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ABSTRACT 

 

TrIP – Transformer Interatomic Potential Predicts Realistic Energy Surface Using Physical Bias 

 

Bryce Eric Hedelius 

Department of Physics and Astronomy, BYU 

Master of Science 

 

Accurate interatomic energies and forces enable high-quality molecular dynamics 

simulations, torsion scans, potential energy surface mapping, and geometry optimization. 

Machine learning algorithms have enabled rapid estimates of energies and forces with high 

accuracy. Further development of machine learning algorithms holds promise for producing 

general potentials that support dozens of atomic species. I present my own Transformer 

Interatomic Potential (TrIP): a chemically sound potential based on the SE(3)-Transformer. 

TrIP’s species-agnostic architecture—using continuous atomic representation and homogenous 

graph convolutions—encourages parameter sharing between atomic species for more general 

representations of chemical environments, keeps a reasonable number of parameters, serves as a 

form of regularization, and is a step towards accurate universal interatomic potentials. I introduce 

physical bias in the form of Ziegler-Biersack-Littmark-screened nuclear repulsion and 

constrained atomization energies to improve qualitative behavior for near and far interaction. 

TrIP achieves state-of-the-art accuracies on the COMP6 benchmark with an energy prediction 

error of just 1.02 kcal/mol MAE, outperforming all other models. An energy scan of a water 

molecule shows improved short- and long-range interactions compared to other neural network 

potentials, demonstrating its physical realism compared to other models. TrIP also shows 

stability in molecular dynamics simulations with a reasonable exploration of Ramachandran 

space. 
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Chapter 1 

Introduction 

Developing accurate chemical models is integral for understanding nature and developing 

innovative technologies. My research, originally represented in a paper currently in review, 

delves into my approach to modeling chemical environments using an interatomic potential I 

developed called Transformer Interatomic Potential (TrIP). This thesis is an expansion of the 

paper, aiming to delve deeper into the foundations and experimental design. 

1.1 Motivation 

Describing chemical reactions and transformations is vital to understanding biological and 

industrial processes. Computational modeling assists in predicting the outcomes of chemical 

reactions1, elucidating reaction pathways2, and identifying stable and transition states3. Modeling 

and simulating reactions offer a profound understanding of the underlying mechanisms, thereby 

facilitating the development of new processes and catalysts, including enzymes4. Advancements 

in computational tools further enhance these approaches by providing heightened accuracy and 

accessibility. 

Molecular mechanics methods are instrumental in studying atomistic systems comprising 

thousands to millions of atoms due to their rapid energy and force approximations5. Employing 
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classical mechanics and featuring nearly linear complexity, these methods are particularly 

applicable to the study of complex biological macromolecules6. However, these methods have 

limitations, often relying on fixed atom types and predefined interaction rules. These classical 

force fields prove inadequate for exploring chemical reactions or understanding reactive 

systems7, such as enzymatic reactions8, where the chemistry of the system changes over time. 

Another concern in classical force field approaches is generalizability. The parameters 

underpinning conventional force fields are typically derived from quantum mechanical 

calculations and fine-tuned to match experimental data, thus the quality and comprehensiveness 

of input data limits the accuracies of conventional force fields. While they perform well in 

simulating protein systems due to the availability of extensive data, they face limitations in 

scenarios like molten salt simulations, where input data is limited9. This variability in data 

availability results in force fields that work satisfactorily for one system but struggle to transfer 

the same level of accuracy to different systems10. This underscores the necessity for approaches 

that can accommodate a broader range of chemical environments and system complexities, 

enabling more universally applicable simulation tools. 

The inclusion of polarization effects poses yet another formidable challenge for classical 

force fields11. Polarization plays a pivotal role in shaping molecular properties and 

intermolecular interactions, contributing to the accuracy of simulations. However, integrating 

polarization into force fields proves to be a complex endeavor. One approach is the utilization of 

Drude models12, which introduce explicit 'Drude' particles to simulate the electronic cloud of 

atoms and capture polarization effects. While this technique offers a means to address 

polarization, Drude models present their own set of limitations and challenges, requiring careful 

consideration of trade-offs between accuracy and computational efficiency. As researchers seek 
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to improve the fidelity of simulations, finding effective methods to incorporate polarization 

effects remains a subject of ongoing investigation. 

Although the constraints inherent in classical force fields might prompt consideration of 

more advanced strategies like ab initio molecular dynamics (AIMD), it is crucial to acknowledge 

that these alternative methods also present their own array of obstacles. AIMD, which 

incorporates first-principles quantum mechanical calculations into molecular dynamics 

simulations, offers the capacity to precisely model alterations in electronic structure, the 

dynamics of bond breaking and formation, and other intricate chemical processes. However, 

such precision comes at a significant computational expense, as AIMD mandates the iterative 

solution of the Schrödinger equation for the entire system at each computational time step, 

thereby increasing the computational demands and limiting the scale of feasible simulations. 

The computational demands associated with AIMD render it impractical for simulating 

extensive systems or for conducting simulations over extended timescales13. Consequently, its 

application is primarily constrained to small systems, typically encompassing fewer than 100 

atoms, and short simulation durations on the order of 100 picoseconds. These limitations 

consequently pose a formidable hurdle when attempting to explore more extensive biochemical 

systems14 or phenomena unfolding over prolonged temporal scales, such as the intricate 

dynamics of protein folding or the progressive evolution of materials15. 

Consequently, an escalating interest has emerged in devising approaches that capitalize on 

the speed of classical force fields while also harnessing the precision of quantum mechanical 

calculations16. In this context, machine learning (ML) has garnered considerable attention for its 

potential to surmount the limitations inherent in these two techniques17. Machine learning 

provides a promising avenue for addressing the deficiencies associated with both methods, 
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thereby offering an amalgamation of their strengths. By utilizing machine learning techniques, it 

becomes feasible to train models using ab initio molecular dynamics (AIMD) data and 

subsequently incorporate these models into conventional molecular dynamics frameworks for 

rapid simulations18. This synthesis effectively harmonizes the respective merits of classical force 

fields and quantum mechanical calculations, delivering a powerful tool for comprehensively 

exploring complex molecular systems. 

One of the initial forays into machine learning for molecular dynamics was undertaken by 

Behler and Parrinello19. Their approach employs symmetry functions to encapsulate the chemical 

environment surrounding each atom. Subsequently, atom-specific artificial neural networks 

predict atomic energies, which are then summed to calculate the total energy of the system. In a 

parallel vein, the DeePMD-Kit20 adopts a similar strategy, streamlining the creation of 

customized machine learning potentials by providing a comprehensive framework. These 

endeavors have significantly influenced the trajectory of machine learning applications within 

molecular dynamics, paving the way for further developments in the field. 

The ANI (Accurate Neuronal Network Potential) networks21 22 constitute a significant 

advancement beyond the Behler-Parinello methodology. These networks adopt refined symmetry 

functions derived from the Behler-Parinello approach, resulting in enhanced feature 

representation. Additionally, ANI networks incorporate deeper neural network architectures and 

are trained on a substantial dataset of molecular conformers and energies. The ANI-1x dataset, 

for instance, encompasses approximately 5 million conformations across 50,000 molecular 

configurations. This training dataset is complemented by the Comprehensive Machine-learning 

Potential (COMP6) benchmarking set23, which includes molecules larger than those found in the 
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ANI-1x dataset. The ANI-1x potential achieves an energy mean squared error of 3.37 kcal/mol 

on COMP6, highlighting its robust adaptability to diverse chemical environments. 

A more modern approach is characterized by its departure from traditional symmetry 

functions to encode the chemical environment, instead opting for message-passing graph neural 

networks. As one of the first message-passing neural networks used in interatomic potentials, 

SchNet 24 25 provided molecules in a new way as a graph representation and a more general 

approach for encoding the chemical environment through continuous-filter message-passing 

layers. 

These methodologies previously discussed exhibit invariance, wherein both input and 

intermediate features remain unchanged during rotations or translations. However, our focus 

shifts to equivariant neural networks, which distinctly embrace symmetry—transforming features 

symmetrically under rotations26. In the realm of physics, numerous physical properties, 

encompassing forces, polarizations, dipoles, quadrupoles, and other geometric tensors, inherently 

demonstrate equivariance under rotations and translations27. Thus, an equivariant neural network 

can appropriately represent polarization effects internally and provide a more general approach 

for an interatomic potential. 

Noteworthy instances of equivariant neural networks include NequIP28, MACE29, and 

NewtonNet30, which effectively extend graph networks like SchNet by incorporating equivariant 

features, thereby amplifying the scope of understanding complex molecular interactions. 

Despite the advancing sophistication of machine learning interatomic potentials, the current 

landscape of machine learning potentials is marked by a significant limitation in their 

generalizability31. The prevailing practice involves training and evaluating machine learning 

potentials on relatively straightforward datasets like QM932 and MD1733, yielding accuracies that 
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notably outstrip those achievable by Density Functional Theory (DFT). While these models can 

be adeptly fine-tuned to emulate quantum mechanical potentials for specific systems with 

exceptional precision, their predictive power often wanes when extended to unfamiliar systems 

lying beyond the confines of their training data. For instance, ANI has been reported to 

inaccurately predict attraction instead of repulsion in near-range interactions, stemming from a 

paucity of pertinent training data in these regions. Consequently, while machine learning 

potentials might excel on these datasets, their performance might not translate effectively to 

scenarios involving intricate chemical reactions, diverse molecular environments, or materials 

with specific properties beyond the purview of the training data.  

The application of machine learning models in computational chemistry encounters 

significant challenges, notably the capacity for their misuse. A lack of understanding of models' 

limitations and the nuances of their training process can lead to erroneous conclusions drawn 

from simulations. This issue was recently exemplified in a thorough review of machine learning 

potentials used for Molten Salt simulations34. Here, the authors revealed that the adoption of the 

Behler-Parinello method within DeepMD-Kit introduced a systematic error, rendering the 

accurate simulation of intricate salt systems problematic. This underscores the necessity for users 

to grasp the intricacies of the machine learning models they employ, ensuring a comprehensive 

comprehension of their boundaries and a careful interpretation of their results. 

 These limitations motivated the development of our Transformer Interatomic Potential 

(TrIP). TrIP is based around a sophisticated equivariant message-passing network called SE(3)-

Transformers that enables it to develop a detailed description of its chemical environment. I 

introduce physical bias in the form of screen nuclear Coulombic interactions and exponentially 

decaying asymptotic constraints of isolated atoms to improve the behavior of the potential away 
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from chemical equilibrium. I train and test different molecular configurations, evaluating the 

network’s ability to generalize rather than just interpolate. These approaches improve the 

physical behavior of TrIP’s predictions and TrIP yields state-of-the-art accuracy.  
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Chapter 2 

Background 

In this chapter, I delve into the theoretical underpinnings that form the background of my 

research in developing the Transformer Interatomic Potential (TrIP). I establish the essential 

mathematical framework that enables TrIP to maintain symmetry, encode chemical 

neighborhoods, and ensure the continuity of derivatives. As a potential, TrIP belongs to a family 

of mathematical constructs that encode the interactions between atoms, dictating how forces and 

energy change with atomic positions. Furthermore, I explore the crucial role of molecular 

dynamics simulations, which provide the dynamic context for validating TrIP’s predictions and 

understanding its performance in capturing the dynamic behavior of atomistic systems. 

2.1 Mathematical Foundations 

TrIP's methodology is deeply rooted in mathematics. I rely on graph theory, equivariance 

theory, tensor theory, and mathematical smoothness to build a robust framework for predicting 

atomistic interactions. These mathematical concepts enable TrIP to maintain symmetry, encode 

complex relationships, and ensure continuity in derivatives – crucial factors for accurate and 

reliable molecular simulations. 
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2.1.1 Graph Theory 

Graphs serve as a fundamental framework for understanding and representing complex 

relationships and structures in diverse fields of study. In the realm of computational chemistry 

and molecular simulations, graph theory provides us with a versatile mathematical language to 

describe and analyze molecular systems. Graphs, consisting of nodes and edges, offer an elegant 

means to model and comprehend the intricate interactions between atoms and molecules. They 

serve as a bridge between the abstract world of mathematics and the concrete realm of molecular 

behavior. 

A graph denoted G, is a pair G = (V, E), where V is the set of vertices, also called nodes, and 

E is the set of paired vertices, also called edges. Each edge in E connects two distinct vertices in 

V, thereby defining a pairwise relationship between them. In the context of this work, I consider 

symmetric directed graphs, meaning that the edges connecting vertices have an inherent 

direction, but for each edge (v1, v2) in V there exists an edge (v2, v1) in V. Graphs may include 

attributes, weights, and labels associated with nodes and edges. These additional properties make 

graphs a useful type of data structure for representing connected information. 

In this work, graphs are the fundamental data structure for characterizing atomistic systems, 

where individual atoms are denoted as nodes, and the localized interactions between these atoms 

are depicted as edges. I use node attributes, such as the atomic species and position, and edge 

attributes, such as relative positions, as well as intermediate values. 

The construction of graphs in this study uses a fixed-radius near-neighbor approach. Each 

atom within the atomistic system is a node and any pair of atoms within a predefined cutoff 

radius is an edge. This approach allows for the creation of a graph that succinctly captures the 



10 

 

local interactions and relationships between atoms within the specified radius while 

accommodating the periodicity of the system. It is a crucial step in encoding the atomic 

environment and facilitating the subsequent analysis of the molecular system's behavior and 

properties. 

2.1.2 Group Theory 

Group theory, a branch of abstract algebra, plays a fundamental role in understanding the 

symmetries and transformations inherent in molecular systems. In the realm of molecular 

simulations and computational chemistry, group theory provides a rigorous mathematical 

framework to study and categorize the symmetries exhibited by atomic and molecular structures. 

Group theory's significance lies in its ability to elucidate the underlying symmetries of molecular 

systems, enabling researchers to predict and interpret a wide range of molecular behaviors, from 

spectroscopic outcomes to reaction mechanisms. This mathematical discipline is instrumental in 

characterizing and harnessing the symmetrical properties of molecules, facilitating a deeper 

comprehension of their physical and chemical attributes. 

Mathematically, a group is a pair (G, ⋅) consisting of a group G and a binary operation on G 

with the following axioms: 

1. Associativity: For all a, b, c in G, (a⋅b) ⋅c = a⋅(b⋅c). 

2. Identity element: There exists an element e in G such that, for all a in G, we have e⋅a = 

a⋅e = a. 

3. Inverse element: For each a in G, there exists an element b in G such that a⋅b=b⋅a=e. 
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In this work, the groups I am working with are the group SO(3)—the set of real 3×3 

orthogonal matrices with unit determinant, SE(3)—the set of translations and proper rotations in 

Euclidean space, and GL(n)—the set of n×n invertible matrices. 

2.1.3 Equivariance Theory 

Equivariance theory, within the context of molecular simulations and computational 

chemistry, provides a powerful framework rooted in mathematical symmetries to capture and 

reproduce the physical behaviors of atomic systems. At its core, equivariance recognizes that the 

laws of nature governing molecular interactions are consistent under different transformations, 

such as rotations or translations. These transformations reflect the inherent symmetries of 

molecular systems, allowing us to study how atoms and molecules behave irrespective of their 

spatial orientations. It allows us to describe complex molecular behaviors while maintaining the 

fundamental symmetries that govern the atomic world. 

To have a clear definition of equivariance, I first build from simpler mathematical constructs 

from groups. First, allow the group to act on other groups through group actions and encapsulate 

those actions in G-sets. 

If G is a group and X is a set, then a group action α of G on X is a function α: G×X→X that 

satisfies the following axioms: 

1. Identity: α (e, x) = x where e is the identity element of G and x is in X. 

 where g, h are in G and x is in X. 

Expressions such as α (g, x) are shortened to g⋅x when the action is clear from context. A set 

X together with an action α of G is a G-set. The concept of a G-set allows for the following 
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compact definition of equivariance: If X and Y are both G-sets for the same group G, then a 

function f: X→Y is said to be equivariant if f(g⋅x) = g⋅f(x) for all g in G and x in X. 

2.1.4 Representation Theory 

Representation theory is a fundamental mathematical framework that plays a pivotal role in 

the study of equivariance, particularly in the context of machine learning and deep learning. It 

provides a formalism for understanding mathematical objects, such as linear transformations or 

symmetries, using matrices or linear operators. 

In the context of equivariance, representation theory describes a group action as linear 

transformations on vector spaces. This is crucial because real-world data, including images, 

molecular structures, or physical systems, share the same mathematical properties as vectors and 

tensors. 

A representation of a group G on a vector space V is a function ρ: G→GL(n) that is a 

homomorphism, i.e., it satisfies the following homomorphism property: ρ(g⋅h)= ρ(g) ρ(h) for all 

g, h in G. An irreducible representation is a nonzero representation with no proper nontrivial 

subrepresentation (a vector subspace that is itself a representation). 

2.1.5 Tensor Theory 

Tensors serve as a fundamental mathematical construct in the context of equivariant neural 

networks, enabling the representation and manipulation of data that have various symmetries and 

transformations. Understanding tensors is crucial for developing machine learning models that 

respect and use these symmetries effectively. 
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There are a variety of equivalent ways to define tensors, as multidimensional arrays, as 

multilinear maps, using tensor products of vector spaces, and using (tensor) representations of an 

arbitrary group G. The latter approach is the most natural for my purposes, as equivariant neural 

networks are rooted in representation theory and this definition most clearly shows that the 

objects used in equivariant neural networks are indeed tensors. 

A tensor T: B→W is a mapping from the set of ordered bases of a vector space V to 

another vector space W (also over the field F) to the vector space W. Here, 𝐵 =

{(𝒗1, … , 𝒗𝑛) | 𝒗𝑖 ∈ 𝑉} is a set of ordered bases (𝒗1, … , 𝒗𝑛) on V. The mapping T is equivariant 

under the action of a group G, meaning that there is a representation 𝜌: 𝐺 → 𝐺𝐿(𝑊) such that 

𝑇(𝜌(𝑔)(𝑣)) = 𝜌(𝑔)(𝑇(𝑣)) (𝑀1) 

for all 𝑔 ∈ 𝐺 and basis 𝑣 ∈ 𝐵. In practice, inference with an equivariant neural network works in 

a fixed basis so we efficiently store tensors as arrays in computer memory. However, 

equivariant neural networks have restrictions so intermediate features transform properly as 

tensors under basis transformation. Thus, the symmetry constraint transfers from the tensors 

to the neural network itself as the new equivariant condition: 

NN(𝜌(𝑔)(𝑻)) = 𝜌(𝑹)(NN(𝑻)) (𝑀2) 

for all invertible matrices 𝑔 ∈ 𝐺 where 𝑻 is a tensor and NN: 𝑉 → 𝑊 is the neural network 

mapping from positional space to an arbitrary vector/tensor space W. 

 A fundamental choice of the group G in the context of linear algebra and differential 

geometry is GL(𝑊). In the context of equivariant neural networks based in 3-dimensional 

Euclidean space, the group GL(ℝ3) includes transformations such as shearing and scaling which 

do not correspond to conserved physical quantities in molecules. Therefore, I restrict the 
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equivariance condition to rotational symmetries. While it is possible to include the symmetry of 

improper rotations (those including a reflection), for this work I restrict to the symmetries of 

proper rotations, those described by SO(ℝ3). Since those are the same symmetries of a sphere, 

these tensors are “spherical tensors.” 

 The properties of SO(ℝ3) are well documented due to its usage in quantum mechanics, 

rigid body mechanics, and computer graphics and vision. Any representation 𝜌 of SO(ℝ3) can 

be linearly transformed into a basis so that 𝜌 is the direct sum of Wigner D-matrices, the 

irreducible representations of SO(ℝ3). Therefore, it is convenient for equivariant neural 

networks to use irreducible vector spaces that transform by the action of Wigner-D matrices. 

These are the same transformation laws that govern spherical harmonics, so vectors of 

spherical harmonics (𝑌𝑙
−𝑙, … , 𝑌𝑙

𝑙) are irreducible spherical tensors and use the same language as 

spherical harmonics to describe irreducible spherical tensors by degree l and order m. 

 New tensors can be made by combining other tensors with tensor products. The new 

tensors are often reducible, meaning they can be decomposed into the direct sum of other 

tensors, and the components of the irreducible tensors can be calculated using Clebsch-Gordan 

coefficients 𝐶𝑗1𝑚1𝑗2𝑚2

𝐽 𝑀  according to 

𝑧𝑀
𝐽 = ∑ ∑ 𝐶𝑗1𝑚1𝑗2𝑚2

𝐽 𝑀 𝑥𝑚1

𝑗1 𝑦𝑚2

𝑗2

𝑗2

𝑚2=−𝑗2

𝑗1

𝑚1=−𝑗1

. (𝑀3) 

Where 𝑥𝑚1

𝑗1  and 𝑦𝑚2

𝑗2  are input tensors of degree 𝑗1and 𝑗2 respectively, and 𝑧𝑀
𝐽  is the output 

tensors of degree 𝐽. 
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This ability to combine information from different tensors together to produce a new 

tensor is the foundation of equivariant neural networks, generating tensors out of spherical 

harmonics and other tensors. 

 Notably, the Clebsch-Gordan coefficients have symmetries such as “conservation of 

angular momentum”, where 𝑚1 + 𝑚2 = 𝑀 and the degrees must satisfy the triangle 

inequalities, where |𝑗1 − 𝑗2| ≤ 𝐽 ≤ 𝑗1 + 𝑗2, |𝑗2 − 𝐽| ≤ 𝑗1 ≤ 𝑗2 + 𝐽, and |𝐽 − 𝑗1| ≤ 𝑗2 ≤ 𝐽 − 𝑗1. 

2.2 Deep Learning Foundations 

Currently, message-passing graph neural networks are often used in machine learning 

potentials. In this framework, a molecule is a graph 𝐺 = (𝑉, 𝐸), with atoms abstracted as a set 

of nodes V and local interactions as a set of edges E, where each edge is a pair of nodes. Graph 

neural networks pass information between their nodes using message-passing layers, which can 

be written as: 

𝒇𝑢
𝑖+1 = 𝛼𝑖 (𝒇𝑢

𝑖 ,⊕𝑣∈𝑁𝑢

𝑖 𝛽𝑖(𝒇𝑢
𝑖 , 𝒇𝑣

𝑖 , 𝒆𝑢𝑣
𝑖 )) (1) 

where i is the layer index, 𝛼𝑖 and 𝛽𝑖 are differentiable functions, ⊕𝑣∈𝑁𝑢

𝑖  is a permutation 

invariant aggregation operation over the “source” nodes v in the neighborhood 𝑁𝑢—the set of 

nodes that share an edge—of the destination node u, 𝒙𝑢
𝑖  is the initial vector on the 

“destination” node, different versions of 𝒇 are the node vectors, and 𝒆𝑢𝑣
𝑖  is the feature vector 

on the edge from v to u. This design enables information to propagate through different atoms 
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across multiple interaction layers, fostering the exchange of knowledge and enabling a machine 

learning algorithm to learn chemical environments and interactions. 

An early example of an invariant approach was the SchNet potential, which uses 

continuous convolutions of the form: 

𝒇𝑢
𝑖+1 = 𝒇𝑢

𝑖 + MLP𝑖 (∑ 𝑾𝒊(‖𝒓⃗ 𝑣𝑢‖) 𝐀𝐟𝐟𝑖(𝑓𝑣)
𝑣∈𝑁𝑢

) (2) 

Where 𝐀𝐟𝐟𝑖 is a learnable affine transformation, the relative position of node u relative 

to node v is 

𝒓⃗ 𝑣𝑢 = 𝒓⃗ 𝑢 − 𝒓⃗ 𝑣, (3) 

where 𝑾𝒊 is a multilayer perceptron serving as a radial profile function, and MLP𝑖 is a 

multilayer perceptron to calculate the overall interaction. 

 Equivariant neural networks take a more general approach with spherical tensors35. An 

example of a fundamental equivariant message-passing layer that I use in this work comes from 

Tensor Field Networks (TFN)36, where the features are now described as irreducible spherical 

tensors that update according to: 

𝒇𝑢
𝑖+1,𝑙 = 𝑤𝑖,𝑙𝒇𝑢

𝑖,𝑙 + ∑ ∑ 𝑾𝑖,𝑙𝑘(𝒓⃗ 𝑣𝑢)𝒇𝑣
𝑖,𝑘

𝑣∈𝑁𝑢𝑘≥0
(4) 

Where 𝑤𝑖,𝑙 is a “self-interaction” scalar and 𝑾𝑙𝑘,𝑖(𝒓⃗ ): ℝ3 → ℝ(2𝑙+1)×(2𝑘+1) are learnable 

weight kernels defined as 

𝑾𝑙𝑘(𝒓⃗ ) = ∑ 𝜌𝑙𝑘𝑗(‖𝒓⃗ ‖)
𝑘+𝑙

𝑗=|𝑘−𝑙|
𝑾𝑙𝑘𝑗 (5) 

using radial profile functions 𝜌𝑙𝑘𝑗: ℝ3 → ℝ and similarly sized basis kernel 𝑾𝑙𝑘𝑗: ℝ3 →

ℝ(2𝑙+1)×(2𝑘+1) defined component-wise as 
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(𝑾𝑙𝑘𝑗)
𝑚𝑙𝑚𝑘

(𝒓⃗ ) = ∑ 𝑌
𝑗

𝑚𝑗 (
𝒓⃗ 

‖𝒓⃗ ‖
)

𝑗

𝑚𝐽=−𝑗
𝐶𝑗𝑚𝑗𝑘𝑚𝑘

𝑙𝑚𝑙 . (6) 

Where 𝑌𝑚𝑗

𝑗
: ℝ3 → ℝ are spherical harmonics of degree 𝑗 and order 𝑚𝑗 evaluated in the 

direction of the destination node in terms of the source node and 𝐶𝑗𝑚𝑗𝑘𝑚𝑘

𝑙𝑚𝑙  are the Clebsch-

Gordan coefficients. The radial basis functions are MLPS with the following layers: Linear(1, 32), 

LayerNorm(32), SiLU, Linear (32, 32), LayerNorm(32), SiLU, Linear(32, number of components of 

𝜌𝑙𝑘𝑗). 

 My approach also uses SE(3)-Transformer message-passing layers, which incorporate 

learnable edge-wise attention values 𝛼𝑢𝑣 into the TFN layer described in Eq 3 according to: 

𝒇𝑢
𝑖+1,𝑙 = 𝑤𝑖,𝑙𝒇𝑢

𝑖,𝑙 + ∑ ∑ 𝛼𝑢𝑣
𝑖 𝑾𝑉

𝑖,𝑙𝑘(𝒓⃗ 𝑣𝑢)𝒇𝑣
𝑖,𝑘

𝑣∈𝑁𝑢𝑘≥0
(7) 

Where the attention weight 𝛼𝑢𝑣 and its constituents are 

𝛼𝑢𝑣 =
exp(𝒒𝑢

⊺𝒌𝑢𝑣)

∑ exp(𝒒𝑢
⊺𝒌𝑢𝑤)𝑤∈𝑁𝑢

, (8) 

𝒒𝑢 =⊕𝑙 𝑾𝑄
𝑙 𝒇𝑢

𝑙 , (9) 

𝒌𝑢𝑣 =⊕𝑙 ∑ 𝑾𝐾
𝑙𝑘(𝒓⃗ 𝑣𝑢)

𝑘
𝒇𝑣

𝑘 , (10) 

where 𝑾𝐾
𝑙𝑘 and 𝑾𝑉

𝑙𝑘are taken from Eq 6 and 𝑾𝑄
𝑙  is a matrix of learnable parameters. 

 Analogous to conventional transformers, an SE(3)-Transformer multi-head attention 

layer has multiple attention layers stacked together. The channels of the incoming feature 

vector are split, allowing each attention head (SE(3)-Transformer attention layer) to attend to 

different subspaces. The output of the multi-head attention layer is the concatenation of the 

outputs of the heads. 
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 The SE(3)-Transformers also use norm nonlinearity layers, defined as: 

𝒇𝑢
𝑖+1,𝑙 = ReLU(LN𝑖,𝑙(‖𝒇𝑢

𝑖,𝑙‖)
𝒇𝑢

𝑖,𝑙

‖𝒇𝑢
𝑖,𝑙‖

(11) 

Where ReLU is the rectified nonlinear unit, LN𝑖,𝑙 is a layer norm applied over all features of 

degree l, and 

‖𝒇𝑙‖ ≔ √∑ (𝑓𝑚
𝑙 )

𝟐𝒍

𝒎=−𝒍
. (12) 

The default architecture of an SE(3)-Transformer as implemented by NVIDIA consists of 

seven multi-head attention layers, each followed by the equivariant norm layer above, and a 

final Tensor Field Network layer. The multilayer perceptrons in the radial profile functions use 

ReLU as an activation function. 
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Chapter 3 

Design of TrIP 

In this chapter, we embark on an exploration of the design choices behind the Transformer 

Interatomic Potential, or TrIP. TrIP is a fusion of machine learning techniques and an 

understanding of the fundamental physics governing interatomic interactions. This chapter 

unveils TrIP's architecture, shedding light on its core components, informed adaptations, and 

design choices that have resulted in a potent tool for simulating and understanding molecular 

systems. From the mathematical underpinnings to practical implementation, I delve into TrIP's 

construction, exploring how it expands upon SE(3)-Transformer networks to achieve physical 

realism. 

3.1 Network 

Transformer Interatomic Potential (TrIP) is a deep learning model that uses atomic 

species and positions to predict the energy of atomistic systems. In the landscape of existing 

methodologies, the core architecture of TrIP closely resembles NequIP28 and MACE29 due to 

their shared reliance on Tensor Field Network36 (TFN) graph convolutions. However, TrIP takes 

a distinct route by mainly incorporating SE(3)-Transformer Multi-Headed Attention layers37, 

which subsume the role of the TFN layers. 
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In my approach, I introduce two strategies that infuse physical realism into near- and 

long-range interactions. I employ Ziegler-Biersack-Littmark (ZBL) screened Coulombic 

interactions38 to model nuclear repulsions. I augment the training set with lone atoms39 to 

enforce the expected long-range energy and a modified bump function as a cutoff function to 

enforce gradual and exponentially asymptotic behavior. 

My method also follows a “species-agnostic” strategy, wherein all parameters in the 

network are shared across atomic species, except those in the embedding layer. This idea draws 

inspiration from other deep learning algorithms, such as convolutional neural networks40, 

where parameter-sharing enhances the model’s ability to grasp underlying patterns within the 

data. This approach encourages the network to capture fundamental physical principles 

universally valid across diverse atomic environments. This strategy also augments the method’s 

scalability to accommodate systems that include dozens of different atomic species by 

preventing an explosion in the number of parameters. Additionally, it contributes to 

regularizing the model, mitigating the risk of overfitting. Therefore, TrIP is a universal potential. 

My network architecture is intentionally designed to exhibit mathematical smoothness, 

ensuring that the derivatives of all orders remain continuous41. Although the potential only 

needs to be differentiable to first order for force evaluations, the smoothness of the network 

reduces the likelihood of introducing anomalies or abrupt changes in the predicted energy and 

force profiles, which could potentially lead to unrealistic behaviors during simulations. I used a 

smooth cutoff function, a novel equivariant norm layer, smooth activation functions, and 

appropriate modifications to the attention mechanism. 
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3.2 Implementation 

The atoms within the system are abstracted as nodes in a graph, and distinct nodes are 

connected via edges if the atoms lie within a 𝑟𝑐 = 4.6 Å cutoff distance. To ensure a smooth 

transition over the cutoff boundary, TrIP uses a smooth cutoff function 𝜑:ℝ → ℝ based on the 

bump function: 

𝜑cutoff(𝑥) = {exp (𝑘 −
𝑘

1 − 𝑥2
) ,  𝑥 < 1

0,  𝑥 ≥ 1

(13) 

where 𝑘 = 3 is a hyperparameter that controls the shape of the cutoff function. TrIP uses the 

smooth cutoff function 𝜑 in conjunction with the cutoff distance 𝑟𝑐 to generate “cutoff scalars” 

that scale messages passed between nearby nodes. 

The nodes include atomic number and position information, while the edges include the 

relative position vectors between connected atoms. These relative position vectors are used in 

the creation of equivariant matrices described in Eq 5. 

The neural network of TrIP is built upon NVIDIA’s implementation of SE(3)-

Transformers37, 42 with modifications noted in the following section. A trainable embedding 

layer looks up a scalar-valued vector corresponding to each atom’s species and is the initial 

features vector for the corresponding node. Next, the graph and data are passed through seven 

successive SE(3)-Transformer multi-headed attention layers—each followed by an equivariant 

norm layer—then through a Tensor Field Network layer36. The outputs of each SE(3)-

Transformer layer and equivariant norm layer are tensors of order l=0,1,235 while the Tensor 

Field Network convolutional layer outputs a scalar-valued vector for each atom. These vectors 
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are then used in a multi-layer perceptrons (MLPs) that predict raw atomic energies. This MLP 

consists of the following layers: Linear(48, 48), SiLU, Linear (48, 48), SiLU, Linear(48, 1). 

The other contribution to the total energy comes from the Coulombic interactions 

between nuclei that become significant in the near-range regime (< 1 Å). The standard Coulomb 

potential between the two nuclei multiplied by the ZBL screening function: 

𝑉𝑢𝑣
𝑍𝐵𝐿(𝑟) =

1

4𝜋𝜖0

𝑍𝑢𝑍𝑣𝑒
2

𝑟
𝜑ZBL (

𝑟

𝑎
) (14) 

Is the ZBL-screened Coulomb energy, where a is the “universal screening length”: 

𝑎 =
0.8854 ∙ (0.529 Å)

(𝑍𝑢)0.23 + (𝑍𝑣)0.23
(15) 

And 𝜑ZBL: ℝ → ℝ is the empirical ZBL screening function: 

𝜑ZBL(𝑥) = 0.1818 𝑒−3.2𝑥 + 0.5099 𝑒−0.9423𝑥 + 0.2802 𝑒−0.4028𝑥 + 0.02817 𝑒−0.2016𝑥. (16) 

This potential is written edge-wise and does not use cutoff scaling, so to work with my 

node-wise total energy sum pooling layer I transfer this contribution to each node by the 

following: 

𝑉𝑢
𝑍𝐵𝐿 =

1

2
∑ 𝑉𝑢𝑣

𝑍𝐵𝐿(‖𝒓⃗ 𝑣𝑢‖)
𝑣∈𝑁𝑢

𝜑cutoff (
‖𝒓⃗ 𝑣𝑢‖

𝑟𝑐
) . (17) 

The sum of this value, along with the raw atomic energies predicted by the neural 

network, constitutes the system’s total energy. TrIP’s architecture is shown in Figure 1. 

Automatic differentiation calculates the forces on the atoms as the negative gradients of the 

energy with respect to the atomic positions. The end-to-end differentiability of the total energy 

from atomic positions ensures forces that are properly linked to the energy. 
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3.3 Changes to NVIDIA’s SE(3)-Transformer 

I adjusted NVIDIA’s implementation of SE(3)-Transformers to work appropriately as an 

interatomic potential. Their implementation expects a predetermined graph structure, does not 

use a cutoff function to scale messages by distance, and uses either sum or mean pooling to 

generate a global quantity. Due to the lack of continuity, graph construction, and sum 

aggregation, their implementation is not suitable as an interatomic potential without substantial 

modifications. 

 I incorporate smooth cutoff boundary transitions by inserting the smooth cutoff function 

defined in Eq 12 in the appropriate places. I use it to change the basis kernels 𝑾𝑙𝑘𝑗 from Eq 5 to: 

(𝑾𝑙𝑘𝑗)
𝑚𝑙𝑚𝑘

(𝒓⃗ ) = 𝜑cutoff (
‖𝒓⃗ ‖

𝑟𝑐
)∑ 𝑌𝑚𝑗

𝑗
(

𝒓⃗ 

‖𝒓⃗ ‖
)

𝑗

𝑚𝐽=−𝑗
𝐶𝑗𝑚𝑗𝑘𝑚𝑘

𝑙𝑚𝑙 . (18) 

And the attention values from Eq 7 to: 

𝛼𝑢𝑣 =
𝜑cutoff (

‖𝒓⃗ 𝑣𝑢‖
𝑟𝑐

) exp(𝒒𝑢
⊺𝒌𝑣𝑢)

∑ 𝜑cutoff (
‖𝒓⃗ 𝑤𝑢‖

𝑟𝑐
) exp(𝒒𝑢

⊺𝒌𝑤𝑢)𝑤∈𝑁𝑢

. (19) 

I incorporated smoothness by changing the activation functions from ReLU to SiLU in the 

radial profile function. I also use a custom norm layer that normalizes all features, removing 

most discontinuities in the derivatives. While there is still a discontinuity at the origin, it is 

inconsequential for practical purposes due to the exceptionally high dimensionality of the feature 

space. For a feature vector 𝐟 ∈ ℝ𝐶×𝑀 composed of 𝐶 channels and 𝑀 indices per feature, my 

norm is: 

𝒇𝑖+1 = Norm(𝒇𝑖) = 𝛾 ∙
𝒇𝑖

‖𝒇𝑖‖𝟐/𝐶
(20) 
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where 𝛾 is a learnable parameter and ‖ ‖2 is the Frobenius matrix norm, effectively 

generalizing equation 11 to work over multiple channels and degrees of spherical tensors by 

effectively “norming the norms”. 

 I also changed the radial profile functions in Eq 4 to use learned invariant edge features 

instead i.e., 𝜌𝑙𝑘𝑗(𝒆𝑢𝑣
0 ). This enables the radial profile function to use the atomic identities while 

reasoning about the geometry. I set the initial, invariant edge feature vector 𝒆𝑢𝑣
0,0

 to have the 

distance in the first index and zeros everywhere else. The edge feature vector updates after each 

multi-headed attention layer using a ResNet-like connection: 

𝒆𝑢𝑣
𝑖+1,0 = 𝒆𝑢𝑣

𝑖,0 + 𝒇𝑢
𝑖,0. (21) 

 Finally, I changed the pooling layer to allow sum pooling, which aligns with the 

observation that the total energy scales with the number of atoms and naturally identifies the 

output of the final MLP as an atomic energy. 

 A diagram of how the weight kernel, attention mechanism, TFN layer, SE(3)-

Transformer Attention layer, and the SE(3)-Transformer Multi-Head Attention is shown in Fig 1. 

A diagram of TrIP itself is shown in Fig 2. 
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Figure 1: Diagrams of the main layer types used in TrIP. The weight kernel learns 

equivariant matrices. The TFN layer uses the weight kernel to calculate a fused linear-

tensor product of the node features. The SE(3)-Transformer (SE(3)-T) Attention uses 

learned spherical tensors to calculate attention values. The SE(3)-T Attention layer 

incorporates the SE(3)-T Attention into the TFN layer to scale messages. The SE(3) 

Multi-Head Attention uses multiple SE(3)-T Attention Layers in parallel that attend to 

different feature subspaces. These diagrams are for illustrating mathematics and are 

equivalent to the implementation. 
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Figure 2: Architecture of TrIP. This figure shows the connectivity of the layers and how 

the data changes. The atom species pass through an embedding layer, resulting in a 

scalar-valued vector for each atom. TrIP uses the graph and relative positions to 

generate higher degree spherical tensors from these features via SE(3)-T Multi-Head 

Attention layers. A final TFN layer reduces all the features to scalars, which an MLP uses 

to generate a scalar for each atom. The sum of these scalars with the ZBL-screened 

Coulombic energy makes up the total energy. Automatic differentiation calculates the 

forces on atoms as the negative gradient of the total energy with respect to the atomic 

coordinates. 
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Chapter 4  

Experimental Design 

This chapter serves as a guide to the methods and procedures employed throughout the 

research. It starts with the preparation of both the training dataset and the benchmark set, The 

later sections delve into the intricate process of training the TrIP model and how I designed the 

experiments. 

4.1 Training, Validation, and Test Datasets Preparation 

 I used the ANI-1x dataset to train TrIP. I performed a 95%-5% training-validation split on 

the ANI-1x dataset such that all conformations of a given molecular formula are in the same 

subset. The ANI-1x dataset consists of molecules from the GDB-11 and ChEMBL databases and 

generated amino acids and 2-amino acid peptides generated in RDKit. The conformations are 

sampled from molecular dynamics trajectory sampling, normal mode sampling, dimer sampling, 

and torsion sampling using active learning. The energies and forces were calculated in Gaussian 

09 using ωB97x/6-31*. 

 I use the Comprehensive Machine-learning Potential (COMP6) benchmark23 to test TrIP. 

COMP6 was designed to assess models trained on the ANI-1x dataset for generalizability, 
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especially to larger molecules. The mean molecule size in the COMP6 subsets ranges from 

seventeen atoms to 75 atoms with the largest molecule having 312 atoms. COMP6 

encompasses over 38,000 conformations originating from a diverse range of molecules, 

including those sourced from DrugBank43, random Tripeptides, GDB1344, and S66x845. Like the 

ANI-1x dataset, the energies were calculated in Gaussian 09 using ωB97x/6-31*. I did not 

perform any filtering on COMP6 so that it would be more stringent and so the results would be 

directly comparable to other models. Statistics of the training, validation, and test sets are found 

in Table 3. 

  
Purpose Dataset (Source)  olecules 

( onforma ons) 
Atoms/molecule 
 ean (STD) 

 eavy atoms/molecule 
 ean (STD) 

Training ANI 1  
(GDB 11,  hE B ) 

~  ,    
( ,   ,  3) 

1  ( )   (3) 

Valida on ANI 1  
(GDB 11,  hE B ) 

~3,    ( 1 ,1 3) 1  ( )   (3) 

Tes ng S     
(S    ) 

   (   )    ( )   (3) 

Tes ng ANI  D 
(PDB) 

1  (1,  1)    (  ) 3  (3 ) 

Tes ng GDB to  
(GDB 11) 

1,    (3 ,   ) 1  (3)   (1) 

Tes ng GDB1 to13 
(GDB 13) 

 ,    (  ,   )    ( ) 13 (1) 

Tes ng Tripep des 
( DKit) 

    (1,   )  3 ( )    ( ) 

Tes ng DrugBank 
(DrugBank) 

 3  (13,3  )    (  )    (1 ) 

Table 3: Statistics about training, validation, and testing sets. This proves that the training 

and validation sets have comparatively small molecules while the testing set has a wide range 

of molecular sizes. Information on the exact number of molecules is unavailable because the 

ANI-1x dataset groups molecules with the same formula together so the values are estimated 

based on the facts that the full ANI-1x dataset has 64,865 atoms, I use a 95%-5% split, and 

that some molecules were excluded due to not having any usable energy nor force values. 
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 As in the ANI models, I standardized the energies using so-called self-interaction 

energies and the remaining standard deviation, which were calculated on the training set using 

multiple linear regression. The independent variables for the multiple linear regression were 

the number of each atomic species and the dependent variable was the quantum mechanical 

energy for each conformation. The resulting fitting parameters describe the average energy per 

atomic species that best describes the dataset and the error from linear regression is the 

dataset’s effective standard deviation. For a given point in the dataset, TrIP standardizes the 

energy by subtracting the self-interaction energies for each atomic species and then dividing by 

the standard deviation. During inference, TrIP reverses the standardization process by scaling 

the prediction of the model by the standard deviation and adding the self-interaction energies. 

 Additionally, I included experimental values for electron binding energies for the four 

lone atomic species with the rest of the ANI-1x dataset. TrIP standardizes these lone energies in 

the same way it standardizes the conformational energies. The training protocol includes the 

lone energies in each minibatch during training to constrain the model in the limiting case. 

4.2 Training 

 My loss function was based on the Pseudo-Huber loss function46: 

𝐿𝛿(𝑟) = 𝛿2 (√1 + (𝑟/𝛿)2 − 1) . (22) 

Where r is the residual—the difference between a target value and predicted value—and 

𝛿 = 0.2 is a hyperparameter that sets the maximum slope of the loss function. I use this loss 

function due to its smoothness and that it approximates the L2 squared loss when 𝑟 ≪ 𝛿 and 
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the L1 absolute loss when 𝑟 ≪ 𝛿, and is positive except when r = 0 when the loss is zero. Like 

the loss function for the ANI-2 model, my loss function has terms for both energy and force 

loss: 

𝐿 =
1

𝑁
∑𝐿𝛿

𝑁

𝑖

(𝐸𝑖 − 𝐸𝑖̂) +
𝑙𝑜

∑ 𝑀𝑖
𝑁
𝑖=1

∑∑𝐿𝛿(‖𝒇𝑖𝑗 − 𝒇̂𝑖𝑗‖)

𝑀𝑖

𝑗=1

𝑁

𝑖=1

(23) 

where 𝐸𝑖̂ and 𝒇̂𝑖𝑗 are the respective standardized energies and forces predicted for a given 

molecule, 𝐸𝑖 and 𝒇𝑖𝑗 are the respective standardized QM energies and forces, i indexes N 

molecules within a minibatch, j index the 𝑀𝑖  atoms within molecule i, and 𝑙𝑜 = 0.1 weights the 

force loss relative to the energy loss as was used in ANI2. 

I trained TrIP on my training subset of the ANI-1x dataset. I trained different versions of 

TrIP networks on 8 GPUs for 10 epochs with automatic mixed precision using minibatch sizes of 

25 conformations and the four lone atoms. I used the AdamW optimizer with a weight decay of 

0.1, a learning rate of 1e-3 that decayed by a factor of 0.5 each epoch, and a gradient norm 

clipping of 10.0. The cutoff radius 𝑟𝑐 was set to 4.6 Å and the force weight 𝑙𝑜 was set to 0.1; the 

same values as used in the ANI networks. The hyperparameter 𝑘 was set to 3.0 in the cutoff 

function Eq 12 and δ was set to 0.2 in the Pseudo-Huber loss function Eq 21. I experimented 

with various hyperparameters, but the validation errors did not significantly improve for any 

model I evaluated beyond the defaults for NVIDIA’s implementation of the SE(3)-Transformer 

and my initial guess for hyperparameters. Training took about 20 hours to complete on the full 

TrIP model. 
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For the ablation studies, I changed the network architecture while using the same 

training settings. In the “E uivariant   one-head attention” model, I only used a single 

attention head per multi-head attention layer, which eliminated splitting the features into 

groups and later concatenation. In the “E uivariant” model, multi-headed attention layers were 

replaced with Tensor Field Network layers that use the same number of channels and types of 

spherical tensors—e uivalent to using a single attention head setting the attention value α to 

one—and in the “Invariant model”, only scalar values were used, removing the equivariant 

components of the spherical tensors and the network. 

4.3 Experimental Protocols 

 After training, I benchmarked TrIP and the ablation models on the COMP6 dataset. I 

calculated the energy and force predictions mean absolute error (MAE) and root mean square 

error (RMSE) for using the same method as the ANI networks. 

 I performed a rigid scan of an H2O molecule by fixing the H-O-H angle at 104.5° degrees 

and varying the O-H distances between 0.5 Â and 4.5 Â in increments of 0.05 Â. I calculated the 

single point energies using TrIP, ANI-2x, and singlet, triplet, and quintet ωB97x/6-31* Density 

Functional Theory (DFT) method in Gaussian 16. I calculated the ground-state energy by taking 

the minimum of the singlet, triplet, and quintet states of each conformation. 

 I created and optimized an initial structure for ephedrine in Avogadro47. I rotated the O-

C-C-N torsion angle by increments of 10 degrees, resulting in 36 initial positions. Then I 

optimized the structure by minimizing TrIP and ANI-2x potentials using conjugate gradient 
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descent while using a torsion error function to constrain the angle. I then calculated the energy 

and angle for the resulting conformation. 

 I use a similar protocol to run a torsion benchmark on QC Torsion Drive structures48. 

First, I filtered the QC Torsion Drive dataset by removing all structures with atomic species not 

contained in the dataset. I optimized the QC initial structures with conjugate gradient descent 

on the TrIP and ANI-2x potentials while constraining the torsion angle. Then I compared the ML 

minimized structures against the reference structures using the average RMSDs. 

 I conducted molecular dynamics (MD) simulations using OpenMM49. I ran simulations 

using TrIP, ANI-2x, and Amber1450. I incorporated TrIP into OpenMM as an external force, 

updating the energies and forces at each step of a simulation. I modeled the system using explicit 

water: ANI-2x and TrIP directly predicted the solvent interactions while Amber14 used TIP3P-

FB51. I confined the system to a cubic box with periodic boundary conditions. This was 

implemented in TrIP by subjecting the graph construction to toroidal boundary conditions52 and 

using modified relative positions and distances between atoms and their virtual neighbors. I 

calculated the modified relative positions by 

𝒓⃗ 𝑣𝑢 = [(𝒓⃗ 𝑢 − 𝒓⃗ 𝑣 +
𝒃⃗⃗ 

2
)  mod 𝒃⃗⃗ ] −

𝒃⃗⃗ 

2
(24) 

Where 𝒃⃗⃗  is the box diagonal vector. 

First, I minimized the energy of the system, and performed an NVT (constant number of 

particles, volume, and temperature) equilibration for 100 ps followed by an NPT equilibration 

for 100 ps. A Monte Carlo barostat was employed to keep a constant pressure for the NPT 
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equilibration and the production simulation. I ran 20 ns production simulations with step sizes of 

0.5 fs for TrIP and ANI and 2 fs for Amber. 

I employed the MDAnalysis toolkit53,54 for the analysis of the molecular dynamics (MD) 

simulations, We. I extracted the phi (φ) and psi (ψ) torsion angles for each residue sampled at 

fixed intervals from the trajectory. I assigned the secondary structure state of each residue based 

on the location of the torsion angles in the Ramachandran plot. I define the secondary structures 

in terms of rectangular sections of the Ramachandran domain according to Table 4. The statistics 

for these angles, including the average and standard deviation for each method, were computed. 

Secondary 
Structure 

φ lower bound 
(degrees) 

φ upper bound 
(degrees) 

ψ lower bound 
(degrees) 

ψ upper bound 
(degrees) 

β 13          11  
PII               
α  13      11     
α     13      1   
P    13  1       

Table 4: Definition of secondary structures in terms of rectangular subsets of the 

Ramachandran domain. 
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Chapter 5 

Results 

This chapter stands as a testament to the rigorous training and design of the Transformer 

Interatomic Potential (TrIP) model. With the foundation firmly laid, this chapter embarks on a 

journey of empirical validation and practical benchmarking. The central aim is to assess the 

capabilities and performance of TrIP in the realm of molecular simulations and interatomic 

energy predictions. I highlight TrIP's prowess in accurately predicting interatomic energies and 

forces, surpassing the benchmarks set by its predecessors. 

5.1 Potential Benchmark 

I present the accuracy of TrIP in predicting interatomic energies and forces on the 

COMP6 benchmark in Table 5. Trip outperforms all other models in all regards, with about half 

the error compared to the ANI models. Notably, all my ablation models that use equivariant 

perform as well as ANI-1  in all metrics, e cept the “E uivariant” model’s forces   SE. 
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Potential Energy Error (kcal/mol) Force (kcal/mol/A) 

ANI 1    . 1/1 .  3.  / .13 
ANI 1    1. 3/3.3  3.  / .   
NewtonNet*3  1.  /… 1.  /… 
 IP NN TS (nint= )   1.  /… 1.  /… 
G  NN    . 3/... 1.  /… 
TrIP (Equivariant & multi-head attention) 1.04/1. 1 1.41/2.80 

TrIP (E uivariant   one head a en on) 1.  /1.68 1.  / .   
TrIP (E uivariant) 1.  / .   1.  / .   
TrIP (Invariant)  .3 / .    .  /11.  

Table 5: Comparison of energy and force prediction accuracies between ANI models, other 

interatomic potentials, TrIP, and various ablation models on the COMP6 benchmark. 

Unreported values are marked by “…”. The errors are reported in mean absolute error 

(MAE)/root mean square error (RMSE) for each model. The energy errors are per molecular 

conformation and the force values are evaluated per component. TrIP has significantly lower 

errors in both energy and force predictions compared to the other two models. 

* For NewtonNet, the energies outside of 100 kcal/mol were excluded 

5.2 Water Scan Experiments 

The next experiment was a rigid energy scan of a water (H2O) molecule using four 

different methods: singlet-state DFT, ground-state DFT, TrIP, and ANI 1-x. Here, the DFT 

method is ωB97x/6-31G*, the same used in the generation of the dataset. The results shown in 

Figure 6 show the effects of the physical bias used in the near- and far-region when comparing 

TrIP against ANI-2x. I attribute the physical bias caused TrIP to have the correct physical 

tendencies in all parts of the geometry. 
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Figure 6: Rigid energy scan on an H2O molecule using four different methods: ωB97x/6-
31G* S=0, ωB97x/6-31G* GS, TrIP, and ANI1-x. All four methods used the same molecule 
conformations to evaluate the point energies. The minimum evaluated energy was 
subtracted from each model’s outputs to obtain the contour plots above. These plots 
demonstrate the physical realism incorporated into TrIP by adding the ZBL-screened 
Coulombic interactions to the potential and the lone atoms to the training set. Notably, 
there is a peak in TrIP and ANI-2x around 2 Å, thought to be due to the ANI-1x dataset 
using singlet electron multiplicity rather than the ground-state. 

5.3 Torsion Scans 

I conducted relaxed torsion scans of the complex molecule ephedrine using ωB97x/6-

31G*, TrIP, and ANI-2x. I scanned the dihedral angle of the O-C-C-N atom sequence from 0 to 

360 degrees in 10-degree increments. For each setting of the dihedral angle, an initial 

conformation with a dihedral constraint using either TrIP or ANI-2x. Furthermore, I cross-

validated the results with the ωB97x/6-31G* S=0 method. The error between TrIP and ωB97x/6-

31G* was 0.54 kcal/mol RMSE and the error between ANI-2x and ωB97x/6-31G* was 0.66 

kcal/mol. The torsion profile is shown in Figure 7. 

Torsion benchmarking on the QC Torsion Drive structures48 was performed by comparing 

QC minimized structures against TrIP and ANI-2x minimized structures. Of the 942 molecules, I 

removed 460 for containing species beyond those in the ANI-1x dataset, leaving 482 for 
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scanning. The average RMSD between TrIP and QC is 0.0368 Å and the average RMSD 

between ANI-2x and QC is 0.123 Å. 

 

Figure 7: Results of the Ephedrine torsion scan. The plot shows the calculated energies 

as a function of the dihedral angle between O-C-C-N. Results obtained with the TrIP 

model (red dots) are compared with those from the ANI-2x (green x), and the ωB97x/6-

31G* S=0 method (blue line). 

5.4 Trialanine Simulations 

To comprehensively assess TrIP's performance, I conducted extensive 20 ns simulations 

on Trialanine, employing three distinct methodologies: Amber14/TIP3P-FB, ANI-2x, and TrIP. 

The results of these simulations offer valuable insights into the behavior and structural 

dynamics of Trialanine molecules. Figure 8 provides a visual representation in the form of 

surface Ramachandran plots, showcasing the conformations sampled during the molecular 

dynamics trajectories, similar to one found elsewhere.59 These plots reveal how the secondary 

structures evolve, allowing for insightful comparisons between TrIP, ANI-2x, and Amber14 

models. 
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Figure 8: Surface Ramachandran Analysis of Trialanine Dynamics. This figure offers a 

surface Ramachandran analysis, unveiling the dynamic behavior of Trialanine molecules 

throughout molecular dynamics simulations. This plot provides an insightful visual 

exploration of conformational changes as Trialanine evolves, highlighting the significant 

differences between the TrIP, ANI-2x, and Amber14 models. 

 

Model State Φ (deg) Ψ (deg) ΔΦ (deg) ΔΨ (deg) P (%) 

Amber β  13 .  1  .    .  1 .  1 .  
 PII    .  1  .  1 .  1 .1   .3 
 α     .   1 .  33.    .   .1 
 α    .1  3.1  .    .  3.  
ANI    Β  1  .  133.   3.1 3 .    .  
 PII    .3 1  .1  .  3 .    .3 
 α   1 1.   13.   1.    .1  .  
TrIP Β  1  .  1  .    .  3 .  3 .  
 PII    .3 133.  1 .3 3 .   3.  
 α     .   3.   .   .   .  

Table 9: Torsional Angle Statistics in Trialanine Molecular Dynamics Simulations. This table 

presents statistics characterizing the torsional angles in Trialanine molecules during 

molecular dynamics simulations. These statistics encompass the angles Φ and Ψ, their 

standard deviations ΔΦ and ΔΨ, and the corresponding population percentages (P) for 

different standard der states. The models evaluated include Amber, ANI-2x, and TrIP, 

shedding light on the distinctive conformational dynamics exhibited by Trialanine under the 

influence of these computational approaches. 
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Chapter 6 

Discussion 

The preceding chapter presented a detailed examination of the Transformer Interatomic 

Potential (TrIP), highlighting its capabilities in accurately predicting interatomic energies and 

forces across various molecular systems. This chapter delves deeper, aiming to dissect and 

interpret the significance of these findings, placing them within the broader context of 

computational molecular modeling and interatomic potential research. The core goal is to 

understand not just the 'how' but the 'why' behind TrIP's performance, drawing connections 

between my results and the underlying principles of molecular dynamics and machine learning. 

6.1 Analysis of TrIP’s Performance in COMP6 

In the COMP6 benchmark, a renowned testing ground for molecular modeling methods, the 

Transformer Interatomic Potential (TrIP) showed a significant advancement in predicting 

interatomic energies and forces. This performance is a testament to the sophisticated integration 

of machine learning techniques and a deep understanding of atomic interactions, as meticulously 

outlined in the design of TrIP. 

The benchmark results, particularly the Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE), place TrIP ahead of the ANI-1 and ANI-1x models. This improved accuracy is 
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not merely a numerical achievement but reflects the efficacy of TrIP's core components – the 

Tensor Field Network (TFN) layers and the SE(3)-Transformer. These elements enable TrIP to 

grasp the complexities of molecular systems, ensuring that its predictions are not only accurate 

but also physically realistic. 

One of the key features contributing to TrIP's success is the incorporation of equivariant 

layers, which maintains consistency in network responses under transformations like rotations 

and translations. This aspect is crucial in preserving the physical symmetries inherent in 

molecular systems, a factor often overlooked in traditional approaches. Additionally, the SE(3)-

Transformer's attention mechanism allows TrIP to consider multi-particle interactions 

dynamically, enhancing the model's ability to scale and adapt its predictions according to the 

surrounding atomic environment. 

The physical realism in TrIP's design, particularly its novel adaptations like the smooth 

cutoff function and the custom equivariant norm, plays a pivotal role in its performance. These 

design choices ensure that the model not only captures the intricate interplay of atoms within 

molecules but also aligns closely with the fundamental principles governing these interactions. 

This alignment is evident in TrIP's superior performance in the benchmark, especially in its 

ability to accurately model both near- and far-range interactions, a challenge for existing models. 

Furthermore, TrIP's superior performance in the COMP6 benchmark carries significant 

implications for the field of molecular simulations. Its ability to predict atomic energies and 

forces with high precision paves the way for more accurate molecular dynamics simulations, 

potential energy surface mappings, and geometry optimizations in diverse applications ranging 

from drug discovery to materials science. 
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TrIP’s performance not only highlights the potential of machine learning in scientific 

applications but also opens new avenues for future research, where further refinements and 

enhancements to TrIP could lead to even more groundbreaking advancements in the field of 

computational chemistry. 

6.2 Evaluation of Physical Bias in Water Molecule Energy 

Scans 

The water molecule rigid scan results provide a compelling demonstration of TrIP's 

capabilities in capturing bond formation and breaking behavior accurately. It shows that the 

inclusion of the lone atoms in the training set and the addition of the ZBL potential improve 

near-range and long-range interactions compared to the ANI-2x model.  

Interestingly, this experiment shows that my approach matches ground-state DFT 

calculations better than the other methods. I attribute this alignment to the intrinsic properties of 

graph neural networks, particularly the linearity in the global sum aggregation step. 

Consequently, in the non-interactive domain, where the influence of interatomic interactions 

diminishes, the energies predicted by the TrIP model approach those of isolated atoms. This is 

consistent with the behavior of ground-state energies, which are fundamentally linear 

combinations of atomic energies in the non-interactive limit. However, it is crucial to 

differentiate between the ground-state and the singlet-state. The singlet-state is not always the 

ground-state and does not inherently have the same linearity as the ground-state. 
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I interpret that as a consideration when generating data for machine learning interatomic 

potentials. If intersystem crossing (nonradiative transitioning between different electron states 

with different spin multiplicities) is readily permissible—e.g., through interactions with heavy 

atoms with large spin-orbit couplings—then it is advisable to calculate the dataset in the ground-

state. On the other hand, if the system is constrained and cannot easily switch between electron 

states, selecting the appropriate electronic configuration becomes more critical and should be 

guided by the specific characteristics of the systems one aims to study. For instance, if the 

system is usually in a singlet-state and rarely undergoes intersystem crossing, it may be more 

relevant to use singlet-state configurations. Then, if the inherent nonlinearity that will appear in 

the long-range region is important for fitting or inference, carefully consider what sort of 

physical constraint is appropriate and how to construct the dataset. 

There is a high likelihood that training a linear machine learning algorithm (those predicting 

a per atom energy and using a global sum aggregation for total energy) on non-linear data (such 

as non-ground-state singlet electron state energies) could put significant pressure on the 

algorithm to be steep where those assumptions disagree. It could also lead to poor training 

convergence, poor prediction of physical properties, or instability during molecular dynamics. It 

is vital to carefully assess the dynamics and behavior of the systems in question to choose the 

electronic configurations that most accurately represent the relevant physical phenomena, and 

thereby design the algorithm and dataset. 

Another interesting feature in the TrIP and ANI potential energy scans of water is that they 

both show peaks near 2 Å. This is due to all energies in the ANI-1x dataset being calculated in 

singlet electronic state while some conformations may have ground-states in triplet electron 

state. 
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TrIP predictions align closely with the reference data during progressive elongation and 

eventual breaking of the O-H bond in a water molecule. Importantly, it managed to capture the 

steep increase in potential energy typically associated with bond-breaking events and an 

approximate plateau value due to the inclusion of the loan atoms during training and the 

exponentially decaying cutoff function, showing that it accurately models the substantial energy 

input needed for chemical transformations. 

In contrast, traditional force fields cannot accurately describe bond-breaking and bond-

forming events due to their intrinsic limitation of typically considering bonds as fixed 

connections between atoms. This experiment's results hence underscore the advantage of these 

approaches in capturing the complex nature of chemical bonding. 

6.3 Assessment of Ephedrine Torsion Scan 

Torsion scans play an integral role in pharmaceutical research, particularly in finding the 

conformational preferences of molecular structures and thus influencing drug design strategies. 

The torsion scan of the ephedrine molecule exemplifies TrIP's applicability in such important 

pharmaceutical contexts. My model was able to accurately reproduce the torsional energy 

profiles, highlighting its potential in guiding the design of novel molecules with desirable 

properties. 

While my results are promising, they also expose an area for improvement - the need for 

more robust training sets incorporating a wider variety of atom types. By incorporating more 

varied and complex atom types in the training sets, TrIP can be further optimized for application 
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in pharmaceutical research, potentially opening new avenues for drug discovery and design. This 

approach will enable my model to provide even more accurate and informative torsion scans. 

6.4 Interpretation of Trialanine Molecular Dynamics 

Simulations 

I found that the ANI-2x trajectory seemed to explore more of the Ramachandran space 

than the other potentials, even regions that are not occupied by reference conformations in the 

PDB. On the other hand, TrIP did not explore the landscape as much but hardly ever occupied 

any secondary structure other than β and PII. This might also be a solvation result, given that 

AMBER was optimized against Ramachandran probabilities with TIP3P water models. 

One of the most compelling outcomes was the demonstration of the stability of MD 

simulations using TrIP. Even in complex, demanding computational scenarios, TrIP showed 

remarkable consistency and stability. The generated trajectories did not display erratic behavior, 

and the energy conservation was excellent. These results provide compelling evidence that TrIP 

can accurately simulate the intricate dynamics of chemical systems, including the behavior of 

individual atoms and the entire system. 

A key feature of my work with TrIP is its reusability and adaptability. While the model 

itself presents a significant advancement in ML potentials, the true capability of this research lies 

in its promise for iterative improvements and refinements. The code base, available via my 

repository, is specifically designed to enable retraining of the model on different datasets, other 

than ANI-2x. Additionally, the code base provides a framework for conducting various 
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experiments. Researchers can use the available scripts to perform their own torsion scans, 

potential energy surface mappings, and molecular dynamics simulations, among others. The 

availability of these tools should encourage widespread engagement with my model and lead to 

collective enhancements in the field of machine learning potentials. 

6.5 Broader implications 

There are dozens of published machine learning potentials. The most important 

considerations when selecting a model for practical use are performance, accuracy, generality, 

and physicality. TrIP is based on a highly performant SE(3)-Transformer implementation and is 

fast enough for simple simulations as demonstrated in the 20 ns simulation of solvated 

Trialanine. However, equivariant machine learning potentials are still much slower than force 

fields, and much more research needs to be done to reduce the number of required floating point 

operations and better parallelizing calculations. 

Comparing models tested on COMP6, TrIP’s accuracy on energy and force predictions 

surpasses all others. The ablation studies show that the most important contributions to the 

accuracy were using an equivariant architecture and attention. Similarly, the highest accuracy 

models on COMP6 are equivariant. However, multi-headed attention marginally increased 

accuracy. This suggests that the model did not need to pay attention to many things at a time or 

was not able to effectively leverage multiple heads. This could have been due to the dataset 

being simple (molecules containing first- and second-row elements with near equilibrium 

geometry), too few parameters, or the architecture not providing good enough information for 

the heads. The last option seems the most likely, considering that the inputs for the radial basis 
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functions come from learned scalar features and interatomic distances. While equivariant neural 

networks can learn molecular geometry from relative positions alone and do not require 

handcrafted features to achieve high accuracy, it is likely that better geometric descriptors—such 

as angles, torsions angles, and cross-products of radial positions—would improve accuracy. 

Like other equivariant architectures, TrIP’s species-agnostic architecture encourages it to 

learn more general features that are shared between atomic species. It also did not prevent TrIP 

from still achieving high accuracy. This property will be useful looking forward to universal 

potentials managing dozens of species by not requiring parameters to scale specific to the 

number of parameters. However, a completely species-agnostic architecture may require a 

deeper architecture and may become a hindrance for models featuring dozens of species. Future 

models will benefit from a better balance between species-specific and general parameters while 

being data efficient. 

TrIP achieves the best physicality of any published potential. Adding limiting cases to the 

training set and the ZBL-screened potential to the output of the neural network improved the 

behavior in the short- and long-range interactions respectively, exemplified by the water scans. 

While other potentials have used ZBL-screening terms, including However, there is likely more 

that can be gleaned from physics that would improve the predictions before requiring machine 

learning. For example, it may be possible to predict partial charges to predict a coulombic 

interaction beyond those in the non-shielding regime. These contributions would need to be 

computationally efficient—with at most linear scaling—to be practical for molecular dynamics 

simulations. However, they could reduce what is required for the network to learn, reducing the 

variance of the effective training set, and allowing the network to focus on finer details. 



47 

 

In this rapidly changing field, TrIP will not remain state-of-the-art for long. However, TrIP 

has demonstrated that the SE(3)-Transformer architecture has useful machinery, a powerful 

mathematical framework, and that attention improves on equivariant architectures. TrIP also has 

introduced improved physicality in the long range. Finally, it has hopefully elucidated the current 

challenges and considerations for the field for future research. For these reasons, TrIP is a useful 

stepping stone towards an accurate, performant, universal potential. 
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Chapter 7 

Conclusions 

In this study, I describe my machine learning potential, Transformer Interatomic Potential 

(TrIP), and evaluate it across a range of critical computational chemistry tasks, showing its 

robustness and versatility. Testing on the COMP6 dataset reveals that my method achieves state-

of-the-art results in all predictions, approaching the accuracy of Density Functional Theory on 

molecules outside of the training set. The water energy scan shows the physical bias I 

incorporated into TrIP improve its behavior energy predictions in the near- and far-fields, 

demonstrating its potential for high-quality molecular simulations and potential energy surface 

mapping and overcoming nonphysical behavior where training data is not present. The 

effectiveness of TrIP was further evident in my torsion scans, where the network delivered 

precise energy and conformation predictions, revealing its capacity to be a powerful tool in 

pharmacological studies. Finally, through molecular dynamics simulations, TrIP showed 

excellent stability and predicted a similar Ramachandran plot as a classical force field designed 

for that sort of system, showing its potential for free energy calculations. The success of TrIP is a 

milestone towards the development of accurate universal machine learning potentials, opening 

the door to more detailed and accurate explorations of complex molecular phenomena. The code 

and TrIP parameters for the experiments are available at https://github.com/dellacortelab/trip. 
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