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ABSTRACT
Computationally Modeling Rough Circular Conducting Mirrors

Michael J. Greenburg
Department of Physics and Astronomy, BYU
Bachelor of Science

A program was created to model the effects of surface roughness on reflectance from circular

conducting surfaces. Despite tests indicating a correct computational model, ill-conditioned
surface impedance matrices mean that the results cannot be trusted.
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Chapter 1

Introduction

1.1 The Problem

Modeling reflectance from a conducting surface with roughness that’s on the same order of
size as the wavelength of incident light is hard [1]. The computational model provided here is

meant to accurately predict such reflectance.

1.2 The Attempted Solution

A Julia package was written to calculate the far-field reflectance from a rough circular
conducting mirror using the model in chapter 2. It is included as appendix E and is available

on GitHub at https://github.com/mjg0/Mirrors.jl.

1.3 Note on Plots

Two types of plots will be used frequently here: plots of mirrors and plots of reflectance.

Mirror plots are what one would expect: the mentioned parameter (e.g. height, electric field)

1
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is plotted on the shape of the mirror itself. Reflectance plots are polar azimuthal equidistant
projections centered at normal to the mirror and extending to 90 degrees, much like a map of
the northern hemisphere centered at the North Pole and extending to the equator, with the

magnitude of reflected light corresponding to the intensity of the color.


https://en.wikipedia.org/wiki/Azimuthal_equidistant_projection
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Chapter 2

Methods

2.1 Modeling Expected Results

It is vital to ensure that the program can correctly predict reflectance for a flat mirror—failing
that, it cannot be trusted to predict reflectance for rough surfaces. An equation that can
predict far-field reflectance for an ideal mirror given an incident beam angle is thus needed.

Physical optics are used for simplicity.

2.1.1 Huygens Approximation

Since a finite, perfectly reflective surface is analogous to an aperture, the Huygens-Fresnel
principle is used to approximate the behavior of circular mirrors. An easy test of the
approximation is the result when light strikes from normal to the surface—it should be

proportional to the Airy pattern:

J, (kRsin(8))

kRsin(6) (2.1)
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..where k is the wave number, R is the radius of the aperture (mirror in this case), and 6
is the angle at which the reflectance is measured. J; is the first order Bessel function of the

first kind.

2.1.2 Setup

The electric field on a flat mirror in the x-y plane due to a plane wave incident at angle «

from normal (the z axis), inclined toward the x axis, is proportional to:

ei%wsin(a) (22)

..where A\ is the wavelength of the incident light. See figure 2.1.
The contribution of one point on the mirror to the far field reflectance at some polar

angle # and azimuthal angle ¢ is equation 2.2 multiplied by some phase shift.

2.1.3 Phase Shift

The phase shift relative to the origin suffices since far-field reflectance is sought. For some
point p, the distance d between that point and the origin along the direction of travel toward
the point in the far field defined by 6 and ¢ is needed.

d is given by dotting the unit vector u with —p (see figure 2.2). @ is (sinfcos ¢, sinfsin ¢, cos ),

so d is:
—x,sinfcos ¢ —y, sinfsin (2.3)

..where z,, and y, are the x and y coordinates of p.

The corresponding phase shift is thus:



2.1 Modeling Expected Results

E=0

Figure 2.1 Illustration of a plane wave originating at angle o from normal (the
z axis) striking a mirror’s surface (the x axis). Two planes along which the real
part of the electric field is zero are shown as blue lines, with a single wavelength
(M) separating them. At this moment in time, the electric field at any point on the
mirror surface is given by equation 2.2.
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Figure 2.2 d is the phase shift of light coming from p relative to light coming from
the origin.
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e~ tk(z,sinfcos p+y, sinbsing) (24)

..80 the contribution to the far field by a given point is:

eikmsin(a)efik(:cp sinf cos ¢p+y,, sinfsin @) (2 5)

...0I:

eik(mp(sina—sinecosd))—yp sinfsin¢) (26)

For simplicity, a and b are defined as:

a=k(sinaw—sinfcos¢) (2.7)
b= —ksinfsin¢ (2.8)

..50 that the contribution from p to the far field can be represented as:
ei(awp+byp) (29)

2.1.4 Integrating

To find the total contribution to the far field from the entire mirror (of radius R) at some 6

and ¢, this contribution must be integrated over the entire surface:

27 R
/ / ei(arcos(@)+brsin(®)),rdrd@ (210)
0 0

..where © represents the angular coordinate of the mirror surface and rcos® and rsin©
have been substituted for x and y respectively.

The solution (see appendix C) is:
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2

TR?,F, {2;—% (a? +62)] (2.11)

..where ¢F) is the confluent hypergeometric limit function. Replacing a and b with

equations 2.7 and 2.8 respectively, and using 27” in k’s stead, gives:

2R2

)\2

7TR20F1[ ;— (sin2a+sin2«9—231nasinécosgb)} (2.12)

2

As a quick check, when « is 0 (indicating normal incident light), this is proportional to

equation 2.1 as it should be (see appendix D).

2.2 Mirror Modeling

The simulated mirror is a circle broken up into rings of equal annular width a, each broken
into patches of equal area ”TC”Q The first ring is broken into 3 patches, the second into 9, etc.;
ring n has 6n + 3 patches, and a mirror of N rings has 3N? total patches. Each patch has

four points placed at:

r=a(2H e ) (2.13)

2m—+1 1
=2 + 2.14
7T(12n+6 (12n—}—6)\/§) (2.14)

..where n is the ring index (starting from 0 at the center of the mirror) and m is the

patch index (starting at 0 and going to 6n —2). The height z at each point varies based on
the mirror’s roughness. See figure 2.3 for an illustration, and appendix A for the rationale
behind this model.

This spacing was chosen since it gives a fourth-order error term (see appendix A).
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BSoNes
NeasY

Figure 2.3 The patch boundaries and points of a mirror with 3 rings. Point
locations are chosen according to equations 2.13 and 2.14.
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2.3 Electric Field at Surface

At each of the points on the mirror the electric field is calculated as follows, assuming a plane

wave of wavelength A incident at angle v from normal (direction of z) in the x-z plane:

k, = 2mwAsin (a) (2.15)
k,=—2mAcos(a) (2.16)
E = eilkyatk,2) (2.17)

See figure 2.1 and equation 2.2; the additional z portion comes from the fact that a

non-ideal mirror may have some height.

2.4 Impedance Matrix

The impedance matrix is a square matrix that represents how each point on the mirror
influences each other point when there is a current the mirror’s surface. Its length along each
axis is the number of points on the surface. There are two portions: the portion representing
the interaction of each patch with itself, and the portion representing the interaction between
different patches.

The portion of the matrix that represents the interaction of each patch with itself consists
of the 4x4 blocks along the main diagonal-the "first” patch’s influence on itself is represented
by cells 1,1 through 4,4, the second patch’s by cells 5,5 through 8,8, etc.

The rest of the cells in the matrix represent how each point, excepting points in the
same patch, interacts with every other point. For example, cell 1,5 represents how point 1 is

influenced by point 5.
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2.4.1 Different patch

Since there’s no chance of hitting a singularity when computing how two different patches

interact, each non-singular interaction for points ¢ and j can be calculated with:

Ta
7.  =—"_G(p.n.)r. 2.18
bJ 12n,+6 (p“pj)rj ( )

...where the first fraction is a Jacobian (see Circular Integration equation 22, appendix A

(7; has replaced a (n—l— 1+ ﬁ)) and G is the Green’s function).

2.4.2 Same patch

This is harder due to the need to deal with singularities. In essence, each annular patch is
transformed from an annular section into a square; that square is split into 4 triangles with a
common vertex at one of the four points in the patch; each triangle is then stretched into a
square, the common point going from a point to a line to reduce the order of the singularity
(see Circular Integration section 5.3 in appendix A). For numerical convenience, the triangular
portion is transformed into a square bounded by (0,0) to (1,1). Then a function of two
variables, u and v below, can be integrated over this square (see Circular Integration sections

5.6 and 5.7 in appendix A):

1
r(u,v) :Bmu—i—Bg’qu:I:Qa%-i-a (n—l— 5) (2.19)
2 1 a

...where B is a matrix that allows transformation between a triangular piece of an annular
patch and a square. In all there are 16 B matrices, for 4 points with 4 corresponding triangles

each (see Circular Integration subsection 5.5.1 in appendix A).
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It is easy enough to get a function of u and v from the function of r, 8, and z to be

integrated:

flu,v) = f(r(u,v),0(u,v),z(r(u,v),0(u,v))) (2.21)

For utility a transform function is defined, taking a point (r, 6, and z, with associated n

and p) and a function of that point, and yielding a function of u and v:

T(f,p) = (u,v) = r(u,v) f(u,v) (2.22)

With this transform function, the integral of a function f over a patch for a certain point

p can be calculated:

P(fp)=

sy D et BYIHTE ) (2.23)

triangles

..where H computes the integral of T'(f,p) over the unit square [2].

The desired function is the Green’s function of the point with another point:

eikp

G (p1,p2) = (2.24)

4dp

...where k is the wave number and p is the distance between the two points. The point to
be integrated around can be fixed (since P requires a function of one point) and the resultant
function called G* (py).

This function can then be used to determine the elements of the 4x4 block representing

this patch’s interaction with itself (see Circular Integration section 6.1 in appendix A):

K, =P(G",p) (2.25)
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K, =P(G*z,,p) (2.26)
Ky = P(G*y,,p) (2.27)
K, =P(G*z,y,.p) (2.28)
One row of the 4x4 block is thus:
Z, = %+2—‘/3(—K2—K3)+%K4 (2.29)
Zs 541 %+\2/_3(_K2+K3> j_gK4 (2.30)
Zown =00 B ey 1)+ 2, (2.31)
Zuris =504 2 1y -1y~ 2k, (2.32)

..where s is the index of this point (p) and s’ is the first index of the other point.

2.5 Surface Current

Since ZFE = J (where Z is the impedance matrix, F is a vector of the electric field at each
point on the mirror, and J is the surface current at each point), once Z and E are determined

J can be computed as Z 'E. See Circular Integration section 6 (appendix A).
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2.6 Reflectance

Given J, reflectance for a given 6 (polar) and ¢ (azimuthal) is determined by:

R= Z the—ik(msin(O) cos(¢)+ysin(0) cos(p)+zcos(0)) (233)
pts
The real part squared yields the intensity at infinity at the given angle.

2.7 The Code

The Julia package Mirrors.jl (which is included as appendix E) was built and used for

computation. Here’s an example of its usage:

using Mirrors, Plots

# Create a Mirror object

radius = 2.5 # units are wavelengths

N = 20 # number of rings

rms = 0.0 # RMS of surface roughness (wavelengths)
sigma = 0.0 # stdev of surface roughness (wavelengths)

M = Mirror(radius, N, rms, sigma)

# Find the mirror's impedance

Z = impedance(M)

# Find the electric field induced by a uniform plane wave

alpha = pi/8 # incident beam angle


https://github.com/mjg0/Mirrors.jl
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E = electricfield(M, alpha)

# Find the surface current due to E

J=2Z\E

# Determine and plot reflectance
R = Reflectance(M, J)

heatmap(R)

The resultant heatmap, with a few extra parameters for the heatmap call (see appendix

B), might look like figure 2.4.

2.7.1 Validation

To ensure that the code works correctly, tests were written to ensure that any function can
be integrated over the surface. The full tests are included in appendix E.10.

An impedance matrix can be created for an arbitrary function, not just Green’s function
(equation 2.24). For example, to use the equation f(r,0) =2 for mirror M, one can create

the impedance matrix thus:
Z = impedance(M, (r1, 61, zi1, r2, 02, z2)->r2/2)

Since the function used to generate the impedance matrix is in this case a function of
only one point, each cell is simply the integral of that function over the portion of the mirror
represented by the point corresponding to the column the cell occurs in. This means that
the sum of a each row of the matrix should equal the integral of the function over the entire

surface.
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Figure 2.4 A heatmap of the reflectance found by the sample code in section
2.7 plotted along with expected reflectance (calculated reflectance on top, expected
reflectance on bottom). As mentioned in section 1.3, it is an azimuthal equidistant
projection of the far field reflectance centered normal to the mirror and extending 90
degrees in any direction.
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The 4x4 blocks along the main diagonal representing the self-interaction of each patch
(see section 2.4) are similarly constrained: although the method of calculation differs, one
row of such a 4x4 block should still sum to the integral of the function over the patch.

Both sums of full rows and the sums of rows of the singular patch blocks are tested against

the equations:

f(r,0)=0.7
fr.0)=

f(r, )—14r31n(0)2
f(r,0) = 0.3r2 cos (6)°

..and in each case is correct to within 1% for every row of the impedance matrix with
mirrors of 3 rings (so few are used so the tests, of which this is just a part, can be run
reasonably fast); the integral is in all cases within 0.01% of the sum calculated from the

singular blocks.
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Chapter 3

Results

A mirror and its corresponding electric field, impedance matrix, surface current, and reflectance

were calculated and plotted for every combination of the following values:

Mirror radius: 3, 10, and 30 wavelengths

Mirror roughness RMS height: 0, 0.01, and 0.1 wavelengths

Mirror roughness standard deviation: 1, 3, and 10 wavelengths

Incident light angle, from normal (degrees): 0, 15, 30, 45, 60, 75

Gaussian beam cross section standard deviation: uniform beam, 1, 3, and 10 wavelengths

Mirror roughness was generated by creating a random surface then applying a Gaussian
blur image filter to that surface. The standard deviation mentioned is the standard deviation
of the blur filter-higher standard deviations result in a smoother, more rolling surface. After
the application of the blur filter, the values of the mirror were shifted to average zero, then
the height of each point scaled such that the RMS height of the mirror was as mentioned.

A 7Gaussian beam” here refers to a beam of light with a radial Gaussian intensity

distribution centered on the middle of the mirror.
19
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Since mirrors that fit in the memory of a personal computer yielded poor results (see
figure 2.4), the largest mirror size that can fit on non-exotic supercomputer nodes was chosen:
100 rings. This gives an impedance matrix of just over 230 GB with double precision complex
floats, allowing the simulation to just fit in 500 GB of memory when taking the preconditioner
for the solver into account.

Not a single simulation yielded credible results, even those involving smooth mirrors.
Figure 3.1 shows a representative example.

Using more rings made very little difference. Figure [3.2] shows the results of a simulation
with identical parameters, save that 30 rings were used instead of 100.

It seems likely that the results are poor due to the poor conditioning of the impedance
matrices: for the simulation mentioned above, the condition numbers were 85.2 billion with
100 rings (figure 3.1) and 1.43 billion with 30 rings (figure 3.2), destroying the credibility of

the solutions even if they did look right [3].
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Mirror Reflectance

Electric field Surface current

' " =
=
EEEES

Figure 3.1 Results given a mirror with 100 rings, a radius of 10 wavelengths,
roughness with a standard deviation of 3 wavelengths and an RMS height of 0.01
wavelengths, and a uniform illuminating light beam emanating from 30 degrees from
normal. "Mirror” shows the height of the surface, with the pink and cyan dots
and their labels indicating the highest and lowest points on the mirror; units are
wavelengths. ”Electric Field” and "Surface Current” are mapped on the mirror’s
surface; white represents zero, blue represents negative values, and red represents
positive values. "Reflectance”, as mentioned in section 1.3, is an azimuthal polar
equidistant projection plot of reflectance centered at normal to the mirror’s surface
and extending to grazing, with deeper reds representing higher intensities and white
representing zero.
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Conventions are identical to those of figure 3.1.

Surface current

Figure 3.2 Results with 30 rings.
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Conclusion

A program simulating reflectance from a rough conducting surface was built, but proved
inaccurate. The code may provide a useful starting point if the model can be tweaked to

reduce the condition numbers of the impedance matrices used.

23
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Appendix A

Circular Integration

What follows is Dr. Turley’s work, which was foundational for this project and is referenced

frequently.
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1. Introduction

1.1. History

You’ve probably guessed that, since this is version 5.4, there were earlier version of this
document. A previous version, 4.2, was written to provide a justification of Chelsea
Thangavelu’s work in the summer of 2017. Version 5.0 was an expansion with examples
added for specific unit testing of parts of the formula and implementations in python. It is
targeted towards providing the theoretical and testing framework for Michael Greenburg’s
senior thesis. I've also simplified the previous derivations in Section 5.3 for transformation
of the integration region into right triangles. Version 5.3 further expanded this work
with examples for Julia code and work on incorporating the quadrature results into a
Nystrom technique for solving the rough mirror reflectance integral equation. Version 5.4
cleaned up some errors in the coordinate transformation and simplified the explanations.
Version 5.5 addressed the fact that some of the coordinate transformations of previous



Figure 1: Annular patches with same area as center circle

versions involved improper rotations. I also updated some sign errors in the B Unit Tests
(Section 5.5.4).

1.2. Justification

For a rough mirror in 3d, we will need to integrate over a 2d surface. Given the symmetries
in our problem, it seemed advisable to make the integration region circular rather than
rectangular. This eliminates sharp points on the surface and makes all points on the
edge equidistant from the center. Dividing a circular region into patches is advisable in
order to have basis functions with compact support! and compact regions to handle the
integrable singularities in the integrand. Rectangular or triangular patches have well-
developed high-order quadrature rules for integration, but can’t produce a conformal
circular boundary. Patches with equally spaced values of r and 6 have the disadvantage
of significantly different areas near the center of the surface and near the edges of the
surface. A good compromise would be a central patch which is a circle divided into thirds
and then annular patches with widths equal to the radius of the central circle divided into
angular sections having the same area as the central circle regions as shown in Figure 1.
If @ is the radius of the central circle, the n'" annular ring has an area

A =mad*(n+1)? — ma*n? (1)
=na’(2n+1) . (2)

!The Nystrom method doesn’t use explicit basis functions, but they are implicit in the quadrature
rules. Since Gaussian-type rules are exact for polynomials up to a certain order, those polynomials
can be thought of as basis functions used in the expansion of the integrand.



It needs to be divided into 3(2n + 1) patches for it to have the same area as the center
circle arc wa?/3.

2. Quadrature Rules

Abramowitz and Stegun have a four-point rule for integrating square regions that avoids
the end points of integration[1]. The square rule is for integrating a region with

—h<z,y<h. (3)

The rule approximates the integrals by evaluating the function at four points

x = :I:i (4)

V3
h

V3’
adding them together and multiplying the result by k2. The rule has an error of order

h*. The square rule can be mapped onto a semi-circular annulus of inner radius an and
angular range

y==

(5)

2rm, <0< 2r(m + 1) (©)
3(2n+1) 3(2n+1)
0<m<6n+2, (7)

where m is the number of the semi-circular annulus. The worst case should be for a
center circle region with n = 0 and m = 0. Mapping the square rule onto an annulus I



have the following.
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3. Rough Surface

The next thing to consider is what happens if the surface over which we are integrating
isn’t quite a circle. This could happen because the circle has a rough surface or because
the area isn’t a flat circle, but has some height to it. These are really the same cases,
but I'll derive and test the needed metric tensor using the language of the second case.

3.1. Derivation

Let the surface over which I’'m integrating be some height z above the circle itself which
we’ll take to be in the x-y plane. A differential Cartesian area element will have two sides

—

Se=drZ+ 02 2 (23)

=dx (:% + g;é) (24)

S, =dyj+ 0z, 2 (25)
.0z,

where 0z, represents the variation in z keeping the coordinate u constant. The surface
defined by these two vectors is a parallelogram with an area

dA = S8, sinf (27)
N P §y’ (28)
=dxdy 2—%“—?@ (29)

y x

—aean 1+ (2)'+ (2 0

where 0 is the angle between S, and §y_

3.2. Tests

I checked three cases for reasonableness

3.2.1. Constant z

If z is constant, dA should be
dA =dxdy . (31)

Since the partial derivatives are equal to zero, that is indeed the case.



3.2.2. Flat slope

If
z=a+ fzx

the area is a a translation of a sloped line of length

(=142

dA =dxdy+/1+ 2.

Since
0z
il
% _y
dy
this agrees with Equation 30.
3.3. Half-Sphere
A sphere of radius a has a surface area of
4
A= §7Ta,2
so a half sphere would have an area
2
A= Znd?

Performing an integral over unit circle with a half-spherical dome above it I have

z=1—2a%—y?
0z
or =z
0z vy
dy =z

2 2
dA = dedy\[1+ 5 + %
z z

= zdx dy\/z% + y% + 22

:zdmdy\/mQ—l—yz—i—l—mZ—y?

=zdxdy .

(37)



Switch to polar coordinates to do the integral.

dx dy = rdr df

z:\/1—7'200820—r2sin29
=4/1—172
1 2
A:/r\/lfrzdr do
0 0

1
= 277/ rv/1 —r2dr
0
2

= -7

3

This is the expected answer.

4. Accuracy

4.1. Square Rules

The square rules are exact for the following monomial cases:

e any odd powers of 2 and /or y (rules give 0 since they have the appropriate symmetry

*y
o 1Y

Translate these into an arc on the nth annulus and the mth

radius @ with —5 <z < § and —5 <y < 3.

1
r= <n+2>a+y

y_ 2r(m+ 3+
3(2n+1)
_ m(2ma + a + 2x)
 3a(2n+1)

This assumes n and m are indexed starting with 0. Since r

section of a circle the inner

(51)
(52)
(53)

o y and 6 « x these rules

should be good for the same powers of r and 6 as they are for z and y. Note that
these values of x and y are the ones for the underlying square, not the actual x and y

coordinates on the arc.



4.2. Circle Rules

For any n and f = 1, Equation 19 gives the exact answer of 7a?/3. For n = 0, m = 0,

and f = cosf the exact answer is

2m/3 a 2
/ cost@/ rdr =% sin 9|31/03
0 0 2

a3
T4
= 0.433a? .

The numerical approximation yields

2m/3 a lj:L
/ cos@d@/ rdrza2ﬁz\/§ilcos Zﬂw
0 0 6 2V/3 3
2 1
< TN s [ T3 ED
6 3V3

~ 0.431a>

which is a good approximation. For n =1, m =0, f = cosf the exact answer is

27/9 2a 2
/ COSG/ rdr = 3% sin 9|31{)9
0 a

= 0.9642a° .

The approximation yields

21/9 2a 2 I
/0 cos&/a rdr ~ % Zcos (27r2923>
2 +1
L SFICEES
6 93

~ 0.9641a>

(57)

(58)

(59)

(62)

(63)

(64)

which agrees to four significant digits. I did some studies with a Julia implementation

and made the following observations:

e The square rules on which these rules are based are a product of Gaussian quadra-
ture rules. On each square, calculations are exact for polynomials up to power 3 in
z and y. In other words, any of the following functions can be integrated exactly



over a single square:

flz,y) == (65)
flzy) =y (66)
fz,y)=C (67)
f(@,y) =y (68)
flz,y) =2y (69)
fz,y) = 2’y (70)
fz,y) = 2y (71)
f(z,y) = (a+ bz + cz®)(d + ey® + gy°) (72)

e The integrations will likewise be exact for any power of r from —1 to 2.
e The integrations will be exact for any power of 6 from 0 to 3.

e The integrations will converge very quickly for integrations of trigonometric func-
tions which are periodic on a circle.

5. Singular Integrals

For integrals on the same patch, the Greene’s function is singular. There are a series
of coordinate transformations that make the integrals non-singular so that they can be
integrated with Gaussian quadrature product rules. I will outline the series of transfor-
mations in this section and give some examples using Mathematica, FORTRAN, Python,
and Julia.

5.1. Transforming from Annulus or Pie to Square

The first transformation needed is similar to the one used for the quadrature rule devel-
oped in previous sections. Solving Equation 13 for x, we have

0 1
m—a[%(6n+3)m2} (73)
00 6n+ 3
- . 4
ox “ 27 (74)

Solving Equation 10 for y, we have

y:r—a(n+;> (75)

or
T 1 (76)

10



giving us a Jacobian matrix J.

or  Or
T=| % % (77)
oz 90y
0 1
a(6n+3)
27
_ 79
a(6n + 3) (79)
The transformed integration is
2mm
Omin = 5701~ 80
3(2n+1) (80)
2 1

gmax
3(2n + 1)
(n+1)a Omaz % 1 %
[ rar [ seoa = | {a <n+ 2> +y] dy [* (), 0@) do, (82)
na gmin —% —%
where 7(y) is given by Eq. 10 and 6(z) is given by Eq. 13. To make sure the Jacobian is
correct, let’s check this formula for the specific case of n =1, m =0, f(r,0) = 1.

[ [ a0 a2 ®
:% (84)

2 Saa] /d () (5) @ (85)
:%“2 (86)

Note that the above formulas work for both an annulus (n > 1) and a pie-shape (n = 0).

5.2. Dividing Square Into Triangles

The next step is to divide the square into triangles with the singular points at a vertex
of the triangle. For each singular point, there will be four triangles with the following
vertices (listing the singular vertex first).

- (£a/2V3,+a/2V3), (—a/2,—a/2), (—a/2,a/2)
(£a/2v/3,%a/2V3), (—a/2,a/2), (a/2,a/2)

- (+a/2V3,+a/2V3), (a/2,a/2), (a/2,—a/2)
(+a/2V3,+a/2V3), (a/2,-a/2), (—a/2,—a/2)

Fig. 2 shows the triangles formed with the upper left singular point as a vertex.

=~ W N
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(-a/2,a/2) (a/2,a/2)
o
(-a/2,-a/2) (a/2,-a/2)
Figure 2: Triangles formed with the upper left singular

(—a/2V3,a/2V/3).

5.3. Transforming to Right Triangles

point

a vertex.

The above triangles are not right triangles. The Duffy transformation is in terms of a

right triangle with

0<z<1
0<y<1.

To do this, we first translate the axes to the origin.

=z F

2v/3
'y a
Y Yy 2\/3

This gives us the following four triangles.

1. (0,0), (—a/2F a/2V3,—a/2 F a/2V/3), (—a/2 F a/2V/3,a/2 F a/2V/3)
2. (0,0), (—a/2F a/2V3,a/2F a/2V/3), (a/2 F a/2V/3,a/2 F a/2V/3)
3. (0,0), (a/2 Fa/2V3,a/2 F a/2V/3), (a/2 F a/2V/3,—a/2 F a/2V/3)
4. (0,0), (a/2 F a/2V3,—a/2 F a/2V/3), (—a/2 F a/2V/3,—a/2 F a/2+/3)

Let the vertices of each triangle be in the order listed above. This means the origin,
where the singularity is, will be the first vertex of each triangle. Next, we do a linear

12



transformation to a new coordinate system where each leg of the right triangle is parallel
to a coordinate axis. This means the right angle is at the transformed second vertex
where (z,y) = (1,0). Let the coordinates of the second vertex of the triangle be

2 =po (91)
Y = (92)

and the coordinates of the third vertex be

a’ = ps (93)
Y =g . (94)

Then the transformation is as follows.
()= () () )
(o)=(an 2 () )
()= ) () o

Eq. 96 and 97 can be combined into a single martrix equation. This gives the transfor-
mation matrix to transform the primed coordinates to the double primed coordinates.

An A12><p2 p3> <1 1>
= 98
( A1 Az 2 g3 0 1 (98)
At this point, I could explicitly solve for the matrix A, but it turns out what I need in

practice is the inverse of A which I'll call B so that I can go from the double primed
coordinates back to the primed coordinates. Since

BA=1, (99)

I can left multiply both sides of Eq. 98 by B to get
P2 D3 11
BA =B 100
< @ g3 ) ( 01 > (100)
—1
P2 D3 11
B = 101
(o)) oy
P2 p3 I -1
= 102
(mo)(o ) (102

= <p2 Ps P2 > (103)

q2 43— Q42

13



5.4. Alternate Transformation to Right Triangles

The matrices B can be calculated in a more straightforward way. This will also serve as

a check of the above calculations. As we do these transformations, we number the points

using the same order as the closest second vertex of the four triangles from Section 5.2.
The inverse transformations can be found directly from Equations 95 through 97.

BH Blg .’L’” o x’

< Bs1 B ) < v' )\ (104)

By 312><1> (pz)
= 105
( Bo1  Bao 0 g2 (105)

B11 B 1 D3 )
= 106
<321 Bm)(l) (qg (106)
These equations can be solved simply for B in terms of the known variables p and ¢ for

the vertices. Multiplying the matrices in Equations 105 and 106 explicitly gives us the
following four equations.

Bi1 =po (107)
Bo1 =g (108)
Bi1 + B2 = p3 (109)
Ba1 + B2z = g3 (110)
These are straightforward to solve for B.
92 43— q2
This agrees with Eq. 103.
5.5. Transformation Matrices
For the four different triangles,
2V3pr = a(—V3F 1L, —V3F1,V3F1,V3F1) (112)
2v3ps = a(—V3F1,V3F1,V3F1,-V3F1) (113)
2V3gs = a(—V3F1,V3FL,V3F1,-V3F1) (114)
2V3¢s =a(V3F1,V3F1,-V3F1,—V3F1) (115)
p3 — po = (0,1,0 1) (116)
g3 —q2 = (1,0,-1,0) (117)

The F signs in the above equations depend on the singular point s which can run from
1 to 4. The sign for the various expressions for p and ¢ are summarized Table 1.

14



singular point p ¢
1 +  +
2 + -
3 - -
4 -+

Table 1: Signs for F with the various singular points in Eq. 112 through Eq. 115.

5.5.1. B Matrices

These give the following values for the B matrices. The subscript on the matrix specifies

which triangle it is for.

B =

By =

3 =

By =

(60 )
v (Vit1 s ) 120

Let the superscript in B designate the singular point (see Fig. 2 and Table 1), where the
first singular point is in the lower-left corner and they are numbered going clockwise. The
subscript refers to the corners used in the triangle as above. The first triangle uses the
lower left corner at (—a/2, —a/2) and the upper left corner at (—a/2,a/2). Subsequent
triangles are with the corners rotated in a clockwise direction. Note that this convention
involves an improper rotation, switching the order of the corners of the triangle as it is
traversed in a clockwise direction. With this convention, the more explicit values for B
as as follows.

\f( ?ﬂ ¥ ) (122)
-5 S )
- (AT )
s ()

15



BV — ﬁ < —\/?:11 2\0/§ ) (126)
B — % < _\/?jll 2\0/3 > (127)
BY = % ( —\/?_—11 Q‘f ) (128)
w50 L)
(A L)
BYY = ﬁ ( g_i _20\/3 ) (132)
5 =57 ( VIR > (133)
Bl = 2a73 ( _\/\%4;11 —20\/3 ) (134)
B 2a3< \</§§+11 _20\/3 ) (135)
BY 2“3( \%—11 _20\/3 ) (136)
B = % < —\/\/§§_+11 —20\/3 ) (137)

5.5.2. Jacobians

Since the transformation is a linear one, the Jacobian for the transformation is the
absolute value of the determinant of the B matrix. Here are the absolute values of the
associated Jacobian determinants

3+3

Jy= cﬂT (138)
3FV3

T = aQ% (139)
3FV3

5= B2V (141)

16



Using the same superscript and subscript convention as for the B matrices, the Jacobians
are:

JU = a23_6\/§ (142)
J = a23_6\/§ (143)
J® = a23+6\/§ (144)
JO — 23 +6‘/§ (145)
IO — 23 +6\/§ (146)
7@ — g22 _6\/5 (147)
J® — 23 _6‘/§ (148)
I _ 23 +6\@ (149)
IO = @23 +6\/§ (150)
7@ — 23 +6‘/§ (151)
J® — @23 _6\@ (152)
I — 23 6\/5 (153)
g = 23 _6‘/§ (154)
J® — @23 +6¢§ (155)
7O — g22 +6\/§ (156)
I = 23 _6‘/3 (157)

5.5.3. Checking Jacobian Determinant

I'll check the Jacobian determinant by integrating a unit function as before assuming
a (non-existent) singularity at (z,y) = (a/2v/3,a/2v/3). I will use a superscript to
designated the singular point when it matters from now on. The superscript in this case
is 3. The square has an area of a? before being subdivided. The translation of the center

17



doesn’t change the area. The four triangles after transformation have areas of

A=t (158)

I = ST (159)
PO g/g)ag (160)
J§3) _ 3 - g/g)GQ (161)
Jf’) _ B+ g/g)GZ (162)
whose sum is
T+ P+ I+ 0P =242 (163)

This gives a total area of a? which agrees with the untransformed square.

5.5.4. B Unit Tests

One way to test B and J in unit tests is to integrate over the square before transformation
and compare it to the integrals after the transformation.

Before Transformation Before the transformation, the integration is over a square with
sides of length a, but the origin translated to a singular point. If the integrand

f@'y) =1 (164)

then the integral over the square is just the area of the square. This gives us a test of
the Jacobian as noted in Sec. 5.5.3. Letting

fa'y') =4 (165)
[y =y (166)
f@y) ="y (167)

gives us a check of the B matrix. Before the transformation using the singular point

(b ¢)

/ 2 da’ dy = a/(m’ —b)dx’ (168)
square
= —ba’. (169)

18



After the transformation the area of one triangle is

1 u
A= J/ du/ (B11u + Blz’v) dv (170)
0 0
! 1
= J/ (Buu + 2Blgu2> du (171)
0
! 1
= J/ <Bu + 2312> u2 du (172)
0
— (g, +1p,) (173)
- 3 11 6 12 .

Summing this over the four squares should give the same result as Eq. 169. Similarly, we
can use

@ y) =y (174)
as the integrand.
/ y da' dy = a/(y’ —c)dy (175)
square
= —ca’. (176)

The same integral after the transformation is

1 U
A= J/ du/ (Bglu + BQQ’U) dv (177)

0 0
1 1

—J / <Bglu2 + 2322u2> du (178)
0
1 1

= J/ (BQ1 + 2322> u? du (179)
0

— (LB 418y (180)

— 3 21 6 22 .

Summing this over the four squares should give the same result as Eq. 176. A final check
on B is to let

f@'y) =2y (181)
Then the integral before the transformation is
/ 'y da’ dy' = /(a:’ —b) da:'/(y’ —c)dy (182)
square
= bea® (183)
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After the transformation the the area is

1 u
A= J/ du/ (Bnu—l-Blgv)(Bglu—i-ngv)dv (184)
0 0
L 1 1
=J | u’|B11Ba1 + 5(312321 + B11B22) + §B12322 (185)
0
BB B19B BB Bi9B
:< 114 2 B 21;- 1B 1i222>‘7‘ (186)

This should equal Eq. 183.

5.6. Duffy Transformation

The next step is to turn each of the right triangles into squares. The x coordinate will
transform directly into a new u coordinate. The new v coordinate will be y”/z”. The
old domains for the triangles were

0<z2’"<1 (187)
0< y// <z, (188)
With the transformation
2 =u (189)
"= uv (190)
u=2a" (191)
y//
v = ] (192)
the Jacobian determinant is
aI// 81,//
J=1| & S (193)
ou ov
10
= u (194)
=u. (195)

Check this transformation with integrating a function f(z”,y”) = 1.

1 z!! 1
/0 dx”/o dy”:/o 2" dz” (196)

1
=3 (197)
1 1 1
/ udu/ dv:/ udu (198)
0 0 0
1
= (199)
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5.7. Summary

To integrate r f(r, #) over the arc with n specifying the arc number (starting with 0) and
m specifying the segment within the arc (starting at 0) use the following substitutions.

1

r:y+a<n+2> (200)

a (m + l) +x
0=2m———2 = 201
" 3a(2n + 1) (201)
e 202
5 \/3 (202)
=+ 203
y=yEg \/g (203)
' = Bna" + B12y” (204)
y' = Ba1z" + Baay” (205)
2 =u (206)
y" = uv (207)

Following down the chain, this lets you compute 7(u,v) and 6(u,v). Then you just
substitute, multiply by the Jacobians, and integrate.

/rf(r, 0) dr df = {61((57217:—3)} Ji(j) /Oludu/o1 r(u, v) f(r(u,v),0(u,v)) dv (208)
5.8. Concrete Example

This is an example of how to implement these formulas in a specific case. I will consider
the case where the singularity is singular point 2 and I want to integrate triangle number

’ (z,y) = <—2f/§ 2%) : (209)

To avoid too many complications, I'll let f(r,8) = G(p), ignoring any roughness on the
surface. I'll define

o et 210
(0= (210)
p= \/(TCOSQ—T’COSH’)z+(rsin9—r’sin9’)2 (211)
= /12 + 72 — 211/ cos(f — 0') (212)
where
. 1, ™t 5
— Qr— = V9 21
(r',0') = ( [2f+n+ ] 6n+3 (213)
2\fn+\f+1 2v/3m + 3 -1
- .o (214)
2v/3 6v/3(2n + 1)
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are the coordinates of the singularity (using Eq. 200 and Eq. 201). Substituting Eq. 202
into Eq. 201 and Eq. 203 into Eq. 200,

r=r"+ y’ (215)
1
=y +—F—=+a|n+ 2 216
AR < 2) 210
2ra!
0=0+ ——F"— 217
* 3a(2n+ 1) (217)
a(m+3)+a' - %
= o (m + 2) 33 (218)
3a(2n+1)
Substituting Eq. 215 and Eq. 217 into Eq. 212,
p= /(" +y)2+r?2—=2(r"+1y)r cos _ mal . (219)
3a(2n+ 1)
By substituting Eq. 206 into Eq. 204 and Eq. 207 into Eq. 205,
' = Bjiu + Biouv (220)
y, = Boi1u + Byuv, (221)

showing that p = 0 when v = 0. Next, substitute Eq. 220 and Eq. 221 into Eq. 215 and
Eq. 217.

r =1 + Boju + Boguv (222)
27r(B11u + Blgu’l))

=10 223

T et (223)

For the third triangle, the inverse transformation matrix is from Eq. 131 and Jacobian
from Eq. 151. Substituting Eq. 131 into Eq. 222 and 223,

r =71 4+ Boju + Baysuv (224)
— 4 %[(\/é — 1)u — 2v/3uv] (225)
N al(3 — \/§6)u — 6uv)] (226)

=0+ B 1)
ef+3a(§;f+1) N L (228)

We can now compute the desired integral for this triangle using the Jacobians from Eq. 79
and Eq.151.

/ rG(p) drdf = [a(;ﬁ 3)} <a23+6\/§> /0 1udu /0 1T(u,v)G(P(u,v))dv (230)
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5.9. Computer Implementations

I have implemented these algorithms in FORTRAN, Mathematica, Python, and Julia.
They will be hepful for computing same-patch matrix elements involving a singular kernel.

5.9.1. FORTRAN

I have implemented the above algorithms in two modules, patch.f95 and alt_patch.£95.
I tested integrating over the patches using the pFUnit unit testing framework in the file
test_patch.pf. These three files are included in their entirety in the appendix, but I'll
discuss some details of each here.

The module patch in the file patch.£95 has the patch_par structure which is imple-
mented as a class. It’s primary purpose is to compute and store the B matrix and J
vector.

The module alt_patch in the file alt_patch.f95 is similar, but computes B and
J directly using the alternative formulas from Sec. 5.4. The module has an identical
interface to the patch module so that the two can be interchanged and compared for
testing purposes.

The file test_patch.pf has the unit tests for the FORTRAN code. The subroutine
Parameters tests the struct initialization for patch or alt_patch depending on which
use statement is uncommented. The test in subroutine altB explicitly tests the elements
of the alt_patch B matrix construction. The test in subroutine altJ explicitly tests the
elements of the alt_patch J vector construction.

The tests patchPar and PatchBJ compare the parameters and construction of B and
J from the patch and alt_patch modules.

The function constInt compares the Duffy integration of a unit Greene function over
a patch to the answer computed using Mathematica. Similarly, GreeneInt compares
Mathematica and FORTRAN computations of the Greene’s function over the patch area.

5.9.2. Mathematica

The Mathematica implementation was used to check both the math and numerical values
of the other implementations. Here is the code for computing the B matrices. The first
argument is the triangle number. The second argument is the singular point number.
The last argument is the radius of the distance between annular rings.

B[tri_,sp_,a_|:=Module[{p, q,fct=a/(2xSqrt[3])},
{p7Q}:{{171}’{17*1}7{*17*1}7{*151}}[[813”?
fet«Switch[tri

L. {{Sart[3] —p,0},{Sqrt[3] —q,2Sqrt [3]}},

2, {{Sart[3] —p, 2Sqrt[3]},{Sqrt[3]+q,0}},

3, {{Sart[3]+p,0},{Sart[3]+q,—2Sqrt[3]}},
| 4, {{Sart[3]+p,—2Sart [3]},{Sart[3] —q,0}}]
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I checked for an exact match when tri=3 and sp=2. Here is a simple, but inefficient
calculation of J.

J[tri_ ,sp_,a_|:=Abs[Det[B[tri,sp,a]]]

I tested this for the same case as B. Here are two examples of integrating 1.0 over a single
patch, comparing NIntegrate and the exact answer.

a=1.0;

n=4;

m=>5;

nint=NIntegrate [\ [Rho|,{\[Rho|,a n,a(n+1)},{\[Theta],
2Pi m/(3(2 n+1)),2 Pi (m +1)/((3(2n+1))) }]

exact = Pi a~2/3

The two results both 1.0462. Here is another example with different parameters.

a=1.5;

n=2;

m=1;

nint=NIntegrate [\ [Rho]|,{\[Rho|,a n,a(n+1)},{\[Theta],
2Pi m/(3(2 n+1)),2 Pi (m+1)/((3(2n+1)))}]

exact = Pi a~2/3

The two calculations both give 2.35619. Here is the code for computing the Greene’s
function.

G[r_,\[Theta] ,rp_,\[Theta]lp_, k ]:= Module[{\[Rho]|},
\[Rho] = Sqrt[r~2+rp~2—2r rp Cos|[\[Theta] —\[Theta]p]];
] Exp[I k \[Rho|]/(4 Pi \[Rho])

The arguments are r, 6, 7/, 8, and the wave vector k. Here is the code to evaluate the
integral of the Greene’s function over an entire patch with singular point number 3.

= 2 Pi;

rsp = a/(2Sqrt[3])+a(n+1/2);

tsp = 2 Pi (a(m+1/2)+a/(2Sqrt[3])/(3a(2n+1)));

NIntegrate[rp G[rsp, tsp, rp, \[Theta|p, k]|,
{rp,a n,a(n+1)},{\[Theta]p,2Pi m/(3(2 n+1)),
2 Pi (m+1)/((3(2n+1)))},

Exclusions —>{{rsp , tsp } }|

It caculated the exact integral to be —0.00487878 — 0.00148093.
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5.9.3. Python

The python code in Appendix B includes the code cint.py for integrating a function £
over a circle of radius r with n rings. It has unit tests a constant function and a function
which is linear in r and 6.

The file patch.py is for computing the transformation parameters to enable numerical
integration. It includes test cases for checking initialization parameters and computing
B and J. The computations of B and J are compared to the FORTRAN code which
was verified by comparison to Mathematica calculations.

The Duffy integration is implemented and tested in the duffy.py file. It is tested with
non-singular functions to compare the results with an exact integration.

5.9.4. Julia

The code in Appendix A demonstrates how to implement thee algorithms in Julia.
Sec.A.1 has the code from cint.jl for numerically integrating a non-singular function
defined on a circle.

6. Nystrom Application

The purpose of deriving these integration rules it to apply them to the solution of the
integral equation

-

V(&) = / S ()G, &) da’ (231)

where the integration is over the mirror surface. The function S(Z”) is the surface metric
consisting of the square root in Eq. 30. In the solution of Eq. 231, V(&), S(#'), and
G(Z, ') are known and one wishes to compute J(Z') on the surface. This can be readily
done using the Nystréom method if G(Z, a ) is finite at all of the discrete integration points
developed in Sec. 2. The rules in that section could be utilitzed to replace the surface
integral with a sum.

/ S()J(@)G(Z,7) da’ ~ D S() (@)@ T w (232)

where w; is the product of the factors multiplying the integrand in the quadrature rule
and Z;) are the quadrature points from the quadrature rule. The Nystrom technique
involves substituting Eq. 232 into Eq. 231 and then evaluating the sum at the points
V(&) =Y S(#)J(&)G(&, Tj)w; , (233)

J
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This results in p equations and p unknown J(z;) values where p is the number of quadra-
ture points. If we let

Vi =V (z;) (234)
i = VI(Z) (235)
Zij = S(%;)G (%, Tj)w; (236)

then Eq. 233 becomes the matrix equation
Vi=> ZiJj. (237)
J

The equation will yield accurate answers if the matrix elements Z;; are reasonably well
approximated by a linear combination of the basis functions discussed in Sec. 4 for which
the quadrature rules are exact.

This approximation fails miserably, of course, when the function G(Z, ) is singular.
This happens for the diagonal elements of the impedance matrix Z;;. In this case, we
need to apply the quadrature formulas from Sec. 5. In the case of singular integrands, we
require that the quadrature rules be exact for integrating a monomial times the singular
kernel rather than just the monomial (as in the case points from different patches). In
other words, we approximate

K(#)f(a)da' = 3 F(3)w; (238)

patch

with the requirement that the w; be chosen so that
> wy = / K(&')dz (239)
J
> wjw; = /x'K(a":") di’ (240)
J
S uus = [ K@) 7 (241)
J
ijijj = /x'y'K(:E") di’ . (242)
J

This sucks the singular kernel into the quadrature rule and alleviates having to evalulate
it at the singular point. The numerical integrals in Eq. 239 through Eq. 242 can be
carried out using the techniques of Sec. 5. Then the w; values can be computed from
the coupled equations Eq. 239 through Eq. 242 using the known values of the integrals
and the patch integration points (x;,y;).
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6.1. Application on Square Patch

Equations 239 through 242 can be solved more explicitly by writing them in matrix form.
Let

K, = / K(Z')d¥ (243)
Ky = / JK (&) d7 (244)
K3 = /y’K(f’) az’ (245)
Ky = / 2y K(7)d¥ . (246)
Then the matrix equation is
1 1 1 1 wy K
ST T - S 7 wa Ko
= 247
Yy Y2 Y3 Y4 w3 K3 (247)
T1Y1 T2yY2 T3Ys Taya wy Ky

This has a relatively simple solution if we substitute the values of x; and y; as the singular
points on the square patch outlined in Sec. 2.

Ty = _2;:/3 (248)

T = _% (249)

T3 = % (250)

Ty = % (251)

y1 = —2%/3 (252)

Y2 = % (253)

ys = % (254)

i = ff;g (255)
Plugging these into the matrix and solving with Mathematica,
wy || g o v
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6.2. Choice of Singular Kernel

I’'m not sure of the best choice for breaking up the integrand from Eq. 231 into the
singular kernel K and the smooth function f. The most efficient choice would be to have

K@) = G(
(@) =5(

Since the Greene’s function G only depends on the distrance between the quadrature
points, the numerical integrals will only need to be calculated for one annular patch in
each ring.

On the other hand, the singular integrals will be done with high accuracy and the
resulting quadrature rule is only accurate to first order in x and y. Letting

) (257)
NJI(T) . (258)

L&y

8

7)) =G(Z,7)S(&) (259)
f@) = J(@) (260)
leaves the surface roughness inside the precise numerical integration. This may improve

accuracy for a given patch size since J is expected to be smoother than SJ. T will check
the accuracy for a test case. Let the rough surface over the patch be represented by

z(x,y) = o cos(kyx) cos(kyy) (261)
o=0.1 (262)
ky = 7/3 (263)
ky = /4 (264)
(265)
The surface metric S can be computed from Eq. 30.
0z )
o —0ky sin(kyx) cos(kyy) (266)
x

0z .
y = —oky cos(kyx) sin(kyy) (267)
S(x,y) = \/1 + 02k2 sin® (k) cos?(kyy)? + 02k2 cos?(k,x) sin® (kyy)? (268)

6.3. Simple Nystrom Example

This is a simplified example for the impedance matrix for a problem with two square
patches and one point in the middle of each patch. This has a simple (low order) inte-
gration rule. Let the length of the side of each patch be a and the two patches be side
by side. The center of the first patch is (0,0) and the center of the second patch is (a,0).
If the function to be integrated is f(z,y), then the integral of f on the first patch is

a/2

a/2
. [ @) drdy (0.0 (269)
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The integral on the second patch is

a/2  r3a/2
[ faydedy~ af(a0). (270)
—a/2 Ja/2

Let’s let the patch be smooth so that S(x,y) = 1 everywhere.
The impedance matrix Z will be a 2 x 2 matrix. For the off-diagonal matrix elements,

Zlg = G(O,a)wg. (271)

The Greene’s function in this case is

G(z,y,2'y) =™ /p (272)
where
p=+(r—2)% =a. (273)
The weighting function is a?. Therefore
G(0,0,a,0) = G(a,0,0,0)) = e /q (274)
and ‘
Zm = Zgl = anka. (275)

The same-patch matrix elements must be exact for a constant impedance matrix (which
we obviously don’t have). That requires that

/ G(x07 Yo, JI/, y/) = w; (276)

for each patch. (zg,yo) is the evaluation point (0,0) for patch 1 and (a,0) for patch 2.
The impedance matrix element will then be

In this case wy = wy. This would not be the case if there was roughness on the surface
or if that patches were asymmetric in the evaluation of G on the patch. Here is the Julia
code to initialize the HCubature package and define the Greene’s function.

using HCubature

function G(xp::Float64, yp:: Float64)
k =2 % pi
r = sqrt (xp"2+yp~2)
exp(lim x k % r)/r

end

The cubature function works as expected integrating a unit function.

a=1.5
hcubature ((x)—>1,(—a/2,—a/2),(a/2,a/2) )
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producing the following result.
(2.25, 0.0)

Using HCubature for a problem with an internal singularity can cause problems. The
following code crashed my windows computer.

a=1.5
@time hcubature ((x)—>G(x[1],x[2]),(—a/2,—a/2),(a/2,a/2))

Putting the singularity on an end point solved the problem. The integration in this case
is a sum of four integrations with the singularity at the corner of each.

a=0.1

function qquad()
al = hcubature ((x)—>G(x[1],x[2]),(—a/2,—a/2),(0.0,0.0))[1]
a2 = hcubature ((x)—>G(x[1],x[2]),(—a/2,0.0),(0.0,a/2))[1]
a3 = hcubature ((x)—>G(x[1],x[2]),(0.0,0.0),(a/2,a/2))[1]
a4 = hcubature ((x)—>G(x[1],x[2]),(0.0,—-a/2),(a/2,0.0))[1]
al+a2+a3+a4d

end

@time qquad ()
This produced the following result.

2.199127 seconds (4.10 M allocations: 215.024 MiB, 11.79\% gc time)
0.345047995271054 + 0.062145990033945483im

Note that the adaptive quadrature is not very efficient and uses a lot of memory. A
Duffy transformation to remove the singularity would probably been more efficient, but
this is okay for my point. This Julia calculation agrees with the following Mathematica
calculation.
a = 0.1;
k = 2 Pi;
Glxp_, yp_| := Module[{r},

r = Sqrt[xp~2 + yp~2];

Exp[I k r|/r

I
NIntegrate[G[x, Y]v {X7 73/21 a/2}7 {Ya 78“/27 6/2}7
Exclusions — {{0, 0}}]

0.345048 +0.062146 1
Thus, if a = 0.1 and k = 2,
Z1g = Zo1 = 0.1e%2™ (278)

= 0.0809 + 0.0588% (279)

7 _ 0.345 + 0.06217  0.0809 + 0.0588:¢ (280)
~\ 0.0809 + 0.0588i  0.345 + 0.06213
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7. Application Notes

Our primary interest in a surface which is not flat is to integrate over a rough surface.
Care should be taken in selecting the algorithm for generating the surface so that partial
derivatives are easily and accurately evaluated. Two good choices are surfaces character-
ized by cubic splines and surfaces from band-width limited Fourier transforms.

7.1. Splines

Cubic splines are piece-wise cubic polynomials with continuous first and second partial
derivatives. There are two simple ways I can think of to generate such surfaces. One
would be to use a Gaussian random number generator to create random surface points
which are more widely spaced than the patch separations. The splines will be forced to
go through these points (called knots) exactly, but the other points will be interpolated.
If the points are relatively far apart, the surface will be smooth with a spatial frequency
equal to about 1/3 the spline separation (since the cubic could have three local extrema
in general).

Alternatively, the spline could be generated by using a Gaussian random number gen-
erator at each grid point and then creating a smoothing spline to interpolate across the
region. The smoothing spline has adjustable knots which are varied to minimize the
deviation of the spline from the data points. It is could also controlled by a smooth-
ing parameter which is varied to constrain discontinuities in the derivatives in adjoining
regions.

The partial derivatives of the splines are easily computed since the interpolation is just
a polynomial. Most spline libraries have facilities for computing the partial derivatives
for you.

7.2. Fourier Transform

Our AFM data suggests that some surfaces are well-modeled by a noise function which has
an envelop like a half-Gaussian in the Fourier domain. Such a surface can be generated
by starting with points on the surface with random Gaussian noise added. This surface
is then transformed to the frequency domain using a 2d Fast Fourier Transform. In that
domain, the Fourier components are multiplied by

flk) = e /2" (281)
where o is a constant chosen to regulate the amount of smoothing and
K=kl + k) (282)

is the wave number (i.e. the independent variable in the Fourier domain. The filtered
spectrum is then transformed back to the spatial domain using an inverse fast Fourier
transform to generate the required heights.

The partial derivatives are easily computed since the Fourier expansion is just a sum
of complex exponentials. One has to take care of high frequency ghosts in the Fourier
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transforms because of aliasing. T don’t think this will be a problem in our case since we
are applying a low-pass filter which will suppress them.

A. Sample Julia Code

A.1. Circular Integration

Here is a function applying the numerical circular integration method outlined in Sec-
tion 2 using Julia.

nmnn

cint integrates the function f over a circle of radius r
using n rings. Each ring is divided into 3(2i+1) segments,
where i=0 for the inner most ring and can have values up to n—1.
nnn
function cint(f,r,n)
a=r/n
sum=0.0
for i=0:n—1
ip=(2%xi+1+1/sqrt (3.0))/(2*i+1)
im=(2xi+1—1/sqrt (3.0))/(2*i+1)
rp=ax*(i+0.5+1/(2xsqrt (3.0)))
rm=ax*(1+0.5—1/(2xsqrt (3.0)))
for m=0:6%1+2
tp=2+pi*(m+0.5+1/(2xsqrt (3.0)))/(3*(2xi+1))
tm=2%pi*(m+0.5—1/(2xsqrt (3.0)))/(3*(2xi+1))
sum += imx*f (rm,tm)+im*f (rm,tp)+ip*f(rp,tm)+ip*(f(rp,tp))
end
end
sum *= pi*xa~2/12
end

A.2. Same Patch Integration

Even though the Duffy transformation wasn’t helpful in the python code (see Sec. B.2),
it may be important in Julia because the Cubature package only has contants integration
limits. Nested 1d quadratures may work, but the timing could be different. This module
tests that.

A.2.1. duffy.jl

using Test
using HCubature
using QuadGK
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function duffy (func, tol=0)
hcubature (x—=>x[1]* func(x[1], x[1]*x[2]),[0.,0.],[1.,1.],atol=tol)
end

Q@testset "Duffy" begin
@testset "constant" begin
area, err = duffy ((u,v)—>1)
Qtest area =~ 0.5
Qtest err < le—7
end
@testset "singular" begin
area , err = duffy ((u,v)—>1/sqrt(u"2+v~"2))
Q@Qtest area &~ asinh (1)
Qtest err < le—7
end
Q@testset "complex" begin
area, err = duffy ((u,v)—>exp(lim*pi/4)/sqrt(u~2+v"2))
Qtest area &~ asinh(1)*x(1+1lim)/sqrt(2)
Qtest err < le—7
end
end

println ("\ nChecking duffy timing")
function or(u,v)

1/sqrt (u"24+v"2)
end

function df()
loops = 1000
a =20
for i=1:loops
a += duffy (or,le—12)[1]

end
a/loops
end
exact = asinh (1)
println ("df = $(df()), should be $exact")
@time df ()
This program has the following output:
Test Summary: | Pass Total
Duffy | 6 6

33



Checking duffy timing
df = 0.8813735870195392, should be 0.881373587019543
0.076966 seconds (1.14 M allocations: 31.342 MiB, 6.80% gc time)

A.2.2. surface.jl

using Test
using Printf

struct patch
# For now, I’1l sacrifice speed for space. This should only
# be of order N, and the iminuspedance matrix will be of order N2
# for singular patch integrations I need the Jacobian

end

struct surface
rings :: Int64 # number of annual rings
a :: Float64
patches :: Array{patch,l}
# The Jacobian and B matrices only depend on a, the triangle numbber,
# and the singular point number for each patch. Hence it makes sense
# to store them for the surface and not with each patch.

end

struct triangle
end

# n and m are indexed from 0
# element is indexed from 1
function nm(element:: Integer)

el = element — 1

n = Int(trunc(sqrt(el/3)))
m= el — 3xn"2

(n,m)

end
function elmnt(n::Integer, m::Integer)
m+3*n~ 241

end

# positive (rp) and negative (rm) radius of annulus number n
# with n starting with zero
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function rplusminus(a:: AbstractFloat, n:: Integer)
term = a/(2xsqrt (3.0))
rmid = a%(n-+0.5)
(rmid, term)

end

# positive (tp) and negative (tm) theta for patch number m
# and annulus n, assuming n and m start with 0
function tplusminus(a:: AbstractFloat, n::Integer, m:: Integer)
t = 1/(2%sqrt(3.0))
d = 3x%(2xn+1)
tdif = 2xpixt/d
tmid = 2xpix(m+0.5)/d
(tmid, tdif)
end

function dfill (n::Integer, greene, rm:: Float64, dr::Float64
tm:: Float64 , dt::Float64, rp::Float64, drp::Float64 ,
tp:: Float64, dtp::Float64)
ip = (2xn+1+1/sqrt (3.0))/(2%n+1)
im = (2%xn+1—-1/sqrt (3.0))/(2%n+1)
Z = zeros(4,4)

Z[1,1] = imxgreene (rm—dr, tm-dt, rp—drp, tp—dtp)
Z[1,2] = imxgreene (rm—dr, tm—dt, rp—drp, tp+dtp)
Z[1,3] = ip*greene (rm—dr, tm—dt, rp+drp, tp+dtp)
Z[1,4] = ip*greene(rm—dr, tm—dt, rp+drp, tp—dtp)
Z[2,1] = im*greene (rm—dr, tmtdt, rp—drp, tp—dtp)
Z[2,2] = imxgreene (rm—dr, tmtdt, rp—drp, tp+dtp)
Z[2,3] = ip*greene(rm—dr, tmtdt, rp+drp, tp+dtp)
Z[2,4] = ipxgreene(rm—dr, tmtdt, rp+drp, tp—dtp)
Z[3,1] = imxgreene (rmtdr, tmtdt, rp—drp, tp—dtp)
Z[3,2] = imxgreene (rmtdr, tmtdt, rp—drp, tpt+dip)
Z[3,3] = ipxgreene (rmtdr, tmtdt, rp+drp, tp+dip)
Z|3,4] = ip*greene (rm+dr, tmt+dt, rp+drp, tp—dtp)
Z[4,1] = imxgreene (rm+dr, tm—dt, rp—drp, tp—dtp)
Z[4,2] = im*greene (rm+dr, tm-dt, rp—drp, tp+dtp)
Z[4,3] = ip*greene (rmtdr, tm-dt, rp+drp, tp+dtp)
Z[4,4] = ip=*greene (rmtdr, tm-dt, rp+drp, tp—dtp)

Z
end

# Since this function returns Z, it should be called before same fill

# which fills in the missing same patch parts
function diff fill(rings::Integer, a::Float64, greene)
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npatch = 3xrings "2
npts = 4xnpatch
Z = zeros(npts,npts)
pp = 1 # patch for first index
for np = 0O:rings—1

rmp, drp = rplusminus(a, np)

for mp = 0:6xnp+2

tmp, dtp = tplusminus(a, np, mp)

p=1
for n = 0:np—1
rm, dr = rplusminus(a, n)
for m = 0:6%n+42
tm, dt = tplusminus(a, n, m)
Zlp:p+3, pp:pp+3] = dfill (np, greene, rm, dr, tm, dt,
rmp, drp,tmp, dtp)xpixa~2/12
p +— 4
end # for m
end # for n

# n =— np (possible same patch)
rm, dr = rmp, drp
for m = 0:mp-1
tm, dt = tplusminus(a, np, m)
Zlp:p+3, pp:pp+3] = dfill (np, greene, rm, dr, tm, dt,
rmp, drp, tmp, dtp)sxpixa~2/12
p += 4
end # for m
p += 4 # for the same patch I skipped
for m = mp-+1:6%np+2
tm, dt = tplusminus(a, np, m)
Zlp:p+3, pp:pp+3] = dfill (np, greene, rm, dr, tm, dt,
rmp, drp, tmp, dtp)xpixa~2/12

p +— 4
end # for m
for n = np+1:rings—1
rm, dr = rplusminus(a, n)
for m = 0:6%n+2
tm, dt = tplusminus(a, n, m)

Zlp:p+3, pp:pp+3] = dfill (np, greene, rm, dr, tm, dt,
rmp, drp, tmp, dtp)xpixa~2/12

p +— 4
end # for m
end # for n
pp = pp+4

end # for mp

36



end # for np
Z
end # diff fill

# This routine fills the Z matrix for same patch elements.

# It is here for testing purposes, since it assumes the greene

# function is not singular. sing fill is the equivalent routine

# for a singular kernel.

function same fill(Z:: Array{Float64 ,2}, rings::Integer, a::Float64, greene)
p = 1 # patch for first index

for n = 0:rings—1
rm, dr = rplusminus(a, n)
for m = 0:6%n+42
tm, dt = tplusminus(a, n, m)

Zlp:p+3, p:p+3] = dfill (n, greene, rm, dr, tm, dt,
rm, dr, tm, dt)xpixa~2/12
p +—= 4
end # for m
end # for n
7
end

# testing code
Qtestset "Z compute" begin
@testset "indexing" begin
element = 16
n, m = nm(element)
@test n = 2
@test m =— 3

Qtest elmnt(n, m) = element
end
Q@testset "points" begin

#n =20

#m =0

a = 0.5

rm, dr = rplusminus(a, 0)

@test rm =~ ax*x0.5

Qtest dr ~ a/(2xsqrt(3.0))

tm, dt = tplusminus(a, 0, 0)
Qtest tm ~ 2xpix0.5/3

Qtest dt ~ 2xpi/(2xsqrt(3.0))/3

#n =1
#m = 2
rm, dr = rplusminus(a, 1)
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Qtest rm ~ ax1.5

Qtest dr ~ a/(2xsqrt(3.0))
tm, dt = tplusminus(a, 1,
Qtest tm ~ 2xpix2.5/9
Qtest dt ~ 2xpi/(2xsqrt(3.0))/9

2)

end
@testset "Z different" begin
rings = 4
a = 0.5
Z = diff fill(rings, a, (r, t, rp, tp) —> 1.5)
sZ = size(Z)
# sizes
Qtest sZ[1] = 12xrings "2
Qtest sZ|[2] = sZ][1]
# first block
Qtest Z[1,1] = 0
Qtest Z[sZ[1l], sZ[1]] = O
Qtest Z[1,5] # 0
Qtest Z[25,1] # 0
# Middle block
Qtest Z[25,25] 0
Qtest Z[25,28] 0
Qtest Z[28,25] = 0
Qtest Z[25,29] # 0
Qtest Z[29,25] # 0
# Last block
Qtest Z[sZ[1],1] # 0
Qtest Z[sZ[1],sZ[1]—4] # 0
Qtest Z[1,sZ[1]] # 0
Qtest Z[sZ|1]—4,sZ[1]] # 0

end
Q@testset "Z all" begin
rings = 4
a = 0.5
Z = diff fill(rings, a, (r, t, rp, tp) —> 1.5)
same fill(Z, rings, a, (r, t, rp, tp) —> 1.5)
sZ = size(Z)
Qtest Z # zeros(sZ...)
end
@testset "dfill" begin
rm = 1.0
dr = 0.25
rmp = 2.0
drp = 1/3
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dt, rmp, drp, tmp, dtp)

dt, rmp, drp, tmp, dtp)

tm = 3.0
dt = 0.5
tmp = 1.5
dtp = 0.1
Z = dfill (1, (r, t, rp, tp)—>1, rm, dr, tm, dt, rmp, drp, tmp, dtp)
Qtest size(Z) =— (4,4)
for j=1:4
Qtest Z[:,j] = fill(Z[1,]j],4)
end
Z = dfill (1, (r, t, rp, tp)—>rp, rm, dr, tm,
for j=1:4
Qtest Z[:,j] = fill(Z[1,j].4)
end
Z = dfill (1, (r, t, rp, tp)—>tp, rm, dr, tm,
for j=1:4
Qtest Z|[:,j] = fill(Z[1,j],4)
end
end
@testset "Constant Int" begin
rings = 4
a = 0.1
Z = diff_ fill(rings, a, (r, t, rp, tp) —> 1)

same _fill(Z, rings,
sZ = size(Z)|1]

V = ones(sZ)

I = ZxV # each element should be the area of

a, (r, t, rp, tp) —> 1)

radius = axrings
area = pikxradius™2
Qtest area ~ I[1]
Qtest area ~ I[10]
Qtest area =~ I[sZ]
end
@testset "Linear Int" begin
rings = 4
a = 0.1
Z = diff fill(rings, a, (r, t, rp, tp) —> rp)
same fill(Z, rings, a, (r, t, rp, tp) —> rp)

sZ = size(Z)[1]

I = sum(Z,dims=2)
Qtest I fill (I[1],sZ) # all rows should be
radius axrings

exact 2/3xpisxradius "3
Qtest exact ~ I[1]

Z = diff fill(rings, a,

~
~

(I‘, t) rp, tp) — tp)
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same fill(Z, rings, a, (r, t, rp, tp) —> tp)
I = sum(Z, dims=2)
exact = pi~2xradius”2
Qtest I ~ fill (exact , sZ)
end
end

B. Sample Python Code

This chapter includes a python implementation of these rules with association unit test-
ing. It is a modified version of the routines written by Michael Greenberg.

B.1. Circular Integration

# cint .py
# Steve Turley, 10/13/2018

import numpy as np
import unittest

def cint(f, r, n):
"""integrate the function f(r,theta) over a circle of
radius r using n rings. Each ring is divided into 3(2i+1)
segments, where i=0 for the innermost ring and can have
values up to n—1.
nnn
a=r/n
sum=0.0
for i in range(n):
ip=(2%i+1+1/np.sqrt (3))/(2xi+1)
im=(2%i+1-1/np.sqrt(3))/(2*i+1)
rp=ax*(i-+0.5+1/(2*np.sqrt (3)))
rm=ax*(1+0.5—1/(2*np.sqrt (3)))
for m in range(6xi+3):
tp=2#np.pix(m+0.5+1/(2«np.sqrt (3)))/(3*(2xi+1))
tm=2*np. pi*(m+0.5—1/(2xnp.sqrt (3)))/(3*(2xi+1))
sum += imx*(f(rm,tm)+f(rm,tp)) + ip*(f(rp,tm)+f(rp,tp))
sum *= np.pixax*2/12
return sum

class CircInt (unittest.TestCase):

# test constant integrations
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def test const(self):
self.assertEqual (np.pi,cint(lambda r,t: 1.0,1.0,1))
self.assertEqual (np.pi,cint(lambda r,t: 1.0,1.0,3))
self.assertEqual (4+np.pi,cint (lambda r,t:1.0,2.0,2))
self . assertEqual (12%np.pi,cint(lambda r,t:3.0,2.0,4))

def test linr(self):
self . assertAlmostEqual (2/3*np.pi,cint (
lambda r,t: r, 1.0, 1), 14)
self.assertAlmostEqual (2/3%np.pi, cint (
lambda r,t: r, 1.0, 3), 14)
self.assertAlmostEqual (16/3%np.pi,cint (
lambda r,t: r, 2.0, 2), 14)
self.assertAlmostEqual (2«np. pi, cint (
lambda r, t: 3xr, 1.0,4), 14)
self . assertAlmostEqual (np. pi**2, cint (
lambda r,t: t, 1.0, 1), 14)
self . assertAlmostEqual (np. pi**2, cint (
lambda r,t: t, 1.0, 3), 14)
self.assertAlmostEqual (9%np. pi**2,cint (
lambda r, t: t, 3.0, 2), 14)
self.assertAlmostEqual (18+np. pi**2,cint (
lambda r,t: 2xt, 3.0, 4), 14)
if name =’ main__:
unittest . main ()

B.2. Same Patch Integration

This code (patch.py) has the transformations from an arc to the unit right triangle needed
for the Duffy transformation. It corresponds to alt_patch.f95 in Sec. C.2.

# patch.py
# Steve Turley, 10/16/2018

import numpy as np
import unittest

class patch:
def _ init  (self, n, m, triangle, singular point, a):
self .n =n

self m =m
self . triangle = triangle
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self .singular point = singular point
self.a = a

apt = a/(2xnp.sqrt (3))

if singular point < 3:

self.xs = —apt
else:
self .xs = apt
if (singular point = 1) | (singular point =— 4):
self.ys = —apt
else:
self.ys = apt
pp2 = self.p2()
pp3 = self.p3()
qq2 = self.q2()

qq3 = self.q3()
self .b= np.array (((pp2, pp3—pp2),(aq2, qq3—qq2)))
self.j = np.abs(np.linalg.det(self.b))

def p2(self):
if self.triangle < 3:

sl = —1
else:
sl =1
if self.singular point < 3:
s2 = —1
else:
s2 =1

return self.ax(sl/2—s2/(2xnp.sqrt(3)))

def p3(self):

if (self.triangle = 1) | (self.triangle =— 4):
sl = —1
else:
sl =1
if self.singular point < 3:
s2 = —1
else:
s2 =1

return self.a%(sl/2—s2/(2xnp.sqrt(3)))

def q2(self):
if (self.triangle = 1) | (self.triangle = 4):
sl = —1
else:
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def

def

def

def

sl =1

if (self.singular point ==1) | (self.singular point —
s2 = —1

else:
s2 =1

return self.a%(sl/2—s2/(2xnp.sqrt(3)))

q3(self):
if self.triangle < 3:
sl =1
else:
sl = —1
if (self.singular point = 1) | (self.singular point =
s2 = —1
else:
s2 =1

return self.ax(s1/2—s2/(2xnp.sqrt (3)))

radius (self , xpp, ypp):
return self.b[1,0]*xpp+self.b[l,1]*ypp-+(
self.ystself.ax(self.n+0.5))

theta (self , xpp, ypp):
return 2snp.pix(self.ax(self . m+0.5)+self.b[0,0]*xpp-+(
self .b[0,1]xypptself.xs))/(
3xself.a*x(2xself .n+1))

grfunc(self , xpp, ypp):

k = 2xnp. pi

r = self.radius(xpp, ypp)

th = self.theta(xpp, ypp)

rs = self.ys + self.ax(self.n+0.5)

ths = 2#np.pix(self.ax(self .m+0.5)+self.xs)/(
3xself .a*x(2xself .n+1))

rho = np.sqrt (r*x2+rs*x2—2«r*rs*np.cos (th—ths))

return np.exp(1j*k*rho)/(4*np.pi*rho)

def jacobian(self):

return self.j*2snp.pi/(self.a*x(6xself.n+3))

class PatchTest (unittest.TestCase):

def test init(self):

n —

~ N |

m =
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def

def

t 1
sp = 2
a = 0.5

p = patch(n, m, t, sp, a)
self.assertEqual(n, n)
self . assertEqual (m, p m)
self . assertEqual(t, p.triangle)

self . assertEqual(sp, p.singular point)
apt = 0.1443376
self.assertAlmostEqual(—apt, p.xs, 7)
self.assertAlmostEqual (apt, p.ys, 7)

t 2

sp = 4

p = patch(n, m, t, sp, a)
self.assertAlmostEqual (apt, p.xs, 7)
self . assertAlmostEqual(—apt, p.ys, 7)

test _bmat (self):
p = patch(2, 7, 1, 2, 0.5)
# comparing with FORTRAN answers
cl = 0.1056624
c2 = 0.3943376
self.assertAlmostEqual(—cl, p.b[0,0], 7)
self.assertAlmostEqual (0, p.b[0,1], 7)
self . assertAlmostEqual(—c2, p.b[1,0], 7)
self .assertAlmostEqual (0.5, p.b[1,1], 7)
self.assertAlmostEqual (0.0528312, p.j, 6)
# try another
p = patch(2, 7, 2, 4, 0.
self.assertAlmostEqual(—
self.assertAlmostEqual (
(
(
(

OO

5)

c2, p.b[0,0], 7)
5, p.b[0,1], 7)

self .assertAlmostEqual

self .assertAlmostEqual

self .assertAlmostEqual

0.
¢2, p.b[1,0], 7)

0.0, p.b[1,1], 7)
0.1971688, p.j, 7)

test func(self):

p = patch(2,7,1,2,0.5)

# comparing with FORTRAN answers
xp = 0.5

yp = 0.5

self.assertAlmostEqual (1.4471688, p.radius(xp, yp),

self . assertAlmostEqual (2.9764129, p.theta(xp, yp),
self . assertAlmostEqual (0.8429136+0.4781089j ,
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p.grfunc(xp, yp), 7)
self.assertAlmostEqual (0.0442598, p.jacobian (), 6)
# try another triangle and singular point
p = patch(2, 7, 2, 4, 0.5)
self.assertAlmostEqual (1.3028312, p.radius(xp, yp), 7)
self.assertAlmostEqual (3.3067724, p.theta(xp, yp), 7)
self . assertAlmostEqual (0.1106089+0.3736807] ,
p.grfunc(xp, yp), 6)
self.assertAlmostEqual (0.1651797, p.jacobian(), 7)

if name = ' main__’:
unittest.main ()

This code (duffy.py) has the code and testing information for applying the duffy transfor-
mation for doing a singular integral with the singularily at the corner of a rigth triangle
(0,0). When I did a timing test, I found that the duffy integration took a little longer
than just doing an adaptive double integral using scipy.integrate.dblquad.

import numpy as np

import scipy.integrate as int
import unittest

def duffy int(func, tol):
return int.dblquad (lambda v,u : uxfunc(u,uxv), 0, 1,
lambda x : 0, lambda x : 1, epsabs = tol)

# This is inefficient. You will often co better breaking the
# integrand up into real and imaginary parts beforehand
def duffy qint(func, tol):

r, e = int.dblquad(lambda v,u : uxnp.real(func(u,uxv)), 0, 1,
lambda x : 0, lambda x : 1, epsabs = tol)

i, e int .dblquad (lambda v,u : usnp.imag(func(u,u*v)), 0, 1,
)

lambda x : 0, lambda x : 1, epsabs = tol
return r+ixlj

class DuffyTest (unittest . TestCase):
def test spint(self):
# Integrate half circle as a test with
# x going from —2 to 2 and y going from g(x)=—0
# to h(x)=sqrt(4—x"2)

area, error — int.dblquad(lambda y, x : 1.0, —2.0, 2.0,
lambda x : 0.0,
lambda x : np.sqrt (4.0 —xxx2),
epsabs le—12)

self.assertAlmostEqual (2«np.pi, area, 12)
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self . assertAlmostEqual (0.0, error, 7)
# duffy integration
area, error = int.dblquad(lambda y, x 1, 0., 1.,
lambda x : 0.,
lambda x : x, epsabs = le—12)
self . assertAlmostEqual (0.5, area, 12)

def test duffy(self):

# constant integral of unit right triangle

area, error = duffy int(lambda u, v: 1, le—12)

self.assertAlmostEqual (0.5, area, 12)

self.assertAlmostEqual (0.0, error, 12)

dbarea, error = int.dblquad(lambda y, x
1/np.sqrt (x#%2+y=*x2), 0, 1,lambda x: 0,
lambda x : x ,epsrel = le—12)

self .assertAlmostEqual (0, error, 12)

area, error = duffy int(lambda u, v:
1/np.sqrt (usx2+vx%2), le—12)

self . assertAlmostEqual (dbarea, area, 15)

def test cmplx(self):
# try a complex integrand
cunst = (1+1j)/np.sqrt(2)
area = duffy qint(lambda y, x : cnst, le—12)
self .assertAlmostEqual (cnst 0.5, areca, 12)

if name = '~ main

unittest . main ()

C. Sample FORTRAN Code

This section has two FORTRAN implementations for computing same patch integrals
with singular kernels: patch.f95 and alt_patch.f95. It also includes the unit testing
code test_patch.pf based on the pFUnit testing framework.

C.1. patch.fo5

! Routines and constants specialized to integration over a particular
! patch and triangle.
I Steve Turley, August 8, 2017
module patch
use iso_fortran env, only : real64
implicit none
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private
type patch par

I private

! public
integer n, m, triangle, singular point
real (real64) :: a
real (real64) b(2,2), j

)

real (real64 XS, ys
contains
procedure :: radius
procedure :: theta
procedure :: grfunc ! Greene’s function
procedure :: jacobian

end type patch par
! constructor (s)
interface patch par

module procedure :: init
end interface patch par
public :: patch par

contains

function init(n,m,triangle , singular point, a)

integer , intent(in) :: n, m, triangle, singular point
real (real64), intent(in) :: a

type(patch par) init

real(real64) :: apt

init%m = n
init%m = m

init%triangle = triangle
init% = a
init%singular point = singular point

Set singular points xs and ys
apt = a/(2xsqrt (3.0d0))
if (singular point < 3) then

init%xs = —apt

else
init%xs = apt

end if

if (singular _point = 1 .OR. singular point = 4) then
init%ys = —apt

else
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init%ys = apt
end if
! This is where the B’s and J’s are initialized. It isn’t final yet
select case (10ssingular point+triangle)
case (11)
init%b = reshape ((/ —a*(3—sqrt(3.d0))/6, —ax(3—sqrt(3.d0))/6,&
0.0d0, a /), shape(init%b))
init%j = ax*2x(3—sqrt (3.d0))/6
case (21)
init%b = reshape ((/ —a*(3—sqrt(3.d0))/6, —ax(3+sqrt(3.d0))/6,&
0.0d0, a /), shape(init%b))
init%j = ax*2x(3—sqrt(3.d0))/6
case (31)
init%b = reshape ((/ —a*(3+sqrt(3.d0))/6, —ax(3+sqrt(3.d0))/6,&
0.0d0, a /), shape(init%b))
init%j = ax*x2%(3+sqrt(3.d0))/6
case (41)
init%b = reshape ((/ —a*(3+sqrt(3.d0))/6, —ax(3—sqrt(3.d0))/6,&
0.0d0, a /), shape(init%b))
init%j = ax+x2x(3+sqrt(3.d0))/6
case (12)
init%b = reshape ((/ —a*x(3—sqrt(3.d0))/6, ax(3+sqrt(3.d0))/6,&
a, 0.d0 /), shape(init%b))
init%j = ax*x2x(3+sqrt(3.d0))/6
case (22)
init%b = reshape((/ —ax(3—sqrt(3.d0))/6, ax(3—sqrt(3.d0))/6,&
a, 0.d0 /), shape(init%b))
init%j = axx2x(3—sqrt(3.d0))/6
case (32)
init%b = reshape ((/ —ax(3+sqrt(3.d0))/6, ax(3—sqrt(3.d0))/6,&
a, 0.d0 /), shape(init%b))
init%j = ax*2x(3—sqrt (3.d0))/6
case (42)
init%b = reshape ((/ —ax*(3+sqrt(3.d0))/6, ax(3+sqrt(3.d0))/6,&
a, 0.d0 /), shape(init%b))
init%j = ax*x2x(3+sqrt (3.d0))/6
case (13)
init%b = reshape ((/ a%(3+sqrt(3.d0))/6, ax(3+sqrt(3.d0))/6,&
0.0d0, —a /), shape(init%b))
init%j = ax*x2%(3+sqrt(3.d0))/6
case (23)
init%b = reshape ((/ a%(3+sqrt(3.d0))/6, ax(3—sqrt(3.d0))/6,&
0.0d0, —a /), shape(init%b))
init%j = ax*x2x(3+sqrt (3.d0))/6
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case (33)
init%b = reshape ((/ a*(3—sqrt(3.d0))/6, ax(3—sqrt(3.d0))/6,&
0.0d0, —a /), shape(init%b))
init%j = ax*2x(3—sqrt (3.d0))/6
case (43)
init%b = reshape ((/ a*x(3—sqrt(3.d0))/6, ax(3+sqrt(3.d0))/6,&
0.0d0, —a /), shape(init%b))
init%j = ax*2x(3—sqrt (3.d0))/6
case (14)
init%b = reshape((/ ax(3+sqrt(3.d0))/6, —ax(3—sqrt(3.d0))/6,&
—a, 0.d0 /), shape(init%b))
init%j = ax*2x(3—sqrt (3.d0))/6
case (24)
init%b = reshape ((/ ax(3+sqrt(3.d0))/6, —ax(3+sqrt(3.d0))/6,&
—a, 0.d0 /), shape(init%b))
init%j = ax*x2%(3+sqrt(3.d0))/6
case (34)
init%b = reshape((/ ax(3—sqrt(3.d0))/6, —ax(3+sqrt(3.d0))/6,&
—a, 0.d0 /), shape(init%b))
init%j = ax+x2x(3+sqrt(3.d0))/6
case (44)
init%b = reshape ((/ ax(3—sqrt(3.d0))/6, —ax(3—sqrt(3.d0))/6,&
—a, 0.d0 /), shape(init%b))
init%j = ax*2x(3—sqrt (3.d0))/6
end select
end function init

function radius(this, xpp, ypp)
class (patch _par) this
real (real64), intent(in) :: xpp, ypp
real(real64 )::radius
radius = this%b(2,1)*xpp+this%b(2,2)*yppt+thishys+this%a&
«(this%n10.5d0)
end function radius

function theta(this, xpp, ypp)
class (patch par) this

real(real64j, intent (in) :: xpp, ypp
real(real64 )::theta
real(real64), parameter :: pi = 4.0d0xatan(1.0d0)

theta = 2xpix(this%a*(this%m+0.5d0)+this%b(1,1)*xpp+&
this%b (1,2)«xypp+this%xs)/(3* this%a*(2* this%n+1))
end function theta
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function grfunc(this, xpp, ypp)
class (patch par) this
real (real64), intent(in) :: xpp, ypp
complex(real64 ):: grfunc
real(real64), parameter :: pi = 4.0d0xatan(1.0d0)
real (real64), parameter k = 2xpi
real(real64) :: rho, r, th, rs, ths
r = this%radius (xpp, ypp)
th = this%theta (xpp, ypp)
rs = this%ys + this%a*x(this%n-+0.5d0)
ths = 2xpix(this%ax(this%n+0.5d0)+this%xs)/(3*this%ax*(2*this%n+1))
rho = sqrt (r**x2+rs*x2—2xrxrs*cos (th—ths))
grfunc = exp(cmplx (0.d0,k*rho,real64)) /(4xpixrho)
end function grfunc

function jacobian(this)
class (patch _par) this
real (real64 )::jacobian
real(real64), parameter :: pi = 4.0d0xatan(1.0d0)
jacobian = this%j*2xpi/(this%ax(6xthis%n+3))
end function jacobian

end module patch

C.2. alt_patch.f95

Routines and constants specialized to integration over a particular
patch and triangle.
Steve Turley, August 10, 2017

|
|
|
!
! This is an alternative to the patch module which changes the numbering
! of the singular points and uses an algorithmic approach to setting
! the b and j variables. The b’s and j’s are different than those computed
! by the patch module.
|
module alt patch
use iso_ fortran env, only : real64
implicit none
private
type patch par
| private
! public
integer :: n, m, triangle, singular point
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real (real64) :: a
real (real64) :: b(2,2), ]

real (real64) :: xs, ys
contains
procedure :: radius
procedure :: theta
procedure :: grfunc ! Greene’s function
procedure :: jacobian

end type patch par
! constructor(s)
interface patch par

module procedure :: init
end interface patch par
public :: patch par

contains

function init(n,m,triangle , singular point, a)

integer, intent(in) :: n, m, triangle, singular point
real(real64), intent(in) :: a

type(patch _par) init

real (real64) :: apt, pp2, qq2, pp3, qq3

init%m = n
init%m = m

init%triangle = triangle
init%a = a
init%singular point = singular point

I Set singular points xs and ys

apt = a/(2xsqrt (3.0d0))

if (singular point < 3) then
init%xs = —apt

else
init%xs = apt

end if

if (singular point = 1 .OR. singular point = 4) then
init%ys = —apt

else
init%ys = apt

end if

This is where the B’s and J’s are initialized.
pp2 p2(a, triangle ,singular point)
pp3 p3(a, triangle ,singular point)
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qq2 = q2(a, triangle ,singular point)
qq3 = q3(a, triangle ,singular point)
init%b=reshape ([pp2,qq2,pp3-—pp2,qq3—qq2]|,shape(init%b))
init%j=adet (init%b)
end function init

function p2(a, t,s)

real (real64), intent(in) :: a
integer , intent(in) :: t,s
real(real64) :: p2
integer :: sl, s2
if (t<3) then
sl=-1
else
sl=1
end if
if (s<3) then
s2=—1
else
s2=1
end if

p2=ax(sl/2.0d0—s2/(2%sqrt (3.d0)))
end function p2

function q2(a, t, s)
real (real64), intent(in) :: a
integer , intent(in) :: t,s
real(real64) :: q2
integer :: sl, s2
if (t==1 .OR. t==4) then
sl=-1
else
sl=1
end if
if (s==1 .OR. s==4) then
s2=—1
else
s2=1
end if
q2=ax*(s1/2.0d0—s2 /(2*xsqrt (3.d0)))
end function 2

function p3(a, t, s)
real (real64), intent(in) :: a
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integer , intent(in) :: t
real(real64) :: p3
integer :: sl, s2
if (t==1 .OR. t==4) then
sl=-1
else
sl=1
end if
if (s<3) then
s2=1
else
s2=1
end if
p3=ax(sl1/2.0d0—s2/(2*xsqrt(3.d0)))
end function p3

function q3(a, t,s)
real (real64), intent(in) :: a
integer , intent(in) :: t
real(real64) :: g3
integer :: sl, s2
if (t<3) then
sl=1
else
sl=—1
end if
if (s==1 .OR. s==4) then
s2=1
else
s2=1
end if
q3=ax*(s1/2.0d0—s2 /(2*xsqrt(3.d0)))
end function q3

S

)

function adet(b)
real (real64), intent(in) :: b(2,2)
real(real64) :: adet
adet = abs(b(1,1)xb(2,2)—b(1,2)xb(2,1))
end function adet

function radius(this, xpp, ypp)
class (patch_par) this
real(real64), intent(in) :: xpp, ypp
real (real64 )::radius
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radius = this%b(2,1)xxpp+this%b(2,2)*xypp+thishys+this%ha&
*(this%n+0.5d0)
end function radius

function theta(this, xpp, ypp)
class (patch par) this

real(real64), intent(in) :: xpp, ypp
real (real64 ):: theta
real (real64), parameter :: pi = 4.0d0*atan(1.0d0)

theta = 2xpix(this%ax(this%m+0.5d0)+this%b(1,1)*xpp+&
this%b(1,2)*ypp+this%xs) /(3% this%ax (2% this%n+1))
end function theta

function grfunc(this, xpp, ypp)
class (patch_par) this
real(real64), intent(in) :: xpp, ypp
complex(real64 ):: grfunc
real (real64), parameter :: pi = 4.0d0*atan(1.0d0)
real (real64), parameter k = 2xpi
real (real64) :: rho, r, th, rs, ths
r = this%radius (xpp, ypp)
th = this%theta (xpp, ypp)
rs = this%ys + this%ax(this%n+0.5d0)
ths = 2xpix(this%ax(this%n+0.5d0)+this%xs)/(3*this%ax(2*this%n+1))
rho = sqrt (r**24+rs**2—2xrxrs*cos(th—ths))
grfunc = exp(cmplx (0.d0,k*rho,real64)) /(4xpixrho)
end function grfunc

function jacobian (this)
class (patch_par) this
real(real64 )::jacobian
real(real64), parameter :: pi = 4.0d0xatan(1.0d0)
jacobian = this%j*2*pi/(this%ax(6xthis%n+3))
end function jacobian

end module alt patch

C.3. test_patch.pf
This code is for unit testing the path and alt patch modules using pFUnit.

Qtest
subroutine Parameters
I Test the patch parameters
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use iso_ fortran env

I use patch

use alt_patch

use pfunit mod

implicit none

integer , parameter :: n=3, m=2, triangle=1, singular point=2
real(real64), parameter :: a=0.5d0, xpp=0.5d0, ypp=0.5d0
type (patch _par) pp

real (real64) :: xs, ys, apt
integer :: sp
pp = patch par(n, m, triangle, singular point, a)

@assertEqual (n, pp¥%n)
@assertEqual (m, ppY%m)
@assertEqual (a, ppYa,ld—15)
apt = a/(2xsqrt (3.0d0))
do sp=1,4
pp = patch par(n,m, triangle , sp, a)
select case(sp)
case (1)
xs=—apt
ys—apt
case (2)
xs=—apt
ys=apt
case (3)
xs=apt
ys=apt
case (4)
xs=apt
ys——apt
end select
@assertEqual (xs,pp%xs, 1d—14)
@assertEqual (ys,pphys, 1d—14)
end do
end subroutine Parameters

Qtest
subroutine altB
! Test the patch parameters
use iso fortran env
use alt patch
use pfunit mod
implicit none
integer , parameter :: n=3, m=2
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real (real64), parameter :: a=0.5d0
type(patch par) pp
(

real (real64), parameter :: bm = ax(3—sqrt(3.0d0)
real (real64), parameter :: bp = ax(3+sqrt(3.0d0)

I Check B

pp = patch_par(n, m, 1, 1, a)
@assertEqual(—bm, pp%b(1,1),1d—14)
@assertEqual(—bm, pp%b(2,1),1d—14)
@assertEqual (a,pp%b (2,2),1d—14)
@assertEqual (0.d0,pp%b (1,2),1d—14)
pp = patch par(n,m,1,2,a)
@assertEqual(—bm, pp%b(1,1),1d—14)
@assertEqual (0.d0, pp%b(1,2), 1d—14)
@assertEqual(—bp, pp%b(2,1), 1d—14)
@assertEqual (a, pp%b(2,2), 1d—14)
pp = patch par(n, m, 1, 3, a)
@assertEqual(—bp, pp%b(1,1), 1d—14)
@assertEqual (0.d0, pp%b(1,2), 1d—14)
@assertEqual(—bp, pp%b(2,1), 1d—14)
@assertEqual (a, pp%b(2,2), 1d—14)
pp = patch par(n, m, 1, 4, a)
@assertEqual(—bp, pp%b(1,1), 1d—14)
@assertEqual (0.d0, pp%b(1,2), 1d—14)
@assertEqual(—bm, pp%b (2 ,1), 1d—14)
@assertEqual (a, pp%b(2,2), 1d—14)
pp = patch _par(n, m, 2, 1, a)
@assertEqual(—bm, pp%b(1,1), 1d—14)
@assertEqual (a, pp%b(1,2),1d—14)
@assertEqual (bp, pp%b(2,1), 1d—14)
@assertEqual (0.d0,pp%b(2,2), 1d—14)
pp = patch par(n, m, 2, 2, a)
@assertEqual(—bm, pp%b(1,1), 1d—14)
@assertEqual (a, pp%b(1,2), 1d—14)
@assertEqual (bm, pp%b(2,1), 1d—14)
@assertEqual (0.d0, pp%b(2,2), 1d—14)
pp = patch par(n, m, 2, 3, a)
@assertEqual(—bp, pp%b(1,1), 1d—14)
@assertEqual (a, pp%b(1,2), 1d—14)
@assertEqual (bm, pp%b(2,1), 1d—14)
@assertEqual (0.d0, pp%b(2,2), 1d—14)
pp = patch par(n, m, 2, 4, a)
@assertEqual(—bp, pp%b(1,1), 1d—14)
@assertEqual (a, pp%b(1,2), 1d—14)
@assertEqual (bp, ppZb(2,1), 1d—14)
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@assertEqual (0.d0, pp%b(2,2), 1d—14)
pp = patch par(n, m, 3, 1, a)
@assertEqual (bp, pp%b(1,1), 1d—14)
@assertEqual (0.d0, pp%b(1,2), 1d—14)
@assertEqual (bp, ppZb(2,1), 1d—14)
@assertEqual(—a, pp%b(2,2), 1d—14)
pp = patch par(n, m, 3, 2, a)
@assertEqual (bp, ppZb(1,1), 1d—14)
@assertEqual (0.d0, pp%b(1,2), 1d—14)
@assertEqual (bm, pp%b(2,1), 1d—14)
@assertEqual(—a, pp%b(2,2), 1d—14)
pp = patch par(n, m, 3, 3, a)
@assertEqual (bm, pp%b(1,1), 1d—14)
@assertEqual (0.d0, pp%b(1,2), 1d—14)
@assertEqual (bm,pp%b (2 ,1), 1d—14)
@assertEqual(—a, pp%b(2,2), 1d—14)
pp = patch par(n, m, 3, 4, a)
@assertEqual (bm, pp%b(1,1), 1d—14)
@assertEqual (0.d0, pp%b(1,2), 1d—14)
@assertEqual (bp, pp%b(2,1), 1d—14)
@assertEqual(—a, pp%b(2,2), 1d—14)
pp = patch _par(n, m, 4, 1, a)
@assertEqual (bp, pp%b(1,1), 1d—14)
@assertEqual(—a, pp%b(1,2), 1d—14)
@assertEqual(—bm, pp%b(2,1), 1d—14)
@assertEqual (0.d0, pp%b(2,2), 1d—14)
pp = patch par(n, m, 4, 2, a)
@assertEqual (bp, pp%b(1,1), 1d—14)
@assertEqual(—a, pp%b(1,2), 1d—14)
@assertEqual(—bp, pp%b(2,1), 1d—14)
@assertEqual (0.d0, pp%b(2,2), 1d—14)
pp = patch _par(n, m, 4, 3, a)
@assertEqual (bm, pp%b(1,1), 1d—14)
@assertEqual(—a, pp%b(1,2), 1d—14)
@assertEqual(—bp, pp%b(2,1), 1d—14)
@assertEqual (0.d0, pp%b(2,2), 1d—14)
pp = patch par(n,m,4,4,a)
@assertEqual (bm, pp%b(1,1), 1d—14)
@assertEqual(—a, pp%b(1,2), 1d—14)
@assertEqual(—bm, pp%b(2,1), 1d—14)
@assertEqual (0.d0, pp%b(2,2), 1d—14)
end subroutine altB

Qtest
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subroutine altJ
! Test the patch parameters
use iso fortran env
use alt patch
use pfunit mod
implicit none

integer , parameter :: n=3, m=2

real (real64), parameter :: a=0.5d0

type(patch_par) pp

integer :: sp, tr

real(real64), parameter :: bm = ax(3—sqrt(3.0d0))/6
real (real64), parameter :: bp = ax(3+sqrt(3.0d0))/6
real(real64), parameter :: jm = bmsxa

real (real64), parameter :: jp = bpxa

character (80) :: msg

' Check J

pp = patch _par(n, m, 1, 1, a)
@assertEqual (jm, pp%j,1d—14)
pp = patch par(n,m,1,2,a)

@assertEqual (jm, pp%j, 1d—14)
pp = patch par(n, m, 1, 3, a)
@assertEqual (jp, pp%j, 1d—14)
pp = patch_par(n, m, 1, 4, a)
@assertEqual (jp, pp%j, 1d—14)
pp = patch par(n, m, 2, 1, a)
@assertEqual (jp, ppj, 1d—14)
pp = patch par(n, m, 2, 2, a)
@assertEqual (jm, pp%j, 1d—14)
pp = patch par(n, m, 2, 3, a)
@assertEqual (jm, pp%j, 1d—14)
pp = patch par(n, m, 2, 4, a)
@assertEqual (jp, pp%j, 1d—14)
pp = patch_par(n, m, 3, 1, a)
@assertEqual (jp, pp%j, 1d—14)
pp = patch par(n, m, 3, 2, a)
@assertEqual (jp, ppj, 1d—14)
pp = patch par(n, m, 3, 3, a)
@assertEqual (jm, pp%j, 1d—14)
pp = patch par(n, m, 3, 4, a)
@assertEqual (jm, pp%j, 1d—14)
pp = patch _par(n, m, 4, 1, a)
@assertEqual (jm, pp%j, 1d—14)
pp = patch par(n, m, 4, 2, a)
@assertEqual (jp, ppj, 1d—14)
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pp = patch par(n, m, 4, 3,

a)

@assertEqual (jp, pp%j, 1d—14)

pp = patch par(n,m,4,4,a)

@assertEqual (jm, pp%j, 1d—14)

do tr=1,4
do sp=1,4
pp = patch par(n,m,tr

write (msg, fmt="("for triangle

,Sp,a)

nosqom
711 )

and s.p.

@assertEqual (adet (pp%b), pp%j,1d—14,msg)

end do

end do

contains

function adet(b)
use iso_ fortran env, only
implicit none
real (real64), intent(in)
real (real64) :: adet

: real64

b(2,2)

adet=abs(b(1,1)*b(2,2)—b(1,2)xb(2,1))

end function adet
end subroutine altJ

Qtest

subroutine patchPar
! Test the patch parameters
use iso_ fortran env

use alt patch, only : apatch=>patch par
use patch, only: ppatch=>patch par

use pfunit mod

implicit none

real (real64), parameter
type(ppatch) pp
type(apatch) ap

a=0.5d0

",il)7)tr,sp

integer , parameter :: n=3, m=2, triangle=1, singular point=2

integer :: sp, tr

pp = ppatch(n, m, triangle, singular point, a)
ap = apatch(n, m, triangle, singular point, a)

@assertEqual (ap%n, pp%mn)
@assertEqual (ap%m, pp%m)
@assertEqual (
do tr=1,4
do sp=1,4
pp = ppatch(n, m, tr,
ap = apatch(n, m, tr,

ap%a , pp%a,l1d—15)

sp, a)
sp, a)
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@assertEqual (ap%xs , pp%xs, 1d—14)
@assertEqual (ap%ys , ppYys, 1d—14)
end do
end do
end subroutine patchPar

Qtest

subroutine patchBJ
! Test the patch parameters
use iso_ fortran env
use alt patch, only : apatch=>patch par
use patch, only: ppatch=>patch par
use pfunit mod
implicit none
real(real64), parameter :: a=0.5d0
type (ppatch) pp
type (apatch) ap

integer , parameter :: n=3, m=2
integer :: sp, tr, bx, by
character (80) :: msg
do tr=1,4

do sp=1,4

pp = ppatch(n,m, tr,sp,a)
ap = apatch(n,m,tr ,sp,a)

write (msg, fmt="("J for triangle " il ," and s.p. ",il)’)tr,sp
@assertEqual (ap%j , pp%j, 1d—14, trim (msg))
do bx=1,2

do by=1,2

write (msg, fmt="("b for tr",il," sp",il," bx",il," by",il)’)tr,s
Q@assertEqual (ap%b (bx,by) ,pp%b (bx,by), 1d—14, trim (msg))
end do
end do
end do
end do
end subroutine patchBJ

@test

subroutine constlnt
use iso_ fortran env, only : real64
use alt patch
use duffy

use pfunit mod
implicit none
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integer , parameter :: n=3, m=2, triangle=1, singular point=2

real (real64), parameter :: a=0.50, xpp=0.5d0, ypp=0.5d0

real (real64) :: rad, the, jac, rint

complex(real64) :: grf

real(real64), parameter :: mradius = 1.94716878364870d0 ! from Mathematica
real(real64), parameter :: mtheta=0.630012726620808d0 ! from Mathematica
complex(real64), parameter :: mgreene=cmplx(0.865006682017783d0,0.4789609952
real(real64), parameter :: mjacobian=0.0316141259370375d0 ! Mathematica
real (real64), parameter :: apt = a/(2xsqrt(3.d0))

real(real64), parameter :: mconst = 0.261799d0

type(patch par) pp

integer :: t

pp = patch_par(n, m, triangle, singular point, a)
rad = pp%radius (xpp, ypp)
@assertEqual (mradius ,rad ,1d—14,"radius ")

the = pp%theta (xpp, ypp)
@assertEqual (mtheta ,the ;,1d—14,"theta")
@assertEqual(—apt ,ppYxs,1d—14,"xs")
@assertEqual (apt , ppYys,1d—14,"ys")

grf = pplgrfunc (xpp, ypp)

! interesting that the next test requires this loose of a tolerance
@assertEqual (mgreene , grf ,1d—13)

jac = pp%jacobian ()

@assertEqual (mjacobian ,jac ,1d—14,"jacobian")

! Diagnostics using simple constant integral
rint = 0.d0
do t=1,4
pp = patch par(n, m, t, singular point, a)
rint = rint+duffy int(const, 1d—10)xpp%jacobian ()
end do
@assertEqual (mconst , rint ,1d—6,"constant integral")

contains
function const(x,y)
real(real64), intent(in) :: x,y
real(real64) :: const
const = ppYradius (x,y)

end function const

end subroutine constlnt
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Qtest
subroutine Greenelnt

use iso_ fortran env, only : real64
use alt patch
use duffy

use pfunit mod

implicit none

integer , parameter :: n=3, m=2, singular point = 2

real (real64), parameter :: a=0.50, xpp=0.5d0, ypp=0.5d0
complex(real64) :: gint

complex(real64), parameter :: mint—=cmplx(0.0489868, 0.0731842, real64)

real (real64), parameter :: apt = a/(2xsqrt(3.d0))
type(patch par) pp

integer :: t

gint = 0.d0

do t=1,4

pp = patch par(n, m, t, singular point, a)
gint = gint + duffy int(cdf, 1d—10)*pp%jacobian ()
end do
@assertEqual (mint, gint, 1d—6, "constant with Greene function integral")
contains

function cdf(x,y)
real (real64), intent(in) :: x,y
complex(real64) :: cdf
cdf = pphradius (x,y)*ppYgrfunc (x,y)
end function cdf

end subroutine Greenelnt
References

[1] National Institute of Standards and Technology, Digital Library of Mathematical
Functions (http://dlmf.nist.gov/3.5#x, accessed June 21, 2017).
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Appendix B

Generating Heatmaps

Given a Reflectance object R from the Mirrors package, a heatmap of the reflectance

can be generated with:

heatmap((R.==0).*-max(R...)./2 + R, aspect_ratio=:equal,
colorbar=false,
xticks=false,
yticks=false,
axis=false,

background=false)

This was used to generate several of the figures above.
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Appendix C

Integral of Equation 2.10

Integration was done with Mathematica 13.1.0.

Integrate[Exp[I r(a Cos[9]+bS'in[0])] ry {r, ®, R}, {6, 0, 21},

Assumptions - {{a, b, R} eReals A{R, a*+b’}> O}]

1
7T R? HypergeometricOF1Regula r'izec[2 > =7 (a® +b?) Rz]
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Appendix D

Simplification of Equation 2.11 Given

Normal Light Incidence

Simplification was done with Mathematica 13.1.0.

TR 2
Fu'L'l.S1'mp11'fy[rr R2 HypergeometricOFlRegu'Larizec[z, -| — S'in[e]] ],
A

{6, R, A} e RealsA{R, /\}>0]

27rRS'in[9]]

RA BesselJ[l, Csc[f]
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Appendix E

The Code

E.1 Structure

Mirrors.jl is a fully functional Julia package with the following directory structure:

Mirrors.jl/ext/MirrorPlots.jl
Mirrors.jl/Project.toml
Mirrors.jl/src/electricfield.jl
Mirrors.jl/src/impedance.jl
Mirrors.jl/src/Mirror.jl
Mirrors.jl/src/Mirrors.jl
Mirrors.jl/src/Patch.jl
Mirrors.jl/src/Reflectance.jl

Mirrors.jl/test/runtests.jl

These files are included below.
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E.2 Mirrors.jl/ext/MirrorPlots.jl

module MirrorPlots
using Mirrors, Plots

defaultcolor = palette([RGBA(0.1, 0, 0.7, 1),
RGBA(1, 1, 1, 1),
RGBA(0.7, 0, 0.1, 1)], 200)

#defaultcolor = palette([:blue, :white, :red], 75)

#defaultcolor = :bluesreds

Generator that returns all “(m, n)  (annulus and patch) indices consituting a mirror for a given number of ‘rings’
win
function mirrorindices(rings)

return ((m, n) for n = 0:rings-1 for m = 0:6*n+2)

end

nin

Return the point (and its index) on “mirror’ closest to “(r, 6)°
The point is of the form “(r, 6, z)°, and the index corresponds to which point on the mirror it is.

For example, ‘closestpoint(m, 1, 3)° might return “((1.1, 2.5, -1.4), 6)° (the 2nd point on the 2nd patch)
function closestpoint(mirror::Mirror, r::Real, 6::Real)

n = Int(round(min(r / mirror.a - 0.5, mirror.rings - 1)))

m = Int(round(mod(6, 2m) / 2m * (6n + 3) - 0.5))

i = findall(idx -> idx == (m, n), [idx for idx in mirrorindices(mirror.rings)])[1]

patch = mirror[i]

pointdists = [sqrt(rp”2 + rA2 - rp * r * 2cos(6p - 6)) for (rp, 6p, zp) in patch]

j = argmin(pointdists)

return patch[j], 4i - 4 + j

end

# Overload heatmap for Mirror

function Plots.heatmap(mirror::Mirror, height: :Union{AbstractVector{<:Real}, Nothing}=nothing;
resolution=200, color=defaultcolor, clims=nothing, kw...)
height = height === nothing ? [z for (r, 6, z) in Iterators.flatten(mirror)] : height
r = mirror.rings * mirror.a

Xs = ys = range(-r, r, length=resolution)
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z = [x72 + yr2 < rA2 ? height[closestpoint(mirror, sqrt(x”2 + yn2), atan(x, y))[2]] : © for x in xs, y in ys]
minmax = max(abs.(z)...)
clims = clims === nothing ? (-minmax - sqrt(eps(Float64)), minmax + sqrt(eps(Float64))) : clims

heatmap(xs, ys, z; color=color, clims=clims, kw...)

# Overload heatmap for Reflectance

function Plots.heatmap(refl::Reflectance; color=defaultcolor, clims=nothing, kw...)
Xs = ys = range(-90, 90, length=first(size(refl))) # degrees are easier to understand
minmax = max(abs.(refl)...)
cl = clims === nothing ? (-minmax - sqrt(eps(Float64)), minmax + sqrt(eps(Floaté4))) : clims
heatmap(xs, ys, refl; color=color, clims=cl, kw...)

end

end # module

E.3 Mirrors.jl/Project.toml

name = "Mirrors"
uuid = "9ch6el7e-3ed8-4581-b26d-eb33a9e2998c"
authors = ["Michael Greenburg <michaeljgreenburg@gmail.com>"]

version = "0.1.0"

[deps]

FFTW = "7alcc6ca-52ef-59f5-83cd-3a7055c09341"

HCubature = "19dc6840-f33b-545b-b366-655c7e3ffd49"
HypergeometricFunctions = "34004b35-14d8-5ef3-9330-4cdb6864h03a"
ImageFiltering = "6a3955dd-da59-5b1f-98d4-e7296123debh5"
Interpolations = "a98d9a8hb-a2ab-59e6-89dd-64alcl18fca59"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9oc8e"
Serialization = "9e88b42a-f829-5b0c-bbe9-9€923198166b"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"

Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"

[weakdeps]
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"

[extensions]

MirrorPlots = "Plots"

[extras]

Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]

test = ["Test"]
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E.4 Mirrors.jl/src/electricfield.jl

export electricfield

using LinearAlgebra

electricfield(mirror::Mirror, o, A=1; beamprofile=(r, 6)->1.0)

Return the electric field on "mirror’ given an incident angle ‘o’ (in radians, measured from

normal) and wavelength “A".

“beamprofile® is a function taking two arguments, a distance and an angle; this defines a
point relative to the center of the beam. The output of the function is multiplied by the
natural reflectance of the point on the surface that the given part of the beam would

strike. If “beamprofile’ is not specified, it defaults to a function producing a plane wave.
Ordering of the electric field points is the same as that of ‘Iterators.flatten(mirror)".

See also [ impedance’](@ref), [ surfacecurrent ](@ref).
function electricfield(mirror::Mirror, o::Real, A::Real=1.0;
beamprofile: :Function=(r, 6)->1.0)
kx = 2n/A*sin(a)
kz = -2m/A*cos(a)
return [begin
X = r*cos(8)*cos(a)-z*sin(a)
Y = r*sin(0)
beamprofile(norm((X, Y)), atan(Y/X)) * exp(im*(kx*r*cos(6)+kz*z))

end for (r, 8, z) in Iterators.flatten(mirror)]

E.5 Mirrors.jl/src/impedance.jl

export impedance

using LinearAlgebra, HCubature

greens(ri1, 61, z1, r2, 02, z2, z2[, A=1.0])

The 3-dimensional Greens function using cylindrical coordinates given wavelength “A°

win

function greens(rl::Real, 61::Real, zl1l::Real, r2::Real, 62::Real, z2::Real, A::Real=1.0)
x1, y1 = r1.*(cos(61), sin(61))
X2, y2 = r2.*(cos(62), sin(62))
p = norm((x1, y1, z1) .- (x2, y2, z2))
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return exp(2n/A * 1im * p) / (4m * p)

end

TransformParameters{A, S, T}

Store the B matrix parameters "a’, "s’, and "t° in a type.

struct TransformParameters{A, S, T} end

transformfunction(f, zfunc, sfunc, u, v, m, n, tp::TransformParameters)

Return ‘u*r * f(r, 6, z(r, 0)) * s(r, 6)*3°, transforming 'u” and ‘v’ to 'r° and "6 as
defined by 'm*, "n°, and “tp".
@generated function uvtransform(f, zfunc, sfunc, u, v, m, n,
::TransformParameters{A, S, T}) where {A, S, T}
# B matrix
poffset =S ==1 || S==2721: -1
qoffset =S ==1 || S==4 721 : -1
p2 = poffset + (T == || T==47?+vV3: -V3)
p3 = poffset + (T == 2 || T ==3 7?2 V3 : -V3)
g2 = qoffset + (T ==2 || T ==3 72 V3 : -V3)
g3 = goffset + (T ==1 || T ==2 72 V3 : -V3)
B11, B12, B21, B22 = (p2, (p3-p2),
q2, (93-92)) .* A ./ 2V3
# Jacobian (needs to be divided by 6n+3)
Jo = 2m/A*abs(det([B11 B12;B21 B22]))
# r and 0 offsets
roffset =S == 2 || S ==3 7?7 A/2V3 : -A/2V3
foffset = S == 3 || S ==4 2 A/2V3 : -A/2V3
return quote
B = @SMatrix [$B11 $B12
$B21 $B22]
J = $J0/(6n+3)
r = B[2,1]*u + B[2,2]*u*v + $roffset + A*(n+0.5)
6 = 2m * (A*(m+0.5) + B[1,1]*u + B[1,2]*u*v + $Boffset) / (A*(6n+3))
return u * r * f(r, 8, zfunc(r, 6)) * sfunc(r, 6) * J
end

end

integratepatch(f::Function, mirror, patch, s)

Return the integral of “f(r, 6, z) over the ‘s th point on “patch’.
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function integratepatch(f, mirror, patch, s)
total = 0.0
zf::Function = mirror.z
sf::Function = mirror.s
for t=1:4 # total of all 4 triangles
tp = TransformParameters{mirror.a, s, t}()
total += hcubature(uv->uvtransform(f, zf, sf, uv[1], uv[2], patch.m, patch.n, tp),
(0.0, 0.0), (1.0, 1.0))[begin]
end
return total

end

singularweightelements(f, mirror, patch, s)

Return the weights given function “f(r1, 61, z1, r2, 62, z2) for the “s'th row of the
singular block of the impedance matrix corresponding to “patch’ as a tuple.

function singularweightelements(f, mirror, patch, s)

a = mirror.a

p = patch[s]

# K integrals: integrating f(), x*f(), y*f(), and x*y*f()

K = integratepatch((r, 6, z)->f(p..., r, 6, z), mirror, patch, s)
Kx = integratepatch((r, 6, z)->f(p..., r, 6, z)*r*cos(9), mirror, patch, s)
Ky = integratepatch((r, 6, z)->f(p..., r, 6, z)*r*sin(0), mirror, patch, s)

Kxy = integratepatch((r, 6, z)->f(p..., r, 6, z)*rA2*cos(8)*sin(8), mirror, patch, s)
# return the weight elements
return K/4, sqrt(3)*Kx/2a, sqrt(3)*Ky/2a, 3Kxy/ar2

end

singularblockfill!(f, zblock, mirror, patch)

Fill a 4x4 block of the main diagonal of “Z° given function “f(r1, 61, z1, r2, 62, z2)".
function singularblockfill!(f, Zblock::AbstractMatrix{ComplexF64}, mirror, patch)
# loop over points in this patch
@inbounds for (s, p) in enumerate(patch)
# elements that will make up weights
el, e2, e3, e4 = singularweightelements(f, mirror, patch, s)
# put weights into this strip of Z
Zblock[s,1] = el - e2 - e3 + e4
Zblock[s,2] = el - e2 + e3 - e4
Zblock[s,3] = el + e2 + e3 + e4
Zblock[s,4] = el + e2 - e3 - e4

end
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nin

nonsingularblockfill!(f, Zblock, mirror, patchi, patch2)

Fill a 4x4 block off the main diagonal of “Z° given function “f(r1, 61, z1, r2, 02, z2)".
function nonsingularblockfill!(f, Zblock::AbstractMatrix{ComplexF64}, mirror, patchl, patch2)
J =1 * mirror.a / (12 * patch2.n + 6) # Jacobian
# 2d loop over points in each patch
@inbounds for (i, p1) in enumerate(patchi1), (j, p2) in enumerate(patch2)
# r2 * f(p1, p2) * s(p2) *J
Zblock[i,j] = p2[1] * f(p1..., p2...) * mirror.s(p2[1], p2[2]) * J
end

end

pidx(i)

Return the patch index (o[1,npatches] and the point index (o[1,4]) within that patch of the "i'th point on a "Mirror’

# Examples

“pidx(7)° returns “(2, 3)° since the 7th point on the “Mirror® is the third point of the second patch.

To get the point corresponding to "i~ you can use “mirror[pidx(i)...]"
function pidx(i::Integer)
return (i+3)>>2, 1+(i-1)%4

end

impedance(mirror[, A=1, singular=true])

impedance(mirror, f, [singular=true])

Return the impedance matrix corresponding to "mirror’ and “f(ri1, 61, z1, r2, 62, z2)°

If "A° is supplied, the function will be “greens(..., A)°; by default it's “greens(..., 1)°
function impedance(mirror::Mirror, f::Function=greens, singular::Bool=true)

# allocate Z

n = 4 * length(mirror)

Z = Matrix{ComplexF64}(undef, n, n)

# fill Z; have to use ‘collect’ because @threads isn't mature yet :/

@inbounds @fastmath Threads.@threads for (j, patch2) in collect(enumerate(mirror))

for (i, patchi1) in enumerate(mirror)
Zblock = view(Z, 4i-3:41i, 43j-3:43)

if singular && i==j # main diagonal
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singularblockfill!(f, zZblock, mirror, patchi)
else # off-diagonal
nonsingularblockfill!(f, zblock, mirror, patchi, patch2)
end
end
end
return Z

end

function impedance(mirror::Mirror, A::Real, singular::Bool=true)
return impedance(mirror, (args...)->greens(args..., A), singular)

end

E.6 Mirrors.jl/src/Mirror.jl

export Mirror

using Statistics, Interpolations, FFTW, Serialization, ImageFiltering

# Magic bytes for special mirrors

roughmirrorcode: :UInt16 = 0x01

roughmirrorz_h(h, r)

Return “z° and s’ functions given height array "h™ and mirror radius °"r°.
function roughmirror_z_s(h::AbstractArray, r::Real)
span = range(-r, r, length=first(size(h)))
itp = scale(interpolate(h, BSpline(Cubic(Free(OnCell())))), span, span)
z = (r, 8) -> itp(r*cos(8), r*sin(®))
s = (r, 8) -> sqrt(1 + sum(Interpolations.gradient(itp, r*cos(8), r*sin(6)).72))
return z, s

end

Mirror
A struct containing the array of "Patch's that make up a mirror.
A “Mirror” constitutes the patch annular width “a’, number of rings “rings’, and “Patch’ array “patches"

A “Mirror® represents a circular conducting surface, possibly with some height, that is split into patches of equal

area. The first ring of the mirror (the middle) is simply the inner circle of radius “a’ and has 3 patches, resembling a
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pie chart with 3 equal areas. The next is a ring of inner radius “a’ and outer radius "2a°, which is split into 9

patches of equal angular width. The next ring has 15 patches, the next 21, and so on.

Mirrors can be serialized to and from files and "IO's using the constructor and “write’.

Since storing the array of ‘Patch's is the main concern of "Mirror®, it is an ‘AbstractArray{Patch} :

“Tjulia-repl

julia> m = Mirror(1, 1)

julia> typeof(m[1])

Mirrors.Patch

julia> for p in m
println(p.z)

end

[6.6, 0.0, 0.0, 0.0]

[6.6, 6.0, 0.0, 0.0]

[6.6, 6.0, 0.0, 0.0]

struct Mirror <: AbstractVector{Patch}
a::Float64
rings::Int64
patches: :Vector{Patch}
z::Function
s::Function

Mirror(r, rings, z, s)

Construct a "Mirror® of radius "r° with “rings’ total rings, with “z° height and s’ surface Jacobian

Arguments:
- ‘rings’: number of rings on the mirror
- 'r’: radius of the mirror
- "z : function, taking a radius and an angle, that determines the height at that point
- 's': function, taking a radius and angle, that determines the surface Jacobian at that point
win
function Mirror(r::Real, rings::Integer, z::Function, s::Function)
a = r / rings
patches = [Patch(a, m, n, z) for (m, n) in mirrorindices(rings)]
return new(a, rings, patches, z, s)
end # function Mirror

Mirror(r, rings, rms, o)
Construct a "Mirror® of radius "r° with “rings” total rings, with roughness defined by “rms™ and "o
‘rms” represents the RMS height of the rough mirror. ‘¢ is a measure of the frequency of the mirror; higher
‘o means higher-frequency roughness. The mirror roughness is essentially determined by generating many random

points then putting then through a low-pass filter--see "noisy2dspline”

Arguments:

- ‘rings’: number of rings on the mirror
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- 'r’: radius of the mirror

- ‘rms’: RMS height of the mirror; default 0

- o' : standard deviation of roughness in frequency space; default ©
function Mirror(r::Real, rings::Integer, rms::Real=0, o::Real=0)

(r, 8) >0

z
s =(r, 8) ->1
if rms =0
# Interpolate with 8*rings points along each axis
n = 8*rings
# Make a supergrid and subgrid to prevent sharp edges
he = imfilter(rand(2n, 2n).-0.5, Kernel.gaussian(o*n/2r))
h = he[1+n+2:2n-n+2,1+n+2:2n-n+2]
# Transform Z appropriately
h .-= mean(h)
h .*= rms/sqrt(sum(x->x"2, h))*n
# z and s given h and r
z, s = roughmirror_z_s(h, r)
end
return Mirror(r, rings, z, s)
end # function Mirror
win
Mirror(io)

Mirror(filename)

Construct a "Mirror® from a file or stream
function Mirror(io::I0)
a = read(io, Float64)
rings = read(io, Int64)
patches = Vector{Patch}(undef, length(collect(mirrorindices(rings))))
read! (io, patches)
if eof(io)
return new(a, rings, patches, (args...)->0, (args...)->1)
end
magicbytes = read(io, UInti16)
if magicbytes == roughmirrorcode
n = read(io, Int64)
height = Matrix{Float64}(undef, n, n)
read!(io, height)
z, s = roughmirror_z_s(height, a*rings)
return new(a, rings, patches, z, s)
else
throw(ErrorException("Mirror appears corrupt"))
end
end
Mirror(filename: :AbstractString) = Mirror(open(filename))

end # struct Mirror

# Implement AbstractVector interface
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Base.size(mirror::Mirror) = size(mirror.patches)
Base.getindex(mirror::Mirror, args...) = getindex(mirror.patches, args...)

Base.setindex!(mirror::Mirror, v::Patch, args...) = setindex!(mirror.patches, v, args...)

# Write a mirror to a stream or file
function Base.write(io::I0, mirror::Mirror)
byteswritten = (write(io, mirror.a)
+write(io, mirror.rings)
+write(io, mirror.patches))
if hasproperty(mirror.z, :itp)
byteswritten += (write(io, roughmirrorcode)
+write(io, first(size(mirror.z.itp)))
+write(io, [z for z in mirror.z.itp]))
end
return byteswritten

end

E.7 Mirrors.jl/src/Mirrors.jl

module Mirrors

include("Patch.jl")
include("Mirror.j1")
include("electricfield.jl")
include("impedance.jl")

include("Reflectance.jl")

end # module Mirrors

E.8 Mirrors.jl/src/Patch.jl

using StaticArrays

nin

Generator that returns all “(m, n)  (annulus and patch) indices consituting a mirror for a given number of “rings’
function mirrorindices(rings)
return ((m, n) for n=0:rings-1 for m=0:6*n+2)

end



108 Chapter E The Code

nin

Given annular width “a’ and ring index "n°, return the radii of the outer and inner points of a patch
win
function rplusminus(a::Real, n::Integer)

r=a* (n+0.5)

dr = a / 2sqrt(3)

return r + dr, r - dr

end

Given patch index "m” and ring index "n°, return the two angles of the points of a patch
function 6plusminus(m::Integer, n::Integer)

O =2m* (m+ 0.5) /(6 *n+ 3)

dé = m / sqrt(3) / (6 * n + 3)

return 6 + d6, 6 - db

end

@doc raw"""

“Patch’
A struct consisting of the radius, angle, height, and surface Jacobian of the 4 points of a patch

Patches are pieces of a circle, each having equal area. One patch is defined by an inner and outer radius and two
angles. A patch is represented by 4 points (2 radii and 2 angles, somewhat in from the edges of each patch), each with a
radius, angle, height, and surface Jacobian. The radius and angle of each of these points is determined by the annular

width of each ring, which ring ('n’) the patch is in, and which patch on the ring ('m’) the points are in.

A “Patch’ constitutes 4 "SVector's, 'r° (radius), "6 (angle), "z (height), and °s° (surface Jacobian), each with 4

elements corresponding to each of the 4 points.

Given middle radius and angle ('r° and "6°) and annular and angular widths ("a’ and "w'), the 4 points are (in order):
““math

(r-\frac{a}{2\sqrt 3}, \theta-\frac{w}{2\sqrt 3})

(r+\frac{a}{2\sqrt 3}, \theta-\frac{w}{2\sqrt 3})

(r+\frac{a}{2\sqrt 3}, \theta+\frac{w}{2\sqrt 3})
(r-\frac{a}{2\sqrt 3}, \theta+\frac{w}{2\sqrt 3})

This means that points on the patch are indexed thus:
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Al
roe----
6 >

win

struct P
m::U
n::u

atch <: AbstractVector{NTuple{3,Float64}}
Int32
Int32

r::SVector{4,Float64}

0::SVector{4,Float64}

z::SVector{4,Float64}

Cons

Argu

- ja:
- ‘m‘
- \n\

-z

func

end

Cons

func

end

# Implem

Base.siz

Base.get

Patch(a, m, n, z)

truct a “Patch” corresponding to the patch determined by annular width “a°, patch "m”, and ring

ments:

annular width of each ring

: which patch on the ring this will be
: which ring this patch will be in

a function, taking a radius and angle, that determines the height at that point

tion Patch(a::Real, m::Integer, n::Integer, z::Function=(r,8)->0)

rplus, rminus = rplusminus(a, n)

Oplus, Ominus = Oplusminus(m, n)

r = @SVector [rminus, rplus, rplus, rminus]

® = @SVector [Ominus, Ominus, 6plus, 6plus]

z_ = @SVector [z(r[1], ©[1]), z(r[2], ©[2]), z(r[3], O[31), z(r[4], 68[4])]

return new(m, n, r, 6, z_)

Patch(io::I0)

truct a ‘"Patch® from an "IO".

tion Patch(io::IO0)

m = read(io, UInt32)

n = read(io, UInt32)

r, 8, z = (SVector(ntuple(_->read(io, Floaté64), 4)) for _ in 1:3)

return new(m, n, r, 8, z)

ent abstract vector interface for patch

e(::Patch) = Tuple(4)

index(patch::Patch, i) = patch.r[i], patch.B[i], patch.z[i]
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function Base.setindex!(patch::Patch, v::NTuple{3,<:Real}, 1)
patch.r[i] = v[1]
patch.8[i] = v[2]
patch.z[i] = v[3]

end

# Write a Patch to a stream
function Base.write(io::IO, patch::Patch)
return (write(io, patch.m)
+write(io, patch.n)

+sum(data->write(io, elem for elem in data), (patch.r, patch.8, patch.z)))

E.9 Mirrors.jl/src/Reflectance.jl

export Reflectance

using SpecialFunctions, HypergeometricFunctions

reflectanceat(mirror, J, 6, ¢, A)
Calculate the far-field reflectance at a certain angle given a mirror and the current thereon

# Arguments
- ‘mirror::Mirror : the mirror from which to measure
- “J::Vector{Float64} : the current on the mirror
- '6::Real’: the polar angle in radians at which to measure reflectance
- "¢::Real’: the azimuthal angle in radians at which to measure reflectance
- "A::Real’: the wavelength of incident light; default 1
function reflectanceat(mirror::Mirror, J::AbstractVector{ComplexF64}, 0::Real, ¢::Real, A::Real=1)
sum = 0.0 + 0.0im
for (cur, (r, t, z)) in zip(J, Iterators.flatten(mirror))
sum += cur * exp(lim * 2m / A * (r * cos(¢ - t) * sin(B) + z * cos(8)))
end
return sum

end

expectedreflectanceat(R, a, 6, ¢, A)

Calculate expected far-field reflectance at a certain angle for a flat mirror.
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If "a° is 0, the simpler Airy formula will be used

# Arguments

- 'R::Real’: the radius of the flat mirror

::Real’: the polar angle in radians at which to measure reflectance

::Real’: the azimuthal angle in radians at which to measure reflectance; default ©

::Real’: the angle of the incident light in radians, measured from normal; default 0@

'
> Q © O

::Real’: the wavelength of incident light; default 1
function expectedreflectanceat(R::Real, 6::Real=0, ¢::Real=0, a::Real=0, A::Real=1)
if a == 0 # use Airy formula
c=2m/ N * R * sin(6)
return besselj(1, c) / ¢
else
—oFi(a, z) = pFq(typeof(a)[], [al, z)
return m * RA2 * _oF1(2, -(m * R/ A)A2 * (sin(a)r2 + sin(0)7A2 - 2 * sin(a) * sin(B) * cos(9)))
end

end

defaultn = 200

Reflectance

A struct containing a polar azimuthal reflectance grid that extends to grazing.

"Reflectance” is an “AbstractMatrix” containing the reflectance grid, which extends from
T-m/2° to "m/2°; it resembles a map of the earth that extends to the equator, centered at

the north pole. “heatmap”™ and “write® are overloaded for “Reflectance’.

# Examples

Obtain high-resolution expected reflectance for a mirror of radius 15 with incident light angle 30 degrees from normal:

‘refl = Reflectance(15, m/6, 1, 1000)"

Heatmap the calculated reflectance for a "Mirror™ "m” and surface current “J°

“heatmap(Reflectance(m, J))°

Use your own function of (6, ¢, A) to calculate a low-resolution reflectance grid for a wavelength of 2.5:

“refl = Reflectance((8, ¢)->myfunc(6, ¢, 2.5), 0.1)°

Reflectance(f[, a])
Reflectance(mirror, J[, al)
Reflectance(r[, a[, A[, alll)
Reflectance(io)

Reflectance(filename)

# Arguments

- “f::Function: a function of the form "f(polar, azimuthal)' returing reflectance there
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‘n::Integer’ : the number of points along each axis of the grid; default $defaultn
‘mirror::Mirror’: a ‘Mirror® for which to calculate the reflectance grid
“J::Vector{ComplexF64} : the current on the "Mirror’

‘r::Real’: radius of an ideal mirror for which to calculate theoretical reflectance
“a::Real’: angle from normal, in radians, of incident beam for ideal mirror; default ©
"A::Real’: wavelength of incident beam; default 1

"i0::I0°: an "I0O" to which to write the "Reflectance’

“filename::AbstractString : a file to which to write the ‘Reflectance”

struct Reflectance <: AbstractMatrix{Float64}

r::Matrix{Float64}

function Reflectance(f::Function, n::Integer=defaultn)
grid = range(-m / 2, m / 2, length=n)
return new([sqrt(x"2 + yr2) <m / 2 ? abs(f(sqrt(x"2 + yr2), atan(x, y))) : ©
for x in grid, y in grid])

end

function Reflectance(mirror::Mirror, J::AbstractVector{ComplexF64}, n::Integer=defaultn)
return Reflectance((6, ¢) -> reflectanceat(mirror, 3, 8, ¢), n)

end

function Reflectance(r::Real, a::Real=0, A::Real=1, n::Integer=defaultn)
return Reflectance((6, ¢) -> expectedreflectanceat(r, 8, ¢, o, A), n)

end

function Reflectance(io::I0)
n = read(io, UInt64)
r = Matrix{Float64}(undef, n, n)
read!(io, r)
return new(r)

end

Reflectance(filename: :AbstractString) = Reflectance(open(filename))

end

# Implement AbstractVector interface

Base.size(refl::Reflectance) = size(refl.r)

Base.getindex(refl::Reflectance, args...) = getindex(refl.r, args...)

Base.setindex!(refl::Reflectance, args...) = setindex!(refl.r, args...)

# Write a Reflectance to an IO

function Base.write(io::I0, refl::Reflectance)

write(io, UInt64(first(size(refl))))

write(io, refl.r)



E.10 Mirrors.jl/test/runtests.jl 113

E.10 Mirrors.jl/test/runtests.jl

using Test, Mirrors, Statistics, HCubature, LinearAlgebra

@testset "Mirrors" begin
# Test that “rplusminus’ and “Oplusminus’ return sensible results
@testset "r_6_plusminus" begin
# run checks in loops
for a = rand(4) * 3, n = 0:4
rplus, rminus = Mirrors.rplusminus(a, n)
@test isapprox(rplus - rminus, a / sqrt(3))
@test isapprox((rplus + rminus) / 2, a * (n + 0.5))
end
for n = 0:3, m = 0:6"n+2
Oplus, Ominus = Mirrors.@plusminus(m, n)
patches_this_ring = 6 * n + 3
@test isapprox(®plus - 6minus, 2 * m / sqrt(3) / patches_this_ring)
@test isapprox((6plus + Ominus) / 2, 2 * m * (m + 0.5) / patches_this_ring)
end

end

# Test that “Patch’ constructor fills 'r° and "6 correctly
@testset "Patch" begin

rplus, rminus = Mirrors.rplusminus(1.0, 0)

Oplus, Bminus = Mirrors.B8plusminus(0, 0)

p = Mirrors.Patch(1.0, 0, 0)

@test p.r[1] == p.r[4] == rminus

@test p.r[2] == p.r[3] == rplus

@test p.6[1] == p.6[2] == Ominus

@test p.O[3] == p.B[4] == Oplus

end

# Comprehensively test that the "Mirror  constructor gives back a correct “Mirror’

# For multiple radii and ring counts, ensure that:

# - inner and outer radii of patch points are the same on a given ring, and equal what they should
# - inner and outer angles of patch points are what they should be, and are all equally separated
# - z's and s's were computed correctly

@testset "Mirror" begin

nn

Test a mirror's properties given its construction arguments
win
function checkmirror(r::Real, rings::Integer, args...)
mirror = Mirror(r, rings, args...)
a =r / rings
dr = a / sqrt(3)

for n = 0:rings-1
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w=2n/ (6 * n+ 3) # patch angular width
dé = w / sqrt(3)
ring_patches = mirror.patches[3*n/2+1:3*nA2+6*n+3]
for (p1, p2, m) in zip(ring_patches, [ring_patches[2:end]; [ring_patches[1]]], 0:6*n+2)
# check that z's were computed correctly
@test all(pl.z .== [mirror.z(pl.r[i], p1.6[i]) for i = 1:4])
# check that spacing between inner and outer r and 6 are correct
@test pil.r[2] - pl.r[1] = dr
@test p1.6[3] - p1.6[1] = d6
# check that averages of inner and outer r and 6 correspond to the exact middle of the patch
@test (p1.r[1] + p1.r[2]) / 2 =a * (n + 0.5)
@test (p1.6[1] + p1.8[3]) / 2 =w * (m + 0.5)
# check that this patch's r and 6 match up properly with next patch's
@test pl.r[1] == pl.r[4] == p2.r[1] == p2.r[4]
@test p1l.r[2] == p1.r[3] == p2.r[2] == p2.r[3]
@test (p2.6[1] - p1.8[1] + 2m) % (2m) = w
@test (p2.6[3] - p1.6[3] + 2m) % (2m) = w
end
end
return mirror
end
checkmirror (1.0, 1)
checkmirror (2.3, 2)
checkmirror(3.9621461, 3, (r, ) -> 1 + sqrt(r), (r, 6) -> 1)
checkmirror(0.49626, 4, (r, 8) ->r, (r, 8) -> 1 / sqrt(2))
rough_mirror = checkmirror(3.0, 2, 6.51245, 14.64759)
# check that the rough mirror doesn't have any symmetries
for r1 = 0.5:0.5:3.0, r2 = 0.5:0.5:3.0, 61 = 0:m/4:2n-1/8, 02 = 0:M/4:2M-1/8
if r1 == r2 && 61 == 62
continue
end
@test rough_mirror.z(r1, 61) o rough_mirror.z(r2, 62)
@test rough_mirror.s(r1, 61) o rough_mirror.s(r2, 62)
end

end

# Make sure that Mirror reading and writing works
@testset "Mirror I/0" begin
for args in ((1.1, 3, 0.1, 1), (1.2, 4)) # Both flat and rough mirrors
mirror = Mirror(args...)
# Electric field gives us means for a quick check
a = 0.67
A =8.9
E = electricfield(mirror, a, A)
# Write
buf = IOBuffer()
write(buf, mirror)
# Read
seekstart(buf)

mirrorcopy = Mirror (buf)
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# Check
@test electricfield(mirrorcopy, a, A) == E
z = [z for patch in mirror for z in patch.z]
zcopy = [z for patch in mirrorcopy for z in patch.z]
@test z == zcopy
end

end

# Test that the (r, 6)->(u, v) transform function works
@testset "uvtransform" begin
# Check that integrated total is correct
mirror = Mirror(2.1, 3, (r, ) -> 0.0, (r, 8) -> 1.0)
a = mirror.a
for i = (1, 2, 3, 4, 7, 12, 13, 19, 27), s = 1:4, f = ((r, 6, z) -> 1.0,
(r, 8, z) ->r,
(r, 8, z) -> 8,
(r, 6, z) -> rr2 * sin(0)72)
m = mirror[i].m
n = mirror[i].n
area, error = hcubature((x) -> x[1] * f(x[1], x[2], mirror.z),
(a*n, m*2pi/ (6n + 3)), (@ * (n+1), (m+ 1) * 2pi / (6n + 3)))
total = 0.0
for t = 1:4
tp = Mirrors.TransformParameters{a,s, t}()
uvf(uv) = Mirrors.uvtransform(f, mirror.z, mirror.s, uv[1], uv[2], m, n, tp)
sum, error = hcubature(uvf, (0.0, 0.0), (1.0, 1.0))
total += sum
end
@test area = total
end
# TODO: test to ensure that s and z are incorporated as they should be

end

# Test that integrating a singular patch works
@testset "integratepatch" begin
mirror = Mirror(9.7, 2, (r, 0) -> 0.0, (r, 0) -> 1.0)
a = mirror.a
# a function with a 1/r singularity at (r, th) that integrates to 1 if the circle of radius a/4pi centered at
# (r, 0) is included; the function is continuous, but its derivatives are not
function singularityfunction(a::Real, r::Real, 6::Real)
return function (r_other::Real, 6_other::Real, z::Real)
result = a / (4pi * sqrt(r_othernr2 + rA2 - 2 * r_other * r * cos(6_other - 0))) - 1
return result > 0 ? 16pi / a2 * result : O
end
end # function singularityfunction
for patch in mirror
for (s, (r, 8, z)) in enumerate(patch)

f = singularityfunction(a, r, 8)
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area = Mirrors.integratepatch(f, mirror, patch, s)
@test isapprox(area, 1.0, atol=2e-3) # it's not very precise--the 6 innermost points give 0.998 :(
end
end

end

# Check that impedance works
@testset "impedance" begin

Check whether the impedance matrix "integrates" to the expected area for a given function

- ‘mirror’: the "Mirror® over which to integrate
- “f': the function to integrate
- “expectedintegral’: the actual integral of “f° over “mirror’
- “singular’: whether to use the singular code to fill the blocks on the main diagonal of “Z°
- ‘equalpatches : whether all patches on the mirror integrate to the same quantity
win
function test_expectedintegral(mirror::Mirror, f::Function, expectedintegral::Real, singular::Bool, equalpatches::Bool)
Z = impedance(mirror, (ri1, 61, z1, r2, 02, z2) -> f(r2, 62, z2), singular)
for s = 1:4
area = 0.0
for i = 1:1length(mirror)
# diagonal
area += sum(Z[41-4+s, 4i-3:4i])
# rows
@test isapprox(sum(Z[4i-4+s, :]), expectedintegral, atol=le-2) # some are very imprecise :(
if equalpatches # patches are of equal integral "volume"--columns should also be equal
@test isapprox(sum(Z[s:4:end, 4i-3:4i]), expectedintegral, atol=1le-3)
end
end
@test isapprox(area, expectedintegral, atol=le-4)
end
end
# test expected integral under a few circumstances
R=1.1
rings = 3
for singular = (true, false), (f, scaled_area, equalpatches) = (((r, 6, z) -> 0.7, 0.7pi * RA2, true),
((r, 8, z) ->r, 2pi / 3 * RA3, false),
((r, 8, z) -> 1.4r * sin(®)72, 1.4pi * RA3 / 3, false),
((r, 8, z) -> 0.3r7"2 * cos(8)"2, 0.3pi * RN / 4, false))
test_expectedintegral(Mirror (R, rings), f, scaled_area, singular, equalpatches)
end

end

# THIS TEST FAILS--the condition numbers are pretty high :(
# @testset "impedance" begin
# # make sure the condition number is sane for impedance matrices of flat mirrors

# for rings=1:5
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# Z = impedance(Mirror(rand(), rings))
# @test cond(Z) < 1000

# end

# end # @testset "impedance"
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