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ABSTRACT

Information Geometry Approaches to Optimal Experimental Design and Reduced-Order Modeling
in Ocean Acoustics

Jay C. Spendlove
Department of Physics and Astronomy, BYU

Master of Science

This thesis demonstrates the application of information geometry to problems in underwater
acoustics. Information geometry combines the fields of information theory and differential geometry
by interpreting a multiparameter model as a Riemannian manifold in an ambient data space.
Information geometry tools are especially powerful in context of problems of experimental design
and model selection in ocean acoustics. The application area specifically considered in this research
is geoacoustic inversion, where seabed parameter values are inferred from acoustical data. Chapter
2 contains a paper submitted to the Journal of Theoretical and Computational Acoustics, which
introduces information geometry tools such as the model manifold and Fisher information in
context of a review of work in underwater acoustics doing parameter sensitivity analysis. An
example constructing model manifolds for a sound propagation model is given in the second half
of the paper. Chapter 3 contains a paper submitted to the Journal of the Acoustical Society of
America, Express Letters, which constructs model manifolds for a sound propagation model and
compares the information content of absolute and relative transmission loss in regards to seabed
parameters, demonstrating how information geometry can be use to inform experimental design.
This thesis contains the initial application of information geometry to ocean acoustics, with many
more advances that can be pursued in future work.

Keywords: information geometry; underwater acoustics; model manifold; sound propagation;
Fisher information; sensitivity analysis; Cramér-Rao bounds; geoacoustic inversion; reduced-order
modeling; optimal experimental design; transmission loss
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Chapter 1

Overview

Sound propagation in the ocean is incredibly complex, but important to understand for countless

applications, including naval, ecological, and oceanographic applications. One complexity asso-

ciated with underwater sound propagation is that the sound speed of the water, which acts like

the index of refraction in optics, is highly variable and dependent on factors including pressure,

temperature, and salinity. Additional complexity is introduced in a shallow ocean environment

(<200 m depth), where ocean floor composition can have a large impact on sound propagation

through bottom interactions. For example, seafloor compositions that are more sandy tend to be

more reflective, while muddy seafloor compositions tend to be more absorptive. Having an accurate

understanding of the seafloor composition is therefore important in guaranteeing accuracy in the

modeling of underwater sound propagation in a shallow ocean environment.

1



2

Due to the expense and difficulty of experimentally determining seafloor composition via, for

example, core sampling, a research field of great interest is the inverse problem of geoacoustic

inversion, whereby seabed properties are inferred from acoustical data. Seabed properties of interest

could include sediment layer height, density, sound speed, and attenuation. Acoustical data can

come from active sonar sources (e.g., pings) or passive sonar sources (e.g. ship noise, wind noise).

A review article by Chapman and Shang [4] provides an in depth review of developments in the

area of geoacoustic inversion.

However, the accuracy of geoacoustic inversion depends significantly on model selection. Many

methods for geoacoustic inversion require that you select a model for the ocean environment, such

as how many sediment layers to include in the model. However, if the model selected cannot

accurately represent the acoustics of the experimental setup being considered, geoacoustic inversion

can lead to the inference of inaccurate parameter values; this phenomenon is called model mismatch.

One specific challenge is when the model includes superfluous parameters that cannot be effectively

learned from the acoustical data. These parameters are referred to as “sloppy" or unidentifiable

parameters because the data and model do not contain adequate information about them. In contrast,

“stiff" or identifiable parameters are those about which the data and model does contain information.

For example, high frequency sound typically interacts with only the top sediment layer. Thus, if

the experimental setup utilizes a high frequency sound source and the model chosen has multiple

(say, three) sediment layers, acoustical data may contain sufficient information to infer sediment

parameters for the top layer but not for the bottom two sediment layers. These lower sediment layer

parameters are sloppy. Therefore, developing tools to enable model selection by determining what

proposed model parameters are sloppy is beneficial. These tools enable answering questions such as

“How many layers need to be included in this model in order to accurately represent the acoustics?"

The field of information geometry provides tools for answering these questions.



3

Information geometry combines the fields of information theory and differential geometry,

interpreting a model as a manifold, or surface. The geometry of this “model manifold" gives insight

into which model parameters, given some experimental setup, are sloppy and which are stiff, and

can thus be learned via geoacoustic inversion. The model manifold can inform the choice of a model

to use for geoacoustic inversion by identifying progressively simpler models, associated with the

finite boundaries of the model manifold, which may better represent the data. Additionally, because

the model output, and thus the model manifold, depends on the experimental setup, the model

manifold can be used as a tool to identify the optimal experimental setup that will provide data with

the most information about parameters of interest. A model manifold containing more information

about parameters manifests as a wider or more “spread out" model manifold. Experimental design

parameters that could be considered are hydrophone (underwater microphone) depth, source range

(how far away the hydrophone is from the sound source?), and source frequency.

This Master’s research has focused on applying information geometry methods to different

problems in ocean acoustics. The scope of my contributions to the field have been to:

1. write a tutorial review paper introducing information geometry concepts such as the model

manifold in context of parameter sensitivity analysis methods previously applied in ocean

acoustics, and

2. provide demonstrations constructing model manifolds for underwater sound propagation

models and showing how the model manifold can be used to address questions of experimental

design and model selection.

In this thesis, Chapter 2 contains a review tutorial paper submitted to the Journal of Theoretical and

Computational Acoustics (JTCA), introducing information geometry tools in context of a review of

literature performing parameter sensitivity analyses in ocean acoustics (item #1). These information

geometry tools are then demonstrated for the case of a simple sound propagation model, motivating
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starting cases for use of information geometry in model selection in underwater acoustics (item #2).

Chapter 3 contains a paper submitted to the Journal of the Acoustical Society of America, Express

Letters (JASA-EL) which compares the information content of absolute and relative transmission

loss data for seabed sediment parameters using model manifolds, demonstrating how information

geometry methods can be utilized for experimental design (item #2). Chapter 4 contains a summary

of contributions discussed in this thesis and future work that can be pursued to build on these

efforts to apply information geometry methods to ocean acoustic modeling, including a summary of

current work training neural network surrogates for the model manifold for application of powerful

differential geometry tools.



Chapter 2

The outlook of information geometry for

underwater acoustics applications

This chapter includes the review tutorial paper submitted to the Journal of Theoretical and Compu-

tational Acoustics (JTCA) entitled The outlook of information geometry for underwater acoustics

applications, with authors Jay C. Spendlove, Michael C. Mortenson, Tracianne B. Neilsen, and

Mark K. Transtrum. The first six sections of this paper function as the technical introduction to this

thesis, introducing key concepts such as Fisher information and Cramér-Rao bounds (Sec. 2.3), and

information geometry tools such as the model manifold (Sec. 2.6), as well as providing a review

of relevant literature about parameter sensitivity analyses in underwater acoustics and information

geometry applied to sloppy models (Sec. 2.2; Sec. 2.4; Sec. 2.5).

Section 2.7 of the paper provides a tutorial demonstrating the construction of various model

manifolds to the Pekeris waveguide sound propagation model, demonstrating the application of

information geometry in ocean acoustics. Introducing these information geometry concepts to the

field of underwater acoustics, in context of other methods that have been utilized in the past, is the

5
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primary purpose of this paper. Additionally, Appendices A and B of this thesis are from this paper,

delineating the intricacies of the Pekeris waveguide implementation and deriving the “hard bottom"

limit of the Pekeris waveguide, which is empirically observed in the model manifolds created in this

paper.

Abstract

This tutorial demonstrates the use of information geometry tools in analyzing environmental

parameter sensitivities in underwater acoustics. Sensitivity analyses quantify how well data can

constrain model parameters, with application to inverse problems like geoacoustic inversion. A

review of examples of parameter sensitivity methods and their application to problems in underwater

acoustics is given, roughly grouped into ‘local’ and ‘non-local’ methods. Local methods such as

Fisher information and Cramér-Rao bounds have important connections to information geometry.

Information Geometry combines the fields of information theory and differential geometry by

interpreting a model as a Riemannian manifold, known as the model manifold, that encodes both

local and global parameter sensitivities. As an example, 2-dimensional model manifold slices are

constructed for the Pekeris waveguide with sediment attenuation, for a vertical array of hydrophones.

This example demonstrates how effective, reduced-order models emerge in certain parameter limits,

which correspond to boundaries of the model manifold. This example also demonstrates how the

global structure of the model manifold influences the local sensitivities quantified by the Fisher

information matrix. This paper motivates future work to utilize information geometry methods for

experimental design and model reduction applied to more complex modeling scenarios.
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2.1 Introduction

Sound traveling in the ocean contains information about both the sound source and the ocean

environment. Many ocean acoustics applications strive to passively infer information from recorded

sounds, such as estimating the direction of arrival of the sound or determining the distance to the

object producing the sound. These applications rely heavily on computational models of underwater

sound propagation. A common question is how the environment should be represented in the sound

propagation models. In particular, how much resolution is required in the water sound speed profile

and how many layers are needed to represent the seafloor in a way that adequately captures the

interaction of the sound and the sediment layers. The question of appropriate parameterization of

the ocean environment has led many to study how to quantify the impact of modeling parameters on

the model-data mismatch and, thus, quantify the information content and parameter sensitivities.

While common approaches for parameter sensitivity are based on perturbation theory or non-

local sampling-based methods, which include Bayesian methods for obtaining posterior probability

distributions, nascent methods for quantifying parameter sensitivity are found in information theory,

including the Fisher information matrix (FIM) and Cramér-Rao bounds (CRB). The combination of

information theory and differential geometry is the field known as information geometry. This paper

serves as a tutorial about how information geometry can be used to quantify parameter sensitivity

and guide the development of reduced-order identifiable models. Specific examples are provided

for the application of information geometry methods to analyze the sensitivity of seabed parameters,

but the method can be applied to any multi-parameter modeling problem.

First, examples are provided in Sec. 2.2 of a variety of approaches to estimating parameter

sensitivity, providing background for other methods presented in this paper. Then, Sec. 2.3 in-

troduces the Fisher information and how Cramér-Rao bounds can be obtained from it. A further

review of relevant papers utilizing the FIM and CRBs in geoacoustic inversion is given in Sec. 2.4.

The non-local method of rotated coordinates and its applications is discussed in greater detail in
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Sec. 2.5, and its connection to the local measures of sensitivity obtained from the Fisher information

matrix is explained. Sec. 2.6 then introduces the model manifold and other principles of information

geometry, and then, in Sec. 2.7, an example is provided that demonstrates how model manifolds

can be applied to an underwater sound propagation model. The illustrative example uses a Pekeris

waveguide model with attenuation [5]. This example builds intuition about the relationship between

model manifolds and CRBs and serves as an example of how information geometry can be applied

to finding reduced-order models in ocean acoustics and beyond. Outlook for future applications of

information geometry to problems in ocean acoustics is discussed in Sec. 2.8 which is followed by

a summary (Sec. 2.9).

2.2 Background

For context, examples are now provided of other approaches to estimating parameter sensitivity

such as perturbation theory, sampling-based approaches, which includes Bayesian methods to

obtain posterior probability distributions, and information theoretic approaches such as Fisher

information and the Cramér-Rao bound. Because uncertainty and sensitivity studies have been

completed in many ocean acoustic applications over many decades, the papers cited herein should

be considered as examples and not an exhaustive list. For example, the reader is referred to

several other review articles that have covered the impact of the sound speed on ocean acoustic

tomography [6, 7], wave propagation [8], reverberation [9], and transmission loss [10], especially in

the presence of internal solitons [11] and thermocline variability [12]. We also recommend to the

reader the references in Chapman and Shang [4] on the development of geoacoustic inversions to

obtain estimates for seabed properties; this review article provides a detailed timeline of significant

development in geoacoustic inversions including the sophisticated trans-dimensional Bayesian

approach to geoacoustic inversion.



2.2 Background 9

Perturbation theory approaches have been used to estimate parameter sensitivity of seabed

parameters. First-order perturbation theory has been applied to analytical expressions for frequency-

dependent sound pressure to obtain derivatives of pressure with respect to seabed sound speed [13],

density, shear speed, and layer thickness [14, 15]. A perturbation theory approach has also been

applied to investigate the sensitivity of sound propagation to changes in the water sound speed

[16–19].

Sampling methods have been used for parameter sensitivity efforts in a variety of ocean acoustics

applications. Many have explored how matched-field source localization [20, 21] is related to the

ocean environment, including changes in water depth [22], sound speed and seabed properties

[23, 24]. Matched-field geoacoustic inversion efforts have also conducted parameter sensitivity

studies for different receiver configurations, including single sensors [25], vertical line arrays

[9, 15, 26–30], horizontal towed arrays [31], and vector sensors [32]. Sampling-based sensitivity

analyses have also been considered for different types of sound sources, including ambient noise

[23, 33] and surface ships [30]. A Gibbs sampling approach for quantifying parameter sensitivity

and how that leads to uncertainty in estimates from geoacoustic inversions has been thoroughly

described in a pair of papers by Dosso [34, 35]. The difference between linear and nonlinear

measures of parameter sensitivities was clearly delineated in a Letter to the Editor by Dosso et

al. [36]. Many additional efforts have used sampling methods to examine how modal properties are

influenced by parameter uncertainty [13, 14, 23, 25, 37–39]. Spatial shifts in sound fields have also

been studied to obtain a stochastic sensitivity or global measure of sensitivity [40].

Bayesian methodology also utilizes advanced sampling methods in order to calculate posterior

probability distributions (PPDs). From these PPDs, marginal and joint probability distributions can

be found to evaluate parameter sensitivity and parameter coupling, respectively. Different sampling

methods have been applied to obtain PPDs, such as the freeze bath method [41,42]; Gibbs sampling

[34, 35]; grid sampling [43]; directed Monte Carlo methods, e.g., genetic algorithms [44–46];
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Markov chain Monte Carlo [47,48]; interacting Markov chains [49,50]; parallel tempering [51]; and

reversible-jump Markov-chain Monte Carlo [52–55]. Sophisticated sampling of both the parameter

space and the model space is incorporated in the trans-dimensional Bayesian approach to geoacoustic

inversion [52]; the progression of geoacoustic inversions and development of trans-dimensional

Bayesian approach are reviewed in Chapman and Shang [4].

Parameter sensitivity analysis has also been used to improve automated sampling algorithms,

such as genetic algorithms, simulated annealing, and Tabu [29] for geoacoustic inversions. For

example, genetic algorithms have been combined with the Gauss-Newton approach [45], which

estimates parameter sensitivities from an approximate Hessian, and a subspace approach [56], which

only considers the most identifiable portions of the parameter space. Similarly, simulated annealing

methods have been modified to include adaptive temperatures for different parameters [26], adding

in downhill simplex methods [57], and finding rotated coordinates to navigate the parameter

space [41, 58]. The use of rotated coordinates to aid the inference process is reviewed in Sec.

2.5, along with a description of how the parameter sensitivity and coupling obtained from rotated

coordinates relate to information theory concepts of the Fisher information and Cramér-Rao bounds.

While most of these sampling-based approaches to parameter sensitivity provide estimates of

an average parameter sensitivity over the search space, information theory uses local parameter

sensitivity analysis, which can then be extended non-locally by differential geometry. The main

tool is the Fisher information, which provides a local measure of the information content about the

modeling parameters in the model-data comparison [59]. Ocean acoustics studies have sought to

maximize Fisher information for problems of source localization [60–62], bearing estimation [63]

by optimizing off-axis targets for broadband active sonar [64], designing nonuniform linear arrays

[65], optimal active sonar waveforms [66], underwater communication [67], and for autonomous

underwater vehicle positioning [68]. The diagonal elements of the inverse of the Fisher information
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matrix (FIM) are the Cramér-Rao bounds (CRB): the lower limit on the variance of an unbiased

estimator of modeling parameters. CRBs have been used extensively in quantifying sensitivity in

ocean acoustics applications; Sec. 2.4 provides a review of many examples of the application of

CRBs in ocean acoustics.

Information geometry combines the advantages of local methods, such as the FIM and CRBs,

and of non-local sampling-based methods such as rotated coordinates by quantifying both local

and global model parameter sensitivities. Information geometry interprets multi-parameter models

as a Riemannian manifold (referred to as the model manifold) where model parameters act as

coordinates on the manifold. While previous studies in ocean acoustics have used Riemannian

manfiolds [62,69,70], these applications primarily use principles of Riemannian geometry to obtain

measures of distance between cross spectral density matrices for matched field processing and

signal detection schemes, which differs from our use of a Riemannian model manifolds to explore

environmental parameter identifiability in that our distance metric is motivated by information

theory.

Information geometry has been shown to be particularly powerful in context of the paradigm

of sloppy models. In a sloppy model, the model output is primarily affected by a few key pa-

rameter combinations, while other parameters do not appreciably change the model output. The

characteristic feature of sloppy models is log-linear spaced eigenvalues of the FIM. Parameter

combination to which the model output is most sensitive are known as identifiable, or stiff parameter

combinations; data is most informative about stiff model parameters. Unidentifiable, or sloppy,

parameter combinations are parameter combinations to which the model is not sensitive; sloppy

parameters are not well constrained by data. Sloppiness has been studied in a variety of fields

including systems biology [71–78] (such as biochemical reaction networks [79–87], cell state

dynamics [88, 89], and tumor growth [90]), neuroscience [91–95], chemical engineering [96–100],

power systems [101–104], ecology [83,105,106], solid state physics [107], deep learning [108–111],
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economics [112–114], quantum simulation [115,116], nuclear physics [117–119], cosmology [120],

ocean acoustics [121], and more [109, 122–124]. Information geometry methods can also leverage

sloppy model behavior to obtain reduced-order models which capture the relevant physics. For

example, some parameter combinations will be “practically unidentifiable," meaning that their

removal from the model will not significantly decrease model accuracy. Information geometry

methods for model reduction, such as the manifold boundary approximation method [72, 125], have

been applied to a variety of models [72, 84, 103, 104, 119, 125–127], and will be discussed in greater

detail in Sec. 2.8.

2.3 Fisher information and Cramér-Rao bounds

A local measure of parameter sensitivity provides an estimate of how small changes in a parameter

value impact the models output. Two powerful tools from information theory characterize the

local behavior of a parameterized model in the context of inverse problems: the Fisher information

matrix and the matrix inequality known as the Cramér-Rao bound. The FIM quantifies how well

the model resolves parameter estimates from information in the data, and the CRB places a lower

bound on the uncertainty of an unbiased estimator for the parameters of a model. This tutorial

begins in Sec. 2.3.1 with a derivation of the form of the FIM used in this paper, followed by a

presentation of the FIM in terms of a quadratic expansion about the best fit on a cost surface. The

CRB and other measures derived from the FIM which bound the uncertainty of inferred parameters

are introduced in Sec. 2.3.2. Throughout this tutorial, vectors are denoted with bold face. For

example, r = [r1,r2, ...].
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2.3.1 Fisher information matrix

The Fisher information matrix, denoted as I , is defined as the expectation of the Hessian of the log

likelihood, l:

I =−
〈

∂ 2l
∂θµ∂θν

〉
≡−⟨∂ 2

µν l⟩. (2.1)

For this tutorial, we consider a forward model that yields some output yθ (ti) based on modeling

parameters θθθ = [θ1, ...,θN ] at a value of the independent variable ti. For an ocean acoustics sound

propagation model, for example, the model output yθ (ti) may be sound pressure, transmission loss,

or power reflection coefficients; and θθθ may contain any combination of environmental, source,

and receiver parameters. The independent variable ti is determined by the choice of “experimental

design," such as different source-receiver ranges or hydrophone depths on a vertical line array. In

this section, a generic model is assumed, but application to an ocean acoustics model is provided in

Sec. 2.7.

Inference problems typically compare model predictions with data. The i-th data sample di is

assumed to have a mean equal to the model yθ (ti) with some Gaussian additive noise:

di ∼ N(yθ (ti),s2
i ) (2.2)

where the noise has variance s2
i . In general, s2

i is unknown and may include both random (aleatoric)

noise and systemic (epistemic) noise that might come from a measurement apparatus. To compare

the model with data, the data-model residual is defined:

ri =
di − yθ (ti)

si
, with ri ∼ N(0,1). (2.3)

The probability distribution of ri is

P(ri) =
1√
2π

e−
1
2 r2

i . (2.4)
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For M measurements, corresponding to ttt = [t1, t2, ..., tM] and rrr = [r1,r2, ...,rM], the multivariate

Gaussian probability distribution of rrr is

P(rrr) =
M

∏
i

1√
2π

e−
1
2 r2

i . (2.5)

The log-likelihood l is defined as the natural logarithm of P(rrr):

l = ln(P(rrr)) =−M
2

ln(2π)− 1
2

M

∑
i

r2
i . (2.6)

The Hessian of the log-likelihood has elements

∂
2
µν l =

M

∑
i
(−∂µri ∂νri − ri ∂

2
µνri). (2.7)

Thus, the FIM, as given in Eq. 2.1, has elements

Iµν =−⟨∂ 2
µν l⟩=

M

∑
i
⟨∂µri ∂νri⟩+

M

∑
i
⟨ri ∂

2
µνri⟩. (2.8)

Note that the derivatives of the residual, ∂µri, can be expressed in terms of derivatives of the

model yθ (ti) with respect to θµ :

∂µri =− 1
si

∂µyθ (ti), (2.9)

which does not depend on noisy data di ∼ N(yθ (ti),s2
i ). Therefore, the expectation operator in the

first term drops out (i.e., ⟨∂µri ∂νri⟩= ∂µri ∂νri). The second term can be rewritten as ⟨ri⟩ ∂ 2
µνri, so

for zero mean data the second term goes to zero. Thus, for these assumptions about the noise, Iµν

simplifies to

Iµν =
M

∑
i

∂µri ∂νri. (2.10)

By substituting Eq. 2.9 into Eq. 2.10, the elements of the FIM can be written as

Iµν =
M

∑
i

1
s2

i
∂µyθ (ti) ∂νyθ (ti). (2.11)

Thus, the FIM can be expressed as

I = JT S−2J, (2.12)
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where J is the Jacobian matrix of derivatives of yθ (ti) with elements

Jiµ =
∂yθ (ti)

∂θµ

= ∂µyθ (ti), (2.13)

and S is a diagonal matrix with elements si. A different noise assumption in Eq. 2.2 will lead to a

different form of the FIM.

As previously stated, si is unknown and experiment dependent. Therefore, for the purposes of

model analysis, it is convenient to assume si = s for all i, so that S−2 = s−2 I, and

I = s−2JT J ∝ JT J. (2.14)

Thus in calculation of the FIM in practice, the s−2 term can be neglected. This convention is adopted

herein.

This mathematical derivation of the FIM may be further appreciated by a graphical discussion

that provides a more intuitive understanding. This discussion begins by introducing a function YYY (θθθ),

known as the model map:

YYY (θθθ) =



yθ (t1)

yθ (t2)
...

yθ (tM)


, (2.15)

where M is the number of measurements. For N parameters in θθθ , the model map YYY (θθθ) forms a

mapping from an N-dimensional parameter space into an M-dimensional data space:

YYY (θθθ) : RN → RM. (2.16)

In a modeling scenario, predictions of yθ (ti) are compared to experimental data di in a cost

function, sometimes called an error or loss function, which measures how well model prediction

values match observed data. One option is the least-squares cost, which can be motivated in a

maximum likelihood sense. It can be shown that the ordinary least squares estimator for a linear
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regression model maximizes the likelihood under the assumption of Gaussian additive noise, which

is used here. The least-squares cost is:

C(θθθ) =
1
2

M

∑
i
(yθ (ti)−di)

2. (2.17)

The set of modeling parameters that minimizes the cost given some data is referred to as the best fit

parameterization θ̂θθ .

The graph of the cost C(θθθ) defines an N-dimensional surface, called a cost surface, whose peaks

correspond to parameter values that poorly fit the data and whose valleys correspond to parameter

values that fit the data well. N-dimensional surfaces are unwieldy to visualize, so two-dimensional

slices of cost surfaces are often used to gain a “topographical” intuition of the peaks and valleys of

the cost surface. One such two-dimensional slice in the neighborhood of a best fit θ̂θθ is shown in Fig.

2.1 for a cartoon cost surface; this cost surface is used for illustration throughout the present section.

Cost surfaces for nonlinear models, such as those found in modeling ocean acoustics, often

include narrow valleys, flat plateaus, and multiple local minima. However, by zooming in on a

sufficiently small region around a local minimum, the cost surface is approximately quadratic with

lines of constant C(θθθ) forming ellipse-shaped contours about the minimum. The axes of such

ellipses provide insight into the sensitivity of model parameters.

The local geometry about a minimum is described by a Taylor series of the forward model

expanded about the best fit:

ỸYY (θθθ) = YYY (θ̂θθ)+ Jδδδθθθ +O(δδδθθθ)2, (2.18)

where δδδθθθ = θθθ − θ̂θθ and J is the same M by N Jacobian matrix defined above in Eq. 2.13. In this

linear approximation, the cost function becomes

C̃(θθθ) =C(θ̂θθ)+
1
2

δδδθθθ
T JT Jδδδθθθ (2.19)
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Figure 2.1 Two-dimensional cost surface cross-section in the θ1-θ2 parameter plane
showing the neighborhood about a local minimum. Notice the elliptical contours of equal
cost about the minimum at the best-fit parameters θ̂θθ , marked by a white star. The semi-
minor and semi-major axes of the contours correspond to the FIM eigenvector directions
vvv1 and vvv2, respectively. The inverse of the square root of corresponding eigenvalues of
the FIM, λ1 and λ2, are proportional to the semi-minor and semi-major widths of the cost
ellipses. The width of the ellipses projected onto the θ1 and θ2 axes are proportional to√

I −1
j j , the square root of the corresponding diagonal elements of the inverse FIM (a

covariance matrix). I −1 is calculated when finding the CRB. Finally, the widths of the
ellipses through the best fit point and parallel to the parameter axes are proportional to
1/
√

I j j the inverse of the square root of the corresponding elements of the FIM, also
known as the conditional standard deviation.
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using the fact that the gradient is zero at the best fit. The second term contains the Fisher information

matrix I as defined in Eq. 2.14, and thus the I describes the curvature of the cost surface at the

best fit. Note that the FIM does not depend on the data, only the derivatives of the forward model;

thus the lower bounds on the informativity of potential experimental data can be established by

analyzing the model alone.

2.3.2 Bounding parametric uncertainty with the FIM

Information about model parameter sensitivities can be extracted from the FIM in several ways, and

understood in context of the cost surface in Fig. 2.1. Specifically, the eigenvalues and eigenvectors

of the FIM quantify a model’s linearized sensitivity to changes of parameter combinations. Because

the FIM is often ill conditioned, these are typically obtained by a singular value decomposition

(SVD) of J,

J =UΣV T , (2.20)

where U and V are unitary matrices, and Σ is a diagonal matrix containing the singular values of J.

The FIM can be expressed as

I = JT J = (UΣV T )T (UΣV T ) =V ΣUTUΣV T

= V Σ
2V T ,

which can be recognized as an eigenvalue decomposition of I . From this form, the eigenvalues of

the FIM are the squared singular values of the Jacobian, and the columns of V are the eigenvectors

of the FIM. These eigenvectors vvviii are the independent parameter combinations that diagonalize the

covariance matrix, I −1, which is the inverse of the FIM.



2.3 Fisher information and Cramér-Rao bounds 19

The eigenvectors of the FIM are in general linear combinations of the original parameters and

give a natural basis for quantifying the model sensitivities. As previously mentioned, sloppy models

are characterized by roughly log-linear spacing of eigenvalues of the FIM, which manifests as

ellipses with high aspect ratios on the cost surface (Fig. 2.1). The eigenvector corresponding to the

largest eigenvalue of I indicates the most identifiable parameter combination, represented by vvv111 in

Fig. 2.1(a), which lies along the semi-minor axis of the ellipse about the best fit. Intuitively, moving

in the direction of vvv111 on the cost surface leads to the most rapid change in model output. In contrast,

the eigenvector with the smallest eigenvalue is the sloppiest parameter combination, corresponding

to vvv222 in Fig. 2.1(a), which lies along the semi-major axis of the ellipse. The inverse of the square

root of corresponding eigenvalues of the FIM, λ1 and λ2, are proportional to the semi-minor and

semi-major widths of the cost contour ellipses, as marked in yellow in Fig. 2.1(a).

The FIM also provides insight into the statistical properties of inferred parameters (i.e., the

original parameters of the model). The Cramér-Rao bound inequality states that the inverse of

the FIM, I −1, is a covariance matrix that forms a lower bound on the uncertainty of parameter

estimations. For an unbiased estimator, the Cramér-Rao bound inequality is

Cov(θ̂θθ)≥ I −1 =V Σ
−2V T (2.21)

where Cov(θ̂θθ) is the covariance of the estimator of θ̂θθ , and the matrix inequality A ≥ B is understood

to mean that the matrix A−B is positive semidefinite. An estimator that achieves this bound is said

to be fully efficient. Large-valued entries of I −1 indicate high parameter uncertainty.

Often of interest are the diagonal entries of this covariance matrix, as they correspond to the

variances in the estimate of the individual parameters. The square root of the diagonal elements of

I −1 are referred to as the Cramér-Rao bounds (CRB), and indicated as σCRB, j here:

σCRB, j =
√
(I −1) j j. (2.22)
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The CRB gives the lower bounds on the uncertainty in inferring individual parameters from data;

in other words, the CRB gives the smallest standard deviations in inferred values possible given a

model and data. The CRB for θ1 and θ2 are shown in green in Fig. 2.1(b), corresponding to the

widest part of the constant cost ellipse in the two parameter directions.

Large CRBs have two causes. First, a model might be insensitive to changes in an individual

parameter, such as is the case for parameters deep beneath the seafloor in a transmission loss model

at sufficiently high frequencies. Second, a large CRB can result from strong correlation among

parameters. In physical systems, correlation is typically due to physical mechanisms that manifest

similar effects in model predictions. In such cases the effect of one model parameter may be

cancelled by tuning another. The model is often sensitive to many of the parameters individually

but is insensitive to coordinated changes in combinations of parameters.

Alternatively, the uncorrelated parameter uncertainty could be ascertained if all other model

parameters were fixed to their true values. The theoretical uncorrelated parameter sensitivity, called

the conditional standard deviation (conditional STD) and indicated by σcond, j, can be calculated

from the FIM as

σcond, j =
1√
I j j

. (2.23)

The conditional STD for a parameter is always less than or equal to σCRB, j, meaning that σcond, j

underestimates the uncertainty in inferring parameters from data. Disparities between σCRB, j and

σcond, j are due to correlations among parameters. In terms of the cost surface, the conditional STD

corresponds to the width of the constant-cost ellipse measured through the best fit and parallel to a

parameter axis, denoted by red in Fig. 2.1(c). In the case of a model with uncorrelated parameters,

the axes of the ellipses of constant cost align with the parameter axes, meaning that σCRB, j and

σcond, j are equal.
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Because the FIM is independent of the observed data ddd and depends only on derivatives of

the forward model, the lower bounds on the informativity of potential experimental data can be

established by analyzing the model alone. Through the CRB, the FIM establishes the best-case

variance for each model parameter, quantifying the information content, and determining whether it

is feasible to infer individual parameters to the desired resolution from given data.

2.4 Local measures of parameter sensitivity

The local measure of parameter uncertainty in the FIM and CRB (Eq. 2.22) have been applied to a

variety of applications in ocean acoustics. In the literature, the context of either the experimental

setup or the inversion approach typically determines how the FIM and CRB are obtained. Where

circumstances permit, analytical expressions for the FIM and CRB are employed. When analytical

models are not available, calculation of the FIM and CRB relies upon numerical gradients of

computational models taken with respect to parameters. In this section, examples are provided to

illustrate the breadth of applications of the CRB to problems in ocean acoustics, with a focus on

work related to quantifying parameter sensitivities for the ocean environment.

CRBs have been calculated analytically for acoustic reflection measurements [128, 129], source

receiver geometry [130], array shape calibration [131, 132], and source localization [133–136],

including in deep water [137, 138]. For source localization specifically, CRBs have been used for

direction-of-arrival estimation using noise covariance matrices [139], range and bearing localization

with two hydrophones [140], underdetermined systems using sparse linear arrays [141, 142], virtual

sensor arrays to handle unsynchronized sensors [143], and semi-blind source localizations [144].

CRBs obtained analytically have also been used to quantify seabed parameter sensitivies using

ambient ocean sound [145, 146].
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Variations of the CRB have also been used, including hyrbrid CRBs for water sound speed

fluctuations [147] and direction of arrival estimates [148], a stochastic CRB for direction-of-arrival

estimates using vector sensors [134], and Bayesian CRBs for source ranging [149] and seabed

parameter estimation [150]. The citations in Baggeroer [134] provide additional references on the

development and use of stochastic formulations of the CRB.

When analytical models are not available, calculations of the FIM and CRB rely upon numerical

gradients of computational models taken with respect to parameters. However, gradients can be

difficult to obtain. Some success has been found with analytical gradients [14, 45] and implicit

adjoint methods [151] although both require a problem-specific gradient derivation. One interesting

example comes from Hawkes and Nehorai [152] who develop an efficient CRB based measure

of estimation accuracy for 3-dimensional source localization on a distributed system involving

a two stage CRB calculation, one which can be performed analytically and the other requiring

numerical derivatives. While some success has been found with calculating the FIM and CRBs using

finite-differencing, as in Gebbie and Siderius [150] for quantifying seabed parameter sensitivities,

finite-differencing has typically been difficult due to the need for appropriate step sizes for different

parameters; too large or too small of step sizes makes the method inaccurate [46]. Mortenson

et al. [121], recently presented a strategy for parameter preconditioning followed by Richardson

extrapolation that renders feasible a general finite-difference methodology for finding numerical

gradients in sound propagation models, applied to quantify seabed parameter sensitivity.
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2.5 Non-local measures of parameter sensitivity

The eigenvectors of the FIM (and more completely the corresponding covariance matrix) provide

a set of basis vectors that are aligned with the curvature of the cost surface and show how the

modeling parameters are coupled around a best fit point θ̂θθ . While these basis vectors describe

only the local cost surface, there have also been efforts to non-locally estimate a covariance matrix.

The eigenvalues of this covariance matrix provide a spatially averaged view of parameter coupling

which provides a coordinate transformation to better align model parameters with global features of

the cost surface, improving optimization efficiency.

Such a coordinate transformation was introduced to the underwater acoustics community in 1995

by Collins and Fishman [58]. The coordinate transformation was obtained from the eigenvectors

of a covariance matrix K, calculated by integrating the gradient of the cost function E over the

parameter search space Ω:

K =
∫

Ω

∇E(∇E)T dΩ (2.24)

An SVD of K yields eigenvectors {vvv jjj} and eigenvalues λ j. The {vvv jjj} are referred to as rotated

coordinates, and the associated eigenvalues λ j indicate the relative importance of vvv jjj in describing the

curvature of the cost surface. In other words, the rotated coordinates correspond to the orthogonal

transformation that diagonalizes the covariance matrix of the cost function gradient.

In practice, the integral in Eq. 2.24 can be difficult to estimate. Nevertheless, even approx-

imations of K, for example by using an initial sparse sampling of parameter space, have been

shown to provide {vvv jjj} that greatly increase the efficiency of optimization algorithms. In addition, a

reduced-order model may be obtained by only using vvv jjj with λ j greater than a threshold to navigate

the space. The advantages of using rotated coordinates in a sampling algorithm increases as the

number of modeling parameters increases [58].
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Rotated coordinates were first used to improve self-starters for range-dependent modeling

[153–155] and in simulated annealing algorithms [58,156–161]. Early work with rotated coordinates

in simulated annealing included source localization [159, 162]; geoacoustic inversions to find

characteristics of sediment layers in the seabed from acoustic data [155–157], including one study

of a Biot-Stoll model of the sediment [161]; and focalization studies that included both source and

environmental parameters [158, 160].

A method for obtaining rotated coordinates using the model covariance matrix was employed

in Jaschke and Chapman [41] to do matched-field inversions using the freeze bath method. This

approach has been used in Bayesian optimizations as well [163]. Other studies have also used a

non-local derivative based sampling to inform parameter step sizes, such as in [164].

The calculation of rotated coordinates from a non-local estimate of a covariance matrix can be

considered an analogous generalization of the local information obtained from the Fisher information

matrix. For a nonlinear model, the orientation of contours and valleys in the cost surface changes

over parameter space. Thus while the rotated coordinates roughly align with the curvature of the

cost surface, they are an “averaged" quantity that does not perfectly align with the cost surface near

a specified point θθθ . Thus rotated coordinates are useful for efficiently navigating a large parameter

space during an optimization, but the Fisher information is needed for information geometry.

2.6 Information Geometry

Information geometry combines the fields of information theory and differential geometry by

interpreting a multi-dimensional model as a high-dimensional manifold embedded in the space

of potential predictions, known as the model manifold. Each point on the model manifold can

be interpreted as a probability distribution, and distance along the manifold relates to statistical

distinguishability. Information geometry is especially powerful for parameter sensitivity analysis
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when interpreted in context of the paradigm of sloppy models, as introduced in Sec. 2.1. The model

manifold is introduced in Sec. 2.6.1; it quantifies parameter sensitivities on local, intermediate,

and global scales, and gives a path for obtaining reduced-order models by identifying relevant

parameter combination limits. Connections between the model manifold and the Fisher information

matrix are discussed in Sec. 2.6.2, followed by an example calculating model manifolds for a sound

propagation model, the Pekeris waveguide with sediment attenuation, in Sec. 2.7.

2.6.1 The model manifold

The model manifold is the embedding of a model into data space, or prediction space. The model

manifold is the set of all possible predictions of the model for different values of the parameters

and forms a hyper-surface, or manifold, in data space. Using the convention introduced earlier of a

model yθ (ti) with parameters θθθ and independent variable ti, we construct the model manifold for a

toy model to illustrate the process. The toy model is the sum of two decaying exponentials:

yθ (ti) = e−θ1ti + e−θ2ti , θ1,θ2 ≥ 0. (2.25)

This model has N = 2 modeling parameters: θθθ = [θ1,θ2].

Often models yθ (ti) are visualized as functions of the independent variable, e.g. over t, for

a fixed values of the parameter θθθ ; this view displays the model’s input-output relations. For the

sum of exponentials model, the input-output relations are shown in Fig. 2.2(a) for three different

parameter choices {θθθ
A,θθθ B,θθθC}.
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(a) (b) (c)

Figure 2.2 (a) Input-output relations of the sum of exponentials model, with different model
realizations using different values of θθθ . (b) Parameter space for the sum of exponentials
model. θ1 and θ2 can vary from 0 to ∞. (c) Model manifold for the sum of exponentials
model. The model has compacted and folded in half the original parameter space, as
seen in the model manifold. Colored boundaries of the model manifold correspond to the
colored lines on the parameter space plot.

While input-output relations show how the model changes continuously in the independent

variable, data are often obtained at M discrete measurements of the independent variable ti, e.g.,

measurements at hydrophones of different depths on a vertical array. This choice makes use of the

model map in Eq. 2.15 natural; and Eq. 2.25 can be expressed in terms of the model map also as

YYY (θθθ) = eθ1ttt + eθ2ttt . (2.26)

Therefore, the model manifold can be constructed by varying model parameters θθθ and plotting the

model map YYY (θθθ) in an M-dimensional data space.

For the sum of exponentials model, θ1 and θ2 are varied as shown in the parameter space

Fig. 2.2(b). A specific set of model parameters θθθ
l corresponds to a point on the model manifold.

The model manifold is shown in Fig. 2.2(c) for the case of three experimental design values of

ttt = [1,2,3]. Each of the three axes in data space corresponds to an element of YYY (θθθ) for each value

of the independent variable ti, and the model manifold is a 2-dimensional surface because there are

N = 2 model parameters being varied.
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Interestingly, the infinite, unbounded parameter space in Fig. 2.2(b) has been compressed to

a finite, bounded model manifold; these boundaries of the model manifold, colored red, green,

and yellow in Fig. 2.2(c), correspond to “reduced models" where one parameter “drops out" of

the model. For example, the yellow boundary corresponds to taking either θ1 or θ2 to infinity,

which makes the corresponding term vanish, making the reduced model YYY (θθθ) = e−θ1ttt . Similarly,

the green boundary corresponds to taking θ1 or θ2 to zero which makes the corresponding term

equal to one, making the reduced model at that boundary YYY (θθθ) = 1+ e−θ1ttt . Note that the model

is symmetric across the θ1 = θ2 line in parameter space (e.g., the model gives the same output for

θθθ = (1,3) and θθθ = (3,1)). This symmetry is reflected in the model manifold, where the parameter

space has been folded in half over the line θ1 = θ2 in the model manifold. The red boundary is

where θ1 = θ2 and the model reduces to be YYY (θθθ) = 2e−θ1ttt . These reduced-order models associated

with the boundaries of the model manifold become applicable in the parameter regimes that map to

regions near the boundaries.

In summary, the model manifold is an N-dimensional surface embedded in an M-dimensional

data space and yields information about global parameter sensitivities. Specifically, the boundaries

of the model manifold correspond to reduced-parameter models. Distances on the model manifold

can be quantified using Fisher information.

2.6.2 Fisher information matrix as a distance metric

In this section, the connection between the FIM and the model manifold are presented. The first

step is to discuss how the Jacobian matrix relates to the model manifold. For a nonlinear model,

the model manifold is a curved N-dimensional surface. However, a sufficiently small portion of

the manifold at θ̂θθ can be approximated by a linear surface tangent to the manifold. This tangent

surface is characterized by the Jacobian matrix. The Jacobian matrix can be expressed in terms of

derivatives of the model map (Eq. 2.15) with respect to the model parameters θµ , or as derivatives
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of yθ (ti):

J =

[
∂YYY (θθθ)

∂θ1

∂YYY (θθθ)
∂θ2

. . . ∂YYY (θθθ)
∂θN

]
=



∂yθ (t1)
∂θ1

∂yθ (t1)
∂θ2

. . . ∂yθ (t1)
∂θN

∂yθ (t2)
∂θ1

∂yθ (t2)
∂θ2

. . . ∂yθ (t2)
∂θN

...
... . . . ...

∂yθ (tM)
∂θ1

∂yθ (tM)
∂θ2

. . . ∂yθ (tM)
∂θN


, (2.27)

where N is the number of model parameters and M is the number of measurements. The columns of

the Jacobian span the linear surface tangent to the manifold at θ̂θθ .

As given in Eq. 2.20, the Jacobian can be expressed as J = UΣV T , the composition of three

linear functions. As an example of how these three linear functions perform transformations,

consider how the Jacobian acts on a circle in a 2-dimensional parameter space centered at θ̂θθ . First,

V T is a rotation matrix that acts on the circle in parameter space and produces a circle in parameter

space, but with the coordinate axes rotated. The new coordinate axes vvv111 and vvv222 are the columns of

V . Second, Σ scales vvv111 and vvv222 so that the circle is now an ellipse. Finally, U is a rotation matrix

that rotates and lifts the ellipse into the M-dimensional data space. This ellipse in data space has

orthogonal principal axes σ1uuu111 and σ2uuu222, where uuu111 and uuu222 are the columns of U and σ1 and σ2

are the diagonal elements of Σ. This lifted ellipse is tangent to the model manifold at θ̂θθ . Thus, the

Jacobian transforms a circle in parameter space to an ellipse in data space.

This tangent surface, which linearly approximates the model manifold at θ̂θθ , can be analyzed

in terms of the four fundamental subspaces of linear algebra, helping to provide an intuitive

understanding of the model manifold and connect to parameter sensitivities. The four fundamental

subspaces of a linear map are the row space, the null space, the column space, and the left null

space. The row space and null space make up the domain, or parameter space, of the model. The

row space contains parameter directions that are identifiable at θ̂θθ . The null space contains the

parameter combinations that are unidentifiable at θ̂θθ . The column space and left null space make

up the codomain, or data space. The column space is the tangent space approximating the model
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manifold at θ̂θθ , which is the space spanned by the columns of the Jacobian. The left null space can

be understood as noise, i.e., the part of the data that cannot be captured by the model. Data are

noisy and, in general, lie off of the model manifold. The noisy data can be projected onto the model

manifold. Every θθθ value has its own Jacobian characterizing the tangent space at that point with its

accompanying four fundamental subspaces.

The Fisher information matrix is the expectation of the Hessian of the log likelihood, which

was derived in Sec. 2.3 to be I ∝ JT J (Eq. 2.14). The FIM does not depend on data and quantifies

the curvature of the cost surface. The FIM can also be thought of as quantifying the tangent of the

model manifold at a given θθθ , in a linear approximation.

Additionally, while the FIM is often presented as an abstract statistical device, in fact it can be

understood as a distance metric in data space and, therefore, on the model manifold. Understanding

the FIM as a distance metric makes it easier to see its utility in parameter sensitivity analysis. To

understand how the FIM is a distance metric, consider a vector www in parameter space. Through the

Jacobian, this vector www corresponds to another vector in data space, WWW ,

Jwww =WWW .

The (Euclidean) length of WWW can be calculated by ||WWW ||2 =
√

WWW ′′′WWW . Using the relation above,

||WWW ||2 =
√

WWW ′′′WWW (2.28)

=
√

www′′′J′Jwww (2.29)

=
√

www′′′I www. (2.30)
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This derivation shows that the FIM is the induced norm for parameter space vectors that

corresponds to Euclidean distance on the model manifold. Intuitively, the FIM weights the norm

between parameter space vectors by the relative stiffness or sloppiness of the parameters. For

example, models are insensitive to changes in sloppy parameter combinations, meaning that a

step in a sloppy direction in parameter space corresponds to a relatively small step in data space

(
√

www′′′www ≫
√

www′′′I www). The converse is true for stiff parameters.

For nonlinear models, parameter sensitivities vary across parameter space. This fact shows the

utility of non-local approaches such as rotated coordinates and is the primary limitation of local

sensitivity methods such as the FIM—the FIM at some θθθ does not adequately describe the entire

parameter space. The model manifold, however, provides a bridge between FIM local sensitivities

and global parameter sensitivities. The model manifold importantly encodes the connection between

local parameter sensitivities as parameters are varied, moving along the surface of the model

manifold. Geodesics can be calculated along the model manifold giving a “geodesic distance": the

shortest distance along the manifold between two points. This geodesic distance makes a good

choice for representing statistical distinguishability [108].

In summary, the columns of Jacobian matrix span a linear space tangent to the model manifold,

and the FIM is used in Eq. 2.30 to obtain a measure of distance on the model manifold and, therefore,

gives information about parameter sensitivities for every point in parameter space. Geodesic distance

between two points on the model manifold quantifies statistical distinguishability and shows how

local parameter sensitivities change in parameter space.
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2.7 Pekeris waveguide example

To demonstrate the utility of the model manifold and its connection to the FIM and CRBs, this

section gives a an example of a simple sound propagation model. The sound propagation model

used in this work, the Pekeris waveguide, is described in Sec. 2.7.1. Three seabed parameters are

considered in this work: sediment sound speed, sediment density, and sediment attenuation. The

2-dimensional transmission loss (TL) model manifold are visualized in Sec. 2.7.2, corresponding to

the traditional Pekeris waveguide at zero sediment attenuation. These manifold slices illustrate the

emergent “hard bottom" reduced model corresponding to the infinite density parameter limit, and

show how the manifold structure, and therefore parameter sensitivities, change for certain sediment

types. For these sediment types, the local sensitivity properties for all three seabed parameters

are evaluated, in Sec. 2.7.3, by calculating the FIM and quantifying parameter uncertainties with

the CRB and the conditional STD. Discussion includes analysis of parameter correlations, relative

parameter sloppiness and how global structure influences local parameter sensitivity. In Sec. 2.7.4,

portions of the TL model manifold are constructed in the 3-dimensional parameter space and shown

to illustrate the same parameter sensitivity hierarchy seen with the FIM.

2.7.1 The Pekeris waveguide model

A sound propagation model depends on the experimental design and the ocean environment.

Selection of discrete samples of the independent variable (analagous to ttt in Sec. 2.6.1) are referred

to as the experimental design and include the source depth z′ (m), the receiver depth z (m), the

source frequency f (Hz), and the source range r (m). The parameterization of the ocean environment

is contained in θθθ .
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For this introductory work, a Pekeris waveguide is assumed. The Pekeris model contains an

upper half-space (air), a waveguide (water), and a lower half-space (seafloor). Each section is

assumed to be uniform, i.e. no variation in physical properties with depth or range. The original

Pekeris waveguide model paramaterizes the seafloor half-space with a uniform sound speed c2 and

density ρ2 [165,166]. We use an adaptation of the Pekeris model from Buckingham and Giddens [5]

in which seafloor attenuation α2 is also a parameter. For the examples given in this paper, θθθ contains

the seafloor parameters: c2 (m/s), ρ2 (g/cm3), and α2 (dB/λ ). The water properties [water sound

speed c1 (m/s), water density ρ1 (g/cm3)] could be included in θθθ but are held fixed in this example.

(Note the convention used in this work that the subscript “1" refers to water parameters, and the

subscript “2" refers to seafloor parameters.)

For the choice of θθθ = [c2,ρ2,α2], only the cases in which the half-space parameters are greater

than or equal to the water parameters are considered: c2 ≥ c1, ρ2 ≥ ρ1, and α2 ≥ 0. Specific choices

of values for the additional ocean parameters and the experimental design are given in Table 2.1. The

ocean depth h = 100 m is chosen to simulate a shallow ocean environment. For the experimental

design, single values of source frequency, source depth, and source range are selected, and three

different receiver depths {z j} = [20,50,80] m are used. Note that there are many other possible

choices for the experimental design variables that could have been used here. For this work, the

modeled values are transmission loss.

The Pekeris waveguide is a range-independent normal mode sound propagation model that uses

a finite summation of “proper modes" plus a branch line integral contribution. In [5], the Green’s

function is found in the Fourier domain and given in terms of the velocity potential φ :

φω(r,z,θθθ) = φmodes(r,z,θθθ)+φEJP(r,z,θθθ). (2.31)



2.7 Pekeris waveguide example 33

Table 2.1 Experimental design and ocean parameter choices used throughout all simula-
tions.

Parameter Value

Ocean sound speed (c1, m/s) 1500

Ocean density (ρ1, g/cm3) 1.0

Ocean depth (h, m) 100

Frequency ( f , Hz) 100

Source depth (z′, m) 10

Source range (r, m) 3000

Receiver depths (z, m) [20, 50, 80]

A proper mode is defined as a normal mode solution to the Pekeris dispersion relation that

satisfies the radiation condition of converging to zero at infinite range. For the traditional Pekeris

waveguide with no sediment attenuation, a finite number of proper modes exist, which are called

“trapped modes". The number of proper modes M0 is given in Eq. 2.7.1 of [5]

M0 =
k1h
π

sin(αc)+
1
2
, (2.32)

where αc is the critical angle αc = cos−1(c1/c2) and k1 is the ocean wave number k1 =
2π f
c1

. The

sediment wave number for the case of zero sediment attenuation is

k2 =
2π f
c2

. (2.33)

Attenuation is introduced into the Pekeris waveguide by adding a term to the sediment wave number:

k2 =
2π f
c2

(1− iγ) (2.34)

where γ is the “loss tangent", defined in [5] as the tangent of the phase angle of the complex number.

Equation 2.204 of [166] gives the conversion from loss tangent to dB/λ as α2 = 40π γ log10(e).
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Sediment attenuation introduces additional proper modes, referred to as “dissipation modes". In

this case, the total number of proper modes M, as found in Eq. 45 of [5], is

M ≈
[

1− γ2cot4(αc)

R4

]
Rk1hsin(αc)

π
+

1
2
, (2.35)

where

R =

√√√√1+ γ2cot2(αc)

{
1+

(
k1hcos(αc)

tanh−1(b12)

)2
}

and b12 is the density ratio ρ1/ρ2. The vertical components of the wave numbers k1 and k2 are η1

and η2, respectively. The horizontal component of the wave numbers, p, is shared between k1 and

k2 due to a requirement of continuity across the water-sediment interface. Each of the m proper

modes has unique η and p values.

η1m =
√

k2
1 − p2

m , η2m =
√

k2
2 − p2

m for m = 1, ...,M (2.36)

To get the normal modes solution, η1 has to be found for each proper mode. As outlined

in [5], the Newton-Raphson method is used to iteratively solve for η1m which is generally complex.

(See [5] Eqs. 37-42 for more details.) After doing so, pm can be calculated as pm =−
√

k2
1 −η2

1 .

The pm are then used to calculate η2m, and the sum of proper modes can be calculated as given in

the first part of Eq. 30 in [5]:

φmodes(r,z,θθθ) =
Q
2π

[
2πi

M

∑
m=1

Res[F1(η1m,η2m)eipmr]

]
(2.37)

Equations 19 and 33 in [5] give F1 and Res[F1] respectively:

F1(η1,η2) =
sin(η1z<)

η1

η1cos[η1(h− z>)]+ ib12η2sin[η1(h− z>)]
[η1cos(η1h)+ ib12η2sin(η1h)]

(2.38)

and

Res[F1(η1m,η2m)eipmr] =
η1msin(η1mz)sin(η1mz′)

pm[η1mh− sin(η1mh)cos(η1mh)−b2
12sin(η1mh)tan(η1mh)]

eipmr.

(2.39)

Q is the source strength (see Appendix A for more details), z< = min(z,z′), and z> = max(z,z′).
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Reference [5] notes that the EJP branch line integral can be converted into a definite integral by

change of integration variable to η2 because “by definition, η2 is real everywhere along the EJP

branch line, with phases of −π and zero, respectively, on the upper and lower edges of the cut". The

EJP integral, given in Eq. 35 of [5], is

φEJP(r,z,θθθ) =
Q
2π

∮
EJP

F1(η1,η2)e−iprd p

=
Q
2π

∫
∞

−∞

η2

p
F1(η1,η2)e−iprdη2 (2.40)

where p and η1 are functions of η2, p =±
√

k2
2 −η2

2 and η1 =
√

k2
1 − p2. The choice of the positive

or negative square root for p is based on what gives a decaying exponential when p is complex, as

discussed further in the Appendix A. This choice satisfies the radiation condition that the solution

goes to zero at infinite range. The integral in Eq. 2.40 can be calculated numerically (see Appendix

A for more details).

The acoustic pressure P can be calculated from the velocity potential φω by the transformation,

P(r,z,θθθ) = iωρ1φω(r,z,θθθ), (2.41)

from which the transmission loss (TL) can be calculated as

TL(r,z,θθθ) = 20log10 (|P(r,z,θθθ)|) (2.42)

with units of dB re 1 m. TL is used in this work as the Pekeris waveguide model output.

In practice, geoacoustic inversions use other sound propagation models that allow for more

complex ocean configurations (multiple layers, environmental parameters that vary with depth,

bathymetry, etc). To illustrate how these complex models can be evaluated via the model manifold,

the simpler ocean acoustics model of a Pekeris waveguide is used here to allow us to carefully and

intuitively step through the information geometry approach to parameter sensitivity analysis for

experimental design and model reduction in Sec. 2.7.2.
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Table 2.2 Four sediment types: silt, sand, gravel, and basalt

Sediment Sound Speed (c2, m/s) Density (ρ2, g/cm3) Attenuation (α2, dB/λ )

Silt 1575 1.7 1.0

Sand 1650 1.9 0.8

Gravel 1800 2.0 0.6

Basalt 5250 2.7 0.1

2.7.2 Global structure of the Pekeris waveguide model manifold

The global structure of the TL model manifold for the Pekeris waveguide is explored in this section.

Specifically, 2-dimensional slices of the manifold corresponding to the traditional Pekeris model

(α2 = 0) are visualized. The parameter space is illustrated in Fig. 2.3(a). Both c2 and ρ2 are

constrained to be greater than or equal to the corresponding ocean parameter. To more easily

visualize the parameter space, a change of axes is introduced using θ1 = c1/c2 and θ2 = ρ1/ρ2,

as shown in Fig. 2.3(b). This inverts the parameter space axes such that the full range of θ1 and

θ2 are between zero and one. For example, when c2 = c1 the quantity θ1 = c1/c2 = 1, and when

c2 = ∞ the quantity θ1 = c1/c2 = 0. The same is true for θ2. This change of axes is only for ease in

visualizing parameter spaces and does not change the predictions of the model. Trivial, bijective,

re-parameterizations, such as this, do not change the model manifold because the model makes all

the same predictions. The location of four sediment types, silt, sand, gravel, and basalt, are shown

in Fig. 2.3(b), and the exact parameter values are given in Table C.2. Note that for this illustration,

the sediment types are projected into the α2 = 0 plane.

The first portion of the TL model manifold to be visualized corresponds to the portion of param-

eter space where ρ2 gets very large. This portion of parameter space is indicated on the parameter

space inset in Fig. 2.4. Parameter ranges are c2=[1501, 35000] m/s and ρ2=[30, 10000] g/cm3,

where the upper bounds of these ranges are effectively infinite. The red line on the left of the
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(a) (b)

Figure 2.3 Two views of parameter space for the two-parameter Pekeris model (α2 = 0).
(a) Parameter space for c2 and ρ2, where c2 ≥ c1 and ρ2 ≥ ρ1. (b) To more easily visualize
the parameter space, a change of axes is introduced using c1/c2 and ρ1/ρ2. This inverts the
parameter space axes such that the full range of c2 and ρ2 are between zero and one. For
example, when c2 = c1 the quantity c1/c2 = 1, and when c2 = ∞ the quantity c1/c2 = 0.
The same is true for ρ2. This change of axes is just for visualization of the parameter space;
the parameterization of the model is not changed. Dots indicate approximate locations
in parameter space for several types of sediment listed in Table 2 but projected into the
α2 = 0 plane.
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parameter space inset corresponds to ρ2 → ∞. This portion of the parameter space is mapped by the

Pekeris model to the smooth model manifold shown in Fig. 2.4. The light blue line corresponds to

changing c2 for a lower ρ2 and exhibits more variation than the yellow and light purple boundaries

that correspond to changing ρ2. In addition, more variation is seen in ρ2 when c2 is small (yellow

line) than when c2 is large (purple line). In the limit that ρ2 → ∞, the red line in parameter space

maps to a point or corner on the model manifold.

This case illustrates how reduced-order models can be found by understanding the boundary

structure of the model manifold. The red corner of the model manifold is a 0-dimensional boundary

of the 2-dimensional manifold. Accordingly, this corner of the model manifold is a 0-dimensional

reduced model, meaning that both c2 and ρ2 have dropped out of the model. This 0-dimensional

reduced model is the physically interpretable case where the seafloor has become perfectly rigid

and reflective, referred to here as the “hard bottom" model.

To understand how both c2 and ρ2 drop out of the model in this limit, first consider that, in

general, at boundaries of the model manifold at least one parameter (or parameter combination)

becomes totally sloppy and drops out of the model. In this situation, as ρ2 approaches the infinite

density limit, further increasing the density does not change the model prediction; ρ2 has become

sloppy and drops out of the model. Interestingly, the sound speed c2 also becomes sloppy in this

limit. As the infinite density limit is approached, changing the sound speed changes the model

output less and less (seen as the manifold thinning in that dimension), until c2 drops out of the

model. Appendix ?? contains the derivation of the reduced parameter “hard bottom" model, and

shows how both ρ2 and c2 drop out of the Pekeris waveguide equations in the infinite density limit.

The next portion of the TL model manifold visualized corresponds to the corner of parameter

space with large values of c2 and ρ2, as shown in the parameter space inset of Fig. 2.5. Parameter

ranges are c2 = [4500,35000] m/s and ρ2 = [2.5,10000] g/cm3. This portion of the parameter

space includes the c2 and ρ2 parameters corresponding to basalt (although α2 is still zero). The
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Figure 2.4 The portion of the TL model manifold corresponding to α2 = 0 and
ρ2 → ∞, with parameter space inset. Parameter ranges are c2=[1501,35000] m/s and
ρ2=[30,10000] g/cm3, where the upper bounds of these ranges are effectively infinite. The
colored lines in parameter space map to lines of the same colors on the model manifold.
The red line in parameter space corresponding to ρ → ∞ collapses to the red point on the
model manifold.
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Figure 2.5 The portion of the TL model manifold corresponding to the portion of parameter
space where c2 and ρ2 both go to infinity (for α2 = 0), with parameter space inset. The
colored lines in parameter space map to lines of the same colors on the model manifold.
Parameter ranges are c2=[4500,35000] m/s and ρ2=[2.5, 10000] g/cm3. The red line in
parameter space corresponding to ρ → ∞ collapses to the red point on the model manifold.

model manifold shown in Fig. 2.5 is a smoothly varying 2-dimensional surface. The red dot on the

manifold corresponds to the red line in parameter space, where ρ2 → ∞, the same as in Fig. 2.4.

The light purple and yellow lines emanating from that point display how TL changes with variations

in ρ2 at the higher and lower values of c2 included in this portion of the manifold. The light blue

line corresponds with TL for ρ2 = 2.5 g/cm3 and varying c2.
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Figure 2.6 The portion of the TL model manifold corresponding to a box in parameter
space around silt, sand, and gravel (for α2 = 0). Parameter space is inset. The colored
lines in parameter space map to lines of the same colors on the model manifold. Parameter
ranges are c2=[1575, 1800] m/s and ρ2=[1.6, 2.1] g/cm3.

Moving away from the c2 → ∞ and ρ2 → ∞ corner, one additional section of the TL model

manifold is examined in the vicinity of gravel, sand and silt (all projected into the α2 = 0 plane).

The model manifold is shown in Fig. 2.6, with the parameter space as the inset. The parameter

bounds of this portion of the manifold are c2=[1575,1800] m/s and ρ2=[1.6,2.1] g/cm3. The black

dots correspond to the parameter values for gravel, sand, and silt listed in Table 2 projected onto

the α2 = 0 plane. The model manifold looks like a long, relatively narrow ribbon with two peaked

extensions.

One observation about this portion of the manifold is that the mapping of sand, silt, and gravel

into data space places the sediments closer to each other in data space than to other combinations of

c2 and ρ2 that lie between them in parameter space, due to the model manifold folding over itself.

This observation has consequences for parameter inference: A measured data point containing
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noise will lie off the model manifold and might be equally likely to map to these different sediment

types. Additionally, the relative stiffness/sloppiness of c2 and ρ2 can be seen on the manifold. The

dark blue and light blue sides corresponding to changes in c2 are much longer than the yellow and

purple sides corresponding to changes in ρ2 (which cannot be seen very well in the plot due to being

covered by the silt and gravel dots).

The large extension, on the top right of Fig. 2.6, corresponds to a combination of c2 and ρ2 at

which constructive interference occurs at all three receiver depths. The spike on the bottom left of

Fig. 2.6 is an instance where there is a null (destructive interference) in TL for a single receiver

depth at the corresponding values of c2 and ρ2. These extensions are interesting examples of how

the model manifold portrays intermediate scale model structure. (A deeper study has indicated that

the extreme nature of the larger constructive interference spike occurs due to a change in the number

of proper modes used in calculating the model output; however, its presence is still illustrative of

how the model manifold can capture relevant features of sound propagation such as constructive

and destructive interference.)

The FIM gives information about the model at a single point and the boundaries of the manifold

give information about parameters taken to their extreme limit, but neither of those gives information

about the constructive and destructive interference that is an important feature of sound propagation

models. Non-local measures of parameter sensitivity, such as sampling based methods or rotated

coordinates discussed in Sec. 2.2 and Sec. 2.5, also fail to adequately capture such intermediate

structure, as they provide somewhat of an averaged value of parameter sensitivity. Neither do

these non-local methods provide information about global parameter sensitivities like boundaries

of the model manifold can, such as the emergent “hard bottom" model discussed in this section.

In summary, the model manifold preserves the local parameter sensitivities of a non-linear model,

while also informing about larger scale model structure and global parameter sensitivities.
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The TL model manifold slices shown here have all been considering the traditional Pekeris

waveguide where the sediment attenuation is zero. However, this 2-dimensional manifold itself

is a boundary of the TL model manifold for the three parameter Pekeris waveguide with nonzero

sediment attenuation, a 2-dimensional boundary (face) of a 3-dimensional model manifold volume.

This boundary corresponds to the limit where α2 → 0. The next section contains calculations of

local parameter sensitivities and correlations using the FIM in different parts of the 3-dimensional

parameter space, and discuss how proximity to the global structures (boundaries) of the model

manifold impacts local parameter sensitivities.

2.7.3 Local Pekeris parameter sensitivities using the FIM

In this section, the FIM is calculated at four different sediment types in the 3-dimensional parameter

space (i.e., the Pekeris model with sediment attenuation). The parameters of the four sediment

types are in Table C.2. The full 3-dimensional parameter space is shown in Fig. 2.7(a) and (b). The

bottom face of the cube in Fig. 2.7(a) is at α2 = 0, and is the same parameter space shown in in

Fig. 2.3(b). The orange, yellow, green, and blue dots represent the silt, sand, gravel, and basalt

sediment types, respectively, and the empty dots below are their projection into the α2 = 0 plane

(as used in Sec. 2.7.2). Because typical values for each θi vary by five orders of magnitude in SI

units, a variable transformation is used to remove the impact of the different units (i.e., scales). This

transformation uses the natural log of the parameters as illustrated in Fig. 2.7(b); the natural log of

the parameters c2, ρ2, and α2 are now on the axes, which allows the parameter uncertainties to be

more easily compared. The axes start at log(ρ2 = ρ1) and log(c2 = c1) for density and sound speed,

and the bottom attenuation face is an arbitrary choice of α2 because the log range of α2 is from −∞

to ∞. The colored dots in (b) are the same as in (a).
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(a) (b)

Figure 2.7 Schematics of the 3-dimensional parameter space used in the modified Pekeris
waveguide. The bottom face of the cube in Fig. 2.7(a) corresponds to the parameter space
at α2 = 0 shown in Fig. 2.3(b). The orange, yellow, green, and blue dots represent the silt,
sand, gravel, and basalt sediment types, respectively, and the empty dots below are their
projection into the α2 = 0 plane (as used in Sec. 2.7.2). To remove the dependence on
units and facilitate easier comparison of uncertainties, Fig. 2.7(b) shows same parameter
space but with the natural log of the parameters c2, ρ2, and α2 as the axes. The axes start
at log(ρ2 = ρ1) and log(c2 = c1) for density and sound speed, and the bottom attenuation
face is an arbitrary choice of α2 because the log range of α2 is from −∞ to ∞. The colored
dots in (b) are the same as in (a).
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Figure 2.8 FIM eigenvalues for different ocean sediment types. Notice magnitude differ-
ences between the three eigenvalues.

As discussed in Sec. 2.3, the FIM is a local measure of parameter sensitivities. The eigenvectors

of the FIM are the uncorrelated parameter combinations (at that point in parameter space), and the

corresponding eigenvalues indicate the stiffness/sloppiness of that parameter combination. The FIM

eigenvalues and eigenvectors are calculated at each of the four sediment types.

The eigenvalues of the FIM for each sediment type are displayed in Fig. 2.8. Larger eigenvalues

indicate stiffer eigenvector parameter combinations. The three eigenvalues for each sediment span

5-6 orders of magnitude, demonstrating the phenomenon of sloppiness.

The FIM eigenvectors are visualized in Fig. 2.9 by plotting the participation factors for each

parameter. The participation factors quantify how much each bare parameter θi “participates" in

the eigenvectors. In this case, because the FIM is real and symmetric the participation factor is the

squared components of the normalized eigenvector; see discussion and definitions in [88, 167] for

more details. The eigenvectors eee111, eee222, and eee333 are ordered from largest to smallest eigenvalues.
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Figure 2.9 FIM eigenvector participation factors. The participation factor indicates which
parameter components contribute most to the eigenvector direction (i.e., the square of the
components of the normalized eigenvectors).

For silt, sand, and gravel, the first eigenvector almost completely aligns with the c2 parameter,

while a correlation exists between ρ2 and α2 that gets stronger as c2 and ρ2 increase and α2

decreases. For basalt, which lies in a very different part of parameter space, a small correlation

exists between c2 and ρ2, while the third eigenvector is totally aligned with α2. Thus, the relevant

parameter combinations to consider in doing parameter sensitivity analysis change depending on

the region of parameter space being considered. This is a direct consequence of the nonlinearity of

the model.

The Cramér-Rao bound σCRB, j and conditional STD σcond, j are calculated from the FIM as

defined in Eq. Eq. 2.22 and 2.23, respectively. σCRB, j and σcond, j for c2, ρ2, and α2 are presented

in Table 2.3. σCRB, j gives the lowest possible uncertainty of the parameter. Parameter correlations

increase the uncertainty in inferring parameter values and, therefore, increase the σCRB, j. For

example, because ρ2 and α2 are highly correlated in gravel (as shown in Fig. 2.9), the σCRB, j for

ρ2 and α2 in gravel are higher than they are for other sediment types. σcond, j gives the estimated

uncertainty if the parameters are not correlated. σcond, j values roughly agree with the σCRB, j values

in the table but the difference between the estimates of σCRB, j and σcond, j for gravel due to parameter

correlation is obvious.
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Table 2.3 The conditional STD and CRB for each parameter from the Fisher information
matrix at these four sediment types. Both the σcond, j and σCRB, j are small for stiff
parameters and large for sloppy parameters. The differences between σCRB, j and σcond, j
are primarily due to parameter correlations.

Sediment CRB (σCRB, j) Conditional STD (σcond, j)

c2 ρ2 α2 c2 ρ2 α2

Silt 7.98e-3 4.41e-1 2.36e-1 7.93e-4 3.96e-2 1.13e-1

Sand 5.42e-3 3.38e-1 6.24e-1 1.19e-3 4.87e-2 1.05e-1

Gravel 1.73e-2 7.57 9.21 1.29e-2 1.66e-1 2.02e-1

Basalt 1.75e-2 4.90e-2 6.14 1.16e-2 3.32e-2 5.88

For both of the metrics in Table 2.3, stiffer parameters have smaller values, while sloppier

parameters have larger values. For all four sediment types, σcond, j indicates that c2 is the stiffest

parameter, followed by ρ2, and then α2 is the sloppiest parameter. The same ordering of parameter

sensitivities are given by σCRB, j and the eigenvalues of the FIM, except in the case of silt where α2

appears to be a stiffer parameter than ρ2. This small difference between relative stiffness/sloppiness

rankings from different metrics is most likely due to different treatments of parameter correlations;

the conditional STD doesn’t consider correlations, the CRB does consider correlations, and the

eigenvalues of the FIM actually give the sensitivities of the relevant parameter combination (which

in this case roughly align with the bare parameters, as shown in Fig. 2.9). Despite these differences,

it can be concluded that for realistic sediment types, c2 is the stiffest parameter, followed by ρ2 and

α2.

Additionally, Table 2.3 highlights how the parameter sensitivities of individual parameters

change in different parts of parameter space; these changes in parameter sensitivities can be

understood in context of the global model manifold structure. The boundaries of the model manifold

correspond to reduced-order models where one parameter becomes totally sloppy. Therefore, as
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a parameter approaches the extreme limit corresponding to a boundary, that parameter becomes

increasingly sloppy. Evidence of this is seen with α2 for the adapted Pekeris waveguide. The

attenuation α2 for basalt is 0.1 dB/λ , about an order of magnitude smaller than the attenuation of

silt, sand, and gravel (see Table C.2). Interestingly, Table 2.3 shows that the CRB and conditional

STD for basalt are an order of magnitude larger than for the other sediment types. Thus as α2 → 0,

α2 becomes an increasingly sloppy parameter. Therefore, proximity to the α2 = 0 boundary affects

the locally measured sloppiness of α2.

This same phenomenon is observed in the relative stiffness/sloppiness of c2 for different sediment

types. The first row of Table 2.3 shows that sound speed c2 is the stiffest parameter by far for silt,

evidenced by the two orders of magnitude difference between the CRB and conditional STD values

for c2 and ρ2. Moving down the rows of Table 2.3, c2 becomes less and less stiff until at basalt,

the CRB and conditional STD for c2 and ρ2 are on the same order of magnitude. This increase in

sloppiness of c2 is due to the c2 value approaching two different boundaries on the model manifold,

the c2 → ∞ boundary or the ρ2 → ∞ boundary (in which both c2 and ρ2 become sloppy as shown

in Sec. 2.7.2). This example demonstrates how local parameter sensitivities are governed by the

vicinity to global structures (boundaries) on the model manifold. Additionally, this highlights the

importance of considering how parameter sensitivities change over parameter space, because a

single local or non-local measure of sensitivity doesn’t give the complete picture.

2.7.4 Model manifold widths manifest sloppiness

The model manifold contains information about global, intermediate, and local model structure.

Therefore the “hierarchy" of parameter sensitivities seen in Sec. 2.7.3 can be observed using the

model manifold. This point is illustrated by focusing on the area of parameter space near sand. The

FIM at sand indicates that c2 is the stiffest parameter followed by ρ2 and α2.
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(a) (b)

Figure 2.10 (a) A half-cube sampled in log parameter space and (b) the anisotropic widths
of the TL model manifold, related to the parameter sensitivities at sand. The widths of the
parameter space cube corresponds to a step of 0.1 in log space. The black dot at the corner
is sand (ρ2 = 1.9 g/cm3, c2 = 1650 m/s, and α2 = 0.8 dB/λ ). The different widths of the
model manifold reflect the same information contained in the FIM at sand, specifically
that c2 is the stiffest (most identifiable) parameter, followed by ρ2 and then α2.

Three adjacent TL model manifold sections are calculated and placed on the same axes for

the faces of a half-cube in parameter space, shown in Fig. 2.10(a). Because the natural log of the

parameters is used, each “step" in the three parameter directions is the same step size. A step of

0.1 in log parameters is used. Because of the different parameter sensitivities for c2, ρ2 and α2, the

model transforms this half-cube in parameter space into highly anisotropic manifolds, shown in Fig.

2.10(b). The red, blue, and yellow bold lines are where the three faces meet and two parameters are

constant and one varies (e.g., for the red line ρ2 and α2 are fixed values, and c2 varies). The lengths

of these edges show the same hierarchy of stiffness as seen in Table 2.3: the red line, corresponding

to varying c2, is the longest, meaning that c2 is the stiffest parameter because the model output

responds most to a change in the sound speed. The yellow line for varying ρ2 is next longest

meaning that ρ2 is the next stiffest parameter, followed by the shortest blue line for varying α2,

which is the sloppiest parameter.
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(a) (b)

Figure 2.11 (a) Parameter space where the log parameter ranges are scaled by the condi-
tional STD calculated from the FIM at sand. Note that the blue line here is the same length
as the blue line in parameter space in Fig. 2.10(a) (0.1 log parameter step). (b) The TL
model manifold is now scaled such that its widths are approximately equal.

To illustrate this parameter sensitivity hierarchy slightly differently, three model manifolds are

again constructed, but the widths of the parameter ranges are scaled by the conditional STD of the

parameters, such that the parameter space rectangular prism is very thin in some parameters (e.g.

c2), as shown in Fig. 2.11(a). The model manifold for these sections of parameter space, shown in

Fig. 2.11(b), becomes roughly isotropic in all three parameters with this scaling. The two model

manifold visualizations in Figs. 2.10(b) and 2.11(b) illustrate how the local parameter sensitivities,

as found in the FIM, are similarly represented in the model manifold.
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2.8 Outlook for application of information geometry

This paper has demonstrated some applications of information geometry tools to underwater

acoustics, but there are many other possible applications. One application of these information

geometry tools is to inform optimal experimental design, i.e., to maximize the amount of information

contained in experimental data about parameters of interest. Optimal experimental design could

include deciding on optimal positioning for receivers or choosing the source-receiver range to

measure at, given the desired parameter to infer and, for example, the source frequency. In this

scenario, visualizing slices of the model manifold may reveal that the choice of certain receiver

depths spreads out the model manifold and is, therefore, more informative. Similarly, the FIM

may be constructed for different experimental configurations (e.g., source-receiver geometries)

and analyzed to determine parameter uncertainties. In this manner the information geometry tools

provide criteria for choosing which experimental design is most informative. Other work discussing

the applications of information geometry to experimental design include [168].

Additionally, more advanced future work includes using computational differential geometry

methods to obtain reduced parameter models that contain only the most identifiable parameters.

Using the insight that parameters become increasingly sloppy as model manifold boundaries are

approached, the Manifold Boundary Approximation Method (MBAM) [125] algorithmically identi-

fies potential reduced models corresponding to boundaries of the model manifold by calculating

geodesics on the model manifold. MBAM has been successfully used for model reduction in a

variety of fields including models of nuclear structure [119, 169, 170], cardiac physiology [78],

power systems [101, 103, 104], biochemistry [72, 84, 125, 126], and epidemics [126]. Additionally,

Paré et al. [171] used MBAM to find a connection between model reduction methods of balanced

truncation and balanced singular perturbation approximation as limiting approximations of linear

time invariant systems.



2.8 Outlook for application of information geometry 52

Other methods for model reduction based in information geometry have been proposed as well.

Raman et al. [76] introduces a method for parameter reduction similar to MBAM that, instead

of utilizing geodesics, simulates a particle trajectory in parameter space. The particle trajectory,

starting at the best fit, is calculated via a Hamiltonian and traces out the portion of parameter space

associated the most unidentifiable parameter combination, which can be removed from the model.

Zhao et al. [172] presents an information geometry based model reduction method for models with

parameter spaces of binary multivariate distributions called Confident Information First, which

projects the model manifold onto a submanifold that preserves distinguishability. Holiday et al. [173]

demonstrates a data driven, diffusion map-based method for learning an effective low-dimensional

parameterization of a sloppy model, based only on the model’s input-output relations; this approach

is shown to be effective for a number of demonstrative and practical modeling scenarios. The

present work sets the stage for the application of information geometry based model reduction

methods to sound propagation models, enabling more advanced geoacoustic inversions.

Information geometry has also led to methodological advances in other areas, some of which

are summarized here. Similar advances towards applications in ocean acoustics could be possible.

In the area of visualization, Quinn et al. [111] introduced Intensive PCA, a nonlinear alternative

to traditional PCA, applicable to categorical data. Teoh et al. [174] introduces a similar intensive

embedding, known as the intensive symmetric Kullback-Leibler (isKL), for analytically embed-

ding statistical models from an exponential family into a 2N-dimensional Minkowski space. In

optimization, Transtrum et al. [175] improved convergence of the Levenberg-Marquardt algorithm

by introducing geodesic acceleration to overcome challenges with the algorithm getting stuck in

singular regimes of parameter space close to boundaries of the model manifold for sloppy mod-

els [176]. In the area of renormalization groups, Berman et al. [177] introduces the idea of Bayesian

renormalization, interpreting the process of evolving the ‘current posterior’ toward the true solution

as the inverse of a coarse-graining process. Under this interpretation, the Bayesian renormalization
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method is introduced which coarse-grains the model according to statistical distinguishability, as

defined by the Fisher information matrix. Girolami et al. [178] improved the efficiency of Monte

Carlo sampling methods for high dimensional situations by considering the Riemannian structure

of the parameter space of statistical models. Information geometry has also been used to improve

Bayesian prior selection. In Mattingly et al. [179], the authors select an optimal prior that assumes

finite amount of data, which alleviates challenges that arise when using a prior which assumes

infinite data for sloppy models. LaMont et al. [180] proposes the learning capacity, analagous

to heat capacity in statistical mechanics, to quantify model sloppiness, and additionally proposes

choosing of a Bayesian prior by grouping indistinguishable models, allowing better performance

when model dimension is unknown. These examples demonstrate that there are many opportunities

for information geometry to influence traditional computational methods and likely have a similar

effect in the area of ocean acoustics.

2.9 Summary

In summary, this tutorial review paper demonstrated the application of information geometry meth-

ods to ocean acoustics modeling. First, a review of different methods for parameter sensitivity

analysis that have been applied to problems in underwater acoustics was given in Sec. 2.2. Addition-

ally, references were given for the application of information geometry methods to sloppy models

in a variety of fields, setting the stage for their demonstration in this paper. In Sec. 2.3, a tutorial

explained the Fisher information matrix and its interpretation, and specifically how information

regarding parameter uncertainty, such as Cramér-Rao bounds, can be extracted from the FIM. In
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context of the FIM, a more thorough review of the application of Cramér-Rao bounds, a local

sensitivity method, to analysis of environmental parameters in ocean acoustics was provided in

Sec. 2.4. A review of rotated coordinates as a non-local method was given in Sec. 2.5, and its

connections to and differences from the FIM were discussed.

The bulk of the paper introduced and demonstrated the application of information geometry

methods to the problem of environmental parameter sensitivities in ocean acoustics. In Sec. 2.6,

the construction of the model manifold was illustrated for a toy sum of exponentials model, and

the connection between the FIM and the model manifold were discussed. A tutorial in Sec. 2.7

explained the construction of the model manifold for a simple underwater sound propagation model,

the Pekeris waveguide. An adaptation of the Pekeris waveguide from [5] was used that includes

an additional sediment attenuation parameter α2. The three parameters varied were the sediment

sound speed c2, sediment density ρ2, and sediment attenuation α2. One parameter was held fixed

while the others are varied to construct 2-dimensional TL model manifolds in the 3-dimensional

data space, due to the challenges of accurately visualizing a 3-dimensional volume.

In Sec. 2.7.2 the case of the traditional Pekeris waveguide (α2=0) was considered, and TL

model manifolds were constructed in the region of parameter space near the infinite density and

sound speed limits, in addition to manifolds around different sediment types (at zero attenuation).

These manifolds showed how model parameters become sloppy at the model manifold boundaries,

such as the infinite density boundary. Additionally the manifold section around silt, sand, and

gravel showed how distinguishing some sediment types by parameter inference can be challenging.

Overall, it was demonstrated how the model manifold holds information about local, intermediate,

and global model structure. In Sec. 2.7.3, the FIM was calculated at four different sediment types.

The eigenvectors and eigenvalues of the FIM were calculated, along with the CRB and conditional

STD, giving quantitative measures of parameter correlation and sensitivities. Generally, c2 was

the stiffest parameter, followed by ρ2 and α2. Additionally, a discussion was provided about how
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local sensitivity properties are impacted by the global structure of the model manifold. Then Sec.

2.7.4 contained TL model manifold sections that illustrate how the model manifold encodes the

same local parameter sensitivity information contained in the FIM, which can be understood by

considering the FIM as a distance metric on the model manifold as discussed in Sec. 2.6.2.

Finally, Sec. 2.8 provided discussion for how information geometry methods can impact prob-

lems in ocean acoustics going forward. Of particular note are the applications towards experimental

design and obtaining reduced order models, to enable more accurate geoacoustic inversion. This pa-

per introduced the information geometry method of the model manifold in context of other methods

for sensitivity analysis traditionally used in problems in ocean acoustics, laying the foundation for

further applications of information geometry.

In conclusion, the model manifold preserves the local parameter sensitivities of a non-linear

model, while also informing about larger scale model structure and global parameter sensitivi-

ties. The model manifold builds upon local measures of parameter sensitivity, as given by the

FIM, and shows how sensitivities change over parameter space. In the extreme limits of model

parameters, boundaries of the model manifold correspond to physically meaningful reduced-order

models, thus quantifying global parameter sensitivities. The model manifold thus demonstrates

advantages over non-local methods of determining parameter sensitivity, such as sampling based

methods, which provide only an averaged value of parameter sensitivity and fail to capture global

sensitivities. Promising future applications of information geometry methods in ocean acoustics

include experimental design and reduced order modeling for geoacoustic inversion.
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Chapter 3

Information geometry analysis example for

absolute and relative transmission loss in a

shallow ocean

This chapter includes a paper submitted to the Journal of the Acoustical Society of America,

Express Letters (JASA-EL) entitled Information geometry analysis example for absolute and relative

transmission loss in a shallow ocean, with authors Jay C. Spendlove, Tracianne B. Neilsen, and Mark

K. Transtrum. This paper demonstrates use of the model manifold to inform experimental design by

comparing the differences in information content between absolute and relative transmission loss

about parameters of interest. Supplementary material for this paper is included in Appendix C of

this thesis, and includes sound propagation model parameters for replication and additional relative

TL model manifold visualizations and related information.
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Abstract

The model manifold, an information geometry tool, is a geometric representation of a model that

can quantify the expected information content of modeling parameters. For a normal-mode sound

propagation model in a shallow ocean environment, transmission loss (TL) is calculated for a

vertical line array and model manifolds are constructed for both absolute and relative TL. For the

example presented in this paper, relative TL yields more compact model manifolds with seabed

environments that are less statistically distinguishable than manifolds of absolute TL. This example

illustrates how model manifolds can be used to improve experimental design for inverse problems.

3.1 Introduction

A major goal of underwater acoustical modeling is to gain insight into how acoustical measure-

ments, such as transmission loss (TL), relate to environmental parameters and, thus, estimate

what environmental information is or is not encoded in acoustical data. Intuitively, if physically

distinct seabeds lead to nearly identical acoustical data, those data cannot be used to distinguish the

seabeds. Model parameters associated with these indistinguishable seabed properties are said to be

unidentifiable. Parameter identifiability can inform both experimental design and model selection.

This paper demonstrates an information geometry approach to choosing experimental design such

that information about environmental parameters is maximized.

Information geometry [108, 181, 182] is a branch of mathematics that combines statistics

and information theory with differential geometry. A multi-parameter model can be interpreted

geometrically as a Riemannian manifold, known as the model manifold. The model manifold exists

as a curved, high-dimensional hyper-surface in an ambient “data space," where each point on the

manifold corresponds to a specific model prediction. The dimensionality of the model manifold is

the number of parameters to be inferred, where the parameters act as coordinates on the manifold.
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The dimensionality of the ambient data space corresponds to the number of model predictions.

In this paper, we use a two-parameter TL model with a vertical line array (VLA) of 15 receivers,

resulting in a two-dimensional (2D) model manifold embedded in a 15-dimensional (15D) ambient

data space.

The geometric structure of the model manifold connects the information content of data to model

parameters. Distance on the model manifold quantifies the statistical distinguishability of different

model predictions. The Fisher information matrix is a distance metric on the model manifold,

providing a connection to other information-theoretic tools for parameter identifiability analysis

such as Cramér-Rao bounds. Importantly, however, the model manifold connects this local measure

of identifiability with nonlocal and global properties of the parameter space. The distance between

different parameter values in the ambient data space incorporates all nonlinearities of the model

into a single measure of statistical distinguishability.

Additionally, the model manifold encodes global parameter sensitivities within the structure of its

finite boundaries, a nonlinear effect. Model manifold boundaries correspond physically interpretable

simplified models, such as completely removing sediment layers from a more complex geoacoustic

profile. Algorithms such as the manifold boundary approximation method (MBAM) [72,183] can be

utilized to find these manifold boundaries, identifying reduced-order models that can retain model

accuracy while being physically interpretable. The visualizations in this paper motivate starting

cases for testing MBAM on ocean sound propagation models. The effectiveness of model reduction

methods such as MBAM rely on the fact that model manifolds in general contain a hierarchy of

widths, giving model manifolds a “ribbon-like" structure. This structure is equivalent to saying

that multi-parameter models, in general, manifest parameter sensitivities spanning many orders
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of magnitude, a phenomenon known as sloppiness, [184–186] which is characterized by roughly

log-linear spaced eigenvalues of the Fisher information matrix. Wide dimensions of the model

manifold correspond to stiff parameter combinations to which the model is most sensitive, while

thin dimensions correspond to sloppy parameter combinations.

In summary, the model manifold directly connects the information content of data to model

parameters in both local and global ways. Thus, the model manifold approach extends traditional,

local sensitivity analyses in ways that have potential applications for model selection and exper-

imental design. For experimental design, the model manifold depends on independent variables

such as frequency and source-receiver geometry, in addition to the model parameters and, thus,

quantifies the potential information content in data for different experimental setups. A more “spread

out" model manifold corresponding to some experimental design choice indicates that choice of

acoustical data contains more information about parameters of interest, making parameter inference

more accurate. Information geometry is, therefore, a natural framework to explore questions of

experimental design.

This paper demonstrates the utility of the model manifold in guiding experimental design by

quantifying the impact that using relative TL has on the information content of data for the example

of a 15 element vertical line array (VLA) in a shallow ocean environment. The TL model manifold

is generated by a range-independent normal-mode model, and model manifold visualizations

are shown of 2D slices of the data space at different receiver depths to illustrate the impact of

experimental design. Principal Component Analysis (PCA) is employed to obtain representative

2D visualizations of the principal variations across a 15D model manifold. Additionally, Euclidean

distances on the manifold between seabed types are calculated in the 15D data space. Visualizations

of the model manifold for both absolute and relative TL for different receiver depths show that,

in this example, relative TL model manifolds are more compact, with seabeds types that are less

statistically distinguishable and do not follow expected similarity trends.
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3.2 Method

The sound propagation model selected to compute TL is ORCA, a range-independent normal-mode

model [187]. At a selected frequency f and for a specified ocean environment θθθ and source-receiver

configuration, ORCA calculates the depth-dependent mode functions and modal eigenvalues, which

yield the Green’s function:

p(θθθ ,r,z,zs) =

√
2π

r
eiπ/4 1

ρs
∑
n

φ̄n(θθθ ,z)φ̄n(θθθ ,zs)eikn(θθθ)r√
kn(θθθ)

, (3.1)

where φn(θθθ ,z) is the n-th depth-dependent mode function for environment θθθ evaluated at receiver

depth z or source depth zs, kn(θθθ) is the n-th modal eigenvalue, ρs is the water density at the source,

and r is the horizontal range between source and receiver. In addition to the explicit arguments r, z,

and zs, the Green’s function implicitly depends on all of the seabed parameters, water depth and

sound speed, and frequency. An incoherent sum of modes would provide a more realistic model

of a broadband signal; however, in this work we follow the definition given in the original ORCA

paper [187], which assumes a single frequency. Future work will explore the incoherent sum of

modes formulation. The transmission loss is computed as

TL(r,z,zs) =−20log(|p(r,z,zs)|/|p0|), (3.2)

in units of dB re 1 m, where |p0| is the value 1 m from the source.

This work uses a relatively simple ocean environment with an isovelocity water sound speed

of 1500 m/s, water depth of 75 m, and a seabed consisting of a 35 m sediment layer over a half

space. The sediment layer is parameterized using the compressional sound speed cp, density

ρ , and attenuation αp, which is held fixed at αp = 0.63 dB/m/kHz in this paper. This value

corresponds to the estimated value of attenuation for silt given in Jensen et al. [1]: for cp = 1575 m/s,
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αp = 1.0 dB/λ = 0.63 dB/m/kHz, which is larger than for most sediments. The experimental design

parameters include zs = 6 m, r = 3 km, 15 receiver depths z evenly spaced between 5 m and 75 m,

and a frequency of 100 Hz. A table of the ORCA parameters used, including half space parameters,

is included in Appendix C.

The model manifold is an N-dimensional surface consisting of all possible model predictions

for N variable parameters, embedded in an M-dimensional data space with perpendicular axes, in

this case, corresponding to TL at M choices of receiver depth. For this example, two environmental

parameters, sediment sound speed cp and density ρ , are varied (N=2), with sampled points shown

in the parameter space in Fig. 3.1(a). Model manifolds are constructed by calculating the TL for

each of these parameter choices at two different receiver depths (M=2). The model manifolds

corresponding to TL at receiver depths of 5 m and 65 m, and 25 m and 30 m, are shown in

Fig. 3.1(b)-(c), respectively. These model manifolds demonstrate the characteristic ribbon-like

structure of a sloppy model due to the nonlinear model transformation. These model manifolds in

Fig. 3.1(b) and (c) are qualitatively different, signaling differences in information content between

channels; this observation holds for selection of any subset of receiver depths.

The model manifolds in Fig. 3.1(b)-(c) retain the same adjacency relations of the colored edges

in Fig. 3.1(a), other than the apparent self-intersection of the manifold, which in general disappears

in higher dimensional data spaces. (Note that any true self-intersection of the model manifold

does not correspond to any continuous shorter path between parameter choices in parameter space;

practically this just introduces additional ambiguities in projecting measured data onto the model

manifold.)

The location for five seabed sediment types (mud, clay, silt, sand, gravel) are also indicated on

the parameter space and the TL manifolds in Fig. 3.1. (The parameter values are listed in Appendix

C). Distance between two points on the model manifold in data space quantifies the statistical

distinguishability between those parameter values. The Euclidean distance between model outputs
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Figure 3.1 (a) Parameter space showing the sampling of seabed sound speed cp and density
ρ . The ORCA model predicts TL for each sample point (including the colored bounds)
at multiple receiver depths to construct the model manifold. (b) A 2D model manifold
visualization with axes of TL at receiver depths 5 m and 65 m for a 100 Hz source. Five
seabed sediment types are marked on the manifold. Hypothetical observed data (black dot)
contains noise and so in general does not lie on the model manifold, but it can be projected
(non-uniquely) onto the manifold. (c) A 2D model manifold visualization for TL at depths
25 m and 30 m exhibits sloppiness, seen as thinness of the model manifold for TL > 72 dB.
(d) Relative TL model manifold with the same axes as (a), the TL at depths 65 m and 5 m,
but relative to TL at z =30 m, i.e., after subtracting TL at z =30 m. The relative TL model
manifold is more compressed than the absolute TL model manifold.

for two seabed environments in data space is referred to as “seabed distance" in this paper. Seabed

types with a small seabed distance, such as mud and clay in Fig. 3.1(b), exhibit a degree of similarity

that can pose a challenge in geoacoustic inversion. In contrast, mud and clay have larger seabed

distances from the other three seabeds—silt, sand, and gravel—making them more distinguishable

from those seabed types.

Also notice that the model manifolds in Fig. 3.1(b)-(c) have a long dimension, corresponding to

the more identifiable sound speed parameter, while the short dimension corresponds to the sloppier

density parameter. This distinction is especially true in Fig. 3.1(c) for predictions made at nearby

receiver depths of 25 m and 30 m; the very narrow portion of the manifold indicates that, for TL >

72 dB, these receiver depths contain no information about the density.
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Due to measurement uncertainty and ambient noise in measured TL, data typically do not lie

on the model manifold. Black dots in Fig. 3.1(b)-(c) represent hypothetical noisy TL data, and the

black arrows represent possible projections of this “data" onto the model manifold. Geoacoustic

inversion projects noisy data onto the model manifold by acting as a non-unique pseudo-inverse,

corresponding to a specific choice of loss function in the optimization process, often the sum of

squares error that minimizes the Euclidean distance between observed data and model predictions.

To reduce the noise in the data that is common to all measurements, relative TL is often used in

ocean acoustic applications instead of absolute TL. One way to calculate relative TL is to subtract

the TL for one channel from the other channels, reducing the effective data space dimension from M

to M−1. Using relative TL should in practice bring noisy data closer to the model manifold. The

remaining distance between the data point and the manifold could be caused by model mismatch

or sources of uncertainty that vary between measurements, such as array tilt for VLAs, individual

sensor noise, and sound speed variability. Thus, using relative TL for the axes of data space

corresponds to a different noise model where the noise is limited to those sources that are different

between measurements.

As an example, Fig. 3.1(d) shows a relative TL model manifold. The relative TL manifold is

the absolute TL manifold in Fig. 3.1(b) with axes of relative TL at depths of 65 m and 5 m, with

the TL at a depth of 30 m (y-axis of Fig. 3.1(c)) subtracted from each channel. Notice that the

relative TL manifold appears to be more compressed than the original manifold, with smaller seabed

distances than for the absolute TL manifolds. This compression of the relative TL model manifold

is explored more quantitatively in Sec. 3.3. While absolute TL is often considered an exclusively

positive quantity, relative TL can be positive or negative because of how it is defined here. In this

application, the total dB distance in data space is most relevant, not whether the values are positive

or negative.
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Figure 3.2 (a) PCA projection of the model manifold in 15D data space onto the two
principal components with the highest variation. Units of axes are still dB. (b) Seabed
distance matrix showing the Euclidean distance between seabeds on the TL manifold in
the 15D data space.

To allow for more accurate discussion of seabed distances in Sec. 3.3, an alternate method

for obtaining 2D visualizations of the model manifold is introduced. The 2D visualizations in

Fig. 3.1(b)-(c) each correspond to observations from two receivers. Inclusions of data from

additional channels (e.g., 15 receiver depths) are more informative, but difficult to visualize. Low-

dimensional visualizations of high-dimensional spaces are obtained via Principal Component

Analysis (PCA). PCA finds a new basis for data space aligned with the directions in which the

model output varies most. Points sampled from the manifold in 15D are first translated to be

centered at the origin by subtracting the mean TL of all the data points for each channel. The

shifted points are collected into the columns of a matrix D, and a singular value decomposition is

performed: D =UΣV T , where U and V are unitary matrices. The columns of V define the new basis

for data space and are known as the principal components. Σ is a diagonal matrix of the singular

values of D, which are the standard deviations of the sampled points projected onto each principal

component. The first two principle components typically describe most of the variability in D, so the

projection of the model manifold onto the first two principle components yields a low-dimensional

visualization of the main features of the model manifold.
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For the case of 15 receiver depths, a 2D PCA visualization of the model manifold is displayed

in Fig. 3.2(a). The axes of Fig. 3.2(a) represent linear combinations of TL at all 15 depths projected

onto the first two principal component directions, which captures 91.2% of the variation in the

original 15D data. For Fig. 3.2(a) and the other PCA manifold visualizations in the paper, the exact

values on the axes are not important, only the total distance in dB between points; the units are still

dB, allowing for comparison to the widths of the manifolds shown in Fig. 3.1. The model manifold

in Fig. 3.2(a) is wider and appears less folded over itself than the manifolds in Fig. 3.1(b)-(c),

indicating an increase in the quantity of information relevant to distinguishing seabed parameters.

The seabed distances between the five marked seabeds in the 15D data space are given in Fig. 3.2(b).

These seabed distances differ slightly from the apparent distances in Fig. 3.2(a) based on the first

2D PCA model manifold because the seabed distances in Fig. 3.2(b) are calculated in the 15D data

space.

3.3 Results

The impact of using relative TL instead of absolute TL on the informativity of data for a VLA is

explored in this section. Relative TL model manifolds in Fig. 3.3(a)-(c) are created by subtracting

the TL at reference depths of 20 m, 30 m, and 65 m, respectively, from all 15 channels. The relative

TL manifold in Fig. 3.3(d) is calculated differently by subtracting from each channel the average

model predictions across all 15 VLA elements, which can be thought of as subtracting the mean

TL. All four relative TL manifolds are then projected into 2D using PCA. Seabed distances are

calculated on the relative TL manifolds in 14D (or 15D) data space, and shown in Fig. 3.3(e)-(g).
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Figure 3.3 2D PCA projections of relative TL model manifolds. Relative TL is calculated
by subtracting TL at reference depths of (a) 20 m, (b) 30 m, and (c) 65 m, while in (d)
relative TL is calculated by subtracting the mean TL prediction across all 15 VLA elements.
Corresponding seabed distance matrices are below each manifold in (e)-(h).

Additionally, Appendix C contains model manifolds and seabed distance matrices relative to all 15

receiver depths on the VLA, as well as a table with average and median seabed distances, a plot

presenting the PCA singular values, and a table indicating the percentage of variance explained by

the 2D PCA visualizations.

Several notable changes in model geometry and parameter identifiability occur when using

relative TL on the VLA. First, as seen in the relative TL model manifold in Fig. 3.1(d), the relative

TL model manifolds in Fig. 3.3(a)-(d) are more folded and compact than the absolute TL manifold

in Fig. 3.2(a). For example, the model predictions in the first principal component in Fig. 3.3(b)-(d)

vary by two-thirds the dB range as Fig. 3.2(a). This compression of the relative TL model manifold

is due both to additional folding and the overall reduced scale of the model manifold. Comparison

of seabed distances in the full data space can provide a quantitative measure of the compression of

the model manifold.
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Relative TL model manifolds seabed distances, shown in Fig. 3.3(e)-(h), are smaller than the

absolute TL seabed distances shown in Fig. 3.2(b). First, the maximum relative TL seabed distances

(darkest blue elements of Fig. 3.3(e)-(h)) are 30 - 70% smaller than the absolute TL maximum

seabed distance in Fig. 3.2(b). Additionally, the average seabed distances for relative TL are less

than for absolute TL. The average seabed distance in Fig. 3.2(b) (excluding self-correlation) is

56.6 dB. In contrast, the average seabed distances in Fig. 3.3(e)-(h) for relative TL obtained by

subtracting TL at reference depths 20 m, 30 m, and 65 m, and by subtracting the mean TL, are

31.6 dB, 20.1 dB, 22.5 dB, and 18.9 dB, respectively. Smaller seabed distances indicate that, in this

example, data associated with different seabed parameters are less distinguishable than when using

absolute TL.

Most importantly, the respective ordering of the seabed distances has changed. For absolute TL,

the seabed distances follow the overall trend of increased reflectivity of the seabed, where gravel

is furthest from, and, therefore, most distinguishable from, mud and clay, with seabed distances

of ∼90 dB (Fig. 3.2). However, for the relative TL manifolds in Fig. 3.3(a)-(d), mud and clay are

much closer to gravel in data space, and closer than gravel is to sand and silt, due to folding of

the model manifold. This trend becomes clear upon inspection of the seabed distance matrices in

Fig. 3.3(e)-(h): mud and clay are anywhere between 5 dB and 15 dB closer to gravel than gravel is

to sand and silt. Thus, the overall identifiability of the seabed parameters is reduced when using

relative TL, due to the subtracting out of common features, which increases the folding of the model

manifold. In context of Eq. 3.1, it is not clear exactly what structure in the data is lost when using

relative TL; however, qualitatively it appears that some overall bottom loss due to the sediment has

been removed. The practical implication of this seabed reordering is that geoacoustic inversions to

determine seabed parameters may be more challenging for relative than absolute TL, depending on

how much noise reduction is obtained by use of relative TL.
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The reference hydrophone used to calculate relative TL changes the model manifolds, effectively

increasing or decreasing the information contained in the relative TL data. For example, contrast

using TL relative to 30 m (Fig. 3.3(b) and (f)) to using TL relative to 20 m (Fig. 3.3(a) and (e)). The

average seabed distance in Fig. 3.3(f) is 20.1 dB, while the average seabed distance in Fig. 3.3(e) is

31.6 dB. Therefore, parameter inference using TL relative to 30 m may be more challenging, with

larger uncertainty in parameter estimates, than if a reference depth of 20 m was used. Specifically,

the seabed distance between mud and clay for absolute TL is 7.3 dB, as shown in Fig. 3.2(b). The

seabed distances between mud and clay for reference depths of 30 m and 20 m, respectively, are

4.6 dB and 7.1 dB (Fig. 3.3(f) and (e)). Thus, using a reference depth of 30 m yields a model

manifold in which mud and clay are less distinguishable than when using absolute TL, while using

a reference depth of 20 m yields a distinguishability of mud and clay nearly identical to the absolute

TL case. Seabed distances for averaged relative TL in Fig. 3.3(h) show similar compression as

Fig. 3.3(f), with the distance between mud and clay being 4.5 dB, and an even smaller average

seabed distance of 18.9 dB. Thus, if relative TL is used, distances between seabed locations on the

model manifolds can be examined to indicate which method and which reference depth maximizes

the information with respect to the parameter of interest.

While more studies need to be done looking at relative TL for changing different experimental

design parameters, this work provides insights into the loss of information content that may occur

when using relative TL for a VLA. In this example, because of decreased and mixed up seabed

distances from using relative TL, care should be taken when using parameter values inferred from

relative TL. The increased uncertainties from using relative TL may propagate as these values are

subsequently used in, for example, source ranging. Thus, the advantages of relative TL in reducing

uncertainty due to noise in the data have to be balanced with the potential decrease in information

content about the seabed parameters.
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3.4 Conclusions

This work provides an example of how model manifolds can be used for optimal experimental

design. The model manifold, an information geometry tool for parameter identifiability analysis, has

been constructed for TL from the ORCA normal-mode sound propagation model for a shallow water

case with a 15 element VLA at a single frequency, source depth and range. The wide dimension of

the “ribbon-like" model manifolds correspond to the identifiable sound speed parameter cp, while

the thin dimension of the model manifolds corresponds to density ρ , in some situations, indicating a

sloppy parameter. The Principal Component Analysis (PCA) method provides a way to obtain a 2D

model manifold visualization projected from a 15D data space, while retaining maximal variation

of the model output.

Comparisons of the model manifolds for absolute and relative TL reveals significant insights

into information loss and changes in the model (manifold) structure that come from using relative

TL, in the case of receivers on a VLA relative to one receiver depth, and for the case of subtracting

the mean TL across VLA elements. These relative TL model manifolds are more compact than

absolute TL manifolds and have smaller seabed distances in data space. Smaller seabed distances

indicate that relative TL contains less information to distinguish certain seabed environments, with

implications for geoacoustic inversion for seabed parameters. The compression of the relative

TL model manifold can be seen as a symptom of having some overall influence of the seabed

environment removed from the acoustical data. Substantially, when using relative TL, the ordering

of seabed distances also changes such that seabed distance does not follow the overall trend of

seabed reflectivity observed when using absolute TL. With relative TL, mud and clay appear closer

to gravel than gravel is to sand and silt, implying that mud and clay are statistically more similar

to gravel. With an understanding of the limitations of relative TL, the model manifold approach
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allows for selection of the reference depth that maximizes the information content in the relative TL

data. Future work is required to explore the implications of relative TL for different experimental

design choices, for example considering TL relative to different source depths, frequencies, and

source ranges (such as on a horizontal line array).

Other future work includes considering higher dimensional models (and therefore model mani-

folds), such as including more sediment layers and varying sediment attenuation in addition to sound

speed and density. These higher dimensional models will not be amenable to direct visualization,

but similar analyses can be performed by visualizing 2D slices of the model manifold. Additionally,

future work will utilize differential geometry tools such as geodesics to obtain reduced order models

in these more complex cases.
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Chapter 4

Conclusion and future work

4.1 Summary and Discussion

In conclusion, my primary contributions to the field of underwater acoustics have been to write

a review paper which introduces information geometry tools in context of parameter sensitivity

analysis methods previously utilized in underwater acoustics and to demonstrate how the model

manifold, an information geometry tool, can be used to answer questions of experimental design

and model selection. These contributions have been demonstrated by two submitted papers included

in this thesis as Chapters 2 and 3.

Chapter 2 demonstrates model manifold construction for the Pekeris waveguide, interpreting

insights into parameter identifiability both locally, using the Fisher information matrix, and globally,

analyzing boundaries of the model manifold. The Fisher information matrix and model manifold are

introduced in detail in Sections 2.3 and 2.6, respectively, including a discussion of their connections;

these sections provide a resource for readers to reference. The review of papers applying parameter

sensitivity analysis methods to ocean acoustics will also be a valuable resource for readers. Chapter

71
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3 demonstrates model manifold construction for the ORCA sound propagation model, exploring the

differences in information content between using absolute transmission loss and different choices

for relative transmission loss. This paper is a template for how to utilize information geometry and

model manifolds in optimizing experimental design in other scenarios.

The following section (Sec. 4.2) discusses some preliminary work conducted constructing neural

network (NN) surrogates of the model manifold, enabling differential geometry methods for model

selection. Then, Sec. 4.3 gives the outlook for future work in ocean acoustics using information

geometry, building upon the work conducted in this thesis.

4.2 Preliminary work on NN surrogates

It was demonstrated in Chapter 2 how information geometry can investigate parameter identifiability

both locally and globally. Locally, the Fisher information matrix is a distance metric on the model

manifold and provides a measure of parameter identifiability. Globally, the boundaries of the model

manifold are simpler models corresponding to the limit of some parameter combination. Identifying

the manifold boundaries and the associated reduced-order model closest to the data provide an

algorithm for model selection in which the sloppiest parameters are removed from the model; this

algorithm is known as the manifold boundary approximation method (MBAM) [183]. To identify

manifold boundaries in practice, when there are many parameters and data space dimensions,

requires calculation of geodesics on the model manifold. A geodesic is the generalization of a

straight line on a curved surface, and gives the shortest distance between two points on a surface.

To calculate geodesics, however, requires reliable calculation of accurate derivatives of the model

with respect to model parameters. Finite differencing methods, while simple, can yield inaccurate

derivatives, in particular for models with various parameter scales. Modern automatic differentiation

(AD) methods also provide a method for obtaining model derivatives; however, implementation of
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AD directly on a sound propagation model is challenging due to inaccessible or “legacy” model

code and numerical computations (e.g., numerical integrals). We propose a method to train a neural

network as a surrogate to approximate the model manifold from which derivatives can be rapidly

and accurately calculated using AD.

The NN architecture used (implemented in Pytorch [188]) is a simple network with two hidden

layers of size 128 and 64, with the inputs being the model parameter values and the labels being TL

at the data channels (e.g. receiver depths) specified. Both inputs and outputs are standardized by

subtracting the mean and dividing by the standard deviation, using the training data provided. For

the example given here, 20000 simulated points were utilized, with a 95/5 train-test split, and the

model was trained for 20000 epochs while the learning rate was varied using cosine annealing. The

optimizer and activation function used were Adam and Mish, respectively.

For this application, where we are interested in the derivatives of the NN surrogate model

manifold, it is important to use a smooth activation function, such as Mish, to yield smoothly varying

derivatives. This is illustrated using a toy analytic model, a sum of two decaying exponentials, for

which the true derivative values are known, with two parameters, θθθ = [θ1,θ2]:

yθ (ttt) = e−θ1ttt + e−θ2ttt . (4.1)

Similar to the sound propagation model considered, this model has two inputs corresponding to the

model parameters θθθ and three outputs corresponding to the model predictions at ttt = [1,2,3]. A NN

surrogate was trained for this model using three different activation functions, ReLU, Tanh, and

Mish, which are shown in Fig. 4.1(a)-(c). Note that the ReLU activation function has a discontinuity

in its derivative. After training these NN surrogates, Jacobian matrices were calculated from the

NN surrogates for a variety of parameter values using automatic differentiation. These predicted

Jacobian matrices are then compared to the true Jacobian matrices. For the six elements in the

Jacobian for this example, the mean absolute error of the Jacobian elements was calculated to give a
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Figure 4.1 NN surrogates were trained using three different activation functions, ReLU,
Tanh, and Mish, which are shown in panels (a) - (c). Panels (d) - (f), show the mean absolute
error calculated between the NN surrogate Jacobian matrices and the true Jacobian for the
same three activation functions, for a variety of parameter values. The error is smaller and
the derivatives are more smoothly varying for smooth activation functions such as Tanh
and Mish than for ReLU.

single number representing how close the true and predicted Jacobians are at that parameter choice.

Plots showing how the mean absolute error between the true and predicted Jacobians changes

over parameter space are given in Fig. 4.1(d)-(f). These plots show that for the smooth acivation

functions, Tanh and Mish, the error is smaller and the derivatives are more smoothly varying than

for the ReLU activation function. Thus, for the neural networks trained here, the Mish activation

function is used.

For the case of the Pekeris sound propagation model, a NN surrogate manifold was trained

using the Mish activation function for a region of parameter space corresponding to higher values of

density and sound speed (c=[4500, 35000] m/s; ρ=[2.5,10000.0] g/cm3). The NN surrogate (green)

is overlaid on the true manifold (blue) in Fig. 4.2 and appears to match very well. Another way to
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Figure 4.2 Trained NN surrogate (green) overlaid on the true model manifold (blue).

illustrate the accuracy of the NN surrogate compared to the true manifold is by using prediction

plots, which plot true model values on the y-axis and predicted model values on the x-axis, as shown

in Fig. 4.3, for training and testing data. Perfect predictions will thus lie on on the diagonal black

dashed lines in Fig. 4.3. For this NN surrogate, the surrogate model predictions are quite accurate.

With this trained NN surrogate manifold, the model derivatives are obtained from the NN

surrogate via automatic differentiation and can be used to calculate geodesics. An example of a

geodesic calculated on this NN surrogate model manifold is shown in Fig. 4.4. The geodesic path

in parameter space, shown in Fig. 4.4(a), starts at the black point, follows the green path, and ends

at the red point; the geodesic path on the model manifold in data space is shown in Fig. 4.4(b), with

the same coloring.
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Figure 4.3 Prediction plots for training and test datasets. True value is plotted on the
y-axis, predicted value on the x-axis so that a prediction on the black dotted diagonal line
is a perfect prediction.

An alternative way to visualize the geodesic path combines the parameter space and data space

geodesic paths to help identify when a geodesic encounters model manifold boundaries. The

parameter space geodesic path distance (Fig. 4.4(a)) can be parameterized by some variable, say t,

and the data space geodesic path distance (Fig. 4.4(b)) can be parameterized by another variable,

τ . The plot of τ vs. t in Fig. 4.4(c) is observed to “plateau”, indicating that in this parameter

limit, changing the parameter value t has ceased changing the model output because that parameter

combination has become sloppy. This is the definition of a boundary of the model manifold; thus,

plotting τ vs. t can be used to identify model manifold boundaries using geodesics even for complex

modeling scenarios in which the model manifold cannot be directly visualized, such as for models

with many parameters and and data channels. Two other geodesics on the model manifold, with

different initial conditions, are shown in Fig. 4.5 and Fig. 4.6, in addition to the accompanying τ vs.

t plots.
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Figure 4.4 (a) Geodesic path in parameter space which starts at the black point, follows
the green line, and ends at the red dot, intersecting the high sound speed boundary. (b)
Same geodesic, but shown on the model manifold in data space. (c) Plot of the data space
geodesic path distance, parameterized by τ , versus the parameter space geodesic path
distance, parameterized by t. The plateau-like behavior signals that a manifold boundary
has been reached, and some parameter combination has become unidentifiable.

Figure 4.5 (a) Geodesic path in parameter space which starts at the black point, follows
the green line, and ends at the red dot, intersecting the high density boundary. (b) Same
geodesic, but shown on the model manifold in data space. (c) Plot of the data space
geodesic path distance, parameterized by τ , versus the parameter space geodesic path
distance, parameterized by t.
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Figure 4.6 (a) Geodesic path in parameter space which starts at the black point, follows
the green line, and ends at the red dot, intersecting the low sound speed boundary. (b)
Same geodesic, but shown on the model manifold in data space. (c) Plot of the data space
geodesic path distance, parameterized by τ , versus the parameter space geodesic path
distance, parameterized by t.

4.3 Outlook

The work conducted in this thesis represents some of the first steps in applying information geometry

methods to problems in ocean acoustics, but more progress needs to be made in these efforts. This

section gives ideas for future work that build upon the research in this thesis, specifically directed

towards the areas of experimental design and model selection, the latter which includes continued

development of the method for training NN surrogate model manifolds. The reader may also

reference Sec. 2.8 for a summary of other ways that information geometry has successfully led to

advances in other fields, which may provide ideas that can be applied in underwater acoustics.

In the area of experimental design, more studies can be conducted utilizing model manifolds

and information geometry. Chapter 3 inspects model manifolds for both relative and absolute trans-

mission loss (TL) for hydrophones on a vertical array, giving insights into seabed distinguishability

when using relative TL, and how an optimal reference depth can be chosen. To draw more general

conclusions about how using relative TL changes information content, additional studies would

have to be performed. Ideas include inspecting model manifolds and seabed distance matrices for

relative TL for a horizontal array of hydrophones (towed array) and different source ranges, and
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for different source frequencies. More generally (i.e., not looking at relative TL), model manifolds

for different ranges and frequencies can be compared, providing insight into optimal experimental

design choices for a variety of different scenarios. The same studies could be conducted for coherent

or incoherent mode summations in the sound propagation model, where an incoherent summation

provides a more realistic model of a broadband signal, whereas a coherent mode summation is for a

single frequency [166]. Additional work could also include considering different sediment type

differentiations in constructing seabed distance matrices.

Continued development of methods for training NN surrogates and calculating geodesics on the

surrogate manifold provide many other opportunities for future work, related to model selection.

Near term future work includes continuing to develop NN surrogate code to make it adaptable to a

wide variety of modeling scenarios. Additionally, the geodesic code can be integrated with the NN

code so that geodesics can be calculated on the model manifold dynamically; if the geodesic leaves

the trained region of parameter space, the geodesic is paused and the NN can be further trained on

additional data in that direction of parameter space.

Some of the most exciting opportunities for future work revolve around using geodesics to better

discover and understand physically significant parameter combinations and limits in underwater

sound propagation. In modeling, it can often be shown that there are parameter combinations

which are more relevant to characterizing the model behavior than the original model parameters–

for example, the ratio of sediment sound speed over water sound speed c2/c1 instead of the exact

sound speed values. The viscous grain shearing (VGS) parameterization is a good example of an

alternate parameterization of an ocean sediment in which its parameters are physically interpretable

combinations of more traditional seabed sediment parameters– density, sound speed, attenuation,
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etc. Geodesics can be calculated for model manifolds of a variety of modeling scenarios, and

different parameter limits explored to look for these different ways to think about model parameters.

This relates to other work being pursued to create model manifolds in terms of the VGS parameters,

which can also be used with this NN surrogate manifold method.

Another idea for future work is to calculate geodesics on the Pekeris waveguide model manifold

and characterize the global boundary structure. Chapter 2 contains examples of several Pekeris

waveguide model manifolds. Understanding the boundary structure of the Pekeris waveguide model

manifold will allow for a better understanding of the limit in which an entire sediment layer is

removed from the model (c2 = c1 and ρ2 = ρ1); this may lead to more general insights into how

sediment layers can be removed from more complex environmental configurations, for obtaining

reduced-order models for geoacoustic inversion.

Additionally, development of these methods for obtaining geodesics on the model manifold will

enable application of the MBAM algorithm to more complex sound propagation model scenarios,

with several sediment layers and many data channels, identifying reduced-order models that repre-

sent the given data with reasonable accuracy. This reduced model can then be used in geoacoustic

inversion and the performance compared to the original, more complex model. Future developments

of the MBAM algorithm may also lead to more opportunities for applying information geometry to

sound propagation modeling and geoacoustic inversion.



Appendix A

Pekeris waveguide with sediment attenuation

implementation details

In this section, additional details regarding the implementation of the Pekeris waveguide from [5]

are given. In a future work we plan to interpret the full boundary structure of the Pekeris waveguide,

requiring that we take parameter values to their extremes (e.g. ρ2 = ∞). Some checks in the code

handle numerical intricacies at these limits but are unnecessary for most parameter choices.

First, Eq. 2.35 in Sec. 2.7.1 gives the number of total proper modes required in the solution. M

is constrained to be greater than zero because sometimes the equation yields a number less than

zero. Additionally, as the sediment attenuation parameter is increased (α2 → ∞), M increases expo-

nentially, but the values for higher mode numbers become effectively zero. In the implementation, a

parameter of MAX_MODES=5000 is used, along with a check to verify that the modal contributions

have gone to zero before the cutoff.
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In [5], a source strength parameter Q with units of [length]2 is used, but it does not specify how

this value is chosen. This parameter has a net effect of shifting the TL curve. For the simulations in

this paper, a value of Q =9E-5 is used because it is found to give TL that aligned well with similar

simulations performed with the ORCA model [189] with a reference pressure Pref = 1.

Numerical calculation of the EJP integral was done using SCIPY.INTEGRATE.QUAD. The

absolute error parameter ABSERR was chosen to be its default value of 1.49E-8. This same value,

which is referred to as ε , is used in several places throughout the algorithm in determining a

threshold for meaningful contributions to the final answer.

Several specific adjustments were required to make this integral evaluation feasible and accurate.

First, there is an e−ipr term in the integrand of Eq. 2.40. In this implementation, p must be

chosen to be the positive or negative root p =±
√

k2
2 −η2

2 depending on what will give a decaying

exponential in the infinite integral limits. Specifically, for the case with zero sediment attenuation,

k2 is real, and η2 (as the integration variable) is assumed to be real. Therefore, when |η2|< |k2|,√
k2

2 −η2
2 is real so the default positive root is used, making the exponential a propagating wave

between [−k2,k2] due to the i in the exponent. When |η2| > |k2|, however,
√

k2
2 −η2

2 yields

a positive imaginary number, so the negative root of p must be chosen to produce a decaying

exponential outside of the region [−k2,k2]. This check is also necessary in the code for when

attenuation is introduced and k2 is complex, because it can change the positive or negative root

chosen from the zero attenuation situation. The decaying exponential when |η2|> |k2| makes the

integrand drop off quickly with source range r.
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Next, notice in Eq. 2.40 that the bounds of the EJP integral go from −∞ to ∞. While

SCIPY.INTEGRATE.QUAD can handle infinite bounds, as discussed above the “effective range"

of this integral is much smaller due to the decaying exponential in the integrand. This numer-

ical integral is evaluated much more accurately if the integration region is restricted. For this

implementation, the integral bounds over η2 were chosen to be [−1.11k1,1.11k1], as discussed

below.

For the case of zero sediment attenuation (which means k2 is real), the region [−k2,k2] is where

the integral is a propagating wave and not a decaying exponential. This is where the vast majority

of integral contributions are, due to source range r usually being chosen to be relatively large (e.g.,

3 km in this work). The largest possible values of k2 is when c2 = c1 and k1 = k2, so the range of

[−k1,k1] can be used to include all possible propagating wave contributions.

In a few cases, the decaying exponential does not drop off as quickly and meaningful contribu-

tions exist outside the [−k2,k2] range. To slightly expand the range, a multiplier of 1.11 is added.

For c2 = c1, the range [−1.11k1,1.11k1] was tested and found to sufficiently capture any features

larger than ε in the decaying exponential portion for a source range of 100 m with a 100 m ocean

depth.

Inclusion of sediment attenuation leads to an extra imaginary term, and a decaying exponential

term is introduced to the integral overall. This decay term causes the integral to get smaller with

increasing attenuation. Because calculating the integral increases the overall run time, the integral

is considered zero and not calculated when the integrand gets small enough (smaller than ε).

Additionally, some edge cases have singularities in the integrand, which can be handled by

specifying them in the POINTS argument of SCIPY.INTEGRATE.QUAD. First, recall that the integrand

changes from a propagating wave to a decaying exponential when |η2|> |k2|. At this point, η2 = k2

so p = 0 leading to a singularity due to the η2
p term in the integrand. Singularities can also occur in

the denominator of F1. Due to the sine and cosine terms in the denominator, in most circumstances
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the denominator is not identically zero. However, when a large density ρ2 is chosen, b12 becomes

very small and so the zeros of the cosine function are the zeros of the denominator, causing

singularities. And lastly, in the edge case when c2 is chosen to be equal to c1, η1 = η2. This means

that when η2 = 0, η1 = 0. F1 has an η1 in the denominator, so when c2 = c1 there is a singularity at

η2 = 0.



Appendix B

Infinite density hard bottom model

derivation

This derivation shows how for the Pekeris waveguide in the limit of infinite sediment density, both

ρ2 and c2 drop out of the model. Recall that the solution of the Pekeris waveguide consists of a

summation of proper modes plus the EJP branch line integral. The proper modes summation is

shown to go to a constant value (in c2 and ρ2), and the EJP integral goes to zero. This derivation is

specifically for the case of zero sediment attenuation.

The summation of proper modes is given by Eq. 2.37. This summation is given again here, but

with the value for Res[F1(η1m,η2m)eipmr] in Eq. 2.39 inserted so that

φmodes(r,z,θθθ) =
Q
2π

[
2πi

M

∑
m=1

η1msin(η1mz)sin(η1mz′)
pm[η1mh− sin(η1mh)cos(η1mh)−b2

12sin(η1mh)tan(η1mh)]
eipmr

]
(B.1)
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The variables that depend on c2 and ρ2 are b12, which depends on density as b12 = ρ1/ρ2, and

η1m which is solved for using a Newton-Raphson procedure that depends on both c2 and ρ2. And

then because pm is calculated from η1m as pm =−
√

k2
1 −η2

1 , pm also depends on c2 and ρ2. First,

as ρ2 → ∞, the ratio b12 → 0. Therefore the term with b2
12 in the denominator of Eq. B.1 goes to

zero.

Next, the Newton-Raphson procedure to find η1m that is outlined in [5] Eqs. 37-42 is given here:

f (X) = X −
(

m− 1
2

)
π − tan−1[g(X)] = 0, m = 1,2, . . . ,M (B.2)

where

X = η1h (B.3)

g(X) = b12

√
A2 −X2

X
(B.4)

and

A =
√

k2
1 − k2

2. (B.5)

X is solved for by iterating the equation

Xn+1 = Xn −
f (Xn)

f ′(Xn)
(B.6)

where

f ′(X) =
d f
dX

= 1+
1

X(1+g2)

{
g+

b2
12
g

}
. (B.7)

As ρ2 → ∞, b12 goes to zero, and therefore g(X) in Eq. B.4 also goes to zero. All c2 dependence

is in A, and therefore disappears. When g(X) → 0, because the tan−1(0) equals zero, Eq. B.2

becomes

X −
(

m− 1
2

)
π = 0

η1m =

(
m− 1

2

)
π

h
. (B.8)
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Now η1m doesn’t have any dependence on c2 or ρ2, so Eq. B.1 also doesn’t depend on c2 or

ρ2. Additional simplifications of the expression are possible because sin(η1mh) = (−1)n+1 and

cos(η1mh) = 0, so that

φmodes(r,z,θθθ) =
Q
2π

[
2πi

M

∑
m=1

sin(η1mz)sin(η1mz′)
pmh

eipmr

]
(B.9)

which has no c2 or ρ2 dependence.

Additionally, the EJP integral can be shown to go to zero as ρ2 → ∞. The integral is given in Eq.

2.40, which has F1(η1,η2) (given in Eq. 2.38) as part of the integrand. The combined equation is

φEJP(r,z,θθθ) =
Q
2π

∫
∞

−∞

η2

p
sin(η1z<)

η1

η1cos[η1(h− z>)]+ ib12η2sin[η1(h− z>)]
[η1cos(η1h)+ ib12η2sin(η1h)]

e−iprdη2 (B.10)

Because b12 → 0 as ρ2 → ∞, in this limit the integral simplifies to

φEJP(r,z,θθθ) =
Q
2π

∫
∞

−∞

η2

η1 p
sin(η1z<)cos[η1(h− z>)]

cos(η1h)
e−iprdη2 (B.11)

The crux of the argument that this integral goes to zero is that the integrand can be shown to be

an odd function of η2. First, in calculating the integral, given a value of the integration variable η2,

p can be calculated as p =±
√

k2
2 −η2

2 . Because there is an η2
2 , p is therefore an even function of

η2. This means the e−ipr term in B.11 is also an even function. Additionally η1, which is calculated

as η1 =
√

k2
1 − p2, is also an even function of η2 because p is an even function.

Because η1 is an even function of η2, all the trigonometric functions in Eq. B.11 which depend

on η1 are also even functions of η2. Therefore, in Eq. B.11 the only term that is an odd function of

η2 is η2 itself. This means that the whole integrand is an odd function of η2, and integrates to zero.

In conclusion, for α2 = 0, as ρ2 → ∞ both ρ2 and c2 drop out of the Pekeris waveguide solution

(the proper modes and the EJP integral), giving a reduced parameter model. This is observed as the

red corner on the model manifold shown in Fig. 2.4 in the infinite density limit.



Appendix C

Supplementary Material for Information

geometry analysis example for absolute and

relative transmission loss in a shallow ocean

The supplementary material presented here provides the exact modeling parameters used, the

parameter values for the five seabed types, additional PCA information, the figures of relative TL

model manifolds and seabed distance matrices with different reference depths, and the average and

median seabed distances for all model manifolds. In the main text, absolute TL is compared to

relative TL for a few specific choices of reference depth, of the 15 possible reference depths. Here,

information is given for all 15 receiver depths spaced evenly throughout the water column.
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C.1 ORCA parameters

The sound propagation model used for this work is the range-independent normal mode model

ORCA [187]. The ORCA configuration we use in this paper assumes an upper halfspace corre-

sponding to air, the water layer, the main sediment layer, a halfspace layer, and a lower halfspace

providing a numerical basement. The sound speed and density of the sediment layer are varied in

making the model manifold. Table C.1 lists the parameter values held constant in the ORCA ocean

configuration. All parameters are assumed to be uniform across the layer. All shear parameters

(shear sound speed, shear attenuation) are zero and, therefore, not listed in the table. The attenuation

in the table is compressional attenuation.
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Table C.1 Constant parameter values used in the ORCA ocean configuration. There is an
upper halfspace (air), a water layer, a sediment layer, a halfspace layer, and then a lower
halfspace, which is needed numerically in calculating ORCA.

Layer Parameter Value (units)

Upper halfspace Sound speed 343 m/s

Density 0.00121 g/cm3

Attenuation 0 dB/m/kHz

Water layer Layer height 75 m

Sound speed 1500 m/s

Density 1 g/cm3

Attenuation 0 dB/m/kHz

Sediment layer Layer height 35 m

Attenuation 0.63 dB/m/kHz

Halfspace layer Layer height 100 m

Sound speed 5250 m/s

Density 2.7 g/cm3

Attenuation 0.02 dB/m/kHz

Lower halfspace Sound speed 6000 m/s

Density 5.0 g/cm3

Attenuation 0.83 dB/m/kHz
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C.2 Seabed parameters

Five sediment types–mud, clay, silt, sand, and gravel–are marked on the model manifolds presented

in the main text. The exact parameter values used to represent these sediment types are given in

Table C.2. The parameter values for clay, silt, sand, and gravel are from Table 1.3 in Computational

Ocean Acoustics [1]. The value for the sound speed of mud is based on an estimate of the sediment-

water sound speed ratio of 0.99, which is an average value from Fig. 7 in Wilson et al., [3] showing

15 inversion results. The density of mud comes from Potty et al. [2]

Table C.2 Sound speed and density parameters for five seabed types: mud, clay, silt, sand,
and gravel. All parameter values come from Computational Ocean Acoustics [1] except
the density ρ of mud [2] and the sound speed cp of mud [3].

Seabed Type Sound Speed (cp, m/s) Density (ρ , g/cm3)

Mud 1485 1.6

Clay 1500 1.5

Silt 1575 1.7

Sand 1650 1.9

Gravel 1800 2.0

C.3 PCA visualizations of the model manifold

Principal component analysis (PCA) is a method that finds a new basis for data space aligned with

the directions in which the model output varies most. PCA is accomplished using a singular value

decomposition, in which the singular vectors are referred to as the principle components. The first

principle components are associate with the largest singular values and often explain a large degree

of the variance across the model manifold. The percentage of variance explained by the first two
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principle components (PC) is shown in Table C.3 for all 15 relative TL model manifold visualizations

(i.e., the 15 manifolds of TL relative to the individual receiver depths). All explained variance

percentages (except z = 30 m) are > 80%. This makes sense from inspection of singular values

obtained from the PCA, shown in Fig. C.1. The singular values span many orders of magnitude,

indicating that the data space is sloppy. Sloppiness is manifest in the model manifold experiencing

much larger variation in some directions (related to combinations of modeling parameters) than

others. Sloppy data can be represented faithfully by a lower dimensional representation, as seen in

Table C.3.

Table C.3 Explained variance (as a %) of using only the first two principle components
(PC) from Principle Component Analysis of the relative TL manifolds for 15 reference
depths. First two PC’s are used for visualization of manifolds.

Explained variance %

(of PC 1 & 2)

Absolute 91.2

Rel. to mean TL 80.3

Rel. to 5 m 86.8

Rel. to 10 m 82.4

Rel. to 15 m 92.7

Rel. to 20 m 88.7

Rel. to 25 m 85.4

Rel. to 30 m 71.5

Rel. to 35 m 82.8

Explained variance %

(of PC 1 & 2)

Rel. to 40 m 83.2

Rel. to 45 m 84.3

Rel. to 50 m 86.5

Rel. to 55 m 84.7

Rel. to 60 m 84.1

Rel. to 65 m 87.8

Rel. to 70 m 92.9

Rel. to 75 m 93.3
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Figure C.1 Singular values for the Principle Component Analysis done for the absolute
TL model manifold (left), the relative TL model manifold from subtracting the mean TL
across 15 VLAs (second), and the relative TL model manifolds at 15 different reference
depths.

C.4 Relative TL model manifolds and seabed distance matrices

Relative TL model manifolds are shown on the left side of Figs. C.2-C.5 using all 15 receiver depths

as reference depth. For comparison, the plot limits are the same as those used for visualization in the

paper. For a couple cases, these limits cut off portions of the model manifold, but the segments of

the manifold that are cut off do not include any of the five labeled sediments. Additionally, seabed

distance matrices (explained in the main text) are shown on the right side of Figs. C.2-C.5 for all 15

reference depths.
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The average and median seabed distances (excluding self-correlation) for each relative depth are

listed in Table C.4, along with the values for absolute TL and averaged relative TL. For reference

depths in the middle of the water column, many seabed distances are smaller than those near the

top or bottom of the water column. This is most clearly seen by inspection of the median seabed

distance values. Apparently use of these mid-depth receivers as the reference channels lessens the

distinction between the seabeds. Likely this is related to the combination of source depth, water

depth, source-receiver distance, and frequency. Additional studies are needed to further explore

more cases and formulate general rules for experimental designs that optimize the seabed distances.
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Figure C.2 Relative TL model manifolds (left) and seabed distance matrices (right) for
reference depths of 5 m, 10 m, 15 m, and 20 m. Seabed distance matrices quantify the
Euclidean distances between sediment types in the full 15D data space, as explained in the
main text.



C.4 Relative TL model manifolds and seabed distance matrices 96

Figure C.3 Similar to Fig. C.2, relative TL model manifolds (left) and seabed distance
matrices (right) are shown for reference depths of 25 m, 30 m, 35 m, and 40 m.
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Figure C.4 Similar to Fig. C.2, relative TL model manifolds (left) and seabed distance
matrices (right) are shown for reference depths of 45 m, 50 m, 55 m, and 60 m.
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Figure C.5 Similar to Fig. C.2, relative TL model manifolds (left) and seabed distance
matrices (right) are shown for reference depths of 65 m, 70 m, and 75 m.
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Table C.4 Average and median sediment distances for the absolute TL model manifold,
the relative TL model manifold from subtracting the mean TL across 15 VLAs, and the
relative TL model manifolds for all 15 reference depths.

Average seabed

distance (dB)

Median seabed

distance (dB)

Absolute 56.6 60.0

Rel. to mean TL 18.9 19.4

Rel. to 5 m 31.3 32.6

Rel. to 10 m 27.3 29.3

Rel. to 15 m 25.8 26.9

Rel. to 20 m 31.6 21.9

Rel. to 25 m 31.4 22.2

Rel. to 30 m 20.1 19.6

Rel. to 35 m 22.0 22.7

Rel. to 40 m 25.0 20.5

Rel. to 45 m 19.9 19.6

Rel. to 50 m 21.1 19.7

Rel. to 55 m 22.3 20.0

Rel. to 60 m 21.2 21.2

Rel. to 65 m 22.5 24.3

Rel. to 70 m 29.6 31.4

Rel. to 75 m 34.3 32.9
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