain

the satellites’ inclinations with respect to Haumea’s

equator. We find inclinations of 12.8+0.8
−0.6

◦ and 1.0+0.6
−0.5

◦,
for Namaka and Hi’iaka, respectively. We also measure

the satellites’ mutual inclination of 13.2+0.2
−0.2

◦.
Our orbit fits are significantly different from past or-

bit fits (Ragozzine & Brown 2009; Gourgeot et al. 2016).

While this difference is expected since we include more

dynamical effects (e.g. including J2), some important

differences are still present. Most notable is the change

in orbit angles, which stems from RB09’s incorrectly

tabulated astrometry, allowing for close agreement with

the orbit planes found in Gourgeot et al. (2016). We find

a lower eccentricity for Namaka (0.2179+0.0032
−0.0033) com-

pared to RB09 (0.249 ± 0.015 using the same epoch),

also presumably due to their incorrect astrometry. An-

other notable difference is the change in Hi’iaka’s mass

(12.13+3.22
−3.11 × 1018 kg) when compared to RB09 (17.9±

1.1×1018 kg), due to our inclusion of Haumea’s J2. Our

preliminary fits showed that our orbit model, when eval-

uated with a small J2 approximately reproduces RB09’s

measurement of Hi’iaka’s mass.

When compared to the orbit model presented in Gour-

geot et al. (2016), we find quite large differences in or-

bital parameters especially in the fit for Namaka’s orbit.

This is unsurprising since their orbit model was a pure

Keplerian orbit fit, neglecting both Haumea’s J2 and

Hi’iaka’s gravitational force. Their analysis claimed that

there was no signature of non-Keplerian effects caused

by Haumea’s J2 in the system, although they use a much

shorter span of data than our analysis. We find that

non-Keplerian effects from both satellite-satellite inter-

actions and Haumea’s J2 are strongly detected, however

it remains uncertain how strong each effect is.

5. DISCUSSION

5.1. Haumea’s Large J2

Assuming a homogeneous density structure and using

the equations found in Yoder (1995), the occultation de-

rived shape implies a J2 of 0.24 (Ortiz et al. 2017). Al-

lowing for differentiation decreases J2 significantly. The

model for a two-layer differentiated Haumea presented

in Dunham et al. (2019), gives an overall J2 of ∼0.16.

Our model fitting to all available data (HST+Keck) is

3σ inconsistent with both of these models. However, the

fit with only HST data is consistent with both, encour-

aging us to explore possible reasons Haumea’s J2 may

be higher.

One possible reason could be the gravitational contri-

butions from Haumea’s ring. Assuming a circular ring,

the following expression can be derived for the J2 con-

tribution of a ring:

J2R
2 =

1

2

Mr

MP
r2 (3)

where Mr and MP are the masses of the ring and

Haumea, respectively, and r is the radius of the ring.

For the ring to contribute ∼1% of the measured J2R
2 of

our HST only fit, the ring would have to be of order 1018

kg, about the mass of Namaka, given the known ring

radius of 2287 km. For it to be the cause of Haumea’s

unexpectedly high J2, the ring would need to be two

orders of magnitude more massive, equivalent to tens of
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Hi’iaka masses. While no mass constraints on the ring

are found in the literature, this value is absurdly high.

Hence, the ring is unlikely to contribute significantly to

our measured J2. There is a distinct possibility that

more rings may be detected in future occultations (e.g.

Pereira et al. 2023), but even when combined, a ring sys-

tem is unlikely to contain enough mass to substantially

contribute to Haumea’s J2.

Another potential source is an undetected satellite

within Namaka’s orbit. Averaged over an orbit, the pu-

tative inner satellite would act similar to a solid ring of

material. Hence, using Equation 3 above to calculate the

J2 of a putative inner satelite orbiting at 10000 km, we

find that an inner satellite with a mass near Namaka’s

mass could significantly contribute to Haumea’s mea-

sured J2. Unfortunately, Burkhart et al. (2016) signifi-

cantly ruled out satellites more than 60 km in diameter

closer than 10000 km by using a nonlinear shift-and-

stack image analysis technique. This diameter implies a

mass approximately one-tenth of Namaka’s mass, which

would scarcely contribute to the overall J2. Given this,

we believe it is unlikely that our results could be caused

by an unknown inner satellite. Likewise, undiscovered

satellites external to Hi’iaka’s orbit would not produce

the observed signature.

An alternative reason could be an extreme mass

anomaly on Haumea’s surface, either positive or neg-

ative, which would cause Haumea’s J2 to be larger

than expected. Unfortunately, the mass surplus (or

deficit) would have to be substantial, of order ∼10% of

Haumea’s total mass. Maintaining a mass anomaly of

that magnitude would require Haumea to have implau-

sibly high material strength. Using the method devel-

oped by Johnson & McGetchin (1973), we optimistically

estimate that Haumea may support a maximum topo-

graphic feature of ∼10 km, amounting to far less than

the ∼100 km required to produce an unusually high J2.

Likewise, Haumea could have an unusual interior den-

sity distribution. If Haumea formed in the aftermath of

a large collision, it may have an unusually shaped core

left over as a remnant of this impact. Alternatively, its

core could be offset relative to its external figure, poten-

tially explaining Haumea’s “Dark Red Spot” (Lacerda

2009). Assuming Haumea’s core is triaxial and adopt-

ing the external figure of Haumea as measured by stellar

occultation, we can calculate the J2 of Haumea with an

arbitrary triaxial core shape with an offset. We find

that for any realistic core shape or offset, Haumea’s J2
can not increase by more than 50%, still well below the

constraint provided by the HST+Keck fit. In any case,

the extreme version of these hypotheses are unlikely to

be geophysically viable as they ignore fluid-like relax-

ation of Haumea’s core and mantle. We believe that an

unusual interior is unlikely the cause of our results.

Due to the implausibility of all of these solutions, we

conclude that our result is due to factors dependent

on our modeling techniques or data. One possible ex-

planation is higher order non-Keplerian dynamics tak-

ing place within the system. Since our model only in-

cludes Haumea’s J2, other gravitational harmonics may

be needed to fully model the system. To investigate

the effect of C22, we ran a MultiMoon fit that included

Haumea’s C22 potential. This fit gave nearly identical

results and found no constraint on C22, indicating that

the orbital dynamics of the system are not strongly cou-

pled to C22. Indeed, previous work exploring the effects

of C22 found that it is only relevant when Porb ∼ Pspin,

or near a low order SOR (Proudfoot & Ragozzine 2021).

Beyond quadrupole dynamics, fourth-order, or hexade-

capole, dynamics could contribute to orbital precession,

but as previously discussed their r−5 dependency en-

sures that their contributions are small. Odd harmon-

ics (e.g., J3, C31, etc.) could, in theory, also play a

role in the system’s orbital dynamics. (Note that the

“dipole” term is 0 due to using the center-of-mass as

the coordinate system; a center-of-mass–center-of-figure

offset can contribute to J2 which was included in the

calculations with the offset core above). Taking the

J3 harmonic as an example, we find that the ratio of

nodal precession caused by the J3 and J2 harmonics is

Ω̇J3
/Ω̇J2

≈ 0.006J3

J2
when Ω̇J3

is at its maximum. Typi-

cally the J3 harmonic is much smaller than J2, implying

the nodal precession induced by J3 is a very small ef-

fect. The same is true of the apsidal precession. While it

seems unlikely that J3 or other odd harmonics cause sig-

nificant changes in the dynamics on the timescale of our

observational data, future investigations should explic-

itly test whether odd numbered harmonics are necessary

for accurate modeling of the Haumea system.

Another possible effect that we do not account for

is the satellites’ putatively nonspherical gravitational

fields. Our model assumes that Hi’iaka and Namaka are

point masses, although they are likely to be substantially

nonspherical. In some cases, however, the gravitational

harmonics of a system’s secondary can play a major role

in the overall orbital dynamics (e.g. Ragozzine & Wolf

2009). MultiMoon is well poised to explicitly test this

assumption. Rather than adding six parameters to our

overall model, which would be computationally expen-

sive, we can simply add the satellites’ harmonics as fixed

values. We can then compare a model without their har-

monics to one with them, allowing us to see the change in

system dynamics. In this comparison, we use the char-

acteristics of all our observations (HST+Keck) to explic-
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Figure 4. Change in orbit fit quality due to the nonspherical
shapes of Haumea’s satellites. In this plot, ∆χ2 =

∑i(xi,J2−
xi,J2=0)/σi,obs, where xi,J2 and xi,J2=0 are synthetic astro-
metric measurements from models including satellite J2 and
those without. σi,obs are the true measurement uncertainties
for the system as tabulated in Table 1. This formulation al-
lows us to directly determine whether the satellites’ J2values
produce detectable changes in the system relative astrome-
try, given our current observations (HST+Keck). The pa-
rameters for the models used were taken from the best fit
of our orbit fits. The rotational poles of the satellites were
chosen to have high obliquities (w.r.t. their Haumea-centric
orbits) to enhance the effect of J2. The three separate lines
show each satellite’s individual contribution, as well as a
comparison where both satellites have (the same) J2. For
reasonable values, J2 ≲ 0.5, very little change in fit quality is
found, although for extremely nonspherical shapes, Hi’iaka’s
J2 could begin to alter the fit.

itly connect the dynamical change to actual observabil-

ity. In Figure 4, we show the change in orbit fit quality

as a function of Hi’iaka and Namaka’s J2, when both

satellites have a moderately high obliquity. We define

change in fit quality as ∆χ2 =
∑i

(xi,J2
−xi,J2=0)/σi,obs,

where xi,J2 and xi,J2=0 are synthetic astrometric mea-

surements from models including satellite J2 and those

without and σi,obs are the measurement uncertainties for

the system as tabulated in Table 1. Using those mea-

surement uncertainties allows us to connect the system’s

dynamics to the actual observations. Overall, we find

the fit quality is barely decreased when reasonable val-

ues for J2 are tested. Hi’iaka would need J2 > 2 for a de-

tectable change, while Namaka would need J2 > 10. For

comparison, Arrokoth, a contact binary, has a J2 ∼ 0.3.

While not an exhaustive search of parameter space, this

is strong evidence that Hi’iaka and Namaka’s nonspheri-

cal shapes do not significantly contribute to the system’s

dynamics with the present data.

In our view, the only remaining option is the presence

of unknown systematic errors plaguing our dataset. De-

spite our use of novel statistical techniques, our model

cannot account for all systematic errors arising from

combining our dataset. For example, time-varying dis-

tortions in the NIRC2 field cannot be appropriately

accounted for by our model. Likewise, wavelength-

dependent offsets between Haumea’s center of light

and center of mass, potentially caused by the known

wavelength-dependent rotational variability known as

the “Dark Red Spot” (Lacerda 2009) may introduce un-

wanted systematics when combining the data sets. In-

deed, when combining the datasets, we find that the

Keck data from the 2020s is incompatible with the HST

visit from 2014. Our combined dataset produces large

residuals for the 2014 HST visit, while the HST only

fit shows no such effect. While disconcerting, this con-

clusion is not extremely surprising given a similar re-

sult in RB09, from which we draw much of our data.

Those authors similarly found that the Keck data was

inconsistent with the HST-only fits. We thus argue that

unknown systematic errors are the source of our un-

usually high measurement of J2. HST instruments are

extremely well-studied and have been rigorously cross-

validated, so we view the HST only fit as more trust-

worthy. To remain as conservative as possible, we adopt

the HST only fit as our nominal model for the rest of

the analysis in this work.

5.2. Haumea’s Pole

Among TNOs, very few spin poles have been con-

strained. When disregarding non-Keplerian fitting, the

only techniques currently able to characterize the spin

poles of TNOs are long-term light curve monitoring and

occultations. Light curve inversion techniques require

observations of a TNO over a significant portion of their

orbit, which is implausible due to TNOs’ long heliocen-

tric orbital periods. Occultations are extremely power-

ful for inferring spin poles, but observations of multiple

multi-chord events are required, which are only available

for a few TNOs. Non-Keplerian orbit fitting now adds

an additional tool which can be used to understand the

spin poles of TNOs2. Normally, non-Keplerian fitting

cannot find a unique pole solution, but is able to deter-

mine the angle between the primary’s spin pole and the

secondary’s orbit normal. However, since Haumea has

two satellites, the spin pole can be found unambiguously.

2 Technically, non-Keplerian fitting finds the pole direction of the
nonspherical gravitational field, not the figure of the overall body.
However, in practice these are functionally identical, especially
for large objects like Haumea (Ragozzine et al., submitted).
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Our measurement in this work represents the first dy-

namically determined spin pole among TNOs. We are

able to place tight constraints on the spin pole direction

of Haumea, finding (αp, δp) = (282.9+0.6
−0.7

◦,−9.7+0.6
−1.0

◦).
Our dynamically determined spin pole measurement lies

2.3◦ from the ring pole determined by stellar occulta-

tion (αp, δp) = (285.1± 0.5◦,−10.6± 1.2◦) (Ortiz et al.

2017). Given that our methods are completely different

from those used in analyzing the stellar occultation and

we use no constraints from that work, the close match

is encouraging. Formally, however, these two spin pole

measurements are ∼2σ apart. The difference could be

a real effect (i.e., Haumea’s ring is inclined with respect

to Haumea’s nonspherical gravitational field), but the

nodal precession of ring particles induced in this case is

likely to erode the rings excessively (Marzari 2020). It

seems much more likely that the ring is coplanar with

Haumea’s gravitational field, and the disagreement is

due to model dependent factors or random chance. For

example, Ortiz et al. (2017) modeled Haumea’s ring as

a flat, circular annulus, but the true ring may have

substantial eccentricity and/or thickness. Alternatively,

since the spin pole in our fit is highly correlated with

J2, our large uncertainties may cause/contribute to the

disagreement. When examining our HST+Keck fit, we

find the spin pole measurements are even further apart,

lending further credibility to the HST only model.

5.3. The Origin and Evolution of Haumea’s Satellites

Our new information on the properties of the Haumea

system give more accurate insight into the formation and

evolution of Haumea and its satellites.

Presumably, Haumea’s satellites (and possibly its

ring) formed in the same event that created the Haumea

family. The many proposed paths for the formation

of the family were reviewed in Proudfoot & Ragozzine

(2019). Geophysically, a catastrophic collision is not a

plausible scenario for explaining family members that

are a low fraction of Haumea’s mass ejected at far be-

low escape velocity with a shallow size-distribution slope

that are made of chunks of somewhat pure water ice in

a low-probability environment for collisions. Instead,

these observations suggest that a differentiated proto-

Haumea spun too fast for self-gravity to maintain co-

herent and an icy slurry was released from the tips of

Haumea in chunks of various sizes ejected at relatively

low speeds as in the modeling of Leinhardt et al. (2010)

which is able to reproduce (with some uncertainties)

most of the observed properties of the family. Originally,

Proudfoot & Ragozzine (2019) rejected this model (and

all other models) because this scenario would nominally

produce family members with correlations in proper or-

bital elements that are not seen. However, Proudfoot

& Ragozzine (2022) found that placing the formation

of the Haumea family in context with the formation

of the outer solar system allows for a reasonably timed

family-forming event to occur before Neptune has com-

pleted its outward migration, including an eccentricity

“jump” that stirs the family enough to remove the ex-

pected proper element correlations. This conclusion was

robust to a range of Neptune migration models already

proposed in the literature (e.g. Nesvornỳ 2015) without

tuning. While Proudfoot & Ragozzine (2022) focused

on finding a model that was probable and consistent

with observations, positive definite evidence of this sce-

nario will likely need to wait for the significant increase

in Haumea family member discovery expected from the

Vera C. Rubin Observatory’s Legacy Survey of Space

and Time (e.g. Pike et al. 2020). There is still some de-

bate in the literature on the original reason that proto-

Haumea had too much angular momentum: Proudfoot

& Ragozzine (2022) propose the merger of a near-equal-

mass binary similar to Pluto-Charon perhaps triggered

by Kozai cycles initiated due to Haumea’s placement on

a higher inclination orbit. Noviello et al. (2022) point

out that internal evolution could change the moment

of inertia, leading to excess angular momentum for a

Haumea that was initially rapidly rotating. Ortiz et al.

(2012) and others suggest that it may be the cumulative

effect of many smaller impacts, though starting with a

rapid rotation would significant increase the probability

that a random walk would lead to such a rapid rotation,

keeping in mind that Haumea has the fastest spin pe-

riod of all known large (r ≳ 100 km) solar system small

bodies.

Whatever the origin, the general agreement is that

Haumea goes through a phase of excess angular momen-

tum where water ice chunks are ejected at low velocities

from the tips of Haumea. We are not aware of any de-

tailed analyses of how this configuration leads to the ob-

served family and satellites beyond the output of Lein-

hardt et al. (2010). In any case, it is interesting to note

that Hi’iaka is approximately the same size as the largest

family members like 2002 TX300 (Elliot et al. 2010) and

similarly has a deep water ice spectrum (Barkume et al.

2006). Furthermore, objects with a mass of 1019 kg have

an escape velocity of 300 m/s, comparable to the orbital

velocity around Haumea near the Roche limit. This im-

plies that objects of this size have a “Safronov number”

near 1, meaning that encounters between these objects

can lead to ejection from the Haumea system. . . but only

with a small escape velocity consistent with that seen

from Haumea family members. Thus, a plausible start-

ing point for the formation of the satellites is a disk of
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satellitesimals ejected from the fast-spinning Haumea,

mostly composed of pure water ice with sizes similar to

known satellites and family members. Leinhardt et al.

(2010) report the formation of family members in their

simulations, but it is not clear from these simulations

or from other plausible scenarios whether Haumea fam-

ily members are chunks ejected immediately from the

tips of Haumea at beyond escape velocity without inter-

action with other chunks or whether the entire family

is formed from ejection due to “chunk-chunk” interac-

tions. Given that the distribution of velocities should be

smooth with only the highest velocities actually escap-

ing the Haumea system, it is fair to say that there are

many chunks that remain in orbit and we refer to these

as satellitesimals.

We note that this is a similar initial configuration as

considered in Ćuk et al. (2013) from the destruction of

an “ur-satellite,” proposed there to be the origin of the

family and satellites. The investigation of Proudfoot

& Ragozzine (2019) suggests that the distribution of

known family members is not well-matched by the de-

struction of a satellite collision, though they did not con-

sider interactions between objects nor did they consider

the possibility of changes in the distribution from Nep-

tune migration as in Proudfoot & Ragozzine (2022). The

rationale for satellite destruction as a family-formation

hypothesis is to both increase the probability (since a

much smaller impactor is needed) and to explain the low

velocity dispersion of the family. This latter reasoning is

based on the observation that the Haumea family’s 100

m s−1 velocity dispersion is approximately the same as

the escape velocity from an object with the total mass of

the Haumea family. However, this order-of-magnitude

argument does not seem plausible under more detailed

investigation (Proudfoot & Ragozzine 2019). Further-

more, recent results from Pike et al. (2020) indicate

that the size distribution of family members is very shal-

low, and there are far fewer small family members de-

tected than would be expected in a catastrophic colli-

sion, even when accounting for observational biases. For

this reason and other reasons discussed in Proudfoot &

Ragozzine (2019) and Proudfoot & Ragozzine (2022), we

do not consider the satellite-destruction theory further.

Without further modeling, the properties of the satel-

lites themselves could be consistent with the ur-satellite

destruction hypothesis as discussed in (Ćuk et al. 2013).

They suggested that strong evidence for this hypothesis

would result if it were possible to show that the satellites

orbit retrograde relative to Haumea’s spin. We agree

with their assessment that such a configuration is con-

sistent with observational data, even with the updates

provided here. At that time, they suggested that addi-

tional observations could potentially detect this directly,

but our work here shows that this would be extremely

challenging to do with satellite astrometric observations.

Additional investigation shows that detecting retrograde

Haumea spin through C22 is implausible (Proudfoot &

Ragozzine 2021). Not mentioned explicitly in Ćuk et al.

(2013) is that retrograde spin could also be detected

by observing the angular momentum exchange among

the spin and the orbits of Namaka and Haumea. How-

ever, our fits show that Haumea has over 99.99% of the

angular momentum and that its spin axis is hardly af-

fected by the dynamical interactions with the satellites

(see Section 5.5. We propose that the most plausible

way to test this hypothesis is to look for astrometric

offsets from Haumea’s Dark Red Spot (Lacerda 2009)

which could potentially be detectable using JWST or

even HST archival data depending on the exact proper-

ties of the spot.

The initial disk of satellitesimals should rapidly evolve

through ejections and collisions. The impacts are rela-

tively low velocity and at cold temperatures, suggesting

that they remain mostly in solid phase, though more

detailed modeling would be required to determine what

happens to the phase of the disk materials as a func-

tion of composition. We agree with (Ćuk et al. 2013)

who propose that unejected material likely experiences

a collisional cascade that leads to a final configuration of

a ring of near-circular, near-coplanar disk of small par-

ticles. The observed ring could have derived from the

parts of this initial ring that did not form into satellites.

More modeling will be necessary to determine whether

the extent and properties of this initial ring are likely

outcomes from a graze-and-merge impact (or satellite

destruction). Combining SPH modeling with long-term

dynamical evolution should provide valuable insight into

plausible starting conditions. We encourage work on this

problem.

After their initial formation, there are several phys-

ical processes which can influence the evolution of the

satellites until they reach their current configuration.

The most important effects are expected to be Hi’iaka-

Namaka interactions, tidal evolution, excitation from

passing TNOs and binaries, and possible interactions

from previous satellites (Ćuk et al. 2013; Hastings et al.

2016). These are discussed in detail in Ćuk et al. (2013)

and we focus here only things that are updated in our

new fit.

Ćuk et al. (2013) found that long-term orbital stabil-

ity would be significantly improved if the satellites were

∼50% of their nominal masses reported in Ragozzine &

Brown (2009). Indeed, our new results are most con-

sistent with satellites that are ∼60% of the initially es-
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timated masses with the Namaka/Haumea mass ratio

of 3.0 ± 0.6 × 10−4 and the Hi’iaka/Haumea mass ra-

tio of 3.1 ± 0.8 × 10−3 in the HST-only fit (see Table

2), though this is strongly affected by the degeneracy

discussed above.

Ćuk et al. (2013) also investigate in detail the ef-

fect of the 8:3 and 3:1 mean-motion resonances between

the satellites, especially in the presence of tidal evolu-

tion. This was based on the observation by Ragozzine &

Brown (2009) that the satellites were possibly in or near

the 8:3 resonance, suggesting that tidal evolution in reso-

nances could explain the source of the moderately eccen-

tric and inclined orbits. This idea was further strength-

ened by the observation – still true with the new orbit

fit – that the excitation is similar in eccentricity and in-

clination and is inversely proportional to the masses of

the satellites. This means that the “Angular Momen-

tum Deficit” (Laskar 1997) is approximately evenly par-

titioned between the two satellites, suggesting they have

been strongly dynamically coupled at some point in the

past (or present). We find a period ratio of Hi’iaka and

Namaka of 2.689 ± 0.004 (including corrections to New-

ton’s Version of Kepler’s Third Law from J2), slightly

closer to the 8:3 mean-motion resonance that reported

in Ragozzine & Brown (2009). With the residual un-

certainty in Hi’iaka’s mass and Haumea’s J2, we leave

to future investigation whether the 8:3 resonance is cur-

rently dynamically active in the system. The general

conclusion of (Ćuk et al. 2013) that resonance passage

could explain the excited orbits remains consistent with

the updated fits.

The primary challenge in explaining the current or-

bital configuration of the satellites is their distant orbits

from Haumea at ∼36 and ∼70 primary radii. Tidal evo-

lution to such distances is challenging in standard tidal

theories, requiring Haumea tides to be extremely dissi-

pative with an implausible combination of tidal param-

eters. This is exacerbated by a factor of ∼2 with the

lower masses for the satellites, but Quillen et al. (2016)

find that the triaxial shape of Haumea increases tidal

evolution by a factor of a few (though not the factor of

several hoped for by Ragozzine & Brown (2009) and Ćuk

et al. (2013)). It is possible that this can be resolved by

detailed investigations beyond simplified tidal and geo-

physical models, e.g., continuing work by Quillen et al.

(2016) and Noviello et al. (2022) with more accurate

modeling as summarized by Bagheri et al. (2022) and

citations therein. It is interesting to note that, ignoring

satellite-satellite interactions, the expected positions of

two moons with a mass ratio of ∼10 is a semi-major axis

ratio of ∼2 which is consistent with the relative locations

of Namaka and Hi’iaka.

One potential resolution to the extreme tidal dissipa-

tion is to start Hi’iaka and Namaka near their current

locations. (Since tidal expansion is very strongly de-

pendent on separation, even starting at ∼90% of the

present distance does not relieve pressure on tidal theo-

ries.) This is the reason that Ćuk et al. (2013) posited

that the ur-satelite was destroyed at near the positions

of the current satellites. Further modeling of the satel-

litesimal disk distribution created in a graze-and-merge

impact is called for, but given that we observe objects

ejected from this disk, it could have been extended out to

the Hill sphere and readily allow for a disk at 1% of the

Hill radius where Hi’iaka is located. Whether Namaka

and Hi’iaka could have formed directly from this disk re-

quires further investigation. Along these lines, we note

that although the satellites seem well-separated, dynam-

ically speaking they are only separated about 5 mutual

Hill radii, suggesting they are dynamically packed. In-

deed, Ćuk et al. (2013) found that masses larger than

those from our fit are likely unstable. Intermediate satel-

lites could not fit dynamically, so perhaps Namaka and

Hi’iaka are the natural outcome of an extended disk near

their present locations.

can form directly from a disk eventually formed from

the same event that spun up Haumea and created the

family.

In conclusion, the formation and evolution of Namaka

and Hi’iaka are plausibly connected to the same process

that spun up Haumea and created the family. One for-

mation hypothesis is that water ice chunks which do not

escape to form the family eventually collide and grind

down to a disk near the present location of the satel-

lites. Namaka and Hi’iaka perhaps form directly from

this disk and recent dynamical interactions, e.g., from

the nearby 8:3 resonance, lead to the orbits seen today,

as proposed in Ćuk et al. (2013). Once Hi’iaka’s mass

is better known, a more detailed investigation into the

secular, resonant, and tidal dynamics could confirm or

refute this hypothesis. However, the most important

next step is more detailed modeling of the post-spin-up

and family ejection process, extending into the longer

timescale of setting the initial conditions for the forma-

tion of the satellites.

5.4. Ring-Satellite Interactions

Haumea’s ring, first discovered during a stellar occul-

tation, is observed to lie close to Haumea’s equatorial

plane (Ortiz et al. 2017). This matches theoretical ex-

pectations, which show that ring particles should col-

lisionally damp to the equatorial plane in the presence

of Haumea’s J2. When accounting for interactions be-

tween ring particles and Haumea’s satellites, however,
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ring particles can preferentially settle in the satellite or-

bit plane (Marzari 2020). However, the satellites are

too far away and/or not massive enough to cause this

to occur for the ring. The satellites’ main dynamical

roles are to act as small perturbers that increase veloc-

ity dispersion. Marzari (2020) studied the increase in

collision velocity of ring particles under the influence of

Haumea’s satellites and found that collision velocities

still remained low with typical velocities < 1 m s−1.

It may be possible that if other rings exist external to

the currently known ring, satellite-ring dynamics may

be more important. As the strength of satellite-ring in-

teractions increases, the collision velocities between ring

particles may become large enough to completely dis-

perse the ring. Rings external to the Roche limit may

be possible at the temperatures of the Kuiper belt (Mor-

gado et al. 2023; Pereira et al. 2023), but in Haumea’s

case they are likely to be in a regime where perturba-

tions make them long-term unstable.

5.5. Rotational Dynamics

The rotational dynamics of the Haumea system are

extremely interesting to study. For Haumea itself, the

torque from both satellites on Haumea’s nonspherical

body cause a small amount of axial precession. We

show a 1000 year integration of Haumea’s spin dy-

namics in Figure 5. The integration is performed

by SPINNY, the spin-orbit integrator at the heart of

MultiMoon(Ragozzine et al., submitted). We find that

Haumea’s axis precesses by < 1◦ on a timescale of

100s of years. Visible is a complex precession cy-

cle in Haumea’s spin pole direction, with one ‘fast’

frequency and one ‘slow’ frequency. These two fre-

quencies are caused by the torque from each satellite,

with periods corresponding to each satellite’s nodal pre-

cession period. Namaka’s nodal precession period is

strongly coupled with both Hi’iaka-Namaka interactions

and Namaka-J2 interactions. Since Namaka is coupled

to Hi’iaka’s nodal precession, Namaka’s nodal preces-

sion then weakly couples to Hi’iaka-J2 nodal preces-

sion, although this is a much smaller effect. Hi’iaka’s

nodal precession has a fast, low-amplitude component

caused by Hi’iaka-Namaka interactions, as well as a slow,

high-amplitude component from the Hi’iaka-J2 interac-

tion. The low amplitude, high frequency precession of

Haumea’s pole caused by Namaka would produce lit-

tle detectable change in Haumea’s light curve or occul-

tation shadow. The Hi’iaka coupled precession has a

much higher amplitude, but has a period of 100s of years,

severely hampering detectability. Given Haumea’s pro-

late shape, the satellites’ torques can, in principle, also

alter Haumea’s rotation period, however this effect is

tiny due to Haumea’s large angular momentum. Using

SPINNY simulations, we estimate the period variations

are ∼ 10−8 hours, approximately two orders of magni-

tude smaller than the uncertainty in the measured rota-

tion period (Rabinowitz et al. 2006).

More amenable to detectability is possible precession

of Hi’iaka’s rotational axis. In Hastings et al. (2016), the

light curve of Hi’iaka was studied using resolved pho-

tometry from HST images. They found that Hi’iaka is

rapidly rotating (∼9.8 hour double-peaked period) with

an unusual sawtooth shaped light curve of amplitude

∆m ≈ 0.23. Using a simplified model of axial preces-

sion, they found that Hi’iaka’s axial precession would

be detectable on decade timescales if there was signif-

icant obliquity (w.r.t. its orbit). The detectability is

significantly enhanced by Hi’iaka’s high amplitude light

curve. Detection of any precession would require long-

term monitoring of Hi’iaka’s light curve, which would

slowly change amplitude and/or shape across the pre-

cession cycle. SPINNY provides an ideal framework for

validating this possible method. Using the best fit from

our nominal orbit model, we have explicitly modeled

Hi’iaka’s axial precession. In Figure 6, we show the evo-

lution of Hi’iaka’s rotation axis, assuming differing start-

ing obliquities. Then in Figure 7, we illustrate how that

precession translates to variation in Hi’iaka’s light curve

amplitude, assuming triaxial shapes as in Hastings et al.

(2016). Interestingly, even in the case where Hi’iaka’s

pole is initially aligned with its orbit, precession still oc-

curs. While initially surprising, the precession is due to

Hi’iaka’s nodal precession in its orbit around Haumea,

which will always misalign Hi’iaka’s spin pole. Encour-

agingly, even for a relatively small obliquity of 10◦, the
precession is substantially different from the no preces-

sion case. This allows us to confirm previous results (e.g.

Hastings et al. 2016) and show that small perturbations

(e.g., Hi’iaka’s eccentric orbit, torques from Namaka,

etc.) seem to make little difference to the overall evolu-

tion. In the future, SPINNY and/or MultiMoon could be

modified to explicitly model changes in light curve am-

plitudes. This method would provide a detailed model

with which to understand the spin dynamics of Hi’iaka;

we defer this to future work.

Even though Namaka has been solidly detected in

several epochs of HST observations, no periodic bright-

ness variations have been found, although photometry

from HST programs is suggestive of a long rotation pe-

riod (>1 day). Purely based on theoretical dynamical

arguments, Namaka is expected to be significantly de-

spun, except if its initial rotation period was extremely

short (Hastings et al. 2016). Given Namaka’s eccentric

orbit, overlap between SORs is inevitably causes spin-
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Figure 5. The spin precession of Haumea over a 1000 year integration. In the top two panels, we show the spin precession
of Haumea in terms of pole ecliptic longitude and latitude. In the bottom two panels we show the precession of the orbit
normal of Hi’iaka and Namaka, again in terms of ecliptic longitude and latitude. The integration parameters have been chosen
to be representative of the posterior found in Table 2. Similar integrations with different values for Haumea’s J2 change the
long-term precession period, but are qualitatively similar. Haumea’s spin precession is coupled with the nodal precession of
the satellites. High frequency, low amplitude variations in Haumea’s pole direction are caused by Namaka’s rapid precession,
while low frequency, high amplitude variations are coupled with Hi’iaka’s J2 precession. As can be seen, the precession of all
components are strongly coupled, both through Hi’iaka-Namaka gravitational interactions and interactions with Haumea’s J2.
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Figure 6. The precession of Hi’iaka’s spin axis based on its initial obliquity. Similar to Figure 5, we show the precession of
Hi’iaka’s spin axis in terms of ecliptic longitude and latitude. Initial integration parameters have been chosen to be representative
of the posterior found in Table 2. The moments of inertia of Hi’iaka were chosen to be similar to objects of similar size, although
their values only change the frequency of the precession. For different initial obliquities, we find different precession periods,
matching analytical theory and results in the literature (e.g. Hastings et al. 2016). Interestingly, there are small variations when
Hi’iaka’s spin is initially aligned with its orbit. Although initially there would be no net torque and no precession when aligned,
since Hi’iaka’s orbit precesses, the alignement is broken and precession begins.
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Figure 7. The change in Hi’iaka’s light curve amplitude over time. Using the integrations similar to those shown in Figure 6,
we calculate the light curve amplitude using Equation 1 from Hastings et al. (2016). Note that the x-axis is different than Figure
6. Axis ratios were chosen to be similar to other solar system objects at similar size, as well as approximately matching the light
curve amplitude found in the literature (Hastings et al. 2016). The no precession case is found by taking a fixed pole direction.
The fast variations in these functions are due to Earth’s heliocentric orbit. Even for small obliquities, the light curve evolves
significantly differently than the no precession case. As in Figure 6, we find that the aligned case (0◦) still shows precession and
slightly different light curve evolution when compared to the no precession case. Long-term monitoring of Hi’iaka’s light curve
may permit direct measurement of its spin pole over decadal timescales.

orbit chaos, very similar to Saturn’s satellite Hyperion

(Wisdom et al. 1984). As an illustration of chaotic ro-

tation, the resonance overlap criterion, which predicts

chaotic spin-orbit evolution if satisfied, near the 1:1 and

3:2 SORs is:

√
3(B −A)

C ≥ 1

2 +
√
14e

(4)

where A, B, and C are Namaka’s principal moments of

inertia and e is Namaka’s orbital eccentricity. In this

case, to avoid spin-orbit chaos Namaka’s shape would

have to satisfy (B−A)
C < 0.025. Satellites that are sim-

ilar in size to Namaka generally have (B−A)
C ≳ 0.1.

For example, with a mass between Namaka and Hi’iaka

(∼5×1018 kg), Hyperion has (B−A)
C ≈ 0.26.

While the above calculation is a simplistic example

comparing just two resonances, in general, resonance

overlap and spin-orbit chaos are expected for a slowly

rotating Namaka. In Figure 8, we show the initiation

of chaotic tumbling, where Namaka’s attitude (i.e. pole

direction) and rotation period evolve chaotically. Given

the difficulty of acquiring resolved photometric observa-

tions of Namaka and the long timespan needed to detect

a slow (and possibly chaotic) rotation, confirming it may

be extremely difficult. Similarly, searching for Namaka’s

light curve in unresolved photometry of the entire sys-

tem is extremely difficult as Namaka’s brightness only

contributes ∼1% of the total system flux.

5.6. Future and past observations

To enable future observations of the Haumea sys-

tem, we have created an ephemeris of the system, con-

taining the predicted ∆α cos δ and ∆δ of each satel-

lite and the uncertainties on the positions. We com-

pute the ephemeris using 500 random draws from our

posterior distribution. The ephemeris contains the pre-

dicted positions every 8 hours between 2005 and 2035.

In Table 3, we show the first 10 lines of the ephemeris.

The ephemeris is published in its entirety in machine-

readable format. Uncertainties on our predictions for

both satellites are quite small (≲50 mas) through the

4.5 Discussion 75



Beyond Point Masses III: Haumea 19

0

100

200

300

P
ol

e 
lo

n.
 (
◦
)

50

0

50

P
ol

e 
la

t. 
(◦

)

0 10 20 30 40 50

Time (years)

200

400

600

800

R
ot

at
io

n 
pe

rio
d 

(h
ou

rs
)

Figure 8. Chaotic rotation of Namaka. When initialized, Namaka rotates once every 6 hours and is aligned with its orbit.
After just a few decades, Namaka becomes attitude unstable and begins to tumble. Chaos is a natural consequence of Namaka’s
eccentric orbit and is inevitable if Namaka has been substantially despun. In this sense, Namaka is very similar to Saturn’s
satellite Hyperion, which chaotically rotates due to its eccentric orbit around Saturn (Wisdom et al. 1984; Klavetter 1989).

2020s until 2030, at which time, the uncertainties be-

gin to grow rapidly, especially for Namaka. By 2035,

uncertainties on Namaka’s position are of order ∼0.1

arcseconds. Rapid growth in uncertainty is attributable

to the large degeneracy in our model (see Table 2 and

Figure 3).

To ascertain whether future observations may be able

to break the degeneracies in our fits, we have analyzed

an ephemeris (similar to that presented above) where

the predicted positions are also a function of Haumea’s

J2 (or equivalently Hi’iaka’s mass). We find that the

future positions of Hi’iaka and Namaka are strong func-

tions of Haumea’s J2 indicating that the degeneracy will

be broken with additional HST observations. Based

on the HST+Keck fits, we can roughly estimate that

∼2-4 new epochs of observations are necessary to con-

strain Haumea’s J2 with ∼10% precision. Thus, future

high-precision astrometric observations will allow future

works to probe Haumea’s interior and place strong con-

straints on its differentiation. Past work has shown that
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Table 3. System Ephemeris

Julian Date Date ∆xN ∆yN σ∆xN
σ∆yN rN σrN ∆xH ∆yH σ∆xH

σ∆yH rH σrH

(”) (”) (”) (”) (”) (”) (”) (”) (”) (”) (”) (”)

2453371.500 2005-01-01 00:00:00 0.068 −0.190 0.002 0.005 0.202 0.004 0.057 0.649 0.001 0.003 0.651 0.003

2453371.833 2005-01-01 08:00:00 0.068 −0.121 0.002 0.005 0.139 0.004 0.043 0.600 0.001 0.003 0.601 0.003

2453372.167 2005-01-01 16:00:00 0.068 −0.051 0.002 0.005 0.085 0.003 0.029 0.549 0.001 0.003 0.550 0.003

2453372.500 2005-01-02 00:00:00 0.067 0.019 0.002 0.005 0.069 0.002 0.015 0.497 0.001 0.003 0.497 0.003

2453372.833 2005-01-02 08:00:00 0.065 0.090 0.002 0.006 0.111 0.004 0.000 0.444 0.001 0.003 0.444 0.003

2453373.167 2005-01-02 16:00:00 0.062 0.159 0.002 0.006 0.171 0.005 −0.014 0.391 0.001 0.003 0.391 0.003

2453373.500 2005-01-03 00:00:00 0.059 0.227 0.002 0.006 0.234 0.005 −0.028 0.336 0.001 0.003 0.337 0.003

2453373.833 2005-01-03 08:00:00 0.055 0.291 0.002 0.006 0.296 0.005 −0.042 0.281 0.001 0.003 0.284 0.003

2453374.167 2005-01-03 16:00:00 0.051 0.352 0.002 0.005 0.355 0.005 −0.056 0.225 0.001 0.003 0.232 0.003

2453374.500 2005-01-04 00:00:00 0.045 0.407 0.002 0.005 0.410 0.005 −0.070 0.168 0.001 0.004 0.182 0.003

Note—The predicted right ascension and declination positions of Namaka (N) and Hi’iaka (H) from 2005 to 2035. ∆x and ∆y are the
predicted right ascension and declination, r is the total separation, and σ are the uncertainties on each value. All values are given in
arcseconds. Predicted positions, separations, and uncertainties are taken from a sample of 500 random posterior draws. We display the
first 10 rows of the table with the rest of the table available as a machine-readable table.

timing observations at certain, well-selected times can

substantially improve the quality of the resulting orbit

fits (Proudfoot et al., submitted). These times occur

when the uncertainties in ∆α cos δ and ∆δ in Table 3

are at (local) maximum. We recommend that continued

observations be taken by HST to prevent any systematic

errors from arising, as we found in our HST+Keck fits.

Using a high resolution ephemeris from 2009-2020, we

can evaluate past predictions of mutual events in light of

our new orbit solution. We find that the mutual event

predictions made in RB09 are generally accurate, even

given their sign error in the system astrometry. We pre-

dict events that are similar in depth and duration, but

are somewhat offset in time. The timing differences are

only a few hours in 2009-2011, but steadily grow to tens

of hours by the end of the mutual event season. Since the

mutual event timings are quite sensitive to Namaka’s ec-

centricity, and we find an eccentricity ∼15% lower than

previously found, it is unsurprising that we find timing

differences. The next mutual event season will occur in

approximately half a heliocentric Haumea orbit, about

midway through the 2200s. The exact timeframe will be

dependent on Namaka and Hi’iaka’s precise precession

rates, which future observations will be able to precisely

measure.

6. CONCLUSION

Using a state-of-the-art orbit fitter, MultiMoon, com-

bined with several new epochs of observations from Keck

and HST, we have refit the orbits of Haumea’s satellites.

The model we use can account for both satellite-satellite

interactions and Haumea’s oblate gravitational field.

We find that unaccounted systematic errors are present

when fitting to the combined HST and Keck datasets,

even when using robust statistical techniques that can

account for some types of systematics. Although the

HST+Keck fit can precisely constrain Haumea’s J2 and

the masses of Hi’iaka and Namaka, we discount these fits

since they have unreasonably high residuals and predict

physically unrealistic values for Haumea’s J2. On the

other hand, our orbit fit to only the HST data is more

precise. Unfortunately, this fit suffers from a degeneracy

between Hi’iaka’s mass and Haumea’s J2, preventing a

precise measurement of these two parameters.

For our HST only orbit fit, we detect Haumea’s J2 at

∼2.5σ confidence (J2 = 0.262+0.103
−0.112). Our fits are un-

able to discriminate between either a homogeneous or

differentiated interior, but only a few additional epochs

of precise astrometric observations will easily provide

the precision to distinguish between these models. Our

fit has also provided a measurement of Haumea’s ro-

tational pole (αp, δp) = (282.9+0.6
−0.7

◦,−9.7+0.6
−1.0

◦), which

lies extremely close to the orbit pole of Haumea’s ring

(Ortiz et al. 2017). In this sense, we presume that

Haumea’s ring lies in Haumea’s equatorial plane and is

minimally perturbed by Hi’iaka and Namaka. Determin-

ing Haumea’s pole allows us to place tight constraints

on the inclination of the satellites w.r.t. Haumea’s equa-

tor, showing that Hi’iaka and Namaka are inclined by

approximately 1.01+0.66
−0.47

◦ and 12.79+1.01
−0.58

◦, respectively.
Both Hi’iaka and Namaka are on somewhat excited or-

bits, shown in both their inclination and eccentricity,

hinting at past dynamical excitation (Ćuk et al. 2013).

Using our orbit fits, we have also characterized the

rotational dynamics of the Haumea system using the

spin-orbit integrator SPINNY (Ragozzine et al., submit-
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ted). We find that Haumea’s rotation axis precesses

< 0.5◦ on ∼kyr timescales, and is most strongly coupled

to Hi’iaka’s slow precession due to Haumea’s J2. Hi’iaka

is expected to strongly precess on decadal timescales,

which should have strong effects on the evolution of its

light curve. Namaka is expected to rotate extremely

slowly, based on both dynamical/tidal arguments and

preliminary studies of its light curve. This putative slow

rotation implies that Namaka chaotically rotates due to

its significantly eccentric orbit.

To enable future observations of the Haumea sys-

tem we have generated a satellite ephemeris over the

next decade. These observations will enable a probe of

Haumea’s interior, aid in understanding the spin states

of Haumea’s satellites, and continue to provide insights

into Haumea’s formation. Understanding the Haumea

system as a whole is crucial for understanding large

TNO formation and evolution. The production of satel-

lites and satellite systems seems to be ubiqitous across

the transneptunian region, but the processes at play are

still not well-explored. Thankfully, continued observa-

tions of Haumea and its satellites will enable deeper

knowledge of the far reaches of our solar system.

We thank Simon Porter and Seth Pincock for help with

SPINNY and Steve Desch for valuable discussions on

Haumea’s origin and interior. We also thank the BYU

Office of Research Computing for their dedication to
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Chapter 5

Beyond Point Masses V: Contact Binaries

and Hierarchical Triples among the Cold

Classicals

5.1 Introduction

The Cold Classical Kuiper belt (CCKB) is a population of dynamically ‘cold’ TNOs orbiting with

semi-major axes ∼42-47 au and inclinations ≲ 5◦. The CCKB is thought to be the least processed

TNO population, with most objects believed to be primordial [8, 27, 86, 87]. Among the CCKB,

binaries are common [40]. CCKB binary systems (CCKBBs) are generally nearer-equal size, more

widely separated, and less masssive than binaries in other TNO populations [14]. Members of the

CCKB have distinct colors when compared to other TNO populations [9–11, 86]. These aspects

indicate that the planetesimal formation processes in the CCKB must be somewhat unique.

Over the past few years, a flurry of studies have been published showing that the Streaming

Instability (SI) model of planetesimal formation is the dominant formation mechanism in the

80
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outer solar system [8, 20, 33, 34]. The SI model is easily able to explain a variety of observations,

including the size distribution of small TNOs [37, 38], the existence and abundance of binary

systems [20, 33, 34, 39], the orbital orientation of binaries [20, 46], and many more (e.g., [83]).

Formation by the SI, however, is obscured in most TNO subpopulations by additional collisional

or accretional processes. Thus in contrast, the CCKB, as the least altered TNO population, is the

perfect laboratory for understanding more about the formation of planetesimals by the SI.

As simulations of SI-triggered gravitational collapse have become higher-resolution, studies

have consistently found that the SI model predicts the existence of many hierarchical system (i.e.

systems with more than two gravitationally bound components) [33, 34, 39]. Current generation

simulations lack the depth to fully explore these systems, especially at close separations, but initial

estimates show that hierarchical systems could make up 10% (or more) of all binary systems

formed via the SI [34]. Thus far, however, only one such system (Lempo) has been definitively

identified [88].

The discovery of the Lempo triple system is particularly relevant to this work. Lempo was

first identified as a binary system in 2001 [89], using medium resolution instruments on HST.

However, subsequent observations in the following years showed a distinct elongation of the

‘primary’ component [90]. Upon imaging the system at the highest possible resolution (using HST’s

ACS/HRC), it was discovered that the primary was actually two individual components [88], which

were orbited by the previously identified satellite. In Lempo’s case, imaging was able to resolve the

true system architecture, but Lempo is probably just the largest (and most resolvable) example of

such systems. More typical hierarchical systems are likely to be much more compact, as shown in

SI formation simultations [34, 39].

Fortunately, non-Keplerian orbit fitting of known CCKBBs has the potential to surpass the

resolution limit, allowing discovery of hierarchical systems at separations that are currently unre-

solvable. In Chapter 3, we conducted a large pilot study to determine whether non-Keplerian effects
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Architecture Nomenclature Example

Planet-moon

Near-equal binary

Contact hierarchical triple

Hierarchical triple

Haumea

Sila-Nunam

Dinkinesh

Lempo

Figure 5.1 A schematic showing the nomenclature we use in this Chapter. Broadly, we refer to both

hierarchical triples and contact hierarchical triples as ‘hierarchical systems’. The examples given in

the right column are well studied/imaged systems in either the TNO or asteroid populations. Of

particular note is Dinkinesh, an asteroid where the smaller component is known to be a contact

binary itself. Dinkinesh’s binary/trinary nature was only recently discovered in November 2023

during a flyby of the system by the Lucy spacecraft.

were detectable in the orbits of TNBs. There, we identified several CCKBBs that had detectable

non-Keplerian effects. The non-Keplerian motion in these systems was best explained by the

presence of unresolved system components. In that same study, we also identified that Borasisi-Pabu

is likely a hierarchical system (albeit a contact binary orbited by a third body). In this work, we

continue the analysis started in Chapter 3, and focus on CCKBBs. Our goal is to determine if any

of the currently known CCKBBs are actually hierarchical systems that have not yet been resolved.

As a note on nomenclature, in this Chapter we use various terms such as hierarchical triple,

contact hierarchical triple, near-equal binary, and more. In Figure 5.1, we show a schematic

describing system architectures we explore in this paper. When we use the term ‘hierarchical

system’ we refer to both hierarchical triples and contact hierarchical triples. We also often use the



5.2 Methods 83

term unresolved system component. By this, we refer to the close-in component in a hierarchical

system, not undiscovered components at wide separation from the rest of the known system.

5.2 Methods

In this work, our sample consists of 16 of the 28 CCKBBs with known orbit solutions. This sample

selection was based on availability of data, ease of interpretation, and quality of orbit fit. Each

CCKBB in our sample has, at minimum, six publicly available, high-resolution relative astrometric

measurements, ensuring that our model fitting problem is well-posed (i.e., not underconstrained). We

also remove from our sample all CCKBBs with a mirror ambiguous orbit. This sample of CCKBBs

is made up of a variety of different morphologies, spanning a wide range in mass, separation, and

orbital characteristics. Although we make every attempt to make our sample as unbiased as possible,

there are still strong biases in our sample from a variety of sources. For example, brighter CCKBBs

are easier to observe, and so will naturally be overrepresented in our analysis. Likewise, ultra-wide

binary systems, which are easier to observe due to their large separation, will have far more data than

systems with smaller component separations. While this complicates population-level interpretation

of our analysis, trends and discoveries at the sample/ensemble level are still informative.

In addition to the sample of new non-Keplerian orbit fits we complete here, we also use

completed non-Keplerian orbits for (66652) Borasisi-Pabu and (148780) Altjira that were completed

in other work (Proudfoot et al., submitted [Chapter 3], and Nelsen et al., in prep.). Results from

those fits are presented, with the fits we complete here, in Section 5.3.

For our orbit fitting, we draw astrometry from the Orbit Status of Known Binary TNOs database

(http://www2.lowell.edu/users/grundy/tnbs/status.html). We also use new, unpublished observations

of many of our targets. For brevity, we do not explicitly list all of the data, but rather point the

http://www2.lowell.edu/users/grundy/tnbs/status.html


5.2 Methods 84

reader to the Orbit Status database. New observations used in this work will be available there after

the publication of this work.

New observations of several of our targets were acquired at the W.M. Keck Observatory on

Mauna Kea. These observations used the laser guide star adaptive optics system (LGS AO) with

the near-infrared (NIR) NIRC2 camera. Observations used nearby appulse stars for the necessary

tip-tilt corrections. All observations were taken in the NIR H filter, covering wavelengths from

∼1.48-1.77 µm. Between exposures, the telescope was dithered to enable sky subtraction and to

minimize localized detector effects (e.g., bad/hot pixels). Relative astrometry from each sequence

of observations was extracted using Gaussian PSF fitting techniques, using a mean plate scale of

9.952 milliarcseconds/pixel and an orientation offset of 0.252◦ [91–93]. Both the observational

set-up and method for extracting astrometry have been extremely well-characterized and validated

over many years and are considered the gold-standard of ground-based binary observations.

5.2.1 MultiMoon

To perform our non-Keplerian orbit analysis, we use MultiMoon, an advanced non-Keplerian orbit

fitter built on a Bayesian framework. MultiMoon uses a powerful spin-orbit integrator which can

numerically integrate the orbital motion of an arbitrary number of bodies with quadrupole shapes.

MultiMoon performs Bayesian parameter inference using the popular emcee package [94, 95].

For our orbit fits, we use MultiMoon’s default χ2 likelihood function. The likelihood evaluation

relies on a simple non-Keplerian orbit model which models a CCKBBs mutual orbit and the system

primary’s shape and spin pole. To characterize the system primary’s shape, we use include the

J2 gravitational harmonic, which describes the oblateness of the body. This is generally adequate

to describe the body’s rotationally averaged gravitational field. Although the connection between

shape, gravitational harmonics, and non-Keplerian motion is more complex for hierarchical systems,
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the concepts are generally applicable. For more details on how hierarchical systems can be modeled,

see the introduction to Chapter 3.

Our model is thus defined by 11 individual free parameters: primary mass (M1), secondary

mass (M2), semi-major axis (a), eccentricity (e), inclination (i), argument of periapse (ω), longitude

of the ascending node (Ω), mean anomaly at epoch (M ), primary zonal gravitational harmonic

(J2), primary rotation axis obliquity (isp), and primary rotation axis precession (Ωsp). In addition

to these free parameters, the rotation rate of the primary (in radians per second) is provided to

MultiMoon as a fixed parameter. For our targets, light curve periods are used as a proxy for primary

rotation period under the assumption that the light curve is dominated by the primary’s rotation. For

systems without a known light curve period, we use a default value of 10 hours. Our testing clearly

shows that the input rotation rate has virtually no effect on the orbit fitting process, justifying these

assumptions.

As MultiMoon uses a Bayesian framework, priors need to be specified during the fitting process.

For all of our systems, we use flat, uninformative priors that only constrain our systems to physically

possible values (e.g., positive mass, bound orbits, etc.). Since mass and primary J2 are degenerate

(since precession is proportional to M × J2), we enforce a prior where M1 > M2, to simplify

exploration of the parameter space, consistent with past successful MultiMoon analyses. Like

previous studies (see Chapter 3), we also restrict our exploration to prograde solutions of the

primary’s rotation axis (i.e., rotation axis and orbit pole are < 90◦ apart). Retrograde solutions exist

and are exact mirrors to the prograde solutions, but their inclusion complicates exploration of the

posterior distribution as they create a strongly multi-modal posterior.

When performing our MultiMoon orbit fits, we used 980 walkers (selected to match our

computational hardware) to analyze each system. Initial walker positions were chosen to cluster

around the best fits from preliminary fits. We initialized walkers with a 10,000 step burn-in, after

which poorly performing walkers were pruned and replaced. After another 5000 step burn-in was
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completed, we then ran the ensemble for, at minimum, 15000 steps. Some systems converged more

slowly than average, so more steps were used in some cases. Convergence was assessed by visual

inspection of walker trace plots and parameter likelihood plots. The fitting process was repeated

many times with different walker starting positions to ensure that the global minimum was found by

our fits.

5.3 Non-Keplerian Orbit Fits

Out of the 16 CCKBBs we attempted to fit with non-Keplerian orbits, 13 systems had usable

non-Keplerian orbits. Out of those 13, four had statistically significant detections of non-Keplerian

motion, while the rest had upper limits on J2. Combined with the two detections from Borasisi-Pabu

and Altjira, we have a total of six detections of non-Keplerian motion ((66652) Borasisi-Pabu,

(88611) Teharonhiawako-Sawiskera, (148780) Altjira, (525462) 2005 EO304, 1999 RT214, and 2006

BR284). These detections can roughly be broken into two separate groups based on mutual orbit

period: those with orbit periods of ∼100 days, and those with orbit periods of ≳1000 days. For the

rest of this Chapter, we call these the ‘wide’ binaries and the ‘ultra-wide’ binaries, respectively.

The results of our non-Keplerian orbit fits are shown below. For CCKBBs with significant

detection of non-Keplerian motion, we show the full orbit solutions. These are in Table 5.3 for the

wide binaries, and in Table 5.3 for the ultra-wide binaries. We also display the corner plot of one

wide TNB (1999 RT214) and one ultra-wide TNB (2005 EO304) in Figures 5.2 and 5.3, respectively.

A corner plot displays the marginal posterior for each parameter along the top of each column,

as well as 2-dimensional joint posteriors for every combination of parameters in 2-dimensional

histograms. For TNBs where only upper limits can be placed our results are shown in Table 5.3.

There we show the mass posterior as well as the J2R2 upper limits (characterized as 1 and 3σ limits).
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Table 5.1. Non-Keplerian Orbit Solutions for the wide Binary Detections

Parameter 1999 RT214 Altjira Borasisi

Mass, Primary (1018 kg) M1 0.142+0.037
−0.031 2.728+0.794

−0.521 2.293+0.667
−0.416

Mass, Secondary (1018 kg) M2 0.057+0.03
−0.037 1.317+0.521

−0.794 1.159+0.416
−0.668

Semi-major axis (km) a 3426+71
−67 9985+30

−30 4538+13
−13

Eccentricity e 0.2924+0.0234
−0.0230 0.3511+0.0025

−0.0024 0.4690+0.0018
−0.0018

Inclination (◦) i 24.45+1.40
−1.31 25.11+0.21

−0.21 51.28+1.92
−1.28

Argument of periapse (◦) ω 76.2+9.6
−7.4 191.69+0.46

−0.45 139.31+1.03
−1.32

Longitude of the ascending node (◦) Ω 77.9+4.4
−4.4 274.21+0.31

−0.31 86.02+1.17
−1.20

Mean anomaly at epoch (◦) M 326.2+7.6
−12.0 124.26+0.40

−0.41 336.24+0.98
−0.85

Zonal harmonic strength (km2) J2R2 9489+8389
−4846 17690+8620

−6916 7706+4400
−3016

Rotation axis obliquity (◦) isp 40.2+37.5
−25.6 19.4+5.7

−5.6 84.8+11.3
−11.7

Rotation axis precession (◦) Ωsp 44.1+265.1
−28.4 245.1+18.7

−36.4 117.6+15.8
−25.8

System mass (1018 kg) Msys 0.199+0.013
−0.011 4.046+0.036

−0.036 3.451+0.029
−0.029

Primary obliquity (◦) φ 33.2+31.8
−16.9 14.0+11.0

−6.1 45.0+6.6
−4.7

Note. — All fitted angles are relative to the J2000 ecliptic plane. All system parameters are

defined at the following epochs: 2014 December 8 12:00 UT (1999 RT214), 2007 July 18 12:00

UT (Altjira), and 2000 December 21 12:00 UT (Borasisi). The fits for Altjira and Borasisi are

taken from Nelsen et al. (in prep) and Proudfoot et al. (submitted).
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Table 5.2. Non-Keplerian Orbit Solutions for the Ultra-wide Binary Detections

Parameter Teharonhiawako 2005 EO304 2006 BR284

Mass, Primary (1018 kg) M1 1.721+0.462
−0.365 1.495+0.385

−0.315 0.409+0.106
−0.088

Mass, Secondary (1018 kg) M2 0.714+0.365
−0.462 0.602+0.315

−0.385 0.163+0.088
−0.106

Semi-major axis (km) a 27589+121
−126 69433+317

−377 25256+160
−169

Eccentricity e 0.2487+0.0020
−0.0020 0.2147+0.0021

−0.0018 0.278+0.0053
−0.0042

Inclination (◦) i 127.02+0.58
−0.65 12.54+0.33

−0.37 55.35+0.67
−0.66

Argument of periapse (◦) ω 302.64+1.51
−1.20 209.33+2.44

−2.40 13.78+0.58
−0.57

Longitude of the ascending node (◦) Ω 36.25+0.73
−0.80 258.61+1.11

−1.13 41.60+0.68
−0.76

Mean anomaly at epoch (◦) M 275.55+0.85
−1.04 276.42+1.52

−1.62 182.21+0.70
−0.71

Zonal harmonic strength (106 km2) J2R2 1.98+1.73
−1.15 24.90+14.34

−9.24 3.46+2.43
−1.65

Rotation axis obliquity (◦) isp 126.7+19.3
−30.8 59.2+16.0

−20.4 96.4+24.7
−18.6

Rotation axis precession (◦) Ωsp 298.8+34.2
−59.5 166.4+24.0

−27.1 119.4+223.1
−95.1

System mass (1018 kg) Msys 2.434+0.028
−0.028 2.096+0.030

−0.029 0.572+0.008
−0.008

Primary obliquity (◦) φ 71.2+10.6
−18.8 61.1+15.0

−20.4 71.8+13.2
−21.4

Note. — All fitted angles are relative to the J2000 ecliptic plane. All system parameters are

defined at the following epochs: 2001 March 31 12:00 UT (Teharonhiawako-Sawiskera), 2005

January 29 12:00 UT (2005 EO304), and 2009 June 17 12:00 UT (2006 BR284).
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Figure 5.2 Corner plot for the 1999 RT214 non-Keplerian orbit fit. The best fit in the MultiMoon

non-Keplerian fit corresponded to a χ2 of ∼9.5 a significant improvement over the Keplerian model

(χ2 ∼18). The system mass (Msys) is plotted–instead of individual masses–to better show parameter

correlations. Parameters correspond to those shown in Table 5.3, with the final parameter (φ )

corresponding to the primary obliquity with respect to the mutual orbit.
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Figure 5.3 Corner plot for the 2005 EO304 non-Keplerian orbit fit in the style of Figure 5.2. The best

fit in the MultiMoon non-Keplerian fit corresponded to a χ2 of ∼105 a significant improvement

over the Keplerian model (χ2 ∼118).
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Table 5.3. Upper Limits on Non-Keplerian Motion

Name/Designation Mass J2R2 1σ upper limit J2R2 3σ upper limit

(kg) (km2) (km2)

Logos-Zoe 0.444+0.011
−0.011 91453 322373

}Ká, gára-!Hãunu 2.172+0.134
−0.120 42290 134986

2000 CQ114 0.545+0.009
−0.008 165230 642992

2001 XR254 4.052+0.087
−0.077 67124 221786

1999 OJ4 0.407+0.008
−0.008 7538 19482

2001 QW322 2.037+0.031
−0.030 64431523 184399508

2003 QY90 0.517+0.028
−0.029 90188 243183

2003 UN284 1.266+0.091
−0.085 11522684 37626839

2006 CH69 1.208+0.112
−0.115 55258 171614

Note. — Mass and J2R2 upper limits are taken from our non-Keplerian orbit fits.

1σ and 3σ upper limits are defined as the 84th and 99th percentiles in the MCMC

chains.
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Figure 5.4 A summary of our non-Keplerian detections (in orange) and upper limits (in blue). Error

bars and upper limits are 1σ bounds. The gray dashed line shows the approximate resolution limit

of hierarchical triple systems with current telescopes (∼1000 km).
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Finally, we combine all our results in Figure 5.4, showing the J2R2 detections or upper limits as a

function of mass.

Typically in non-Keplerian orbit fitting literature, results are shown as only J2 (rather than J2R2).

While this is extremely useful for quick and intuitive understanding of shape/gravitational field,

it requires a definition for R. Across the literature, R is defined in a variety of ways including

volumetric radius, equatorial radius, and more. Crucially, however, any definition implicitly assumes

a shape model. Unfortunately, very little is known about the exact shapes of TNOs, as opposed to

many fairly well-characterized asteroids. To remain agnostic to any shape models, and facilitate the

exploration of arbitrary shapes, we present our results in terms of J2R2.

In addition to our 13 usable non-Keplerian fits, we also completed fits that were not generally

usable. One main concern in these fits was the presence of multiple distinct orbit solutions. The

ftting algorithm used by MultiMoon is extremely inefficient at exploring multimodal solutions, and

interpreting the outputs is scientifically difficult. The presence of multiple orbital solutions is due

to a degeneracy between J2 and mass. Since J2, in addition to causing precession, alters the mean

motion of the system, multiple orbit solutions can emerge. Similarly, another issue was the complete

lack of distinct orbital solutions. This occurs for the same reason, but is much more severe. Any fit

in which we identified systematic issues has been removed from our analysis below. In the future,

new observations of these systems will ameliorate these issues.

5.4 Shape Modeling

To inform our interpretation of the J2R2 measurements made, we have developed an analytical shape

modeling tool that can simultaneously calculate the mass, J2R2, effective diameter, and surface area,

of any shape, given a density. This allows us to explore possible interpretations of our non-Keplerian

fits using a variety of shape models. To simplify our exploration, however, we focus on two simple
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shape models representing the system as either a hierarchical triple or a contact hierarchical triple.

While both system components can certainly contribute to the non-Keplerian motion in a system,

we only model the primary. As discussed in Chapter 3, this is a justifiable assumption for most

systems.

We also neglect to model the system primaries as single monolithic objects (i.e. not hierarchical

systems). This decision is based on the high J2R2 values we find. A typical nonspherical monolithic

object in the size range we are examining will have a J2R2 ∼ 1000. Given our minimum J2R2

measurement of ∼7500, we skip modeling of monolithic objects and move straight to hierarchical

systems.

In this analysis, we represent a contact hierarchical triple by modeling the system primary as

a contact binary. We do this using a geometrical figure called a Cassinoid, which looks like a

dumbbell [96]. For reference, we display a Cassinoid in Figure 5.5. A Cassinoid is defined by

just two values, a and e, which define the overall size (a) and the width of the central ‘bridge’

(e). A Cassinoid is a close approximation to the dumbbell equilibrium figure of a rapidy rotating

strengthless body. Dumbbell equilibrium figures are well-known to describe the shapes of a variety

of astrophysical systems including contact binary stars [97], and, importantly, contact binary

asteroids [?, 96, 98, 99]. While a Cassinoid is not the perfect shape to match the morphology of a

contact binary (see, for example, Arrokoth), we view it as a good starting point for analysis. Its

simple algebraic definition and two governing parameters make it extremely amenable to simple

shape modeling.

To model a hierarchical triple, we simply approximate the primary as two spheres with radius

r and separation a. Although this neglects deformation of the two components from either their

intrinsic shapes of tidally-induced bulges, the majority of the effective J2R2 of a compact binary is

due to the components’ separation. For an initial analysis, such as this, we find this simple model to

be completely adequate.
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Figure 5.5 A Cassinoid of size a = 150km and neck width parameter e = 1.01. Altering a changes

the overall size, but does not alter the fundamental shape. Altering e changes the width of the

neck, where e = 1.0 marks the transition from a single object to two separated object. A Cassinoid

closely matches the dumbbell sequence of equilibrium shape models that describe a rapidly rotating

strengthless body [96].
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Our shape modeling tool relies on the popular software, Mathematica. Given a defined shape

model, the tool calculates the total volume and surface area using numerical integration. This allows

for a calculation of mass (given a density), effective diameter, and surface area (or radius of the

surface area equivalent sphere). J2R2 is then found by calculating the moments of inertia of the

body, again using numerical integration. By using this tool, along with a non-Keplerian orbit fit,

plausible shape models can be generated and explored. Our process relies on first finding plausible

shapes that can match the measured J2R2. Since the J2R2 of a shape does not depend on density, we

can then constrain the density that shape would need to match the measured mass. If that density is

implausibly low, we can rule out that shape model.

Using this technique, we can model the system architecture of our sample of wide CCKBBs.

First, we start by modeling 1999 RT214 as a contact hierarchical triple. Using the Cassinoid shape

model with e = 1.01 (see Figure 5.5 for illustration of the shape), we find a minimum size a of

∼120 km based on the lower bound of the J2R2 measurement. Given the size of this Cassinoid and

the mass measurement in Table 5.3, we find the maximum density of all compatible Cassinoids is

∼100 kg m−3. Although uncertainties in the non-Keplerian fitting are relatively large, propagating

them through our analysis does not change the minimum density of the Cassinoid significantly.

In fact, since we already start our analysis using the lower bound on J2R2, the densities of most

other compatible sizes are substantially lower. Given this tiny density, we find the Cassinoid shape

model (i.e. the contact hierarchical architecture) to be inconsistent with our measurements. As an

alternative, we can model the system as a hierarchical triple. The mass and J2R2 constraints are

consistent with a central binary composed of two objects ∼30 km in radius, separated by 200-400

km, when assuming a density of 500 kg m−3. For 1000 kg m−3, the radii are ∼25 km.

Given these two shape models, the hierarchical triple model is far more realistic. Indeed, the only

known hierarchical triple Lempo, has a very similar separation (as measured in primary radii) [88].

The compact binary (at the center of the hierarchical triple) is also very similar to other close
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binaries discovered by occultations [100] and imaging from the New Horizons spacecraft. Given our

modeling, as well as the knowledge that similar systems are currently known in the transneptunian

region, we believe our analysis indicates that 1999 RT214 is a hierarchical triple. Our analysis shows

that the system is well within the undetectable regime of current telescopes.

Repeating a similar process for Altjira, when assuming a contact hierarchical triple architecture,

we find a minimum size (a) of ∼180 km, given the Cassinoid shape model. This yields a maximum

density of 500 kg m−3. While this sounds more reasonable than the previous case, most of the

probability mass (in the J2R2 and mass posteriors) would impute a far lower density. Given the

median value of J2R2, the density for this model would be closer to 200 kg m−3. Assuming a

hierarchical triple model, the primary would consist of a compact binary with separation of 300-450

km. For a density of 500 kg m−3 (1000 kg m−3), the two components would be ∼85 km (∼70 km)

in radius.

Selecting between these models is more difficult than the previous case. The presumed densities

of the contact hierarchical triple solution are quite low, but are not completely unrealistic. Indeed,

comets are known to have similarly low densities [101, 102]. In contrast, however, typical TNOs in

a similar size range tend to have somewhat higher densities of 500-1000 kg m−3 [103]. As most of

the probability mass implies quite low densities, we slightly prefer a hierarchical triple model of the

system, but acknowledge that a contact triple is possible. In Nelsen et al. (in prep), MultiMoon was

used to explore the hierarchical triple interpretation in more detail. They used a three-body model

of the system in an attempt to fit the astrometry of the third, outer body. Excitingly, they found that

a three-body model produced an excellent overall orbit fit, similar in quality to the non-Keplerian fit

we reference in Table 5.3. They also found that viable system architectures were typically stable

over the course of ∼20 years. Stability may be a concern with the system we describe here, as

the two components are only separated by a few primary radii. When compared with 1999 RT214,

Altjira is dynamically tighter as, although it is more widely separated in absolute terms, the relative
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separation is less. Future work should examine the long-term stability of these hierarchical triples

as their stability is quite poorly understood [104]. Insight from binary star literature may also prove

helpful in understanding these systems’ stability (e.g., [105]).

Lastly, we use our shape modeling tools on Borasisi. Under the contact triple model, and using

the same Cassinoid shape, we find that even for the smallest overall size (a ≈ 115km), we find

a reasonable maximum density of >1000 kg m−3. For the median value of J2R2, we find that a

Cassinoid with overall size a = 140km yields a density of 800 kg m−3. Further exploration of this

shape model is possible, like exploring the Cassinoid neck width parameter, but we leave this to

future work. Although it seems like a contact hierarchical triple is an adequate fit, we also explore

the hierarchical triple model. The J2R2 posterior suggests a separation of 200-300 km, while the

mass posterior suggests radii of 65 km or 80 km based on densities of 1000 kg m−3 or 500 kg

m−3, respectively. While this shape model can also explain the J2R2 measurement, it is unclear if a

separation of <5 primary radii could be stable, especially given the presence of the perturbing Pabu.

Selecting between these models will require further observation of the system.

A variety of techniques could be used to confirm the results we present for these three binaries.

The most promising of which is observation of a multi-chord stellar occultation. A stellar occultation

occurs when a TNO (or binary component) passes in front of a background star, momentarily

dimming its light, in a manner akin to a solar eclipse. Simultaneously capturing these events from

multiple observing locations can place strong constraints on the size and shape of objects. Observing

an occultation of one of these binaries may reveal its system architecture in great detail. In fact,

one of the tightest known TNBs was discovered by observing both components with a multi-chord

occultation [100]. Another path to confirm these results may come from high-precision light curve

observations and modeling. A recent study proposed that Manwe-Thorondor, a resonant TNB, is

actually a contact hierarchical triple system based on detailed observations of its light curve [5].

Completing such an analysis of the systems we discuss here would be particularly informative.
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Interpreting our detections of non-Keplerian motion for our three ultra-wide binaries is much

simpler. Using a contact hierarchical triple model is completely unwarranted given the extremely

large J2R2. For example, for Teharonhiawako the modeled Cassinoid would have a size of ∼2500km,

about the size of the planet Mercury. The density would then have to be <1 kg m−3, less dense

than air. Clearly, a hierarchical triple is more warranted. Again, modeling Teharonhiawako, we find

that the minimum separation of an equal-mass unresolved component would be ∼2000 km, well

above the limit for detecting this component. Unfortunately, no such undetected component has

been found, despite several observations with high-resolution ground and space based observatories

(Keck and HST/WFC3). All four observations could have been unlucky, with the undetected

component being at or near its minimum projected separation, but this is unlikely. We find it more

likely that the detection of non-Keplerian motion is caused by systematic errors or is induced by the

Sun’s influence. We discuss the Sun’s influence in Section 5.5. The other ultra-wide binaries have

even larger measured values for J2R2, implying even greater separations for a putative undetected

component. As with Teharonhiawako, these systems has also been surveyed with high-resolution

observatories with no detection of additional components. 2005 EO304 and 2006 BR284 were even

specifically surveyed for additional components in an effort to find triple systems. As such, we draw

the same conclusion for these system.

5.5 Discussion

Recent studies have shown that hierarchical systems should be relatively common outcomes of

planetesimal formation by the SI [33, 34, 39]. Indeed, one study found that hierarchical systems

may make up a significant fraction of CCKBB systems (≳10%), after accounting for the limited

resolution of their simulations [34]. While simulations of SI-triggered gravitational collapse are still
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in their infancy, forthcoming work using high resolution simulations points towards the increased

importance of hierarchical systems [106].

On the observational side, recent work has continually pointed toward the prevalence of close or

contact binaries. Surveys of TNO light curves across a wide variety of populations have revealed that

close and contact binaries are common [48–52]. Likewise, analysis from doublet cratering seen on

Pluto and Charon by New Horizons imagery predicts that there is likely to be a very large popultation

of compact binaries [107]. Additional surveys completed from within the CCKB by New Horizons

has identified two close binaries [108]. Although not hierarchical systems, the existence of close

and contact binaries is closely linked to hierarchical systems. For example, one possible formation

pathway for lone contact (or compact) binaries is the ejection of the loosely bound component

of a triple system. This may be especially relevant for dynamically unstable hierarchical triples

where complex N-body interactions lead to ejection of the loosely bound component. Likewise,

encounters between hierarchical systems and other TNOs (or even binaries) may play a large role in

the creation of contact (and compact) binaries. Future work should closely examine the dynamics of

the hierarchical systems produced in SI simulations to understand how they are linked to the known

contact and compact binaries.

The work we have done here confirms, and extends, these results. Using our three detections of

hierarchical systems, we calculate a lower bound on the fraction of triples among the CCKBBs of

11% (3 out of 28 CCKBBs with determined orbits). Although this number is extremely uncertain

and subject to various biases, it is roughly in line with predictions from SI simulations [34].

Given the 3 detections here, our results can hardly place constraints on the SI model. But, in the

future, with more detections of hierarchical systems, it may be possible that the observations of these

systems will lead to better understanding of the SI model itself. For example, if the solid-to-gas

ratio in the disk undergoing the SI has a distinct impact on the fraction of hierarchical systems

produced, observations of these systems may play a key role in understanding the gas-to-solid ratio
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of the Sun’s protoplanetary disk. In a similar vein, the fraction of surviving hierarchical systems

may inform the dynamical environment of the solar system after planetesimal formation.

Although we put upper limits on the non-Keplerian motion of many CCKBBs, almost none

of the limits usefully constrain the system architecture, with the exception of 1999 OJ4. For this

system, the 1σ upper limit requires that the system be a compact hierarchical triple, with separation

of the central binary ≲10 primary radii. Although, since this was an upper limit, a contact binary, or

simply a nearly spherical object are viable system architectures. Future observations of all CCKBBs

should further decrease these upper limits, potentially allowing for scientifically useful limits to be

placed on CCKBBs. These future observations will also enable more detections of non-Keplerian

motion.

In addition to upper limits and the detections in the wide binaries, we also detected non-Keplerian

motion in 3 ultra-wide binaries. Given the extraordinarily high values of J2R2, we interpret the

non-Keplerian motion not as the result of the shape of a system component, but rather as the possible

result of the binary being influenced by the Sun’s gravity. For the widest TNBs, the difference in

the Sun’s gravitational acceleration between the two components can meaningfully contribute to

non-Keplerian motion. The precession rate associated with the Sun’s influence is:

ω̇ =
3π

2
Pb

P2
h

(5.1)

where Pb and Ph and the binary and heliocentric orbital periods, respectively. Using this equation,

we find that 2005 EO304 has likely precessed about 0.5◦ since it was first observed. Since the

uncertainty on the known orbit angles are ∼0.2◦, solar tides could certainly be detectable. This

conclusion hold for both the other detections in the ultra-wides.

Another possible explanation for these unusual detections is the presence of uncharacterized

systematic errors. All three of these systems have extensive datasets of ground-based observations

from low-resolution observatories. It may be possible that this introduce unwanted systematics
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into the fitting process. Future work should be dedicated to better understanding the orbits of these

systems, and what role systematic effects might take in the orbit fitting process.

5.6 Ongoing Observations

The possible discovery of hierarchical systems with non-Keplerian orbit fitting is an exciting result.

If proven correct, these systems could provide significant evidence for the SI model of planetesimal

formation. As such, we have proposed–and been awarded–a program on the HST to observe four

CCKBB systems. Three of the CCKBBs discussed here, 1999 RT214, Altjira, and Borasisi-Pabu,

are targets of this program. Currently, observations of Altjira have been completed and will inform

the analysis of Nelsen et al. (in prep). The fit we used for Altjira incorporates this new data. Figure

1.1 shows the most recent observation of the Altjira system. In the next month, three more orbits

will be dedicated to observing 1999 RT214 and Borasisi. Associated with this HST program, we

plan on updating our non-Keplerian fits with the new observations.

5.7 Conclusions

The CCKB is one of the most unaltered populations of planetesimals in the solar system, making it

the ideal laboratory to study the details of planetesimal formation. In particular, much recent work

has shown that the SI paradigm is a very promising candidate to understand the formation of TNOs

in general. In a few recent works, simulations of SI-triggered gravitational collapse have shown that

hierarchical systems may be common, although only one such example is currently known.

Given the current resolution of ground and space-based telescope, resolving hierarchical systems

is nearly impossible. At the distance of the CCKB (∼45 AU), current telescopes are limited to ∼1000

km resolution, a level not adequate to detect unresolved system components. Non-Keplerian orbit

fitting, however, can surpass this. The strongly nonspherical gravitational field of the hierarchical
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component of one of these systems should be easily detectable in the orbit of the third, more widely

separated component. In this work, we survey 16 of the 28 well-characterized CCKBBs and find

that six systems have detectable non-Keplerian motion. In addition to our six detections, we also

place upper limits on the existence of non-Keplerian effects in nine other systems. These upper

limits are generally uninformative, but future observations may continue to lower these limits.

Using a simple shape model of a hierarchical system, we explore the possible system architec-

tures of these six systems. The modeling reveals that three systems are consistent with hierarchical

systems (1 contact hierarchical triple and 2 ‘regular’ triples). The other three systems are consistent

with having their orbits altered by the Sun’s gravitational influence. Future studies should character-

ize the dynamics, formation, and long-term stability of all our studied systems to further understand

whether these results are realistic. Likewise, observations, particularly stellar occultations, will

enable confirmation (or rejection) of these results.

We interpret the existence of these three hierarchical systems as evidence for the SI model of

planetesimal formation. In the future, detections like these may enable further understanding of the

details of the SI model or the environment of the early solar system.
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