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ABSTRACT

Stability, Longevity, and Regulatory Bionetworks

Christian N. K. Anderson
Department of Physics and Astronomy, BYU

Doctor of Philosophy

Genome-wide studies of diseases and chronic conditions frequently fail to uncover marked or
consistent differences in RNA or protein concentrations. However, the developing field of kinetic
proteomics has made promising discoveries in differences in the turnover rate of these same proteins,
even when concentrations were not necessarily different. The situation can theoretically be modeled
mathematically using bifurcation equations, but uncovering the proper form of these is difficult. To
this end, we developed TWIG, a method for characterizing bifurcations that leverages information
geometry to identify drivers of complex systems. Using this, we characterized the bifurcation
and stability properties of all 132 possible 3- and 22,662 possible 4-node subgraphs (motifs) of
protein-protein interaction networks. Analyzing millions of real world protein networks indicates
that natural selection has little preference for motifs that are stable perse, but a great preference
for motifs who have parameter regions that are exclusively stable, rather than poorly constrained
mixtures of stability and instability. We apply this knowledge to mice on calorie restricted (CR) diets,
demonstrating that changes in their protein turnover rates do indeed make their protein networks
more stable, explaining why CR is the most robust way known to extend lifespan.

Keywords: bifurcations, protein turnover, stability, regulatory network, topological boundaries,
longevity, calorie restriction
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Chapter 1

Introductory material

1.1 The origin story of this thesis

The idea behind this dissertation came to me shortly after Dr. Price had introduced me to Dr.

Transtrum, and both had generously spent hours explaining to me the implications of the powerful

tools they had developed. Dr Price was very nearly the world’s sole practitioner of kinetic proteomics,

having pioneered and perfected a technique to measure the turnover of thousands of proteins in

a single experiment, which was revealing profound differences in the effort required by sick or

senescent cells to maintain the normal protein levels that so frustrated generations of GWAS

scientists searching for “the cancer gene”. Dr. Transtrum had realized that information geometry

could be used to identify which parts of a complex system were driving changes in state, and

demonstrated that universally all real-world systems had a great many parts that were redundant

(“sloppy”) at least at the scale and condition we were studying them.

It suddenly occurred to me that together, these two tools might go far in explaining the Holy

Grail of Systems Biology: why does a healthy cell suddenly change and become cancerous or

senescent? The typical reason for some of our more interesting bifurcating mathematical systems

1
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to change state is an increase in rate constants, as in the logistic map where a period-doubling

bifurcation cascade leads to chaos in a figure so iconic it frequently appears in TV shows and

movies without explanation (Fig. 1.1).1 Could a change in a cell’s state be driven by increasing

rate constants? Better yet, could Dr Price’s new kinetic proteomic methods prove that rates were

increasing in sick cells, and could Dr Transtrum’s sloppy modelling methods prove that this drove

cells through a bifurcation into a new basin of attraction?

Figure 1.1 The iconic logistic map. [1]

I pitched this idea to Dr Transtrum, and in about

20 minutes he sketched out the entirety of my thesis

on a whiteboard. His outline convinced me that while

I might have the biological knowledge to make head-

way, I certainly needed to learn a great deal more

math, which is how I ended up in his lab and why this

biologically flavored dissertation says “Department

of Physics and Astronomy” on the cover. But what

makes these tools different than others, how did they

come together to prove this theory, and what does it imply about the future of human health and

longevity?

1.2 Analytical tools: a gentle introduction

First, I provide a relatively high-level overview of each of the three tools that needed to be brought

together for this study. I anticipate that people reading this will already have expertise in one or

two of the necessary fields (bifurcation theory, information geometry, and kinetic proteomics), but

would benefit from a general, and slightly less technical introduction to the others. A more technical,

1For example, in the Emmy-nominated The Lost Room (2006).
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but still high-level, overview of the relevant fields can be found in the following section of the

Introduction (1.3), and far more technical and specialized introductions can be found in the first

section of each of the corresponding chapters.

1.2.1 Bifurcations and Network Theory (for non-mathematicians)

Most mathematical formulae exhibit only one behavior when their parameters are changed. The

standard formula for a line, y = mx+b can move up and down with changes to b, and will become

steeper or shallower with changes to m, but will never be anything but a straight line. If we assume

that y is some measurable quantity and x is time, then this can be recast as an ordinary differential

equation (ODE), where we would say that ẏ = m; y0 = b. No matter how we change the parameter

values m and b, y will never display any behavior other than a smooth change at rate m from starting

point b. We say the system’s behavior is globally topologically homogeneous, because there is

always a way to transform any straight line into any other straight line by smoothly adjusting b or m

or both. That is, topological homeomorphism exists to turn any one line into any another.

However, nonlinear equations often exhibit more than one kind of behavior. The system

ẏ = ry− y3 is an interesting example (Fig. 1.2). While r < 0, no matter the initial value of y, it will

approach 0 as time goes on; the topology is that of a global attractor. However, when r > 0, this

attractor suddenly splits into two at ±
√

r, and which value y is drawn to will depend on which side

of the separatrix at y0 = 0 the system starts at. While the system is homogeneous for any value

above r > 0, because we can smoothly move the attractors nearer or farther apart by adjusting r,

there is no way to continuously transform two attractors into one, nor vice versa. This bifurcation

of attractors is a topological inhomogeneity, and because it is the most famous such example, any

boundary for which no homeomorphic transformation exists is referred to as a bifurcation even if it

doesn’t result in a doubling. For example, a “saddle-node” or “blue-sky” bifurcation occurs when

an unstable point suddenly becomes stable. In fact, while there are infinite numbers of equations



1.2 Analytical tools: a gentle introduction 4

−2.0 −0.5 0.5 1.5

−
2

−
1

0
1

2

time (log scale)

y
(t

)

r = −1

−2.0 −0.5 0.5 1.5

−
2

−
1

0
1

2

time (log scale)

y
(t

)

r = 0

−2.0 −0.5 0.5 1.5

−
2

−
1

0
1

2

time (log scale)

y
(t

)

r = 1

r

y

One stable
Two stable

One unstable

B
if
u
rc

a
ti
o
n
 P

o
in

t
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r depending on the starting value of y(0).

that show multiple behaviors, mathematicians have been able to reduce nearly all of them down to

just five “normal form” classes (or combinations of them), much the same way there are an infinite

number of equations that produce straight lines (e.g., 5y−2x = 4 or y
x = 8− 2

x or 9y = 27x +3) but

all of them can be reduced to the slope-intercept form y = mx+b.

A

B

Figure 1.3 A
simple network

ODEs are often used to describe protein interaction networks as well. For

example, we might say that protein A is being constituitively expressed at rate

α (or Ȧ = α in ODE-ese), but also broken down when it comes in contact with

a proteosome, an event that is more likely the more A there is, so Ȧ = α−δA.

Let us add that A autocatalyzes itself, so Ȧ = α + kAAA− δA. So far so good;

mathematically it’s fairly easy to say that this system has an equilibrium (Ȧ = 0)

when A = α

δ−kAA
However, we are interested in protein networks, not isolated

behavior. To this end, now let us say that there is a second protein, protein B,

which is activated by A and also represses it. This system (Fig. 1.3) is almost as
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simple a network as possible,2 and can be represented by the coupled ODEs:

Ȧ = α−δA− kBAAB+ kAAA

Ḃ = α−δB+ kABAB
(1.1)

Despite the cartoonish simplicity of the system, it is very difficult to say simply by inspection if a

bifurcation exists in this system or not. In fact, there are several: by adjusting the parameters, the

system can be unstable with A and B increasing without limit, or only B can increase while A is

reduced to nothing, both can be reduced to nothing, or the two can reach an equilibrium, or the two

can oscillate indefinitely. [4]

Because bifurcations are fascinating and among our best models at generating qualitatively

distinct phenomena, but difficult to recognize or generate from formulae, many sophisticated

methods have been developed to detect and analyze them (see Sec 1.3 and Sec 2.3.1 below).

However, all rely on substantial mathematical skill applied to each unique case. Because a method

for understanding bifurcations was needed for thousands of network shapes and millions of instances

of protein-protein interactions, a method that could be applied automatically without human

intervention was needed. This was the first great challenge of the thesis, and is the subject of

Chapter 2.

1.2.2 Information Geometry (for non-physicsts)

IG is a powerful and astonishingly under-utilized tool for understanding what the “important parts”

of a system are. Like many tools, it is more readily understandable when applied to a problem: it is

easier to explain what a hammer is for to someone who already has a nail.

2In formal logic, this network is very similar to the Liar’s Paradox, which can be phrased as "A: Statement B is true;

B: Statement A is false". In this case, we would modify the first statement to read "A: This statement and B are both

true". One resolution to this paradox is to give different levels of credibility to the statements, which is analogous to

assigning different values to the interaction constants.
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Figure 1.4 The example network above will run to equilibrium values where A (black) is higher than

B (blue), though the initial conditions affect the trajectory. Experiment #1 has initial concentrations

of 3.0, #2 starts at 0.07, while #3 begins at 1.2 and 0.3 for A and B respectively. Experiment #4 is

observed when the system has reached equilibrium, so the initial concentrations do not matter.

Returning to the simple network in Fig. 1.3 and Eq. 1.1, we see the system has five parameters:

the constitutive expression rate (α), the degradation rate (δ ), autocatalysis rate of A (kAA), and the

effect sizes of A and B on each other (−kBA,kAB). Which of these parameters is “most important”

clearly depends on the context. For example, if very large amounts of A and B are present far in

excess of equilibrium values, then the baseline expression α is going to be (temporarily) masked

by their degradation. Conversely, if almost zero A and B are present, then none of the density-

dependent parameters matter very much, and the system will be (temporarily) driven exclusively

by α as all the other parameters are being multiplied by a very small number. This constitutes the

“information” part of IG: is α important or not at the moment?

The “geometry” part comes from picturing the effect of adjusting parameter values on how

well the model matches your data. Imagine that the true parameter values for the system are
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α = δ = .1, kAA = .05, kAB = kBA = .01, so that the proteins’ effects on each other are relatively

weak. Starting the system at different initial concentrations will affect the trajectory, but the system

will always end up at the same equilibrium values with A > B as t→ ∞ (Fig. 1.4). An experiment

where A and B both start at high concentrations will be dominated by degradation early, so we

expect errors in the δ parameter to be more costly than errors in α . Simulating this network

with A0 = B0 = 3.0 shows that small changes from the correct parameter values indeed result in

deviations from the correct concentrations at t=0.5 of [2.932, 2.945], but these error costs increase

much faster in the δ direction than the α direction (Fig. 1.5a). The relative rate of increase in the

costs is quantified using the Fisher Information Matrix (FIM). The details can be found in Sec. 2.3.2,

but for now suffice it to say that the FIM quantifies the curvature of the cost surface3 in every

possible direction. We calculate curvature (second derivatives) not slope (first derivatives) because

it is assumed calculations are centered where the cost has a local minimum (the best fit), and at

this point the slope is zero in all directions. Directions with high curvature increase costs rapidly,

indicating that small changes in those parameter values will result in poor model fits, while those

with small changes can be changed a great deal without affecting fit. This sounds like a good thing,

but actually means these parameters are poorly constrained by the data, since even large errors

might not be detectable. These directions are called “sloppy”, and are ubiquitous across biological,

physical, and information systems. [5–7]

An important side note here is that the FIM itself quantifies curvature along parameter axes

(e.g., ∂ 2A
∂α2 ) or combinations of two parameter axes (e.g., ∂ 2A

∂α∂δ
). However, the greatest and/or least

curvature might not align with these directions. For example, in Fig. 1.5 the canyon floor lies at a

slight angle to the α direction. Fortunately, a standard tool of linear algebra called singular value

decomposition provides a rotation of the FIM so it aligns with the curvatures in order from steepest

3Actually, the FIM measures the curvature of the model manifold in dataspace, but the two are coupled. That is, a

manifold with a high curvature in one direction will have a highly curved cost surface in the same direction.
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Figure 1.5 (A) Attempting to fit the observed data to Experiment #1 with slightly wrong parameter

values is more costly in the δ than the α direction. (B) A graphical interpretation of the Fisher

Information Matrix, using eigenanalysis to represent the entries. For Experiment #1, note that

one direction is far more sensitive than the other (bars ∼ e6.5 units apart, a ∼700x difference),

and this direction aligns mostly, but not entirely, along the δ (blue) axis, corresponding to the

slightly-rotated steep canyon sides in (A), and the importance of degradation (δ ) over synthesis (α)

at high concentrations.

to shallowest (the eigenvectors), and simultaneously provides a numeric measure of how curved

each of these directions are (the eigenvalues).

This is reflected in the FIM, which indicates for Experiment #1 that the axis of change is 90%

δ and 10% α , and costs accrue orders of magnitude more rapidly in this direction than others

(Fig 1.5B). That is, the difference in eigenvalues (the λ s of FIM) tells us the sides of the canyon are

∼ 700 times steeper than the floor. Similarly, when samples are taken early in Experiment #2, the

observations are driven strongly by α . The mixed conditions of Experiment #3 mean both α and
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δ are relevant. Finally, the long timescale of Experiment #4 means we are measuring equilibrium

concentrations, so both α and δ are relevant because both shift the equilibrium. These last two

experiments illustrate a crucial and remarkable power of IG: they have the same separation of

scales between the leading and lagging eigenvalues as the first two experiments. This means they

are every bit as stiff (the canyon walls are just as steep) in one direction, it just happens to not be

the direction of α or δ but a mix of the two. This tells you that the system can be rewritten with

different variables that will better match the local geometry of the model than the one we started

with, even though we have no idea what this parameter might be (though we know it must include

both α or δ ) much less having actually transformed the equations into this unknown coordinate

system.

Note that, for the sake of simplicity, we have fixed the three k parameters and only considered

changes to α and δ . This lets us draw 3D cost surfaces (the full system would require a 6D image)

and helps think clearly about the effects of each parameter on the experimental results. Ordinarily

an IG analysis of this system would produce a 5x5 FIM, whose five eigenvalues and eigenvectors

would quantify the contributions of each of the five parameters of the ODE system in Eq. 1.1.

One of the main uses for Information Geometry is model reduction. Across disciplines, FIM

analysis often informs researchers that some parameter directions are 10 or more orders of magnitude

less important than the leading parameter direction, and so can be removed from the model (if

mathematically possible) without appreciably affecting accuracy. [8] This tendency of almost all

models to be locally reducible suggests a universality class among natural processes with built-in

redundancy. [9, 10] Overall, IG seems not only to be an interesting tool, but also a case of Wigner’s

“unreasonably effectiveness” in understanding drivers of real world phenomena. [11]
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1.2.3 Kinetic Proteomics (for non-biochemists)

The understanding that proteins break down and need to be replaced goes back to antiquity, with

hints of the idea of “dynamic permanence” attributed to Alcmaeon by Aristotle (who expanded on

them) and also in the writings of “father of medicine” himself, Hippocrates. [12,13] The knowledge

that proteins turn over at different rates, and sometimes the same protein turns over at different

rates in different tissues, was also inferred centuries ago. [14] Yet as recently as 20 years ago,

almost no study had attempted to measure these rates for individual proteins, with the exception of

well-understood and easily acquired proteins like albumin, insulin, myosin, and collagen; instead,

researchers focused on whole-body turnover rates, and speculated about movement between “bound”

and “free” amino acid pools in thousands of papers across almost 50 years. [15]

This provided a highly pixelated and incomplete view of protein dynamics, and everyone knew

it, but proceeding to the next level of complexity seemed intractably difficult. For one thing, there

are in the neighborhood of 25,000 different proteins in every human cell (at least potentially), and

separating them is tedious when it is possible at all. Worse, the overwhelming majority of them are

extremely rare in almost all cell types, (six proteins make up > 90% of all blood serum proteins)

making the quest to isolate most proteins like finding a few particular straws of hay in a very large

hay stack. For another, the interactions between proteins are notoriously difficult to identify. While

modern techniques like co-immunoprecipitation assays make it possible to find which proteins

routinely form complexes, it is generally not possible to determine from this alone who is regulating

who, and if this interaction is up- or down-regulating. As a result, the Protein-Protein Interaction

(PPI) database StringDB has 12 million interactions among human proteins, with similar results

for the high-quality Harvard BioPlex 3.0 database, [16] while RegNetwork’s extraction from the

Kyoto Encyclopedia of Genes and Genomes (KEGG)–the largest index of directional and signed

regulatory interactions–has just 4,000 listed interactions, and a similar number for mice. [17] Thus,

even if it was possible to extract proteins, their regulatory context would remain murky.
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However, this started to change around 2000 with the advent of tandem mass spectrometry

systems capable of identifying of the individual proteins making up a heterogeneous bulk sample.

The full procedure is lengthy, but at its core it works by exposing the sample to a medium-energy

laser, which fragments and ionizes the proteins. The resulting charged gas is then passed through a

magnetic field, where the mass:charge ratio (m/z) causes different fragments to travel to a detector

at different speeds. The fragment size is determined precisely using the time to reach the detector

for quantitative time of flight (QToF) systems, or a combination of release time and angular velocity

for OrbiTrap systems. Because each amino acid has its own unique mass and number of sites

where deuteriums can replace hydrogens (thereby increasing the mass), isotope ratios and fragment

identity can be derived rapidly and unambiguously.

Though considered an exotic application by almost all MS/MS labs, who were more comfortable

identifying far more homogeneous inorganic mixtures, [18] the first proof-of-concept experiments

proved unexpectedly and undeniably robust. The first attempt was isotope-coded affinity tags

(ICATs), which involved coupling labeled cysteine with biotin, but had the disadvantage of having

an intermediate reaction that could bias the results, and a bit of metabolic scrambling as cysteine

was converted into other amino acids rather than being directly incorporated into proteins. [19]

Both of these problems had already been solved by Stable Isotope Labeling by Amino Acids in Cell

culture (SILAC), [20] though it took four years to publish the proof. [18] Further developments

sped the process up, so that it was possible to use SILAC to quantify turnover across the entire yeast

proteome in a single experiment by 2008, [21] while deuterium-labelled water had already been

integrated into a software pipeline to simultaneously calculate turnovers in thousands of proteins by

2011. [22, 23] This method introduces 7% 2H2O into a model organism via injection (or growth

medium for microorganisms), which is distributed through the body in minutes, then provisions it

with similarly deuterated water. The use of hydrogen isotopes is useful since it allows proteins to be

marked multiple times (providing statistical robustness), is as ubiquitous in the sample as water, and
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can be distinguished from isotopes of other elements due to deuterium’s unusually large quantum

mass defect (a matter of a few thousands of an a.m.u., yet still detectable on modern Orbitrap

MS/MS machines), all without interfering with ordinary cellular metabolism. Today, sections of

a single tissue–e.g., a brain–can be analyzed serially or in parallel to compare turnover rates of

thousands of proteins within the same individual’s organ, [24] a specificity that must have seemed

impossible 20 years ago.

Full organism proteomics is still challenging due to the hyperabundance of a few proteins

“oversaturating” the MS/MS detectors and making the detection of rare species challenging, yet

it is already on the horizon with methods like boxcar sampling. Similarly, progress in mathemat-

ical analysis and software have made studies in humans feasible, where provision of isotopes is

necessarily more erratic than for laboratory animals.

1.3 Synthesis and Overview

Largely because these techniques are so new, interdisciplinary attempts to use two of them in tandem

have not yet been attempted formally, at least widely. However, hints already existed that such a

fusion of methods would be possible.

1.3.1 Detecting bifurcations

Sethna’s group had recently drawn a tight connection between information geometry and the

renormalization group. [25] Because bifurcations are associated with the renormalization group,

[26–28] this suggested that there was a link between the two. Removing the renormalization

“middle-man” was the task of Chapter 2, where I created a new analytical tool called TWIG (for

time-widening information geometry) as a nod to the tree-like structure of bifurcation cascades.
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As noted briefly above, this represented a substantial improvement over existing analytical

methods. The two major alternatives to RG analysis both involve substantial pen-and-paper work

by mathematicians. Central Manifold Reduction involves making linear approximations to the

system at the bifurcation point, whose relative slopes can reveal information about the system’s

stability. [29, 30] Similarly, methods involving Lyupanov exponents are able to characterize the

variability of different parameters around the bifurcation, which is often (but not always) correlated

with instability. [31, 32] Unlike these methods, TWIG is able to not just characterize the instability

around a bifurcation point, with hints about which parameters are responsible, but actually determine

how many parameters are involved in an optimal reparameterization of the model (the codimension),

which bare parameters are involved in this optimal reparameterization and to what degree, the

direction of the bifurcation hypersurface (the separatrix), and provides a self-check to make sure the

analysis has run long enough to be valid.

1.3.2 Stable regions in real networks

Strides had also been made in the field of protein network analysis when it was realized that in

order for a network to be unstable, pieces of it needed to be unstable as well. This gave rise to motif

analysis, or detailed studies of subgraphs involving all the connections between a small number of

nodes of the parent graph. A leader in the field of motif analysis was Uri Alon, who wrote a series

of increasingly important papers through the early 2000s, culminating in a textbook summarizing

and synthesizing the entire field. [33–38] The theme of this analysis was that while any interaction

topology was technically possible, “evolution... converges again and again onto a defined set of

circuit elements that obey general design principles...a rather small set of basic building-block

circuits.” He called these overrepresented topologies motifs, and posited that “whereas many circuit

designs can perform a given function on paper, we will see that very few can work robustly in a

cell.” [38]



1.3 Synthesis and Overview 14

Robustness proved a slippery concept to define mathematically, for Alon and colleagues in

systems biology as it had in ecology a few decades earlier. [39] Fortunately, network theorists (some

of them at BYU) had worked out an unassailable definition provided the equations for the network

could be fully specified and the equilibrium calculated. Their method was called spectral analysis,

and involved calculating the eigenvalues of the system’s Jacobian at the equilibrium; provided the

largest was below a minimum threshold (what that value was depends on the method by which the

system is iterated) the system was stable, but unstable if larger. [40] We combined motif-centered

thinking with spectral analysis to break the intractable problem of a cell’s globally stability into

analyzable chunks of subgraphs of 3- or 4-nodes each. We sampled 1000 parameter values for

each of the 132 possible 3-motifs and 22,662 4-motifs to determine stability metrics for each one

across the range of biologically plausible variables, an undertaking that took over 3 years of CPU

time on the BYU supercomputer cluster (Chap. 3). Unlike the relatively small number of behaviors

shown by normal-form bifurcations–but like the simple 2-motif example above (Fig. 1.3)–these

small networks had many bifurcations and a surprisingly large volume of biologically possible

parameter space where they were unstable. This suggested that protein networks were potentially

under constant threat of breaking down, and must have some control to prevent this.

Armed with TWIG and the stability analysis of all possible small networks, we were now able

to investigate bifurcations in the real world. As noted above (Sec. 1.2.3), there are huge databases

of protein-protein interactions because it is relatively easy to experimentally determine that two

proteins clump together; however, there are few databases that tease apart who is regulating who

in the clump, and if it is positive or negative regulation. For this reason, we were forced to use

the relatively small RegNetwork database of approximately 4,000 interactions of 1,000 proteins in

humans and a parallel network of the same size for mice. [17] Building on a substantial cottage

industry of software to count motifs, [41, 42] we discovered millions of motifs from these links

(Chap. 4; Table 4.1). As Alon had promised, many of these motifs were vastly over-represented
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relative to literature-derived null expectations. [43] However, this over-representation did not seem

to be correlated with any of our measures of stability (Table 4.2).

We considered several reasons for this unexpected finding, eventually deciding that a need for

adaptability was apparently trumping the need for stability. However, we realized our analysis

assumed network bifurcations were similar to those of the normal-form bifurcations in Fig. 1.2:

a well-defined and smooth boundary between two behaviors tidily partitioning parameter space.

However, our investigation of higher dimension and chaotic systems in Chap. 2 (especially Sec. 2.6)

showed that some parameter spaces were not like this at all; their boundaries were so convoluted as

to be fractal and breakdown the very concept of a “behavior region”. Careful scrutiny of the stability

data from Chap. 3 made us realize that some motifs were far more well-partitioned than others

(Fig. 5.6), and these well-partitioned motifs had a very strong tendency to be over-represented in

real world networks (Fig. 5.7). It wasn’t the amount of stability in the parameter space that mattered,

it was how well-bounded that stability was that mattered.

1.3.3 Considering longevity

There were several reasons to believe that this could have implications for longevity. One of

the primary hallmarks of aging is the loss of proteostasis, [44] so processes that stabilize protein

networks should also postpone aging. One of the most robust methods to induce longevity is a

calorie restricted (CR) diet, [45–47] which was also known to decrease the rate of protein turnover

in mice. [48] We were now finally in a position to link these two concepts: was it true that CR’s

tendency to slow turnover led to proteostasis which then led to longevity? This was our task in

Chap. 5, where we found that the stability was indeed increased in mice on calorie restricted diets.

The increase in stability, though modest, was highly significant despite numerous challenges in

linking the turnover and network databases together, then analyzing the gappy results.
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Finally, this thesis considers the implications of the demonstrated link between longevity and

protein networks operating on the stable side of bifurcations. What does this mean for human

anti-aging treatments? Does it have implications for proximate causes of death, such as cancer or

Parkinson’s disease? What does the future for protein network stability look like?



Chapter 2

Sloppy model analysis provides bifurcation

characterization

2.1 Abstract

Bifurcation phenomena are common in multi-dimensional multi-parameter dynamical systems.

Normal form theory suggests that bifurcations are driven by relatively few combinations of param-

eters. Models of complex systems, however, rarely appear in normal form, and bifurcations are

controlled by nonlinear combinations of the bare parameters of differential equations. Discovering

reparameterizations to transform complex equations into a normal form is often very difficult,

and the reparameterization may not even exist in a closed-form. Here, we show that information

geometry and sloppy model analysis using the Fisher information matrix can be used to identify the

combination of parameters that control bifurcations. By considering observations on increasingly

long time scales, we find those parameters that rapidly characterize the system’s topological inho-

mogeneities, whether the system is in normal form or not. We anticipate that this novel analytical

17
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method, which we call time-widening information geometry (TWIG), will be useful in applied

network analysis.

2.2 Introduction

This paper provides a method for extracting bifurcation parameters from a set of dynamic equations

by combining information geometry and bifurcation theory. Both are useful for modeling multi-

parameter systems and systems with multiple regimes of behavior respectively, but together they

provide methods for data-driven analysis of a wide array of natural phenomena. By creating an

explicit connection between the information in the signal (model output) and the model parameters,

we identify the combinations of parameters responsible for topological change in the dynamics,

the codimension of the bifurcation, and the time scale necessary to resolve this information. The

information further provides the directions normal to the separatrix, which divides behavioral

regimes of the system.

Traditionally, when confronted with a high-dimensional, multi-parameter system of dynamic

equations, bifurcation analysis proceeds by attempting to simplify the system to a manageable

size. Center Manifold Reduction exploits the Hartman-Grobman theorem [29] to create a lower-

dimensional linear map in the region of a critical point that is locally accurate and is a rapid way to

determine the system stability. Shoshitaivishili extended this method to non-hyperbolic equilibria,

creating a container for critical modes to straighten out non-linear terms and, ideally, drop some

of them [30]. Such methods have been used to describe phenomena as diverse as neural network

optimization and foraging decisions in monkeys [49, 50].

A related approach is the method of Poincaré-Birkhoff normal forms. It uses appropriately

centered manifolds to analyze which nonlinear terms are essential and must remain even under

optimal coordinate transformations. Such transformations are useful, because the reduced normal-
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form equations typically have greater symmetry than the initial problem, a property that can be

exploited by many analytical tools. Though powerful, “in practice lengthy calculations may be

necessary to extract the relevant normal-form coefficients from the initial equations.” [30] Even

if such coefficients can be found, neither their interrelationship nor their relative sensitivities are

always apparent. It is often the case that some parameters differ by many orders of magnitude in

their effect on long-term dynamics, and a method that doesn’t distinguish among them is sub-optimal

for most applications.

The method of Lyupanov exponents is an admirably general tool for analyzing the global

stability of a system. Unfortunately, it provides little information about which specific parameter

combinations lead to system (in)stability. For the purposes of bifurcation analysis, it is therefore

sometimes paired with sensitivity analyses based on the global sensitivity metrics of Sobol’ [31].

These measures, along with useful extensions such as FAST (Fourier amplitude sensitivity test)

and Importance Measures [32, 51, 52], are able to determine exactly how much of a model’s

variability is due to each of its parameters. While this often works in practice, there are two

potential pitfalls in this approach. First, it assumes that the parameters responsible for variability

are also responsible for instability, which is not always the case. Second, if the bifurcation is caused

by combinations of many parameters (as frequently happens), then variability will often be high

across all these parameters even though the bifurcation itself has a low codimension. In other

words, a low-dimensional bifurcation surface generally cuts diagonally across parameter space

unless appropriately reparameterized. Once such a transformation is applied and the system is

reduced to a normal form (see Sec. 2.4), then the codimension should be apparent, but finding that

reparameterization is still likely to be cumbersome, if not impossible, in closed-form. Just one such

transformation can require several papers, as in the case of high-dimensional diffusion-activated

processes from Kramers, through Langer, and finally to one dimension, derived using iterations of

singular value decomposition by Berezhkovskii [53].
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A third, independent line of analysis comes from Renormalization Group (RG) methods, which

are usually applied to study universal power-laws near critical points. Feigenbaum [54] was the first

to note such universalities in bifurcations of the discrete period-doubling type, a result extended

by himself and others until it included all major bifurcation types [27, 55–58]. Working from

the other direction, scientists investigating critical phenomena with RG (e.g., many behaviors of

quantum chromodynamics) have discovered bifurcations, and used the tools of one to analyze the

other [59,60]. A remarkable study found deep equivalence between RG transformations and normal

form theory, showing that the difficult transformation of an ODE system into a normal form could

often be accomplished to at least second order by applying three RG transforms [28].

More broadly, universal scaling laws and RG analysis of critical points is often associated

with emergence and the systematic irrelevance of many degrees of freedom. Recent work has

extended these ideas to a broader class of systems known as “sloppy models” [5, 8, 9, 61, 62]. The

moniker “sloppy” is meant to convey that these systems have a few combinations of parameters

that are many orders-of-magnitude more influential than other parameter combinations. More

precisely, one unit change in a “stiff” parameter direction has as much influence as a million or

more unit change in a different “sloppy” direction. Sloppy model analysis relies heavily on the

techniques of information geometry [6, 61, 63] and in this paper we use the terms interchangeably.

These techniques have motivated novel reduction algorithms by removing unimportant, sloppy

parameters [63–65]. Recent work [25] demonstrates that as coarse-graining of RG models proceeds,

the flow causes information of “relevant” parameter combinations to be maintained while “irrelevant”

parameters are compressed and become sloppy. These ideas share a common goal with bifurcations

analysis in which many diverse systems are collected into a few universal, normal forms. This

paper closes the loop, showing how information geometry applies directly to bifurcation analysis

without passing through the “middleman” of renormalization group theory. The usefulness of such
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an analysis, which we call Time Widening Information Geometry (TWIG), also circumvents the

need for the other types of analyses described above.

In this work, we demonstrate similar notions of “relevant” and “irrelevant” parameters near a

bifurcation using the formalism of information geometry and sloppy models. The intuition behind

this approach is as follows. Topological inhomogeneities in the flow field produce trajectories

containing different information on either side of a bifurcation. For example, on one side of a Hopf

bifurcation, all trajectories collect into a central fixed point, while they flow into an orbit (limit

cycle) on the other side. TWIG works by measuring the information content in these trajectories

at increasingly long time scales and identifying those combinations of parameters to which the

trajectory is most sensitive. At long time scales, these are the parameters responsible for the

bifurcation, while parameters that cause only local variability have less impact.

Information geometry can be applied to complex systems from many disciplines–but especially

systems biology–to iteratively “reverse engineer” optimal statistical models by removing parameters

whose value has little influence on the macroscopic behavior of the system [8, 62, 64, 66]. However,

it was recently appreciated that such reverse engineering can be done even if the underlying system

bifurcates into qualitatively different behaviors, because the information geometry of parameters

participating in the bifurcation show a characteristic “sand dune” shape when crossing from one

behavioral state to another [67]. These results imply that if the functional form of the system is

known, it should be even easier to determine bifurcation parameters than if the system’s equations

need to be inferred.

This paper is organized as follows: In Section 2.3, we provide background information on

bifurcations and information geometry generally, and, specifically, how we conceptualize them for

the purposes of applying the latter to the analysis of the former. In Section 2.4, we show how an IG

analysis of the normal form bifurcations rapidly provides insight into the structure of bifurcations
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simple enough to be understood by other methods. Section 2.5 shows how this analysis extends to

more difficult bifurcations, the implications of which are summarized in Section 2.7.

2.3 Background and Problem Formulation

2.3.1 Bifurcations

Bifurcations frequently arise in the analysis of dynamical systems, where one typically characterizes

the flow field with special attention to any fixed points or stable oscillations [68]. Consider a

generalized system of n coupled dynamic equations, where each equation is of the form ẏ = f (y;θ),

where θ is a vector of m parameters. Small changes to any of the θi values typically result in

correspondingly small changes to the n-dimensional vector field, such as small changes to the

position of a fixed point or radius of a limit cycle. Such deformations are topologically equivalent

(meaning the number and properties of the attractors / repellers in the field do not change) and

homeomorphic (continuous with a continuous inverse). However, there may be critical parameter

values where a small change causes new fixed points to emerge from old ones, or two fixed points

to approach and be mutually annihilated, or limit cycles to be broken. Since one common form of

nonhomeomorphic transformation is the emergence of two fixed points from one, the phenomenon

is generically called bifurcation, though we discuss other possibilities below.

Several types of simple bifurcations have been identified and reduced to their simplest possible

mathematical expression. These are the so-called “normal forms" and are enumerated in the section

below. These forms are convenient starting points for analysis, since they have clearly defined rate

parameters that are unambigiously responsible for causing topological inhomogeneities. However,

even elegant mathematical descriptions of real-world dynamical systems rarely conform exactly to

one of the normal forms.
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Figure 2.1 (A) The model manifold in data space represents all values that can be reached by
changing parameters. The axes represent directions that are distorted in characteristic ways as tmax
increases. They can be contracted (irrelevant), expanded (hyperrelevant) or unchanged (relevant).
(B) Relevance can be quantified by observing the eigenvalues of the Fisher information matrix as
tmax is increased. Eigenvalues that do not change at longer time scales retain their relevance, while
those that increase or decrease become either more or less relevant.

Bifurcation parameters for physical models often do not align with the bare parameters. In the

classic example of boiling liquid, the bifurcation parameter is some combination of temperature,

pressure, salinity, and others. In general, a reparameterization to a single, unambiguous bifurcation

parameter may be possible in principle, but often requires either substantial additional physical

insight, or mathematical sophistication, or both. Some researchers have even recommended building

an analogous physical circuit as the fastest method to detect the bifurcation [69]. Complex models

can have hundreds of coupled dynamic equations with thousands of parameters (e.g., models of

sophisticated mobile phone circuit boards [70], or complex protein networks [71]). How can we

determine which parameter (or more likely, combination of parameters) is responsible for the

bifurcation in such cases?
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2.3.2 Information Geometry

The fundamental object of information geometry is the Fisher information matrix (FIM or I ), which

quantifies the information that the observations y contain about the parameters θ of a dynamical

system. Here we introduce the FIM for dynamical systems.

Consider a system of ordinary differential equations where the parameters are tuned to be exactly

at their critical values, i.e., the system is at (one of) its bifurcation point(s). The system is allowed

to evolve, and the trajectory of one of its equations y j is sampled at several time points y j(ti), where

ti = t0 + i
ntmax. To help visualize this process, let us imagine a one-dimensional system

y(t) = θ1 + e−θ2t + eθ3t (2.1)

sampled at t = {1,2,3} to create a vector of three observations y = {y(t1),y(t2),y(t3)} which we

plot in R3, i.e., data space. If θ3 > 0, then there is no equilibrium; if θ3 = 0 and θ2 > 0 then the

equilibrium is at θ1 +1 or θ1 +2 if θ2 = 0. As the parameters of θ change, the position of y will

also change, but except for extreme values of θi, it cannot reach all possible values in R3. The space

filled by values of y that can be reached for a given range of parameter values defines the model

manifold. A schematic of such a manifold is drawn in Fig. 2.1A.

The Fisher information is most-commonly defined in probabilistic terms as the expected Hessian

matrix of the log-likelihood:

I =−E
[

∂ 2

∂θ 2 logL (θ |d)
]

(2.2)

where θ is a vector of parameters, and d is the data. For deterministic systems such as we consider

here, it is standard practice to assume that measurements are obscured by additive Gaussian noise,

di = y(ti)+ζ (2.3)

where y(ti) is the (deterministic) output of the model at time ti and ζ is standard normal random

variable ζ ∼N (0,1). This assumption defines a probability distribution to which Eq. 2.2 can be



2.3 Background and Problem Formulation 25

applied [6] Because this construction is so common in information theory, it is often referred to as

the sensitivity Fisher information matrix or sFIM [72] for reasons that will soon be apparent. In

general I can be expressed in terms of the first derivatives only

I =−E
[

∂ 2

∂θ 2 logL (θ |d)
]

(2.4)

= E
[

∂

∂θ
logL (θ |d) ∂

∂θ
logL (θ |d)

]
(2.5)

Using the second form, one can show that sFIM becomes

Ii, j =
M

∑
k=1

Jk,iJk, j = (JT J)i, j (2.6)

where we have introduced the Jacobian or sensitivity matrix Jk, j =
∂yk
∂θ j

whose entries denote the

sensitivity of prediction k to changes in parameter j. In Eq. (2.6), M denotes the number of

observations.

The entries of the FIM indicate the sensitivity of the model’s trajectory to changes in each pair of

parameters. A high score indicates that a parameter pair has a strong influence on model dynamics,

while a small score indicates a “sloppy” direction (parameter values can change a great deal without

much changing y). The curvature of the likelihood function converts distances in parameter space to

distances on the manifold in data space, making the FIM a Riemannian metric tensor on the model

manifold in data space. It is important to note that the physical units of parameters can strongly

affect the values of the FIM. For this reason, it is common to perform dimensional analysis before

sloppy model analysis as we do throughout this study.

In general the curvature of the likelihood surface does not align with the bare parameters. Rather,

the characterization of the model’s sloppiness aligns with the eigenvectors of I . Eigenvalues of the

FIM are related to the singular value decomposition of J =UΣV T :

I =V Σ
2V T . (2.7)



2.3 Background and Problem Formulation 26

where U and V are matrices of the left and right singular vectors of J, and Σ is the diagonal matrix

of its singular values. This implies that the right singular vectors of the Jacobian V are also the

eigenvectors of the FIM. The eigenvectors of I “orient” the parameter-space into the parameter

combinations most relevant for changing the model’s behavior.

Imagine now that we coarsen the sampling rate by changing tmax. In our simple example,

increase tmax from 3 to 6 means the model y is sampled at t = {2,4,6}. This procedure stretches the

manifold in some directions and compresses it in others. This distortion is measured by an increase

or decrease in the eigenvalues of I , respectively. Compression of the manifold (i.e., decreasing

eigenvalue) with increasing tmax indicates that the combination of parameters is less important to

the long-term dynamics. We call the corresponding eigendirection “irrelevant". Similarly, if the

manifold stretches (i.e., increasing eigenvalue), we call the corresponding direction “hyperrelevant".

Directions that are neither compressed nor stretched are called “relevant" direction (Fig. 2.1B).

Returning to the example in Eq. 2.1, θ1 is relevant since its effect on the model’s output is unchanged

with observation time. In contrast, θ2 is irrelevant since the exact rate of the decay matters less as

time scales become very large, and θ3 is hyperrelevant since small changes have large effects at

large t. Note that θ2 and θ3 are functionally interchangeable if either is negative.

This procedure is similar to coarse-graining under RG flow described in reference [25] and is

used to generate their Fig. 1. In our case, however, because we are coarsening the sampling rate, the

total observation time increases and includes new information, i.e., observations at later times. As

such, it is not a true coarse-graining and introduces the possibility of hyperrelevant directions, i.e.,

directions that become increasingly important such as θ3. We will see that hyperrelevant directions

are associated with the stability or instability of the equilibrium.

This method is also somewhat analogous to studies that use Sobol’ sensitivity analysis to track

importance at different time scales, either bare parameters or eigenvalue combinations. Such meth-

ods are excellent at providing estimates of model variability at a given point in parameter space,
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and have noted both increasing and decreasing importance for model parameters of biophysical

systems [73, 74]. Critics note that these methods are computationally expensive, even when imple-

menting Morris acceleration [75], and the implications for bifurcation analysis are not immediately

obvious.
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Figure 2.2 The trajectory of a supercritical pitchfork at the
bifurcation point (heavy black line), and slightly perturbed
from it (thin colored lines). At short time scales, y0 (thin
red) and high-order parameters (long-dashed blue) appear
relevant. But, as the dynamics progress, r (short-dashed
yellow) emerges as the only parameter that changes the
long-term equilibrium point. This change from relevant to
not (and vice versa) occurs at t ≈ 10, and is reflected in the
arch shape and changing colors of Fig. 2.3.

In addition to characterizing bifur-

cations, TWIG analysis reveals two

other features of bifurcating systems.

First, there can be parameters (or com-

bination of parameters) that move

the location of a fixed point without

causing a bifurcation. Such parame-

ter combinations appear as “relevant”

eigendirections, as the new equilib-

rium appears in long-time observa-

tions. These parameters need to be

removed in order to correctly identify

the codimension of the bifurcation.

We do this by solving for the loca-

tion of the fixed point with a numeric

RootFind algorithm and subtracting

it from the trajectory at every point.

This effectively translates the fixed

point to the origin and is analogous to the recentering step of Center Manifold Analysis. For

limit cycle trajectories, we recenter by subtracting off the (unstable) fixed point that must exist

within the cycle (according to the Poincaré-Bendixson theorem [76]).
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The second feature arises in such oscillating systems. Parameters that change the phase or

frequency of oscillation without destroying the equilibrium itself appear as hyperrelevant as the

accumulating phase differences becomes increasingly important at late times. Previous research

has shown that such systems frequently cause problems in an information geometry framework by

introducing “ripples" into the likelihood surface of Eq. 2.2. The solution is to perform a coordinate

transformation so the period itself becomes a parameter. In one formulation of the FIM, this causes

the manifold to “unwind”, creating a smooth likelihood surface [77] and thereby eliminating a

misleading eigendirection.

Four important pieces of information come from this Time Widening Information Geometry

(TWIG) analysis. First, the number of hyperrelevant and relevant directions corresponds to the

codimension of the bifurcation system. Second, the square of each element of the eigenvector matrix

Vi j indicates the participation factor of each bare parameter θi in eigenvector j. This last fact follows

because the participation factor pi j ≡U j
i V j

i =V 2
i j as can be seen by combining the definition of a

participation factor [78,79] with Eq. 2.7 above. Third, the eigendirections themselves will change as

tmax increases and parameters that influence the short-term dynamics lose their salience at long time

scales. If initial conditions are included as parameters, their loss of relevance is a strong indicator

that the system has been simulated “long enough" to capture equilibrium behavior. This is not a

trivial concern in practice, where long numeric simulations are always fighting the accumulation

of computer round-off error. Finally, at equilibrium the relevant eigendirections point along the

(potentially) high-dimensional separatrix surface, and so the bifurcation can be mapped through all

parameter space.

Note that this procedure works no matter the number of dynamical variables involved in the

differential equation system. However, it presupposes that the model can be simulated on at least

one side of the bifurcation to arbitrarily long times, i.e. it analyzes stable dynamics on the threshold

of instability. A bifurcation that switches between two different forms of instability will not be
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easily detectable with this method, since trajectories will diverge on both sides of the bifurcation.

In the next section, we demonstrate how this procedure works for all common normal forms of

bifurcations.

2.4 Normal-form Bifurcations

Local bifurcations can be described mathematically in a potentially infinite number of ways, but

nearly all of them can be reparameterized, at least locally, to one of five kinds of normal forms.

These are:

• Saddle-node: ẋ = r + x2, where one stable and one unstable fixed point emerge from an

previously uninterrupted flow at a critical value rcrit

• Transcritical: ẋ = rx− x2, where a stable and an unstable fixed point exist everywhere but the

bifurcation, and swap stability at the critical value

• Supercritical Pitchfork: ẋ = rx−x3, where symmetric stable fixed points emerge from a single

fixed point, which itself becomes unstable

• Subcritical Pitchfork: ẋ = rx+ x3, symmetric unstable fixed points emerge from an unstable

fixed point, which swaps stability

• Hopf: a stable limit cycle emerges from what had previously been a stable point attractor.

Depending on the coordinate system, the normal form is ż = z(a+ b|z|2) (complex), ẋ =

−y+ x(µ− r2); ẏ = x+ y(µ− r2) (Cartesian), or ṙ = r(µ− r2); θ̇ =−1 (Polar).

A method able to detect bifurcation parameters for these types of bifurcations will detect the

overwhelming majority of bifurcations we are likely to encounter. The Fisher information as a

function of tmax for each bifurcation type has a closed-form solution, which complements and
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Figure 2.3 The “rainbow diagram” of the system from Fig. 2.2, showing the FIM’s eigenanalysis at
each tmax. The top panel represents the participation of each parameter in the first eigenvector (V 2

i,1
in Eq. 2.7). The leading eigenvector changes from α5-dominant (purple) to r-dominant (yellow)
at tmax ≈ 10, i.e., just where the α5 trajectory is replaced by the r trajectory as most divergent in

Fig. 2.2. The large panel below shows all seven eigenvalues (λi =
√

Σ2
ii in Eq. 2.7) at each tmax,

colored as the weighted average RGB of each parameter’s participation factor. Thus, the top line,
corresponding to the largest eigenvalue in the top panel, starts mostly purple (α5), but turns yellow
as r dominates the first eigenvalue at larger tmax values. For all parameters, a small change to
parameter values influences trajectory at short time scales (the rising limb) but, with the exception
of r, not at long time scales (the descending limb). The red color in the bottom-right indicates
that the initial value x0 eventually becomes the least relevant parameter in the model. Pure colors
indicate an eigenvector pointing along a parameter axis, while mixed colors like browns and greys
indicate many parameters participate in the eigenvector.
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validates the numerical results that we present here (see Appendix A.1). In each case, the sensitivity

with respect to the bifurcation parameter, r, dominates the long-term dynamics of the system in the

neighborhood of the bifurcation, no matter how many other higher order parameters are added to

the normal form.

For example, a supercritical pitchfork of the form ẋ = rx− x3 +α1x4 +α2x5 . . . experiences a

bifurcation when r = αi = 0. At short time scales (e.g., where tmax < 1), the system’s trajectory

is strongly influenced by changes to its initial value x0 and the higher order α terms (for x0 > 1).

However, later dynamics show that changes to the αi’s (and x0) barely affect the trajectory of

approach to equilibrium at 0, while small modifications to r move the equilibrium itself (Fig. 2.2).

An eigenanalysis of the FIM (Fig. 2.3) quantifies these insights and clearly demonstrate the effect of

coarse-graining on the system (i.e., increasing tmax while keeping the number of samples constant).

At very short time scales (tmax < .05), x0 and the highest order α term are the main participants

of the leading eigenvector, and x0 soon falls off as tmax increases; recall from Fig. 2.2 that this

high-order term was equivalently able to bend the trajectory significantly until t ≈ 1. Around

tmax = 10, r begins to have a noticeable influence on the observed trajectory, and correspondingly

this is the point where r becomes the dominant participant in the leading eigenvector. For large tmax,

the leading eigenvalue increases while all other eigenvalues decrease, indicating that the system’s

bifurcation is codimension one. Note that in this range, small changes to the initial value x0 have

fallen all the way to the last eigenvector, indicating that the system has been allowed to run long

enough that transient dynamics are removed, or at least have orders of magnitude less influence than

any of the nuisance parameter αi’s. There is no significance to the fact that in this and subsequent

“rainbow diagrams”, the leading eigenvalue eventually begins to increase; this is simple case of an

increasing line overtaking non-increasing ones and nothing inherent about the highest eigenvalue

at small time scales. This can be confirmed by the change in color, indicating that the parameter

responsible for the leading eigenvector has changed.
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Similar figures can be produced for the saddle-node, transcritical, and subcritical pitchfork

bifurcation classes. In each case, the eigenanalysis of the FIM indicates

• how long the system should be simulated, by the time it takes for the effect of the initial

conditions to reach the least relevant eigenvector

• the codimension of the bifurcation, by the number of non-decreasing eigenvalues (= 1 for

each normal form),

• the participation factor of each parameter in the hyper/relevant directions by the square of the

corresponding eigenvectors (asymptotically approaching 100% r in each normal form)

• the null-space of the bifurcation surface, making it possible to track the bifurcation hypersur-

face through parameter space.

These are relatively simple bifurcations, where the separatrix is the hyper-plane r = 0. In more

complicated situations where the separatrix is a nonlinear combination of bare parameters, this

analysis identifies the vector normal to the separatrix. In principle, this local characterization

could be extended to map that separatrix (along the hyper/relevant directions) through the high-

dimensional parameter space.

Hopf bifurcations present more of a challenge, as they have a fundamentally more complex

normal form without an easy analytic solution, and a trajectory which can be manipulated in more

than one way. Where the first four bifurcation classes are characterized by the presence and stability

of fixed points, Hopf bifurcations are characterized by a limit cycle that emerges from a fixed point,

whose radius and velocity can be manipulated by model parameters.

Consider the following Hopf bifurcation in polar coordinates, where, as above, additional high

order terms have been added:

ṙ = µr− r3 +α1r4 +α2r5

θ̇ = ω +β r2 +α3r3 +α4r4 +α5r5
(2.8)
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Figure 2.4 TWIG analysis of the Hopf bifurcation. The first of the hyperrelevant (rising) eigenvalues
comes from the periodicity of the trajectory, whose velocity is set by ω . The second hyperrelevant
eigenvalue comes from the bifurcation itself, indicating that the Hopf bifurcation is codimension-1,
and the bifurcation depends simply on µ , and not some complicated combination of parameters.
Note that the Hopf bifurcation is far easier to simulate at long time scales in polar form than in
cartesian coordinates.
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At the bifurcation point µ = 0, a fixed point at the origin expands into a limit cycle. The velocity

of trajectories around this cycle are primarily driven by ω , provided y values are small. Note

that the periodicity of the Hopf bifurcation introduces a second hyperrelevance to long-term

dynamics. Infinitesimal changes to velocity make little difference to the final position of the

trajectory F(tmax;y,θ) if tmax is small, but will have an increasing effect as tmax grows. By contrast,

µ is hyperrelevant because it is the bifurcation parameter. The increasing importance of these two

parameters, in contrast to all others, is clearly illustrated in Fig. 2.4.

As noted above, this ability to characterize all normal-form bifurcations depends on the ability

to isolate changes in information due to the bifurcation itself. This depends on the only source of

variation in long-term behavior coming from the bifurcation, and so the preceding analyses were

conducted for systems exactly at the bifurcation point. We now consider how the picture changes for

dynamics near, but not exactly at, the bifurcation point. Applying TWIG just to the left and right of

the bifurcation point of a pitchfork (r =±.01) shows characteristic patterns (Fig. 2.5). In these cases,

we find that the bifurcation parameter is hyper-relevant on intermediate time scales (tmax < 100 in

Fig. 2.5). However, on longer time scales (tmax > 100), the leading eigenvalue either asymptotes or

decreases once the trajectories have converged to the fixed point, depending on whether the location

of the fixed point can or cannot be controlled, respectively. In other words, when approached from

the r < 0 side, small changes to r don’t move the equilibrium (y(t)→ 0), meaning the exact value

of r is irrelevant. But approaching from the r > 0 side causes trajectories to run to y(t)→±
√

r,

meaning r is relevant. Moving the system closer to bifurcation, this intermediate regime extends

further and further, until at r = 0 it occupies the entire trajectory and r is hyperrelevant at all times.

In general, being slightly off the bifurcation obscures the effect of the bifurcation parameter to

an extent proportional to the distance from the bifurcation. This is particularly useful in the case of

hemi-stable bifurcations, which need to be approached from the stable side or else test trajectories

will diverge to infinity (and cause computer overflow). In the case of the subcritical pitchfork, at the
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Figure 2.5 TWIG analysis near-but-not-at the bifurcation values show the diagnostic pattern of
an increasing eigenvalue at intermediate time scales, rather than at all time scales above a certain
limit. It is still possible to identify parameters participating in the bifurcation, and the bifurcation’s
codimension, though the signal becomes obscured the further one moves away from the bifurcation
in either direction.

bifurcation itself (r = 0) the system is unstable. However, at values of r just less than bifurcation

value, TWIG can be performed and the bifurcation characterized as above (Fig. 2.6).

2.5 Bifurcations in Non-normal Forms

Equations describing real systems are not typically written in one of these normal forms. So even

when a researcher knows a system contains a bifurcation, it might not be apparent which one of
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Figure 2.6 The subcritical pitchfork cannot be analyzed using TWIG at the bifurcation point (r = 0)
because the system is unstable. However, simulations slightly to the stable side of the bifurcation
(r→ 0−) reveals the bifurcation parameter, though because analysis happens off the bifurcation, the
peak occurs at intermediate values instead of reaching an asymptote.
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these it is. For example, a model of a bead on a rotating hoop

mr
∂ 2φ

∂ t2 =−b
∂φ

∂ t
−mgsinφ +mrω

2 sinφ cosφ

has a supercritical pitchfork bifurcation, though it might require simulating many values of r and ω

to appreciate this [80]. Similarly, the equation:

ẋ = r lnx+ x−1+α1(x−1)2 +α2(x−1)3 + · · · (2.9)

contains a transcritical bifurcation at x = 1 when r =−1. However, this only becomes clear after

reparameterizing the equation by R = r+ 1, and X = r
2(x− 1), when the equation assumes the

normal form Ẋ = RX−X2 +O(X3). Such a substitution might not be immediately apparent to a

researcher; however, time-widening information geometry clarifies the situation.

If the dynamics in Eq. (2.9) are run long enough, we observe that one eigenvalue is relevant while

all others are irrelevant. Furthermore, the corresponding participation factor becomes dominated

exclusively by r (Fig. 2.7). This tells us that (1) the process has codimension 1, and (2) the

reparameterization involves only r. We confirm that our analysis has converged since the initial

condition y0 is the dominant participation factor in the smallest eigenvalues. However, we note

that convergence occurs at a somewhat larger value of tmax than in the normal form examples

above. Also note that transcritical bifurcations have a leading eigenvalue that is relevant rather

than hyperrelevant, due to a quirk of the normal-form algebra. See Appendix A.2 for a thorough

explanation.

But what happens when the situation is not so straightforward? Modifying the above example to

the equation

ẋ = r ln(x)+a(x−α)+b(x−α)2 + · · · (2.10)

should still have a transcritical bifurcation for certain parameter values, but no simple reparame-

terization to create a normal form exists. From above, we can recognize that when a transcritical

bifurcation occurs at x = 1 for r = −1,α = 1. However, when α 6= 1, in the neighborhood of
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Figure 2.7 Equations such as Eq. (2.9) that are not in normal form can be interpreted using the
same procedure as for normal form bifurcations. As above, the presence of just one non-decreasing
eigenvalue, whose corresponding eigenvector is dominated by the single parameter r, indicates that
the system has codimension 1 and the bifurcation parameter involves only r. The relevant (not
hyperrelevant) leading eigenvalue is characteristic of a transcritical bifurcation.
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x = α all the power terms are zero, but the term r ln(x) > 0 if α < 1, suggesting that no fixed

point exists in that region. The appearance or disappearance of a fixed point is the hallmark of a

saddle-node bifurcation, and indicates that allowing a bit of variability in the fixed point’s location

has introduced a second codimension to the dynamical system. This is borne out by TWIG analysis,

which shows that the equation indeed produces a hyperrelevant eigenvector corresponding to the

saddle-node parameter α , which controls the existence–not just the location–of an equilibrium. The

transcritical bifurcation still exists and is controlled by r, as implied by the previous analysis. This

example shows that even in situations with two different bifurcation classes, neither of which can be

reparameterized into normal form, TWIG still allows us to efficiently and unambiguously identify

co-dimension and bifurcation parameters.

2.5.1 A biophysical example

Glycolysis is a multi-step process which uses the bond energy of glucose to catabolize energy-

carrying biomolecules easily usable by cells, which represents one of the dominant processes of all

heterotrophic life on earth. A bottleneck in this crucial process is the phosphorylation of fructose-

6-phosphate into fructose-1,6-bisphosphate catalyzed by the enzyme phosphofructokinase. The

complicated five-species mass-action equation describing this reaction’s kinetics can be simplified

using Tikhonov’s theorem and assuming low concentrations of ATP to the simple dimensionless

system: [2, 81]

ẋ =−x+ay+ c1x2y+ c2x3

ẏ = b−ay+ c3x2y+ c4y2
(2.11)

where x and y are the concentrations of ADP and F6P respectively, and the four ci constants are

nuisance parameters added to mask the system dynamics. There is a curved bifurcation surface

that separates the range of kinetic parameters a,b which lead to either a fixed point at (b,b/(a+b2)

when c1 = 1, c3 =−1 as in the canonical model, or a stable limit cycle. The separation between
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Figure 2.8 A difficult non-normal-form transcritical bifurcation such as Eq. (2.10) can be extremely
challenging to analyze analytically, but sloppy analysis indicates one hyperrelevant parameter
(corresponding in this case to a saddle-node) and one relevant parameter (as usual, indicating
transcritical bifurcation). This means that this system has a bifurcation of codimension two. Note
that the participation factor of the two leading eigendirections runs to 1.0 in the direction of α and
r respectively, indicating that the system can be placed into normal form without a complicated
recombination of parameters.
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the fixed point and limit cycle regimes has the form b2 = 1
2

(
1−2a±

√
1−8a

)
[82]. The resulting

oscillations in glycolytic activity predicted by this analysis have been observed in vivo since the

early 1970s [83].

A TWIG analysis of this system provides several insights, summarized in Fig. 2.9. First, even

though the separatrix between fixed point and limit cycle in a,b−space is a nonlinear curve, because

b can be reparameterized as a function of a, it is codimension one. Second, the “nuisance" parameter

c4 introduces a change in the period of the oscillations, which means that infinitesimal changes in

its value cause larger deviations in final trajectory the longer the simulation runs. This shows up as

a hyperrelevant direction in TWIG; however, as discussed above, it is not a second codimension.

2.6 Chaotic systems

Systems showing chaotic behavior have long represented a challenge to traditional categories of

thinking, and the difficulty distinguishing deterministic chaos from randomness is practically its

own subdiscipline [68, 84–87]. In the context of TWIG analysis, there are two characteristics of the

system that need to be considered carefully.

First, unlike other systems considered here, one hallmark of chaos is long-term sensitive

dependence on initial conditions, or the “butterfly effect”. Because of this, a TWIG analysis carried

out in the chaotic regime, in contrast to Fig. 2.3 where the parameter x0 becomes the least relevant,

will classify initial condition parameters as relevant. Note that if the chaotic system produces a

strange attractor, then the initial conditions will change the location of the system on the attractor

at long time scales, but not the shape of the attractor itself, which prevents these parameters from

becoming hyperrelevant. That is, the maximum distance between two trajectories begun at slightly

different initial conditions will eventually saturate on opposite sides of the attractor, and not increase

without bound.
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Figure 2.9 Analysis of the “glycoscillator" bifurcation (Eq. 2.11). The frequency of the oscillations
are driven by c4, while the radius of oscillations can be controlled with just one of the a,b parameters
discovered by Sel’kov [2].
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Second, the four classic examples of chaotic systems approach chaos through a complicated

series of bifurcations, rather than a singular event as in the normal-form bifurcations above. The

logistic map famously contains a period-doubling “bifurcation cascade”, with the distance between

these bifurcation events decreasing geometrically by the Feigenbaum constant α universally [54,

55, 88]. There is thus a “fuzzy boundary” between the periodic behavior of, say, an 8-cycle and

the chaotic region as we pass through the increasingly narrow 16-cycle region, 32-cycle region,

and so forth. The Hénon map experiences a similar bifurcation cascade along the line b = 0.3 as a

increases from 1 to 1.5 [89], while the Rössler attractor has a bifurcation cascade in the opposite

direction on the plane a = 0.2, c = 5.7 as b decreases from 1.5 towards 0 [90]. As we show below

for a Rössler system, these boundaries are not just fuzzy, but also fractal-like. Most complex of all,

the single fixed point of a Lorenz system experiences a pitchfork bifurcation at r = 1, whose two

stable points then experience Hopf bifurcations at r ≈ 24.74, while the unstable point undergoes a

“homoclinic explosion” at r ≈ 13.926 that produces an “a thicket of infinitely many saddle-cycles

and aperiodic orbits [68].” If even these pedagogical “toy models” of chaos have such indeterminate

boundaries, it is likely that examples of chaotic systems encountered “in the wild” will as well.

While the FIM may be evaluated at any point in this fuzzy region, its interpretation is less

clear. The eigenvectors, which indicate the direction normal to the separatrix in other systems,

lose this meaning since there is no direction normal to a fractal surface. Note that this also holds

true for the intermittency route to chaos as well. Abrupt changes to chaos, with or without smooth

changes in fractal dimension, also exist and would be expected to give cleaner results in the TWIG

analysis [91, 92], but unfortunately are expected to be less common and less familiar to readers.
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That being said, TWIG still can provide powerful qualitative insights into the nature of a

period-doubling chaotic system. The Rössler attractor defined by

ẋ =−y− z

ẏ = x+ay

ż = b+ z(x− c)

(2.12)

has a well-known period doubling map revealed by decreasing b along the parameter-space line

a = .2,c = 5.7, with the fuzzy transition from an 8-cycle to chaos occurring in the region near

b≈ .70. TWIG analysis carried out near this point reveals that while changes to b or c in this region

can lead to long term divergent behavior, changes to a have a much stronger effect (Fig. 2.10). In

other words, even though we “walked up” to the bifurcation region in the b direction, TWIG was

able to tell us that the fuzzy bifurcation boundary was strongly angled normal to the a direction.

This insight is not found in the usual treatments of the Rössler attractor (e.g., in the citations above),

but can be easily verified by simulating the system in Eq. 2.12 at many sample parameter values

in the region around the bifurcation. This reveals flat “sheets” of periodic behavior sandwiched

between strata of chaos in the a direction (Fig. 2.11); these sheets can eventually be encountered for

a fixed value of a by moving far enough in b or c, which is essentially the process diagrammed in

the period-doubling map with which we started this exercise.

Above, we made the claim that TWIG analysis could be used to determine four characteristics

of the system, the first being the length of time to run an analysis by the decay of sensitivity to

initial conditions. For chaotic systems, this is no longer the case due to the butterfly effect. However,

by removing the initial values as parameters, we see that TWIG can still be used qualitatively to

determine the other three characteristics: bifurcation co-dimension, the null space, and the (fuzzy)

normal to the bifurcation region.
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Figure 2.10 TWIG analysis of the Rössler attractor, a chaotic system, evaluated in the region of
rapid period doubling just before the onset of chaos. Due to the butterfly effect, the initial conditions
remain relevant at long time scales, and cannot be used to determine appropriate simulation length.
However, excluding these from analysis, we are still able to qualitatively see that there is one
hyperrelevant direction, dominated by a. This came as a surprise to the authors, because the
bifurcation region was approached by changing values of b until a period-doubling cascade was
observed, yet TWIG uncovered a greater sensitivity to a than b even in this region. This was
confirmed by sampling the parameter space in Fig. 2.11.
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Figure 2.11 The parameter space in the period-doubling region of the Rössler attractor shows flat
sheets of 8-cycle behavior (solid blue spheres) sandwiched between chaos (transparent red) in the a
direction. Green spheres are simulations difficult to classify as either 8-cycle or chaotic.

2.7 Conclusion

Progressive time-dilation of the Fisher Information Matrix as realized by our Time-Widening

Information Geometry (TWIG) analysis is an efficient way of characterizing bifurcations in a

dynamical system. Researchers have long used eigenanalysis of I to characterize the “sloppiness"

of a system, i.e. its exponential range of sensitivities to parameter changes, and recently leveraged

this accumulated expertise with coarse-graining to understand phenomena occurring at distinct

time scales [25, 93]. Building on these insights, we here demonstrate that as tmax increases, the

changing eigenvalues of I (and the composition of the corrresponding eigenvectors) allow us to (1)

characterize the codimension of the bifurcation, (2) quantify the participation of each bare parameter

in the bifurcation, (3) characterize the bifurcation’s hyper-surface, and (4) have an internal check

on the length of time necessary to simulate the system to reach equilibrium. These are substantial

insights to be gained relatively cheaply. Sloppy bifurcation analysis constitutes a powerful tool

to supplement traditional analytical analysis [68, 94], and other specialized analytical tools for

high-dimensional problems [32, 51, 54, 71, 95–97].

Insights derived from TWIG are useful not just for theoreticians interested in characterizing

a bifurcation or reparameterizing a system to emphasize the bifurcation; it is also critical for
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the process of fitting parameter values. The rainbow plots in this paper demonstrate that at the

bifurcation point, simulations frequently show a separation of over 10 orders of magnitude in their

parameter sensitivity, a gap that gets larger the longer the simulations run (or the more data is

collected, in an experimental context). If researchers care about fitting all parameters, it is crucial to

recognize that the effect of hyperrelevant parameters will overwhelm the others, so only if these

parameters are fixed in the experiment can the less relevant ones be inferred [67, 97]. Future work

may naturally extend the method to large systems including those derived from partial differential

equations.

Our TWIG analysis has some inherent limitations. It presupposes that the model can be

simulated on at least one side of the bifurcation to arbitrarily long times, i.e. it analyzes stable

dynamics on the threshold of instability. A bifurcation that switches between two different forms

of instability will not be easily detectable with this method, as trajectories will diverge on both

sides of the bifurcation. However, such doubly-unstable bifurcations may be of limited practical

interest anyway, as loss of stability is generally a far more common real-world problem than a

change in the type of instability of a system that never was stable to begin with. Hemi-stable points

(as in saddle-node or subcritical pitchfork bifurcations) are easily analyzed when approached from

the stable side (see Fig. 2.6); otherwise test trajectories can diverge beyond computer tolerance

at moderate time scales. A notable limitation of the method as presented here is the inability to

analyze hyperbolic fixed points. Future work may additionaly leverage center manifold techniques

to investigate bifurcations in such systems. We note here that absolutely unstable fixed points

(i.e., where every eigenvalue is positive) can be conveniently analyzed in TWIG simply by running

time backwards, and analyzing trajectories at ever-closer instants to the initial divergence from the

instability.

Because it is a particularly efficient method of determining important information about high-

dimensional bifurcations, we anticipate that TWIG will be useful in situations with many compo-
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nents where one or a few bifurcations are expected in each component. These include power grids,

circuit boards, interatomic models, complex protein regulatory networks, and ecosystem-based

management systems of multiple interacting populations. Such complexity presents substantial

difficulties for closed-form analysis but can be tamed with insights gleaned from this method.
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Chapter 3

Realistic Small Regulatory Networks Have a

Rich Behavior Space

3.1 Abstract

Protein-protein interaction networks (PPIs) are large and complex, yet self-organize to sustain all

known life. To help understand the building blocks of these systems, we analyze small subgraphs

(called "motifs" in this study) where all proteins can interact positively, negatively or not at all.

There are 132 such 3-protein networks that are topologically unique (A→B→C is a permutation of

B→C→A and C→B→A and B→A→C etc, so only one such network is simulated), and 22,662

4-protein networks. Using a flexible model, we choose 1,000 biologically plausible values for the

parameters, find all fixed points of the system, and determine the stability of those points. Previous

research had suggested that a switch from a stable fixed-point equilibrium, to a limit cycle, to

divergence to infinity was to be expected as the three possible behaviors. Instead, we determined

that the behavior space of the typical motif included many different numbers of un/stable fixed

points in complex combinations (a median of 6 and 12 distinct behaviors). We also discover that

49
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divergence to infinity is not at all uncommon at known biological values, despite such a result

likely being fatal to the cell, necessitating a substantial degree of selection and regulation. The

effects of adding an additional node to 3-motifs is discussed, with implications for scaling up to full

biochemical pathways.

• Data dashboard: https://oceanchaos.shinyapps.io/motif/

• Full ouptut: DOI:10.17632/2vsj7wr7wz.1 (hosted by Mendeley Data)

3.2 Networks and Motifs

Networks are a powerful mathematical abstraction for summarizing a system of interacting elements.

Scientists have used the lens of network analysis to interrogate many different kinds of complex

systems, including food webs, electric circuits, social networks, macro- and micro-scale economies,

and protein-protein interactions (PPI). [98, 99]

Studies of real-world networks tend to be challenging due to their size and complexity. The

internal dynamics of each node of the system is not always known, due to the large number of nodes

and the difficulty in separating them from a potentially large number of interactions with other nodes.

For example, in a food web there are reasons to believe the limiting factors on primary producers

and top predators are different, but asking what the internal dynamics of a predator population are

in the absence of other species (including its prey) has no clear meaning. For this reason, many

early papers about such systems focused on collecting summary statistics of the system, rather than

in-depth simulation of the (often murky) behaviors of each part of the system. Such studies of

PPIs determined that networks from very different species and genome sizes had similar summary

statistics, such as degree distribution, radius, and betweenness. [100]

Another option in dealing with this overwhelming complexity is to analyze small pieces of

the network in isolation in the hopes of assembling overall behavior after these building blocks
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are understood. This approach has the advantages of being analytically tractable, and (at least

for some of the real-world subgraphs) scientists have more confidence in the internal behavior

and interaction (or lack thereof) among the actors/components/species/proteins [100]. Particular

subgraph topologies that occur frequently are called motifs, [41] and have been studied in detail

since the 1970s, beginning with Simberloff and Diamond’s rival mechanisms for food web assembly.

[39,101–103] Unfortunately, even this simple concept is fraught, since whether a motif occurs more

(or less) “frequently” than expected depends on the null model one uses. A randomly constructed

Erdös-Remy produces different subgraphs than a rich-get-richer scale-free network; and despite

numerous detailed studies, little consensus has been reached about which assembly rules apply to

different real-world phenomena. [99, 100, 104]

This paper contributes to the effort to understand the building blocks of large real-world

networks by analyzing the properties and stability of all possible graphs of 3 or 4 nodes across

scales of interaction rates known to be biologically attainable. The results give us insight into which

topological components are difficult to push out of equilibrium, and which would need to be carefully

regulated to avoid runaway feedback that could prove fatal. We use the term “motif” to refer to 3- or

4-node networks to emphasize we are considering these as small pieces of a larger system, without

implying anything about their frequency relative to expectations in that larger system. However,

this terminology reinforces our thinking that each such topology is under selective pressure, and so

its frequency in the real world likely is shaped by the utility of its dynamics in biological systems.

Inasmuch as these pressures are universal, findings that apply to PPIs are expected to also have

implications for neuronal connections, economies, and the World Wide Web. [39,41,104] Of course,

other constraints impinge on real-life networks, as will be discussed in more detail in later work.
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3.2.1 Simplifications of our model

Box famously declared that “all models are wrong; the practical question is how wrong do they have

to be to not be useful.” [105, 106] The guiding principle that “useful” models simplify complexity

as far as possible without losing contact with observed phenomenological behavior has motivated

a great deal of science in recent decades. [11, 62, 64, 107, 108] Philosophers of science have even

observed that model utility takes precedence over “truth” in practice, if not in theory. [109] Protein-

protein interactions (PPIs) undergird the most information-rich process in the known universe–life

itself–and so manifest impenetrable complexity if approached from a purely mechanistic standpoint.

Our models elide a great diversity of biochemical mechanisms into a single mathematical process;

the omissions we are aware of, and justifications for leaving them out, are discussed in the following

paragraphs.

This paper follows the convention of representing interactions as either positive (with an arrow)

or negative (with a plunger) in a network. This shorthand, of course, fails to distinguish between

the very wide range of biochemical processes that can lead to these effects. PPIs are sometimes

conceptualized as existing in a three-dimensional continuum from homodimers to heterologous

oligomeric complexes, from obligate through facultative to true monomers, and from the permanent

through the transient to truly instantaneous in a quantum sense. [110–112] Attempts to predict

where in this space a protein will fall based on its three-dimensional structure have failed to find

simple deterministic variables, though sophisticated classifiers are consistently improving, e.g., by

including quantum molecular dynamics or meta-learning strategies. [113, 114] Thinking of proteins

as existing at just one point in this space may be a flawed analogy, as meta-analysis indicates as

many as one protein in seven has more than one quaternary structure, [111] and the recent discovery

of numerous intrinsically disordered proteins (IDPs) suggest that tertiary structure is not necessarily

fixed either. [115]
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11 12 13 14 15 16 17 18 21 22 23

24 25 26 27 31 32 33 34 35 36 41

42 43 44 45 51 52 53 54 61 62 63

71 72 81 92 93 95 96 99 101 102 103

104 105 106 107 108 110 111 113 114 116 117

120 121 122 123 124 125 126 129 130 131 132

133 134 135 138 140 141 142 143 144 147 149

150 151 152 153 156 157 158 159 160 161 162

183 185 186 189 201 203 204 205 206 207 210

212 213 214 215 216 219 222 225 230 231 233

234 239 240 241 242 243 365 366 369 375 377

378 395 396 405 456 459 474 477 485 486 729

Figure 3.1 All connected, directed, 3-node motifs. Black graphs diverge to infinity, i.e., have no
fixed points, in at least 50% of simulations; red graphs average at least 15% unstable fixed points
across simulations, and the light/dark blue graphs were the least/most stable of the remainder. N.b.,
each motif pictured is topologically isomorphic to up to five others motif IDs simply by switching
the node order.
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Complexation can be particularly difficult to model or even study. An extreme example is the

110MDa nuclear pore complex, which consists of about 1000 proteins of 34 types; the structure

of the outer face was recently solved; it consist of an octomer of hetero-hexadecimer complexes

(128 total proteins). [116] Even identifying such complexes in the output of a genome-wide survey

experiment can be difficult, as discovering higher order correlations is geometrically more difficult

than pairwise comparisons, though techniques like iterative random forests have recently sped such

discoveries considerably. [117] For the purposes of this paper, we assume that complexes form as a

stepwise progression of pairwise associations (A+B→ AB; AB+C→ ABC, etc), and that the effect

of a complex is adequately captured by a topology where two or three protein species have the same

direction of effect on another.

The rates at which PPIs occur span many orders of magnitude, as one would expect given the

vast diversity of tasks that proteins carry out in living systems. It is perhaps not as well appreciated

that the rate at which any one PPI occurs can also span orders of magnitude depending on the

physio-chemical environment. As an extreme example, the collagen fibers that had remained mostly

intact in a Tyrannosaurus rex specimen for 68My fell apart in minutes when exposed to proteases in

a warm liquid bath. [118, 119] Another relatively slow process, though orders of magnitude faster

than the stasis above, is the activation of a transcription factor, which will regulate the speed at

which mRNAs for a particular protein are transcribed, which sets a maximum but not necessarily a

minimum on the rate of the protein’s actual translation. Generally, components of complexes have

similar promoters so increasing the transcription of one increases the transcription of all, though

evidence of strong negative feedback is lacking at least in eukaryotes. [120] Transcription factors,

modifications of promoter regions, alternative splicing, and alternative coding of amino acids [121]

are justifiably well-studied and certainly play a role in long-term dynamics; however, global analyses

suggest that the concentration of proteins is primarily regulated post-transcription. [122] It is thought

that much of this global rate is controlled by regulation of active ribosomes, [123,124] by regulating
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initiation factors or inhibiting core proteins rather than actually changing the number of proteins

via degredation or stabilization. [125–127] The dynamics of this process have been mathematically

modeled, and agree well with observational studies. [128, 129] However, active destruction or

production through splicing of proteins certainly also plays a role, and can be activated nearly

instantaneously via chemical tagging (such as methylation, acetylation, and phosphorylation), which

can act as an on/off toggle for many enzymes.

As a result of this extreme diversity, a recent meta-analysis of 120 studies of protein turnover

rates concluded that little consensus had been reached about average rates or even distribution

shape. [130] However, it can be confidently asserted that the different methods of regulation have

overlapping scales of effect, resulting in a continuous distribution of effect sizes and rates spanning

many orders of magnitude. Two very large-scale surveys of mammalian proteome dynamics indicate

that protein lifespan varies from one hour to one month; [48, 122, 131] we pin the extremes of

degredation and synthesis rates to these numbers (kdeg,ksynth = e[−6.91,0] in hours−1) and mirror this

range for the maximum protein-protein effect sizes (kAB,kBA,kAC, ...). Because we are interested in

dynamics across parameter space rather than the observed frequency of these dynamics, we sample

log-uniformly across the range, rather than using the more biologically realistic weighting of a

log-normal distribution centered around 3̃ days observed in some studies. For this study, we also

normalize all rates to the synthesis rate (which is always 1). We do this because the rate values in

isolation are arbitrary; that is, a “low” rate can be made arbitrarily large by measuring in units of

month−1 instead of second−1, and vice versa. It is the separation of scales that drives behavior, not

the rate value itself.

The shape of the effect vs concentration on a PPI also depends on the underlying molecular

mechanism. Simple molecular scissors, direct competition, or complete promoter-region exclusion

by a transcription factor would each have a negative effect that scales linearly with concentration,

albeit at different timescales; while non-competitive inhibition, localized concentration of reactants,
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or reactions that depend on heteromeric complexes can be highly nonlinear. To capture this diversity,

we follow the suggestion found in [132] that standard model methods such as Nonlinear Normal

Mode analysis (NNM) and total quasi-steady state assumptions (tQSSA) coincide, and can be

roughly captured by providing every effect with a Hill coefficient which varies from linear (h = 0)

to highly nonlinear in either the asymptotic (h < 0) or exponential (h > 0) direction.

This paper is also motivated by making two sweeping generalizations, both of which are valid

for the majority of cases but have many known exceptions. The first is that higher rates decrease

stability, an assumption motivated by the unambigious effect rate parameters have on codimension-1

bifurcations (See Chap. 2) While valid in simple systems, there are many caveats depending on the

complexity of the system and the definition one uses for stability. [133] Nonetheless, instabilities

are known to arise in PPIs as rates increase, e.g., driving a Hopf-like system past the bifurcation

point from dynamic equilibrium into endogenous oscillations. [71, 97, 134, 135] Stability, in the

context of dynamical systems, is an invariant set of points or subspace S such that for a set of

equations limt→∞ fn(x, t) ∈ S. This includes strange attractors and limit cycles; however, for the

purposes of this paper, we consider “stability” to mean the presence of a fixed point with only

negative eigenvalues in its Jacobian matrix (see below). [40] The presence of multiple unstable fixed

points, or the total absence of fixed points, constitutes instability as understood in this paper. As the

scales of interaction separate in such a system, it is common for bifurcations of fixed points to occur,

leading to topological inhomogeneities and distinct behaviors. For this reason, we simulate a wide

variety of rates, assuming that this is the dominant driver of instability within any one topology.

The second generalization is that unstable fixed points are, generally, detrimental to cellular

health. This is, of course, not universally true; oscillatory and periodic processes such as sleeping,

breathing, and the beating of the heart are necessary for life, [136] though chaotic and disordered

dynamics appear to be actively suppressed even in networks where they would be expected through

stabilizing PPI links. [137] Nevertheless, homeostasis implies that most things are mostly stable
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most of the time, as codified in the mathematically rigorous “steady state assumption” ubiquitous

in biochemical research. [138, 139] Perhaps “at equilibrium” is a preferable term to “stable”, as it

implies a dynamic process underlying the relatively constant level. While it is not known how much

variability is “healthy”, it is certainly the case that a cell unable to maintain protein behavior within

very tight limits is not going to survive very long.

These two generalizations in some sense may cancel each other out, as some philosophers of

biology have argued that only dynamic mechanistic explanations (cyclically organized mechanisms

with complex dynamics) are capable of explaining how living organisms can be. [140] With these

caveats supporting a hopeful perspective, we push forward to analyze the role topology can play in

the stability of living networks.

3.3 Determining stability

We are interested in protein networks, which are, by their nature, large and complex. Exhaustive

searching of the entire network space is, at present, not possible, as the number of connected

topologically non-equivalent networks increases far faster than exponentially with the number of

nodes.1 We therefore turn our attention to small motifs of 3 and 4 nodes, with the understanding

that these smaller building blocks will provide insight to the network as a whole. Additionally,

the methods outlined here should be adaptable for a targeted investigation of some possible large

topologies, a sampling of the complete topology space, or possibly even complete surveys in the

future.

The first step is to generate all possible networks. In our attempt to make this method scalable

to larger motifs (at least in principle), we used a vector of N edges representing the protein-protein

interaction parameters kAB,kBA,kCA, etc. There are 6 such interactions in 3-motifs, 12 for 4-motifs,

1The first 40 terms of this sequence are available at https://oeis.org/A053517/b053517.txt from OEIS

https://oeis.org/A053517/b053517.txt
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and n(n−1) for an n-motif. In this paper, +/- 1 represented an enhancing or repressing interaction

respectively, and 0 represented no interaction. For example, the repressilator might be represented

by [0,−1,−1,0,0,−1] assuming an edge order of [AB,BA,AC,CA,BC,CB]. It is relatively easy

to extend such a scheme to large values of N and k if, say, one wished to model allosteric and

non/competitive inhibitors with distinct dynamical equations. A (kN ,N) matrix T is then initialized

to null interactions, representing the full topology space, then populated using the following

pseudocode:

Algorithm 1 Produce all motifs of n nodes with k interaction types

1: E← [1,1,1, ...] . size N, edge status
2: while True do
3: next empty row in T ← E
4: E[N]← E[N]+1
5: if ∑E = kN then
6: break
7: end if
8: i←N
9: while E[i]> k do

10: E[i]← 1
11: i← i−1
12: E[i]← E[i]+1
13: end while
14: end while

The second step is to filter these possibilities to remove (1) disconnected graphs and (2)

topologically equivalent graphs (Fig. 3.2) Fortunately, efficient routines for determining connectivity

exist in most mathematical languages and can be implemented directly. The second step is more

difficult. It first requires a list of the n! valid reorderings of edges (n.b.: not N!). This can be

generated efficiently by creating an adjacency matrix of the index of each interaction. One can then

swap rows and columns using the same index reordering for both (e.g., if rows 1 and 2 are swapped,

columns 1 and 2 must also be swapped) and store the result. In the example above this would be:
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[1 2 3 4 5 6]→


0 1 6

2 0 3

5 4 0

 permute−−−−→



2 1 5 6 3 4

3 4 1 2 6 5

5 6 2 1 4 3

4 3 6 5 1 2

6 5 4 3 2 1


Doing this for all distinct orderings of rows and columns creates an N×n! matrix of all possible

reorderings of any row in T that will result in a topologically equivalent motif. Starting with the

first connected motif, it can then be reordered by each of these n! reorderings to create a set of

n!−1 new E ′ vectors that match another topologically equivalent entry in T .

132 22,662

x1000

3-Nodes

-3,057

-505,722

Find Roots

Determine Stability

Choose Parameters

531,441

4-Nodes

729

-25

-572

Algorithm 1

Make All

Motifs

Filter 1:

Unconnected Graphs

Filter 2:

Topological Equivalents

Figure 3.2 A schematic demonstrating
how all motifs were generated and their
stability determined. See text for de-
tailed description of each step.

Simply searching through all kN topologies to find

these matches is computationally inefficient. However,

the row number of each reordered topology within T can

be computed rapidly as:

Ri = ∑
i
(EikN−i) (3.1)

This method reduced the hunt time for all isomor-

phisms by a factor of 70,000 relative to a naïve search on

a typical laptop for the 3-node network, and improvements

would be even greater for larger networks.

These two filter steps greatly reduce the number of

topologies to investigate (132 instead of 729 for 3 nodes,

and 22,662 instead of 531,441 for 4 nodes). These

132 topologically inhomogenous 3-motifs can be seen

in Fig. 3.1. To explore the behavior space of each of the remaining topologies, we used the
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following steps. Each protein is modeled as

ẋi = α−δxi +∑
i 6= j

Ki, jx jxh
i (3.2)

where α represents the autocatalysis rate, δ the degradation rate, Ki, j the interaction effect of j on i,

and h the hill coefficient determining the degree of nonlinearity in the interaction. (For justification,

see above) First, parameter values are selected for autocatalysis, degradation rates, and interaction

strength. (The sign and existence of the interaction Ei, j is determined by the network topology

under investigation.) The range of reasonable parameters was derived from global surveys of

mammalian kinetic rates and transcriptomics [122] [141]. Note that the parameter values are pulled

from a uniform distribution, even though the distribution of rates observed in nature as reported

in these studies is much closer to log-normal. This is because, for the purposes of this paper, we

are interested only in surveying the space of possible conditions rather than reproducing those

conditions. The range of parameter values is similar in human cancer cells, though the average

turnover rates are higher in the quickly dividing cell lines. [142] Thus far, our approach is similar to

that of [143], who also produced the 729 3-motifs noted above (filtering for connectedness but not

for isometry) and sampled them at 1000 different parameter values to determine which motifs were

able to achieve adaptation behaviors.

We then used a sophisticated root-finding algorithm to solve where the system of equations in

Eq. 3.2 was equal to zero, thus determining the fixed points of the system. We implemented the

roots() command in the IntervalRootFinding package of Julia, using the Krawczyk operator to

contract the range and tolerances set to a relatively loose 10−6.2 This algorithm uses a branching

tree to search the parameter space, and provides guarantees of finding all roots in a given range.

Note that this finds both stable and unstable fixed points. We soon realized that because the range

of possible rates spans many orders of magnitude, many such fixed points are very close to zero

2Written by Luis Bennet and David Sanders (UNAM). Full API documentation available at gitub. For full details on

Julia itself, see [144]

https://juliaintervals.github.io
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for at least some of the proteins, causing round-off boundary errors in the numeric root finder. We

addressed this problem by log-transforming the system (see Appendix for derivation):

Ẋi =−δ + e−Xi

(
α + ehXi ∑

i 6= j
Ki, jeX j

)
(3.3)

where Xi = logxi and the other parameters are as above. We used the bounding box [e−100,1000] in

Rn for the n−motifs. In practice, root-finding was the rate-limiting step in the whole process.

Once this set of fixed points had been determined, the values of each fixed point were plugged

into the corresponding Jacobian matrix for the system

Ji j =


e−xi[α + ehxi(h−1)(ex jK j,i + . . .)] i = j

K j,i(xieh−1 + x j) i 6= j
(3.4)

The stability of each fixed point was then determined by calculating the spectral radius of each

Jacobian matrix:

σ = sup[ℜ(λ )] (3.5)

that is, the largest real part of any of the Jacobian’s eigenvalues. For continuous time PDEs, spectral

radii < 0 are diagnostic of intrinsic stability (sensu [40]). It was recently demonstrated that this

criterion not only demonstrates that a network is intrinsically stable when the interactions happen

instantaneously, but also stable under any time-lag condition. [145]

Note that there are at least nine other acknowledged definitions of stability, not all of which

yield the same conclusions on a macroscale. [133] While it is likely that most definitions will

correlate with spectral radius, there would be some quantitative differences in the shape–if not the

direction–of the relationship between topology, rate, and stability. For example, Holing’s resistance

(the barriers to switching between steady states) is related to the number of fixed points, and the

absence of chaos similarly depends on the absence of unstable fixed points. Similarly, a limit

cycle can be stable; but because it necessarily forms around at least one unstable fixed point by the
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Poincaré-Bendixson Theorem, even in high dimensions, [76, 146] it misleadingly appears in our

analysis as unstable (though not divergent).

Having thus arrived at a stability estimate for one parameter set for one motif, we then bootstrap,

choosing B = 1,000 sets of parameters for each motif. These runs were distributed across 100 nodes

of the supercomputer cluster at BYU’s Office of Research Computing, requiring approximately

25,000 hours of total CPU time on Intel Broadwell (2.4 GHz) processors with access to 4G RAM

equivalents.

We note here a computational difficulty in determining the number of fixed points. Because the

rate parameters can span four orders of magnitude, it is entirely possible to find a nearly steady

state where one protein level is strongly constrained, and secondary dynamics among the other

proteins are very slow. These slow dynamics, if occurring below the tolerance limit of the root

finding algorithm, may show up as a “fixed plane”, or rather multiple coplanar “nearly fixed points”.

A secondary step was included in our algorithm to ensure fixed points were genuine, rather than

simply below a root-finder’s threshold for ≈ 0: the set of fixed points was scanned, and if any

two were found to have a value of the same coordinate within 10−5, this value was set and a

lower-dimensional root-find with more stringent limits was performed.

3.4 Behavior space

The number of distinct behaviors revealed by this analysis is astonishing. Far from the simple

transition between equilibrium to oscillation under certain rigorous conditions we expected from

previous studies, every 3-motif has at least two topologically inhomogenous regions of parameter

space, and 99.97% of 4-motifs do as well (all but 7 of 22,662). The average across all topologies

was 5.0 and 9.1 distinct numbers of fixed points for a sample of 1,000 parameter combinations for

3- and 4-motifs respectively.
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Figure 3.3 The behavior space of simple motifs was unexpectedly rich. The most complicated of
the 3-motifs was #369, which showed ten different numbers of fixed points corresponding to 10
inhomogenous flow-field topologies Top left: all starting points (small red balls) diverge to infinity.
Top right: all converge to a global equilibrium (large blue ball). Bottom left: two stable (red and
blue) / one unstable (black) fixed point. Seven more complex behaviors exist, but are difficult to
visualize.
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This finding came as a surprise, since a good deal of previous theoretical and experimental

effort had focused on the represselator 3-motif (#219), demonstrating that it could switch from

a point equilibrium to a stably oscillating limit cycle. [147–150] It turns out that 3-motif #219 is

by several measures the least behavior-rich of all motifs, and also the least likely to run away to

infinity (have no fixed points, stable or not). By contrast, 3-motif #369 had 14 different behaviors

(combinations of un/stable fixed points), including 0 fixed points (runaway), 0+1 un/stable points,

(1 or 2)+0 un/stable points, (0 or 1)+2 un/stable points, and (0 up to 9)+1 un/stable fixed points

(Fig. 3.3) Another notable topology is #314, which has the 1/0 behavior across 21% of its parameter

space, nearly double any other and much more than the median 0.3% across all 3-motifs. Of course,

4-motifs vary even more, with a median of nine distinct counts of fixed points and as many as 30

distinct fixed points, corresponding to a median of 12 and maximum of 31 distinct behaviors.

We use 12 different measures of behavioral diversity to characterize this wide range of behaviors

(Tab. 3.1). Different measures of the diversity of behavior space tended to correlate with each other

and the total regulatory weight of the motifs, defined as Et = E+−E− where E+ is the number of

up-regulating edges, and E− is the number of down-regulating edges. Notably, the likelihood of

runaway dynamics increases with Et (ρ = 0.76 for 4-motifs), while the regions of parameter space

including at least 1 unstable fixed point decreased (ρ =−0.75 for 4-motifs, both values similar for

3-motifs). Note that the relationships between statistics and regulatory weight is not necessarily

linear. The number of behaviors and fixed points is particularly sinusoidal across the possible range

(Fig. 3.4).
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Figure 3.4 Various statistical measures of stability correlate with the total regulatory direction of the
4-motif Et (defined in the text). Similar patterns appear for the 3-motifs but are less apparent due to
the smaller number of total distinct topologies.
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Table 3.1 Variables measuring motifs’ behavioral diversity
VARIABLE DEFINITION
FixPt The number of unique counts of fixed points.

SimpDiv Simpson’s diversity of fixed point counts Λ = ∑ p2
i , or the probability of

two simulations having the same number of fixed points
MaxFp The largest number of fixed points observed

Runaway%
The fraction of simulations with no fixed points (all trajectories diverge to
infinity)

Unstab%
% un/stable fixed points averaged across all sims (no fixed points = 0)

Stab%
OneStab Sims with 0 un/1 stable fixed points
ManyStab Sims with 0 un/2+ stable fixed points
MinCycle Sims with 1 un/0 stable fixed points (related to the number of limit cycles)
ManyUn Sims with 2+ un/0 stable fixed points
Both Simulations with 1+ un/1+ stable fixed points

N.Behav
Number of unique combinations of un/stable fixed points. 2/1 and 0/3 count
as two behaviors, but just one FixPt

Behav.Div Simpson’s diversity of behavior counts

3.5 Predicting 4-Node behavior from 3-Node subgraphs

One of the most critical, yet least understood, aspects of this area of research is the degree to which

the stability of subgraphs determines the stability of the overall system. An exhaustive search of

behaviors across all topology space is not feasible. A back-of-the-envelope calculation suggests that

if it takes 25,000 hours to sample the 22,662 motifs with 4-nodes, then it would take 3,000 years

of CPU time to sample the 29,174,514 motifs with 5-nodes, though in reality it would take much

longer due to the increased time required to find individual roots in the more complicated system of

dynamical equations. Therefore, a thorough understanding of the in/stability generated by adding a

fourth node to a 3-motif system may provide at least qualitative shortcuts to understanding larger

interaction networks.

The addition of a fourth node creates the possibility for six new edges, positive or negative or

zero, and thus in principle 36− 1 = 728 possible 4-motifs can be created from any 3-motif (the

-1 representing the disconnected 000 option). In practice, over 75% of these possible extensions
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are isomorphic to each other, or extensions of different 3-motifs. For example, for 3-motifs with

three-way symmetry like the repressilator (#219), all additions of a node via one positive edge are

isomorphic when directed inward (3) or outward (3); the same holds for adding the node via one

negative edge, and becomes even more involved for the 3 C(6,2) = 45 ways of adding two edges.

The small gains theorem states that any two systems S1, S2 that are stable themselves (|S1|<

1, |S2|< 1) can be coupled in such a way to make a new system that will be stable if |S1| · |S2|< 1,

where the norm operator is a test for system stability. In our case, we use the spectral radius, defined

as the L∞ norm of the system’s eigenvalues; however, the result holds for any induced norm. [151]

Defining S1 as the 3-motif system and S2 as the fourth node implies that the addition of the fourth

node should ONLY increase total system stability as |S2|< 1 due to the −δxi term in Eq. 3.2 and

−δ term in Eq. 3.3.

This turns out not to be the case when the nature of the coupling between the systems includes

positive feedback loops of sufficient magnitude to overcome the degradation term; that is, the gains

are not small. For example, 3-motif #219 (the repressilator) is the most stable of all motifs with only

2.2% of biological parameter space diverging (lacking any fixed points), 8.7% with one unstable

fixed point (surrounded by a stable limit cycle), and 89.1% with one stable fixed point. These three

behaviors of the repressilator also represented the minimum number of behaviors observed for any

3-motif. Adding one edge with a direct positive feedback loop (i.e., kCD and kDC are both positive)

creates a network isomorphic to 4-motif ID#1839.3 This motif diverged in 50.4% of its sample

space and had at least one stable and unstable fixed point in 31.4% of cases. Including positive

feedback loops to all three nodes of the repressilator (4-motif #1477674) pushes the fraction of

3The 23 other 4-motifs isomorphic to this one are: 4723, 13647, 16527, 27759, 30643, 39571, 42451, 118607,

121519, 144847, 158927, 158959, 159247, 237711, 240595, 249807, 275731, 354515, 357427, 371795, 371827,

372115, and 380755
4Due to symmetries, only 8 distinct topologies belong to this group. The other seven are 147767, 159287, 252759,

264279, 267163, 278683, 372155, and 383675
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runaway sims up to 68.5%, and drops our stability index from 28.9% to 16.0%. However, another

way of looking at this topology is a negative feedback loop imposed on the edges of a three-star of

positive feedback. Without this negative feedback loop (4-motif #3655), stability drops slightly to

14.8%, while divergence remains all but constant at 68.3%.
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Figure 3.5 The 10 most stable 3-motifs are disrupted
significantly when a 4th node is added to the network
with a positive feedback loop to any node. By contrast,
the 10 least stable 3-motifs become only slightly less
unstable when an activated repressor is added to the net-
work, though there are a minority of nodes where the
effect is larger than the others; n=24 unique topologies
generated in both cases, +48.7% vs -7.8% simulations
runaway (i.e., have no fixed points).

These results illustrate a common

theme: it seems to be easier to disrupt a

stable motif than to stabilize an unstable

one. The 10 least divergent 3-motifs had an

average of 5.1% of simulations run away

(no fixed points); adding a node with a sin-

gle positive feedback loop increased the

runaway risk by nearly an order of mag-

nitude to 48.7% (n=24 unique 4-motifs,

mean pairwise difference = 43.6%). By

contrast, the 10 most divergent 3-motifs

had no fixed points in 64.7% of parameter

space, but adding an activated repressor (A

activates D represses A) was only able to

decrease this percentage to 56.9% (n=24,

mean pairwise difference = 7.8%).6 This

generally unimpressive trend obscures an

interesting finding: a sub-population of 4-

motifs was far more sensitive to stabiliza-
5Also 29165, 239149, and 262765
6The ten most stable 3-motifs are (in order) 219, 27, 243, 81, 729, 222, 225, 189, 25, and 231. The ten least stable

are 185, 369, 395, 131, 41, 203, 113, 366, 122, and 365
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tion than others, including many that included the the same 3-motif as a graph minor. This finding

implies that stabilization can be effective if applied to key nodes in the topology, while destabiliza-

tion can enter the network anywhere to a similar strong effect (Fig. 3.5).

Thus far, this study has emphasized the role topology has in determining behavior, but it is

important to recognize that within a topology decoupling of rate scales can drastically alter the

stability of the system. So, while each motif has its own set-point for where the degradation rate

is able to maintain equilibrium, within the motif is a strong inverse correlation between the risk

of runaway and the degradation rate. A sufficiently high degradation rate can make even the least

stable 3-motif have as low a probability of diverging as the most stable 3-motif at a low degradation

rate (Fig. 3.6). (Recall that all rates are rescaled relative to the synthesis rate, which therefore is

always represented by 1 or log(1)=0. Thus, while the raw degradation rate spans four orders of

magnitude form 10−3 to 100, the scaled degradation rate can span more.) Similarly, the nonlinearity

of the protein interactions–from asymptotic when the Hill coefficient is negative, to linear at 0, to

exponential when positive–has a strong, though complex, effect on the stability index of the motif.

Generally, slightly negative values show a peak in stability; lower values tend to allow unstable

fixed points to occur more frequently, while higher values lead to runaway dynamics. Unlike the

degradation rate, Hill coefficients are unable to reverse the effects of network structure; i.e., at very

low Hill coefficient values, extremely stable motifs become only moderately stable, while extremely

unstable motifs become only moderately unstable. (Fig. 3.6)

3.6 Conclusion

Previous work on the complex dynamics of protein networks emphasized either the different

behaviors of one network (e.g., the transition from stable equilibrium to a limit cycle about an

unstable equilibrium in the represselator), [149,150] or scan all networks to find one behavior. [143]
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Figure 3.6 The effects of model parameters within the least (black), median (red), and most (blue)
stable motifs. High degradation rates can make even the most unstable motif as stable as the most
stable motif at low degradation rates. The Hill coefficient typically has a motif-dependent optimal
value for creating stability, indicating that some degree of nonlinearity helps the system maintain
equilibrium. In some cases, this optimum is shifted so far to one direction that the optimum lies
outside the simulated range.
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Our general survey discovered that almost all motifs display far richer behaviors than the previous

work would suggest. Furthermore, the jump from a median of 6 distinct configurations of stable and

unstable fixed points for 3-motifs to 12 for 4-motifs suggests that this richness will only increase as

protein networks become larger and larger. While some of these networks were dominated by just

one behavior, 91.7% of 4-motifs had a Simpson’s diversity of under 50% (meaning, any two sets of

random parameters were more likely than not to generate different behaviors).

This work also clearly demonstrates that, while topology exerts a strong central tendency on the

diversity of behaviors, rates can be adjusted upwards to disrupt even the most stable structures and

down to tame even the most divergent, albeit to a lesser extent. The dual role of rate and structure

suggests that no topology, no matter how unstable, will be completely prohibited by selection, as it

can be controlled by careful regulation. However, these unstable topologies are likely “weak points”

in the overall regulatory superstructure of life; a global increase in protein turnover rates is more

likely to cause network collapse in these motifs than others. This opens up a potentially fruitful

line of investigation for investigating what specific biomolecules are responsible for shortening

life-spans in organisms with high protein turnover rates from across the animal kingdom. [152–154]

Conversely, it suggests that moderating these interactions may decrease protein turnover-related

processes like the aging rate and/or cancer risk. [155] Future studies will investigate these intriguing

possibilities.

We hope these results will encourage investigators to think more expansively about the possibili-

ties of protein behaviors, beyond the standard “steady state vs oscillation” paradigm. Navigating

this diversity is a conceptual challenge and computationally intensive. To help researchers broaden

hypotheses, we make the results of nearly 3 years of CPU time freely available on Mendeley Data

here, and can be browsed via a dashboard here. A wider appreciation for behavioral diversity in the

building blocks of networks should generate fascinating research into the multiple roles molecules

can play in the diversity of cellular functions.

DOI:10.17632/2vsj7wr7wz.1
https://oceanchaos.shinyapps.io/motif/
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Chapter 4

The instability of known protein regulatory

networks

4.1 Abstract

The study of motifs, small subgraphs of the overall protein regulatory network, has been limited

by data to graphs that are undirected, unsigned, small, prokaryotic, or some combination thereof.

Using a recent combination of databases, we analyze over 100,000 3-motifs and 3,000,000 4-motifs

in humans and a parallel dataset in mice, representing much of the total biological knowledge of

signed directed protein-protein interactions (PPIs) in the two species. While we confirm a similar

small set of enriched topologies as previous studies, analyzing the stability properties of these

motifs suggests that positive selection for stability has counter-intuitively not played a major role

in determining motif abundance. This suggests that function and adaptability may play such a

major role in network evolution that the role of stability is, for the most part, masked by these other

concerns.

73
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4.2 Introduction

4.2.1 Stability and systems biology

Stability is widely seen as a requirement of biological processes and indeed underlies biological

reasoning in general. [156–158] Although there has been some philosophical resistance to including

evolutionary thinking in systems biology as a rigidly defined subdiscipline, [159] the assumption

that biological networks at all scales (biomolecules through ecosystems) adapt to conditions via

natural selection was so widespread as to never need a serious defense among practitioners. [160–

162] Evolution toward greater stability, or toward the closely related concept of robustness to

perturbations, has therefore been a leit motif in the systems biology literature. [163] An iconic

example was study of the anterior-posterior patterning of Drosophila embryos by morphogens; an

elegant series of articles (1) argued that a simple diffusion-from-source model was not sufficiently

stable to explain observed successful embryological development in the face of natural variability,

(2) deduced strong limitations on the parameter space of a model that could maintain the pattern,

and (3) demonstrated experimentally that biological mechanisms did indeed exist (though they were

previously unknown) to maintain the system in that small region of parameter space. [38, 164–166]

Similar reasoning has motivated experiments in evolution for optimal resource use, [167, 168] been

used to explain inefficiencies in processes like chemotaxis and transcription that require high fidelity

as a sort of “kinetic proofreading”, [169–171] and–most relevant for us–the observed frequencies of

biological network structures. [41]

Unstable networks are expected to be rare for the same reason as unstable airplanes: they soon

vanish and are replaced by more stable alternatives. This occurs not just because of regulation

catastrophes, where necessary metabolites are driven to zero or protein concentrations are driven

towards infinity, [172, 173] but also due to information failure in biochemical circuits necessary for

life. [174] (Note that in this paper, we define a network as unstable for a given set of rate constants
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if at least one protein concentration will go to infinity for all starting conditions.) Furthermore,

it is known that metabolic and regulatory networks “rewire” on-the-fly in response to temporary

conditions, such as DNA damage [175], nutrient pulses, and many others. [176, 177] Such rapid

responses suggest that a great deal of potential regulatory network plasticity is being canalized (sensu

Waddington [178]), and experimental evidence is mounting to support this supposition. [95,179,180]

Therefore, regulatory networks should be readily malleable to evolutionary pressure in the face

of better alternatives. The general proposition that the most stable way of performing a defined

function would be favored and repeated at greater frequency in future generations is thought to

explain the observation that some motifs were greatly enriched in real-life bionetworks while others

are conspicuously absent; many networks can perform a function, but relatively few can perform

them robustly and become common. [37, 38, 41]

However, stability is not the only force at work on bionetworks; after all, a universally suppressed

system with no activity represents an ultimate in stability, but in a biological context also represents

death. Networks must have activity, that is have a dynamic function, to exist at all, and this function

must persist even when conditions change; function, stability, and adaptability interact in complex

ways, and realized bionetworks represent the end-product of a complicated evolutionary past of

trade-offs among these goals. [181] As the example of segmentation shows, unstable networks can

persist if the function is important enough to justify the cost of maintaining a regulatory structure in

the small region of parameter space that is stable. Similarly, simulations in a constant environment

evolve accurate and efficient networks that are far less modular than those observed in nature, but

simulations in unpredictable environments justifies naturally occurring inefficiencies because they

result in necessary adaptability. [182–185]

This paper tests the consensus view that stability is one of the dominant evolutionary forces on

regulatory PPIs, and seeks to detect its effects across known eukaryotic pathways in humans and

mice. If stability is the dominant, or one of the dominant, factors shaping regulatory networks, then
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such real-world networks should show clear signs of evolving away from unstable structures. In

general terms, this would mean (1) few subgraphs that drive protein levels to infinity at biological

interaction strengths, (2) relatively few up-regulating links, (3) networks that are difficult to fragment

if an interaction or protein vanishes due to mutation or a changing environment, and (4) many

feedback loops to prevent runaway processes. Surprisingly, the evidence for these reasonable

suppositions is either weak or contradictory.

4.2.2 Biological data

Some background on how the technical details behind this surprising conclusion was reached is

called for. Methods for studying protein network regulation at the genome-wide scale are dominated

by microarray analysis of coimmunoprecipitation (coIP) assays. This powerful method has allowed

scientists to efficiently survey cell cultures at huge scales, then create large databases of proteins

found in complexes, including the large repositories BioGRID, IntAct, STRING, HPRD, TRED,

and RegNetwork. This method sadly does not preserve information about regulator/regulatee

relationships, much less the sign (up- or down-regulating) of such regulation. Even databases built

on co-expression datasets tend to elide this crucial information; e.g., the Gene Regulatory Network

database (GRNdb) [186] scores transcription factor→ target relationships using GENIE3 [187]

but convolved with predicted binding domains in the SCENIC pipeline, preserving direction but

not sign. Indeed, it is entirely possible that many of the relationships in these databases should not

be characterized as “regulatory” at all, but could instead be post-transcriptionally collaborative or

antagonistic. As a result, the overwhelming majority of the millions of interactions between tens of

thousands of genes, proteins, and miRNAs reported in the twenty databases examined for this study

would be appropriate for undirected and unsigned graphs only.

However, a subsection of the RegNetwork database [17] contains both regulatory direction

and sign (up/down), consisting of two databases of approximately 4,000 interactions for 1,000
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Table 4.1 Statistics of the KEGG-RegNetwork datasets.
p: probability of two random proteins interacting
δ : probability of that interaction being down-regulation.

mouse human
proteins 1,033 983
interactions 4,034 3,954
3-motifs 109,195 102,809
- groups (of 132) 26 29
- top group 71.1% 71.1%
- 3-cycles 3 2
4-motifs 3,397,715 3,162,070
- groups (of 22.6k) 190 209
- top group 45.4% 45.2%
- 4-cycles 0 0
- 3-cycles 98 115
p 0.38% 0.41%
δ 2.4% 2.3%

distinct regulatory elements each in Homo sapiens and Mus musculus (Tab. 4.1). Even this database

required a complicated coordination of known interactions with pathways described in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) Pathway Map system. [188] Plans to expand this

dataset to more proteins and other species, as alluded to in [17] have not yet materialized.1 Though

far from complete, the two kegg.reg.direction tables of the RegNetwork database represent a good-

faith attempt to gather everything that has been published about the up/down-regulation of specific

genes in known pathways.

Because we know the database is far from complete, it is even more crucial than usual to

remember that the results of this paper represent the state of scientific knowledge about protein

regulation, not the properties of all regulatory networks that exist in real life. The completeness

of even undirected interaction networks has always been a fraught question. A 2009 review of

the six largest Protein-Protein Interaction (PPI) databases found that disagreements occurred at

all levels. [189] The largest database (HPRD) in the most completely studied species (H. sapiens)

1Pers. comm. CNKA with both ZP Liu and H Wu
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did not have entries for roughly one third of interactions found in the other five databases. These

differences occurred not just due to disagreements among what constituted an interaction (“matrix”

belonging to the same complex, as opposed to “spoke” confirmed interaction with a single marked

protein), but also different annotation methods, and even disagreement among databases about how

many interactions were reported by the same paper. Attempts at resolving these differences by

meta-databases like AGIL and STRING have been hampered by disagreement about annotation

method. Even today, the 11.9 million links reported in the STRING database for humans (v11.5,

July 2022) [190] imply an average of 560 interactions per protein-encoding-gene if we accept

the maximum of 21,306 reported in CHESS, [191] only 23.6 of which have a high confidence

score of ≥0.7 support.2 The Harvard BioPlex3 database, which is built on affinity purification

experiments that rigorously remove false positives, finds 118,162 interactions among 14,586 proteins

for an average of 8.1 interactions per protein. [16] By contrast, long-term evolutionary experiments

followed by genome-wide coexpression assays suggest ∼1,000 interactions per protein. [192, 193]3

Indeed, studies of complex heritable traits like schizophrenia and Crohn’s disease suggest the

“omnigenic” involvement of the entire genome either directly or indirectly. [194]

4.2.3 Graph theory

Much as it is more difficult to make databases of the regulatory properties of protein-protein

interactions than databases cataloging their existence, the mathematical/theoretical analysis of

directed graphs presents its own challenges above those of undirected graphs. While computational

biologists have long exploited graph theory to optimize phylogenetic inference [195] and evaluate

ecosystem structure, [196] protein interactions have perhaps the clearest parallels and most rigorous

applications to its abstractions. [68, 132, 197–199] The information in a typical PPI database can be

2The STRING-db.org help manual acknowledges that the cutoff for a significant level of support is arbitrary, but

suggests 0.4 as “medium” and 0.7 as “high” levels. See https://string-db.org/cgi/help
3No comparison is available, as the AGIL data server was taken offline in May 2022.
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thought of as an undirected graph, with vertices representing proteins and edges representing the

existence of their interaction as determined by coIP or a similar experimental procedure. Several

different kinds of mutations also have direct analogies to graph theory: a mutation that eliminates

the interaction is analogous to an edge deletion (G\e in graph theory symbols), one that causes

interactions to be piped through a complex of two proteins (or other gene products) rather than

interacting with each protein separately can be thought of as an edge contraction (G/e), and a

loss-of-function mutation is like a vertex deletion (G−v). All such transformations create a minor H

of the original graph G, a concept exhaustively studied in a classic series of twenty papers spanning

nearly two decades by Robertson and Seymour that establish analytical tools on solid theoretical

ground. [200]

By contrast, we are interested in who is regulating whom, a process better characterized by

digraphs, i.e., a directed graph where the edge A→B is distinct from A←B. These abstractions are

analytically difficult, and the study of their properties has lagged behind that of undirected graphs.

However, in recent years, a great deal of progress has been made in showing that several of the

most famous properties of undirected graphs apply to digraphs as well, including ones relevant

to mutable bionetworks such as Wagner’s conjecture, [201] Hadwiger’s conjecture and chromatic

number, [202, 203] Mader’s problem, [204] and the directed grid theorem. [205, 206] These results

suggest that the tools of undirected graph theory can provisionally be used to analyze directed

graphs as well, even when not already explicitly extended to them.

4.3 Counting observed motifs

One of the first tasks of this project is to count the representation of each motif in the KEGG-

RegNetwork dataset. Note that only two undirected 3-motifs exist (a triangle and a V-shaped

2-star) so these building blocks contain little information, though they have still been studied by
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PPI researchers. [207–209] However, with the addition of direction (13) and sign (132) many

more topologically distinct 3-motifs exist(i.e. 132 isomorphic graph groups). Similarly, only five

undirected 4-motifs exist, but there are 199 unsigned directed ones, and 22,662 signed directed ones.

[38] Counting motifs on large networks is a difficult and time-intensive problem that has received a

great deal of attention, with one recent survey finding 58 different published approaches. [210] In

general, these methods either sample the network (via a random-walk, color coding, enumeration-

generalization, etc.) to get a representative distribution of motifs, or fully enumerate all motifs

either by direct counts that avoid duplication via hash tables (as in the classic MFinder [41] and

its descendants like FANMOD/ESU [211]) or in linear-time using counting-motifs. [42] Many

recent methods have vastly improved on the efficiency of these early techniques by counting

specific motifs via matrix-based (such as ORCA [212] and JESSE [213]) and/or decomposition

methods (RAGE [214, 215] and ESCAPE [216]). Other methods focused on applying these

theoretical advances to parallel computing, some with fairly minor changes to existing methods

(DM-ESU [217] or GPU-ORCA [218]) and others more radically by parallelizing over edges instead

of vertices (SubEnum [219] and MR-GTries [220]). As we were interested in all 3- and 4-motifs,

we chose not to operationalize the motif-specific counting advances, instead combining aspects of

the full enumeration methods MFinder and Itzhack, designed to “mostly” avoid counting the same

motifs many times but to run in parallel without the need for work-sharing crosstalk.

After the parallel runs finished, results were gathered from across processes and duplicates

eliminated, creating lists of all combinations of proteins that interacted to create 3- and 4-protein

subgraphs (belonging to Ω3 and Ω4). The direction and sign of all links among these subgraphs was

then loaded from the data tables, and each subgraph was assigned to its corresponding motif group

(the smaller sets Ω′3 and Ω′4, consisting of just one representative from each isomorphic group in Ω3

and Ω4). To clarify the difference between these sets, the six blue networks in Fig. 4.3 all belong to

Ω3; but, because they are isomorphs of each other, only one belongs to Ω′3 as a representative of the
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group. The process of assigning interacting proteins to isogroups was somewhat complicated by the

context-dependent nature of the up/down regulation in the KEGG dataset; some links were known

to be sometimes positive and sometimes negative, and so a single set of proteins was sometimes

assigned to multiple motif groups. Assignment was performed efficiently using algorithm 1 and

equation 3 in Chap. 3.

With this technical background now in hand, we can restate the hypotheses from Section 4.2.1

in quantitative terms. While the abundance of motifs in Ω′3 and Ω′4 will be driven by connectivity p,

up-regulation bias δ , and the number of isoforms of each motif, (1) departures from the random

expectation of Erdös-Renyi graphs with these constraints will correlate with their stability indices.3

We can also predict many features of stable graphs that should be enhanced in a stability-driven

system: (2) down-regulation would be favored over potentially destabilizing up-regulation, (3)

fragile motifs (with bridges and articulation points) should be rare, and (4) there is no a priori reason

to expect pass-through elements (which potentially lead to signal amplification) or co-regulation

elements (which can make sure elements of complexes are produced concurrently) to be particularly

favored one over the other. All of these hypotheses were reasonable, in line with theory and findings

from other data sets, and completely wrong.

4.3.1 Observed trends

In both mice and humans, the overwhelming number of links are positive, and the connecting

networks are sparse; as a result, the counts across motif space Ω′ are very strongly biased towards

just a few of the positive and simple motifs (Tab. 4.1). In humans, 96.3% of observed 3-motifs

belonged to just three groups, all of them with the minimum two links required for connectivity,

and both of those links positive (Fig. 4.1). Turning our attention to the 4-motifs, we find that fewer

than 1% of the possible isogroups occurred even once in the data (209 of 22,660), and 45% of the

3.2M observed motifs belonged to just one isogroup, the “A co-promotes {B,C,D}” group. Only
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eight 4-motifs in Ω′4 have three positive edges and no negative edges (0.035%), but they comprise

88.5% of all observed 4-motifs in humans, including seven of the eight most abundant. Results

are qualitatively similar for mice, with a strong bias towards simple, positive networks, but with

even fewer motif groups represented in the marginally larger data set: 26 rather than 29 of the

132 possible 3-motifs, and 190 rather than 209 of the 22,660 possible 4-motifs. (See Appendix:

Figs C.2, C.3)

Figure 4.1 Counts of all observed 3-motifs in humans

4.4 Expected Frequencies

The total for each motif was then compared to expectations, calculated several different ways. The

expected frequency of directed and signed motifs is a poorly characterized problem. Even in the

relatively simpler case of undirected motifs, there is little agreement about which assembly rule

best characterizes biological networks, and different rules produce different motif distributions.
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Figure 4.2 Counts of the most common 4-motifs in humans. Only the 53 shown here made up at
least ∼0.01% of the total count of 3.16M observed motifs.

[39, 221, 222] We extended the method recently proposed by Fushimi et al. [43] as one of the most

efficient (considerably faster than either Possible Graph Sampling or LINking and Counting, both

described in [207]) and one of the few designed for digraphs. As in their case, we let the graph

structure be G = (V ,ε), noting that self-loops are assumed for all proteins v ∈ V . Note also that

|V | = |ε|(|ε|− 1). The connection probability of any edge e ∈ ε is derived from the dataset as

p = L−d
N(N−1) where L is the observed number of interactions, d is the number of duplicate entries

that occurred earlier in the data table (d = 4 for both data sets, when a given interaction could be

both positive and negative), and N = |V | is the number of unique regulatory elements represented

(see Tab. 4.1). We then define two indicator functions: x+(e) = 1 if e is present and up-regulating,

x−(e) = 1 if e is present and down-regulating, and both are 0 otherwise. We further define δ as the

proportion of down-regulating interactions in the data set and assume that up- and down-regulation

are the only types of interactions, so the proportion of up-regulation is 1−δ . Note that our edge

system is more complicated than Fushimi’s since each edge has three possible states, and so the
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space of all graphs x = {. . . ,x(e), . . .} ∈Ω has cardinality |Ω|= 3|ε|, though many of these will be

forbidden because they generate a disconnected graph; however, it is also simplified by assuming

the probability of each edge is equal, p(e) = p ∀e ∈ ε . With these definitions, the probability of

any motif can be calculated from its edge-list x as:

m(x) = ∏
e∈ε

px+(e)+x−(e)δ x−(e)(1− p)1−x−(e)−x+(e) (4.1)

= ∏
e∈εx

pδ
x+(e)(1−δ )x−(e) ∏

e∈ε\εx

(1− p) (4.2)

Thus far we have followed Fushimi’s notation, but here note this system can be simplified even

further if we let

π(e) =


pδ , e is down-regulating

1− p, e is absent

p(1−δ ), e is up-regulating

We can then substitute these values to find

m(x) = ∏
e∈ε

π(e) (4.3)

This equation represents the probability of any possible motif in Ω. We then optimize by introducing

a mapping function to take the index of any possible motif Gi to the index of its isomorphic group

G′i, via f (i)→ i′, let Ti = |G′i| be the number of members of isomorphic group G′i, and denote the

space of distinct isomorphic groups as Ω′. Because |Ω′|<< |Ω|, far fewer expectations, stability

metrics, and motif statistics need be derived than otherwise. The probability of all motifs in the

group is equal, since each Gi ∈ G′i has the same number of positive, negative, and absent links), so

the final probability of each group can be calculated as

m′i′(x) =C
|Ω′|

∑
i=1

Timi(x) (4.4)

where C is the correction factor for those G′ /∈ Ω′ because they are disconnected graphs. It can

be found by temporarily letting C = 1, finding all the incorrect m′i values as µi, and then solving
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C−1 = ∑ µ ′i . On a standard laptop, the probability of the 22,660 4-motifs in Ω′4 could be calculated

in 0.1 seconds using this method.

4.4.1 Comparison to observations

Despite the dense notation, this null model is remarkably simple in the sense that it makes no

assumptions about network assembly rules, selective pressures, or stability. Instead, it assumes that

any PPI is as likely to exist, and as likely to be up or down, as any other. However, these assumptions

do not imply that any motif is as likely as any other. Because only∼0.4% of the possible interactions

are realized in the two datasets, and < 3% of the interactions are down-regulating, the expectations

are strongly skewed towards motifs with few and positive links. Thus far, the null model is consonant

with the results.

However, the introduction of Ti biases the results in the wrong direction. Most 3-motifs have six

isoforms, but some have three, two, or even one (Fig. 4.3). Note that in Fig. 4.1 and 4.2, motifs

that co-regulate (A regulates B, C, and D if present) are the most common, while pass-through

motifs (A regulates B regulates C ...) are nearly an order of magnitude less frequent. Ignoring Ti,

the two positive links and four absent links in the 3-motif should make these motifs equally likely.

However, our null model predicts the opposite: there can never be more than N ways to create a

simple co-regulatory model, but there are potentially N! pass-through models. (Compare the green

and blue isoforms in Fig. 4.3.) This means we expect twice as many pass-throughs as co-regulators

in the 3-motif (6 to 3), and a six-fold bias among the 4-motifs (24 pass-throughs to 4 coregulators),

yet we observe a 4:1 bias in the other direction.
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Figure 4.3 Most 3-motifs have six isoforms (105, blue), but 22 have three (green), 3 have two (red),
and the remaining two have just one (black, the positive and negative 3-cliques). Representatives
of each of these four classes, with all of their isoforms and corresponding motif IDs, are shown
around the pie chart. Note that all edges are up-regulating in this figure, but the results hold for any
combination of up- and down-regulation.
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4.5 Topological correlates

The number of co-regulating elements can be efficiently calculated using an adjacency matrix. For

example, if we define the edges of the motif as 1 if present and 0 as absent and enter them in an

adjacency matrix A, then the number of co-regulating elements is

∑
i

∑ j ai, j

2


(The number of co-regulated elements can be calculated by reversing the order of the sums.) The

number of pass-through elements can also be calculated as grandsum(A2)− tr(A2), in other words,

the sum of all the elements of A2 (because the elements of A2, αi j, represent the number of 2-step

paths from i to j) except the diagonal (which represents forbidden out-and-back loops). This is a

nicely compact formulation, but not particularly efficient. A faster method is to fill the adjacency

matrix with the index of each edge, then take the Cartesian product B = ai j×a jk where i 6= j 6= k.

This produces a (2xN!) matrix of indices, and the number of pass-through elements is the collection

of rows where both columns are non-zero: ∑i ybi,1 ∧ ybi,2 . These formulae reduce computation time

of these properties across all 22k members of Ω′4 to ∼1.5 seconds on a standard laptop.

For both the 3- and 4-motif set, there was a strong nonlinear relationship between residuals

from the null model and the number of co-regulatory and pass-through elements (Fig. 4.4). In all

cases, it was their absence that had substantial explanatory power: motifs with no coregulating

elements were approximately 3.5x and 3.2x less common than predicted by the null model in Ω′3

and Ω′4 respectively, while motifs lacking pass-through elements were ∼7.5 and ∼80 times more

common. These correlates decreased the overall error, but failed to explain many of the largest

outliers, including the reinforcing co-regulating motif shown in the inset, many of which consisted

of exclusively positive edges. “All-positive” motifs were moderately more common than predicted

by the null model, but gains in predictability from including “all-positive” as a covariable were

modest (Tab. 4.2).
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Figure 4.4 A null model captures much of the variability in known bio-networks. Motifs with no
co-regulatory element (A regulates both B and C) occur ∼3.5x less frequently than the null model
predicts, while motifs with no pass-through elements (A regulates B regulates C) occur ∼7.5x
more frequently. Many of the largest deviations occur on motifs consisting solely of up-regulating
edges (marked with +), which occur on average 3x more frequently than expected, after taking
co-regulation and pass-through elements into account.
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Figure 4.5 The total number of butterfly contractible edges, bridges, and articulation points in all
connected 3- and 4-node motifs was an exceptionally poor predictor of how many were observed in
the KEGG-RegNetwork datasets. The deviations from expectation were not only large, but all in
directions that increased energetic costs or decreased stability, contrary to our hypothesis.
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There are several other notable properties of the observed motif distribution. First, real-world

protein networks are expected to be difficult to cut, as this would lead to disregulation. Bridges

are edges that cause a graph to become disconnected when removed, that is G ∈Ω but G\e /∈Ω.

Articulation points are the vertex equivalent, G− v /∈Ω. Across the theoretical Ω′ spaces, bridges

and articulation points are relatively rare; 80% of 3-motifs and 94% of 4-motifs have no bridges,

while 73% and 89% lack articulation points. Contrary to expectations, these “uncuttable” motifs are

heavily depleted in the datasets with only about 1.2% and 4.2% of observed 3- and 4-motifs lacking

bridges or articulation points in both humans and mice (Fig. 4.5bc).

Butterfly minors are a special class of reduction that exists only on digraphs. They are created

through one of three moves:

• The deletion of an edge,

• The contraction of edge e from (a,b) into a if e is a’s only outgoing edge, or

• Into b if e is the only incoming edge of b.

The latter two procedures are analogous to the elimination of a redundancy in the network; if many

proteins regulate A but A regulates only B, then they may as well regulate B directly. Similarly, if B

regulates only one protein, then all its regulators could regulate A just as simply. The energetic costs

of producing such an unnecessary “middle step” into a protein regulation pathway would likely be

evolutionarily unfavorable in the absence of the need for an integrator or other secondary process.

An edge is said to be butterfly contractible if it meets either of the latter two conditions above, a

concept that has proven useful to theorists who have used it to extend theories of tree width and the

Erdös-Posá property to directed graphs, and to prove Norine’s Conjecture. [223–226]

Unlike bridges and articulation points, butterfly contractible edges are abundant; 90.9% and

79.4% of 3- and 4-motifs in Ω′ have at least one such edge, respectively. Far from eliminating such

edges, however, the data set shows that they are all but required: exactly one observed 3-motif (out
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of >100,000) in each species had no butterfly contractible edges, while over 96% of 4-motifs in

both species had at least one (Fig. 4.5a).

The networks also showed far more clustering than expected in the random null model. This

effect is somewhat masked by the very low connectivity of networks in the data, which meant motifs

with large numbers of edges were expected to be even more rare than observed. Motifs with the

minimum number of edges (2 for 3-motifs, 3 for 4-motifs) occurred very slightly less often than

expected, but the more edges, the more enrichment was observed (Fig C.6). 3-Motifs with four,

five, and six edges were only expected to occur twice, but instead appeared 96 and 74 times in

human and mouse respectively; 4-motifs of 6+ edges were only expected ∼1.5 times in the data,

but instead were counted 1,502 and 1,075 times respectively. This over-representation of high edge

count motifs demonstrates a good deal of cross-talk within functionally linked genes.

Clustering was also observed in the co-occurrence of regulatory sign. We have already discussed

how motifs made up of only positive (i.e. up-regulating) edges were enriched across data sets

(Fig. 4.4, Tab. 4.2), but negative edges clustered as well. For example, 4-motifs with four negative

edges were expected only ∼0.013 times in either species, but were instead observed 36 times in

humans and 39 times in mice. Overall, motifs with two or more negative edges were seen∼3.6 times

more often than random in 3-motifs in both species, but a more modest 52% and 23% enrichment

in 4-motifs in humans and mice; however 4-motifs that were all negative were 9.8- and 8.6-fold

enriched.

The number of k-cycles in a directed graph is an NP-hard problem, but can be calculated fairly

quickly on small motifs using a modified color-coding method, [33] and sped even faster for k-cycles

on k-motifs by recognizing that any cycle includes every vertex, so only one starting point need

be tried. Similarly, on 4-motifs, every 3-cycle must include either vertex 1 or 2 (or both), so only

these two starting points need be tried, the second further sped by removing all incoming edges to

vertex 1. Across Ω3, 43% of motifs have one cycle, and 9.1% have two; the null model predicts
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81 one-cycle and 3 two-cycle motifs should be observed in both species, but instead only 3 and 1

appear in humans, and 2 and 1 in mice. Similarly, 33% of Ω4 motifs have zero and one 4-cycles,

20% have two, and on down to 0.8% with six; while these are predicted to be relatively rare, the null

model still expects ∼3,597 motifs with at least one 4-cycle, yet none are observed out of the over

3,000,000 motifs counted in each data-set. Three cycles are a bit more widely distributed, rising

from 11.8% of Ω4 motifs with zero to a peak of 25.0% with two, and tailing off to 0.08% with eight.

The null model predicts ∼5,820 motifs with one 3-cycle, 1,146 with two, and 1,101 with three or

more. However, the observed distributions are 79, 36, and 0 for humans, and 68, 30, and 0 for mice.

We discuss these astonishingly low numbers in the conclusion.

The out-degree distribution of both species has ∼700 nodes with zero outgoing edges, but a

very long tail ending in two “hubs” or “global regulators” with over 100 targets each (NF-κB-1 and

RELA=NF-κB-3 in both). As found in [227], the distribution follows a power law until limited

by sample size. The in-degree distribution also follows prior research, having a shorter tail and a

log-linear rank-count curve that drops below one protein per in-degree at ∼30 regulators, though

three proteins in each species have an in-degree > 45. [34, 228] The truncated distribution found in

E. coli and other prokaryotes was thought to result from their relatively short promoter region, and

therefore could be longer in eukaryotic organisms with their more baroque regulatory methods; this

appears to not be the case. Indeed, approximately 20% of all targets in both datasets were regulated

exclusively by one transcription factor (160/776 in humans, 156/806 in mice), and over 45% of

these mapped back to just four transcription factors (42/43 to TP53/Trp53, 15/15 to NR3C2, 13/7 to

IRF3, and 6/8 to NR1H4 in humans/mice). This confirms the prevalence of Single Input Modules

(SIMs) as seen in other organisms. [34, 177]
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4.6 Stability

Stability was determined by creating a nonlinear ODE for each motif in Ω′3 and Ω′4, drawing 1,000

sets of random parameter values for each, solving the system for fixed points, and finally calculating

the eigenvalues at each fixed point to determine its stability properties (see details in 3). The ODE

is of the form:

˙[Pi] = α−δ [Pi]+∑
j 6=i

ki j[Pj][Pi]
h (4.5)

where [Pi] is the concentration of protein i, α is the (universal) autocatalysis rate at which all proteins

are made independent of regulation, δ is the degradation rate (n.b.: density dependent), ki j is the

effect size of protein j on protein i, and h is the hill coefficient which determines the shape of

the response of protein i to protein j. A network was considered "unstable" for a given parameter

vector if it had no stable fixed points, implying the suicidal consumption of all cellular resources

as a protein’s concentration rushes toward infinity. This calculation process took over three years

of CPU time, and resulted in a thoroughly sampled parameter space, revealing numerous distinct

behaviors and markedly different stability profiles for all possible motifs. Two intuitive measures of

stability were

1. runaway: the fraction of parameter space with no fixed points; and hence any starting

concentration of proteins would be driven to zero or infinity.

2. SI: A Stability Index, modified from the SSS of [221], where each draw of random parameters

received 0 points if there were no fixed points, and between 0 and 1 points based on the fraction

of fixed points that were stable, averaged over all 1,000 draws. For example, a motif where

50% of simulations had no fixed points, 25% had 1 stable fixed point, and 25% had 1 stable

and 1 unstable fixed point would have a stability index of .5×0+ .25×1+ .25× .5 = 0.375.

Stability was also calculated using 12 other statistics, but they all correlated with these two and

were not included in subsequent tests.
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Table 4.2 Models predicting observed motif abundance.
pt0: 0 pass-through elements; crg0: 0 co-regulating elements; ap: all edges positive; (models
containing these three parameters are considered “full”); SI: stability index; runaway: fraction of
parameter space with no fixed points
Model r2 MAE AIC
n−motif 3 4 3 4 3 4

Null
human 0.836 0.6468 512 108.8 193 -16310
mouse 0.828 0.608 546.5 117.6 198.5 -13560

+pt0+crg0
human 0.863 0.6495 413.8 108.8 173.3 -16480
mouse 0.8626 0.6115 451.3 117.6 172.8 -13760

+pt0+crg0+ap
human 0.8731 0.6509 370 108.6 165.2 -16560
mouse 0.8661 0.612 420 117.5 171.4 -13790

Null+SI
human 0.8361 0.6469 512.5 108.8 194.9 -16310
mouse 0.8284 0.6082 545.8 117.6 200.2 -13570

full+SI
human 0.8633 0.6496 414.5 108.8 175 -16480
mouse 0.8631 0.6117 448.7 117.6 174.3 -13770

Null+runaway
human 0.8364 0.6469 512.7 108.8 194.7 -16310
mouse 0.8281 0.6081 546.2 117.6 200.4 -13560

full+runaway
human 0.8634 0.6496 415.8 108.8 174.8 -16480
mouse 0.8628 0.6116 448.8 117.6 174.6 -13760

These two measurements were used to correct both the null predictions above, and the “full”

model including co-regulation, pass-through, and all-positive information. These four models were

used to predict the four distributions (human and mouse x 3- and 4-motif) and evaluated using

three metrics for 48 total tests; in no case did the addition of stability information improve model

performance (Tab. 4.2). Of course, other metrics of stability are possible, and there are reasons to

think our data are non-representative of networks as a whole. Nevertheless, the total absence of any

correlation at all cannot be ignored.
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4.7 Similarities to other networks

The surprising results for stability are all the more striking since the network is conventional in

many other ways. Like previously studied networks, it is sparse (linkage < 1%), has a long-tailed

out-degree distribution and a more compact in-degree (even though regulation in the eukaryotes

studied here is less sterically constrained by short promoter regions than the prokaryotic networks

where these trends were discovered), is dominated by a relatively small number of motifs, and

these motifs show the classic Single Input Module (SIM) pattern. [228] While these results must be

approached with caution given the incomplete nature of the data, there are reasons to believe SIMs

would be common in an evolving network: a master regulator is useful if multiple proteins need

to respond to a particular environmental condition, such as metabolizing enzymes in reponse to a

nutrient pulse or damage repair proteins in response to heat-shock or DNA damage. [229] They

would also be useful in creating a multi-protein complex, as it would ensure the transcription of all

components of the complex is started and stopped at once. [230] Less obviously, SIMs generate

temporal expression programs by regulating different targets at different concentrations and/or

binding affinities, so one protein’s transcription is activated after another as regulator concentrations

rise in LIFO order. [177, 231, 232] Fairly minor adjustments in such a network can result in a 100x

change in regulatory speed, [233] and synthesized networks using this motif are able to create

a “binary ripple” to count cellular events in base 2. [234] Given all these benefits, it is perhaps

unsurprising that by far the most abundant 3- and 4-motifs were small-scale SIMs (Figs 4.1,4.2).

By contrast, pass-through or “cascade” motifs, though often discussed as having important roles

(e.g., amplifying extracellular signals) also tend to amplify noise in the system, [38] and have

proven vulnerable to collapse in ecosystems if not stabilized by numerous weak interactions. [235]

Perhaps this increased variability (as opposed to instability per se) goes partway to explaining why

coregulatory elements were more common than cascade elements (top left of Figs 4.1, 4.2, C.2,
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C.4), despite the opposite being in line with null expectations due to the larger number of cascade

isoforms.

Another similarity to other regulatory networks was the strikingly low number of cycles. Feed-

back loops are often conspicuously absent in protein networks, a phenomenon researchers have

imputed to the instability or multistability of loops. [221, 229] Some argue that the core “plant” of

a gene network is always stable, while the regulatory “controller” feedback structure creates any

observed instability. [236] However, the instability of feedback motifs has been greatly overstated.

Positive feedback loops indeed lead to instability across most of parameter space; 3-motif #365

where all three nodes positively regulate the other two runs to infinity 71% of the time. However,

consider the prototypical negative feedback loop: the A-suppresses-B-suppresses-C-suppresses-A

“represselator” or “rock-paper-scissors game” (3-motif #219), widely used in both theory and exper-

iment for its elegant Hopf bifurcation. While the shift from a fixed equilibrium to a limit cycle is

indeed a form of instability, it is not one that runs to infinity; indeed, our analysis suggests that the

represselator runs to infinity in only 2.2% of parameter space, the lowest of all 3-motifs in Ω′3.3

The inclusion of negative feedback loops is intuitively one of the best ways to add stability to a

system through self-regulation, which is why they are so common in human-designed electronic

circuits. [41] We must seek an explanation besides their supposed instability to account for their

near-total absence in protein networks.

Two other notable motifs are diamonds, and feed-forward loops (FFLs). Diamonds (Fig 4.6),

where A→ {B,C} → D, are highly enriched in foodwebs and neural wiring networks, but not

generally in protein networks, [41] and not in this data set either. While the all-positive version of

this pattern occurs a modest 66% more than expected (a typical bonus for positive links clustering

together), the 10 possible diamond patterns are on average about 33% less abundant than predicted

by the null model. Because negative links are so rare, 7/10 such motifs are expected < 2 times in

the data and indeed six of those did not occur. The exception is Diamond H, which is enriched
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almost 50-fold, perhaps because it performs the unique function of turning off an OR logic gate.

That is, a protein co-regulated by two transcription factors, either one of which is sufficient to start

transcription, must have both transcription factors turned off together to be turned off itself, and

Diamond H is the only 4-motif capable of performing this task. Similarly, Diamonds B and C

are both incoherent subgraphs, where one limb activates a gene while another limb shuts it off,

and both are expected to occur ∼50 times. But B requires the energetically costly production of a

repressor protein to accomplish this while C does not, instead down-regulating a promoter. This

may explain why B does not appear in the human data while C is ∼2-fold enriched in both species.

According to Savageau’s “demand rules”, [237] this implies that the ultimate target of the diamond

is generally needed in the cell, so it is energetically favorable to switch off an activator rather than

switch on a repressor. Similar logic governs FFL loops, which–unlike diamonds–are typically

overexpressed in protein networks. [3, 34, 238] In our data, FFLs were enriched ∼3-fold on average,

the enrichment coming from both coherent and incoherent structures (Fig C.5). Enrichment of both

classes is expected as both have distinct roles in cells: coherent FFLs introduce delay elements into

transcription, [35], while incoherent FFLs accelerate reaction speeds. [36] This ability to respond

in time-appropriate ways to the environment implies that FFLs are always superior to cascades in

fluctuating environments, [168] though Pareto evolution is able to find other motifs that are even

better. [239]

We note in passing that bifans ({A,B}→ {C,D}, an abundant motif in neuronal and artificial

sensory networks, [34] and whose mathematical properties have been studied elegantly in [67, 240])

exist in seven distinct isoforms; the all-positive bifan (4-motif #7381) was observed over 100,000

times in both species (top-right corner of Fig 4.2), far in excess of the ∼545 expected occurrences;

the all-negative bifan (#14761) was ∼125-fold enriched, and the total bifan count was 200x

higher than expected (242,523 vs 1,199.4 across both species). This overexpression suggests that

generalized bifans, or dense overlapping regulons (DORs), are at least as common in eukaryotes as
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they are in prokaryotes. [241] In none of the three case-studies above (diamonds, FFLs, nor bifans)

do the departures from expectations correlate with stability metrics.
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Figure 4.6 On average, diamonds motifs occur slightly less than expected (numbers represent ob-
served/expected, blue=human, red=mouse). The exceptions to this trend are interesting. Diamonds
B and C are expected to occur equally and both perform the function of a delayed AND logic gate
via incoherent feed-forward. However C is about twice as common as expected while B barely
occurs at all, because B requires the production of inhibitor while C does not, and so C would be
energetically favorable. Similarly, H has the highest Z-score, perhaps because it is the only motif
that can shut down a logical OR gate. As the graph at the bottom shows, stability provides a poor
explanation for residual enrichment relative to null expectations.

It is unclear how much of the clustering observed in the data represents actual necessary cross-

talk among elements of complex regulatory circuits, and how much is a bias of a few pathways

being studied intensely by scientists, and thus being over-represented in the database. Perhaps even

more plausibly, the co-occurrence of negative and positive links may be a bias of methods that
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are better at detecting positive and negative regulation; only pathways investigated using both a

positive-results- and negative-results-biased method would have an accurate mix of positive and

negative links represented.

4.8 Conclusion

However, bias in scientific interest or methods cannot explain the instability in motifs discovered

across the database. The average amount of biological parameter space where observed motifs

would runaway to infinity is 36.5% for 3-motifs and 42.9% for 4-motifs, which is actually higher

than the 33.6% and 40.2% expected from sampling evenly across Ω3,4. A bias toward instability

clearly can’t be the whole story, or life would not continue. Note that this “inescapable tendency

towards infinity” definition differs from other uses of the term “instability” in biological literature,

where it often implies a transiently untennable network topology that collapses to a stable state by

the elimination of a node, by gene silencing or local extinction of a species in a food web. Note that

using the equations

One implication of this instability is that there must be many down-regulating processes not

included in the current body of knowledge to keep the system from regulatory catastrophe. Indeed,

many such processes exist which we did not model; [242] even within the RegNetwork database

there are large numbers of miRNAs and siRNAs which are assumed to have a nearly-exclusively

down-regulating effect on cellular processes, [17] and affect as much as 30% of the genome. [243]

They were not included in this study because it is not well understood who regulates these regulators,

though it is known that somebody does: studies of vertebrate embryos indicate that approximately

half of such iRNA regulators are significantly regulated themselves during development. [244]

Including them in this study would therefore have introduced a strong bias into our motif counts by

inserting huge numbers of nodes with a (probably false) in-degree of 0. Furthermore, many proteins
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interact with each other not through transcription factor regulation, which is a relatively slow

process, but directly in the cytoplasm by binding to activate, deactivate, or flagging for destruction

via methylation, [245] acetylation, [246] phosphorylation, [247, 248] or ubquitination, [249] a

process whose very name implies how wide spread it is; and these interactions can happen far faster

than a protein can be manufactured, enter the nucleus, then find and bind to a promoter. Perhaps the

implication is that activation happens slowly via transcription factors, while degradation happens

quickly via the mechanisms listed above. Finally, scientific methods are better at measuring large

increases from baseline than decreases, since most proteins are at low concentrations most of the

time. For example, of the 289 proteins known in blood plasma, hemoglobin, albumin, complement

factor H, and the immunoglobulins make up 99% of the mass. [250] With baselines so low for so

many proteins, even strong negative regulation may not be detectable.

Some alternatives to the "missing down-regulating links" hypothesis can be discarded because

of the way networks were simulated. Note that the effects of entropy and general housekeeping

degradation processes is assumed to be rolled into the δ [Pi] term of eq. 4.5. Any 1-motif would

reach equilibrium ˙[P] = 0 at α/δ , and can only escape into instability if the regulatory effects ki j

are large enough to overcome δ . Similarly, temporal dampening–a situation where genes simply

turn themselves off eventually when their promoters wear away–was covered in simulations where

α = 0, yet instabilities existed there as well. Alternatively, perhaps could we indeed have discovered

instability in the “transient topology collapsing to a more stable state” sense? The difficulty with

this hypothesis is that transient states are, by definition, short-lived, and therefore very unlikely to

be detected in large-scale PPI survey experiments. While perhaps a few such interactions could be

in our database, they couldn’t possibly make up ∼40% of all interactions and still be considered

“transient”.

In addition to missing down-regulating links, some degree of instability is desirable in biosys-

tems. [193] As we pointed out in 3, oscillatory and periodic processes such as sleeping, breathing,
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and the beating of the heart are necessary for life, [136] though chaotic and disordered dynamics

appear to be actively suppressed even in networks where they would be expected through stabilizing

PPI links. [137] Nevertheless, homeostasis implies that most things are mostly stable most of the

time, as codified in the mathematically rigorous “steady state assumption” ubiquitous in biochemical

research. [138, 139] It clashes with our view of biology to claim that 4̃0% of regulation truly has no

equilibrium at all, as implied here.

An additional explanation is that while some motifs are a good deal more stable than others, no

motif is universally unstable. As in the example of Drosophila morphogenesis, a network where

only 3% of its parameter space was stable could still be used for critical biological processes by

maintaining system parameters in that small parameter space region. [165] Similar to our findings

of stability’s weak role in motif counts, studies of induction strength in metabolic regulatory

networks find that, although a universally optimal structure and parameter combination exists, not

all organisms adopt it. [251] This is difficult to explain on theoretical grounds, since mathematical

studies demonstrate that perfect adaptation consists of a network with a large initial response to a

change in input followed by a return to baseline afterwards, and that these two goals do not involve

trade-offs so a path to adaptation always exists and should be quite rapid. [252]

However, assuming that the data represent at least a reasonable sampling of regulatory pathways,

then there must be a better explanation for the lack of stable structures than a huge number of

missing stabilizing negative links, globally fine-tuned parameters that keep unstable networks

carefully contained in small stable regions, or instability of a special kind that is beneficial. As

mentioned in the introduction, regulatory networks represent a balance of the demand for stability

with the need for function and adaptability, [181] and there are reasons to think the latter two may

overwhelm the former. First, Waddington canalization appears to be ubiquitous, despite being costly.

Genes identified by Ahab software as part of the Drosophila segmentation pathway mutate about as

often as any other locus, but their functional role is conserved between species. [253] This suggests
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that function is prioritized over stability on long time scales. Similarly, organisms placed under

artificially extreme selective pressures adapt quickly to the new environment: fish adjust their size

and even the number of their vertebrae in both the laboratory and altered ecosystems, [254–256]

E. coli rapidly evolves to optimal metabolic activity and chemotaxic behavior, [167] and fruit flies

respond to early harvesting of their eggs by increasing life-span many-fold within a few years. [257]

However, genome-wide screens of these processes suggest that one allele does not sweep to fixation

in the new conditions, but diversity is maintained everywhere in the genome, [192] which strongly

implies that flexibility and adaptability are being maintained at all costs in the face of artificially

powerful selective pressure. Since it appears true that networks can rewire quickly in response

to changing conditions, [176] perhaps life is able to escape instability by quickly switching to a

different topology, or globally downregulating to prevent runaways, all in the name of preserving

function and diversity. Warmflash et al [239] argue that dynamic properties of the network should

be abstracted away from the network structure itself as the phenotype upon which selection acts,

and only then can simulations mimic nature. Functional modules, not precise pathway structures,

may be the locus of selective pressure. [258] The multifunctionality of bifans is already well

documented, [240] and, according to our results in 3, all motifs can generate multiple distinct

behaviors at biological parameter values. This implies that if the cell needs a given function, a large

number of motifs can provide it. Perhaps natural selection chose from this set of motifs the most

simple and favored positive regulation of proteins, so they are synthesized only when needed in

order to conserve energy–with the exception of a few constitutively expressed proteins. In this way,

the network motifs themselves may be of only secondary importance to their ability to maintain

output in the face of an uncertain environment.

This favoring of adaptation and flexibility over stability gains some support by analogy with

food webs. Mathematical simulations of ecosystems that employ adaptive foraging show an increase

in stability and robustness to deletion, while preserving trophic levels and guild functionality
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(analogous to hierarchical regulation and metabolic pathways) relative to those that do not. This

effect overwhelms that of the initial topology, and the functional form of the links between nodes

(Lotka-Volterra, Holling, or Ivlev). [259, 260] This can function even on networks, like ours, where

complexity is and remains relatively low. [261]

One of the primary founders of motif research, Uri Alon, ended his book about the issues

discussed here saying “one can only write an introduction, since we are only at the beginning of

the adventure to find the design principles of biological systems.” [38] The fact that fourteen years

later so many fascinating possibilities remain open to explain evolution’s apparent indifference to

stability indicates that the adventure is still just beginning. As more data become available and the

trade-offs between function, flexibility, and stability come into sharper focus, perhaps the role of

structurally stable networks will also resolve.



Chapter 5

Calorie-restriction leads to longevity by

stabilizing protein networks

5.1 Abstract

Calorie restriction has long been known to be a robust way of extending lifespan, and slowing

protein turnover rates. Classical bifurcation theory also suggests that slowing turnover rates may be

a way to stabilize complex systems. In this paper, we use large-scale proteome kinetics to quantify

the effects of a CR diet on turnover in the house mouse Mus musculus, and place these (generally

but not universally) slower rates in the context of all known regulatory pathways. The results

indicate that networks are indeed stabilized by a CR regime. Furthermore, regulatory networks

appear to be strongly shaped not by the total volume of stability a topology can support, but by

the well-contained boundaries of the stable region; network features where stable and unstable

parameter regions are intermixed are rare, suggesting they are targets of negative pressure by natural

selection.

104
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5.2 Turnover Rate and Calorie Restriction

Santa Fe Institute founder George Cowen has pointed out that life maintains itself at the boundary

of order and disorder, where it “has enough stability to sustain itself and enough creativity to

deserve the name of life," and understanding this boundary is a central goal of “the sciences of

the twenty-first century.” [262] Unstable bionetworks have short lifespans for the same reasons

as unstable economies and unstable airplanes; yet must balance the need for stability against the

need for adaptability. It has been argued that aging itself exists as a method to introduce diversity

and evolutionary options into a population, [263] and the theory of antagonistic pleiotropy argues

that any innovation that increases reproductive success early in life must be paid for by decreased

fitness later. [264] The balance of such forces can tip a population from favoring early reproduction

to favoring long life under realistic conditions, [265] and is likely to maintain protein-protein

regulatory networks (PPRNs) at the edge of disorder to adapt to these changing conditions for most

species most of the time.

It is reasonable to think that interventions that lead to longer life work through the mechanism

of slowing protein turnover, since decreasing the separation between rate scales is a general

strategy for stabilizing complex systems. For example, any of the normal-form bifurcations

can develop more fixed points and instabilities simply by holding the time-scale constant, but

increasing the rate parameter(s). [68] Calorie restriction (CR) is arguably the most robust and

reproducible way known to extend lifespan across species, significantly outperforming genetic and

pharmaceutical interventions. [45–47] This phenomenon has been studied since the 1930s, [266] and

numerous biochemical mechanisms have been proposed to explain it in the ensuing decades. [267]

Many of these involve changes to either the action or the production of proteins, such as the

“hallmarks of aging”: reduced damage from reactive oxidation species (ROS), deregulated nutrient

sensing, telomere attrition, epigenetic alterations, shifts from investment in reproduction to delayed

senescence, genomic instability, and loss of proteostasis. [44]
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We focus on the last of these (loss of proteostasis), while noting that many of the others could

contribute to protein disregulation as causative mechanisms. Specifically, we propose that an

increase in protein turnover rate makes it more challenging to maintain concentrations proper for

the healthy functioning of a cell. The reason is analogous to someone trying to keep several leaky

buckets filled to a line: if water drips from the buckets a drop at a time, it is relatively simple to

check every few minutes and refill as needed; however, if water leaks out in steady streams of

different flux, it can be energetically demanding to keep up, and any brief distraction can cause some

to run fatally dry. That is, the rate scale of outflow no longer matches the rate at which a person

can check water levels and refill them. In much the same way, the mechanisms of proteostasis

are both complex and energetically demanding; the proteostasis network consists of four basic

areas–protein synthesis, protein folding, disaggregation, and degradation–each consisting of dozens

of pathways and hundreds of molecular components (ribosomes, for example, contain over 200

proteins and rRNA components). [268] Breakdowns in any of these processes are responsible for

over 20 known diseases in humans and animals, ranging from cataracts and cardiomyopathy to

Nakajo and Angelman syndromes, to Parkinson’s and amyotrophic lateral sclerosis (Lou Gehrig’s

disease). [48, 269] One of the common assumptions of systems biology generally is that disease

consists of some form of protein disregulation, [4] wherein some necessary response to stress

is happening at a timescale faster than permitted by the machinery of synthesis by ribosomes or

degredation by proteosomes or inactivation by any of the many forms of protein modification and

inhibition.

Though there is widespread agreement from both a mathematical and biochemical point-of-view

that increasing flux decreases stability, [38, 68, 96] turnover per se has rarely been investigated as a

disease causing-agent. The reason for this is that flux is difficult to measure, while concentration

is fairly straightforward. RNA-Seq methods can reveal the entire transcriptome, while MSMS

methods capture entire proteomes in matters of hours. [270, 271] However, the search for “the
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aging gene” or “the cancer gene” by searching for proteins that massively change their expression

under disease conditions has largely been fruitless, despite the explosion of advanced data science

techniques. [272, 273] Certainly, part of the reason is that these conditions are multigenic (if not

“omnigenic” [194]) and environmentally triggered; but part of the reason may be that turnover can

change greatly without changing concentrations. Returning to our metaphor of the leaky buckets,

water can flow out faster and faster while the water level remains at the same height as long as

our harried refiller can keep up. This means the system can be at the edge of collapse without any

warning from the water level, but plenty of warning from the flow rate. By analogy, a senescent or

oncogenic cell may have the same protein levels as a healthy one, but is working much harder to

maintain those levels. [274]

Multiple studies have created overwhelming evidence that calorie restriction has the net effect

of slowing down protein turnover in mice, though this effect is both tissue- and pathway-specific.

[152, 275–279] A multi-omic study that measured thousands of RNA concentrations, protein

concentrations, and protein turnover simultaneously (addressing long-standing calls for the need

for such integrated studies [280]) provided strong evidence that because RNA concentrations are

unaffected by calorie restriction, the regulation of turnover was occurring post-transcription. [48]

At least some of this may be due to an increasing backlog of ubiquitin-tagged proteins waiting to

be degraded. [281] Others may be due to a sequestration of ribosomal subunits in “stress granules”

or differential degradation of subunits to create nonstoichiometric ratios. [48, 127] This is in stark

contrast to the general tendency of complexes to exhibit the same turnover rate. [120, 282] Similar

trends have been found in basal organisms like C. elegens. [153, 283] A cross-species investigation

found that whole-body protein turnover rate was a better predictor of longevity than even body mass;

for example, the tiny blind mole-rat’s slow turnover rate helped it live to age 20 while similarly-

sized rats and hamsters have a maximum lifespan of 4 years. [154] This trend is so strong that one

researcher, writing in an admirably concise 1974 Nature paper of 200 words, concludes he has
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“a sufficient amount of experimental data to” show that protein turnover rates is ”the biochemical

mechanism [that determines] the life spans of various mammlaian species.” [284]

All of the preceding leads to the following argument: (1) CR leads to longevity. (2) CR slows

protein turnover. (3) Stable protein networks also lead to longevity. We therefore hypothesize

that (4) lower rates of protein turnover are not merely correlated with longer lifespans, [285] but

cause longer lifespans by stabilizing regulatory bionetworks. CR’s life-extending properties are

thus a result of CR lowering turnover, which leads to greater regulatory stability. If true, then

mice on a CR diet should not only have overall lower rates of protein turnover, but the specific

networks these proteins are involved in should become more stable as a result. We test this theory

by linking databases of protein regulatory networks with databases of proteome-wide MS/MS

turnover rate studies of mice on CR or ad libitum (AL) diets. The hypothesis predicts that lower

turnover in CR mice should move regulatory protein-protein interaction networks (PPINs) away

from mathematically unstable regions.

Although this particular study was enabled by a great deal of recent technology, the hypothesis

underlying it is in fact very old. Historians of medicine write that the understanding that the body is

in a constant state of “dynamic permanence”, where structures are being constantly broken down and

replaced with substances derived from food, goes back to Alcmaeon in the 6th century B.C.E. [12]

Hints of a link between diet and longevity can also be found in The Aphorisms of the Corpus

Hippocraticum, suggesting that fasting (calorie restriction) and a “cold temperment” (low turnover)

were hallmarks of longevity, though writers sometimes switched the causal arrow. [13, 286] The

Italian scientist Alvise Cornaro, writing at age 83 in the 1560s according to legend, recommended

a high-quality calorie restricted diet to extend not only the duration but also the quality of life, a

prescription that remained influential into the early 1800s. [13, 287] The French polymath François

Magendie revived the idea of turnover on a molecular level, writing in his 1829 textbook “It is

extremely probable that all parts of the body of man experience an intestine movement, which has
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the double effect of expelling the molecules that can or ought no longer to compose the organs, and

replacing them by new molecules. This internal, intimate motion, constitutes nutrition.” He even

understood that this turnover was tissue-specific: “Nutrition is more or less rapid according to the

tissues. The glands, the muscles, skin, etc. change their volume, colour, consistence, with great

quickness; the tendons, fibrous membranes, the bones, the cartilages, appear to have a much slower

nutrition, for their physical properties change but slowly by the effect of age and disease.” [14]

Sadly, this understanding was largely eclipsed by more mechanical views of the body until the

1940s. [15, 288] Thanks to the advent of large biodatabases and -omics methods, we are now in a

position to investigate if these old intuitions were correct.

In the remainder of this paper, proteins that decrease their turnover under CR will be referred

to as “toughened”, while those that decrease their turnover rate will be called “embrittled”. This

terminology reflects a change in their need for repair and replacement, emphasizing that this does

not imply a change in their abundance. Section 5.3 discusses how turnover data were acquired,

linked to (incomplete) regulatory network databases, and analyzed for stability given the gaps

in the network. Section 5.4 presents evidence that real-life networks favor toughened proteins,

and are indeed stabilized under a CR regime. Section 5.5 examines the assumption that “stable

regions” have well-defined, smooth borders, and finds strong evidence that network topologies that

violate this assumption are profoundly underrepresented. This suggests natural selection doesn’t

try to maximize the inherent stability of a network, but rather favors networks that can easily be

maintained in their stable region (be it small or large). Finally, Section 5.6 discusses the prospects

for applying the foregoing insights to extend human lifespan, given the difficulty maintaining a CR

diet.
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5.3 Methods

5.3.1 Turnover Data

Animal Handling and Labelling: All animal procedure protocols were approved by the Institutional

Animal Care and Use Committee (IACUC) of Brigham Young University. Housing for mice was

provided in a pathogen-free facility for the duration of the experiment. 10-week old C57/BL6

male mice were purchased from Charles River Laboratory, and fed ad-libitum for one week after

arrival to acclimate to the facility. Mice were then randomly divided into ad-libitum (AL) and

dietary-restricted (DR) dietary cohort groups; the mice were housed individually to ensure equal

access to food. Animals were fed a low-protein NIH31 chow. AL animals had constant access to

food, and DR animals were fed daily a pellet of 3g± .1g in size (65% of expected AL consumption).

Mice were weighed weekly during one of the daily feedings of DR animals to monitor health and

weight loss. After 10 weeks of this regime, (except for the 0-day time points) the mice were given

an intraperitoneal bolus injection of sterile D2O saline at 35 µL/g body weight. This injection

brought the mice up to 5% Molar Percent Excess (MPE) deuterium as previously described. Mice

were then provided drinking water containing 8% MPE to maintain the 5% MPE in the animals’

body water.

Euthenasia, tissue collection, turnover rate: Mice were anesthetized with CO2 and then eutha-

nized by cardiac puncture. Mice were then immediately dissected and all tissues except for blood

were flash frozen on solid CO2 and then stored at -80◦C. Blood was stored on ice until it could be

centrifuged at 800g for 10 minutes at 4◦C. The centrifugation separated serum and red blood cells,

which were stored in separate containers at -80◦C. The AL and DR cohorts had 9 mice each. Two

animals from each diet were sacrificed at each of these time points: 1 day, 3 days, 9 days and 27

days after bolus injection, with one animal from each group sacrificed without receiving a bolus

injection or any other D2O labeling.
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Aliquots of serum were distilled in 2.0 mL screw cap tubes overnight in a 90◦C sand bath, and

the distillates collected. The distillate was diluted 1:300 in ddHO, and MPE of deuterium was

directly measured against a D2O standard curve using a cavity ring-down water isotope analyzer

(Los Gatos Research [LGR], Los Gatos, CA, USA) according to the published method. [289] Mouse

liver tissue was placed in ammonium bicarbonate (ABC) (25 mM, pH 8.5) along with protease

inhibitor cocktail (Sigma) and homogenized using a MP Biomedicals FastPrep-4 bead homogenizer

at 6 m/s for 60 seconds. Volumes were calculated to give approximately 10 mg/mL protein. Protein

concentration was measured using a bicinchoninic acid (BCA) protein assay (Thermo Fisher). 300-

500 microg of protein were placed on 30 kDa centrifugal filters (VWR). 100 µL of a concentrated

guanidine solution (6 M guanidine HCl, 100 mM Tris-HCl pH 8.5) was added to each sample and

centrifuged at 14,000g for 15 minutes. This guanidine wash was repeated, and the flow-through

discarded. Disulfide bonds were reduced using a 10 mM dithiothreitol/ M guanidine HCl/ mM

Tris-HCl (pH 8.5) solution (100 µL total volume) added directly to the filters, with an incubation of

1 hour at 60◦C in a sand bath. After 5 minutes of cooling, cysteine sulfhydryl groups were protected

by reaction with iodoacetamide (IAM, 20 mM) for 60 minutes in the dark. Afterwards, the samples

were centrifuged at 14,000g for 15 minutes, and the flow-through was discarded. The samples were

washed twice with ABC (200 µL, centrifuged 15 minutes at 14,000g). Pierce MS-Grade trypsin

was added (1:50 w:w) in 300 µL ABC to each sample, followed by incubation at 37◦C overnight.

Resulting peptides were eluted by centrifugation at 14,000g for 30 minutes, followed by a wash with

100 µL of ABC and an additional centrifugation for 30 minutes at 14,000g. Filters were discarded

and the filtrate was dried using a speedvac (Sorval); the dried samples were stored at 4◦C until use.

LC-MS Data Acquisition: Protein identification and kinetic acquisition were performed on two

different mass spectrometers. First, the Agilent 6530 Q-ToF mass spectrometer coupled to capillary

and nanoflow Agilent 1260 HPLC using the chipcube nano-spray source. [290] Peptides were eluted

from the Agilent C18 Polaris chip at 300 nL/min using an H2O-Acetonitrile gradient acidified to
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pH 4 by use of Pierce LC-MS grade formic acid. Buffer A was 3% acetonitrile, 0.1% formic acid.

Buffer B was 97% acetonitrile, 0.1% formic acid. The elution gradient was as follows: 0 minutes,

100% A; 0.1 minutes, 95% A; 27 minutes, 40% A; this was followed by high percentage B column

washing and low percentage B equilibration. The Agilent 6530 Q-ToF mass spectrometer was run

in 2 Ghz high dynamic range mode. Protein identification runs were performed in MS/MS mode

using collision-induced dissociation (CID) with nitrogen gas. MS and MS/MS data were collected

at a maximum rate of 4 spectra/second with CID fragmentation on the top 10 most abundant

precursors. Dynamic exclusion was set to 0.2 minutes. Kinetic acquisitions were performed in MS

only mode and collected at 1 spectra/second. MS only mode increases signal intensity, improves

signal-to-noise, and gives more scan points per elution chromatogram, greatly enhancing isotopomer

analysis accuracy.

Data were also collected on the Orbitrap Fusion-Lumos mass spectrometer. Samples were

resuspended in 0.1% formic acid (Pierce LC-MS grade) in H2O (Optima grade Thermo Fisher), and

analyzed with a Thermo Lumos Tribrid (Orbitrap). Tryptic peptides were separated using a reverse

phase C18 column (Acclaim PepMap trademark 100) and a Thermo Easy-Spray source. Mobile

phase for the liquid chromatography was 0.1% formic acid in H2O (Buffer A) and 0.1% formic

acid in 80% acetonitrile (Optima grade Thermo Fisher) with 20% H2O (Buffer B) on an Easy-nLC

1200 HPLC system. Samples were eluted using a gradient of 5% B to 22% B over 85min, 22%

to 32% B over 15min, and a wash of 32% to 95% B over 10min, which was held at 95% B for

10min. Sample loading and equilibration were performed using the HPLC’s built in methods. MS

only runs were performed using 2400 V in the ion source, 60,000 resolution with a scan range of

375-1700 m/z, 30% RF Lens, quadrupole isolation, 80,000 AGC target, and a maximum injection

time of 50 ms. MS/MS scans were performed using the same settings as MS only scans, with 3

seconds allowed per MS/MS after each MS scan, using the following filters: peptide monoisotopic

peak determination, intensity threshold of 50,000, fragmentation of charge states +2 to +6, dynamic
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exclusion that excluded a peak after being chosen once within 60 seconds, an error tolerance of 10

ppm high and low, and isotopes excluded. The fragmentation scan used an isolation window of 1.6

m/z, CID fragmentation with an energy of 30%, detection in the linear ion trap in Rapid Scan mode

with an AGC target of 10,000, a maximum injection time of 35ms, and used the "Inject Ions for All

Available Parallelizable Time" option.

Protein identification: Peak lists obtained from MS/MS spectra were identified using Mascot

version 2.2.04, OMSSA version 2.1.9, X!Tandem version X!Tandem Sledgehammer (2013.09.01.1),

MS-GF+ version Beta (v1), Comet version 2016.01 rev. 2 and MyriMatch version 2.2.140. The

search was conducted using SearchGUI version 3.2.7. [291, 292] Protein identification was con-

ducted against a concatenated target/decoy version of the Mus musculus complement of the UniPro-

tKB (created September 2016, 16806 (target) sequences); decoy sequences were created by reversing

the target sequences in SearchGUI. The identification settings were as follows: Trypsin, Specific,

with a maximum of 2 missed cleavages 10.0 ppm as MS1 and 0.5 Da as MS2 tolerances; fixed mod-

ifications: Carbamidomethylation of C (+57.021464 Da); variable modifications: Oxidation of M

(+15.994915 Da), Pyrolidone from Q (-17.026549 Da), Acetylation of protein N-term (+42.010565

Da), Pyrolidone from E (-18.010565 Da), Pyrolidone from carbamidomethylated C (-17.026549 Da);

fixed modifications during refinement procedure: Carbamidomethylation of C (+57.021464 Da).

Peptides and proteins were inferred from the spectrum identification results using PeptideShaker

version 1.15.1. [293] Peptide Spectrum Matches (PSMs), peptides and proteins were validated at

a 1.0% False Discovery Rate (FDR) estimated using the decoy hit distribution. Post-translational

modification localizations were scored using the D-score and the phosphoRS score with a threshold

of 95.0 as implemented in the compomics-utilities package.

Identification files and the MS-only mass spectrometry data were analyzed with the DeuteRater

software package, which provided the protein turnover rates used for later analyses. [294] The

resulting kinetic data was filtered to remove data with extreme outliers or other issues: First, rates



5.3 Methods 114

that were greater than 1 or less than 0.03 were eliminated from further analysis, as these rates

represented extrapolations outside of the range of rates that could be calculated confidently with

the time points used in the experiment. Since the kinetic proteomics data come from curve fits of

relevant measurements, all curves with a Pearson’s R2 less than 0.5, or with a covariance (standard

deviation/rate value) of greater than 0.2 were also removed from further analysis (the standard

deviation was divided by the turnover rate for normalization).

The 10,601 oligopeptide fragments identified by MS/MS were sequence-matched to 3,426

distinct protein products across all diet conditions. Of these, exactly 1,600 met the data quality

standards well enough to be assigned valid turnover rates for both the AL and CR conditions.

5.3.2 Stability

Previous research had simulated all possible network motifs using the equation

˙[Pi] = α−δ [Pi]+∑
i 6= j

k ji[Pj][Pi]
h

let Xi = log [Pi]→

Ẋi =−δ + e−Xi

(
α +∑

i 6= j
k jieX j+hXi

) (5.1)

where [Pi] is the concentration of protein i and Xi is the log transformation, α is the autocatalysis rate,

δ is the degradation rate, k ji is the rate constant for the effect of protein j on protein i (negative if

downregulating, positive if upregulating, and 0 if j does not regulate i), and h is the Hill coefficient,

which allows for nonlinearities in the regulatory system. In qualitative terms, Eq. 5.1 means

that protein concentration increases by α due to natural background expression, decreases in a

density-dependent way δ as proteins randomly become misfolded or fragment, and either up- or

downregulate each other by k ji in possibly non-linear ways (if h 6= 1).

The stability of the 132 topologically distinct 3-motifs and 22,650 topologically distinct 4-motifs

was determined by selecting 1,000 vectors of parameters, and determining the number and location
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of roots (protein concentrations such that ˙[Pi] = 0∀i) for each vector. The stability of each root was

further determined by calculating its spectral radius at that point, that is, the largest real part of any

of the system’s Jacobian’s eigenvalues. For continuous time PDEs, spectral radii < 0 are diagnostic

of intrinsic stability (sensu [40]). Note that it was recently demonstrated that this criterion not only

demonstrates that a network is intrinsically stable when the interactions happen instantaneously, but

also stable under any time-lag condition. [145] This process took approximately 3 years of CPU

time on the BYU supercomputer cluster, and is further detailed in Ch 2.
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Figure 5.1 Venn diagram of proteins with
turnover rate data (blue) and known network
interactions (red, note that these were identi-
fied by both official short gene names and
KeggID). Relatively few proteins were in
both data sets, but of the 196 that were, 183
matched both short names and Kegg ID to
the UniProtID of the turnover data set.

We then identify every 3- and 4-protein motif

with known regulatory sign (up- or downregulat-

ing) in the house mouse Mus musculus (UniProt ID

T01002) recorded in the RegNetwork database. [17]

This database includes 1,033 proteins listed by offi-

cial name and KEGG ID; [188] they were involved

in 4,034 interactions (four in both a positive and

negative direction, depending on cellular context),

belonging to 109,000 distinct 3-motifs and 3.4 mil-

lion 4-motifs. The stability metrics in Ch 2 were

used to predict the abundance of these motifs relative

to null expectations in Ch 3, and are used here to

match known turnover rates.

Despite bi-directional querying of the API of four

different databases (UNIPROT, KEGG, BiocMan-

ager, and DAVID) these UNIPROT IDs failed to

cross-match for 837 of the KEGG ID and/or official abbreviation proteins in the RegNetwork

database. The 196 successful cross-matches did not form a single complete 3- or 4-protein motif,
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though they matched all-but-one protein in 2,322 and 12,580 motifs respectively. The proteins that

did cross-match tended to be well-supported, with > 93% of matches occurring both directions in

all four databases (183 of 196), representing 8-fold link confirmation (Fig. 5.1) Though not ideal,

this was enough to significantly constrain the parameter space of the system described in Eq. 5.1,

and draw conclusions about the relative likelihood of stability under the restricted and less-restricted

diet regimes. Consider the ubiquitous A upregulates B and C motif. If we fix α = 1,h = 1 for

example, then the parameter space of this system can be visualized in three-dimensions: [δ ,k12,k13]

(Fig. 5.2). This parameter space can then be imagined as partitioned into regions of topologically

distinct behaviors. For example, low δ and very high k values can cause concentrations to reach

infinity mathematically, which would biologically represent cell death through over-consumption

of resources. Intermediate values form a region with a single stable equilibrium. Other combi-

nations cause this equilibrium to bifurcate into two stable equilibria or a limit cycle. If all three

turnover rates were known, it would constrain the solution to a single point in this 3-space which

unambiguously belongs to just one behavior regime. However, when one of the proteins’ turnover

rate is unknown, then the possible solutions form a line through parameter space; any point on this

line could generate the two known turnover rates, for different values of the third unknown rate.

However, different lines through parameter space spend more or less time in the stable regime, and

thus the known rates can be used to determine the relative likelihood of stability (Fig. 5.3).

5.3.3 Bayesian inference of behavior across parameter space

We use a Bayesian approach to measure the posterior probability of stable vs. unstable behaviors

across parameter values in our model. The likelihood was determined by the log-unnormalized

density function

logL = ∑ log[N (Ṗi,0,0.1)]+∑ log[N (Ci,Tobs,i,0.1)]+

∑ log[N (Ai,Tobs,i,0.1)]
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where N (x, x̄,σ) is the density of the normal distribution at x for a given mean and standard devia-

tion, Ci = αi+∑ki, j>0 ki, j[Pj][Pi]
h is the total catabolism of protein i, Ai = δ [Pi]+∑ki, j<0 ki, j[Pj][Pi]

h

is the total anabolism of protein i, and Tobs,i is the observed turnover rate. That is, the first term

penalizes departure from steady state, while the second and third terms penalizes proteins that are

being built up / torn down at rates different than observed, respectively. We augment this likelihood

function with uniform priors on log parameters in the range θi ∈ [10−3,101],∀i.

We use the Metropolis random walk algorithm to construct the Monte Carlo Markov Chains

themselves. Specifically, we use the formulation proposed in [295] based on the philosophy of

MCMC outlined in the introduction of [296], and implemented in the v9.7 MCMC package of R

4.3.1. In order to allow the exact observed turnover rates to be mathematically possible, parameters

were expanded to include a separate αi for each protein, while the universal degradation rate δ , and

non-zero k ji’s were selected to correspond to the median of the 1-fixed point behavior space. The

initial protein concentrations were set to [Pi] = 1 = log0. In order to provide a good-but-not-exact

initial guess, this point was then allowed to move towards the local maximum likelihood using 25

steps of Nelder-Mead optimization or until step-size was < .001.

Each of the 4,532 MCMC runs (2 diet conditions × 2,266 networks of three proteins where

turnover rates were known under both diet conditions for two of the proteins) was run for 25,000

steps, then sampled every 25 steps for a final sampling of 1000 points. The success of an MCMC

run was determined by the acceptance rate, length of the burn-in, and the autocorrelation spectrum.

The analysis was performed again if acceptance rates fell outside of the 10-30% range with adjusted

hyperparameters, such as coarser subsampling or relaxed error tolerance from the arbitrarily chosen

σ = 0.1 in Eq. 5.3.3. If burn-in lasted over 25 steps (2.5% of the run), the run was performed

again at new initial parameters. Finally, if autocorrelation extended further than the 25 steps of

subsampling for more than one parameter, the run was adjusted and rerun.
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Figure 5.2 A conceptual model of a 3-dimensional parameter space, where values consistent with
observed turnover rates and the steady-state assumption (dashed line) pass through three distinct
behavioral regimes (colored regions of the space). Changing turnover rates moves the curved line,
causing it to spend more or less time in the three regions, and therefore be considered more or
less stable. MCMC samples are constrained to be near the curved line by the cost/log-likelihood
function.

The behavior space of each network had been characterized in Ch. 3 by sampling 1,000 points

across the d-dimensional parameter space and determining the number of fixed points there. For

example, one parameter vector might produce 0 fixed points (the protein concentrations run to zero

or infinity), another might have one fixed point (the system tends toward equilibrium no matter

the initial protein concentrations), and a third might have four fixed points (multiple equilibria are

possible, the final state depends on the initial concentrations). For each topology represented by

the 2,266 3-motifs with two known turnover rates, the 1,000 known behaviors were supplemented

with 4,000 additional solved points in the parameter space. This created a 5,000 point “Behavior

Set” database for each topology. The membership of each point in the MCMC run to a behavioral

regime was assigned by cross-matching each MCMC point to its d + 1 nearest neighbors in the

Behavior Set, which form a simplex around it. For example, a point in the MCMC run surrounded

by points in the Behavior Set who all have 1 fixed point can be confidently asserted to belong to the

1-fixed point region. However, a point whose nearest neighbors show a mix of 0- and 1-fixed point

behaviors is likely to be close to the stability boundary in the parameter space.
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Figure 5.3 The number of fixed points is determined for a set of
random parameter values (circles, grey = 0 fixed points, red = 1,
light blue = 2 or more) as a proxy for behavior. In this example
figure, we use θ1 ,θ2, but actual networks are higher dimensional.
Two MCMC paths then traverse this parameter space using the
observed turnover rates under the ad libitum (black) and calorie
restricted (purple) diets. At each point along the run, the d +1
nearest behaviors are tallied (dashed triangles around * example
points). In this example, the percent of neighbors showing 0, 1,
or 2+ fixed point behavior is 56, 0 and 44% for the AL diet, but
24, 75, and 1% for the more stable CR diet.

While previous studies indicated

that on a CR diet (1) overall bulk

protein turnover rate decreases,

and (2) that a majority of in-

dividual proteins decrease their

turnover, it was not known if

(3) proteins that decreased that

turnover were central in a reg-

ulatory context. That is, it is

possible that toughened proteins

are primarily end points of reg-

ulatory chains, while the rela-

tively few embrittled proteins on

average have many downstream

regulatory targets. If this were

the case, it would imply that CR

disproportionately effects central

regulators, which would be ex-

pected to destabilize regulatory

networks.

This was not the case. Of

the 196 proteins found in both

databases, 57.1% of them were

toughened (in keeping with facts 1 and 2 above), and these toughened proteins were over-represented
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across network motifs. Out of our set of 2,266 3-motifs with two known turnover rate changes,

one would expect 739.7 where both toughened and 416.4 where both embrittled if choosing

two proteins from the set of 196 randomly, but instead we observe 981 and 318 respectively

(χ2 = 56.9, d f = 2, p < .0001; see Fig. 5.4). This over-representation of toughened proteins

indicates that CR disproportionately toughens important regulators, which is consistent with the

hypothesis that CR leads to network stability.

Figure 5.4 Toughened proteins (whose
turnover rate decreases under CR) are over-
represented in real-life metabolic networks.
This indicates that, not only are most proteins
toughened by CR, the toughened proteins are
more central than the embrittled ones in a
regulatory context.

Of all the embrittled proteins, all but eight appear

in fewer than 40 motifs; the remaining eight appear in

over 100. These proteins are all involved in fatty acid

metabolism: three members of the Cytochrome p450

family (Cyp-4a10, -4a14, and -8b1), Apolipoprotein

A1 (Apoa1), diazepam binding inhibitor (Dbi, which

has long-chain fatty acyl-CoA binding activity and

modulate autophagy) [297], fatty acid binding pro-

tein 1 (Fabp1), sterol carrier protein 2 (Scp2), and

acyl-Coenzyme A oxidase 1 (Acox1). Many of these

proteins are also involved in regulating peroxisome

and mitochondrial activity via autophagy. Many pre-

vious studies have found that fatty acid metabolism

and autophagy are processes strongly affected by calorie restriction. [298] Detailed study of this

process indicates that CR mice endogenously synthesize ∼3x the fatty acid of controls in their

subcutaneous and adipose tissues (but not the liver), to compensate for their ∼4x greater rates of

fatty acid oxidation elsewhere in the body. Researchers have argued that this shift in metabolism is

caused at the molecular level by an increased expression of genes such as Fabp1 and Acox1 in the

five hours after daily feeding, and extremely low expression in the 19 hours thereafter. [299] This is
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in contrast to mice (or humans) on a more regular diet, where feeding has a relatively minor effect

on synthesis rates. [300] Our sampling regime was not sufficiently detailed to pick out this peak,

but suggests that even the most central embrittled proteins are in fact turning over very slowly most

of the time, mobilizing only briefly in response to sharp changes in the energy environment of the

cell. It also suggests that exceptions to the “regulators slow down turnover” rule are permitted only

if they are crucial to meeting the cells’ constrained energy budgets.

A more direct test of the link between diet and stability comes from the MCMC analysis outlined

above. Each 3-motif generated a set of 1,000 parameter vectors along the MCMC path, and each

of these points was matched to its nearest neighbors in parameter space in the behavior set. To

be sure our results were consistent, we used four different stability metrics, and compared the

differences in stability in four different ways. Across all sixteen of these tests, a CR resulted in

a modest increase in stability (average across tests 1.22%, range 0.93% to 1.7%; ensemble t-test:

t = 18.4, p < 0.0001; Fig. 5.5). This stability increase was significant for all tests where stability

was measured by the simplex of points around the MCMC run, and significant for only some of the

tests where stability was measured by the single nearest neighbor to the MCMC run. Tests were

fairly consistent, whether stability metrics were compared using paired or unpaired means, and

whether the mean was calculated by weighting the parameter vector by its likelihood or not.

Though relatively modest, it should be kept in mind that these percentage differences represent

alternate paths through parameter space due to incomplete turnover information, not actual stability

solutions for fully determined motifs. It is entirely possible that full information would greatly

enhance the signficance of our results by greatly decreasing the error bars around each point.

It should also be noted that even minor differences in probability become exaggerated when

experienced continuously through through time, and may be able to account for the moderate

lengthening of lifespan caused by a change in diet.
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Figure 5.5 A set of 16 different of statistical measures indicate that all testable 3-motifs in mice are
between 1.0 and 1.5% more stable (variously defined) under CR conditions. While the magnitude
of these differences is consistent, the significance of the differences varied based on the consistency
of the stability metric. For stability defined by the simplex of nearest neighbors that either had
one equilibrium (simplex=1FP) or had any equilibria at all (simplex >0FP), all comparisons were
significant at the α = .05 level. By contrast, those tests where stability was determined only by a
single nearest neighbor, whether that neighbor was stable (NNeigh=1) or unstable (NNeigh=0) all
showed increases in stability, but this increase was typically less significant. Contrasts either used
the ensemble mean stability of the CR and AL diets or the mean difference between the diets for
each motif (mean diff vs paired), where these means were either weighted by their log-likelihood or
not.
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5.5 Well-defined Behavior Regions

All of the foregoing analysis has assumed that parameter space is partitioned cleanly into regions

of distinct behaviors, with boundaries that are relatively smooth and continuous, as depicted

conceptually in Fig. 5.2. Approaching this problem from the perspective of bifurcation theory,

this seems like a reasonable assumption. Classically, equations that exhibit changes from one

behavior to another are said to have undergone a bifurcation, or non-homeomorphic transitions in

their phase-space to adopt the language dynamical systems theory. For example, the Hopf equation

ż = z(a+ b|z|2) has a stable fixed point at the origin of the complex plane if a < 0 and a stable

limit cycle of radius
√
−a/ℜ(b) if a > 0,ℜ(b)< 0, and is unstable otherwise. The changes from

one behavior to another are unambigious and occur exactly at a = 0 and ℜ(b) = 0. Similarly,

the standard bifurcation text goes, the logistic map Nt+1 = rNt(1−Nt) transitions from a single

equilibrium where r < 3, to a cycle of period 2 as r increases, then period 4, then period 8, and so

forth until reaching chaos when r ≈ 3.57. However, many bifurcations partition their parameter

space in ways that are far less cut-and-dried. With the exception of “normal-form bifurcations”, the

boundaries of behavioral regions frequently depend on nonlinear combinations of parameters, and

so divide parameter space with boundaries that are slanted and curved, but otherwise smooth. [68]

Worse, transitions into chaos are sometimes characterized by boundaries that are periodic or fractal,

and the chaotic regions contain isolated islands of stability. [301–303] That is, parameter space is

not always partitioned neatly into distinct regions like Neopolitan ice cream, as one would expect

from normal form bifurcations, but instead can consist of irregular boundaries and unexpected

islands of stability in a matrix of instability, like marble cake.

All this led us to question our assumption that the equations governing network dynamics

created nicely partitioned behaviors across parameter space. To quantify the apparent smoothness

of topological boundaries, we determined the behavior of 1,000 random parameter vectors, then

asked what fraction of these points’ nearest neighbors had the same behavior. We call this the
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Figure 5.6 The assumption that parameter space is neatly partitioned into well-bounded behavior
spaces is more true for some motifs than others. The clumpiness index (defined in the text) ranges
from (A) C = 0.898 for the motif where protein X coregulates Y and Z, ubqiutious in real life, to
(B) C = 0.553 for a more complicated network that has not yet been observed in nature. Because
panels A and B represent two-dimensional projections of higher dimensional spaces, some of the
overlap can be due to behavior boundaries being tilted in other dimensions.

clumpiness index, C. For motifs where behaviors are tidily clumped together, this index would

approach 1, as only points lying very close to each other across a small surface-area boundary would

be different. On the other hand, motifs where boundaries are fjord-like or even fractal, or have many

behavioral enclaves within regions of different behaviors, would approach the null expectation

C0 = ∑ p2
i where pi is the proportion of parameter vectors displaying each behavior. (For example:

if 30% of simulations have 0 fixed points, 50% have 1 fixed point, 20% have 2 fixed points, then

C0 = .32 + .52 + .22 = .38) Note that C0 thus defined is also called Simpson’s Diversity in ecology,

and the Herfindahl–Hirschman index in economics.

The clumpiness of observed networks was in fact quite variable across motifs, ranging from

about 50% to 90% for 3-motifs, and from 35% to 100% for 4-motifs. This was further simplified

by considering only networks with a global equilibrium (1 fixed point) stable, and those with 0 or

multiple equilibria as "less stable". We then use Fisher’s exact test to calculate the probability of the
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Figure 5.7 The degree of clumpiness relative to expected was a strong predictor of the abundance
of 3- and 4-motifs in humans and mice. We show human 3-motifs here, but quantitatively similar
results were obtained for the other three conditions.

observed number of nearest neighbors having the same stability state. This index strongly predicted

the observed count of each network in both humans and mice for both 3- and 4-motifs (Fig. 5.7).

This is in contrast to previous attempts, which failed to find strong correlations between abundance

and any of twelve different measures of stability.

5.6 Conclusions

The evidence presented here indicates that CR mice do in fact have more stable PPINs than non-CR

mice, and there is a mechanistic reason to believe this is a major contributor to the increase in

lifespan. Not only are individual proteins, on balance, toughened by CR, but the minority of proteins

that are embrittled are under-represented in the regulatory networks we have data for.
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Summarizing a 70-year career in 2006, J. C. Waterlow concluded his masterful textbook on

protein turnover by saying, “It seems that synthesis of the proteins that make up the bulk of our

tissues, and the regulation of that synthesis, involve a vast array of proteins that themselves undergo

turnover, which is presumably regulated by other proteins, and so on ad infinitum. This is not a very

satisfactory conclusion.” [304] The specifics of the vast protein regulatory network presented above

hopefully provide a more satisfactory insight into the nature of this process.

The data presented here also provide an explanation for why some motifs are more common

than others. Natural selection appears not to favor networks with a larger parameter space, but rather

networks whose stable regions (of whatever size) have a more clearly defined stable. Mechanistically,

a small and uniformly stable region is more robust to environmental fluctuations and chemical

stochasticity than even a large stable region riddled with pockets of instability. Such networks could

easily provide a constant background of disregulation that consumes the cells resources bringing

them back in line, and possibly even tips them into alternate stable states that are oncogenic or

senescent for example.

There are basal metazoan organisms that seem to escape aging altogether, generally by cloning

or keeping a high proportion of toti- and pluri-potent stem cells within the organism. [305] Even

within the complex bilatarians, germline cells can be thought of as functionally immortal; less

benignly, so can tumors. Thus, it is apparently possible for individual cells to continue carrying

out their living functions as long as repair mechanisms outpace the rate of decay. The geroscience

hypothesis states that if the deterioration mechanisms of somatic tissues can be understood and

overcome therapeutically (perhaps using pathways similar to the functionally immortal germ line)

then the course of aging can be permanently altered. [263] We know it is possible for the proteostasis

network to be hijacked in a negative way; e.g., by parasites that produce enzymes which activate

the degradation pathway to cause tissue necrosis in leishmaniasis. [306] Is it possible to hijack the

network in the positive direction as well? An RNA-Seq study of BJ fibroblasts as they shift from
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natural to immortal to transformed and finally to metastasized suggests that while relatively few

genes change on the last step, the barrier between immortal and transformed is fairly high with

856 of the 1,357 differentially expressed cells (63%) changing at that step, suggesting it may be

fairly easy to push cells into immortality without continuing on to cancer, though this has proven

difficult so far. Intriguingly, nearly 80% of the mRNAs were downregulated by transformation, the

majority on cell membranes, implying a despecialization of immortal cells, as one would expect

from comparative evolution. [307] However, multi-omics studies teach us to be wary of assuming

changes to mRNA imply changes to proteins, either concentration or kinetics. [48]

While experiments in humans are, of course, ethically problematic, comparative studies of

populations with diets that promote naturally low protein turnover are also correlated with long

lifespans: Okinawa, Japan; Sardinia, Italy; and among Seventh-Day Adventists in Loma Linda,

California. [308–311] These diets are either low protein, low calorie, or both. This intriguing

hypothesis is in need of further confirmation in humans. Improvements to analytical methods and

software make collecting protein turnover information far faster, more sensitive, and less invasive,

so large-scale turnover studies are now possible in humans. [312]

Unfortunately, CR in humans is extremely difficult to maintain for extended periods of time.

When the physiologist Ancel Keys using conscientious objectors to simulate starvation conditions in

prisoner-of-war camps as World War II, the participants described feelings of hatred to people eating

regular portions, resentment “as strong as anything [they had] ever experienced”, marked depression,

loss of sexual drive, and unsustainable behavior modifications to conserve energy. [313, 314]

Meanwhile, Europeans undergoing similar (but involuntary) deprivations experienced the negative

psychological side effects, but also a 34% reduction in death rates in Denmark during WWI, and

30% in Norway during WWII. [315,316] A more recent study with the modest goal of a 20% CR diet

or an equivalent amount of exercise, despite significant interventional effort by experimenters, was

able to achieve only 11.5% CR over the course of a year; even this modest decrease was associated
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with health improvements. [317] A review of the many attempts at CR experiments concluded

there were both physiological (low blood pressure, decreased sex hormones, bone thinning, muscle

wasting, slow wound healing, and decreased innate immunity) and psychological (depression, low

libido, mood swings, and social isolation) side effects that were strong enough to warrant extreme

caution in adopting this diet. [318] Despite these challenges, enough compliance with large scale

studies such as CALERIE-1 and -2, Biosphere 2, and Keys’ Wisconsin Starvation study indicate

there are many health benefits observable in the short- and long-term to humans able to maintain

this diet. [311]

For these reasons among others, CR is unlikely to be a viable therapeutic option for most humans.

However, this study indicates that the benefits of CR accrue through toughened proteins and slower

turnover, so it may be possible to achieve this via pharmaceuticals and avoid the compliance

problems of a long-term CR diet. Many longevity treatments already focus on decreasing protein

turnover, [269, 319, 320] and stabilizing regulatory bionetworks. [321] Dozens of possible Calorie

Restriction Mimetics (CRMs) have already been tested in animal models since 2-deoxy-D-glucose

was proposed in 1998, some with promising extensions to lifespan; clinical trials of these drugs in

humans has already begun, though with mixed results. [322–325] If these interventions succeed in

mimicking the results of ∼40% CR reduction in other species, then perhaps the ∼30% increase in

lifespan resulting from lifelong CR is achievable in humans as well. Growing experimental and

mathematical arguments suggest that humans “stop aging” in their late 90s in the sense that risk

of mortality plateaus, an effect observed in other species. [326] If turnover-slowing interventions

enable humans to reach that plateau, lifespan may indeed be greatly extended. We hope that this

research clarifies that the mechanism by which CR promotes longevity is moving PPRNs back from

the edge of instability, and future therapies will be able to provide the same buffer to human life.



Chapter 6

Conclusion

This thesis has made the following contributions:

• Developed TWIG, a method for characterizing bifurcations that offers some benefits over

currently established methods. For better or worse, one of those is that it offers insights into

the nature of even very complicated bifurcations that otherwise would require substantial

mathematical training to realize.

• Leveraged this understanding of bifurcations to uncover that even models of simple networks

exhibit a large number of behaviors, many of them harmful when translated back into their

biological meaning.

• Demonstrated that, counter-intuitively, natural selection does not appear to systematically

favor network structures that maximize stability per se, at least as it is usually measured.

• However, real life bionetworks are largely shaped by favoring topologies where the stable

region has well-defined boundaries.

• Finally, we demonstrated that the link between longevity and slow protein turnover is mediated

by increased stability across the protein regulatory network.
129
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While a link between protein network stability and longevity has been suspected since antiquity,

it is in only in the last decade that tools to prove it have been developed in several widely separated

subdisciplines, and this first attempt to link them all together, while ultimately successful, is based

on less complete data and less well-established tools than we might like; in the case of TWIG, we

were forced to create the tools ourselves. We hope this early success will inspire further refinement

of these methods, and spur studies that analyze the regulatory details of protein-protein interactions,

rather than merely cataloguing their undifferentiated and unexamined presence. While we would

like to believe that the modest increases in stability recorded by comparing the relatively likelihood

of MCMC runs across incompletely specified parameter space will snap into something stronger

with complete turnover information for thousands, if not millions, of real life motifs, only time will

tell if this is the case.

As the gaps in protein network interaction databases fill in, there is also the hazard that the

relative frequencies of motifs may begin to shift. There are reasons to think many of the sparse

motifs are solid, even with gappy data: they appear in data from different taxa and even across

kingdoms, and they are overrepresented not in an absolute sense, but relative to null expectations.

For example, the A co-regulates B and C motif being far more common than A->B->C passthrough

motif is unlikely to change because random assembly should make passthrough twice as frequent as

coregulation. However, conclusions about well-connected motifs are still sparse because so few

examples exist. As more regulatory links are discovered, the sample size is likely to grow to the

point that we can say more interesting things about the under-/over-representation of topological

cliques and near cliques.

Another hope is that with more data, it will become possible to distinguish between different

network assembly rules with a fair degree of certainty. Ecological networks are shaped by one of

perhaps as few of three biological principles that approaches the status of a law, niche exclusion, [4]
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which places significant constraints on the types of networks that can be formed. Are future

quasi-laws of network formation waiting to be discovered for proteins as well?

Of course, the most commercially interesting implication of this study is that it may be possible

to extend human lifespan by stabilizing protein networks. However, comparative biology suggests

that immortality, be it among basal metazoans or stem cells or cancers, appears to derive from

a lack of the specializations necessary for complex life. Is it possible to maintain this necessary

individuality while also gaining immortality? The quasi-theological sound to this question suggests

that it may be a long time before we have a definite answer. However, this thesis suggests that

calorie-restriction mimetics can gain the life-extending benefits of CR by focusing on decreasing

post-transcriptional protein turnover, possibly of only a few near-tipping point networks, rather

than trying to match all the many and varied physiological, psychological, and chemical effects of

CR. [240,324,325] Given our reasonable understanding of the mechanisms of protein synthesis and

degradation, some level of control seems feasible in the near term. [319] For example, turnover rates

can be slowed globally by inhibiting ribosomal initiation factors; more targeted siRNA therapies for

vulnerable networks could also be devised.

This thesis focused on longevity as a convenient test case, but the approach also holds promise

for cancer, schizophrenia, and other partially inherited but “omnigenic” conditions, where it appears

practically all genes in the genome contribute to the condition’s heritability. Many of these conditions

can be thought of as an extremely high-dimensional steady state of the regulatory network, existing

in its own basin of attraction separate from the typical basin of attraction enjoyed by most people’s

regulatory network. While there is no hope of reducing such a system to a normal form, TWIG

holds out some promise for characterizing the high-dimensional separatrix between the two states,

and therapies that tweak reaction rate constants or temporarily jostle key protein concentrations

hold out further promises of tipping cells over that ridge and restoring normal function. This of

course relies on the hope that characterizing turnover of the entire proteome will gives us a clearer
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picture of key pathways than characterizing the RNA and protein concentrations has so far done.

However, the faster protein turnover rate in cancer cells [327] makes this likely, and indeed has

already been exploited by protease inhibitors like bortezomib, [328] which causes protein buildup

faster in tumors than regular tissue, triggering apoptosis, and successful treatment in some forms of

myeloma. [329]

Swinging from the most applied to the most basic of implications, we also hope that TWIG

analysis will contribute to bifurcation research. First, we expect it to place bifurcation analysis

within the range of more scientists lacking the extensive mathematical background usually needed

to contribute to bifurcation theory. Second, we hope the method will be extended so that mapping of

the bifurcation surface (separatrix) can be automated and optimized to deal with high-dimensional

systems. Finally, we envision a future where TWIG’s exploitation of information geometry to

pluck driving parameters out of a complex system enables a lower-cost lower-effort method for

systems or network pharmacology. Currently, much of drug discovery is phenomenological: a

substance is found that seems to have a beneficial effect, and is placed into a testing pipeline with

little understanding of how or why it is working. Such drugs frequently fail out of the system, but

at a cost both financial and in lives of test animals. [330] A tool that can identify key pathways is

urgently needed, [280, 321] and a general bifurcation analysis package as already been called for as

a potential solution. [172]

With the accumulation of Big Data about diseases and biological systems, it appears clear that

“the answer” to many medical mysteries already lies on hard drives around the world. What is

needed is better tools to dig the understanding out of this ocean of information. This thesis has made

a few tentative paddles toward this horizon, and anticipates a future of far grander and beneficial

explorations to come.



Appendix A

Fisher Information Matrix Derived for

Normal Form Bifurcations

A.1 FIM of Saddle-Node Bifurcations

The normal form of the saddle-node bifurcation is

dy
dt

= r+ y(t)2 +α1y(t)3 +α2y(t)4 + . . . (A.1)

This differential equation can be solved locally when all parameters
−→
θ = 0, which happens to be

the bifurcation point of the system. At that point:

dy
dt

= y2→ dy
y2 = dt

Integrating both sides yields
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(A.2)
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This implies there is a singularity at t = 1/y0, so a proper coarse-graining procedure will involve

taking data from t = 0 to some value near 1/y0, say 0.99/y0. We avoided this singularity by using

negative values for y0 and were therefore able to run simulations to large values of tmax. As noted in

Eq. 2.6, to find the FIM of a system it is only necessary to find the Jacobian, so we need only find

the first partial derivative of these data with respect to each parameter in the model.

A.1.1 Partial derivative of r

Let the αi’s=0. The derivative of the normal form w.r.t. r becomes:

∂

∂ r

(
∂y
∂ t

= r+ y2
)

∂ 2y
∂ r∂ t

= 1+2y
∂y
∂ r

(A.3)

We let w = ∂y
∂ r , and this becomes ∂w

∂ t = 1+2yw, which requires the use of an integration factor

to solve [331]. If p1x′+ p0x = q then

x =
1

µ p1

[
C+

∫
µqdt

]
where µ = p−1

1 exp
(∫ p0

p1
dt
)

(A.4)

Allowing p1 = 1, p0 =−2y, q = 1 implies that

µ = 1−1 exp
(∫ −2y

1
dt
)

= exp
(
−
∫ 2y0dt

1− y0t

)
= exp(2ln(1− y0t))

= (1− y0t)2
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Therefore,

w =
C+

∫
(1− y0t)2dt

(1− y0t)2

=
C− (1−y0t)3

3y0
|t0

(1− y0t)2

=
C+ 1−(1−y0t)3

3y0

(1− y0t)2

Recall this function is being evaluated at the initial condition, where the partial derivative

w = ∂y
∂ r = 0 (i.e., changes to r do not change y0). This implies that C = −1−(1−y0t)3

3y0
; when t = 0

this further reduces to C = 0. Therefore.

∂y
∂ r

=
1− (1− y0t)3

3y0(1− y0t)2 (A.5)

A.1.2 Partial derivative of α1

Using the same procedure as above,

∂

∂α1

(
∂y
∂ t

)
=

∂

∂α1

(
y2 +α1y3)

∂ 2y
∂α1∂ t

= 2y
∂y

∂α1
+ y3 +

��
����

3y2
α1

∂y
∂α1

∂w
∂ t

= 2yw+ y3 (A.6)

Note on the second line, we are able to cancel the third term because we are evaluating the

slope where α1 is zero. On the last line, note that p0 and p1 are the same as for r, so as above

µ = (1− y0t)2, but since now q = y3:
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w =
C+

∫
y3(1− y0t)2dt
(1− y0t)2

=
C+

∫ ( y0
1−y0t

)3
(1− y0t)2dt

(1− y0t)2

=
C+

∫ y3
0dt

1−y0t

(1− y0t)2

=
C− y2

0 log(1− y0t)|t0
(1− y0t)2

=
C− y2

0 log(1− y0t)
(1− y0t)2

Again, assuming w = t = 0→C = 0, so

∂y
∂α1

=−
y2

0 log(1− y0t)
(1− y0t)2 (A.7)

A.1.3 Partial derivatives of higher-order α’s

Higher order terms in the series are of the form αnyn+2 and so

∂

∂αn

(
∂y
∂ t

= y2 +αnyn+2
)

∂ 2y
∂αn∂ t

= 2y
∂y

∂αn
+ yn+2 +

����������

(n+2)yn+1
αn

∂y
∂αn

∂w
∂ t

= 2yw+ yn+2

(A.8)

As above, we are able to cancel (n+2)yn+1αn
∂y

∂αn
because we are solving for slopes about the

point αn = 0. With the same value of µ , we use integration factors to demonstrate:
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w =
C+

∫ ( y0
1−y0t

)n+2
(1− y0t)2dt

(1− y0t)2

=
C+

∫ yn+2
0 dt

(1−y0t)n

(1− y0t)2

=
C− yn+1

0
1−n (1− y0t)1−n|t0
(1− y0t)2

=
C+

yn+1
0

n−1 (1− (1− y0t)1−n)

(1− y0t)2

Which again implies that C = 0 at the initial condition t = 0, and so for n > 1 we can say

∂y
∂αn

=
yn+1

0 (1− (1− y0t)1−n)

(1−n)(1− y0t)2 (A.9)

Recall that the Jacobian of our system is

J =


∂y0
∂ r

∂y0
∂α1

∂y0
∂α2

. . .

∂y1
∂ r

∂y1
∂α1

∂y1
∂α2

. . .

. . . . . . . . . . . .

 (A.10)

Because the Fisher information matrix I = JT J, we can see that element I1,1 =
(

∂y
∂ r

)2
will be

O(t2) because ∂y
∂ r is O(t1); all other elements will be a lower order of t. Thus, at long time scales,

the FIM’s element (1,1) will grow faster than all other elements, and therefore the most relevant

parameter is clearly r.

In the case where I is being derived from data (or from noise added to a non-/normal form

equation), the importance of r can be evaluated by increasing σ2 ∝ y−3
0 . Since, by the central limit

theorem standard error σ2 ∝ n, then the number of time points sampled should decrease as n ∝ y−3
0 .
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A.2 FIM of Transcritical Bifurcations

These have a similar normal form as the saddle-node bifuractions above:

dy
dt

= ry(t)− y(t)2 +α1y(t)3 +α2y(t)4 + ...

However, the change of sign in the second term causes the solution to the differential equation to

also have a changed sign:

dy
dt

=−y2→−dy
y2 = dt→ 1

y

∣∣∣y(t)
y0

= t
∣∣∣t
0

1
y(t)
− 1

y0
= t→ y(t) =

y0

1+ y0t

(A.11)

Now the singularity occurs at t = − 1
y0

, which generally only complicates the coarse-graining if

initial conditions are negative.

A.2.1 Partial derivative of r

The full solution to the partial derivative of r is somewhat complicated because it depends on y:

∂

∂ r

(
∂y
∂ t

= ry− y2
)

∂ 2y
∂ r∂ t

= r
∂y
∂ r

+ y−2y
∂y
∂ r

∂w
∂ t

= w(r−2y)+ y

(A.12)

where w = ∂y
∂ r . Recall that the derivative is being evaluated where r = 0, and so we can argue that

∂w
∂ t

+2yw = y→

µ = exp
(∫ 2y0dt

1+ ty0

)
= exp[2log(1+ ty0)]

= (1+ ty0)
2 (A.13)
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Using our integration factors, we see:

w =
C+

∫
(1+ ty0)

2 y0
1+ty0

dt

(1+ ty0)2

=
C+ y0t(1+ y0t

2 )

(1+ ty0)2 →C = 0

=
y0t(2+ y0t)
2(1+ ty0)2 =

∂y
∂ r

(A.14)

Note that in the limit that t → ∞, this expression is order 0 for t; therefore, unlike the other

bifurcation classes, transcriticals are expected to have a relevant, rather than a hyperrelevant, leading

eigenvalue. This was confirmed with simulations (see Fig. 2.7).

A.2.2 Partial derivative of α1

The derivative can be set up as:

∂

∂α1

(
∂y
∂ t

=−y2 +α1y3
)

∂ 2y
∂α1∂ t

=−2y
∂y

∂α1
+3α1y2 ∂y

∂α1
+ y3

∂w
∂ t

=−2yw+ y3 (A.15)

Since we already know that µ = (1+ ty0)
2, it follows that

w =
C+

∫
(1+ ty0)

2
(

y0
1+ty0

)3

(1+ ty0)2

=
C+ y2

0
∫ y0

1+ty0

(1+ ty0)2

=
C+ y2

0 log(1+ ty0)

(1+ ty0)2 →C = 0

∂y
∂α1

=
y2

0 log(1+ ty0)

(1+ ty0)2 (A.16)
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A.2.3 Partial derivative of higher-order α’s

Using similar arguments, we arrive at the conclusion that for αn where n > 1

∂y
∂αn

=
yn+1

0 ((1+ ty0)
1−n−1)

(1−n)(1+ ty0)2 (A.17)

Plots of the sensitivities suggest that r is the dominant parameter for values of y0 < 1, though

exactly where this transition occurs is probably worth investigating.

The top-left entry in the FIM is

I1,1 =

(
∂y
∂ r

)2

=

(
y0t(y0t +2)
2(y0t +1)2

)2

=
y2

0t2(y0t +1)2

4(y0t +1)4

(A.18)

In the limit t → ∞, this approaches t4

t4 which is order O(t0). This implies that the leading

eigenvector of transcritical bifurcations will be relevant, not hyperrelevant like for all other forms of

bifurcations considered here. It is tempting to speculate that the topological interpretation of this

quirk in the algebra stems from the unique flow-field around transcritical bifurcations. For r < 0,

the vector field has a negative-positive-negative pattern; for r > 0 this negative-positive-negative

pattern is duplicated, just with an unstable equilibrium at y = 0 which had been stable before. Only

at the critical value itself (r = 0) is there a topological inhomogeneity. The other bifurcations

have fundamentally different flow-fields on either side of the critical value, and thus, perhaps,

their bifurcation parameters acquire hyper-relevance rather than simply relevance. Further study is

needed to prove this conjecture.

Because ∂y
∂α1
→ O(log(t)−2) and ∂y

∂αn
→ O(t−1−n), simple multiplication shows that all the

other entries in the FIM will be of lower order than the top-left.
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A.3 FIM of Pitchfork Bifurcations

In the supercritical case, the normal form is

dy
dt

= ry(t)− y(t)3 +α1y(t)4 +α2y(t)5 + ... (A.19)

and the subcritical case is the same except the sign on the cubic term changes. At the critical value

of θi = 0, the system reduces to:

dy
dt

=−y3→−dy
y3 = dt→ 1

2y2

∣∣∣y(t)
y0

= t
∣∣∣t
0

1
y(t)2 −

1
y2

0
= 2t→ 1

y(t)2 = 2t +
1
y2

0

→ y(t) =
y0√

1+2ty2
0

(A.20)

Following the same logic, the formula for the subcritical case is

y(t) =
y0√

1−2ty2
0

(A.21)

Note that this creates a potentially-problematic singularity at t = 1
2y2

0
.

A.3.1 Partial derivative of r

Let the αi’s=0. The derivative of the normal form w.r.t. r becomes:

∂

∂ r

(
∂y
∂ t

= ry− y3
)

∂ 2y
∂ r∂ t

=
�
�
�

r
∂y
∂ r

+ y−3y2 ∂y
∂ r

∂w
∂ t

= y−3y2w (A.22)
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where w = ∂y
∂ r . Using integration factors p1 = 1, p0 = 3y2,q = y, we see that

µ = exp
(∫
−3y2dt

)
= exp

(
−
∫ 3y2

0dt
1+2y2

0t

)
= exp

(
3
2

ln(1+2y2
0t)
)

= (1+2y2
0t)3/2

Therefore,

w =
C+

∫
µy(t)dt
µ

=
��C+

∫ y0√
1+2ty2

0
(1+2y2

0t)3/2dt

(1+2y2
0t)3/2

∂y
∂ r

=
y0t(1+ y2

0t)
(1+2y2

0t)3/2 (A.23)

Following the same logic for the subcritical case eventually brings us to

∂y
∂ r

=
ty0
(
1− ty2

0
)(

1−2ty2
0
)3/2 (A.24)

A.3.2 Partial derivative of α’s

When r = 0, and all αi6=n = 0, then the normal form reduces to

dy
dt

=−y(t)3 +αny(t)n+3 (A.25)

which conveniently allows us to use the same µ integration factor as above. Using the integration

scheme outlined there, after many steps we reach the conclusion that

∂y
∂αn

=
yn+1

0
2−n

(1+2ty2
0)

1−n/2−1
µ

(A.26)
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This produces an obvious problem when n = 2, but in that case the integration step simplifies

and we find that
∂y

∂α2
=

y3
0 ln(1+2ty2

0)

2µ
(A.27)

All this indicates that in the FIM, the entry corresponding to (∂y/∂ r)2 is O(t1), while all other

entries are lower order, so r will be the only hyperrelevant direction.

A.4 FIM of Hopf Bifurcations

Analysis of the Hopf bifurcation in either the complex or Cartesian formulation is complicated,

because the introduction of nuisance parameters to the normal form equations tends to alter the

period of limit cycles. This means standard trigonometric functions would also need to be altered

with time-dependent terms to dilate/expand the period for a closed form solution of the trajectories

z(t) or x(t),y(t) respectively.

However, reparameterizing the equation into polar coordinate form simplifies matters greatly.

The system ṙ = r(µ − r2); θ̇ = −1 should look familiar, as the equation for r is simply the

normal form for a supercritical pitchfork bifurcation. Therefore, deriving the elements of its Fisher

information matrix has already been performed in Appendix A.3, albeit with different variable and

parameter names.



Appendix B

Derivation of log-transformed motif ODE

We begin by dividing Eq. 3.2 by the protein concentration xi:

dxi

dt
1
xi

=
α

xi
−δ +

1
xi

∑
i 6= j

Ki, jx jxh
i

d
dt

logxi =
α

xi
−δ +∑

i 6= j
Ki, jx jxh−1

i

Let Xi = logxi→ xi = eXi

Ẋi = αe−Xi−δ +∑
i 6= j

Ki, jeX j+Xi(h−1)

=−δ + e−Xi

(
α +∑

i 6= j
Ki, jeX j+hXi

)

which is equivalent to Eq. 3.3 in the main text.
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Appendix C

Additional bionetwork figures

Below, find more complete counts of the motifs in the mouse and human data. These parallel the

figures presented in the main text.
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Figure C.1 Counts of all of the 4-motifs in humans.
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Figure C.2 Counts of 3-motifs in mice
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Figure C.3 Counts of all of the 4-motifs in mice
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Figure C.4 Counts of the 4-motifs in mice that made up over 0.01% of the total motifs counted.
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Figure C.5 On average, FFL motifs occur about 3x more often than expected (observed/expected,

blue=human, red=mouse), with the largest enrichments occurring in FFL A and B as in other

organisms. [3] As before, stability is a poor predictor of departure from expectations.
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Figure C.6 Because connectivity is < 1%, densely connected motifs are expected to be rare. While

this was the case, motifs with relatively large numbers of edges for their size were far more common

than predicted by the null model.
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