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ABSTRACT

Language, Information, and Quantum Theory

Thomas L. Draper
Department of Physics and Astronomy, BYU

Bachelor of Science

This thesis introduces concepts from quantum theory, information theory, and linguis-
tics, and explores the connections between these fields. This culminates in a discussion of
the DisCoCat model of language and the implications of quantum models of meaning on
the distribution of information content in language.
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Chapter 1

Introduction

In Chapter 2, we go over some fundamental concepts in quantum theory necessary for

understanding this thesis. In Chapter 3, we briefly explore information theory, both

classical and quantum. Then, in Chapter 4, we investigate methods of processing language,

as well as connections with information and quantum theory. We use Qiskit to directly

implement the DisCoCat model of sentence meaning for a small dataset. Much of the

background material on quantum computation and quantum algorithms for language

processing is borrowed from my recent paper [1]. Lastly, in Chapter 5, we use a simplified

quantum model of language meaning to explore applications of quantum information

theory to language.
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Chapter 2

Quantum Theory

The universe follows familiar patterns, such as how a resting object doesn’t change its

motion unless a force is applied. Classical computers use these laws to store, transfer,

and process information. However, we know that, at a microscopic scale, the universe

also follows quantum rules which are quite different from the classical rules. Devices

based on these microscopic physical laws are theorized to perform some computations

asymptotically faster than classical computers, and their unique information processing

capabilities may even be able to magnify the power of AI. This chapter introduces the

basics of quantum theory necessary for the rest of this thesis. For additional information,

Nielsen and Chuang’s book [2] is an excellent reference.

2.1 Qubits and Dirac Notation

The Schrödinger equation is commonly expressed as a linear differential equation, which

means that given any two solutions ψ1(x) and ψ2(x), their linear combinations αψ1(x)+

βψ2(x), or superpositions, are also solutions. Since the equation is complex-valued, these

α and β coefficients are also allowed to be complex-valued, and in fact the set of solutions

2



2.1 Qubits and Dirac Notation 3

to the equation forms a complex vector space. There are interesting wave properties of

these spatial solutions ψ(x), but for the purpose of this thesis, it will suffice to know that

states are represented by vectors, and operations are represented by length-preserving

(unitary) linear transformations.

To simplify the theory and practical concerns, quantum computation focuses on the

case where a system has a 2-dimensional solution space, in which case we call the system a

qubit. We can take two orthogonal basis vectors and write them suggestively as |0⟩ and |1⟩,

for analogy with classical computing, where the fundamental unit is the bit, which can be

in one of two states, 0 or 1. The “ket” symbol |ψ1⟩ represents a vector in Dirac notation, and

the corresponding dual vector is represented with a “bra” ⟨ψ2|, so that an inner product

can be represented as a “bra-ket” ⟨ψ2|ψ1⟩. In physics, we use the convention that physically

realizable states for a system have norm 1 under the Hilbert space (complex vector space)

norm, so we might as well take these basis vectors to have norm 1: | |0⟩ |= | |1⟩ |= 1. This

then means that any possible state of the qubit will be α |0⟩+β |1⟩ where |α|2 + |β |2 = 1.

We may interpret |α|2 or |β |2 as respective probabilities of the system collapsing into states

|0⟩ or |1⟩ upon measurement. This interpretation is known as the Born rule.

Not only is the description of a single qubit state broader than that of a classical bit,

but qubits also combine together in a more subtle manner. For a 3-bit classical system,

we would say that each bit is either in the state 0 or in the state 1, so the system is in

one of 23 = 8 possible states: 000, 001, 010, 011, 100, 101, 110, or 111. When combining

2-state quantum systems, their vector spaces combine in the natural way, a tensor product;

given a collection of vector spaces, their tensor product is a new vector space whose basis

elements are identified by choosing one basis element from each of the input vector spaces.

Since each subsystem can be in its own state |0⟩ or |1⟩, we can similarly write |a⟩ |b⟩ |c⟩ or

|abc⟩ to indicate that the first subsystem is in state |a⟩, the second in state |b⟩, and the third
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in state |c⟩. So in this 3-qubit example we can write eight basis states |000⟩, |001⟩, |010⟩,

|011⟩, |100⟩, |101⟩, |110⟩, |111⟩, and then the possible states for the entire system will be the

normalized (norm 1) linear combinations of these 23 = 8 basis states. Independent systems

which aren’t in basis states can be combined by using the linearity of the tensor product.

For example, if the first system is in state |ψ1⟩= 1√
3

(
|0⟩+

√
2 |1⟩

)
and the second system is

in state |ψ2⟩= 1√
3

(√
2 |0⟩+ i |1⟩

)
, then the composite system is in the state

|ψ1ψ2⟩= |ψ1⟩ |ψ2⟩

=
1√
3

(
|0⟩+

√
2 |1⟩

) 1√
3

(√
2 |0⟩+ i |1⟩

)
=

1
3

(√
2 |0⟩ |0⟩+2 |1⟩ |0⟩+ i |0⟩ |1⟩+

√
2i |1⟩ |1⟩

)
=

1
3

(√
2 |00⟩+2 |10⟩+ i |01⟩+

√
2i |11⟩

)
.

Measurements probabilities in the standard basis can be performed by taking the squared

norm of the corresponding coefficient. For instance, in the previous example |ψ1ψ2⟩, the

probability of measuring |11⟩ would be |
√

2i/3|2 = 2/9. Measurements in other bases are

most easily represented by applying bra dual vectors to the given ket vector, expanding

by linearity, and applying the orthogonality relations 1 = ⟨00|00⟩ = ⟨01|01⟩ = · · · and

0 = ⟨00|01⟩ = ⟨00|10⟩ = · · · . For example, if we measured the state above in the basis of

|+⟩= 1√
2
(|0⟩+ |1⟩) and |−⟩= 1√

2
(|0⟩− |1⟩), then the probability of measuring |++⟩ would

be

|⟨++|ψ1ψ2⟩|2 =
∣∣∣∣12(⟨00|+ ⟨01|+ ⟨10|+ ⟨11|

)1
3

(√
2 |00⟩+2 |10⟩+ i |01⟩+

√
2i |11⟩

)∣∣∣∣2
=

∣∣∣∣16 (√
2+2+ i+

√
2i
)∣∣∣∣2

=
3+2

√
2

12
.
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2.2 Bell Tests of Entanglement and the CHSH Inequality

The tensor product structure for composition of qubit systems allows for interesting kinds

of correlations between different qubits. In this section, we restrict our attention to two-

qubit systems, which provide the simplest example of quantum entanglement. The famous

Bell state can be written in Dirac notation 1√
2
(|00⟩+ |11⟩). In this section, we explore what

it means that this state is maximally entangled.

Upon measuring the Bell state in the standard basis, there is a 50% chance that both

qubits come up as 0, and 50% chance that both come up as 1. It is true that this one

distribution of measurements doesn’t require any quantum mechanics, and in fact, if

we just prepared states where 50% of them are |00⟩ and 50% are |11⟩, we would get

identical measurement outcomes in the standard basis. The significance of entanglement

lies in how the system evolves, and in particular how measurements remain correlated,

even when the system is measured in different bases. For example, if we switch to

the basis consisting of |+⟩ and |−⟩, then the Bell state is just 1√
2
(|++⟩+ |−−⟩), so our

measurement outcomes would be 50% |++⟩ and 50% |−−⟩. We contrast this with the

classical probability distribution of 50% |00⟩ = 1
2(|++⟩+ |+−⟩+ |−+⟩+ |−−⟩) and 50%

|11⟩ = 1
2(|++⟩− |+−⟩− |−+⟩+ |−−⟩), in which case we would measure 25% of each of

|++⟩, |+−⟩, |−+⟩, and |−−⟩, a uniform mixture.

The difference between classical probability distributions and distributions arising from

measurements of coherent entangled quantum states can be mathematically quantified,

as Bell proved [3]. Bell’s theorem can be expressed using the CHSH inequality [4], which

is commonly presented as follows. Let A = {a0,a1} and B = {b0,b1} be two single-qubit

orthogonal measurement bases, and let p(ai,b j) represent the probability of measuring

both ai on the first qubit and b j on the second qubit when the two qubits are measured in
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basis A and B, respectively. Then we can define a measure of correlation:

E(A,B) := p(a0,b0)− p(a0,b1)− p(a1,b0)+ p(a1,b1).

We note that −1 ≤ E(A,B) ≤ 1 since the four probabilities are nonnegative and add to

one. The Bell state 1√
2
(|00⟩+ |11⟩) will give 1

2 −0−0+ 1
2 = 1 in the standard basis, which

indicates the maximum possible correlation, but recall that quantum entanglement is

characterized by correlation in several measurement bases, not just one. The statement of

the CHSH inequality is

−2 ≤ E(A,B)−E(A,B′)+E(A′,B)+E(A′,B′)≤ 2,

where A, A′, B, and B′ are arbitrary measurement bases. The CHSH inequality is based on

the assumption of local realism, meaning that two separated systems cannot affect each

other instantaneously, and that physical systems are always in a definite state, even if we

don’t know what that state is or are not observing it. Absent any assumptions, we could

get arbitrary values between −4 and 4, but under the assumptions of quantum mechanics

using orthogonal measurements, we instead get Tsirelson’s bound [5],

−2
√

2 ≤ E(A,B)−E(A,B′)+E(A′,B)+E(A′,B′)≤ 2
√

2.

This bound can be achieved on the Bell state by cleverly choosing the measurement bases

so that three of the correlation measures are 1√
2
, while the last is − 1√

2
. Many experiments

have been performed on photon pairs which are separated and then measured in different

polarization bases, and the results agree with Tsirelson’s bound and violate the CHSH

inequality. This shows that quantum mechanics accurately describes correlations between

physical systems in a way that necessarily violates local realism.

Lastly, we consider the concept of entanglement in more detail. A state on two quantum

systems is said to be entangled if it cannot be written as the product of two states, one
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for each subsystem. For example, 1√
2
(|00⟩+ |01⟩) = |0⟩ 1√

2
(|0⟩+ |1⟩) is not entangled, but

the Bell state is; no matter how hard you may try, you cannot write it as a product. On a

product state, the measurement of each subsystem is independent, meaning that p(ai,b j) =

p(ai)p(b j), using the notation as in the definition of E(A,B), where p(ai) represents the

(marginal) probability of measuring ai on system A. For qubits, we only have two states,

so p(a1) = 1− p(a0) and p(b1) = 1− p(b0), so on a product state,

E(A,B) = p(a0)p(b0)− p(a0)(1− p(b0))− (1− p(a0))p(b0)+(1− p(a0))(1− p(b0))

= (1−2p(a0))(1−2p(b0)).

Since the correlation E decomposes as a product, the measure in the CHSH inequality is

E(A,B)−E(A,B′)+E(A′,B)+E(A′,B′)

= (1−2p(a0))[(1−2p(b0))− (1−2p(b′0))]+(1−2p(a′0))[(1−2p(b0))+(1−2p(b′0))]

= (1−2p(a0))[2p(b′0)−2p(b0)]+(1−2p(a′0))[2−2p(b0)−2p(b′0)].

Since probabilities are between zero and one, |(1−2p(a0))| ≤ 1, and

|2p(b′0)−2p(b0)|+ |2−2p(b0)−2p(b′0)| ≤ 2,

so we see that the CHSH inequality must always hold for a product state. Therefore,

violation of the CHSH inequality requires an entangled state (and in fact, any entangled

pure state violates a Bell inequality [6]), so the maximum of |E(A,B)−E(A,B′)+E(A′,B)+

E(A′,B′)| over possible bases can be seen as another measurement of entanglement.

2.3 Density Matrices

So far, we have only considered pure quantum states, for which we know everything about

the system and write it using a ket |ψ⟩. In general, there may be a probability distribution
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over states which our system may be in. In Section 2.2, we reasoned about correlation

differences between quantum superpositions and classical probability mixtures, especially

with regards to entanglement. There is actually a mathematical way to represent such

mixtures, within the framework of the density matrix, or density operator. Given a mixture

of |ψi⟩s, each with probability pi, the state is called a mixed state, and the corresponding

density operator is

ρ := ∑
i

pi |ψi⟩⟨ψi| .

For example, for a classical mixture of 50% |00⟩ and 50% |11⟩, we get the matrix

ρ =
1
2
|00⟩⟨00|+ 1

2
|11⟩⟨11|

=


⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ 1/2 0 0 0
|01⟩ 0 0 0 0
|10⟩ 0 0 0 0
|11⟩ 0 0 0 1/2

.
For the coherent Bell state, we instead get

ρ =
1√
2
(|00⟩+ |11⟩) 1√

2
(⟨00|+ ⟨11|)

=
1
2
(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|)

=


⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ 1/2 0 0 1/2
|01⟩ 0 0 0 0
|10⟩ 0 0 0 0
|11⟩ 1/2 0 0 1/2

.
The off-diagonal terms are called coherence terms, and this example illustrates the reason

well. If you have a classical mixture of basis states, then there are no off-diagonal terms, but

if you have a coherent quantum state which is in a superposition, then you get off-diagonal

terms in the density matrix, corresponding to cross terms in the outer product.

One of the main mathematical benefits of using density matrices is the ability to

represent states of subsystems in a consistent way. As seen in Section 2.2, there is no way
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to represent the Bell state as a product of two individual qubit states, and so we can’t get a

single vector for each subsystem. However, we can do this for density matrices, using the

partial trace. The definition of the trace of a matrix is the sum of the diagonal elements:

tr(A) := ∑
i

Aii.

For example,

tr




⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ 1/2 0 0 0
|01⟩ 0 0 0 0
|10⟩ 0 0 0 0
|11⟩ 0 0 0 1/2


= 1/2+0+0+1/2 = 1,

and in fact tr(ρ) = ∑i pi ⟨ψ|ψ⟩= ∑i pi = 1 for any density matrix ρ . A partial trace is when

we add the terms corresponding to just one subsystem, leaving us with a smaller density

matrix. If we write A for one qubit and B for the other, then we may call the composite

system AB, and tracing out system B can be written as

ρA = trB(ρAB) = ⟨0B|ρAB |0B⟩+ ⟨1B|ρAB |1B⟩ .

For example,

trB

(
1
2
|0A0B⟩⟨0A0B|+

1
2
|1A1B⟩⟨1A1B|

)
=

1
2
|0A⟩⟨0A|+

1
2
|1A⟩⟨1A| ,

so if we have two qubits in a classical mixture of |00⟩ and |11⟩, then each individual qubit

can be considered a classical mixture of |0⟩ and |1⟩. The interesting part is that we get this

same result upon applying the partial trace to the Bell state 1√
2
(|00⟩+ |11⟩). Because the

system is entangled, you cannot say that the subsystems are in a particular pure state, but

if you really want to ignore the other qubit, you can just partial trace it out and end up

with a density matrix representing a mixed state. This partial trace operation will be useful

when we consider how information is distributed within a quantum system.
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2.4 Quantum Computation

Any physical operation (often called a gate in quantum computing) must map physical

state inputs to physical state outputs, so in particular, it must take unit (normalized) vectors

to other unit vectors. In the language of linear algebra, this is a unitary transformation,

which also maps mutually orthogonal vectors to mutually orthogonal vectors. In the

finite dimensional case which we deal exclusively with in quantum computing, a unitary

transformation can be expressed as a unitary matrix. Since matrices naturally represent

what output vector each of a given basis of input vectors gets mapped to, it is common to

characterize quantum gates by where they map each standard basis state. An arbitrary

such operation could be very complicated, causing difficulty both for thinking conceptually

about it and for physically implementing it, so we generally focus on basic operations and

composing them together. These basic gates are described just in terms of their actions on

a few relevant qubits.

As a first example of a quantum gate, one might want to perform an operation on a

2-qubit system for which one of the output bits will always be the AND of the two inputs

for all four possible input combinations. However, this is impossible, since |00⟩, |01⟩ and

|10⟩ would all have to map into a vector space of dimension at most 2, which is impossible

for invertible (and in particular unitary) transformations. So generalizations of natural

operations from classical computing are not necessarily natural operations to perform

in the context of quantum computing. One acceptable quantum operation is the NOT

operator which swaps

|0⟩ 7→ |1⟩ and |1⟩ 7→ |0⟩ ,

which also could be written in matrix form as
[

0 1
1 0

]
.
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Another simple 1-qubit gate is the PHASE(θ) operator, which maps

|0⟩ 7→ |0⟩ and |1⟩ 7→ eiθ |1⟩

with corresponding matrix
[

1 0
0 eiθ

]
. Note that PHASE(θ), unlike NOT, has no analog in

digital classical computers, where there is no concept of phase.

Slightly more complicated are the “controlled” versions of these gates, which use two

qubits: a control qubit and a target qubit. An operation is applied to the target qubit if the

control qubit is |1⟩, while no operation is applied if the control qubit is |0⟩. For example,

the CNOT operation (with the first qubit as the control and the second as the target) maps

|00⟩ 7→ |00⟩ ,

|01⟩ 7→ |01⟩ ,

|10⟩ 7→ |11⟩ ,

and |11⟩ 7→ |10⟩ .

The controlled phase gate, CPHASE(θ), is defined similarly, with the last two rows instead

being |10⟩ 7→ |10⟩ and |11⟩ 7→ eiθ |11⟩. Recall that these gates are still just linear maps defined

on our chosen basis vectors, and can therefore also be represented in matrix form. For

example, the CPHASE(θ) is given by
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

 .

Another important gate is the Hadamard gate, taking

|0⟩ 7→ 1√
2
(|0⟩+ |1⟩) and |1⟩ 7→ 1√

2
(|0⟩− |1⟩),

or in matrix form, H = 1√
2

[
1 1
1 −1

]
, which is useful since we generally assume that the

initial state of any computation is the basis state where every qubit is |0⟩, and so applying
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the Hadamard gate to every qubit can generate an equal superposition of all possible basis

states, for example,

H |0⟩= 1√
2
(|0⟩+ |1⟩),

H⊗2 |00⟩= 1
2
(|00⟩+ |01⟩+ |10⟩+ |11⟩),

H⊗3 |000⟩= 1
2
√

2
(|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩).

Lastly, we introduce x and z rotation gates parameterized by an “angle” θ , which, by

analogy with 3-dimensional space, should together be able to rotate a unit vector to any

other unit vector:

Rx(θ) =

[
cos(θ/2) −isin(θ/2)

−isin(θ/2) cos(θ/2)

]
and Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]
.

There are also controlled versions of these gates, for example,

CRz(θ) =


1 0 0 0
0 1 0 0
0 0 e−iθ/2 0
0 0 0 eiθ/2

 .

These are the gates that we apply in Chapter 4 to represent meaning in language. We will

see that parameterized gates can represent word meanings learned with a machine learning

algorithm, and the CNOT and Hadamard gates can represent grammatical relationships.



Chapter 3

Information Theory

The physical resource requirements for representing information can be quantified using

entropy. The concept of entropy originated in classical thermodynamics, where energy

can be used to heat objects, while the original energy cannot be fully recovered as work

from the heated system. This can be interpreted as a kind of disorder, where the energy

of a heated object is randomized to the point that it cannot be extracted in an orderly

form, such as mechanical work. Another perspective is that entropy counts the possible

states that a system might be in. Given some macroscopic specification of a system, there

are many possible microstates it could be in, like how our macroscopic observation of

air (volume, pressure, or temperature) doesn’t depend on the exact positions of each

individual molecule, as long as they are roughly evenly distributed. This idea of counting

possibilities ties very naturally to information theory, where we are interested in any kind

of information, not just information about physical systems.

13
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3.1 Classical Information

Claude Shannon invented information theory when he worked out a framework to de-

termine the most efficient way to send a message [7]. The Shannon entropy is defined

as

H(X) := H(p1, . . . , pn) :=−∑
x

px log px

where X is a discrete random variable taking n distinct values each with probability

pi. Shannon proved that this is, up to a multiplicative constant, the unique function

which satisfies three properties. First, H is a continuous function of the pis. Second,

H(1/n, · · · ,1/n) is a monotonically increasing function of positive integers n. Lastly, H

can be broken down into a weighted sum corresponding to a decision tree generating

the probability distribution pi. For example, H(1
2 ,

1
3 ,

1
6) = H(1

2 ,
1
2) +

1
2H(2

3 ,
1
3), since the

distribution can be obtained by first flipping a coin to see if the first option will be taken,

and if not, then there is a 2 : 1 split between the remaining two possibilities.

The standard unit of entropy is the bit, which corresponds to taking the logarithm with

base 2. For example,

H
(

1
2
,
1
2

)
=−

1

∑
i=0

1
2

log
1
2
= log2 = 1 bit.

This makes sense, because the information necessary to determine a fair coin flip is just a

single binary random variable. Further, if we want to store this information, then we need

exactly one bit, a 0 or 1. We see that the Shannon entropy represents the classical physical

resources required to represent information.

The Shannon entropy can be defined for a joint probability distribution in a natural

way. The joint entropy is

H(X ,Y ) :=−∑
x,y

p(x,y) log p(x,y),
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the entropy of the distribution of X and Y together, i.e. of the random variable (X ,Y ). The

conditional entropy of X given Y is

H(X |Y ) := H(X ,Y )−H(Y ) =−∑
x,y

p(x,y) log p(x|y),

which describes the additional information from learning X if we already know Y . The

mutual information content of X and Y is

H(X : Y ) := H(X)+H(Y )−H(X ,Y ),

representing how much information the two variables share on average.

We note here some properties of the Shannon entropy. It is nonnegative because each

−p log(p) ≥ 0. For multiple variables, we have H(X : Y ) ≤ H(X), which corresponds to

the fact that the mutual information of X and Y is just a subset of X ’s information. Also,

H(X) ≤ H(X ,Y ) ≤ H(X) +H(Y ), which shows that given knowledge of X and Y , your

knowledge is at least as much as if you knew only X , and the amount by which it increases

when learning Y as well is bounded by the information content of Y itself. These facts are

quite intuitive, but we will see that the corresponding quantum analogue does not follow

the same rules.

3.2 Quantum Information

Given a quantum state described by density matrix ρ with eigenvalues λx, the von Neu-

mann entropy is defined as

S(ρ) :=− tr(ρ logρ) =−∑
x

λx logλx

which is similar to the Shannon entropy, but using the eigenvalues of the density operator

for probabilities. Note that the “quantum” nature of the von Neumann entropy arises
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from how we mathematically manipulate density matrices, and in particular how density

matrices of composite systems relate to reduced density matrices for component subsys-

tems. Interesting differences in quantum information arise from the way in which systems

compose, or fail to decompose.

We note that the von Neumann entropy is always nonnegative, and it is only zero

for pure states. Also, if a composite system ρAB is a pure state, i.e. S(ρAB) = 0, then

S(ρA) = S(ρB) by Schmidt decomposition [2]. This has no analog in classical entropy, where

the joint entropy can only be zero if both subsystems have zero entropy. Instead, we have

subadditivity,

|S(ρA)−S(ρB)| ≤ S(ρAB)≤ S(ρA)+S(ρB),

which shows that the entropy of the combined system may be more, equal to, or even less

than the entropy of the two subsystems. This property is due to how the von Neumann

entropy is defined, using the eigenvalues of the density matrix. The two subsystems may

be impure independently, in which case their entropies add, or they may be in mixed states

just because they are entangled with each other, in which case their entropies subtract. This

measure of entropy on quantum systems does not seem to accord well with our classical

ideas about information, so it may be best to think of it instead as a measure of disorder,

impurity, or even ambiguity. In Chapter 5, we explore how von Neumann entropy may

generate insights into the structure of ambiguities in language.



Chapter 4

Language

Language is a natural way for humans to reason and communicate, but it proves very

difficult to formally represent, as is evident in the extensive work dedicated to natural

language processing [8]. Written language is represented in terms of words and sentences

decomposed as strings of characters. Spoken language instead uses phonemes or raw

sound (fluctuations of air pressure over time) to represent words and sentences. Written

formats of language are easiest to represent and work with, and even someone with

no understanding can copy written characters. However, determining the meaning of

a written text is a true challenge. Intelligent humans can reason about written as well

as spoken language, but all attempts at formalizing this understanding into a computer

program leave much to be desired. There are reasons to believe that the laws of quantum

physics may hold the key to understanding the meaning of natural language [9]. In this

chapter, we explore the quantum-native DisCoCat model of sentence meaning, following

the presentation in a recent paper by a research group at Quantinuum and Oxford [10].

17
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4.1 Computing with Language

Natural language processing (NLP) is all about using computers to process natural human

languages, such as English. This is part of the intersection of linguistics and computer

science, and also a major topic in artificial intelligence (AI). There are some basic tasks, like

grammatical parsing, which are relatively easy, but the NLP field also contains what are

considered to be some of the hardest problems in AI. Tasks that require understanding

the full meaning of a complex text (such as translation from one language to another) are

considered “AI-complete”; this means that if you can make an algorithm to (for example)

reliably translate between languages, then you probably can solve just about any AI-related

problem, such as object recognition in video or even generalizing knowledge to tackle

problems never before encountered by computers. In this section, we explore sentence

structure and word meaning, using parse trees and word vector embeddings, respectively.

4.1.1 Grammatical Parsing

The first algorithm to parse sentences was created by Lambek in 1958 [11]. Here, we intro-

duce Lambek’s pregroup grammar, using the conventions of the paper [10] for consistency.

Taking n to represent a noun, s to represent a sentence, and L and R to represent left and

right inverses, respectively, we use the following definitions, explained in more detail later.

Noun → n

Intransitive verb → nR(s)

Transitive verb → nR(s)nL

Relative pronoun “who” → nR(n)sLn

These strings don’t make sense on their own, but their combination rules match the

grammatical structure of English. The rules we need are simple: the cancellations of
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symbols and their left or right inverses, when adjacent, namely nnR → 1, nLn → 1, and

sLs → 1. The symbol 1 represents the identity, or empty string, so that, in essence, these

rules tell us how to delete symbols to simplify type strings. The pregroup grammar is

associative, so we can rearrange parentheses however we want, and this allows us to group

symbols and their inverses together for deletion.

As the simplest example, we can consider the sentence “Romeo dies”, which is a noun

followed by an intransitive verb, and therefore has type (n)(nRs), which can be reduced to

s by applying the rule nnR → 1. This indicates that “Romeo dies” is a grammatical sentence.

Similarly, transitive verbs require both a subject and an object, or a noun on both sides, in

order to form a sentence, which is why they are assigned the string nRsnL, and the sentence

“Romeo loves Juliet” reduces from (n)(nRsnL)(n) to s as a complete sentence. The most

complex part of speech we will deal with is the relative pronoun “who”, which takes a

noun type on the left and the predicate type nRs on the right to yield a noun type result,

hence the string nR(n)sLn.

Figure 4.1 String diagram for the sentence “Romeo who loves Juliet dies”, show-
ing the grammatical connectivity of the sentence, as parsed using the pregroup
grammar. This figure was generated using the lambeq package [12]. Note that
lambeq draws n.l, n.r, and s.l to represent nL, nR, and sL.
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Now as our main example, we parse the sentence “Romeo who loves Juliet dies”, as

visualized in Figure 4.1. Here is the series of reductions:

(Romeo)(who)(loves)(Juliet)(dies)

→(n)(nRnsLn)(nRsnL)(n)(nRs) Convert words by part of speech

→(nnR)nsL(nnR)s(nLn)nRs Rearrange parentheses

→n(sLs)nRs Delete pairs, add parentheses

→(nnR)s Delete pairs, add parentheses

→s. Delete pair

More examples of this process are provided in the papers [10, 13], and these kinds of

diagrams and their applications to quantum mechanics are addressed in much greater

detail in Coecke and Kissinger’s book [14].

4.1.2 Word Vectors

Vectors are a computationally convenient way to compare the semantic content of words.

A prototypical example of the distributional model of meaning is word2vec [15], where

words are embedded into a vector space with the embeddings learned such that words

that appear in similar contexts are close to each other (meaning that the vector space inner

product between them is near 1), and words that are distributed differently in texts get

embedded as vectors with small inner products. This seems to accurately describe some

aspects of meaning. For example, using word vectors, if we take “king”, subtract “man”,

and add “woman”, we get something quite close to “queen”.

Unfortunately, there are no good classical methods for representing entire sentence

meanings. Most algorithms either work only with the grammatical structure, or ignore

it entirely, as in the “bag of words” model, in which the vectors corresponding to each
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word in the sentence are taken without any regard to even their order. Neural networks

(algorithms imitating the structure of a brain) are being used to solve NLP tasks with

rapidly increasing accuracy, but these models still seem to lack an understanding of textual

meaning and have difficulty generalizing to completely new contexts. If we assume that

vectors are the right way to represent words, then the natural operation to perform is a

multilinear map, which, as we will see, naturally lends itself to the formalism of quantum

theory.

4.2 DisCoCat

DisCoCat is the name of a model of language introduced by Coecke, Sadrzadeh, and

Clark [13]. It stands for Distributional Compositional Categorical, indicating the main

principles behind it. Distributionality is evident in the use of vectors for words, where

these vectors are learned based on actual distributions of words in text. The principle

of compositionality indicates that these vectors compose together based on recursive

structures, giving a formal method of building up meaning vectors for phrases and

sentences. Lastly, the model is based on category theory, a mathematical framework for

describing relationships and composition of mathematical structures.

4.2.1 Category Theory

A category consists of objects and associative maps between them. One example is sets

and functions, but it is also common to consider categories with more structure, such as

vector spaces with linear transformations. Here, we can take the tensor product between

two vector spaces to construct a new vector space. This tensor operation is associative
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and has the identity 1-dimensional vector space C, so it is said to be a monoid, and the

category of vector spaces is a monoidal category.

In mathematics, we often often choose our ways of writing symbols based on the rules

that they follow. For example, addition is associative

(a+b)+ c = a+(b+ c),

which justifies us in simply writing a+b+ c without parentheses for the sum of a, b, and c.

In a similar way, the axioms of a monoidal category justify us in drawing string diagrams

to represent mappings. The sentence string diagrams we used in Subsection 4.1.1 can

be interpreted as maps in a monoidal category, and in particular, if we represent each

word by a vector, then the string diagrams correspond to linear maps, which can also be

represented by quantum circuits, which are just another kind of string diagram.

A multilinear map out of a collection of word vector spaces is equivalent to a single

linear map out of the tensor product of the individual word vector spaces. This is called the

universal property of the tensor product. Tensor products of word vectors with linear maps

for grammatical relations allow us to compute entire sentence meanings. The dimension

of a tensor product space grows exponentially in the number of spaces being combined,

which means that it is not practical to try to compute sentence meanings using tensor

products on classical computers.

As in the classical case, the idea of representing words as vectors is extremely natural

in quantum mechanics, since a quantum system’s state is always represented by a vector,

so any representation of a word on a quantum computer must necessarily be a vector in

some sense. Unlike in the classical case, in quantum theory, the idea that the unprocessed

sentence is the tensor product of its constituent words is again so natural that it is just a

byproduct of the way quantum systems are composed together. In the rest of this section,
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we will see how to deal with this tensor product state based on the sentence’s grammatical

structure.

4.2.2 Circuit Generation

In this subsection, we describe the method of transforming grammatically parsed sentences

into quantum circuits, following the paper [10]. As is traditional in quantum computing,

we begin with the state of all zeroes |00 · · ·00⟩. We can then split our circuit into three

main parts: first, prepare the state corresponding to each word, next, perform the gates

corresponding to the reduction of the sentence in the pregroup grammar, and finally,

measure all qubits.

Romeo

who


loves

{
Juliet

dies

Figure 4.2 Generated quantum circuit for “Romeo who loves Juliet dies”

The circuits drawn in Figures 4.2, 4.3, and 4.4 were created in a Jupyter notebook

using Qiskit [16] to run the simulations with IBM’s quantum computers. These are read

as follows. On the left are labels indicating which parts of the circuit correspond to

which words. The whole circuit is read from left to right, showing state initialization,

computational operations, and measurements. The initial qi label the individual qubits,
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Romeo

loves
{

Juliet

who


dies

Figure 4.3 Generated quantum circuit for “Romeo loves Juliet who dies”

and the black boxes on the left show that the circuit begins in the state of all zeroes. The

vertical gray lines are just cosmetic, and can be used to divide the circuit into logical

groupings. Single boxes represent single-qubit gates, and colored vertical lines between

wires represent multi-qubit gates. The blue H represents the Hadamard gate, the plain blue

line represents the CPHASE(π) gate, and the blue line ending in a plus sign represents

the CNOT gate, where the plus is on the target qubit. The purple Rx and Rz represent x

and z rotations, respectively, and the Rz with a purple wire connecting to another qubit

represents a controlled z rotation. Notice that these rotations are parameterized by a

number, as indicated on the circuit with sample initial values. Lastly, the gauge boxes on

the right side indicate a measurement, collapsing the quantum state to get some classical

information about it.

The word state preparation (shown on the left part of the circuit) depends on the word’s

part of speech. For nouns and intransitive verbs (like “Juliet” and “dies”), which really

only have one way of relating, we quite simply put in arbitrary gates that allow any state

to be made from the starting zeroes. Namely, we put in an x-rotation by θ1 and z-rotation



4.2 DisCoCat 25

Figure 4.4 Generated quantum circuit for “Romeo (q0) who (q1−q3) loves (q4−q5)
Juliet (q6) who (q7 −q9) kills (q10 −q11) Juliet (q12) dies (q13)”

by θ2, that is Rx(θ1) and Rz(θ2). These parameters θi are yet unknown, since we don’t know

the exact best word embeddings, but by varying them it is possible to prepare any valid

single-qubit state. For a circuit with fewer gates but a smaller embedding space, we may

use a single rotation Rz(θ), as in Figure 4.2, as opposed to Figure 4.3.

For other parts of speech, the construction is a bit more complex using more qubits, but

the same idea can be applied, where we have a fixed basic circuit structure for preparing

the state, just with some parameters on the gates which can be varied to allow prepar-

ing arbitrary states. The transitive verb “loves” uses Hadamard gates and controlled

parameterized rotations to set up an arbitrary two-qubit state representing the relation-

ship between subject and object. Lastly, the relative pronoun “who” is assigned a series

of Hadamard and CPHASE(π) gates which set up the GHZ state 1√
2
(|000⟩+ |111⟩), a
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maximally entangled three-qubit state, representing how this word ties together three

different noun descriptions of the same entity. More details on the exact construction used

is available in the paper [10].

Next, we need to perform some operation on this product ensuring that the different

grammatical constituents are appropriately related. The paper [10] makes the specification

that the s symbols do not appear in the quantum circuit, so we ignore them, and only

the n symbol annihilations matter. For these (nLn)→ 1 and (nnR)→ 1 reductions we use a

CNOT followed by a Hadamard gate, and then measure the final state. If the measurement

result is |00⟩, this indicates that the two “nounlike” vectors were appropriately correlated

in meaning. Once all the qubits have been measured, if the final result is all zeroes, then

all the meaning vectors match appropriately, and we predict that the sentence is true.

Otherwise, something went wrong or there were inconsistent meanings, and we predict

that the sentence is false. In practice, we can run the circuit many times, and count the

proportion of results where the output is all zeroes, and use this ratio as an estimate of the

probability that the sentence is true.

4.2.3 Parameter Optimization

The only remaining step is to find what parameters our word initialization gates should

use. This corresponds to learning the word embeddings, as it is determining what vector

the qubits corresponding to each word will be initialized as. To do this, we need a training

data set, consisting of a vocabulary and several sentences with assignments to True (1)

and False (0) values. Then we can define a loss function as the sum of squared deviations

between predicted and actual values:

L(⃗θ) = ∑
σ

(lpr
σ (⃗θ)− lσ )2,
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where we sum over all sentences σ , lσ is the actual truth value, and lpr
σ (⃗θ) is the predicted

truth proportion using the quantum circuit parameterized with θ⃗ .

Since we don’t have a closed-form solution for the gradient of this loss function with

respect to the parameters θ⃗ , we require a gradient-free method. We use minimizeSPSA

from the noisyopt Python package which perturbs the values of θ⃗ in a random direction

and then compares estimates of the loss function for both possible parameterizations,

to estimate the gradient and move toward lower loss. This algorithm can yield decent

accuracy even for small numbers of qubits; for more details on loss values, see my paper [1].

4.3 Information in Language

Shannon applied his theory of information to written language at several levels, including

characters, words, and combinations of words [7]. The entropy of pairs of words appearing

next to each other in text is less than twice that of individual words. Mathematically, since

words are not independent, they share some information and context H(X : Y )> 0, so that

the joint information is

H(X ,Y ) = H(X)+H(Y )−H(X : Y )< H(X)+H(Y ).

This means that it is harder to understand text if you start in the middle, rather than having

all of the previous context, because there is more uncertainty and information content

associated with words taken out of context.

The idea of previous words giving us a good guess of the next word is used quite

profitably in large language models (LLMs) today. As a slight oversimplification, LLMs can

be said to repeatedly predict the most likely word to come next, with a very complicated

approximation to the true distribution of word strings in a language. LLMs can give

a convincing appearance of natural English text, with grammatical sentences that stay
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focused on a given topic. Even the model Shannon demonstrated, based on predicting

one word given only the previous word, has some semblance of common English. Such

models work very well for the aspects of language that can be reduced to flat relationships

between two words in a text, but they seem to have much more trouble modeling deeper

relationships combining several concepts, such as the meaning of a complicated sentence.

LLMs can often be seen generating texts with reasonably matching words and structures,

but completely contradictory meanings.

Compositional models such as DisCoCat aim to describe the recursive structure of

language so that even deeper meanings can be correctly inferred. Instead of a shallow

word-by-word approach, DisCoCat combines meanings in sensible chunks. This model

also has implications for the structure of information in language. While classical models

most often consider the distribution over n words in a row, or the conditional distribution

for the next word, in compositional models of meaning it is most natural to consider the

distribution of information between grammatically connected pieces of a sentence, such as

the subject and the predicate. This would not work for classical n-word distributions, since

a predicate may have varying numbers of words, and predicates of different length are

incomparable, but in DisCoCat, all meaning vectors of a given type (like part of speech, or

a particular combination, like predicate) are comparable, since they live in the same vector

space. Even beyond a classical distribution over predicate vectors, DisCoCat allows us

to interpret meaning vectors as quantum states, and if these vector spaces decompose as

a product of subspaces, we can compute the von Neumann entropy for reduced density

matrices corresponding to these subspaces. We explore this point further in Chapter 5.



Chapter 5

Connections

5.1 Word Vectors and Entanglement

How can we quantify the information content in language? One of the most interest-

ing aspects of language is the correlation between different words, allowing us to view

grammatically connected words as entangled in some way.

A standard measure of quantum entanglement is found in the CHSH inequality, as

seen in Section 2.2. A recent paper [17] claims that language violates Tsirelson’s bound by

finding relative proportions of certain noun-verb pairs and plugging them into this CHSH

inequality. Considering instances of the sentence “the animal acts”, the following word

pair frequencies were counted:

growls whinnies snorts meows
horse 0 464 202 0
bear 247 0 0 0
tiger 97 0 0 0
cat 41 0 0 331

Table 5.1 Counts of pairs of animals and actions [17]

29
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To apply the CHSH inequality here, the authors must interpret this as two 2-state

quantum systems. If each word is represented by its first letter, the first system “animal”

has two different orthonormal bases A = {|h⟩ , |b⟩} and A′ = {|t⟩ , |c⟩}, and the second

system “acts” has B = {|g⟩ , |w⟩} and B′ = {|s⟩ , |m⟩}. Comparing the results with the CHSH

inequality, they get

E(A′,B′)+E(A,B′)+E(A′,B)−E(A,B) =
331
331

+
202
202

+
97−41
97+41

− −464−247
464+247

= 3+
56

138
.

This exceeds 2, indicating non-classical behavior, but it even exceeds Tsirelson’s bound

of 2
√

2, which the authors interpret as language having beyond-quantum entanglement.

They then fit this into the framework of quantum mechanics by allowing entangled

measurements of two qubits. Their generalization is quite interesting and may provide

insight into correlations in language, but for the purpose of this thesis we will argue against

their 2-state interpretation, and instead embed the words in a larger space.

If we think about the meanings of the different animals, it does not make sense to think

of {|h⟩ , |b⟩} and {|t⟩ , |c⟩} as orthogonal sets spanning the same space. The most natural

space to consider should represent nouns, or at least animals, and there is no reason every

animal should be a combination of a tiger and a cat. In particular, a horse can hardly be

represented as a linear combination of tiger and cat, so these two pairs can hardly be said

to span the same space.

A more likely interpretation of the situation is that {|h⟩ , |b⟩ , |t⟩ , |c⟩} live in a vector space

of dimension greater than two, and that they are linearly independent. They may likely be

non-orthogonal, and they probably should live in a space of dimension greater than 4, but

for simplicity of example, let us assume that {|h⟩ , |b⟩ , |t⟩ , |c⟩} forms an orthonormal basis

for the state space of the “animal” system, and that {|g⟩ , |w⟩ , |s⟩ , |m⟩} does the same for the
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“acts” system. Given this, we could represent the “animal acts” state of Table 5.1 by

1√
1382

(√
464 |hw⟩+

√
202 |hs⟩+

√
247 |bg⟩+

√
97 |tg⟩+

√
41 |cg⟩+

√
331 |cm⟩

)
. (5.1)

Notice that the relative phases are undetermined by the probabilities of co-occurrences. In

fact, we need not even presuppose any entanglement or superposition here, since the same

probability distribution could arise from a classical mixture of the word pair combinations,

in the density matrix

ρclassical =
1

1382

(
464 |hw⟩⟨hw|+202 |hs⟩⟨hs|+247 |bg⟩⟨bg|

+97 |tg⟩⟨tg|+41 |cg⟩⟨cg|+331 |cm⟩⟨cm|
)
. (5.2)

Measuring either of these states state would give a distribution similar to the one found

in the table, and therefore shows how there is no need for beyond-quantum behavior

in this interpretation. Counts from the measurement cannot be inserted into the CHSH

inequality, since the inequality only applies to pairs of 2-state quantum systems, each

with two different orthogonal measurement bases. For example, it is incorrect to treat

A = {|h⟩ , |b⟩} and B = {|g⟩ , |w⟩} as complete orthogonal bases in order to compute

E(A,B) =
(⟨h|− ⟨b|)ρclassical(|g⟩− |w⟩)
(⟨h|+ ⟨b|)ρclassical(|g⟩+ |w⟩)

=
−464−247
464+247

=−1

to plug into the CHSH inequality. In fact, since we have found a quantum state which

yields the measured probability distribution, it will necessarily obey any laws that apply

to quantum systems.

5.2 Von Neumann Entropy and Language

We have seen that correlations in language can be modeled by quantum states or even just

by classical probability distributions over word counts. If we want to consider the combi-

nation “animal acts” as complete and unambiguous, while the meaning of its individual
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words “animal” and “acts” are ambiguous, then we can do this by considering “animal

acts” to be an entangled pure state, as in the expression (5.1). Since the entire system is

described by a pure state, its von Neumann entropy is zero, but we can compute a nonzero

von Neumann entropy for its subsystems, the individual words. The word “animal” has a

subsystem density matrix

ρAnimal =
1

1382

(
666 |h⟩⟨h|+247 |b⟩⟨b|+97 |t⟩⟨t|+372 |c⟩⟨c|

+
√

247 ·97(|b⟩⟨t|+ |t⟩⟨b|)+
√

247 ·41(|b⟩⟨c|+ |c⟩⟨b|)+
√

97 ·41(|t⟩⟨c|+ |c⟩⟨t|)
)

≈


horse bear tiger cat

horse 0.482 0 0 0
bear 0 0.179 0.112 0.073
tiger 0 0.112 0.071 0.046
cat 0 0.073 0.046 0.269

,
which has eigenvectors


1
0
0
0

 ,


0

0.56301
0.352821
0.747353

 ,


0

−0.633279
−0.396856
0.664427

 ,


0

−0.531015
0.847363

0




with eigenvalues {0.48191,0.345574,0.172516,0}, for a total entropy of 1.47463 bits. The

word “acts” is represented by the density matrix

ρActs =
1

1382

(
464 |w⟩⟨w|+202 |s⟩⟨s|+385 |g⟩⟨g|+331 |m⟩⟨m|

+
√

464 ·202(|w⟩⟨s|+ |s⟩⟨w|)+
√

41 ·331(|g⟩⟨m|+ |m⟩⟨g|)
)

≈


growls whinnies snorts meows

growls 0.336 0.222 0 0
whinnies 0.222 0.146 0 0

snorts 0 0 0.279 0.084
meows 0 0 0.084 0.240

.
which has the different eigenvectors


0.834684
0.55073

0
0

 ,


0
0

0.782875
0.622179

 ,


0
0

−0.622179
0.782875

 ,


−0.55073
0.834684

0
0


 ,
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but the same eigenvalues {0.48191,0.345574,0.172516,0}, yielding the exact same entropy

of 1.47463 bits. The combination of these two subsystems to yield a pure state with zero

entropy is consistent with the fact that each subsystem of a bipartite system in a pure state

must have the same von Neumann entropy.

If we instead use the assumption of a completely classical mixture (5.2), then we get

the same density matrices, just with no coherence terms (meaning that only the diagonal

terms remain):

ρAnimal =


horse bear tiger cat

horse 0.482 0 0 0
bear 0 0.179 0 0
tiger 0 0 0.071 0
cat 0 0 0 0.269


and

ρActs =


growls whinnies snorts meows

growls 0.336 0 0 0
whinnies 0 0.146 0 0

snorts 0 0 0.279 0
meows 0 0 0 0.240

.
The eigenvalues of these diagonal matrices are just the values appearing on the diagonals,

from which we can compute that their entropies are 1.73017 and 1.94165, respectively. For

comparison, the entropy of the composite classical mixture (5.2) is 2.29155. This agrees

with the fact that for combinations of classical probability distributions, max(S(A),S(B))≤

S(AB)≤ S(A)+S(B).

5.3 Conclusions

The two situations we have considered here, namely, the pure state and the classical mix-

ture, do not exhaust the possible quantum density matrices consistent with the empirical

word counts. In fact, there is an entire spectrum of possibilities for coherence, between the

completely classical mixture and the pure state. In this general case, the whole sentence
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has an intermediate amount of entropy, and the individual words have unequal but similar

entropies. Another aspect left unspecified when considering only word counts is the

relative phase between the components of (5.1). Our choice to neglect phases simplifies

the expressions and coincides with the procedure in Section 3 of Tai-Danae Bradley’s

thesis [18].

Regardless of the specifics, the analogy we have explored suggests some properties of

the distribution of information content in language. If a sentence has ambiguities repre-

sented by a classical probability distribution, then the entropies of its subparts are relatively

unconstrained, just needing to satisfy properties of joint Shannon entropy. However, if a

simple sentence can be represented by a (nearly) pure quantum state, then if we divide it

into two subparts, like subject and predicate, then the entropies of the two parts must be

(nearly) equal.

The example sentence we considered, “the animal acts”, only involves a narrow amount

of ambiguity, namely between different animals, and between different animal actions.

In such a restricted case, it may seem plausible that there is a significant relationship

between all animals considered, and even coherence to the point that the sentence is almost

pure. However, if we consider the distribution of subject and predicate meanings over

all possible sentences, it seems likely that there will be much less coherence, but existing

coherences may reveal which sentences are analogically related. It would be interesting to

explore this distribution more quantitatively using the DisCoCat framework on a variety

of sentences. It could even be insightful to explore univariate distributions, such as the

distribution of predicate vectors, since this is only generally possible in a compositional

framework like DisCoCat.



Bibliography

[1] T. Draper, “Question Answering on Quantum Computers,” Journal of the Utah

Academy of Sciences, Arts, & Letters 100 (Mar, 2024) 321–332.

https://www.utahacademy.org/wp-content/uploads/2024/03/

JUASAL-2023-full-text-final2.pdf.

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th

Anniversary Edition. Cambridge University Press, USA, 10th ed., 2011.

[3] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics Physique Fizika 1 (Nov,

1964) 195–200.

https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195.

[4] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed Experiment to Test

Local Hidden-Variable Theories,” Phys. Rev. Lett. 23 (Oct, 1969) 880–884.

https://link.aps.org/doi/10.1103/PhysRevLett.23.880.

[5] B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Letters in Mathematical

Physics 4 (1980) 93–100.

http://www.tau.ac.il/~tsirel/download/qbell80.html.

35

https://www.utahacademy.org/wp-content/uploads/2024/03/JUASAL-2023-full-text-final2.pdf
https://www.utahacademy.org/wp-content/uploads/2024/03/JUASAL-2023-full-text-final2.pdf
https://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://dx.doi.org/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://dx.doi.org/10.1007/bf00417500
https://dx.doi.org/10.1007/bf00417500
http://www.tau.ac.il/~tsirel/download/qbell80.html


BIBLIOGRAPHY 36

[6] J. Preskill, “Lecture Notes for Ph219/CS219: Quantum Information and Computation

Chapter 4,” California Institute of Technology (2001) 22–24.

http://theory.caltech.edu/~preskill/ph229/notes/chap4_01.pdf.

[7] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical

Journal 27 no. 3, (1948) 379–423.

[8] D. Jurafsky and J. H. Martin, Speech and Language Processing. 3rd ed., 2024.

https://web.stanford.edu/~jurafsky/slp3/.

[9] B. Coecke, From Quantum Foundations via Natural Language Meaning to a Theory of

Everything, pp. 63–80. Springer International Publishing, Cham, 2017.

https://doi.org/10.1007/978-3-319-43669-2_4.

[10] K. Meichanetzidis, A. Toumi, G. de Felice, and B. Coecke, “Grammar-aware sentence

classification on quantum computers,” Quantum Machine Intelligence 5 no. 1, (Feb,

2023) . https://doi.org/10.1007/s42484-023-00097-1.

[11] J. Lambek, “The mathematics of sentence structure,” American Mathematics Monthly

65 (1958) .

[12] D. Kartsaklis, I. Fan, R. Yeung, A. Pearson, R. Lorenz, A. Toumi, G. de Felice,

K. Meichanetzidis, S. Clark, and B. Coecke, “lambeq: An Efficient High-Level Python

Library for Quantum NLP,” arXiv:2110.04236 [cs.CL].

[13] B. Coecke, M. Sadrzadeh, and S. Clark, “Mathematical foundations for a

compositional distributional model of meaning,” Linguistic Analysis 36 (2010) ,

arXiv:1003.4394 [cs.CL].

[14] B. Coecke and A. Kissinger, Picturing Quantum Processes: A First Course in Quantum

Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

http://theory.caltech.edu/~preskill/ph229/notes/chap4_01.pdf
https://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://web.stanford.edu/~jurafsky/slp3/
https://dx.doi.org/10.1007/978-3-319-43669-2_4
https://doi.org/10.1007/978-3-319-43669-2_4
https://dx.doi.org/10.1007/s42484-023-00097-1
https://dx.doi.org/10.1007/s42484-023-00097-1
https://doi.org/10.1007/s42484-023-00097-1
https://dx.doi.org/10.1080/00029890.1958.11989160
https://dx.doi.org/10.1080/00029890.1958.11989160
https://arxiv.org/abs/2110.04236
https://arxiv.org/abs/1003.4394
https://dx.doi.org/10.1017/9781316219317
https://dx.doi.org/10.1017/9781316219317


BIBLIOGRAPHY 37

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

representations of words and phrases and their compositionality,” in Advances in

Neural Information Processing Systems, C. Burges, L. Bottou, M. Welling,

Z. Ghahramani, and K. Weinberger, eds., vol. 26. Curran Associates, Inc., 2013.

https://proceedings.neurips.cc/paper_files/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[16] Qiskit contributors, “Qiskit: An Open-source Framework for Quantum Computing,”.

https://doi.org/10.5281/zenodo.2573505.

[17] L. Beltran and S. Geriente, “Quantum Entanglement in Corpuses of Documents,”

Foundations of Science 24 no. 2, (Jun, 2019) 227–246.

https://doi.org/10.1007/s10699-018-9570-2.

[18] T.-D. Bradley, “At the Interface of Algebra and Statistics,” arXiv:2004.05631

[quant-ph]. PhD thesis, CUNY Graduate Center.

https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.5281/zenodo.2573505
https://dx.doi.org/10.1007/s10699-018-9570-2
https://doi.org/10.1007/s10699-018-9570-2
https://arxiv.org/abs/2004.05631
https://arxiv.org/abs/2004.05631


Index

artificial intelligence, 18

Bell state, 5
Bell’s theorem, 5
bit, 3, 14
Born rule, 3
bra, 3

category, 21
monoidal, 22

category theory, 21
CHSH inequality, 5
coherence, 8
compositionality, 21
computing

classical, 3
quantum, 10

correlation, 6

density matrix, 8
Dirac notation, 3
DisCoCat, 21
distributionality, 21

entanglement, 5
entropy, 13

conditional, 15
joint, 14
Shannon, 14
von Neumann, 15

gate, 10
AND, 10
CNOT, 11
controlled, 11
CPHASE, 11

Hadamard, 11
NOT, 10
parameterized, 12
PHASE, 11
rotation, 12

information theory, 13

ket, 3

large language model, 27
local realism, 6
loss function, 26

measurement, 3
mixed state, 8
mutual information, 15

natural language processing, 18
neural networks, 21

partial trace, 9
pregroup grammar, 18
pure state, 7

qubit, 3

Schrödinger equation, 2
string diagram, 22
superposition, 2

tensor product, 3
trace, 9
Tsirelson’s bound, 6

unitary matrix, 10

word vectors, 20
38


	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	1 Introduction
	2 Quantum Theory
	2.1 Qubits and Dirac Notation
	2.2 Bell Tests of Entanglement and the CHSH Inequality
	2.3 Density Matrices
	2.4 Quantum Computation

	3 Information Theory
	3.1 Classical Information
	3.2 Quantum Information

	4 Language
	4.1 Computing with Language
	4.1.1 Grammatical Parsing
	4.1.2 Word Vectors

	4.2 DisCoCat
	4.2.1 Category Theory
	4.2.2 Circuit Generation
	4.2.3 Parameter Optimization

	4.3 Information in Language

	5 Connections
	5.1 Word Vectors and Entanglement
	5.2 Von Neumann Entropy and Language
	5.3 Conclusions

	Bibliography
	Index

