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Abstract

Many structures have an underlying motif such as an fcc, bcc, or hcp parent lattice
with different chemical orderings on the lattice. Among seemingly infinite possibili-
ties for these orderings, why does nature only choose the few that it does? Purpose
To predict new simple cubic and perovskite structures which can be observed experi-
mentally. Method Using a combinatorial approach, generate all unique binary simple
cubic structures with 2 to 8 atoms in the unit cell. Calculate the likelihood that each of
these structures can be observed in nature, and plot their likelihood as a function of the
structure’s concentration. Through this list we will be able to predict new structures.
Results Through this method we have been able to generate a list which is ordered
by a structure’s likelihood. We know this because observed structures tend to have
a higher calculated likelihood than non-observed structures at a given concentration.
Using this information we now have predictions for new simple cubic structures which
we can also apply to new perovskites.
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1 Introduction

1.1 Crystal Background

A crystalline structure is a material where the atoms are arranged in such a way that

a repeating pattern can be found throughout the structure. Fig. 1(A) is an example

of a 2D square lattice. In the structure we see two different atoms represented by

white and black dots. The unit cell represents the smallest repeating pattern found

in the structure and is represented by the rectangle [1]. In fig. 1(A) the smallest cell

has 2 lattice sites inside: 1 white atom (consisting of the 4 white quarters inside the

rectangle) and 1 black atom (consisting of the 2 halves). A lattice site refers to a

unique position inside the structure. In other words you would not be able to tell the

difference between equivalent lattice sites based solely on the surrounding atoms. This

structure is a derivative superstructure of the simple square case shown in fig. 1(B). A

derivative superstructure is a structure that has lattice points that correspond to some

parent lattice. In this example if we made all the dots in fig. 1(A) white then they

would correspond to the lattice points in the right image making fig. 1(B) the parent

lattice [2].

In 3 dimensions these same ideas apply. Many structures that are found in nature

have a parent lattice which is simple cubic (SC), face-centered cubic(FCC), body-

centered cubic(BCC), or some other base structure. Figure 2 shows an SC parent

lattice with a derivative superstructure. In my research I focused primarily on the

simple cubic structure which is, as its name implies, the simplest structure.
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Figure 1 A(left) 2D example with 2 different atoms and with 2 lattice sites in the
unit cell. B(right) Square lattice which is the parent lattice of the left
example.

ã1 = ax̂

ã2 = aŷ (1)

ã3 = aẑ

The simple cubic structure is interesting for many reasons. It is the parent lattice

of many interesting materials found in nature. NaCl, or rock salt, is a derivative

superlattice of the simple cubic structure (Fig. 2(B)).

1.2 Motivation for my work

It can cost a lot of time and money to attempt to create a new structure. Researchers

prefer to have a starting point rather than randomly mixing elements together. This

starting point involves intensive computational work to simulate and predict whether a

certain structure or mix of elements at a certain concentration is energetically favorable.
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Figure 2 A(left) Simple cubic parent lattice with lattice parame-
ter a. Contains only one unique lattice site.B(right) NaCl
structure which is a derivative superlattice of the SC crys-
tal. Contains 2 unique lattice sites.

This process can also be time-consuming especially when considering the seemingly

limitless number of structures that can exist.

My research is a means of getting a starting point for eventually synthesizing new

crystal structures. In my research, I take a combinatorial approach to generating all

unique structures which are available (1) given a certain number of lattice points in

the unit cell, and (2) a certain parent lattice. After generating this list, I create a chart

that gives the likelihood of each structure as a function of its concentration. With this

list, one can see which structures are more likely to be observed experimentally.

1.3 What does this mean?

There has already been some work in this area of research [2]. This work focused

on generating a list of structures for the fcc and bcc cases. Through this research a
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Figure 3 Simple perovskite with the A site, B site and oxygen site
labeled.

new fcc structure has been predicted, CdPt3 or L13. Work is currently being done to

synthesize this new structure [4].

I am working with the simple cubic case to predict new perovskite structures

(Fig. 3). The perovskite is a simple cubic structure consisting of 3 atomic sites: an A

site, a B site and the oxygen sites. The oxygen forms an octahedron around the B-site

while the A site sits on the corners just outside this octahedron. The chemical formula

for the perovskite is ABO3.

The method used in predicting new structures looks at the differences in bond types

(bonds between like and unlike atoms). Often times perovskites are alloyed at either

the A site or the B site so that the chemical formula becomes either A(BxB′1−x)O3

or (AxA′1−x)BO3. Since we are looking at the differences throughout the structure

we only need to focus on the site where the alloying occurs. Fig. ?? shows how the

perovskite is simple cubic when looking at only the A site or the B site.
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Figure 4 A(left) Perovskite structure showing the A, B and oxygen sites.
B(middle) Simple cubic structure that represents only the A-sites.
C(right) Simple cubic structure that represents only the B-sites.

2 Method

2.1 Enumerating all structures

We first need to answer the combinatorial question of how many structures are possible.

In a structure, each unit cell has a finite number of possible configurations. Figure 5

illustrates the 2-dimenstional case of a structure with 2 lattice sites in the unit cell. The

first two structures (A and B) are unique while the far right structure (C) is equivalent

to the first(A) by a 90 degree rotation. There are cleary only two unique structures

for a square parent lattice with a unit cell of size 2. Any other structure is equivalent

to one of these two by translations or rotations. [2]

This same idea applies to the 3-dimensional case. There is a finite number of unique

configurations for a structure with a given number of lattice sites in its unit cell. For

our list we decided to generate all unique structures with 2 to 8 lattices sites in the

unit cell. We could extend this to include more structures, but for the scope of this

project we decided to keep it simple. In order to generate this set of unique simple

cubic structures I used an algorithm based on the group-theoretic properties of the

superstructure and its parent lattice. I will give a brief review of how this algorithm
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Figure 5 A(left) Square lattice with vertical stacking atomic
sites. B(middle) Square lattice with diagonal stacking.
C(right) Lattice with horizontal stacking, and which is
equivalent under symmetry operations to the left figure. [2]

works over the next few pages.

This method looks at the relationship between the derivative superstructure and

its parent lattice in order to generate a set of unique superstructures . Because the

derivative superstructure is an integer combination of the parent lattice, we can obtain

the superstructure by multiplying the parent lattice by a matrix of integers. This

equation can be written in the form B = AH. In this equation, A is the parent lattice,

B is the derivative superstructure, and H is an integer matrix. The matrix H has a

determinant which is equal to the number of lattice sites in the unit cell. [2]

In order to generate all the unique derivative superstructures B we need to generate

all unique H matrices for a given number of lattice sites in the unit cell. There are a

seemingly infinite number of H matrices, but by putting H into Hermite Normal Form

(HNF) we can generate a finite set of H matrices:
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
a 0 0

b c 0

d e f


0 ≤ b ≤ c

0 ≤ d ≤ f

0 ≤ e ≤ f

(2)

In this form we can generate all unique H, by first setting the diagonals of the matrix

to have a product equal to the number of lattice sites in the superstructure’s unit cell.

We then generate a finite set of HNFs using the rules listed above. Once these HNFs

have been generated we reduce this list by removing the HNFs that are symmetrically

equivalent. This is done by comparing each HNF by the symmetry operations of the

parent lattice. This will give us a set of unique HNFs which correspond to unique

superstructures. [2]

We then generate all unique configurations of atoms for each superstructure. To

do this we first generate all possible labelings for a given number of lattice sites in

the superstructure. The number of labelings that is generated for a binary structure

is 2N , where N represents the number of lattice sites in the unit cell. For a binary

structure with 4 lattice sites, we would generate the following 16 labelings with a and

b representing the different atoms or labels:

aaaa baaa abaa aaba
aaab bbaa baba baab
abba abab aabb bbba
bbab babb abbb bbbb

Table 1 List of all possible labelings for a binary structure with 4
lattice sites in the unit cell.

This list of labelings needs to be reduced to only contain symmetrically inequivalent
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labelings. The first step in reducing this list is to remove the labelings that don’t contain

all the labels. In this example we would remove the labelings aaaa and bbbb. These

labelings would correspond to the case with only one lattice site in the unit cell. [2]

We then compare the labelings under the translations of the parent lattice to see

which are equivalent. In order to do this we first put the H matrix into its Smith

Normal Form(SNF):


d1 0 0

0 d2 0

0 0 d3

 d3 is divisible by d2 and d2 is divisible by d1 (3)

The diagonals of the SNF tell us how we can permute the labelings, and these

permutations correspond to the translational symmetry operations of the parent lattice.

Each labeling consists of d1 sets, each set has d2 subsets, and each subset has d3 labels.

The labeling is then permuted over each set, subset, and label configuration. If the

SNF diagonals were d1 = 1, d2 = 2, and d2 = 2 then the labeling abba would be

permuted to the labelings abba, baab, baab, and abba. [2]

The next reduction to this list involves removing the labelings that are equivalent

under an exchange of labels (i.e. aaab
bbba). For our final list of structures we omitted

this step except in the case of a 1:1 ratio of a to b labels. This allows us to generate a

complete plot based on the concentration of a atoms. [2]

The list is further reduced by removing the labelings that are superperiodic. This is

done by seeing which permutations leave the labeling unchanged. For the labeling abab

it can be permuted 4 ways (derived from the SNF). These four permutations change the
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Figure 6 A(left) Square lattice with vertical stacking atomic
sites. B(middle) Square lattice with diagonal stacking.
C(right) Lattice with horizontal stacking, and which is
equivalent under symmetry operations to the left figure. [2]

label to (1)abab, (2)baba, (3)abab, and (4)baba. The first permutation is the identity

and can be omitted, but the third permutation leaves the labeling unchanged from the

original. This means that abab is superperiodic and that it was already generated for

the case with 2 lattice sites in the unit cell. [2]

The final step is to remove labelings that are equivalent by the parent lattice ro-

tations. Figure 6 shows an example of this in the 2-dimensional case with 2 lattice

sites in the unit cell. In this example the two structures are equivalent by a 90 degree

rotation. A more detailed explanation of how each of these steps is carried can be

found in the paper by Hart and Forcade. [2]

For the SC case, I generated all the unique structures with 2 to 8 atoms in the unit

cell. Table 2 shows the number of unique structures that are possible, given a certain

number of lattice sites in the unit cell. This table was created using the steps listed

above, including the exchange of label step. Figure 7 shows the 3 unique simple cubic

structures with 2 lattice sites in the unit cell. This means that any structure that has

2 lattice sites in the unit cell, and that has a SC parent lattice, is equivalent to one of

these structures.
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Lattice Sites Unique Structures Running Total
2 3 3
3 3 6
4 15 21
5 14 35
6 65 100
7 52 150
8 291 443

Table 2 This table represents the number of unique structures found
in the simple cubic case for a given number of lattice points
in the unit cell.

Figure 7 All the unique SC structures with 2 lattice sites in the unit cell. Stacking
shown for each structures (100), (110), and (111)

2.2 Calculating the Likelihood index

In the SC case we have calculated a total of 443 structures with 2 to 8 atoms in the unit

cell, and out of all these structures only a small percentage has actually been observed

experimentally. What is it that makes these observed structures more likely than those

structures not found? Do some of the structures that have not been observed actually

exist?

The solution to this problem lies in the bond-type distribution of a structure. For a

given binary structure there exists a configuration of atoms that is more energetically

favorable than another. This is because either the bonds between like atoms, or the
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Figure 8 Generating Likelihood Index: Example showing the
bond types of the first 3 nearest neighbors for the simple
cubic case with 2 lattice sites in the unit cell. A(left) 1st
NN, B(middle) 2nd NN, and C(right) 3rd NN.

bonds between unlike atoms are more energetically favorable at each bond legnth. For

example, in some structures like-atom bonds at the first nearest neighbor bond length

are lower in energy than unlike-atom bonds, and bonds between unlike atoms is lower

in energy at the second nearest neighbor. So a structure that maximizes the number

of like atom bonds at the first nearest neighbor bond length and unlike atom bonds

at the second nearest neighbor would be more likely than a ’random’ configuration of

bond-types. The likelihood index that we generate compares each structure by looking

at how they maximize the number of like-atom and unlike-atom bonds at each bond

length when compared with the random case [3].

The first step in calculating the likelihood index is to measure how far each site in

the structure deviates from the ‘random’ case. This is done by calculating the average

bond type at each bond length for a given site and then subtracting this value from

the average bond type for the ‘random’ case. The average bond type for the random

case is (2x − 1)2 where x is the fraction of a sites. We then sum over the number of

lattice sites in the structure: [3]
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Figure 9 The average bond type for the simple cubic structure with 2 lattice sites
in the unit cell and with 111 stacking. Calculated up to the 6th nearest
neighbor.

∑
pairs

∣∣Avg. Bond Type− (2x− 1)2
∣∣ (4)

Figure 8 shows how we would calculate the average bond type for the first 3 nearest

neighbors for a simple cubic structure with 2 lattice sites in the unit cell. For the 1st

NN there are 6 unlike atom bonds and 0 like atoms bonds. This gives us an average

bond type of (0 − 6)/6 = −1 for the 1st NN(Fig. 8(A)). The 2nd NN has an average

bond type of (+12− 0)/12 = +1 (Fig. 8(B)), and the 3rd NN is (0− 4)/4 = −1 (Fig.

8(C)). In this example the fraction of a sites is 1/2 and so the average bond type of the

‘random’ case is 0. This example gives us the highest possible average bond type at

each level alternating between purely like atom bonds and purely unlike atom bonds

(Fig. 9), and it has the lowest possible value for the random ‘random’ case. Overall

this structure will give us the highest likelihood index possible.

This particular structure has already been observed in many perovskites, most

alkaline halides (including NaCl), and many other structures. The reason this structure
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is so common is because it optimizes the number of unlike atom bonds at the nearest

neighbor bond length, and unlike atom bonds at the second nearest neighbor bond

length. For example in the case of Na and Cl, Na prefers have the negatively charged Cl

atoms at the nearest neighbor bond length and vice versa. This simple cubic structure

with (111) stacking maximizes this layout and so it is the most stable structure for

NaCl, and many other similar structures. This structure’s abundance is accurately

predicted by its likelihood index.

Once the likelihood index has been calculated for each structure, the next step is

to match the structures that have already been observed experimentally with those in

our list. This is done by comparing the observed structure with each structure in our

list to see if they are equivalent. The algorithm used to compare these structures is

the same as the method used to generate the list of unique structures. We first derived

the HNF and the labeling from each structure that we compared. Once the HNF and

labeling of each structure has been derived it is just a matter of comparing them using

the same methods mentioned earlier.

The final step is to see which structures have a high relative likelihood that have not

been observed experimentally. Figure 10 shows the likelihood index for each structure

and we can see that the observed structures tend to have a higher likelihood index at

each concentration. By further analyzing this plot we see that there are structures with

a high relative likelihood that have not been observed. In particular at the x = 1/3

concentration the observed structure does not have the highest likelihood. With this

information we can predict a new structure. This structure is presented in Fig. 11,

and its basis vectors and primitive vectors are:
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Figure 10 Plot of the likelihood index for binary simple cubic super-
lattices. Plots the concentration for AxBx−1 with x from
0 to 1 so for each structure on the left of center there is a
structure on the right which is equivalent by site swapping
A⇔B

Primitive Vectors: Basis Vectors:
2 0 0

0 2 0

0 1 3


A1 = 0~x 0~y 0~z A

A2 = 0~x 1~y 1~z A

A3 = 0~x 1~y 0~z B

A4 = 0~x 1~y 2~z B

A5 = 0~x 0~y 1~z B

A6 = 0~x 0~y 2~z B

(5)
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Figure 11 Possible binary structure with 6 atoms in the unit cell.

3 Conclusion

This work is important for multiple reasons. First of all, it gives further evidence

that this method for calculating the likelihood of a structure is accurate. It also has

given us possibilities for new simple cubic structures which we can use to predict new

perovskites.

Now that we have these new possibilities the next step is to use VASP, or some

other first principles code, to verify our findings. This method predicts new struc-

tures, not new compounds so will need to look further into which atoms tend to be

perovskites. We can then run simulations using these atoms and this structure to see

if it is energetically favorable.
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