
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2024-11-11 

Advancements of a Vibration-Based Sound Power Method for Advancements of a Vibration-Based Sound Power Method for 

Direct and Indirect Applications Direct and Indirect Applications 

Ian Charles Bacon 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Bacon, Ian Charles, "Advancements of a Vibration-Based Sound Power Method for Direct and Indirect 
Applications" (2024). Theses and Dissertations. 10585. 
https://scholarsarchive.byu.edu/etd/10585 

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F10585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F10585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/10585?utm_source=scholarsarchive.byu.edu%2Fetd%2F10585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu


Advancements of a Vibration-Based Sound Power Method for Direct and Indirect Applications 

 

 

 

 

 

 

Ian Charles Bacon 

 

 

 

 

 

 

A dissertation submitted to the faculty of 

Brigham Young University 

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

 

 

Micah R. Shepherd, Chair 

Scott D. Sommerfeldt 

Tracianne B. Neilsen 

Brian E. Anderson 

Jonathan D. Blotter 

 

 

 

 

 

Department of Physics and Astronomy 

 

Brigham Young University 

 

 

 

 

 

Copyright © 2024 Ian Charles Bacon 

All Rights Reserved 



 

ABSTRACT 

Advancements of a Vibration-Based Sound Power Method for Direct and Indirect Applications 

 

Ian Charles Bacon 

Department of Physics and Astronomy, BYU 

Doctor of Philosophy 

 
This dissertation advances the Vibration-Based Sound Power (VBSP) method for measuring the 

sound power of vibrating structures, expanding its applicability to a wider range of geometries and 

acoustic environments. The research addresses limitations of traditional sound power measurement 

techniques by developing an alternative method that achieves near Precision (Grade 1) accuracy while 

maintaining feasibility for in situ testing under uncontrolled acoustic conditions. 

 

After reviewing the current VBSP method in Unit 1, Unit 2 introduces stitching techniques for 

Scanning Laser Doppler Vibrometer (SLDV) measurements, enabling accurate 3D scans and extending 

the method to complex geometries. Experimental validation is provided for baffled simply curved 

plates and arbitrarily curved plates. The method also estimates sound power in uncontrolled acoustic 

environments, where traditional approaches are less effective. Initial work on thin unbaffled flat plates 

is presented, with a practical demonstration using pickleball paddles as a representative unbaffled 

configuration. 

 

Unit 3 addresses the computational demand of constructing radiation resistance (𝐑) matrices, a 

key limitation of the VBSP method. Symmetry-based techniques leveraging acoustic reciprocity and 

geometric symmetries are applied to reduce computational demands by up to 75% for unbaffled 

structures. For baffled configurations, translational symmetry of acoustic reciprocity between elements 

results in the 𝐑 matrix having Toeplitz symmetry, reducing the computational complexity from 𝑛2 to 

𝑛, where 𝑛 is the number of mesh elements. 

 

Unit 4 introduces an indirect VBSP (I-VBSP) method to estimate sound power from encased 

sources, achieving near Precision (Grade 1) accuracy relative to the ISO 3741 standard using only a 

single surface scan. Validated on a Bluetooth speaker, this approach provides a simplified alternative 

to conventional methods, offering a practical solution for sound power measurement in structures with 

encased noise sources. 

 

Overall, this dissertation demonstrates that the VBSP method serves as a viable alternative to 

conventional sound power techniques, effectively applied across various geometries and scenarios. 

While the current VBSP method does not accommodate structures with multiple vibrating surfaces in 

contact, the I-VBSP method can theoretically achieve this by enclosing a structure and scanning one 

vibrating side. This research lays the foundation for future studies through the development of a 

generalized 𝐑 matrix and application of foundational symmetries, enhancing the understanding of 

acoustic radiation from vibrating structures. Ultimately, this work aims to reduce noise pollution in 

consumer products through improved acoustic design and measurement strategies. 

 
Keywords: acoustic radiation modes, acoustic radiation resistance matrix, baffled arbitrarily curved 

plates, baffled simply curved plates, bisymmetry, centrosymmetry, indirect vibration-based sound 

power method, I-VBSP method, mylar, pickleball paddle dynamics, scanning laser Doppler 

vibrometer, SLDV, thin unbaffled flat plates, Toeplitz symmetry 
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Dissertation Outline 

This dissertation attempts to bring together all advances that have been made toward the 

development of the vibration-based sound power (VBSP) method. Since many of the chapters have 

been previously published as papers, references appear at the end of each chapter. 

Each of the five primary units of the dissertation focuses on a different aspect of sound power 

measurement with a particular emphasis on the development and application of the VBSP method, 

as outlined below in the content and objectives of each chapter. 
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Unit 1 

Introduction 

This unit provides foundational concepts for understanding the scope of the research, 

beginning with an overview of traditional sound power measurement techniques, their benefits, 

their limitations, and the motivation for this study. The need for an accurate, versatile method, 

such as the Vibration-Based Sound Power (VBSP) method, is described, followed by the research 

objectives and contributions. 
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Chapter 1   Research Context and Objectives 

1.1   Background and Motivation 

Sound power is the rate at which a source emits acoustic energy and is a key metric for 

assessing the noise produced by that source [1]. According to Sommerfeldt and Blotter [2], it is 

defined as “the main quantity by which consumer products, such as sound systems and kitchen 

appliances, are compared since sound power is a constant for a given source and is independent of 

location relative to the source.” 

Despite its importance in product design and comparison, sound power testing can be both 

technically challenging and expensive, making it inaccessible for many companies. As a result, 

these factors often lead to a lack of sound power testing, which can result in products with 

suboptimal acoustic designs. This can negatively impact overall consumer perception and 

potentially pose risks to hearing [1]. 

The International Organization for Standardization (ISO) mandates that sound power must be 

determined through measurement [3], using two traditional methods: 

1. Microphones in a controlled acoustic environment to sample energy density via 

pressure measurements, 

2. Acoustic intensity probes to measure sound intensity around a source. 

ISO has established ten standards for these methods, categorized into three accuracy grades 

based on the standard deviation of results, application requirements, and repeatability of results. 

• Precision (Grade 1) provides the highest accuracy and requires the use of controlled 

environments such as anechoic or reverberation chambers. It is used for certification and 
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in situations where high precision is necessary, maintaining a tolerance of ±0.5 dB to ±1 

dB across most frequency bands. 

• Engineering (Grade 2) offers good accuracy in environments with some controlled 

variables, suitable for most industrial needs, typically maintaining a tolerance of ±1 dB to 

±2 dB across most frequency bands. 

• Survey (Grade 3), the least accurate grade, is utilized for preliminary in situ assessments 

with minimal control over environmental conditions. It employs basic instruments and 

straightforward procedures, making it quick and easy to perform. It usually maintains a 

tolerance of ±3 dB or more. 

While these methods adhere to established standards and provide significant benefits, they also 

present limitations that can render them impractical for many applications. 

Pressure-based methods, as outlined in ISO 3741-3745 [4]-[8], can deliver Precision (Grade 

1) and Engineering (Grade 2) results. However, these methods require controlled environments, 

such as anechoic or reverberation chambers, which limits their applicability to specific testing 

scenarios and makes them impractical for in situ measurements. The other two standards, ISO 

3746 [9] and ISO 3747 [10], are less stringent in terms of acoustic environment, but their lower 

accuracy limits their reliability. 

ISO 3746 requires a reflective acoustic plane near the noise source being measured and can 

only yield Survey (Grade 3) results. ISO 3747 requires that the noise source occur in a reverberant 

environment and provides Engineering (Grade 2) results for broadband measurements but only 

Survey (Grade 3) results for narrowband or tonal noise sources. Furthermore, ISO 3747 stipulates 

that background noise must be significantly lower than the noise source being measured. 
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The intensity-based methods outlined in ISO 9614-1 to ISO 9614-3 are highly accurate, yet 

they come with certain constraints [11]-[13]. These methods require the noise source to be 

completely or hemispherically enclosed, which can pose difficulties when dealing with sources on 

large, reflective surfaces. These standards are capable of measuring sound power across various 

sources but often struggle to isolate contributions from smaller sources or individual components. 

Furthermore, their effectiveness diminishes according to the limited bandwidth of the acoustic 

intensity probes used and the influence of absorptive materials in the measurement area. 

Both pressure- and intensity-based methods are particularly sensitive to environmental 

variables such as background noise, fluid flow, and temperature fluctuations. These variables 

highlight the need for a viable alternative that can overcome such constraints when needed. One 

such alternative is the Vibration-Based Sound Power (VBSP) method, detailed in Sec 1.3, which 

offers a more robust approach for achieving accurate sound power measurements even in variable 

conditions. 

A third approach involves vibration measurements. Currently, ISO provides two technical 

specifications (ISO/TS 7849-1:2009 and ISO/TS 7849-2:2009) for such measurements, though 

these can only achieve Engineering (Grade 2) accuracy [14], [15]. These methods estimate sound 

power based on equivalent baffled pistons and are intended for use when intensity standards cannot 

be applied, particularly when significant radiation is due to structural vibration. To date, no 

vibration-based standards yield Precision (Grade 1) results. 
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1.2   Overview of Models Used for Sound Power Estimation 

Beyond the established ISO standards, researchers have developed several theoretical and 

computational methods to estimate sound power, each with its unique strengths and weaknesses. 

As depicted in Fig. 1.1, these approaches tend to be divided by how they model the radiating 

structure. The Sum of Modal Contributions developed by Snyder and Tanaka [16] offers a 

systematic approach for analyzing structural vibrations by aggregating modal contributions. This 

method performs well when detailed modal data is accessible, yet it can fall short for structures 

with complex or poorly understood modal behavior. 

The second model presented in Fig. 1.1 is Elliott and Johnson’s Method of Elementary 

Radiators [17], a method that offers a strong framework for sound power estimation and is the 

foundation for the VBSP method. The advantages and disadvantages associated with this approach 

appear below, beginning in Sec. 1.3. Finally, the Array of Monopole Sources method developed 

by Snyder [19] is an effective way to model sound radiation using multipoles, but it faces 

difficulties with spatial resolution and accuracy in complex configurations. 

 

Figure 1.1: Illustration of different approaches used to model the radiation from vibrating 

structures similar to Fig. 4 in Hill et al. [18]. 
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Beyond the models illustrated in Fig. 1.1, other models have been developed to assess acoustic 

radiation from vibrating structures and calculate sound power. One such model is Hashimoto’s 

Discrete Calculation Method [20], which is known for its precision in low-frequency and noisy 

environments. It excels in measuring structure-borne sound, which is crucial for applications like 

construction sites. However, the method’s computational intensity and difficulty with complex 

geometries limit its broader application. 

Fahnline and Koopmann’s Lumped Parameter Model [21], [22], based on the Kirchoff-

Helmholtz integral equation with Neumann boundary conditions, simplifies sound power 

estimation by dividing the vibrating surface into discrete elements, each acting as an independent 

source and represented by a multipole. This approach reduces computational demands and is 

effective for early design stages, allowing for quick acoustic predictions without detailed modal 

data. However, the model’s accuracy decreases as structural complexity increases, and its precision 

relies heavily on how well the elements represent the actual acoustic behavior. Additionally, 

solving for source amplitudes can become computationally intensive. 

These methods along with computational techniques such as finite element analysis (FEA) 

and the boundary element method (BEM) contribute to the diverse landscape of sound power 

estimation. Each method offers valuable insights into the behavior of radiating structures, yet they 

also have shortcomings in terms of practicality, accuracy, and computational demands. 

Another approach for estimating sound power from a vibrating structure focuses on the 

vibration itself, known as the VBSP method. 
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1.3   The Vibration-Based Sound Power Method 

The VBSP method, currently under development at Brigham Young University (BYU), offers 

a promising alternative that effectively addresses several environmental limitations of existing 

sound power standards while consistently achieving near Precision (Grade 1) results. 

The method uses a 3D scanning laser Doppler vibrometer (SLDV) on the vibrating surface, 

with elements being created around every measurement location across the surface. These 

elements are designed to be much smaller than the structural and acoustic wavelength, allowing 

each element to radiate as an acoustic monopole source [23]. Finally, the method is concluded by 

measuring the surface velocities from which the complex velocities normal to the surface for each 

element, 𝐯e, can be computed [24], [25]. 

A key advantage of the VBSP method lies in its reliance on the Kirchhoff-Helmholtz integral 

theorem (KHIT) for computing the pressure radiated by each of these discrete elements [26]-[28]. 

This theorem allows the calculation of the sound pressure field of any closed arbitrary body 

vibrating harmonically at a specific frequency by distributing monopole and dipole sources across 

the surface and using superposition to add up the field. In cases where baffling is present, the KHIT 

greatly simplifies to the Rayleigh integral, which is used for computing the monopole pressure 

radiated by every element of the surface [26]-[28]. Whether obtained through the KHIT or the 

Rayleigh integral, the pressure produced by the vibration of a single element is referred to as self-

impedance. 

In addition to self-impedance, the overall pressure radiated by the vibrating structure also 

depends on mutual impedance. Mutual impedance describes how one element influences the 

pressure radiated by every other element that is close, relative to a wavelength due to the coupled 

nature of these elements. The acoustic radiation impedance matrix, 𝐙, for this vibrating structure 
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contains combination of self- and mutual impedances. The real part of 𝐙, known as the radiation 

resistance matrix, 𝐑, describes the acoustic radiation produced by any arbitrarily vibrating surface. 

An example of the radiation resistance matrix for a baffled flat plate is given by [29], [30]: 

𝐑(𝜔) =
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐

[
 
 
 
 
 
 
 1

sin 𝑘𝑑12

𝑘𝑑12
⋯

sin 𝑘𝑑1𝑁

𝑘𝑑1𝑁

sin 𝑘𝑑21

𝑘𝑑21
1 ⋱ ⋮

⋮ ⋱ ⋱ ⋮
sin 𝑘𝑑𝑁1

𝑘𝑑𝑁1
… … 1

]
 
 
 
 
 
 
 

(1.1) 

where: 

• 𝐴𝒆 is the area of a single radiator (assumed constant in this equation), 

• 𝑐 is the speed of sound in the surrounding fluid, 

• 𝑑𝑖𝑗 is the distance between the 𝑖th element and the 𝑗th element, 

• 𝑘 is the acoustic wavenumber, and 

• 𝜌0 is the fluid density surrounding the vibrating surface. 

The VBSP method uses 𝐑 and 𝐯e to estimate sound power, 𝛱, for a given frequency, 𝜔: 

𝛱(𝜔) = 𝐯e
𝐻(𝜔)𝐑(𝜔)𝐯e(𝜔), (1.2) 

where (⋅)𝐻 denotes a Hermitian transpose. The VBSP estimations of 𝛱 were validated by 

researchers at BYU using the ISO 3741 standard in the university’s reverberation chamber, 

achieving Precision (Grade 1) results. Additionally, two specific standards were employed to 

encompass the general frequency range pertinent to this research, including one-third octave bands 

with mid-band frequencies ranging from 100 to 10,000 Hz. Details regarding these standards will 

be provided in the following section. 

ISO 3741 requires a diffuse acoustic field, which can only be achieved above the Schroeder 

frequency of the reverberation chamber. Below this frequency, the chamber exhibits significant 

variations in acoustic pressure due to the presence of few resonant modes. The Schroeder 
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frequency of the reverberation chamber used was about 385 Hz. Sound power estimates obtained 

via ISO 3741 were compared to the VBSP method estimates for frequencies above 385 Hz, as 

reported in Chs. 3-5 and 11-12 for different vibrating structures. 

Below 385 Hz, the ISO 3745 standard cannot ensure Precision (Grade 1) results. 

Consequently, for frequencies below the 400 Hz OTO band, the ISO 3745 standard is used. An 

example of using ISO 3745 is found in Ch. 3. For assessing frequencies above 10,000 Hz, the ISO 

9295 standard is recommended [31], though such assessment exceeds the scope of this dissertation. 

1.4   My Contribution 

This dissertation focuses on expanding the capabilities of the VBSP method beyond its prior 

application to flat plates and cylindrical shells using 2D vibration scans [32]-[34]. The initial phase 

introduces stitching techniques for SLDV measurements, enabling accurate 3D scans and 

extending the method’s applicability to more geometries. Experimental results confirm the 

effectiveness of this approach for baffled simply curved plates and arbitrarily curved plates. The 

VBSP method also demonstrates potential for in situ testing under uncontrolled acoustic 

environments with background noise, providing a viable alternative when traditional methods are 

impractical. Preliminary work is also presented on adapting the method for thin unbaffled flat 

plates. Additionally, an initial investigation into estimating the sound power of pickleball paddles 

is included as a practical demonstration of the VBSP method’s utility for unbaffled flat 

configurations. 

Despite these advancements, extending the VBSP method to complex coupled structures is 

left as future work. To lay the groundwork for such extensions, this dissertation introduces the 

development of a generalized 𝐑 matrix as a foundation for broader applications. 



10 

Another significant focus of this research is addressing the high computational demand 

associated with constructing 𝐑 matrices, a critical bottleneck for the VBSP method. Symmetry-

based computational techniques are implemented to reduce this demand, particularly for baffled 

and unbaffled configurations. However, the issue of lengthy scan times for large structures or high-

frequency analyses is not addressed and remains open for future exploration. 

Furthermore, this dissertation introduces an indirect approach for measuring sound power 

from commercial products with steady acoustic responses, achieving near Precision (Grade 1) 

accuracy relative to the ISO 3741 standard. This method also shows promise for estimating sound 

power levels by scanning only a single surface with a simple geometry, such as a rectangle or 

circle, instead of all radiating surfaces of a structure. 

Overall, this research advances the development of an efficient, vibration-based sound power 

estimation technique that can be applied under diverse conditions. Although it does not yet extend 

to coupled or complex structures, the groundwork established here paves the way for a more 

precise alternative standard for sound power measurement. These contributions enhance the 

understanding of acoustic radiation from vibrating structures and support improved acoustic 

design, ultimately helping to reduce noise pollution in consumer products. 
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Unit 2 

Advancing the Vibration-Based Sound Power Method 

This unit focuses on the continued development of the VBSP method, expanding its 

application from 2D to 3D geometries and enhancing its accuracy across 100 Hz to 10 kHz one-

third octave (OTO) bands. The advancements include adjustments to accommodate both baffled 

and unbaffled structures, ensuring the method’s versatility across various acoustic environments. 

Additionally, this unit introduces preliminary work toward the development of a generalized 

radiation resistance (𝐑) matrix, paving the way for future extensions of the VBSP method to more 

complex geometries. 
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Chapter 2   Transition from 2D to 3D Measurements 

This chapter details the transition from 2D to 3D measurements in the VBSP method. It 

discusses how the VBSP method was originally implemented using 2D scans, the challenges 

encountered, and the advancements made through 3D scanning and the stitching process. As the 

sound power results for flat plates and cylinders have already been published using the VBSP 

method [1]-[3], this chapter focuses on the scanning and stitching techniques, highlighting the 

images of the stitched responses for various geometries. The sound power results for simply curved 

plates and arbitrarily curved plates are shown in Chs. 3 and 4. 

2.1   Previous Methodology 

In its initial implementation in BYU’s reverberation chamber, the VBSP method used 2D 

scans to measure sound power, particularly for cylindrical structures. This process involved 

scanning a single strip of the cylinder and then slightly rotating the cylinder and repeating the scan 

until the entire surface was covered. While effective, this method was time-consuming and labor-

intensive. For instance, as shown in Fig. 2.1, Jones et al. [3] performed a 2D scan of a cylinder, 

demonstrating that scanning at 5° increments required 72 rotations, with each rotation necessitating 

a separate scan. Although accurate, this approach was particularly slow and cumbersome, 

especially for larger structures. 
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Figure 2.1: A 2D scan of a cylinder conducted by Cameron Jones [2] in BYU’s reverberation 

chamber, demonstrating the scanning and rotation process at the time. (Used with permission.) 

2.2   Stitching 

The introduction of a 3D scanning laser Doppler vibrometer (SLDV) enabled more 

comprehensive data collection with fewer scans. A stitching technique merged multiple scanned 

sections from different parts of a structure into a single, cohesive data set, which not only reduced 

scanning time but also improved accuracy and extended the method’s application to more complex 

geometries. 

Research involved conducting sound power measurements on a known flat plate to become 

familiar with the equipment and methodology using the Polytec 3D calibration device (see Fig. 

2.2). This included calibrating the three scan heads, scanning the flat plate in two halves, 

combining results to calculate sound power, and comparing a vibration mode from the combined 

scan (Fig. 2.3a) with that from a single scan (Fig. 2.3b), demonstrating excellent agreement. 
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Figure 2.2: A Polytec PSV-A-450 Reference Object was used to perform the 3D calibration of the 

three SLDV scan heads for a flat plate. The coordinates are in millimeters. 

 

Figure 2.3: a) The stitched 3D response of a flat plate. b) The 3D response of a flat plate without 

stitching. 
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For cylindrical structures and curved plates, a global coordinate system was established on the 

surface using a 3D coordinate probe. This system was crucial for maintaining the correct 

positioning of the scans when they were combined. Figure 2.4 illustrates part of the 3D global 

coordinate system report for the cylinder, showing the setup used to ensure accurate alignment 

during the stitching process. 

For example, a cylinder that previously required 72 scans can now be effectively captured in 

just six sections, using Polytec’s PSV-500 3D SLDV, significantly reducing scan time while 

maintaining the accuracy of the sound power measurement. Figure 2.5 illustrates the experimental 

setup. A scan of one section of the cylinder is shown in Fig. 2.6, with the operational deflection 

shape of that section displayed in Fig. 2.7, which also presents the final stitched result of all six 

sections of the cylinder. Figure 2.8 further demonstrates how the stitched response enhances an 

understanding of the cylinder with additional modes of the cylinder also shown. 
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Figure 2.4: Part of the 3D global coordinate report from Dr. Eric McKell (BYU Department of 

Manufacturing Engineering) on the cylinder. Along the axis of the cylinder are three rings of 

register points. The coordinates are in mm to match the unit option on the SLDV easily when 

performing 3D calibration. A minimum of five register points is required for the calibration. 



22 

 

Figure 2.5: The cylinder setup for a 3D vibration measurement in BYU’s large reverberation 

chamber. 

 

Figure 2.6: An example of one section of the cylinder scanned using the 3D SLDV. 
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Figure 2.7: On the left is a 3D measurement of one section of the cylinder with stitched response 

of the six sections of the cylinder shown on the right. 

 

Figure 2.8: The vibrational motion at resonance illustrates the stitched response of the cylinder. 

This figure also shows a rigid body mode and three modes of the cylinder in (a)-(d) respectively. 
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Figures 2.9-2.11 display successful application of the stitching process to simply curved and 

arbitrarily curved plates. For these more complex geometries, establishing a global coordinate 

system was important to ensure that all scanned sections were accurately aligned during the 

stitching process. Chapters 3 and 4 discuss sound power results for these simply and arbitrarily 

curved plates in detail. 

 

Figure 2.9: A stitched 3D response of a simply curved plate. The stitch is not as clean as previous 

figures due to the alignment of the scan grids and the overlap. 
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Figure 2.10: A stitched 3D response of an arbitrarily curved plate with two different radii of 

curvature. 

 

Figure 2.11: A stitched 3D response in five sections of an arbitrarily curved plate with three 

different radii of curvature, hereafter referred to as the “M-curved plate.” This stitching was more 

seamless for the five sections. 
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The transition from 2D to 3D measurements and the development of the stitching process 

represent significant advancements in the VBSP method. These improvements not only enhance 

the efficiency of the measurement process but also expand its applicability to a broader range of 

geometrical configurations. Using these advancements, Chs. 3-7 discuss the results of the VBSP 

method on different vibrating structures, highlighting the significance of the 3D stitching process 

for the VBSP method. 
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Chapter 3   Extension to Baffled Simply Curved Plates 

3.1   Introduction 

This chapter features a peer-reviewed article published in the Noise Control Engineering 

Journal, presenting significant advancements in applying the VBSP method to baffled simply 

curved plates. Trent Bates led the preliminary experiments in the reverberation chamber with my 

support and drafted an initial manuscript. After Trent graduated, I took over the leadership of the 

project, substantially reshaping its scope and steering it to publication as the primary author. These 

efforts have not only validated the VBSP method under a variety of conditions but have also 

broadened its potential applications across a wider frequency spectrum. 

 

** My contributions expanded this work significantly to include several critical theoretical and 

computational enhancements. In refining the manuscript, I conducted a literature review with 22 

additional references, deepening and strengthening the context of the research. I clarified the 

mathematical foundations laid by Caleb Goates, in his master’s thesis, concerning the curved plate 

radiation resistance matrix and supplemented this with comprehensive appendices to aid readers 

in understanding the advanced mathematical techniques. Additionally, I personally managed 

advanced experimental setups, ranging from BYU’s large anechoic chamber to challenging 

outdoor settings, and validated the VBSP method’s robustness and accuracy against ISO 

standards, with sound power discrepancies within 2 dB for relevant octave bands. 

I led the construction of a modular wall in BYU’s anechoic chamber — a pioneering effort at the 

university — designed with Jeremy Peterson and Josh Mills for straightforward assembly and 
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disassembly to support future research and educational initiatives. In collaboration with Sam 

Bellows and Jacob Sampson, I learned to operate BYU’s directivity measurement system (DMS) 

and further developed MATLAB© scripts to create hemispherical directivity plots of the baffled 

plates and compute sound power according to the ISO 3745 standard. I demonstrated that the 

VBSP method accurately estimates sound power below 400 Hz, a range previously untested due 

to limitations in the reverberation chamber standard, which has a Schroeder frequency of 385 Hz. 

** 



30 

3.2   Required Copyright Notice  

      This chapter is based on an article published in the Noise Control Engineering Journal, which 

can be found at https://doi.org/10.3397/1/37728 titled “Radiation resistance matrix for baffled 

simply curved plates for sound power applications.” The version included here is the original 

submission by the authors, prior to any journal-specific formatting or editing. It has been modified 

to meet the formatting requirements of this ETD. 

 

 

Citation: 

I. C. Bacon, T. P. Bates, C. B. Goates, M. R. Shepherd, J. D. Blotter, and S. D. Sommerfeldt, 

“Radiation resistance matrix for baffled simply curved plates for sound power applications,” 

Noise Control Eng. J. 72(2), 65-78 (2024). 

An INCE-USA re-print permission form was signed by the executive director, Joe Cuschieri on 

11 July 2024 to allow the content from this journal article to be included in this dissertation. 

I hereby confirm that the use of this article is compliant with all publishing agreements. 

https://doi.org/10.3397/1/37728
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3.3   Title 

Radiation resistance matrix for baffled simply curved plates for sound power applications 

3.4   Authors and Affiliations 

Ian C. Bacon,a) Trent P. Bates,b) Caleb B. Goates,a) Micah R. Shepherd,a) Jonathan D. Blotter,b) and 

Scott D. Sommerfeldta) 

 

a) Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602.  

icbacon@byu.edu, calebgoates@gmail.com, scott_sommerfeldt@byu.edu. 

b) Department of Mechanical Engineering, Brigham Young University, Provo, Utah 84602. 

tbateslefty24@gmail.com, jblotter@byu.edu. 

mailto:icbacon@byu.edu
mailto:calebgoates@gmail.com
mailto:scott_sommerfeldt@byu.edu
mailto:tbateslefty24@gmail.com
mailto:jblotter@byu.edu
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3.5   Abstract 

Sound power, a standard metric used to quantify product noise, is determined through the 

vibration-based sound power (VBSP) method. This method involves measuring surface velocities 

and utilizing an acoustic radiation resistance matrix, 𝐑, dependent on the structure’s geometry. 

While 𝐑 matrix expressions have been established for baffled flat plates, fully closed cylinders, 

and fully closed spheres, this work presents the first analytical expression tailored for baffled 

simply curved plates with uniform curvature. This development, based on eigenfunction expansion 

and the uniform theory of diffraction, extends the VBSP method’s capabilities for accurate sound 

power assessment from these structures. Experimental validation involved testing three plates of 

varying curvature in a reverberation chamber, comparing the VBSP method with the ISO 3741 

pressure-based standard. One of the curved plates underwent additional testing in an anechoic 

chamber following the ISO 3745 standard, confirming the VBSP method’s accurate sound power 

measurements down to the 160 Hz one-third octave (OTO) band. The same plate was tested in 

uncontrolled acoustic environments—a busy hallway and an outdoor location. The VBSP results 

showed strong agreement with ISO 3741, affirming the method’s robustness for measuring sound 

power from baffled simply curved plates in acoustically challenging real-world conditions. This 

underscores the practicality of the VBSP method, enabling accurate sound power measurements 

of baffled curved plates in the presence of substantial background noise and environmental 

variability. 

 

Primary subject classification: 72.4 Sound power; Secondary subject classification: 21.2.1 Vibrating bodies 
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3.6   Introduction 

Sound power is a widely used metric for comparing radiated noise levels across various 

products, from home appliances to construction vehicles. Many existing standards for sound power 

measurement require specific acoustic environments, such as anechoic and reverberation 

chambers, that are cost prohibitive. Consequently, designers often do not have sound power data 

to effectively prioritize noise reduction in product development. Vibration-based sound power 

(VBSP) measurement methods offer a potential solution by reducing the constraints of acoustic 

environments and the associated costs, making sound power measurements more feasible for 

designers to utilize sound power data to develop quieter products. 

The foundational theory for computing sound power using vibration-based methods is often 

referred to as the method of elementary radiators, which originated in the early 1990s [1]-[4]. In 

this method, the structure is discretized into an array of small individual radiators, and the velocity 

of each radiator is measured. Using a radiation resistance matrix, R, the sound power is computed 

as 

𝛱(𝜔) = 𝐯𝑒
𝐻(𝜔)𝐑(𝜔)𝐯𝑒(𝜔), (3.1) 

where 𝐯𝑒 is a vector of the velocity of each individual radiator, (∙)𝐻 is the Hermitian transpose, 

and 𝜔 is the frequency [2]-[5]. 

Arenas described the R matrix as a transfer function linking the surface normal velocities of 

a structure to the acoustic pressures on the surface of each radiator [6]. The individual terms in the 

R matrix, Rpq, represent the radiation resistance on radiator p due to radiator q. Thus, the 𝐑 matrix 

is a square symmetric matrix where both the rows and columns equal the number of radiators, and 

the number of elements is equal to the total number of radiators squared. The R matrix is primarily 
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a function of the acoustic pressure propagation distances between the individual radiators, leading 

to different expressions for these distances between flat and curved geometries. 

Historically, acoustic radiation modes were derived from the 𝐑 matrix corresponding to a 

specific geometry, and then utilized to compute sound power [1]-[4] or as a tool to improve 

structural design and active noise control techniques [7]. Radiation modes explain how the 

vibrational energy of a structure transforms into acoustic energy by analyzing the distribution of 

velocity across its surface [2], [8], [9]. Goates et al. previously referred to this method as the 

vibration-based radiation mode (VBRM) method [10], [11]. Cunefare et al. showed the 

convergence of a sufficient number of these modes to obtain good resolution for the sound power 

within a given range [4]. 

It was found within this work that when higher frequencies are of interest, using radiation 

modes to compute sound power does not yield significant computational savings compared to 

simply using the entire 𝐑 matrix and computing the matrix multiplication in Eqn. 3.1. This is 

primarily due to the extensive computations required to determine the radiation modes, often 

comparable to directly calculating the sound power using the full R matrix. This method of using 

the full R matrix to compute sound power is referred to as the VBSP method [12]. Convergence 

for sound power results using the VBSP method can be obtained by ensuring sufficient spatial 

resolution when discretizing the surface of interest. Although this method utilizes the 𝐑 matrix, 

the acoustic radiation modes of simply curved plates can be obtained for other applications by 

performing singular value decomposition on the 𝐑 matrix, developed later in this work. 

Previous research has established analytical expressions for the radiation resistance matrix for 

flat plates [2], [5], [11]-[13], fully closed cylindrical shells [10], [14]-[18], and fully closed 

spherical shells [1], [18], [19]. In these fully closed geometries, the acoustic pressure from one 
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radiator can propagate to another by traversing the surface of the structure in multiple directions 

as well as going around the structure several times. Many common geometries, including car door 

panels, windshields, aircraft fuselage panels, and engine covers do not fit these existing models. 

Therefore, there is a need for a validated expression for the 𝐑 matrix that can accurately model 

simply curved-plate geometries. 

Bates et al. have shown that some baffled arbitrarily curved panels can be approximated using 

one of the known forms of the 𝐑 matrix mentioned earlier [20]. However, limitations exist in this 

approach, particularly regarding the radius of curvature and the coupling between radiators that 

exists within a certain range of frequencies. While Bates provided an analytical expression for the 

𝐑 matrix of baffled simply curved plates, no theoretical development or validation of this 

expression is available in the existing literature. This knowledge gap presents a challenge for 

groups seeking to understand the natural acoustic radiation from these simply curved plates, 

whether for sound power computation or active noise control. It is crucial to address these 

limitations and verify the accuracy of the expression numerically or experimentally to validate this 

expression. 

The purpose of this work is to fill this critical research gap by presenting and validating, for 

the first time, the theoretical development of the 𝐑 matrix for baffled simply curved plates. This 

development is based on the eigenfunction expansion and the uniform theory of diffraction to 

determine the distances between every elementary radiator and how the acoustic radiation is 

produced and transferred from these geometries. This work only considers simply curved plates 

with a single constant radius of curvature, deviating from fully closed geometries like cylinders 

and spheres. 
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This work then shows experimental results validating the analytical expression for this 𝐑 

matrix and enables extension of the VBSP method to accurately account for simply curved plates. 

Experimental validation was conducted through comparing VBSP results with sound power 

measurements obtained following the ISO 3741 and ISO 3745 standards [21], [22], that are well-

established sound pressure measurement-based standards. By providing a validated expression and 

expanding the applicability of the VBSP method, an accurate assessment of the sound radiation 

from simply curved plates can be facilitated, benefiting various industries and applications. 

3.7   Curved Plate Radiation Resistance Matrix Theory 

The 𝐑 matrix for a simply curved plate is obtained by initially deriving the 𝐑 matrix for a fully 

closed cylinder. This section begins with a concise overview of the derivation process for the 𝐑 

matrix of the fully closed cylinder, followed by the derivation for open simply curved plates. 

Subsequently, the expression is further simplified for more efficient computation by using the 

uniform theory of diffraction. 

3.7.1   Simply Curved Plate Radiation Resistance Matrix 

The 𝐑 matrix is derived from the acoustic pressure that a small vibrating element of a structure 

generates across the structure. The general form of the 𝐑 matrix for the pqth element can be 

expressed as a function of the pressure as given by [4], [23] 

𝑅𝑝𝑞 =
𝑆𝑒

2𝑢0
Re{𝑝𝑞(𝑎, 𝜃𝑝, 𝑧𝑝)}, (3.2) 

where 𝑆𝑒 is the area of the vibrating element or radiator given by 𝑆𝑒 = 𝑎∆𝜃∆𝑧, 𝑢0 is the velocity 

amplitude of the qth element, 𝑝𝑞(𝑎, 𝜃𝑝, 𝑧𝑝) is the pressure generated at the 𝑝th location by vibration 
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at the 𝑞th location, 𝑎 is the radial distance (radius of curvature) for the surface of the curved 

structure, and 𝜃𝑝 and 𝑧𝑝 are the physical coordinates of the 𝑝th location. 

Consider a rigid infinite cylinder of radius 𝑎 as shown in Fig. 3.1. Assume that a small 

rectangular patch or radiator on the cylinder with circumferential extent Δ𝜃 and height Δ𝑧 is 

vibrating with a surface normal velocity 𝑢0, such that there is effectively a simple source of 

strength 𝑢0𝑎Δ𝜃Δ𝑧 at (𝑟, 𝜃, 𝑧) = (𝑎, 𝜃𝑝, 𝑧𝑝).  This vibration creates a pressure field over the 

structure that can be written as [23] 

𝑝𝑞(𝑟, 𝜃, 𝑧) = ∑ ∫ 𝐴𝑚(𝑘𝑧)𝑒
𝑗𝑘𝑧𝑧𝑒𝑗𝑚𝜃𝐻𝑚

(2)(𝑘𝑟𝑟)𝑑𝑘𝑧
∞

−∞
,∞

𝑚=−∞  (3.3)

where 𝐴𝑚(𝑘𝑧) are unknown coefficients, 𝐻𝑚
(2)(𝑘𝑟𝑟) is the 𝑚th-order Hankel function of the 

second kind (defined in Appendix 3A by Eqn. 3A.4), 𝑗 = √−1, 𝑚 is an integer, 𝑘𝑧 is the axial 

wavenumber, and 𝑘𝑟 = √𝑘2 − 𝑘𝑧
2, where 𝑘 is the acoustic wavenumber. The pressure is defined 

for each radiator and the pressure field is represented by a vector the length of the number of 

radiators. Therefore, a single subscript is used to define the pressure radiators. 

 

Figure 3.1: Schematic of the infinitely baffled cylinder geometry. The non-rigid portion of the 

cylinder is discretized, and the radiator described in Eqn. 3.3 is highlighted in blue (left). An end 

view of the cylinder of radius 𝑎 shows the dimensions of an arbitrary element, represented by the 

length 𝑧2 − 𝑧1 and width 𝑎(𝜃2 − 𝜃1) (right). 
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The surface velocity may be expanded in terms of the 𝜃 and 𝑧 eigenfunctions as  

𝑢𝑞(𝜃, 𝑧) = (
𝑢0Δ𝜃Δ𝑧

𝜋2
) ∑ ∫ 𝑒𝑗𝑘𝑧(𝑧−𝑧𝑞)𝑒𝑗𝑚(𝜃−𝜃𝑞)𝑑𝑘𝑧

∞

−∞

∞

𝑚=−∞

, (3.4) 

from which the pressure expression coefficients may be solved for by applying the surface 

condition at 𝑟 = 𝑎,  

𝜕𝑝𝑞

𝜕𝑟
|
𝑟=𝑎

= −𝑗𝜔𝜌0𝑢𝑞(𝜃, 𝑧). (3.5) 

Applying these steps and simplifying gives the pressure as  

𝑝𝑞(𝑟, 𝜃, 𝑧) = −𝑗 (
𝜔𝜌0𝑢0Δ𝜃Δ𝑧

𝜋2
) ∑ 𝑒𝑗𝑚(𝜃−𝜃𝑞)

∞

𝑚=−∞

∫
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑘𝑧(𝑧−𝑧𝑞)
𝑑𝑘𝑧

𝑘𝑟

∞

−∞

, (3.6) 

where the prime denotes a derivative with respect to the argument. Using Euler’s formula this can 

be written in terms of trigonometric functions instead of exponentials as 

𝑝𝑞(𝑟, 𝜃, 𝑧) = −𝑗 (
𝜔𝜌0𝑢0Δ𝜃Δ𝑧

𝜋2
) ∑ cos[𝑚(𝜃 − 𝜃𝑗)]

∞

𝑚=0

∫
𝐻𝑚

(2)
(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

cos[𝑘𝑧(𝑧 − 𝑧𝑗)]
𝑑𝑘𝑧

𝑘𝑟

∞

0

. (3.7) 

The 𝑝𝑞th element of the 𝐑 matrix can then be expressed by substituting Eqn. 3.7 into Eqn. 3.2 

as given by 

𝑅cyl,𝑝𝑞 =
𝑆𝑒

2𝑢0
Re{𝑝𝑞(𝑎, 𝜃𝑝, 𝑧𝑝)}

= Re {−𝑗 (
𝜔𝜌0𝑆𝑒

2

2𝜋2𝑎
) ∑ cos[𝑚(𝜃 − 𝜃𝑗)]

∞

𝑚=0

∫
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

cos[𝑘𝑧(𝑧 − 𝑧𝑗)]
𝑑𝑘𝑧

𝑘𝑟

∞

0

}

= (
𝜔𝜌0𝑆𝑒

2

2𝜋2𝑎
) ∑ cos[𝑚(𝜃 − 𝜃𝑗)]

∞

𝑚=0

∫ Re {−
𝑗

𝑘𝑟

𝐻𝑚
(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

} cos[𝑘𝑧(𝑧 − 𝑧𝑗)] 𝑑𝑘𝑧

∞

0

, (3.8)

 

which can be further simplified by recognizing that the Hankel functions ratio becomes imaginary 

for imaginary 𝑘𝑟. This simplification reduces the integration in 𝑘𝑧 from 0 to 𝑘, giving the final 

form 
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𝑅cyl,𝑝𝑞 =
𝜔𝜌0𝑆𝑒

2

2𝜋2𝑎
∑ cos[𝑚(𝜃𝑝 − 𝜃𝑞)]∫

1

𝑘𝑟
Im {

𝐻𝑚
(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

} cos[𝑘𝑧(𝑧𝑝 − 𝑧𝑞)] 𝑑𝑘𝑧

𝑘

0

∞

𝑚=0

. (3.9) 

In addition to this fully closed cylinder expression, eigenfunction expansion can give the 𝐑 

matrix for a partial cylinder radiating into a partial cylindrical space as shown in Fig. 3.2. The main 

difference is the application of a Neumann boundary condition at θ = 0 and θ = θL where θL is the 

angular extent of the space instead of the periodicity requirement on θ. Making these changes 

results in the following expression for a partial cylinder or simply curved plate [9]  

𝑅part cyl,𝑝𝑞 =
𝜔𝜌0𝑆𝑒

2

π𝑎𝜃𝐿
∑ cos (

𝑚𝜋𝜃𝑝

𝜃𝐿

) cos (
𝑚𝜋𝜃𝑞

𝜃𝐿

)

∞

𝑚=0

∫
1

𝑘𝑟

Im {
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

} cos[𝑘𝑧(𝑧𝑝 − 𝑧𝑞)] 𝑑𝑘𝑧

𝑘

0

. (3.10) 

The drawbacks to this expression are the infinite sum and the integrals which can be overcome as 

shown in the following section using the uniform theory of diffraction. 

  

Figure 3.2: The geometric values and the area of an element in the baffled curved plate are shown. 

These elements represent the radiators that produce the pressure at the 𝑝th location in response to 

vibration at the 𝑞th location. 
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3.7.2   Uniform Theory of Diffraction 

Although 𝐑 matrix formulations could be derived directly from Eqns. 3.9 and 3.10, these 

equations involve computationally expensive infinite sums and integrals. For cylindrical structures 

with large radii of curvature, Eqn. 3.9 can be further simplified by applying principles from the 

uniform theory of diffraction (UTD). Initially developed in electromagnetics, this approach to 

wave propagation around curved surfaces has had limited application in acoustics [24], [27]. The 

formulation can be obtained by employing an asymptotic expansion of Eqn. 3.6 for large 𝑘𝑎 

values. After evaluation at 𝑟 = 𝑎 and substituting 𝜙 = 𝜃 − 𝜃𝑞, Eqn. 3.6 can be written as 

𝑝𝑞(𝑎, 𝜃, 𝑧) = −𝑗 (
𝜔𝜌0𝑢0Δ𝜃Δ𝑧

4𝜋2
)∫ 𝑑𝑘𝑧

𝑒𝑗𝑘𝑧(𝑧−𝑧𝑞)

𝑘𝑟

∞

−∞

∑
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑚𝜙

∞

𝑚=−∞

. (3.11) 

      The sum in this expression can be transformed into an integral in the complex plane by using 

a Watson transformation [27], [29], as follows 

∑
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑚𝜙

∞

𝑚=−∞

=
𝑗

2
∫

𝑒𝑗𝜈(𝜙−𝜋)

sin 𝜈𝜋

𝐻𝜈
(2)(𝑘𝑟𝑎)

𝐻𝜈
(2)′(𝑘𝑟𝑎)

𝑑𝜈
 

𝐶

, (3.12) 

where C is a contour that encircles the real axis. Then by replacing −𝜈 by 𝜈 in the part of the 

contour above the axis, the right-hand side of Eqn. 3.12 becomes 

∑
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑚𝜙

∞

𝑚=−∞

 =
𝑗

2
∫

cos 𝑣(𝜙 − 𝜋)

sin 𝜈𝜋

𝐻𝜈
(2)(𝑘𝑟𝑎)

𝐻𝜈
(2)′(𝑘𝑟𝑎)

𝑑𝜈.        
∞−𝑗𝜀

−∞−𝑗𝜀

(3.13) 

Then, by replacing the trigonometric terms with their equivalent exponential terms yield 

∑
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑚𝜙

∞

𝑚=−∞

=
𝑗

2
∫

𝑒−𝑗𝜈(2𝜋−𝜙) + 𝑒−𝑗𝜈𝜙

1 − 𝑒−𝑗𝜈2𝜋

𝐻𝜈
(2)(𝑘𝑟𝑎)

𝐻𝜈
(2)′(𝑘𝑟𝑎)

𝑑𝜈
∞−𝑗𝜀

−∞−𝑗𝜀

.   (3.14) 
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Next, a geometric series can be used to obtain 

∑
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑚𝜙

∞

𝑚=−∞

=
𝑗

2
∫

𝐻𝜈
(2)(𝑘𝑟𝑎)

𝐻𝜈
(2)′(𝑘𝑟𝑎)

∑(𝑒−𝑗𝜈(2𝜋−𝜙) + 𝑒−𝑗𝜈𝜙)𝑒−𝑗2𝜋ℓ𝜈 𝑑𝜈

∞

ℓ=0

.
∞−𝑗𝜀

−∞−𝑗𝜀

   (3.15) 

Equation 3.15 can be interpreted as a summation of waves that have encircled the cylinder ℓ times, 

composed of separate terms for waves circling in a positive direction and waves circling in a 

negative direction. By assuming that 𝑘𝑟𝑎 is large and recognizing that the greatest contribution to 

the integral occurs near 𝜈 = 𝑘𝑟𝑎, all but the ℓ = 0 terms can be neglected [25]. This simplification 

yields the final quantity as 

∑
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑚𝜙

∞

𝑚=−∞

≈
𝑗

2
∫

𝐻𝜈
(2)(𝑘𝑟𝑎)

𝐻𝜈
(2)′(𝑘𝑟𝑎)

∞−𝑗𝜀

−∞−𝑗𝜀

(𝑒−𝑗𝜈(𝜙−2𝜋) + 𝑒−𝑗𝜈𝜙) 𝑑𝜈.   (3.16) 

      Considering that the integral over 𝜈 is primarily influenced by 𝜈 = 𝑘𝑟𝑎, Pathak and Wang 

proposed the substitution 𝜈 = 𝑘𝑟𝑎 + 𝜏(𝑘𝑟𝑎 2⁄ )1 3⁄ , with 𝜏 as the new independent variable [25]. 

Following this asymptotic formulation suggested by Pathak and Wang, the sum in Eqn. 3.12 can 

be expressed as 

∑
𝐻𝑚

(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

𝑒𝑗𝑚𝜙

∞

𝑚=−∞

= −
𝑗

2
∫ (

𝑘𝑟𝑎

2
)

1
3⁄ 𝑊2(𝜏)

𝑊2
′(𝜏)

𝑒−𝑗𝜈𝜙𝑑𝜏
∞

−∞

, (3.17) 

where 𝑊2(𝜏) represents one of the Airy-Fock functions [30] (defined in Appendix 3A by Eqn. 

3A.5). Furthermore, it should be noted that employing 𝑒−𝑗𝜈𝜙 in the integral accounts for a single 

ray traveling in one circumferential direction along the cylindrical surface. Substituting 𝜈 and this 

result back into Eqn. 3.11 yields the surface pressure as [23] 

𝑝𝑞(𝑟, 𝜃, 𝑧) = −
𝜔𝜌0𝑢0Δ𝜃Δ𝑧

8𝜋2
∫

𝑒𝑗[𝑘𝑧(𝑧−𝑧𝑞)+𝑘𝑟𝑎𝜙]

𝑘𝑟
𝑑𝑘𝑧

∞

−∞

∫ (
𝑘𝑟𝑎

2
)

1
3⁄∞

−∞

𝑊2(𝜏)

𝑊2
′(𝜏)

𝑒−𝑗𝜙(
𝑘𝑟𝑎
2

)

1
3
𝜏 𝑑𝜏. (3.18) 
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      The first integral (over kz) can be evaluated using a polar transformation, resulting in the 

expression for the pressure from this single ray being written as  

𝑝𝑞(𝑡) =
𝑗𝜔𝜌0𝑢0𝑆𝑒

2𝜋
𝑉(𝜉)

𝑒−𝑗𝑘𝜂

𝜂
, (3.19) 

where 

𝑉(𝜉) = (
𝜉

4𝜋
)

1
2
𝑒

𝑗𝜋
4 ∫ 𝑑𝜏 

𝑊2(𝜏)

𝑊2
′ (𝜏)

 𝑒−𝑗𝜉𝜏
∞

−∞

.   (3.20) 

      Equation 3.20 represents a simplified version of Eqn. 3A.6 found in Appendix 3A. 𝑉(𝜉) 

denotes the hard Fock coupling function with real argument 𝜉 = 𝜂[𝑘cos4𝜓/(2𝑎2)]1/3,                        

𝜂 = √(∆𝑧)2 + 𝑎2(∆𝜃)2 is the distance traversed across the curved surface, and 𝜓 = tan−1 (
∆𝑧

𝑎𝜙
) 

is the angle between the direction of propagation and the cylinder axis. 

      Substitution of Eqn. 3.19 into Eqn. 3.2 gives the expression to compute the entries of the curved 

plate 𝐑 matrix as [23] 

𝑅𝑝𝑞 = −
𝜔𝜌0𝑆𝑒

2

4𝜋𝑑𝑝𝑞
Im{𝑉(𝜉)𝑒−𝑗𝑘𝑑𝑝𝑞}, (3.21) 

where 𝑑𝑝𝑞 is the distance between the pth and 𝑞th positions on the surface and is also substituted 

for 𝜂 in 𝜉. It is important to note that the described radiation resistance considers only a single ray. 

While this approach is suitable for the scenarios addressed in this work, involving baffled curved 

plates, a more comprehensive treatment for a complete cylinder would require combining two or 

more terms from Eqn. 3.21. This would allow for the depiction of the two opposite paths around 

the cylinder, from the source to the field point, as well as additional paths that propagate around 

the cylinder multiple times. 
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      The hard Fock coupling function 𝑉(𝜉) has been characterized sufficiently, yielding useful 

series representations with ten or fewer terms (see Table 3A.1 in Appendix 3A). Figure 3.3 

provides a plot of 𝑉(𝜉). Notably, for large curvature (𝑎 ≫ 1) and low frequency (𝑘 ≪ 1), 𝜉 

approaches zero and 𝑉(𝜉) approaches unity. In this case, 𝑉(𝜉) behaves like a sinc(𝑘𝑑𝑝𝑞) function, 

causing Eqn. 3.21 to collapse into the canonical expression for the 𝐑 matrix of a flat plate, given 

by [5] 

𝑅flat,𝑝𝑞 =
𝜌0𝜔

2𝑆𝑒
2

4𝜋𝑐

sin 𝑘𝑑𝑝𝑞

𝑘𝑑𝑝𝑞
 . (3.22) 

Thus, the flat plate 𝐑 matrix serves as a good approximation for these plates. On the other hand, 

Fig. 3.3 also shows that the elements of the 𝐑 matrix for a simply curved plate, regardless of its 

size, tend to zero as the radius of curvature diminishes, as depicted in Eqn. 3.21. This occurs when 

𝑉(𝜉) approaches zero as 𝜉 tends toward seven. 

 

Figure 3.3: This plot shows the real part, imaginary part, and magnitude of the hard Fock V 

coupling function. As 𝜉 approaches zero, 𝑉(𝜉) behaves similarly to a sinc(𝑘𝑑𝑝𝑞) function and 

showcases the asymptotic behavior near zero for small curvature or large frequency. 
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3.8   Experimental Setups for Sound Power Measurement 

To confirm the accuracy of the simply curved plate 𝐑 matrix expression, sound power 

measurements obtained through the VBSP method were compared with ISO 3741 and ISO 3745 

standards. Experiments were conducted using three simply curved plates of varying radii in 

different acoustic environments: reverberant, anechoic, and uncontrolled. This section outlines the 

experimental setup, and measurement methods, and then presents the validation results. 

3.8.1   Design and Setup of the Three Curved Plates 

The three curved plates used during experimental testing were fabricated using the same 

materials and design, with the only distinguishing feature being the constant radius of curvature 

used. For simplicity, the curved plates in this work are identified according to their relative radius 

of curvature, as follows: tight radius (TR) (see Fig. 3.4), medium radius (MR) (see Fig. 3.5a), and 

wide radius (WR) (see Fig. 3.5b). The radii of curvature and other dimensions for these plates are 

summarized in Table 3.1. 

Each structure has a thin aluminum sheet shaped into a curved plate with an approximately 

constant radius of curvature maintained in a rigid steel frame (see Fig. 3.4). To prevent acoustic 

radiation from escaping the backside of the curved plates and into the measured acoustic field, 

each plate is clamped on the straight edges and baffled on the curved edges using thick aluminum 

caps sealed to the plates with a silicone bead (see Fig. 3.4). Calibration marks were placed on the 

surface of each plate to enable a scanning laser Doppler vibrometer (SLDV) to virtually stitch scan 

section measurements. 
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Figure 3.4: Annotated image of the TR curved plate, with the outer surface on the left and the 

inner surface on the right. The width corresponds to the clamped edges. Plate excitation was 

achieved through a piezoelectric transducer (PZT). 

 

Figure 3.5: Images of (a) the MR curved plate and (b) the WR curved plate.  
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Table 3.1: Summary of the curved plate dimensions used for experimental testing. 

Object 
Height 

(cm) 

Width 

(cm) 

Thickness 

(mm) 

Radius of Curvature 

(cm) 

TR Curved Plate 30 29 1.59 15.5 

MR Curved Plate 30 36 1.59 30 

WR Curved Plate 30 40 1.59 51 

3.8.2   The VBSP Method for 3D Structures 

A curved plate was mounted on the wall in the specific acoustic environment, with the wall 

approximating an infinite baffle. Gaff tape (thick sealing tape) was applied around the frame-to-

wall interface to ensure proper sealing and eliminate any acoustic flanking paths. The vibration 

and standard method measurements were made for each plate while maintaining this consistent 

setup. 

Excitation of the plates initially involved a shaker, but there were limitations in baffling behind 

the plate and obstructing the view of the SLDV in front of the plate. As a solution, a piezoelectric 

transducer (PZT) was placed on the back side of the plate in the upper right quadrant (when facing 

the front). This allowed flush mounting of the plates to the chamber wall while enabling 

measurement of the low-frequency chamber background noise. 

Structural velocity measurements were made using a Polytec PSV-500-3D SLDV equipped 

with three independent laser scan heads for 3D measurements. Each laser head measures the 

velocity along the sight of the laser beam. The software uses these three measurements to compute 

the three orthogonal components of velocity in the predetermined laser reference coordinate 

system. The SLDV also measures the surface geometry of the plate from which an outward normal 

vector at each point can be determined. The surface normal velocity at each scan point is computed 

using the dot product, 
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𝑉𝑛 =  𝐕 ∙ 𝐍, (3.23) 

where 𝑉𝑛 is the surface normal velocity, 𝐕 is the 3D velocity vector, and 𝐍 is the surface normal 

unit vector. Due to plate curvature, separate sections of the plate were scanned and subsequently 

stitched together, as seen in Fig. 3.6, to obtain a complete response of each simply curved plate 

[31]. 

The frequency range of interest spanned 100 Hz to 10 kHz in one-third octave (OTO) bands 

(89 Hz to 11,220 Hz). The scan grid density was at least six scan points per wavelength for the 

shortest wavelength (5.1 mm at 11,220 Hz), ensuring a spatial resolution of approximately one 

wavelength between each scan point in each direction and sound power measurement accuracy. A 

pseudo-random signal ranging from 0 to 12.8 kHz was applied to the PZT to excite each plate. 

 

Figure 3.6: An example scan section taken over the surface of the TR curved plate to measure 

complex surface velocities. After each section is scanned and then stitched together to provide a 

complete response of the plate. During post-processing, the stitching is smoothed in case of any 

imperfect overlap of the sections. 

3.8.3   Reverberation Chamber and the ISO 3741 Standard 

The reverberation chamber employed has dimensions of approximately 5.03 m x 5.93 m x 

7.01 m with a Schroeder frequency of about 385 Hz. The sound power from the curved plates was 

measured and then computed using the ISO 3741 standard, which is limited to frequencies above 

the Schroeder frequency. 
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An impulse response was recorded in the reverberation chamber to factor in the additional 

absorption attributed to the presence of the SLDV equipment and the experimental setup. Once 

the absorption had been accounted for, sound pressure data was recorded using six microphones 

placed according to the standard. The recorded pressure data was filtered into OTO bands with a 

frequency bandwidth resolution of 1 Hz. Then, the vibration data and the developed curved plate 

𝐑 matrix were used to calculate sound power following the VBSP method. The obtained results 

are reported and compared in OTO bands with the ISO 3741 standard. 

3.8.4   Anechoic Chamber and the ISO 3745 Standard 

To assess the VBSP method’s accuracy in measuring sound power below 385 Hz, VBSP 

measurements of the WR curved plate were compared with the measurements in an anechoic 

chamber according to ISO 3745. The chamber’s anechoic properties extend down to approximately 

80 Hz, allowing sound power measurements to be verified down to the 100 Hz OTO band center 

frequency, provided the excitation meets the specified sound pressure level to background noise 

criteria.  

To minimize the potential influence of sound wrapping around the front and affecting source 

measurements, a 16’ x 12’ x ¾” thick MDF wall was constructed for mounting the WR curved 

plate (see Fig. 3.7). This wall served as a baffle, directing any radiated sound on the backside 

towards the anechoic terminations. It was specifically designed to mitigate the impact of the 

longest wavelength of interest at 89 Hz. 

A directivity measurement system (DMS) arc array with 36 microphones evenly spaced in 5° 

increments [32] was used to capture frequency response functions (FRFs) around the curved plate, 

covering a hemisphere along a meridional path. Each recording lasted approximately 15 seconds, 

with an additional 15-second settling time between rotations to minimize electrical noise from the 
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actuator and array. The FRFs were used to calculate sound power levels from 100 Hz to 10 kHz 

OTO bandwidth, per the ISO 3745 standard [22]. 

 

Figure 3.7: Experimental setup of the DMS (arc array) and wall inside an anechoic chamber. 

3.8.5   The VBSP Method in Uncontrolled Acoustic Environments 

To gauge the VBSP method’s capability to measure radiated sound power in noisy 

environments outside of controlled acoustic environments, such as anechoic and reverberation 

chambers, experiments were conducted using the WR curved plate. The WR plate was mounted 

on a concrete wall at least three feet thick to baffle in two different locations: a hallway in BYU’s 

Engineering Building (see Fig. 3.8) with moderate foot traffic, loud HVAC system, and elevator 
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noise, and an outdoor location (see Fig. 3.9). The outdoor setup involved challenging 

environmental conditions, including frequent vehicle noise, a rainstorm with thunderclaps, wind 

speeds up to 11 mph, and a 14°F (7.8°C) temperature change during measurement. 

 

Figure 3.8: Experimental setup of the WR curved plate in a hallway inside BYU’s engineering 

building. 



51 

 

Figure 3.9: Experimental setup of the WR curved plate outside of BYU’s engineering building. 

3.9   Experimental Results of Sound Power Measurements 

3.9.1   Reverberant (Diffuse) Environment 

The Schroeder frequency was shifted down to approximately 350 Hz due to the presence of 

additional absorption within the reverberation chamber, placing it within the 315 Hz OTO band. 

Figures 3.10a and 3.10b show the sound power measurements from the TR and WR curved plates 

respectively using both the VBSP and ISO 3741 methods in a reverberation chamber. Excellent 

agreement was obtained between both methods between the 315 Hz to 10 kHz OTO bands.  
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Using a reference of 10-12 W, the overall sound power level for the TR curved plate was 

measured as 70.7 dB using the VBSP method and 70.2 dB using the ISO 3741 method, resulting 

in a difference of 0.5 dB. Similarly, for the WR curved plate, the overall sound power level was 

81.0 dB using VBSP and 80.0 dB using ISO 3741, resulting in a difference of 1.0 dB.  

Table 3.2 quantifies the OTO band sound power differences between the methods for these 

plates. The ISO 3741 method introduces significant error below the 315 Hz OTO band due to the 

noise floor, while the VBSP method demonstrates greater accuracy within this frequency range. 

According to ISO 3741, if the noise floor is within 10 dB of the measured sound power, the 

results represent an upper bound on sound power [21]. The ISO 3741 standard depends on 

microphones to measure the acoustic pressure and is unable to distinguish between the noise 

produced from the curved plate and the background noise in the reverberation chamber at 

frequencies below the Schroeder frequency. Hence, the VBSP method is likely more accurate in 

measuring the sound power below the Schroeder frequency and when the noise source radiates 

below the noise floor of the reverberation chamber.  

These results demonstrate that the VBSP method is likely able to measure sound power from 

specific devices in relatively noisy environments, reducing the need for specific acoustic 

environments such as anechoic and reverberation chambers. 



53 

 

Figure 3.10: Results of the sound power measurements using the VBSP method compared to the 

ISO 3741 standard for (a) the TR curved plate and (b) the WR curved plate. 

Figure 3.11 displays the sound power measured from the MR curved plate using both the 

VBSP and ISO 3741 methods. Initially, the plate was excited, and sound power levels were 

measured using both methods. Subsequently, the excitation was deactivated to measure the 

background noise levels in the reverberation chamber using the ISO 3741 standard (indicated by 

black dashed lines). 

The results show favorable agreement between the sound power methods across the 315 Hz 

to 10 kHz OTO bands. The maximum difference between the VBSP and ISO 3741 methods across 

the usable bandwidth (315 Hz to 10 kHz) was 2.8 dB at the 6.3 kHz OTO band. The mean 

difference was 0.2 dB with a standard deviation of 1.4 dB. For the full frequency spectrum (100 

Hz to 10 kHz), the overall sound power level was 79.7 dB re 10-12 W using the VBSP method and 

79.4 dB re 10-12 W using the ISO 3741 method, resulting in a total difference of 0.3 dB. 

Below the 315 Hz OTO band, the two methods diverge and there remains consistent 

agreement between the sound power measured from the MR curved plate using the ISO 3741 

standard and the background noise in the chamber. This suggests that the ISO 3741 method 
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predominantly measures the background noise of the reverberation chamber below 315 Hz, which 

masks the relatively low sound power output from the MR curved plate within this range [31]. In 

contrast, the VBSP method demonstrates significantly reduced sensitivity to the chamber’s 

background noise. Therefore, it is likely that the VBSP method is the more accurate measurement 

down to 100 Hz. 

 

Figure 3.11: Results of the sound power measurements using the VBSP method compared to the 

ISO 3741 standard for the MR curved plate. Background noise results from the reverberation 

chamber are also included (ISO 3741, Plate off). 

3.9.2   Anechoic and Uncontrolled Acoustic Environments 

Figure 3.12 compares the results from the ISO 3745 standard in the anechoic chamber with 

the VBSP results in the uncontrolled environments below the 400 Hz OTO band. They show good 

agreement between the methods down to the 160 Hz OTO band. The deviations in the sound power 

methods below 160 Hz come from the inability of the PZT excitation to produce sound pressure 

levels above the ISO 3745 standard’s background noise criterion. It is likely that the methods 
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would agree better with a stronger excitation below this OTO band. Further, this confirms that the 

VBSP method can indeed measure the sound power from baffled structures across the OTO 

bandwidth (160 Hz to 10 kHz).  

The ISO 3741 method introduces significant error below the 315 Hz OTO band due to the 

noise floor, while the VBSP method demonstrates greater accuracy within this frequency range. 

The plate was remounted on the wall with a new PZT so these results will not be the same as the 

VBSP results in the reverberation chamber. A new ISO 3741 measurement was taken and included 

in Fig. 3.12. Table 3.2 quantifies the OTO band sound power differences between the VBSP and 

ISO 3741 methods for the WR curved plate. These results confirm the robustness of the VBSP 

method in different environments and its capability of in situ testing. 

 

Figure 3.12: The VBSP results of the WR curved plate in two uncontrolled acoustic environments 

compared to the ISO 3741 and ISO 3745 standards. 
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Table 3.2: The absolute difference in sound power measurements for the MR, TR, and WR curved 

plates using the VBSP method and ISO 3741. Similarly, for the WR curved plate in two 

uncontrolled acoustic environments. 

  𝚫𝑳𝒘 (dB re 1 pW) 

     Curved Plate:  MR     TR WR Hallway Outside 

OTO band frequency (Hz) 100 42.3 51.5 40.7 38.3 35.4 

 125 36.6 44.9 31.5 32.0 29.1 

 160 25.1 31.9 16.7 19.1 18.9 

 200 17.8 22.5 8.7 11.5 13.4 

 250 8.5 9.5 1.6 6.0 6.8 

 315 2.3 0.2 2.2 0.3 1.7 

 400 0.1 0.0 3.3 2.4 0.2 

 500 0.8 0.3 0.7 6.2 3.3 

 630 0.6 1.2 1.0 2.2 1.8 

 800 1.2 1.0 0.1 0.0 0.2 

 1000 1.0 0.4 1.7 1.7 1.8 

 1250 0.5 1.8 0.7 0.5 2.2 

 1600 1.4 1.3 0.9 0.6 0.4 

 2000 1.1 0.1 0.5 0.4 0.1 

 2500 1.0 0.5 0.7 0.4 0.3 

 3150 0.2 0.3 1.5 0.4 0.3 

 4000 1.4 0.7 0.2 0.3 0.3 

 5000 2.0 0.3 0.2 0.9 1.1 

 6300 2.8 0.6 0.3 2.1 2.0 

 8000 1.0 0.1 1.9 0.1 0.1 

 10000 1.2 0.8 0.6 0.5 0.6 

 Overall 0.3 0.5 1.0 0.1 0.2 

3.10 Conclusions 

In this study, a vibration-based sound power (VBSP) method was developed and validated for 

measuring sound power from baffled simply curved plates. Previous research focused on 𝐑 matrix 

expressions for baffled flat plates, fully closed cylindrical shells, and fully closed spherical shells, 

leaving a gap for open-curved plate geometries encountered in practical applications such as tractor 

cab windows, car door panels, and aircraft or marine vehicle panels. 
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Experimental validation was performed and involved comparing sound power obtained from 

the VBSP method using the new 𝐑 matrix expression with the pressure-based ISO 3741 and ISO 

3745 standards. Three curved plates with varying radii of curvature were fabricated and tested in 

several environments. Excellent agreement was observed between the VBSP method and ISO 3741 

standard, in a reverberation chamber, within the usable bandwidth (400 Hz to 10 kHz OTO bands). 

The VBSP method exhibited lower sensitivity to background noise compared to the ISO 3741 

standard. Mean sound power differences for the three plates, with respective standard deviations, 

were 0.2 dB (1.4 dB) for the MR curved plate, 0.1 dB (0.8 dB) for the TR curved plate, and 0.1 

dB (2.1 dB) for the WR curved plate, when compared to the ISO 3741 standard. 

Furthermore, the VBSP method demonstrated its capability to accurately measure sound 

power from the WR curved plate in non-controlled acoustic environments. Tests were conducted 

in a hallway with moderate foot traffic, loud HVAC system, and elevator noise, as well as outdoors 

with high vehicle noise, a rainstorm with thunderclaps, wind speeds up to 11 mph, and temperature 

variations of 14°F (7.8°C), showcasing the robustness of the VBSP method. 

The sound power of the WR curved plate was then measured in an anechoic chamber 

according to the ISO 3745 standard. The results confirm the VBSP method’s ability to capture the 

radiated energy below the threshold frequency of 385 Hz for the ISO 3741 standard in the 

reverberation chamber. Previous papers on the VBSP method have not confirmed this result due 

to restricting the testing in a reverberation chamber with a Schroeder frequency of 385 Hz. This 

result supports the claim that the VBSP method is likely measuring the sound power accurately 

below 400 Hz OTO band. 

These results highlight the potential of the VBSP method for accurately measuring sound 

power from baffled simply curved plates, surpassing the limitations of traditional measurement 
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standards in certain scenarios. The sound power from a baffled structure can be accurately 

measured using the VBSP method in different acoustic environments across the OTO bandwidth 

of interest (160 Hz to 10 kHz).  

This work validates the robustness of the VBSP method in measuring sound power from 

baffled simply curved plates in real-world environments. The developed baffled simply curved 

plate 𝐑 matrix expression enables the natural acoustic radiation modes for these structures to be 

computed. These results have significant implications for accurately characterizing the sound 

power of curved plates in various industrial applications. The results support the practical 

application of the VBSP method outside of controlled acoustic environments in situ, allowing for 

accurate sound power measurements even in the presence of significant background and time-

varying noise produced by the plate environment, and provide confidence in the viability of the 

baffled simply curved plate 𝐑 matrix for future use. 
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3.12 Appendix 3A 

3.12.1   Introduction 

A “special” function in mathematics is one that appears so often that it receives a name, and 

its properties are studied [23], [25]. Many special functions cannot be expressed in terms of 

elementary functions and therefore can only be expressed in terms of integrals and differential 

equations [33]. This appendix was organized using Appendices B and V from Refs. [24] and [29], 

respectively, to define the special functions used within this manuscript so that the manuscript is 

more self-contained. 

3.12.2   Bessel and Hankel Functions 

The 𝜈𝑡ℎ-order Bessel functions of the first and second kind are given by 

𝐽𝜈(𝑥) = ∑(−1)𝑚

∞

𝑚=0

𝑥𝜈+2𝑚

𝑚! (𝜈 + 𝑚)!
 (3A. 1) 

and 

𝑌𝜈(𝑥) =
𝐽𝜈(𝑥) cos(𝜋𝜈) − 𝐽−𝜈(𝑥)

sin(𝜋𝜈)
, (3A. 2) 

respectively. 

The 𝜈𝑡ℎ-order Hankel functions of the first and second kind are given by 

𝐻𝜈
(1)(𝑥) = 𝐽𝜈(𝑥) + 𝑗𝑌𝜈(𝑥) (3A. 3) 

and 

𝐻𝜈
(2)(𝑥) = 𝐽𝜈(𝑥) − 𝑗𝑌𝜈(𝑥) (3A. 4) 

respectively. 
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3.12.3   Fock-type Airy Function 

In electromagnetics, the Fock-type Airy function [25] is given by 

𝑊2(𝜏) =
1

√𝜋
∫ 𝑒

−(
𝑧3

3
)

𝐶2

𝑒𝜏𝑧𝑑𝑧, (3A. 5) 

where 𝐶2 is shown in Fig. 3A.1. 

 

Figure 3A.1: Contours in the complex 𝜏-plane for Fock V integration. 

Table 3A.1: The first ten zeros of 𝑊2(𝜏): 𝑊2(𝜏𝑛
′ ) = 0 and 𝑊2

′(𝜏𝑛) = 0, where 𝜏𝑛 = |𝜏𝑛|𝑒−
𝑗𝜋

3  

and 𝜏𝑛
′ = |𝜏𝑛

′ |𝑒−
𝑗𝜋

3 . 

𝒏 |𝛕𝒏| |𝛕𝒏
′ | 

1 2.33811 1.01879 

2 4.08795 3.24819 

3 5.52056 4.82010 

4 6.78661 6.16331 

5 7.94413 7.37218 

6 9.02265 8.48849 

7 10.0402 9.53545 

8 11.0085 10.5277 

9 11.9300 11.4751 

10 12.8288 12.3848 
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3.12.4   The Fock V Coupling Function 

The hard Fock coupling function, denoted by 𝑉(𝑥), was developed to give an asymptotic 

description of the electric current over convex surfaces [33], [35] and is given by 

𝑉(𝑥) =
√𝑥 𝑒

𝑗𝜋
4

2√𝜋
∫

(𝑊2(𝜏)𝑒
−𝑗𝑥𝜏)

𝑊2
′(𝜏)

∞

∞𝐶1

𝑑𝜏. (3A. 6)

 

 

𝑉(𝑥) ∈ ℂ  even though 𝑥 ∈ ℝ. The contour of integration 𝐶1 for Eqn. 3A.6 is shown in Fig. 3A.1. 

Let 𝜏𝑛 = |𝜏𝑛|𝑒−
𝑗𝜋

3  and 𝜏𝑛
′ = |𝜏𝑛

′ |𝑒−
𝑗𝜋

3 . When 𝑥 > 0.6, the first ten terms are usually sufficient 

to approximate 𝑉(𝑥) using the following expression [25] 

𝑉(𝑥) ≈ √πx 𝑒−
𝑗𝜋
4 ∑

𝑒−𝑗𝑥𝜏𝑛
′

𝜏𝑛
′

10

𝑛=1

, (3A. 7) 

where the 𝜏𝑛
′  values are given in Table 3A.1. When 𝑥 < 0.6, then the first four terms are usually 

sufficient to approximate 𝑣(𝑥) using the following expression [25] 

𝑉(𝑥) ≈ 1 −
√𝜋

4
𝑒

𝑗𝜋
4  𝑥

3
2 +

7𝑗

60
𝑥3 +

7√𝜋

512
𝑥

9
2. (3A. 8) 
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Chapter 4   Application to Baffled Arbitrarily Curved Plates 

4.1   Introduction 

This chapter was published as a peer-reviewed article in the Journal of the Acoustical Society 

of America. Trent Bates and I worked together on this as co-authors. This article represents a 

significant advancement in the application of the VBSP method across various geometries. It 

challenged the prevailing notion maintained over 35 years within the acoustical community—that 

each unique structure requires a unique radiation resistance matrix. The findings demonstrate that 

approximating arbitrarily curved plates with a single radius of curvature allows the use of radiation 

resistance matrices derived from simpler geometries, such as flat plates, cylinders, and simply 

curved plates, for more complex structures. This breakthrough enhances the practicality and 

application of the VBSP method. 

 

** My contributions to this paper were primarily on the experimental testing of arbitrarily curved 

plates. The stitching process was instrumental in connecting the datasets for each section of the 

structure, enabling comprehensive and accurate analyses. I contributed equally with the first 

author on the experimental work, but I was not the primary author of this document. ** 
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4.2   Required Copyright Notice  

      The following article appeared in the Journal of the Acoustical Society of America and may 

be found at https://doi.org/10.1121/10.0009581 under the title “Vibration-based sound power 

measurements of arbitrarily curved panels.” It is reproduced in its original published format here 

by rights granted in the JASA Transfer of Copyright document, item 3. 

https://pubs.aip.org/DocumentLibrary/files/publications/jasa/jascpyrt.pdf 
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I hereby confirm that the use of this article is compliant with all publishing agreements. 
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Chapter 5   Expansion for Thin Unbaffled Flat Plates 

This chapter presents the foundation of a journal article intended for publication in The 

Journal of the Acoustical Society of America. The work detailed here includes a literature review, 

the development of the distance matrix and radiation resistance matrix for thin unbaffled flat plates, 

and initial contributions from COMSOL Multiphysics™ modeling. 

The key finding of this research is the demonstration that a plate’s sound power can be 

effectively modeled using the sound power equation for two out-of-phase point sources. This 

model accounts for the interaction between the front and back sides of the plate, capturing the 

dipole nature of the plate when acoustic wavelengths exceed the plate dimensions and its monopole 

behavior when wavelengths are much smaller. 

This contribution is particularly significant for the VBSP method, because it extends its 

applicability to unbaffled radiating structures. This advancement paves the way for broader and 

more accurate sound power estimations for many unbaffled radiating structures of interest. 
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5.1   Introduction 

Sound radiation from unbaffled flat plates poses significant challenges in acoustics due to 

their intricate boundary conditions and complex radiation characteristics. Accurately predicting 

the acoustic response is complicated because, unlike baffled plates—where the velocity 

distribution is well-defined and assumed to be zero at the baffle, allowing for calculations using 

the Rayleigh integral [1]—unbaffled plates require solving a Robin boundary condition. In this 

case, the velocity is only known at the surface of the plate, while the pressure is zero in the same 

plane outside the plate. Both the velocity and pressure are essential for accurately solving the 

problem. 

The reliance on a Robin boundary condition adds to the complexity of the acoustic analysis. 

This complexity has led to the creation of various analytical, semi-analytical, and numerical 

methods, each with its own strengths and limitations. These methods are crucial because unbaffled 

plates are widely used in fields like aerospace engineering to architectural acoustics, where 

accurate acoustic modeling is essential for improving designs and effective noise control. 

Various strategies have been employed by researchers to address the complexities of sound 

radiation from unbaffled plates. For example, Atalla et al. [2] utilized the Kirchhoff-Helmholtz 

Integral Equation (KHIE) [3] to model sound radiation of unbaffled plates, simplifying their 

analysis by disregarding the pressure jump across the plate’s boundary. While this model 

facilitated the analytical derivation of boundary conditions, it also resulted in numerical 

inaccuracies, particularly at high frequencies due to convergence problems linked to the singular 

behavior of Green’s functions. 

A more comprehensive KHIE model was developed by Laulagnet [4], incorporating the 

pressure jump and plate displacement by using a series of plate modes. This model analyzed the 
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radiation resistance by numerically calculating a matrix of cross-modal coupling coefficients to 

capture the acoustic behavior of the plates. Although the method showed strong agreement with 

theoretical predictions tested in air and water, its application to complex boundary conditions and 

fluid interactions demands significant computational resources. 

In another study, Williams [5], [6] applied an FFT-based iterative method to numerically 

evaluate the acoustic pressure and velocity for unbaffled thin plates vibrating in air. While effective 

in certain scenarios, this method also faces convergence issues at lower frequencies due to 

singularities occurring when sample points align with the radiation circle 𝑘𝑥
2 + 𝑘𝑦

2 = 𝑘2. 

Fahy and Thompson [1], [7], introduced a wavenumber domain technique that uses matrix 

inversion to evaluate acoustic pressure in perforated plates, which can also be adapted for 

unbaffled configurations. Their method relates acoustic pressure to acoustic impedance, 

addressing mixed boundary conditions beyond the plate surface and facilitating acoustic power 

calculations. However, challenges such as singularities in the matrix inversion can impact result 

accuracy. This understanding informs my work on developing a more efficient radiation resistance 

(𝐑) matrix for thin unbaffled flat plates to mitigate these issues.  

In addition to the analytical and semi-analytical approaches, empirical methods have also been 

applied. For example, Oppenheimer and Dubowsky [8] explored simpler empirical corrections for 

baffled plates to approximate unbaffled behavior. These empirical models are tailor made for 

specific cases and, therefore, lack generality. 

In addition to the analytical and semi-analytical approaches mentioned earlier, numerical 

techniques, like the Boundary Element Method (BEM) and Finite Element Method (FEM), have 

also been extensively used. These methods are beneficial in analyzing the dynamic characteristics 

and acoustic response of unbaffled plates in diffuse fields, especially for plates with arbitrary 
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shapes and boundary conditions. Some examples of how these techniques have been applied 

illustrate the effectiveness and limitations of this approach. 

FEM/BEM can be applied for vibrating structures radiating in different fluids. Nelisse et al. 

[9], [10] examined unbaffled vibrating plates in air, water, and diffuse sound fields, showing how 

fluid-structure interactions can alter radiation impedance of these plates using a Rayleigh-Ritz 

approach with the BEM. A combined FEM-BEM model was employed by Nolte and Gaul [11] to 

analyze sound radiation in underwater environments. However, both models often require 

considerable computational resources and can be impractical for large structures or high-frequency 

scenarios. 

FEM/BEM models are also often used in aerospace engineering applications. García-Fogeda 

et al. developed a fluid-structure interaction model for predicting the dynamic response of 

unbaffled plates subjected to high acoustic loads [12]. By combining FEM and BEM, the approach 

effectively handles arbitrary plate shapes and complex boundary conditions and has been validated 

against experimental data, demonstrating its accuracy. However, the method is computationally 

intensive, especially for near-field radiation modeling, and requires careful consideration of mutual 

impedance effects to ensure reliable predictions. 

A different approach is to model the surface using simple radiators. Fahnline and Koopman 

[13] used a lumped parameter model for various unbaffled geometries, representing the elements 

using multipoles. While this method has shown promise, it can become cumbersome for more 

complex geometries or high-frequency ranges. Hashimoto [14] used a discrete calculation method 

(DCM) that simplifies radiation impedance analysis by breaking down the radiating surface into 

smaller piston-like elements but is only applicable for baffled structures. 
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Considering these different approaches and recognizing the need for an efficient and accurate 

way to understand the acoustic radiation from unbaffled plates, this chapter introduces a new 

approach focused on developing a simpler 𝐑 matrix for thin unbaffled flat plates. By utilizing the 

method of elementary radiators and incorporating symmetry principles (refer to Unit 3), this 

research aims to balance computational efficiency and accuracy, with the potential to perform 

measurements of unbaffled flat plates in situ. The proposed solution not only reduces 

computational costs but also extends the capabilities of the Vibration-Based Sound Power (VBSP) 

method, making it applicable to both baffled and unbaffled configurations. This advancement 

provides a precise and practical tool for sound power estimation that can be effectively used in 

real-world situations where traditional methods are insufficient. 

5.2   The Unbaffled Distance Matrix 

This section focuses on how the distances, 𝑑𝑖𝑗, between any two elements on the front and 

back of the flat plate are computed for the unbaffled distance matrix, 𝐝, to aid the construction of 

the 𝐑 matrix. First, the two-sided flat plate was conceptually “unfolded,” as illustrated in Fig. 5.1. 

This approach simplifies the calculation of the shortest distance between a source element on the 

front side of the plate and a receiver element on the back side, considering the paths around all 

four edges of the plate (see Fig. 5.2). In this calculation, the shortest path, which is the most 

influential for the mutual interaction between any two elements, was identified. For each pair of 

elements, the shortest path 𝑑𝑖𝑗 is included in the unbaffled distance matrix. 
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Figure 5.1: The front of the unbaffled flat plate (dark gray) and the back (light gray) are 

shown in an “unfolded” view. Elements “1” on the front and “4” on the back are used for 

illustration. The shaded element “4” represents the element is now on the same side of the 

plate as element “1.” 

Initially, the methodology assumed a single shortest path when in some cases, multiple paths 

could be equivalently the shortest. This early approach focused on scenarios where the 

computation considered only one path out of several potential shortest paths. This could potentially 

introduce errors in the 𝐑 matrix calculations, as certain paths, though equally short, might influence 

the acoustic interactions differently. The implications of this scenario will be further explored and 

addressed in Sec 5.5. 
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The elements on the plate are organized such that the upper left corner on the front side of the 

plate is designated as the first element, and the lower right element on the back as the last element. 

To provide insight into what the 𝐝 matrix looks like, an example is provided in Fig. 5.3. The 

variation in 𝑑𝑖𝑗 can be understood by returning to Fig. 5.3, where it is evident that the first element 

on the front of the plate and the last element on the back of the plate have the largest separation 

distance. 

 

Figure 5.2: The distances between the front element “1” and the back element “4” are indicated 

by blue arrows connecting the element centers. The shortest path is selected for the corresponding 

𝑑𝑖𝑗 entry. 
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Figure 5.3: An example distance matrix, 𝐝, for a thin unbaffled flat plate with a 9 x 9 element grid 

on the front and back of a thin unbaffled flat plate. This includes all combinations of elements on 

the front with itself, front and back, back and front, and back with itself. 

5.3   Unbaffled Flat Plate 𝐑 Matrix 

An unbaffled thin flat plate involves a two-sided radiation problem, resulting in a more 

complex R matrix compared to the simpler forms used for baffled structures in Chs. 3 and 4. This 

section examines the specific structure of the 𝐑 matrix for thin unbaffled plates, which must 

account for interactions between the front and back surfaces. The front-to-front and back-to-back 

interactions are captured by the matrices 𝐑𝐅𝐅 and 𝐑𝐁𝐁, respectively, which use the half-space 

Green’s function and take the form of Eqn. 1.1 for the baffled flat plate. Additionally, the 𝐑 matrix 

incorporates cross-interactions between the front and back surfaces around the plate edges, 

represented by the 𝐑𝐅𝐁 and 𝐑𝐁𝐅 matrices. 
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These four 𝐑 matrices compose the total radiation resistance matrix for a thin unbaffled flat 

plate, represented as: 

𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔) = [
𝐑𝐅𝐅(𝜔) 𝐑𝐅𝐁(𝜔)

𝐑𝐁𝐅(𝜔) 𝐑𝐁𝐁(𝜔)
] .  (5.1) 

An example of 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 for a thin unbaffled flat plate is shown in Fig. 5.4 

 

Figure 5.4: A 242 x 242 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix displaying the four 121 x 121 𝐑 matrices from Eqn. 5.1 

for an 11 x 11 scan grid of an unbaffled flat plate. The submatrices are normalized to illustrate the 

double-layered Toeplitz and centrosymmetric symmetries better. The computation of sound power 

using Eqn. 5.1 employs this form of the 𝐑 matrix. 

The only unknowns in Eqn. 5.1 are the 𝐑𝐅𝐁 and 𝐑𝐁𝐅 matrices. These matrices are based on 

the discretization of the vibrating structure (refer to Sec. 1.3). Because the elements are designed 

to be smaller than an acoustic wavelength, each element radiates as an acoustic monopole source. 
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The complex sound pressure exerted by one monopole source on another source a distance 𝑑 away 

is: 

𝑝̂(𝑑) = ±
𝑗𝜌0𝑐𝑘𝑄̂

4𝜋𝑑
𝑒−𝑗𝑘𝑑,  (5.2) 

where the ± signs correspond to in-phase or out-of-phase sources, respectively 𝑐 is the speed of 

sound in the surrounding fluid, 𝑑𝑖𝑗 is the distance between the two sources, 𝑘 is the acoustic 

wavenumber, 𝜌0 is the fluid density surrounding the vibrating surface, and 𝑄̂ is the complex 

strength of the monopole source [1]. Each monopole source radiates power independently, given 

by: 

𝛱monopole =
1

2
Re{𝑄̂ ⋅ 𝑝̂∗} =

𝜔2𝜌0|𝑄̂|
2

8𝜋𝑐
,  (5.3) 

where 𝑝̂∗ denotes the complex conjugate of the pressure. 

In addition to monopole power, mutual coupling between monopoles must be accounted for. 

Fahy expresses the sound power generated by mutual coupling each source as 

𝛱𝑖𝑗 =
1

2
Re{𝑄̂𝑖 ⋅ 𝑝̂𝑗

∗} = ±
1

2

𝜔2𝜌0|𝑄̂|
2

4𝜋𝑐
sinc(𝑘𝑑𝑖𝑗) = ±𝛱monopole ∗ sinc(𝑘𝑑𝑖𝑗).  (5.4) 

Thus, the total radiated power from each source is: 

𝛱tot,𝑖 = 𝛱monopole ± ∑𝛱monopole ∗ sinc(𝑘𝑑𝑖𝑗)

𝑗≠𝑖

= 𝛱monopole ∗ [1 ± ∑sinc(𝑘𝑑𝑖𝑗)

𝑗≠𝑖

] .  (5.5) 

The self-power of a volume source (Eqn. 5.3) increases with the square of the frequency. 

However, the mutual coupling between two sources (Eqn. 5.4) introduces a sinc(𝑘𝑑𝑖𝑗) term. The 

pressure from a non-coincident source is linearly dependent on frequency. The variation with 

distance arises from the effect of hemispherical spreading of the pressure exerted by one source 

on another. As 𝑘𝑑𝑖𝑗 increases, source 𝑖 radiates independently of source 𝑗. 
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On the other hand, the 𝑘𝑑𝑖𝑗 ≪ 1 condition indicates a large amount of coupling in two ways. 

First, when regions of a vibrating surface are close together, Eqn. 5.5 shows how the sound power 

can decrease due to out-of-phase coupling; their mutual acoustic interaction significantly reduces 

the amount of sound power each region can generate. Second, at low frequencies, where the 

wavelength exceeds the dimensions of the plate, the two sides of the plate vibrate out-of-phase, 

causing the plate to act like an unbaffled piston with dipole characteristics. 

These 𝑘𝑑𝑖𝑗 regimes provide insights to how the front-back interactions should be included in 

the 𝐑 matrix. Because the sound power is 𝛱 = 𝐯𝒆
𝑯𝐑𝐯𝒆, the factor 1 − sinc(𝑘𝑑𝑖𝑗) needs to be 

included in the 𝐑𝐅𝐁 and 𝐑𝐁𝐅 matrices reflecting the impact of spatial and frequency-dependent 

interactions between the out-of-phase monopole sources. Therefore, 

𝐑𝐅𝐁 = 𝐑𝐁𝐅 =
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐

1

2
[1 − sinc(𝑘𝑑𝑖𝑗)], (5.6) 

where 𝑑𝑖𝑗 represents the distance between an element on one side of the plate to the opposite side 

of the plate around the surface without going through the plate. This looks similar to Eqn. 1.1 for 

the baffled plate. However, the factor of 1/2 is necessary because the free-space Green’s function 

must be used when the monopole sources are not baffled. 

Combining all four resistance matrices from Eqns. 1.1 and 5.6, the 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix in Eqn. 

5.1 becomes 

𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔) =
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐
[

sinc(𝑘𝑑𝑖𝑗)
1

2
[1 − sinc(𝑘𝑑𝑖𝑗)]

1

2
[1 − sinc(𝑘𝑑𝑖𝑗)] sinc(𝑘𝑑𝑖𝑗)

] .  (5.7) 

The sound power expression from Eqn. 1.2 for an unbaffled plate is 

𝛱(𝜔) = [
𝐯𝐞,𝐅𝐅(𝜔)

𝐯𝐞,𝐁𝐁(𝜔)
]

𝐻

[
𝐑𝐅𝐅(𝜔) 𝐑𝐅𝐁(𝜔)

𝐑𝐁𝐅(𝜔) 𝐑𝐁𝐁(𝜔)
] [

𝐯𝐞,𝐅𝐅(𝜔)

𝐯𝐞,𝐁𝐁(𝜔)
] .  (5.8) 



90 

The velocity vectors, 𝐯𝐞,𝐅𝐅 and 𝐯𝐞,𝐁𝐁, represent the velocities of the front and back sides of the 

plate, respectively. The 𝐯𝐞,𝐅𝐅 are obtained using the SLDV (as described in Sec. 1.3). The 𝐯𝐞,𝐁𝐁 are 

derived by inverting 𝐯𝐞,𝐅𝐅 by 180°, effectively changing the phase. Using Eqn. 5.7, the sound power 

expression for the thin unbaffled flat plate becomes 

𝛱(𝜔) =
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐
[
𝐯𝐞,𝐅𝐅(𝜔)

𝐯𝐞,𝐁𝐁(𝜔)
]

𝐻

[
sinc(𝑘𝑑𝑖𝑗)

1

2
[1 − sinc(𝑘𝑑𝑖𝑗)]

1

2
[1 − sinc(𝑘𝑑𝑖𝑗)] sinc(𝑘𝑑𝑖𝑗)

] [
𝐯𝐞,𝐅𝐅(𝜔)

𝐯𝐞,𝐁𝐁(𝜔)
] .  (5.9) 

5.4   Experimental Setup 

Two thin flat plates, each measuring 16 3/8” (0.416 m) square, were used for this test: an 

aluminum plate with a thickness of 0.0215” (0.000546 m) and a steel plate with a thickness of 

0.0475” (0.00121 meters). A piezoelectric transducer affixed near a corner of a plate generated a 

broadband pseudorandom signal up to 12.8 kHz with a 2 Hz frequency resolution excited the 

plates. To approximate free boundary conditions, the plates were suspended 40” above the ground 

using speaker stands, each corner of a plate supported by 3/4” surgical tubing to maintain these 

conditions.  

The microphone-based ISO 3741 standard was used in the reverberation chamber to measure 

sound power first. Due to the additional material in the chamber such as tables, speaker stands, 

and carts, the reverberation (𝑇60) time was measured to account for the absorption in the chamber 

so the ISO standard could be applied correctly. 

The experimental configuration used is shown in the following figures. Figure 5.5 shows the 

positioning of the SLDV above the plate to scan the vibrational response. Figure 5.6 displays the 

density of the scan grid used for the SLDV measurement, designed to improve the accuracy of the 
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VBSP method at higher frequencies. Figures 5.7 and 5.8 illustrate several operational deflection 

shapes of the plate under free-free-free-free boundary conditions, demonstrating that the plate was 

scanned properly, and that the experimental data should be accurate enough for the VBSP method. 

 

Figure 5.5: Flat plate setup for an SLDV scan in a reverberation chamber. 
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Figure 5.6: SLDV scan of the thin flat plate illustrating a 63x63 grid (~6.6 mm spacing). 

 

Figure 5.7: Fundamental mode of the thin flat plate with free boundary conditions from the SLDV. 
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Figure 5.8: Nine of the structural modes of the unbaffled flat plate with free boundary conditions 

obtained from the SLDV scan. 
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5.5   VBSP Results 

The accuracy of the 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 and 𝐝 matrices in estimating the sound power from unbaffled 

plates is demonstrated experimentally. A comparison is done using an unbaffled aluminum plate. 

The VBSP results are compared with ISO 3741 measurements for two cases: with the SLDV on 

and off. This comparison demonstrates that the additional background noise from the SLDV fan 

does not bias the VBSP results for this unbaffled plate, whereas the ISO 3741 results are 

dramatically impacted by the presence of the fan below 800 Hz (see Fig. 5.9). The VBSP method 

accurately estimates the sound power levels of the aluminum plate for the 315 Hz and 630 Hz one-

third octave (OTO) bands and from 1 kHz to 10 kHz OTO bands using the current 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 

matrix. The 400, 500, and 800 Hz OTO bands need additional work. 

A second comparison is made using an unbaffled steel plate with ISO 3741 as shown in Fig. 

5.10. The VBSP results (blue) are again compared with ISO 3741 measurements (red). This 

comparison demonstrates the accuracy of the current 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix and 𝐝 matrix in estimating 

the sound power from these plates. The VBSP results agree with the ISO 3741 standard within 1 

to 2 dB at the 500 Hz OTO band and from 800 Hz to 10 kHz, which is the frequency range over 

which the ISO 3741 standard applies in the reverberation chamber used. 

The current 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix performs well for mid-to-high frequencies based on the 

experimental VBSP results. However, for low frequencies, adjustments are needed. When the 

acoustic wavelength is significantly larger than the plate’s characteristic dimension, the 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 

matrix should be modified as 

𝐑̂𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔) ≈ 2 ∗
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐
[1 − sinc(𝑘𝑑𝑖𝑗)].  (5.10) 
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This modified matrix, like 𝐑𝐅𝐅 and 𝐑𝐁𝐁, only considers interactions on a single side of the 

plate. It was derived in Sec. 5.3 using the dipole relationship 1 − sinc(𝑘𝑑baffled) for two out-of-

phase sources. The factor of 2 accounts for the identical contributions from both the front and back 

sides of the plate, while 𝑑𝑖𝑗 represents the shortest distance between elements on a single side. 

This adjustment better captures the dipole nature of the plate’s radiation behavior at low 

frequencies. The VBSP results using Eqn. 5.10 (black) show improved accuracy for the aluminum 

plate in the 250 Hz to 1,630 Hz OTO bands (see Fig. 5.10) and for the steel plate in the 250 Hz to 

500 Hz OTO bands (see Fig. 5.11). 

 

Figure 5.9: Sound power levels (𝐿𝑤) of the thin unbaffled aluminum plate, showing the ISO 3741 

standard results (red) and the VBSP results using 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 (black). An additional ISO 3741 

measurement with the SLDV active (blue) indicates that the extra noise did not bias the VBSP 

results. 
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Figure 5.10: Sound power levels (𝐿𝑤) of the thin unbaffled aluminum plate, comparing results 

from the ISO 3741 standard (red), the VBSP method using the 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix (Eqn. 5.7) (blue), 

and the VBSP method using the 𝐑̂𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix (Eqn. 5.10) (black). The 𝐑̂𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix was 

derived using the dipole relationship 1 − sinc(𝑘𝑑baffled) for two out-of-phase sources. The overall 

sound power level differences between the ISO 3741 and the VBSP methods are 0 dB and 2.8 dB, 

respectively. 
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Figure 5.11: Sound power levels (𝐿𝑤) of the thin unbaffled steel plate, comparing results from the 

ISO 3741 standard (red), the VBSP method using the 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix (Eqn. 5.7) (blue), and the 

VBSP method using the 𝐑̂𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix (Eqn. 5.10) (black). The 𝐑̂𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix was derived 

using the dipole relationship 1 − sinc(𝑘𝑑baffled) for two out-of-phase sources. The overall sound 

power level differences between the ISO 3741 and both VBSP methods is 0.2 dB. 

5.6   Computational Model 

This section presents ongoing work to validate the current 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix across three 

frequency regimes: 𝑘𝑑 ≪ 1 (when the plate behaves like a dipole), 𝑘𝑑 ≈ 1 (the transition region), 

and 𝑘𝑑 ≫ 1 (where elements radiate more independently, exhibiting a “baffled” effect). Any 

boundary element method (BEM) software, such as COMSOL®, can be used to model the 
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unbaffled plate, analyze the diffracted pressure around it, and compute the corresponding 

𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix. 

Preliminary results in Figs. 5.12 and 5.13 demonstrate the initial development of a 

COMSOL® BEM model, aligned with the same 41x41 element mesh used in the VBSP analysis 

from Sec. 5.5. Figure 5.12 shows the pressure distribution on the front face of a thin unbaffled 

steel plate at 1,600 Hz to verify the model’s functionality. Due to the small gaps between elements 

relative to their size and the plate’s thin profile, the BEM model is highly sensitive to gap handling. 

 

Figure 5.12: The thin unbaffled steel flat plate used in this work, created in COMSOL®. The 

41x41 element grid shown matches the grid used for the VBSP method. The complex acoustic 

pressure produced by a single element excited at 2,475 Hz is shown across the front of the plate. 

2,475 Hz is about three times the acoustic wavelength of the plate’s characteristic dimension. 
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To mitigate this, COMSOL®’s thin-gap handling feature is used to prevent pressure leakage 

through the plate, as seen in Fig. 5.13b, where leakage effects are illustrated. Once leakage is 

resolved, the 𝐑 matrix can be computed by determining the pressure at each element on both faces 

due to a single element vibrating at a constant unit velocity. This procedure is repeated for each 

element, and then a frequency sweep is conducted to build the 𝐑 matrices for each frequency. 

 

Figure 5.13: a) Sound pressure level (SPL) distribution on the front side of a thin unbaffled flat 

plate in COMSOL® when a corner element is excited, with the remaining elements acting as 

receivers. b) SPL distribution on the back side of the same plate, where a significant drop in 

pressure compared to the front is expected. 

The 𝐑 matrices obtained using the BEM model can then serve as a tool to potentially establish 

a smoother connection between the 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrices for thin unbaffled flat plates for 𝑘𝑑 ≫ 1 

in Eqn. 5.7 and 𝑘𝑑 ≪ 1 in Eqn. 5.10. The insights gained from the BEM model may assist with 

the goal of developing a single 𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix that works for all 𝑘𝑑. 
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5.7   Conclusions 

An initial 𝐑 matrix is developed to estimate the sound power for thin unbaffled flat plates, 

which relies on a distance matrix that chooses the shortest path on the surface between any two 

elements. The shortest path is the greatest contributor to the acoustic pressure. The VBSP method 

is fairly accurate through the mid and high frequencies. 

In this frequency regime, the overall sound power levels obtained from the ISO 3741 standard 

and the VBSP method agreed for both an aluminum and steel plate above 800 Hz. Although there 

were large differences below 800 Hz, the VBSP method’s estimate was unaffected by the presence 

of the SLDV fan when it was active. Whereas the ISO 3741 result changed below 800 Hz due to 

the SLDV fan and other background noise. 

For low frequencies, the VBSP method yielded better estimates when representing a single 

side of the plate using the sound power equation for two out-of-phase sources. However, further 

improvements are required for the low-frequency regime. Conducting tests in an anechoic chamber 

using the ISO 3745 standard would provide a more precise understanding of low-frequency 

behaviors and enable the acquisition of free-field results for the VBSP method. Additionally, 

exploring BEM models could serve as a numerical benchmark, offering insights into linking 

frequency regimes for a unified 𝐑 matrix applicable to thin unbaffled flat plates. 

To validate the unbaffled 𝐑 matrix more broadly, it is advisable to test additional flat plates 

varying in thickness, material, and dimensions. Currently, the shortest distance is used for the 𝐑 

matrix calculations. Further research should explore scenarios where two or more paths are equally 

the shortest, as considering only one path might lead to inaccuracies in the sound power estimates 

as highlighted by Eqn. 5.7. 
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Chapter 6   Vibroacoustic Response of Pickleball Paddles 

This chapter presents a journal article intended for publication in The Journal of the Acoustical 

Society of America in Fall 2024. It demonstrates the practical application of the vibration-based 

sound power (VBSP) method by analyzing the vibroacoustic response of pickleball paddles. The 

chapter details the experimental procedures, including impact testing and vibrometry, and 

discusses findings in the context of product design and noise control. This work is particularly 

relevant to the dissertation’s objective of developing a robust VBSP method, as it extends the 

unbaffled plate work from Ch. 5 to a real-world application. By applying the VBSP method to 

pickleball paddles, this chapter aims to verify the sound power estimation for more complex, 

unbaffled structures. Although obtaining an ISO 3741 measurement for the paddle was 

unsuccessful due to ongoing campus construction, the insights gained significantly contribute to 

understanding how the VBSP method can be adapted and validated across different types of 

radiating structures. Initial sound power predictions using the VBSP method and the thin unbaffled 

flat plate model to estimate the sound power from three paddles are provided. 

 

** I conducted the experimental testing, analysis, and writing for the manuscript. My contributions 

included performing impact testing and vibrometry measurements for thirteen pickleball paddles, 

analyzing their vibroacoustic responses, and identifying the vibration mode that primarily 

contributes to the noise produced during paddle-to-ball impact. I also obtained the velocity data 

needed to compute the sound power using the VBSP method for both the paddle blade and handle 

using the developments found in Ch. 5 and provided initial sound power predictions. ** 
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6.3   Abstract 

This study investigates the vibroacoustic behavior of pickleball paddles, focusing on 

identifying the vibrational modes that most significantly contribute to noise during gameplay. 

Thirteen paddles from ten different brands, made from materials such as wood, graphite, 

composite, and hexcore, were analyzed using experimental modal analysis and scanning laser 

Doppler vibrometry. Acoustic testing was conducted in an anechoic chamber to correlate these 

vibrational modes with the audible noise produced by paddle impact. Findings indicate that while 

the dominant structural vibration modes vary across brands, the primary contributor to acoustic 

noise is the “membrane mode,” typically occurring within the 980 to 1,477 Hz range. Graphite 

paddles exhibited higher fundamental frequencies and lower damping ratios, leading to prolonged 

vibrations. In contrast, wooden paddles displayed lower frequencies and higher damping ratios, 

resulting in quicker vibration decay. These findings highlight the critical role of material properties 

and paddle design in influencing both the acoustic and vibrational performance of pickleball 

paddles, offering valuable insights for manufacturers seeking to optimize paddle design for 

improved player experience and noise reduction. 

 

 

 

 

 

Keywords: Experimental Modal Analysis, Noise, Pickleball, SLDV 
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6.4   Introduction 

Pickleball has seen explosive growth in the United States with the number of players 

skyrocketing from 8.9 million in 2022 [1] to 13.6 million in 2023 [2]. An increase in noise 

complaints from communities across the country driven by the distinct “pop-pop-pop” sound 

characteristic of pickleball gameplay has accompanied this surge in popularity. This noise has even 

led to legal disputes, with the New York Times [3] highlighting the absence of a clear solution to 

the issue. Some of the factors causing the acoustic challenges in pickleball, including smaller court 

size than, say, a tennis court, the higher resonant pitch of the pickleball compared to a tennis ball, 

and the more frequent occurrence of the hits during gameplay [4]. 

The study of vibroacoustics in sports equipment is crucial for understanding how the design 

and material properties of equipment like paddles, rackets, and bats influence both performance 

and noise generation. While extensive research has been conducted on the vibroacoustic behavior 

of tennis rackets and ping pong paddles, the literature on pickleball paddle dynamics remains 

sparse. 

Research on the vibroacoustics of sports equipment has shown that the vibration modes of 

paddles and rackets play a significant role in the sound produced during play. For example, a 

comprehensive study by Dan Russell at Penn State explored the vibroacoustic properties of ping 

pong paddles and balls. Russell’s research [5] demonstrated that the racket displays a variety of 

structural vibration patterns similar to those found in elliptical plates. Two of these modes, 

specifically the (0,2) and (1,2) membrane modes primarily influence the sound produced when the 

paddle strikes the ball. This study is particularly relevant to this investigation, since the vibration 

modes in ping pong paddles may exhibit similarities to those in pickleball paddles due to the 

comparable shapes of equipment used in both sports. 
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Research in tennis has shown that factors such as string tension and material composition of 

the stringbed influence a racket’s vibration response. Banwell et al. [6] conducted a thorough 

analysis of the vibrational mode shapes of tennis rackets, revealing how these modes impact a 

player’s control during gameplay. These findings underscore the importance of understanding the 

relationship between equipment vibration and player experience, a theme that is central to the 

study of pickleball paddles. 

While there is limited specific research on the vibroacoustics of pickleball paddles, some 

studies consider the time signature of the paddle to ball impact to address noise pollution [4], [7], 

though these do not delve into the specific vibrational modes that contribute to noise generation. 

The unique construction and shape of pickleball paddles, which differ from those of ping pong 

paddles and tennis rackets (see Fig. 6.1), suggest that their vibration responses could vary 

significantly, highlighting the need for a dedicated investigation. 

 

Figure 6.1: (color online) The relative size and shapes of different paddles and rackets used in 

sports with average dimensions and individual graphics obtained from dimensions.com. 
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This study intends to fill the gap in literature by conducting an in-depth analysis of the 

vibroacoustic behavior of pickleball paddles. An examination of 13 paddles from ten different 

brands, constructed of a variety of materials including wood, composite, and graphite, priced from 

$15 to $480 USD (as of May 20, 2024) and chosen to represent the diversity of paddles available 

on the market. This research seeks to identify the vibrational modes that contribute most 

significantly to noise during gameplay. 

This research uses experimental modal analysis and scanning laser Doppler vibrometry to 

determine the vibrational mode shapes and frequencies that are significant in sound radiation. 

Acoustic testing was then conducted to correlate these vibrational modes with the audible noise 

produced by paddle impact. Comparing the vibration responses across different paddle brands 

established a link among modal analysis, paddle performance, and noise generation, ultimately 

offering insights into how these factors influence player experience and community noise 

concerns. 

The modal analysis was conducted using a roving hammer test with accelerometers and 

Siemens SimCenter™ Impact Testing software (Leuven, Belgium) to determine the frequency 

response of the different paddles. This was supplemented by using a scanning laser Doppler 

vibrometer (SLDV) to provide a more detailed and repeatable assessment of the vibrational mode 

shapes. Additionally, acoustic data was collected in an anechoic chamber using a ZOOM H6 

Handy Recorder (Hauppauge, USA) and analyzed using custom software developed in LabView® 

(Austin, USA). The resulting data in turn identified correlations between the vibrational modes 

and the noise generated during gameplay. 

This study thus offers a comprehensive investigation into the vibroacoustic behavior of 

pickleball paddles. By bridging the gap between laboratory modal analysis and real-world 
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gameplay, this research improves the understanding of pickleball paddle dynamics and contributes 

to the development of quieter and better performing equipment. 

6.5   Hammer Testing 

6.5.1   Pickleball Paddles 

The vibrational mode shapes and frequencies of 13 pickleball paddles from ten different 

brands constructed from wood, graphite, or a composite mix of different materials were 

investigated using a roving-hammer experimental modal analysis, as shown in Figs. 6.2a and 6.2b. 

Another interesting case is paddles advertised to be built with a hexcore structure within the blade 

of the paddle that are different from the wooden paddles. 

6.5.2   Experimental Setup 

To determine the frequency range of interest, a preliminary acoustical test was conducted by 

tapping a pickleball repeatedly with three different paddles. A spectrogram analysis revealed that 

most of the significant resonance frequencies were primarily below 2 kHz. Based on this 

information, an initial 10-point grid, with points approximately 7 cm apart, was established on the 

paddles to serve as impact locations. Three accelerometers were mounted on the backside of each 

paddle, using wax positioned directly behind three of the impact points, a setup hereafter referred 

to as the coarse configuration. 

The paddles were suspended using bungee cords to simulate free boundary conditions, a 

common method for testing hand-held sports equipment [5] (see Fig. 6.2b). The coarse setup 

quickly estimated resonance frequencies of the paddles so that the acoustic testing could be 

performed to isolate the mode that primarily contributes to the sound produced by the paddles. 
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Figure 6.2: (color online) a) Twelve pickleball paddles used for testing, identified by brand 

name and color/pattern (left to right): Lifetime, Gonex, Panel Sound, Monarch, checkered Ghost, 

Triangle, red Ghost, Niupipo, green Stryker, Bykuta, purple Stryker, and blue Stryker. b) The 13th 

paddle, labeled YDXIZCQ, resting on bungee cords in preparation for impact testing, showing the 

coarse grid. c) The red Ghost paddle is set up for impact testing with the fine grid, indicating the 

impact locations at the grid intersections. 

Hammer testing was performed using the Siemens SimCenter™ Impact Testing software 

using a frequency bandwidth of 2,048 Hz with 8,192 FFT lines, yielding a frequency resolution of 

0.25 Hz. Additional settings included a scope time of 6.4 seconds, a trigger level of 15 mV, an 

input range of 10 V, a pre-trigger of 0.01 seconds, and an average of five readings per impact 

location. 
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During testing, the accelerometers recorded the paddle’s response to a manual hammer 

excitation at each impact point. Analyzing the ratio of acceleration response to force input using a 

four-channel frequency analyzer generated Frequency Response Functions (FRFs) in the Impact 

Testing software. Assuming reciprocity between the hammer and the accelerometer positions, 30 

FRFs were measured for each paddle face. 

The resulting FRF data were combined into a composite FRF matrix in Matlab© to provide a 

holistic view of how the entire paddle face behaves across the bandwidth of interest. Figure 6.3 

shows an example of the composite FRF for one of the paddles, the purple Stryker. The composite 

FRF was fitted to a modal model which was then curve-fitted to better resolve the accuracy. A 

single-input-multi-output (SIMO) extension of a modal identification algorithm by Allen et al. [8] 

was used to process the FRFs for all response points simultaneously. This algorithm takes the 

composite FRF and fits it to a modal model to obtain the global estimates for the natural 

frequencies and damping modes of each paddle face. 

Using SimCenter™ Impact Testing software, data were mapped to the paddle geometry and 

post-processing produced animated mode shapes that visually depicted the relative vibration 

amplitudes at the natural frequencies of each paddle. 

In addition to the 10-point coarse configuration, a finer grid of 102 points with 2 cm spacing 

was also employed. Due to the longer measurement time, the finer hammer testing was performed 

on only three of the paddles – the red Ghost, Triangle, and Bykuta models, made of hexcore, wood, 

and composite, respectively. The same process was applied for the 10-point measurement resulting 

in 306 reciprocal FRF measurements (see Fig. 6.2c) to improve the resolution of the modes of the 

paddle faces, hence referred to as finer configuration. 
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6.5.3   Hammer Test Data 

The average FRFs generated from this data provided detailed insights into the natural 

frequencies and damping ratios of the paddles up to 2 kHz (see Fig. 6.3). Figure 6.4 shows six of 

the vibrational modes common to each of the paddles. The out-of-plane bending modes are where 

the paddle bends or flexes along its length, with the first two bending modes being the most 

prominent. Torsion modes are observed as the paddle blade twists about its central axis. 

Additionally, membrane-like modes are also present, resembling circular membranes or 

drumheads with distinct regions where the blade moves upward and adjacent regions where it 

moves downward, separated by nodal lines where the vibration amplitude is zero. 

Table 6.1 shows the name of each paddle tested and compares the fundamental frequencies 

between them with their corresponding damping ratios. 

 

Figure 6.3: The average FRF for the purple Stryker paddle using the coarse configuration 

measured through impact testing showing the natural frequencies of the paddle, as recorded by 

accelerometers in the coarse configuration. 
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Figure 6.4: (color online) An example of six of the vibrational modes common to the paddles. 

These images came from the red Ghost model, but other paddles showed similar shapes, though at 

different frequencies. (a) lengthwise bending, (b) first torsion, (c) torsion about diagonal, (d) first 

membrane, (e) second bending, (f) second torsion about axis. 

Table 6.1: (color online) The names of the 13 paddles with their corresponding fundamental 

frequencies and damping ratios. 

 



114 

6.5.4   Pickleballs 

Impact analysis of a pickleball was conducted using a suspended setup, where the ball hung 

from a thin string to simulate free boundary conditions (see Fig. 6.5). This method was chosen to 

ensure that the ball’s natural frequencies and damping ratios could be accurately measured without 

interference from external constraints. 

Testing parameters were set to a bandwidth of 6 kHz with a frequency resolution of 1.46 Hz 

across 4,096 spectral lines and a data acquisition time of 0.68 seconds, with an average of five 

readings taken per impact location to ensure reliable results. The ball was subjected to impacts at 

ten different locations with response measurements recorded using three accelerometers placed at 

strategic points on the ball, which captured the ball’s vibrational response to hammer excitation, 

similar to the method used for the paddles. Placing the accelerometers on the ball would likely 

cause mass loading and change the resonance frequencies from the true values. 

Resulting FRFs were analyzed to determine the ball’s natural frequencies and identified the 

primary peak frequency at approximately 1,330 Hz. The next section compares this result with 

acoustic data obtained from the paddles. 
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Figure 6.5: (color online) a) The average FRF for the pickleball using 30 measured FRFs (obtained 

from ten input locations and the three accelerometer locations as outputs). b) A Niupipo brand 

pickleball set up for impact testing. 

6.6   Vibrometer Testing 

To verify that the mass loading of the accelerometers and bungee cord damping did not 

dramatically affect the resonance frequencies, an SLDV was employed (see Fig. 6.6). As a non-

contact method, the SLDV allows a comparison of the resulting resonance frequencies between 

measurement techniques. 

SLDV testing was also performed to obtain a detailed view of the mode shapes for the paddles 

with handles included. Each paddle was scanned to confirm the mode shapes found using the 

hammer test method with higher resolution and to evaluate the response in the handle. The paddles 

stood on the edge of a rigid table, with a piezoelectric transducer attached to the back of the paddle 
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faces to excite them with a broadband pseudorandom signal up to 4,096 Hz at a 0.5 Hz resolution. 

The paddles had a mostly free boundary condition on the handle (see Fig. 6.6), which is different 

from the hammer tests. Six complex FFT averages, taken for each scan point, identified six to 

eleven distinct modes below 2 kHz, depending on a paddle’s material properties and size. 

 

Figure 6.6: (color online) The SLDV experimental set up for the pickleball paddles. 

Figure 6.7 captures eight of the operational deflection mode shapes of the paddle blade and 

handle, showcasing various vibrational behaviors similar to the hammer results. The 62.5 Hz shape 

is a rigid body mode. 
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Figure 6.7: (color online) Eight operational deflection shapes of the Triangle pickleball paddle 

obtained from the SLDV. 

6.7   Acoustic Testing 

To identify which vibrational modes of the pickleball paddle contribute the most to sound 

radiation during gameplay, acoustic testing of the paddles was conducted in an anechoic chamber, 

reducing the external noise interference down to 85 Hz and ensuring the capture of all critical 

information. A ZOOM H6 Handy Recorder was employed, utilizing two built-in stereo 
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microphones and an external 1/8” microphone to capture comprehensive acoustic data. Each 

paddle underwent a series of taps and serves with a pickleball, while the paddle to ball impact 

sound was recorded, allowing for a thorough assessment of its acoustic behavior in typical 

gameplay scenarios. 

      This acoustic response was then overlaid on top of the vibrational response of the paddle to 

identify the vibrational mode contributing the greatest to the sound produced by the paddle. Figure 

6.8 shows this plot for the purple Stryker paddle. Table 6.2 illustrates the difference between the 

frequency of the first membrane mode and that of the greatest acoustic response for ten of the 

paddles. The remaining three paddles needed to be returned to their owners before the testing could 

be performed. However, the other ten paddles confirm that the first membrane mode is the primary 

contributor to the noise generated by the paddle to ball impact. 

 

Figure 6.8: (color online) The acoustic response (blue) overlaying the vibrational response of the 

purple Stryker paddle (black) highlighting this vibrational mode as the primary contributor to the 

sound the paddle produces. 



119 

Table 6.2: The peak acoustic frequency compared to the frequency of the first membrane 

mode for ten paddles shows that the first membrane mode is responsible for the primary noise 

signature produced by each paddle. The table also illustrates the damping ratios of the first 

membrane mode and the percent difference between vibration and acoustic frequencies. 

 

6.8   Sound Power Prediction 

This section utilizes vibration measurements from Sec 6.6 to predict the sound power for three 

paddle models: Bykuta, Red Ghost, and Triangle, made from composite materials, hexcore, and 

wood, respectively. Due to the unavailability of a reverberation chamber for Precision (Grade 1) 

sound power measurements per the ISO 3741 standard, this section presents the vibration-based 

sound power (VBSP) predictions for these three paddles. 

The sound power of a pickleball paddle is modeled using the sound power equation (Eqn. 1.2) 

with three different 𝐑 matrices. First, the paddle is approximated as a baffled flat plate, using the 

monopole-based 𝐑 matrix defined by Eqn. 1.1. Second, a more realistic model treats the paddle as 
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a thin, unbaffled flat plate, applying the dipole-based 𝐑 matrix from Eqn. 5.10. Third, the 

combination 𝐑 matrix from Eqn. 5.7 is applied. A comparison of these three methods is provided.  

The scan positions for all three paddles are identical, with horizontal and vertical spacings of 

8.6 mm and 10.1 mm, respectively. Figure 6.9 illustrates the scan positions for the Red Ghost 

paddle, where positions are numbered column-wise from left to right. The front side positions are 

shown in Fig. 6.9a, followed by the backside positions in Fig. 6.9b. The corresponding distance 

matrix, 𝐝, is presented in Fig. 6.10. Within each block of the 𝐝 matrix, Toeplitz symmetry, 

centrosymmetry, and bisymmetry are observed. However, these symmetries do not appear between 

the blocks. 

 

Figure 6.9: SLDV scan locations on the Red Ghost paddle used to measure vibration 

response, with horizontal and vertical spacings of 8.6 mm and 10.1 mm, respectively. (a) Front 

side scan locations. (b) Backside scan locations aligned identically in the xy-plane but offset 

in the z-direction by the paddle thickness, as used in sound power calculations. 
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Figure 6.10: Distance matrix produced from the Red Ghost paddle scan data. 

Sound power predictions using the three different 𝐑 matrices are shown in Figs. 6.11-6.13 for 

the Bykuta, Red Ghost, and Triangle paddles, respectively. For the Bykuta paddle, sound power is 

computed up to the 10 kHz one-third octave (OTO) band to assess its broadband response, while 

for the Red Ghost and Triangle paddles, calculations are limited to 2 kHz, aligning with other tests 

in this chapter. 

Examining the broadband response up to 10 kHz reveals two distinct regimes. At higher 

frequencies, excitation appears stronger, likely due to the frequency response of the piezoelectric 

transducer (PZT). Below the 2 kHz OTO band, the Bykuta paddle displays modal behavior, with 

peaks in sound power that indicate more efficient sound radiation in these bands. Above 2 kHz, 
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this modal behavior dissipates. Based on this observation, sound power for the other paddles was 

computed only up to the 2 kHz OTO band. 

Looking at the broadband response up to 10 kHz, two regimes are evident. First, higher 

frequencies are more strongly excited, likely due to the frequency response of the piezoelectric 

transducer (PZT). Second, below the 2 kHz OTO band, the Bykuta paddle displays modal 

behavior, with peaks in sound power indicating more efficient sound radiation in these frequency 

bands. Above 2 kHz, this modal behavior diminishes. Based on this observation, sound power for 

the other paddles was computed only up to the 2 kHz OTO band. 

 

Figure 6.11: Comparison of sound power predictions for the Bykuta paddle using the VBSP 

method, calculated with three 𝐑 matrix models: the monopole-based model (Eqn. 1.1, black), the 

dipole-based model (Eqn. 5.10, blue), and the combination model (Eqn. 5.7, burnt orange). 
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The differences between the three sound power models across the figures reflect how each 

model captures the vibrational behavior of the paddles at different frequency ranges, influenced 

by their material and structural properties. At low frequencies, the dipole-based model often 

predicts lower sound power, as observed below 315 Hz for the Bykuta paddle and below 200 Hz 

for the Triangle paddle. This reduction aligns with the dipole model’s sensitivity to phase 

variations and its representation of opposing directional forces, which are less effective at radiating 

sound at low frequencies. The cutoff frequency where this drop-off becomes evident varies based 

on the paddle’s material and construction (e.g., composite, hexcore, wood); for example, 

composite and hexcore paddles show this drop-off at a slightly higher frequency cutoff than wood, 

likely due to differences in mass, stiffness, and damping properties across these materials. 

At higher frequencies, the monopole model tends to underestimate sound power, particularly 

above the 1 kHz OTO band, as seen in Figs. 6.11-6.13. In this range, the dipole and combination 

models generally yield higher estimates due to their ability to model the interactions across the 

paddle surface better than the monopole-based model generally for baffled structures. The 

monopole-based model appears to be about 3 dB lower than the combined model indicating a 

factor of two less in the pressure. 

In the mid-frequency range, from about 315 Hz to 1 kHz, the monopole and dipole models are 

often close in their estimates, as shown in Figs. 6.11-6.13. This convergence suggests that, at mid-

frequencies, both models effectively capture the paddle’s acoustic radiation behavior, making them 

reasonably accurate approximations. The combination model, however, remains slightly higher, 

likely due to its inclusion of both monopole and dipole components in mid-frequency bands. 
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Figure 6.12: Comparison of sound power predictions for the Red Ghost paddle using the VBSP 

method, following the same approach as in Fig. 6.11. 

The observed resonance frequencies—appearing in specific OTO bands across Figs. 6.11-

6.13—indicate how the material and structural properties of each paddle influence sound power 

behavior. For instance, the resonance bands at 160 Hz, 200 Hz, 400 Hz, 800 Hz, and 1,600 Hz in 

Fig. 6.11; 160 Hz, 500 Hz, 1,000 Hz, and 1,600 Hz in Fig. 6.12; and 160 Hz, 400 Hz, 630 Hz, and 

1,000 Hz in Fig. 6.13 highlight these modal characteristics and higher radiation efficiency. 

The earlier onset of resonance modes in the Triangle paddle, as observed in Fig. 6.13, is likely 

attributable to its higher mass, as structures with greater mass tend to have more pronounced 

vibrational responses at lower frequencies. This characteristic contrasts with the composite and 
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hexcore paddles, where resonances appear more spaced out, aligning with their respective material 

damping and structural design. 

However, these resonance frequencies do not align perfectly with those identified in other 

tests. This discrepancy may stem from slight differences in boundary conditions and excitation 

points during measurements, which can shift resonance points and excite only certain modes. 

 

Figure 6.13: Comparison of sound power predictions for the Triangle paddle using the VBSP 

method, following the same approach as in Fig. 6.11. 

Figure 6.14 compares the sound power of the Red Ghost and Triangle paddles using the 

combined 𝐑 matrix model. The Bykuta paddle, which was tested differently at 12.8 kHz, is 

therefore not included in this comparison. According to the VBSP method, the Triangle paddle is 

predicted to have higher sound power levels than the Red Ghost paddle across the 100 Hz to 200 



126 

Hz, 400 Hz, 1 kHz, and 2 kHz OTO bands, likely due to its higher mass contributing to stronger 

low-frequency sound radiation. Conversely, the Red Ghost paddle shows higher sound power 

levels at the 250 Hz, 500 Hz, 800 Hz, and 1,600 Hz OTO bands, with both paddles producing 

similar sound power levels at the 630 Hz OTO band. The Red Ghost paddle’s relatively lower 

sound power output at high frequencies aligns with the noticeable audible difference at higher 

frequencies, where the Red Ghost sounds more muted compared to the Triangle paddle, 

particularly around the 2 kHz band. 

 

Figure 6.14: Sound power comparison of the Red Ghost and Triangle pickleball paddles using the 

combined 𝐑 matrix (Eqn. 5.7) to assess relative loudness across OTO bands. Both paddles were 

excited at the upper corner. 
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6.9   Results 

Impact testing of 13 pickleball paddles revealed clear trends in fundamental frequencies and 

damping ratios, emphasizing the role of material properties and design in paddle performance. 

Fundamental frequencies ranged from 111.25 Hz to 298.18 Hz, with consistent results observed 

within the same brands, such as the Ghost and Stryker series. Damping ratios at these frequencies 

varied from 0.014 to 0.041. Graphite paddles, like those in the Stryker series, exhibited higher 

fundamental frequencies and lower damping ratios than wooden paddles, including the Monarch, 

Triangle, and Lifetime brands. The heavier weight and lower stiffness of wooden paddles 

contributed to their lower frequencies and higher energy dissipation, distinguishing them 

acoustically and vibrationally. 

Comparisons of the acoustic peak frequencies and first membrane mode frequencies showed 

strong correlations, with percentage differences ranging between 0.3% and 3.6%. These results 

indicate that the first membrane mode is the primary contributor to the sound produced during 

paddle-to-ball impact. Despite three paddles being unavailable for acoustic testing, the trend 

observed in the remaining ten paddles supports this conclusion.  

Stryker paddles demonstrated very low percentage differences (under 1%), showing strong 

alignment between acoustic and vibrational data. First membrane mode frequencies ranged from 

980 Hz to 1,477 Hz, with damping ratios varying across paddle designs. The purple Stryker paddle 

had the lowest damping ratio (0.014), while the checkered Ghost paddle exhibited the highest 

(0.045). Paddles such as the Niupipo and Triangle had damping ratios of 0.029 and 0.014, 

respectively, with percent differences of 2.1% and 0.3%. The close relationship between acoustic 

and vibrational frequencies was consistent across different materials, with acoustic peak 

frequencies generally slightly higher than first membrane mode frequencies. This discrepancy may 
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stem from the increased stiffness imparted by gripping the handle during acoustic testing compared 

to the more flexible bungee cord setup used in hammer testing. 

The sound power levels were predicted for three pickleball paddles—Bykuta, Red Ghost, and 

Triangle—using the VBSP method and the 𝐑 matrices developed in this study. Peaks in the sound 

power curves appear near the 1 kHz OTO band, corresponding to the first membrane mode for 

each paddle. This study compares sound power predictions for these three paddles using the VBSP 

method with three distinct 𝐑 matrices, revealing how each model captures acoustic behavior across 

low, mid, and high frequencies, shaped by material and structural characteristics. 

In the low-frequency range, the Triangle paddle consistently demonstrates higher sound power 

levels due to its greater mass, enhancing low-frequency sound radiation. Mid-frequency 

comparisons show convergence between the monopole and dipole models, while the combination 

model yields slightly higher predictions, suggesting its added sensitivity to interactions across both 

sides of the paddle. At high frequencies, the monopole model underestimates sound power, while 

the dipole and combination models align more closely, particularly above 1 kHz. 

The VBSP method, applied with different 𝐑 matrices, effectively identifies where each paddle 

radiates sound most efficiently, highlighting distinctions unique to each paddle’s design and 

material composition. Observed resonances occur at predictable bands, with mass and material 

stiffness influencing resonance distribution across paddles. Although slight deviations in 

resonance frequencies compared to hammer testing suggest the effect of boundary conditions and 

different excitation locations, the VBSP method’s detailed sound power predictions provide 

valuable insights into the vibrational dynamics of each paddle. 
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6.10 Conclusions 

This study provides a comprehensive analysis of the vibroacoustic behavior of a variety of 

pickleball paddles, focusing on the relationship between vibrational modes and noise generated 

during paddle-to-ball impact. Testing identified the “membrane mode,” typically occurring within 

the 980 Hz to 1,477 Hz range, as the primary contributor to the noise produced during gameplay. 

Consistent patterns in mode shapes and frequencies were observed across paddles, particularly 

within the same brand, highlighting the significant influence of material properties and design on 

vibroacoustic behavior. Graphite paddles exhibited higher fundamental frequencies and lower 

damping ratios, resulting in prolonged vibrations. In contrast, wooden paddles showed lower 

fundamental frequencies and higher damping ratios, leading to faster vibration decay. 

These findings emphasize the importance of understanding the vibroacoustic characteristics 

of pickleball paddles for both manufacturers and players. By optimizing paddle design and 

material selection, manufacturers can enhance player performance while potentially reducing noise 

impacts in communities. This research establishes a foundation for future studies aimed at 

improving the acoustic properties of pickleball paddles through targeted design modifications. 

This study also demonstrates the VBSP method’s effectiveness in predicting sound power for 

pickleball paddles, presenting it as a robust alternative to traditional acoustic chamber testing. 

Once validated against a standard like ISO 3741, the VBSP approach could become a reliable tool 

for paddle evaluation, enabling the determination of relative loudness and frequency-specific 

behaviors for various designs. Notably, the method’s ability to capture sound power differences 

across materials and structures allows for precise assessment of paddles based on sound 

characteristics. This capability is instrumental in guiding paddle design improvements, whether 

aimed at reducing sound output to mitigate noise or enhancing acoustics for player feedback. 
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Overall, the VBSP method’s adaptability to different materials and structural properties 

suggests broader applications in acoustically evaluating consumer products. By providing an 

efficient and accurate means of sound power estimation across complex geometries and frequency 

ranges, the VBSP method holds promise for advancing acoustic design beyond paddle 

manufacturing, supporting the development of quieter, more acoustically refined products. 

6.11 Acknowledgments 

The authors gratefully acknowledge the support of the Provo, UT community for providing 

pickleball paddles for testing and Dan Russell and Adam Kingsley as consultants. 



131 

6.12 References 

[1] E. Nash, “The real pickleball wars are off the court,” The New York Post, 2023. 

[2] 2024 Sports & Fitness Industry Association (SFIA) Topline Participation Report. 

[3] A. Keh, “Shattered nerves, sleepless nights: pickleball noise is driving everyone nuts,” The 

New York Times, 2023. 

[4] Z. Weiss, J Komrower, “Pickleball Noise & Political Ploys: A Cape Cod Case Study,” 

Institute of Noise Control Engineering, 12, 443-454 (2023). doi: 10.3397/NC_2023_0067 

[5] D. A. Russell, “Vibroacoustic analysis of table tennis rackets and balls: The acoustics of 

ping pong,” J. Sports Sci. 36(23), 2644-2652 (2018). doi: 

10.1080/02640414.2018.1462578 

[6] G. H. Banwell, J. R. Roberts, B. J. Halkon, S. J. Rothberg, and S. Mohr, “Understanding 

the dynamic behaviour of a tennis racket under play conditions,” Exp. Mech. 54(4), 527–

537 (2014). doi: 10.1007/s11340-013-9803-9 

[7] B. Wyerman and R. Unetich, “Pickleball sound 102 - time history and spectral analysis of 

pickleball sound,” INTER-NOISE and NOISE-CON Congress and Conference 

Proceedings, NOISE-CON23, 12, 31-42 (2023). doi: 10.3397/NC_2023_0008 

[8] M. S. Allen and J. H. Ginsberg, “A global, single-input–multi-output (SIMO) 

implementation of the algorithm of mode isolation and application to analytical and 

experimental data,” Mech. Syst. Signal Process. 20(5), 1090-1111 (2006). doi: 

10.1016/j.ymssp.2005.09.007 



132 

Chapter 7   A Generalized Radiation Resistance Matrix 

This chapter is an initial development of a generalized radiation resistance (𝐑) matrix, built 

on the work presented in Chs. 3 and 4. The analytical 𝐑 matrices established for simple geometries 

serve as a foundation for approximating more complex structures. The chapter demonstrates how 

these established 𝐑 matrices can effectively approximate complex structures due to the similarities 

in their acoustic radiation modes (ARMs). 

The similarity of acoustic radiation modes across different geometries suggests that sound 

power could potentially be estimated using a generalized 𝐑 matrix. The primary goal is to design 

this generalized 𝐑 matrix, which can be adapted for any surface once the distances between 

elements are determined. 

As proof of concept, the chapter provides an example of using 𝐑 matrices for a flat plate to 

approximate a simply curved plate. The VBSP method, as demonstrated in Ch. 4, effectively 

utilizes this approach. Initially, the curvature in radiating structures complicates the basis functions 

used to describe acoustic radiation, leading to increased computational time for generating each 𝐑 

matrix entry. 

Finally, this chapter addresses these challenges by exploring methods to reduce computational 

demands and extend the applicability of the VBSP method to more complex radiating structures. 

Further strategies for reducing computational demands in constructing the 𝐑 matrix is discussed 

later in Unit 3. 
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7.1   Introduction 

The Vibration-Based Sound Power (VBSP) method relies on the accurate computation of 

sound power radiated from vibrating structures. A crucial component of this method is the acoustic 

𝐑 matrix, which quantifies the real part of the interaction between a vibrating surface and the 

acoustic pressure produced at the surface. While established forms of the 𝐑 matrix exist for simpler 

geometries like flat plates, cylindrical shells, and simply curved plates, no specific matrix has been 

standardized for arbitrarily curved panels. 

This chapter revisits the numerical modeling process discussed in Ch. 4 and explores how 

existing 𝐑 matrices for simpler geometries can approximate the sound radiation from arbitrarily 

curved panels. Furthermore, it delves into the concept of ARMs, their similarities across different 

geometries, and how these similarities justify the use of sinc(𝑘𝑑𝑖𝑗) functions from baffled flat 

plates to approximate the radiation for more complex structures. 

7.2   Numerical Model Process 

Bates [1] designed a numerical modeling process to test the applicability of the flat plate, 

cylinder, and simply curved plate 𝐑 matrices for approximating the sound power radiated by 

arbitrarily curved panels. The process began by creating Boundary Element Method (BEM) 

models for different arbitrarily curved panels, including S-curved and M-curved panels, for use in 

experimental measurements. These models allowed for the calculation of surface velocities and 

corresponding sound power, using the exact 𝐑 matrix that can be obtained from the BEM solution. 

To compare these results with approximations made using simpler 𝐑 matrices, Bates applied 

the flat plate, cylindrical, and simply curved plate 𝐑 matrices to the same panels, which revealed 
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that these simpler 𝐑 matrices could indeed approximate the sound radiation from arbitrarily curved 

panels, particularly at higher frequencies (above 400 Hz). 

Bates discussed possible approaches for reducing low frequency discrepancies. The 

approximation at low frequencies could have been improved if the arbitrarily curved panels had 

been excited using a shaker rather than a small piezoelectric transducer. Shakers are more effective 

at exciting low frequencies, which would have raised the sound pressure level produced by the 

structure above the noise floor of the reverberation chamber, resulting in more accurate 

measurements. Furthermore, if the measurements had been conducted in an anechoic chamber 

following the ISO 3745 standard, measurement errors below 400 Hz could have been minimized, 

providing a more reliable comparison with the VBSP measurements. 

7.3   Acoustic Radiation Modes 

In contrast to Bates’ numerical model, this work focuses on analyzing the vibration via 

acoustic radiation modes (ARMs). ARMs are specific patterns of surface movement on a vibrating 

structure that independently influence the sound it produces. Unlike vibration modes, which 

describe overall motion based on a structure’s shape and boundary conditions, ARMs focus on 

how these movements translate into sound radiation. Each ARM represents a unique vibration 

pattern that converts motion into sound energy [2]. 

A continuous system, such as a plate, can exhibit an infinite number of vibrational modes, 

each defined by its own frequency and shape [3]. According to the superposition principle, 

complex vibration patterns can be represented by combining these modes. Consequently, exciting 

a single mode triggers several other modes to a lesser extent, complicating analysis due to their 

overlapping nature. 
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In contrast, for a single frequency, ARMs are derived through singular value decomposition 

(SVD) of the 𝐑 matrix [4]. The eigenvectors obtained from this process correspond to ARMs of 

the structure at that frequency, which are orthogonal and independent. The associated eigenvalues 

indicate the efficiencies of these radiation modes and their contributions to the overall sound field. 

This orthogonality ensures that ARMs do not interfere with one another, facilitating a clearer 

understanding of sound radiation [5]. By studying ARMs, engineers and researchers can gain 

insights into the noise generated by various structures, enabling more effective noise control 

strategies. 

7.4   Radiation Resistance Approximation 

The radiation modes of baffled flat plates, cylinders, and simply curved plates exhibit notable 

similarities. An example of 3D ARMs of a curved plate is shown in Fig. 7.1. A 2D projection for 

the ARMs of flat and simply curved plates is shown in Fig. 7.2. The primary distinction among 

these ARMs lies in the stretching (dilation) or compressing (contraction) of the shapes of the sixth 

and twelfth modes in Fig. 7.2. For example, Goates [6] illustrated that the radiation modes of 

cylindrical or curved plates can be viewed as dilated or contracted versions of those observed in 

flat plates. However, he did not explicitly connect this observation to why their 𝐑 matrices could 

approximate those of other geometries, as discussed in Ch. 4 (see Figs. 3-2 and 4-2 in his thesis). 
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Figure 7.1: Two generated simply curved plate ARMs illustrated in 3D. 

 

Figure 7.2: ARMs for a 0.5 m square plate at 480 Hz. a) Flat plate ARMs. b) Simply curved plate 

ARMs with a 1 cm radius of curvature, both mapped to the same square plate dimensions. 

When the ARMs for a given frequency are similar for different geometries, their 𝐑 matrices 

must also be similar. The first few ARMs dominate the acoustic radiation produced by a vibrating 

structure at a given frequency. For example, the first few arms of the flat plate in Fig. 7.2 look 
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similar to those for the curved plate. Thus, even though higher-order ARMs for a curved plate do 

not appear exactly related to those of a flat plate, the focus should remain on the primary ARMs. 

The observed contraction and dilation of the ARMs for the flat plate and cylinder/curved plate 

suggest a scaling factor difference between the 𝐑 matrices. This observation likely explains the 

effectiveness of sinc functions in approximating sound power from baffled flat plates and 

arbitrarily curved structures, as discussed in Ch. 4. 

The sinc function, defined as 

sinc(𝑘𝑑𝑖𝑗) =
sin(𝑘𝑑𝑖𝑗)

𝑘𝑑𝑖𝑗
, (7.1) 

is important in understanding the mutual interaction between the pressure produced by any two 

elements on the surface of a vibrating structure. This function represents the Fourier transformation 

of a rectangular window and illustrates how the distance between elements 𝑖 and 𝑗, 𝑑𝑖𝑗, influences 

the mutual coupling. The frequency also influences the sound pressure generated by another 

element as represented by the wavenumber 𝑘. 

Given the similarity of the ARMs for flat plates, cylinders, and curved plates, the entries of 

the 𝐑 matrix can be effectively approximated by adjusting the sinc(𝑘𝑑𝑖𝑗) functions according to 

the unique distance values between surface elements. This approach was validated through 

successful applications of the 𝐑 matrices from flat plates, cylinders, and simply curved plates to 

arbitrarily curved panels in both numerical models and experimental measurements in Ch. 4. To 

support the work in Ch. 4, this chapter explains how the observed similarity between the ARMs 

for different geometries are used to identify a generalized 𝐑 matrix. 

The 𝐑 matrix of a structure is influenced significantly by whether it is baffled or unbaffled, as 

well as by the relationship between the wavelength and the characteristic dimensions of the 
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structure. For unbaffled structures, different expressions for the 𝐑 matrix apply depending on the 

relative sizes of the wavelength and the structure. 

For a thin unbaffled flat plate (refer to Ch. 5), when the wavelength is much larger than the 

characteristic dimension of the structure (𝑘𝑑 ≪ 1), the 𝐑 matrix is given by: 

𝐑̂𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔) ≈ 2 ∗
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐
[1 − sinc(𝑘𝑑𝑖𝑗)].  (7.2) 

In this equation, 𝑑𝑖𝑗 considers only the shortest distances between elements on one side of the 

plate. The factor of 2 is included to represent contributions from both the front and back sides of 

the flat plate, as the distances are considered separately for each side. These are the same for the 

flat plate (Eqn. 5.10). 

In scenarios where the wavelengths are comparable to the characteristic dimensions of the 

structure (𝑘𝑑 ≈ 1) or smaller than the structure (𝑘𝑑 ≫ 1), the expression changes to: 

𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔) ≈
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐
[

sinc(𝑘𝑑𝑖𝑗)
1

2
[1 − sinc(𝑘𝑑𝑖𝑗)]

1

2
[1 − sinc(𝑘𝑑𝑖𝑗)] sinc(𝑘𝑑𝑖𝑗)

] .  (7.3) 

Here, the 𝑑𝑖𝑗 accounts for the shortest distances between elements on both sides of the plate. The 

sinc(𝑘𝑑𝑖𝑗) terms reflect the baffled nature of the structure for high frequencies, while the 

1

2
[1 − sinc(𝑘𝑑𝑖𝑗)] components address the unbaffled characteristics of the plate. 

For wavelengths that are much smaller than the characteristic dimension (𝑘𝑑 ≫ 1), the 

𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix approaches the 𝐑𝐛𝐚𝐟𝐟𝐥𝐞𝐝: 

𝐑𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔) ≈
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐
[sinc(𝑘𝑑𝑖𝑗)] = 𝐑𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔).  (7.4) 



139 

7.5   Conclusions 

In summary, the acoustic radiation modes of flat plates, cylinders, and simply curved plates 

at a specific frequency reveal similarities in their radiation characteristics. This resemblance allows 

for the application of established forms of radiation resistance matrices to effectively estimate the 

sound power of structures with unknown 𝐑 matrices, as discussed in Ch. 4. By focusing on the 

shortest distances between elements, these similarities can be leveraged to simplify the analysis of 

complex geometries in acoustic radiation. Initial 𝐑 matrices for both baffled and unbaffled 

structures have been proposed, but further validation work is needed. 
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Unit 3 

Symmetry Enhancements for Sound Power Computation 

This unit addresses methods for efficiently constructing radiation resistance (𝐑) matrices by 

leveraging symmetries present in the acoustic reciprocity of Green’s functions. The primary goal 

is to reduce the computational demand, particularly as the basis functions become more complex 

or as scans become denser to accommodate larger structures or higher frequencies. 

Currently, the temporal demand, 𝜏, for constructing 𝐑 matrices vary depending on the 

geometry: 

𝜏flat < 𝜏curved < 𝜏cylinder. 

𝜏flat is relatively low because 𝐑𝐟𝐥𝐚𝐭 requires a single sinc function computation. 𝜏curved is longer, 

requiring up to ten terms (or less) due to the asymptotic expansion discussed in Ch. 3 for 𝐑𝐜𝐮𝐫𝐯𝐞𝐝. 

𝜏cylinder is significantly longer, as each entry of 𝐑𝐜𝐲𝐥𝐢𝐧𝐝𝐞𝐫 requires summing an infinite series of 

Hankel functions. 

      One approach for reducing computational time is through symmetry. Since the 𝐑 matrix is 

symmetric, these symmetries can simplify matrix construction. Chapters 8 and 9 discuss different 

types of symmetries found in these 𝐑 matrices and their practical implications. These 

advancements have broader potential applications in other areas of acoustics that rely on the 

Kirchoff-Helmholtz integral theorem (KHIT). 
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Chapter 8   Symmetry in Baffled R Matrices 

8.1   Introduction 

This chapter is based on a peer-reviewed manuscript published in the Journal of the Acoustical 

Society of America Express Letters. This research began with Trent Bates and John Ebeling’s 

initial work, which used color-coding to highlight patterns within the square symmetric 𝐑 matrix 

from experimental data. Building on these preliminary efforts, I identified these patterns as 

Toeplitz symmetry. This crucial discovery simplifies the computational process by requiring only 

a single line of the 𝐑 matrix rather than the entire matrix to be computed, and then using symmetry 

to enhance the efficiency of sound power computations significantly, achieving excellent results. 

This research marks a significant advancement in the VBSP method, particularly by enabling 

higher density scans of large, baffled structures and those involving higher frequencies, through 

the efficient processing capabilities provided by the discovered Toeplitz symmetry. 

 

** As co-first author, I was deeply involved in drafting the manuscript. My key contribution was 

identifying the Toeplitz symmetry within the 𝑹 matrix, which was essential for simplifying the 

computational process. Additionally, I obtained the experimental data used in this work. After 

Ebeling’s initial draft, I took the lead following his graduation—completing the revisions, 

enriching the literature review, and successfully guiding the paper to publication. ** 
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8.2   Required Copyright Notice 

      The following article appeared in the Journal of the Acoustical Society of America Express 

Letters and can be found at https://doi.org/10.1121/10.0015355 under the title “Improved 

efficiency of vibration-based sound power computation through multi-layered radiation 

resistance matrix symmetry.” It is reproduced in its original published format here by rights 

granted in the JASA Transfer of Copyright document, item 3. 

https://pubs.aip.org/DocumentLibrary/files/publications/jasa/jascpyrt.pdf 
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Chapter 9   Symmetry in Unbaffled R Matrices and KHIT 

This work presents advancements in computational analysis of acoustic radiation problems 

involving the Kirchhoff-Helmholtz integral theorem and Green’s functions using matrix 

symmetry. Radiation resistance matrices for both baffled and unbaffled flat plates are used to 

showcase these symmetries. By identifying and utilizing symmetries such as translational 

(Toeplitz), reflection (bisymmetry), and rotational (centrosymmetry), the number of unique 

computations required is drastically reduced, enhancing efficiency. For unbaffled flat plates, four 

layers of symmetry are identified, reducing the computational cost to compute the full matrix. 

Practical applications are demonstrated with different discretization methods for circular plates, 

highlighting trade-offs between computational efficiency and geometric accuracy. The impact of 

element selection and arrangement in baffled circular plates reveals the benefits and complexities 

of using voussoirs versus a rectangular element mesh. An approach to extend the rectangular mesh 

beyond the circular plate to create a double-layered Toeplitz matrix is proposed, further 

simplifying computations. These symmetries enable efficient compression and subsequent 

reconstruction of the resistance matrix. High-performance computing and parallelization 

techniques are suggested to further optimize acoustic simulations. 
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9.1   Introduction 

Green’s functions are essential tools in acoustics for describing the response of an acoustic 

system to a monopole source. These functions play a crucial role in the Kirchhoff-Helmholtz 

integral theorem (KHIT), a powerful theorem applicable to arbitrary surfaces with extensive 

applications in acoustics. The KHIT can represent the total pressure field, accounting for boundary 

surfaces that contribute to the field as a vibrational boundary condition. 

The KHIT has several applications, including acoustic radiation problems, scattering and 

reflection, mutual interaction between acoustic sources and enclosed spaces, and fluid loading 

effects on vibrating structures. KHIT is also used to determine the resonance frequencies and mode 

shapes of arbitrarily enclosed fields, near-field acoustical holography (NAH) for arbitrary 

geometries, in the Boundary Element Method (BEM) for numerical analysis of systems, and the 

equivalent sources method [19], [20], [24], [31]. 

KHIT is based on Green’s function in free space: 

𝐺𝜔(𝐫|𝐫𝟎) =
𝑒𝑗𝑘|𝐫−𝐫𝟎|

4𝜋|𝐫 − 𝐫𝟎|
, (9.1) 

where |𝐫 − 𝐫𝟎| is the distance between the source location 𝐫𝟎 and the receiver location 𝐫 and k is 

the acoustic wavenumber. The superposition principle enables the use of Green’s functions to 

determine the sound field solutions for multiple point sources of varying amplitudes [29], thus 

requiring a matrix of source/receiver distances. The distance matrix is clearly an integral part of 

general computations using the free-space Green’s function. This distance metric is also 

fundamental in constructing the radiation resistance matrix, which allows the computation of 

acoustic pressure and sound power radiated by vibrating structures.  
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Regardless of the characteristics of a surrounding medium, a fundamental property of Green’s 

functions is the reciprocity relation  

𝐺𝜔(𝐫|𝐫𝟎) = 𝐺𝜔(𝐫𝟎|𝐫), (9.2) 

which reflects the symmetry in the distance between the source and receiver locations [29], [37], 

[38]. 

Many KHIT applications can be computationally demanding due to factors such as high 

dimensionality, matrix inversion, complex geometries, discretization, and coupling between 

elements. To reduce computation time while preserving accuracy researchers have employed high-

performance computing (HPC) techniques and leveraged physical symmetry. Czuprynski [13] 

identified a block circulant symmetry that arises when the boundary surface is rotationally 

symmetric. Additional symmetry can also be found in the distance matrix due to the reciprocity 

requirement. For example, Ebeling et al. [17] revealed a layer of symmetry arising from the 

reciprocity relationship in the Green’s functions, which is manifest in the radiation resistance 

matrix. 

This chapter explores types of symmetries that can be found in KHIT applications due to 

acoustic reciprocity, with a focus on the radiation resistance matrix for various geometries. This 

chapter also demonstrates how these symmetrical patterns can be utilized to simplify computations 

and enable efficient compression and reconstruction of the matrix. In the context of KHIT, 

exploiting these symmetrical properties enhances our ability to predict sound fields accurately. For 

the example of a baffled circular plate, the impact of element selection and arrangement of the 

resistance matrix is also discussed, along with how the choice of elements can introduce different 

symmetry considerations, thereby simplifying or complicating a problem. 
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By understanding these symmetries, their implications, and potential pitfalls, researchers can 

optimize their analyses and enhance their understanding of complex systems. This chapter aims to 

highlight the practical benefits of these symmetries, demonstrating how they can lead to significant 

computational efficiencies in acoustics. 

9.2   Review of R Matrices and the Role of Symmetry 

The radiation resistance matrix (𝐑) is a mathematical tool that captures the real part of the 

relationship between structural vibrations and the resulting sound pressures produced [2], [5]. This 

matrix serves as a bridge, mapping the surface normal velocities, which describe the motion of 

different points on a structure, to the acoustic pressures they generate. The 𝐑 matrices encode the 

specific set of orthogonal basis functions that describe the acoustic radiation produced from each 

of these geometries. 

The 𝐑 matrix has practical applications in radiation problems. For instance, it is used in the 

vibration-based sound power (VBSP) method [6], which involves complex surface vectors, 𝐯𝐞, 

containing all the measured element velocities from the vibrating structure. The frequency-

dependent sound power 𝛱(𝜔) can be calculated using the following expression [19] 

𝛱(𝜔) = 𝐯𝐞
𝐻(𝜔)𝐑(𝜔)𝐯𝐞(𝜔), (9.3) 

where the italicized characters denote scalars and bold-faced characters denote matrices. 
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For reference, a baffled flat plate discretized into 𝑁 element radiators have a 𝐑 matrix given 

by: 

𝐑(𝜔) =
𝜔2𝜌0𝐴𝑒

2

4𝜋𝑐

[
 
 
 
 
 
 
 1

sin 𝑘𝑑12

𝑘𝑑12
⋯

sin 𝑘𝑑1𝑁

𝑘𝑑1𝑁

sin 𝑘𝑑21

𝑘𝑑21
1 ⋱ ⋮

⋮ ⋱ ⋱ ⋮
sin 𝑘𝑑𝑁1

𝑘𝑑𝑁1
… … 1

]
 
 
 
 
 
 
 

, (9.4) 

where 𝜔 is a given frequency, 𝜌0 is the fluid density surrounding the vibrating surface, 𝐴𝑒 is the 

area of a single radiator, 𝑐 is the speed of sound in the surrounding fluid, and 𝑘 is the acoustic 

wavenumber [7], [18], [28]. 

As demonstrated in Eqn. 9.4, the distance matrix 𝐝 is a crucial role in the formation of the 𝐑 

matrix, which is derived from the analytical Green’s function. This matrix, 𝐝, connects the 

pressures across the surface of each geometrical shape to the radiating elements. While these 

elements are approximations, they become exact when limited to a point source [19]. Equal-sized 

elements are created around each scan point where the velocity was measured, with the scan points 

lying at the center of each element.  

Comparison of the 𝐑 matrices for three geometries illustrates how symmetry originates from 

𝐝. First, the entries for 𝐝 in the baffled flat plate are computed using the Euclidean distance metric: 

𝑑𝑖𝑗 = √(𝑥𝑗,1 − 𝑥𝑖,1)
2
+ (𝑥𝑗,2 − 𝑥𝑖,2)

2
= ‖𝐱𝒋 − 𝐱𝒊‖ (9.5) 

where 𝑥𝑖,1 and 𝑥𝑖,2 represent the x- and y-coordinates of the center of the 𝑖th element, respectively, 

and 𝑥𝑗,1 and 𝑥𝑗,2 represent the x- and y-coordinates of the center of the 𝑗th element, respectively 

[17]. The symmetric property of the 𝐝 matrix leads to symmetry 𝐑 matrix (Eqn. 9.4). 
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The entries for the radiation resistance matrix for a full cylinder are given by [3], [23]: 

𝑅cyl,𝑝𝑞 =
𝜔𝜌0𝑆𝑒

2

2𝜋2𝑎
∑ cos[𝑚(𝜃𝑝 − 𝜃𝑞)]∫

1

𝑘𝑟
Im {

𝐻𝑚
(2)(𝑘𝑟𝑎)

𝐻𝑚
(2)′(𝑘𝑟𝑎)

} cos[𝑘𝑧(𝑧𝑝 − 𝑧𝑞)] 𝑑𝑘𝑧

𝑘

0

∞

𝑚=0

, (9.6) 

where the entries for the 𝐝 matrix come from the angular distance ∆𝜃𝑝𝑞 = 𝜃𝑝 − 𝜃𝑞 and the axial 

distance ∆𝑧𝑝𝑞 = 𝑧𝑝 − 𝑧𝑞 as 𝑑𝑝𝑞 = √(∆𝑧𝑝𝑞)2 + 𝑎2(∆𝜃𝑝𝑞)2 between any two points along the 

surface of the cylinder at 𝑟 = 𝑎. 

The entries for the 𝐑 matrix for a partial cylinder or simply curved plate similarly depend on 

the path between points along the surface. The distance traversed across the curved surface is 

𝜂𝑝𝑞 = √(∆𝑧𝑝𝑞)2 + 𝑎2(∆𝜃𝑝𝑞)2 and the angle between the direction of propagation and the cylinder 

axis is 𝜓 = tan−1 (
∆𝑧𝑝𝑞

𝑎𝜙
) [5]. For the partial cylinder or simply curved plate, where 𝑎 is the plate’s 

radius. The effects of the curved surface geometry and the propagation direction on the pressure 

are encapsulated in the hard Fock coupling function 𝑉(𝜉), where the real argument 𝜉𝑝𝑞 =

𝜂𝑝𝑞[𝑘cos4𝜓/(2𝑎2)]1/3. More information on the hard Fock coupling function can be found in 

Sec. 3.12. The path also impacts the phase delay and amplitude decay as 
𝑒−𝑗𝑘𝜂𝑝𝑞

𝜂𝑝𝑞
 due to the 

distance 𝜂𝑝𝑞 traversed across the curved surface. The entries of the resistance matrix for a curved 

plate are given by 

𝑅𝑝𝑞 = −
𝜔𝜌0𝑆𝑒

2

4𝜋
Im{𝑉(𝜉𝑝𝑞)

𝑒−𝑗𝑘𝜂𝑝𝑞

𝜂𝑝𝑞
} . (9.7) 

Once a 𝐝 matrix is chosen and the form of 𝐑 is established for the chosen geometry, the high 

computational costs of estimating the 𝐑 matrix depend on the selected grid. Firstly, the 𝐑 matrix 

must be computed for every frequency of interest. The number of elements increases the size of 

the 𝐝 matrix and, therefore, the 𝐑 matrix. For example, a 𝑛 𝑥 𝑛 grid of elements would yield a 
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𝑛2 𝑥 𝑛2 𝐝 matrix to account for the effect of each element radiator on every other element radiator. 

When time is a constraint, the element grid size is a limit not only for the VBSP method but also 

for any KHIT application. 

The number of elements varies according to the size and shape of the structure along with the 

frequency of interest, the acceptable tolerance or uncertainty level, and the appropriate order for 

interpolating polynomials or elements. Marburg’s study [32] highlights two key factors in 

determining the right number of elements per wavelength: setting an acceptable tolerance or 

uncertainty level and choosing the appropriate order for interpolating polynomials or elements. 

After careful consideration, it was found that six elements per wavelength worked well for this 

research, especially for achieving Precision (Grade 1) sound power measurements from a flat plate 

using linear elements [5], [8], [17]. Because the requirement is in terms of elements per 

wavelength, higher frequencies require a denser grid for accurate estimation, which increases both 

the size of the 𝐝 matrix and computation time. 

One approach to improve computational efficiency is to exploit symmetry of the system. As 

a fundamental characteristic of many objects [44], symmetry serves as a pre-attentive feature [4]. 

For example, symmetry guides visual attention as a person focuses on and identifies the 

fundamental components that cannot be decomposed into simpler features [43]. Symmetry 

enhances the recognition and reconstruction of shapes and objects. By choosing symmetry as the 

feature of interest for vibrating structures, radiation resistance matrices, 𝐑, may be constructed 

more efficiently. This approach allows 𝐑 to be represented with fewer entries, effectively reducing 

its dimensionality and, thus, reducing its computation time [44]. 

In the next sections, three specific types of symmetries are discussed—bisymmetry, 

centrosymmetry, and Toeplitz symmetry—that are often encountered in physical systems and have 



158 

significant implications for simplifying mathematical analysis and computational modeling. These 

symmetries can simplify KHIT applications involving Green’s functions and acoustic reciprocity. 

9.3   Reflection Symmetry and Bisymmetric Matrices 

Bisymmetry refers to the presence of two planes or axes of symmetry within a structure. 

Bisymmetry means that the object or system remains invariant under reflection across two 

orthogonal planes or rotation about two perpendicular axes. Bisymmetric matrices are very useful 

in engineering and statistics [9] and numerical analysis [33], and others. These matrices can be 

particularly relevant when analyzing the physical symmetry of a vibrating structure or the 

vibrational patterns and sound radiation of certain structures [13]. 

A classic example of bisymmetry is the rectangular flat plate, which exhibits symmetry about 

both its horizontal and vertical centerlines. When such a plate vibrates, its motion and the resulting 

sound radiation patterns are influenced by this dual symmetry. Each half of the plate mirrors the 

other across the central axes, leading to predictable and repeatable patterns of acoustic radiation. 

The presence of bisymmetry simplifies the mathematical analysis and computational 

modeling of these structures. In a bisymmetric structure, the properties and behavior of one 

quadrant can be used to infer the properties and behavior of the other three quadrants. This 

symmetry significantly reduces the computational effort required to analyze the entire system. For 

instance, in the computation of the 𝐝 matrix, recognizing bisymmetry allows for the reduction in 

the number of unique computations needed. Instead of calculating the entire matrix from scratch, 

only the elements in one quadrant need to be determined, and the remaining elements can be 

derived by applying the symmetry transformations. 
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By leveraging these symmetries, the computational burden is greatly reduced, making it 

feasible to conduct high-fidelity acoustic analyses with fewer resources. To explicitly state the 

condition for bisymmetry, consider a square matrix 𝐁 of order 𝑛. 𝐁 is bisymmetric if the entries 

𝐵𝑖𝑗 satisfy the condition: 

𝐵𝑖𝑗 = 𝐵𝑗𝑖 and 𝐵𝑖𝑗 = 𝐵𝑛+1−𝑗,𝑛+1−𝑖 ∀ 𝑖, 𝑗. (9.8) 

Thus, 𝐁 must be symmetric with respect to both its main diagonal and its anti-diagonal [41]. 

While bisymmetry specifically pertains to two planes of symmetry, other forms of symmetry 

also contribute to computational efficiencies in different geometries: 

• A rectangular plate typically requires 1/4 of the elements on one side to compute the 

distances in the distance matrix. 

• A square plate, due to its equal major and minor axes, may require only 1/8 of the elements 

for the same purpose. 

• A circular plate necessitates only a single radius of elements to obtain the unique entries of 

the distance matrix due to its radial symmetry. 

These reductions in computation, although not strictly due to bisymmetry, reflect the broader 

advantages of symmetrical properties in various structures, as illustrated in Fig. 9.1. Symmetry not 

only simplifies the analysis but also allows for significant computational savings, enabling more 

complex and realistic simulations to be performed. 

 

Figure 9.1: An illustration depicting the unique portion of a rectangle, square, and circle. 
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9.4   Rotational Symmetry and Centrosymmetric Matrices 

The reflection symmetry in the previous section was only considering the physical structure. 

When considering the acoustic signature from vibrating flat plates, the radiation may appear 

baffled or unbaffled depending on frequency of interest. For the case of unbaffled radiation, the 

flat plate now becomes a two-sided radiation problem making its 𝐝 matrix more complex. The 

unbaffled flat plate has an additional symmetry within the distance matrix that helps reduce 

computation time. 

This section investigates the mutual influence between the front and back sides of both square 

and rectangular plates. Regardless of the plate geometry, the 𝐝 matrix is a square symmetric matrix. 

This symmetry arises from considering all possible combinations between elements across the 

surface. The 𝐝 matrix now accounts for paths around all four sides of the unbaffled flat plate, 

selecting the shortest path between any two points as the most influential within the 𝐝𝐅𝐁 and 𝐝𝐁𝐅 

matrices. Here, the subscripts “FB” and “BF” denote the front-on-back and back-on-front cases, 

respectively. 

Rotational symmetry of the unbaffled plate appears as centrosymmetry in the 𝐑 matrix. 

Centrosymmetry or “inversion” symmetry [36], means the matrix remains unchanged when 

inverted through a central point, as illustrated in Fig. 9.2. Equation 9.9 provides examples of 

centrosymmetric matrices with both even and odd numbers of entries [42]:  

[
𝑎 𝑏
𝑏 𝑎

]     and   [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑑
𝑐 𝑏 𝑎

] .  (9.9) 
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To explicitly state the condition that checks if a matrix is centrosymmetric, consider a square 

matrix 𝐂 of order 𝑛. 𝐂 is centrosymmetric if the entries 𝐶𝑖𝑗 satisfy the condition: 

𝐶𝑖𝑗 = 𝐶𝑛−𝑖+1,𝑛−𝑗+1 ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (9.10) 

 

Figure 9.2: An illustration depicting the centrosymmetry or inversion symmetry about the central 

element. (Author generated; image inspired by Quartl, CC BY-SA 3.0 

<https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons) 

For the unbaffled plate 𝐑 matrix, there are two layers of rotational symmetry in the 𝐝 matrix. 

This multi-layer centrosymmetry within the 𝐝𝐅𝐁 and 𝐝𝐁𝐅 matrices are illustrated in Fig. 9.3. The 

first layer of symmetry within each block of the 𝐝 matrix reveals the rotational symmetry around 

the center of oscillation. The center of oscillation is either the vertical or horizontal centerline of 

the flat plate, depending on the way the user indexes the discretized elements. The second layer of 

symmetry within the entire 𝐝 matrix highlights the rotational symmetry of the elements around the 

center of the plate. 
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Figure 9.3: A double-layered centrosymmetric pattern is observed in the 25 x 25 𝐝𝐅𝐁 and 𝐝𝐁𝐅 

matrices for a square flat plate, assuming constant grid spacing. The first layer of symmetry within 

the blocks indicates symmetry about the vertical centerline of the flat plate. The second layer of 

symmetry within the entire matrix shows inversion symmetry around the central element of the 

plate. The symmetries are evident when any element or block in the matrix is visually rotated by 

180° around the central element or block, resulting in identical configurations. 

Centrosymmetry is characteristic of systems with rotational invariance, where structures 

maintain symmetry about their equilibrium positions (e.g., beams, plates, and shells). This 

symmetry is observed in various fields such as linear least-squares problems [11], time series 

analysis [40], quantum mechanics [25], optics [45], and Markov processes [14]. In addition to this 

work on acoustic radiation resistance matrices, other acoustic examples include underwater 

acoustic arrays [35] and power transfer matrices [19]. 



163 

When the unbaffled flat plate vibrates, it displaces from its equilibrium position and oscillates 

around this central position. Since the structure exhibits symmetry about the center of the plate 

and the center of oscillation, the matrix describing its motion possesses centrosymmetry. This 

symmetry arises from the structure’s balanced geometry, ensuring that the matrix remains 

unchanged when its elements are mirrored across the equilibrium point. Therefore, the distance 

relationships between the elements exhibit centrosymmetric properties, meaning the 𝐝 matrix itself 

is centrosymmetric. 

Centrosymmetric matrices have useful properties that are particularly important in the study 

of structural vibration and acoustic radiation problems. They have real eigenvalues and orthogonal 

eigenvectors, which can be used to analyze the motion and acoustic radiation of a structure, helping 

to understand its behavior under different conditions. 

There are many numerical methods for solving centrosymmetric matrices, making them easier 

to analyze and solve in practice than a brute force method that requires computation of the entire 

matrix. For example, since this unbaffled flat plate exhibits centrosymmetry, the number of 

degrees of freedom needed to describe its motion can be significantly reduced. Specifically, the 

number of degrees of freedom can be cut in half, as the plate has two lines of symmetry that 

intersect at its center. Half as many variables is needed to describe the plate’s motion, simplifying 

the analysis and making it easier to identify key features of the plate’s behavior. A set of two-

dimensional coordinates can describe the motion of one quadrant, and the plate’s symmetry can 

be used to infer the motion of the other three quadrants. 

The implications of centrosymmetric matrices are substantial. For one layer of symmetry, the 

total number of computations needed is potentially reduced by up to 50%. For the case of double-

layer symmetry, a reduction of up to 75% of the total number of computations is achieved [16]. 
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9.5   Translational Symmetry and Toeplitz Matrices 

Toeplitz symmetry has been applied to accelerate acoustic computations in various contexts. 

Jelich et al. [26] used block Toeplitz symmetry for efficient problem-solving with multiple right-

hand sides. Ebeling et al. [17] explored Toeplitz symmetry within the 𝐑 matrix for baffled plates, 

finding that these structures exhibit a Toeplitz symmetry when the number of elements is 

consistent across rows and columns. This symmetry significantly reduced computational 

requirements for acoustic radiation analysis and 𝐑 matrix construction. However, despite 

efficiency gains for curved structures, baffled flat plates showed no appreciable computational 

savings, as the time needed for matrix reconstruction was comparable to that required for 

computing sinc(𝑥) basis functions [17]. 

Building on Ebeling’s work [17], this section focuses on unbaffled plates where the influence 

of elements on the front and back sides of a square or rectangular plate must be accounted for. The 

distance between any two points on either side of the plate is determined by Eqn. 9.5 which implies 

the classical matrix symmetry of the 𝐝 matrix [39]. This holds true between any two x-coordinates 

and any two y-coordinates. As a result, there are two layers of translational invariant symmetries—

one vertical and one horizontal—leading to Toeplitz symmetry in the 𝐝𝐅𝐅 and 𝐝𝐁𝐁 matrices. The 

subscripts “FF” and “BB” denote the front-on-front element and back-on-back element cases, 

respectively. 

Toeplitz symmetry features matrices where each diagonal has the same value, as shown in 

Fig. 9.4. This symmetry arises in systems with translational invariance and is a special case that is 

both bisymmetric and centrosymmetric. To explicitly state the matrix equation that checks if a  
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matrix is Toeplitz, consider a square matrix 𝐓 of order 𝑛. 𝐓 is Toeplitz if and only if the entries 𝑇𝑖𝑗 

satisfy the condition: 

𝑇𝑖𝑗 = 𝑇𝑖+1,𝑗+1 ∀ 𝑖, 𝑗. (9.11) 

Toeplitz matrices are widely used in fields such as pattern recognition, speech analysis, 

antenna theory, linear prediction, communication theory, linear systems, and convolutional neural 

networks [10], [15], [21], [34]. Their repetitive structure, where all unique information can be 

found in a single row or column of the matrix, allows for efficient algorithms that exploit these 

symmetries, significantly speeding up computations like matrix inversion and leading to 

substantial performance improvements [22]. 

For radiation resistance matrices, every unique value of the 𝑛2 𝑥 𝑛2 𝐝 matrix is present on the 

first row of that matrix (refer to Fig. 9.4) [17]. Thus, only the first row needs to be computed and 

stored; the rest of the matrix can be reconstructed using the double-layered Toeplitz symmetry, 

reducing the number of computations from 𝑛4 to 𝑛2. This significantly decreases the 

computational effort required for high-fidelity acoustic analysis of vibrating structures. Similar 

applications of these symmetries can be found in other KHIT applications. 
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Figure 9.4: A double-layered Toeplitz pattern is found within the 25 x 25 𝐝𝐅𝐅 and 𝐝𝐁𝐁 matrices 

for a square flat plate, assuming constant grid spacing. The x-coordinate distances between any 

two element radiators exhibit Toeplitz symmetry within each block (constant values along each 

diagonal), while the y-coordinate distances reveal Toeplitz symmetry between blocks in the entire 

matrix (constant values along each block diagonal). 

9.6   Unbaffled Flat Plate Radiation Resistance Matrix 

The previous three sections have described the reflection (Sec. 9.3), rotational (Sec. 9.4), and 

translational (Sec. 9.5) symmetries. This section combines the effects of all symmetries to obtain 

the radiation resistance matrix. These symmetries are directly tied to the distances between all  
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elements on the plate. The complete distance matrix for an unbaffled flat plate can take the form 

of 

𝐝𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝(𝜔) = [
𝐝𝐅𝐅(𝜔) 𝐝𝐅𝐁(𝜔)

𝐝𝐁𝐅(𝜔) 𝐝𝐁𝐁(𝜔)
] .  (9.12) 

Figure 9.5 illustrates an example of 𝐝𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 for an unbaffled flat plate. 

The SLDV measurements yield velocity vectors which include the velocities of the front side 

of the plate, 𝐯𝐞,𝐅𝐅, and the velocities of the back side of the plate, 𝐯𝐞,𝐁𝐁. The velocity vector, 𝐯𝐞,𝐅𝐅, 

is obtained by measuring the surface velocity of only the front side of the structure. The velocity 

vector, 𝐯𝐞,𝐁𝐁, is obtained by taking 𝐯𝐞,𝐅𝐅 and multiplying it by -1, thus inverting the phase by 180°. 

The sound power expression to be solved for every frequency using these velocity vectors. 

Using the matrix in Eqn. 9.12, Eqn. 9.3 becomes 

𝛱(𝜔) = [
𝐯𝐞,𝐅𝐅(𝜔)

𝐯𝐞,𝐁𝐁(𝜔)
]

𝐻

[
𝐑𝐅𝐅(𝜔) 𝐑𝐅𝐁(𝜔)

𝐑𝐁𝐅(𝜔) 𝐑𝐁𝐁(𝜔)
] [

𝐯𝐞,𝐅𝐅(𝜔)

𝐯𝐞,𝐁𝐁(𝜔)
] .  (9.13) 

Eqn. 9.13 holds for any unbaffled plate and can be used to understand the advantages of 

symmetry that come from acoustic reciprocity and the Euclidean distance. As an example, for a 

𝑛 𝑥 𝑛 grid of elements, the total number of computations to construct 𝐝𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 for a single 

frequency is 4𝑛4. Utilizing the Toeplitz symmetry, 𝑛2 unique computations are required for both 

𝐝𝐅𝐅 and 𝐝𝐁𝐁. The centrosymmetry reduces the number of unique computations for both 𝐝𝐅𝐁 and 

𝐝𝐁𝐅 to 
1

2
(𝑛2 + 𝑛%2), where the modulo operator (%) yields the remainder after division of 𝑛 by 

2. Altogether, these symmetries reduce the number of computations for 𝐝𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 from 4𝑛4 to 

2[𝑛2 +
1

2
(𝑛2 + 𝑛%2)], which simplifies to 3𝑛2 + 𝑛%2. This approach reduces quartic growth 

with increasing 𝑛 to quadratic growth when constructing the 𝐑 matrix. 
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Finally, if the same element mesh is used for a band of frequencies, the 𝐝 matrix only needs 

to be computed once. This matrix can then be used for constructing the 𝐑 matrix for any of the 

frequencies in the bandwidth instead of redundant computing. 

 

Figure 9.5: A 162 x 162 𝐝𝐮𝐧𝐛𝐚𝐟𝐟𝐥𝐞𝐝 matrix displaying the four 81 x 81 𝐝 matrices from Eqn. 9.12 

for a 9 x 9 grid of elements used for an unbaffled flat plate. This form of the 𝐝 matrix was used to 

compute sound power using Eqn. 9.13. 

To illustrate an additional benefit, consider the lumped-parameter model developed by 

Fahnline and Koopman [30] to compute sound power. When an unbaffled flat plate is modeled 

using dipole sources, their lumped parameter formulation produces a Toeplitz radiation resistance 

matrix. The application of the symmetry as described in this section, would reduce the number of 

computations required to construct the 𝐑 matrix from Ref. [30]. 
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9.7   Impact of Element Selection and Arrangement 

The previous sections have been developed for a flat rectangular plate. For rectangular plates, 

the element selection can either be column-wise or row-wise and yield the same 𝐑 matrix. For a 

baffled circular plate, however, the selection and arrangement of elements in the discretization 

significantly impacts the form and computational complexity of the 𝐑. Different discretization 

schemes introduce varying symmetrical considerations that can either simplify or complicate the 

problem. This section examines the impact of these choices, focusing on voussoirs with equal-area 

elements and rectangular elements in a lattice form. 

When discretizing a circular plate using voussoirs or rings with equal-area elements [1], the 

number of elements grows in each concentric ring, leading to a unique structure in the 𝐝 matrix as 

seen in Fig. 9.6a. This approach ensures an even distribution of elements across the plate’s surface, 

closely approximating its geometry. However, the growing number of elements in each ring alters 

the matrix’s form as seen in Fig. 9.6b. 

The overall 𝐝 matrix remains square and symmetric. The diagonal blocks exhibit Toeplitz 

symmetry due to the equidistance of elements in the same ring, where each diagonal has the same 

value. The size of these blocks increases with the number of elements in each ring. Off-diagonal 

blocks display a combination of bisymmetry, centrosymmetry, and varying degrees of block 

circulant symmetry, depending on the relative positions of the source and receiver elements in 

different rings. These single-layer symmetries within the blocks can significantly reduce the 

number of unique computations required to construct the 𝐝 matrix. However, the complexity of 

managing these symmetries increases as the number of rings grows. 
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Figure 9.6: (a) A circular plate discretized into 126 voussoir elements. The numbers are used to 

identify the number of elements within each ring. (b) The 126 x 126 𝐝 matrix for this circular plate. 

The diagonal blocks are Toeplitz due to the symmetry within each ring. The off-diagonal blocks 

have centrosymmetry, bisymmetry, and block-circulant symmetry within them. 

Alternatively, discretizing the circular plate using rectangular elements [27] in a lattice form 

offers a different set of advantages and trade-offs. Although this method does not fill the circular 

area as accurately as the voussoir approach, it introduces a more manageable symmetry as seen in 

Fig. 9.7a. The resulting 𝐝 matrix shown in Fig. 9.7b exhibits double-layered centrosymmetry, 

reducing the number of computations by approximately 75%. This symmetry simplifies the 

placement of elements within the matrix. The rectangular elements can be made smaller to better 

fit the circular area, balancing computational savings and approximation accuracy. The reduction 

in unique entries allows for more elements to be included, so smaller rectangular elements can be 

used to better fill the circular plate. 
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Figure 9.7: (a) A circular plate discretized into 210 rectangular elements. The dots represent the 

element centers. (b) The 210 x 210 𝐝 matrix for this circular plate using the rectangular 

discretization. The diagonal blocks are Toeplitz due to the symmetry within each row or column. 

This 𝐝 matrix now has double-layered centrosymmetry. This symmetry comes from the centerline 

and central point of the plate. 

The choice between voussoirs and rectangular elements depends on the specific requirements 

of the analysis. The double-layered centrosymmetry of the rectangular element array provides 

substantial computational savings, making it a suitable choice for scenarios where computational 

resources are limited. The voussoir method offers a more accurate representation of the circular 

plate’s geometry, which may be critical for high-fidelity simulations, but introduces more complex 

symmetry considerations that can complicate the computational process. Managing the 

symmetries within the voussoir-based 𝐝 matrix requires careful handling of multiple layers of 

symmetry, while the simpler symmetry of the rectangular element array makes it easier to 

implement and exploit. 
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Another option is to allow the rectangular grid of elements to exceed the circular plate creating 

a square grid around the circular plate, where the elements outside the plate have an associated 

area but zero velocities since they are not on the vibrating plate. This approach enables the 

construction of an entirely double-layered Toeplitz 𝐑 matrix, simplifying the computational 

process. This approach works well when dealing with elements on the plate, as the zero velocities 

for elements off the plate ensure their contributions to the power equation 𝐯𝐞
𝐇𝐑𝐯𝐞 are nullified. 

However, special care must be taken when handling the coupling terms between elements on the 

plate with a velocity and elements off the plate with an area. 

For the elements located off the plate, the velocities can be set to zero, effectively removing 

the influence of their self-resistance from the power computation. The challenge arises due to the 

mutual impedance with elements on the plate, which are still included in the 𝐑 matrix. Specifically, 

the off-plate elements still possess an area, leading to non-zero coupling terms when considering 

the pressure produced by elements on the plate. 

To handle the mutual impedances, the contributions of these off-plate elements must be 

systematically omitted from the calculations. One effective way to achieve this is to zero out the 

corresponding entries in the 𝐑 matrix relating to these off-plate elements. This ensures that no 

coupling pressure from on-plate elements to off-plate elements is included in the computation, 

maintaining the integrity of the double-layered Toeplitz symmetry while accurately representing 

the physical scenario. 

By carefully managing these entries, the computational benefits of the Toeplitz symmetry can 

be fully leveraged without compromising the accuracy of the acoustic analysis. This method allows 

for a more streamlined and efficient construction of the 𝐑 matrix, ensuring that only relevant 
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contributions are considered in the sound power computations. A similar approach can be taken 

for elliptical plates, using a square or rectangular grid with similar results. 

The impact of element selection and arrangement on the baffled circular plate 𝐑 matrix 

highlights the trade-offs between computational efficiency and geometric accuracy. Voussoirs 

provide a closer approximation of the circular geometry but introduce complex symmetry 

considerations, while square elements offer significant computational savings through double-

layered centrosymmetry. Depending on the acceptable degree of tolerance and the specific goals 

of the analysis, one method may be more advantageous than the other. By understanding these 

trade-offs and leveraging the appropriate symmetries, researchers can optimize the construction of 

the 𝐑 matrix to achieve accurate and efficient acoustic simulations. 

9.8   Conclusions 

Computational analysis of radiation resistance matrices for baffled and unbaffled flat plates 

has been significantly advanced by identifying and leveraging various symmetries. The research 

highlights the use of Toeplitz, bisymmetry, and centrosymmetry within these matrices to 

drastically reduce the number of unique computations required. The practical applications of these 

symmetries were demonstrated using different discretization methods for circular plates, revealing 

the trade-offs between computational efficiency and geometric accuracy. 

In the case of an unbaffled flat plate, four layers of symmetry were identified within the 𝐑 

matrix. These symmetries reduced the computational burden from 4𝑛4 to 3𝑛2 + 𝑛%2 for a single 

frequency, showcasing a remarkable improvement in efficiency. This foundational work paves the 

way for more advanced techniques, such as high-performance computing and parallelization, to 

further optimize acoustic simulations. 
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The impact of element selection and arrangement in baffled circular plates was also explored. 

Discretizing a circular plate with voussoirs offers a precise geometric approximation but 

introduces complex symmetries, including Toeplitz and block circulant symmetries, within the 

matrix’s diagonal and off-diagonal blocks. While these symmetries reduce the number of unique 

computations, they also increase the complexity of managing the matrix as the number of elements 

grows. 

Alternatively, using rectangular elements in lattice form results in a double-layered 

centrosymmetric matrix. This method does not fill the circular area as accurately but simplifies the 

computational process by reducing the number of required computations by approximately 75%. 

The trade-off between computational efficiency and geometric accuracy becomes evident, with 

the choice depending on the specific requirements of the analysis. 

One approach allowed the rectangular grid to exceed the circular plate, assigning zero 

velocities to elements outside the plate. This creates an entirely double-layered Toeplitz matrix, 

simplifying computations while accurately representing the physical scenario by systematically 

omitting off-plate elements’ contributions. 

In conclusion, the work underscores the importance of understanding and exploiting 

symmetries within general radiation problems to enhance computational efficiency. These 

symmetries can be found in any KHIT application. By carefully selecting element arrangements 

and leveraging appropriate symmetries, researchers can achieve accurate and efficient acoustic 

simulations. Future research will involve temporal comparison tests using experimental data to 

quantify efficiency gains, and the exploration of advanced computing techniques to further expand 

the applicability of these findings in real-time scenarios. 
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Unit 4 

Development of the Indirect Vibration-Based Sound Power 

(I-VBSP) Method 

This unit focuses on enhancing the VBSP method to address noise sources commonly 

encountered in daily life, such as electric drone motors, kitchen appliances, and vehicles, where 

internal noise generation cannot be captured through surface velocity measurements alone. To 

accommodate these sources, the development of an indirect method, known as the I-VBSP method, 

began. 

The I-VBSP method involves using a rectangular enclosure, acting as an ‘acoustic tent’ over 

the noise source. The enclosure features a flexible panel that links surface laser Doppler vibrometry 

(SLDV) measurements to the radiated sound power of the encased source, enabling the VBSP 

method to be applied effectively. This unit focuses on the initial stages of I-VBSP development, 

particularly for compact sources that fit within the enclosure and exhibit constant volume velocity, 

ensuring minimal interference from the enclosure itself due to their high internal impedance. 
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Chapter 10   Method Development for Cube Enclosures 

10.1  Introduction 

This chapter contains a paper published in the Acoustical Society of America’s Proceedings 

of Meetings on Acoustics, which introduces a new method for using vibration measurements to 

determine the sound power produced by an internal source accurately. The study includes the 

design and fabrication of an enclosure that demonstrated the ability to calibrate the effects of the 

enclosure within ±1 dB for frequencies above 1 kHz and ±3 dB below this threshold. 

 

** In addition to writing this manuscript, I designed the enclosure and assisted with the 

fabrication. I was responsible for the experiments, data processing, calibration, validation, and 

all aspects of this work. ** 
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10.2  Required Copyright Notice 

The following article was published in the Proceedings of Meetings on Acoustics and is 

available at https://doi.org/10.1121/2.0001663 under the title “Determination of radiated sound 

power from acoustic sources using the VBSP method and a mylar boundary.” It is reproduced 

here in its original published format by rights granted in the JASA Transfer of Copyright 
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Chapter 11   Source Placement and VA One Validation 

11.1  Introduction 

The following chapter contains a paper published in the Acoustical Society of America’s 

Proceedings of Meetings on Acoustics, which presents a study focused on identifying specific 

locations within a mylar enclosure that would minimize the variance in calibration measurements 

essential for the I-VBSP method. Additionally, the paper includes the design of a VA One model 

of the mylar enclosure to facilitate this study. 

The results of this work, aligned with boundary element method (BEM) modeling conducted 

using VA One, confirm that the 𝐑 matrix for a baffled flat plate accurately approximates the energy 

radiated from the enclosure at frequencies above the 630 Hz one-third octave (OTO) band. This 

theoretical validation is further supported by practical experimental measurements, with the sound 

power of a blender, as determined by the I-VBSP method, showing agreement within ±1 to 2 dB 

of the free-field sound power measurements conducted in a reverberation chamber from 1.63 to 

10 kHz. 

 

** In addition to writing this manuscript, I identified specific locations within a mylar enclosure 

to minimize the variance in calibration measurements, which is essential for the I-VBSP method. 

I also designed a VA One model of the mylar enclosure to support this study. My work played a 

key role in the theoretical validation of the 𝑹 matrix for a baffled flat plate to approximate the 

energy radiated from the enclosure accurately. I also conducted experimental work and validated 

the I-VBSP method for a blender. ** 
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Chapter 12   Development for Rectangular Enclosures 

This chapter presents the development and application of the indirect vibration-based sound 

power (I-VBSP) method using a rectangular “box-in-box” enclosure, designed to minimize sound 

power radiation from the four perimeter sides. To improve measurement repeatability, a thin 

aluminum plate replaced the original mylar face. 

The chapter outlines the design of this new enclosure, emphasizing its role in confining 

acoustic energy to the top face, which improves measurement accuracy. Calibration procedures 

for the new enclosure appear in detail in Ch. 13. This chapter includes reverberation (𝑇60) time 

measurements to account for additional absorption in a reverberation chamber, which were 

required to improve the accuracy of the ISO 3741 standard due to absorption changes caused by 

additional materials within the chamber. 

 

** I contributed to this work by designing the new enclosure and replacing the mylar face with the 

aluminum plate, which directly improved the measurement repeatability. I also did experimental 

work and validated the I-VBSP method with a Bluetooth speaker. Finally, I found challenges posed 

by non-stationary sources, where the scanning laser Doppler vibrometer (SLDV) exhibited low 

coherence. ** 
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12.1  Introduction 

Many consumer products contain internal components that radiate sound that cannot be 

scanned directly due to casing. An enclosure facilitates use of the scanning laser Doppler 

vibrometer (SLDV) in the indirect vibration-based sound power (I-VBSP) method as an “acoustic 

tent” around the sound sources. The enclosure, however, introduces absorption and can affect the 

radiation impedance of the internal sources (see Ch. 11). To provide proof-of-concept, constant 

volume velocity sources are desirable, since they experience minor changes to volume velocity 

within the enclosure due to their high internal impedances. Furthermore, these minor changes in 

sound power due to the enclosure are attributed to absorption and/or radiation impedance change, 

which can be corrected with a suitable calibration [1], [2]. 

The rectangular enclosure design has the bottom face open. The four walls are made of medium 

dense fiberboard (MDF) and a treated foam layer. The top face is a 0.02” thick aluminum sheet 

clamped down by a steel frame (see Figs. 12.1a and 12.1b); the aluminum sheet acts as a flexible 

panel. The enclosure’s size is 1/9 the size of BYU’s reverberation chamber to reduce the modal 

degeneracy of the acoustic field within the enclosure. This size improves the diffuseness internally 

so that sources can be moved around more freely within the enclosure without affecting the 

radiated sound power output [3]. The ability to move the source enables more consistent ISO 3741 

measurements throughout the enclosure, which tightens the calibration for this method in the mid-

to-high frequency range. To account for the absorption caused by the enclosure materials, updated 

reverberation times are computed for more accurate ISO 3741 results [4].  

The introduction of the enclosure into the I-VBSP method led to several questions about the 

appropriate 𝐑 matrix and the suitable frequency range. Computational work (Ch. 11) showed that 

for most of the one-third octave (OTO) frequency bands (800 Hz to 10 kHz) the baffled flat plate 
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form of the 𝐑 matrix can be used for computing sound power of the flexible panel. However, the 

flexible panel is a 0.56 m x 0.66 m rectangular aluminum plate raised off the ground by 0.78 m, 

so it is possible that a modified 𝐑 matrix is necessary when the plate is no longer well approximated 

using a baffle. 

 

Figure 12.1: a) A model of the rectangular enclosure used for the I-VBSP method. The steel frame 

(black) clamps down the thin flexible aluminum panel (light gray). The ports in the bottom are 

necessary for cabling and are sealed off, using weather stripping during measurements. The hinge 

on the left tilts the enclosure back so the source can easily be moved internally for testing. b) A 

blender inside the enclosure. This view shows treated foam with constrained layer damping 

between the boxes. 

The proposed I-VBSP method: 

1. Place the source into a rectangular enclosure that has four high transmission loss sides, 

a reflective floor surface, and a single elastic face that can be scanned using an SLDV. 

Figures 12.1a and 12.1b illustrate this. 
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2. Develop a calibration curve to remove the influence of the enclosure on the source (see 

Fig. 12.2), using ISO 3741 measurements to obtain the sound power for multiple 

sources to account for sound from the enclosed noise source that radiates through the 

enclosure into the larger space (see Ch. 13). 

3. Compute the sound power from the elastic face using the VBSP method.  

4. Apply the calibration to the VBSP results to determine the free-field sound power of 

the source of interest. 

5. Compare the free-field ISO 3741 result with the corrected VBSP result to verify 

precision. 

Using the enclosure, the I-VBSP method can estimate sound power for numerous acoustic sources 

that cannot be scanned effectively using existing technology. 

 

Figure 12.2: Illustration of an acoustic source radiating within the enclosure and the acoustically 

induced vibration of the aluminum panel which radiates the transmitted sound power. 
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12.2  VA One Model 

This section focuses on using a computational model to determine which 𝐑 matrix to use for 

this enclosure. A VA One model identified the range of frequencies where the baffled flat plate 

form of the 𝐑 matrix well approximates the acoustic radiation for this new enclosure. This 

computational model uses the boundary element method (BEM) to estimate sound power from the 

enclosed source (see Fig. 12.3a). The blue BEM measurement surfaces from Fig. 12.3a were 

removed in Fig. 12.3b to show the flexible panel, location of the internal noise source, and the air 

cavity used in the BEM. 

Results from the BEM model can be compared with the VBSP method to evaluate the 

applicability of the chosen 𝐑 matrix. To obtain these VBSP estimates, the normal surface velocities 

computed for the aluminum face can be exported from VA One and processed through the VBSP 

method using the baffled flat plate form of the 𝐑 matrix. Finally, comparing the sound power from 

the BEM model with the VBSP method identifies the usable bandwidth for which the baffled flat 

plate form of the 𝐑 matrix provides a good approximation. The usable bandwidth for this enclosure 

is the same as the bandwidth found in Ch. 11, Table 1. In the future, the VA One model might also 

be able to identify how the 𝐑 matrix could be modified for lower frequencies to extend the 

bandwidth. 
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Figure 12.3: a) The VA One model showing the blue BEM measurement surfaces, and the purple 

hemisphere represents the fluid. b) The BEM model of the enclosure shows the flexible panel 

(green), location of the internal noise source (purple), and air cavity (gray). 

The VA One model also performed a modal analysis of the enclosure. Figures 12.4a and 12.4b 

show the vibroacoustic modes of the rectangular enclosure from the VA One model. The 

fundamental enclosure mode appears to be adding an additional force on the plate. This model 

indicated the ideal locations to place the acoustic source and provided insights into what to expect 

during the experimental work. 
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Figure 12.4: a) The vibroacoustic response of the enclosure showing the first mode of the 

enclosure and mode of the clamped plate. b) A higher order mode of the enclosure. 

12.3  Experimental Work 

Experiments conducted in BYU’s reverberation chamber validated the I-VBSP method for 

sound power estimation. Figure 12.5 shows the experimental set up of the microphones and SLDV 

in the chamber. A loudspeaker emitted a broadband linear chirp signal (89 Hz to 11.2 kHz) in the 

chamber, while eight microphones recorded the signal’s decay with all the equipment present to 

measure the acoustic absorption. Reverse Schroeder integration was used to estimate the OTO 

band 𝑇60 [4]. The 𝑇60 is the time it takes a sound to decay by 60 dB and is a common metric for 

talking about absorption in a room due to an impulse or sound. A good estimate of 𝑇60 enables the 

ISO 3741 standard to be applied correctly. 

Figure 12.6a shows the SLDV set up. The raised SLDV can make a 2D scan of the aluminum 

plate on top of the enclosure. The blue tape on the inside perimeter of the steel frame reduces the 

glare of the ambient light from reflecting off the frame and hindering the SLDV scan near the plate 
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edges. A point-and-shoot laser from Polytec provided a reference for uncontrolled acoustic 

sources. This approach allows the SLDV to keep track of waves within the plate and improves the 

coherence of the measurement. The SLDV scans the surface of the aluminum plate (Fig. 12.6b) to 

obtain the surface velocities. From surface velocity data, normal velocities are computed, which 

are used to obtain the sound power levels of the source within the enclosure using the VBSP 

method. 

 

Figure 12.5: The microphones set up to take the ISO 3741 measurement and the absorption 

measurements with the experimental set up in the reverberation chamber. 
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Figure 12.6: a) The SLDV set up to scan the aluminum plate while using a point-and-shoot laser 

as a reference for the source. b) Illustration of the Polytec SLDV scanning the vibrating surface of 

the flat plate to obtain sound power using the VBSP method. The pale laser color shows where the 

laser had been during the scanning process.  

12.4  Results 

As proof of concept for this method, a Bluetooth speaker was placed in this enclosure. 

Estimates of the sound power were obtained using ISO 3741 standard and VBSP. The Bluetooth 

speaker produced a broadband pseudorandom signal. Figure 12.7 shows the OTO band sound 

power levels for both the VBSP method and ISO 3741 standard. The difference in sound power 

level estimates between the methods is within 1 dB from the 200 Hz OTO band to the 10 kHz 
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band. This comparison indicates that the VBSP method accurately estimated the sound power from 

the Bluetooth speaker within the enclosure. 

 

Figure 12.7: The sound power levels for a Bluetooth speaker in the rectangular enclosure obtained 

via the VBSP method and ISO 3741 are compared. 

While the VBSP method accurately estimates the sound power levels of the Bluetooth speaker 

inside the enclosure, the I-VBSP results yield the sound power estimates of the Bluetooth speaker 

outside of the enclosure. The VBSP result is then calibrated (see Ch. 13) to remove the influence 

of the enclosure to estimate the free-field sound power levels of the speaker. Figure 12.8 illustrates 

the resulting I-VBSP estimates along with the estimates from the ISO 3741 standard applied to the 

speaker outside of the enclosure. 
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Figure 12.8: Comparison of I-VBSP and free-field ISO 3741 for sound power levels of the 

Bluetooth speaker outside of the enclosure. 

To further quantify the agreement between these two sound power methods, Table 12.1 

summarizes the sound power levels obtained using the I-VBSP method and the ISO 3741 standard 

and the difference between the methods. The difference in overall sound power level is 0.8 dB, 

and the difference in OTO band sound power levels is within 1 to 2 dB from 315 Hz to 8 kHz. The 

slight reduction in accuracy of the I-VBSP method compared to the accuracy of the VBSP step 

likely emanates from the calibration curve that was applied. More discussion of this topic and 

improved calibration curve appears in Ch. 13. 
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Table 12.1: OTO band sound power levels from ISO 3741 and I-VBSP method. The 

difference in the overall sound power level is 0.8 dB, and the difference in OTO band sound 

power levels is within 1 to 2 dB from 315 Hz to 8 kHz. 

 

12.5  Conclusions 

The I-VBSP method provided accurate sound power estimates of a Bluetooth speaker within 

1 to 2 dB of the ISO 3741 standard from 315 Hz to 8 kHz. This method will enable a user to scan 

a single face and obtain overall sound power levels of a source. It also works for the mylar 

enclosure discussed in Chs. 10 and 11. Later experiments during this study of the rectangular 
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enclosure revealed that the absorption in the room needed to be accounted for, which would have 

improved the I-VBSP result for the mylar enclosure. 

Applying the I-VBSP method to some other noise sources such as a blender, hand mixer, drills, 

and razors encountered a greater challenge. These sources were recorded one at a time in an 

anechoic chamber for five minutes to verify whether they were stationary. The recorded sources 

used were found to be non-stationary across OTO bands. This led to changing sound power levels 

during the ISO 3741 measurements which likely affected the accuracy of the calibration curve. 

The non-stationary acoustic excitation of the plate yielded greater incoherence between the SLDV 

scan and the reference laser since the vibration was changing during the scan. Chapter 15 details 

future work for the I-VBSP method. 
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Chapter 13   Rectangular Enclosure Calibration 

13.1  Introduction 

To gather all of the research pertaining to the I-VBSP method in this dissertation, this chapter 

contains work published in the Acoustical Society of America’s Proceedings of Meetings on 

Acoustics. I co-authored this paper with undergraduate research assistant, Naomi Jensen. This 

paper serves as an example of the process laid out in Chs. 10 and 11. The focus of this paper was 

to calibrate the new enclosure design discussed in Ch. 12. 

 

** I contributed to this paper by serving as a mentor to the first author, an undergraduate student, 

in all aspects of the I-VBSP testing and analysis. I taught her how to perform 𝑇60 measurements, 

wrote a MATLAB© script to process the impulse data to calculate the OTO band 𝑇60 times, and 

showed her how to make ISO 3741 measurements. I also co-authored the paper and provided 

revisions. ** 
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13.2  Required Copyright Notice 

The following article appeared in the Acoustical Society of America’s Proceedings of 

Meetings on Acoustics and may be found at https://doi.org/10.1121/2.0001788 under the title “The 

dependence of sound radiation on position of acoustic source in an enclosure.” It is reproduced in 

its original published format here by rights granted in the JASA Transfer of Copyright document, 

item 3. 

https://pubs.aip.org/DocumentLibrary/files/publications/jasa/jascpyrt.pdf 

 

 

Citation: 

N. Jensen, I. Bacon, and S. Sommerfeldt, “The dependence of sound radiation on position of 

acoustic source in an enclosure,” Proc. Mtgs. Acoust. 51(1), 065001 (2023). 

 

I hereby confirm that the use of this article is compliant with all publishing agreements. 

https://doi.org/10.1121/2.0001788
https://pubs.aip.org/DocumentLibrary/files/publications/jasa/jascpyrt.pdf
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Unit 5 

Conclusions and Future Work 

This unit consolidates the key findings from the research presented in the dissertation, 

emphasizing the advancements made in the development and application of the VBSP method. 

The conclusions summarize the contributions of each unit, demonstrating how these innovations 

have improved sound power measurement techniques. The unit then transitions into 

recommendations for future research, outlining the next steps needed to address unresolved 

challenges and explore new areas of application for the VBSP and I-VBSP methods. 
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Chapter 14   Summary of Findings and Contributions 

This dissertation presents several key contributions to the development and application of the 

Vibration-Based Sound Power (VBSP) method, advancing it as a robust tool for measuring sound 

power. The work in Unit 2 was pivotal in refining the VBSP method through experimental testing 

and the implementation of stitching techniques, now allowing for accurate 3D measurements. A 

specialized wall was designed and constructed within an anechoic chamber to measure the 

directivity of baffled sources, compliant with the ISO 3745 standard, thus enabling precise 

validation of the VBSP method’s accuracy below 400 Hz. This infrastructure will be an asset for 

future research and coursework at BYU. 

The research confirmed that the VBSP method can effectively compute sound power from in 

situ measurements. In Ch. 3, the VBSP method successfully computed sound power from baffled 

curved plates in varied acoustic environments, including anechoic, reverberant, and uncontrolled 

settings. Through experimental testing, it was demonstrated in Ch. 4 that the method is applicable 

to arbitrarily curved plates with stitching further enhancing its utility for these complex structures. 

Chapter 5 introduced a distance matrix and radiation resistance (𝐑) matrix for thin unbaffled flat 

plates, which enabled the VBSP method to estimate sound power with great accuracy—within 1 

to 2 dB above 1 kHz and within 3 dB below that threshold. This work lays a solid foundation for 

future studies involving unbaffled plates. 

In Ch. 6, the vibroacoustic response of pickleball paddles was investigated. Testing identified 

the primary structural and acoustic modes excited during paddle-to-ball impact, with the 

membrane mode in the 950-1,450 Hz range as a major contributor to impact noise across ten paddle 

brands. Sound power levels were predicted using velocity data and the 𝐑 matrix for a thin unbaffled 

flat plate. Although a direct comparison with the ISO 3741 standard was intended, limitations in 
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reverberation chamber precision during campus construction prevented this, leaving this task for 

future research. 

A significant observation, discussed in Ch. 7, was that 𝐑 matrices for simpler geometries, such 

as baffled flat plates, cylinders, and simply curved plates, can approximate more complex 

geometries like baffled arbitrarily curved plates. This insight arises from the contraction or dilation 

of acoustic radiation modes across these geometries. These connections hold promise for 

simplifying future computational efforts. 

In Unit 3, translational symmetry inherent in baffled structures was shown to produce Toeplitz 

symmetry in the 𝐑 matrix due to acoustic reciprocity, provided that the number of elements 

remains consistent across rows and columns (see Ch. 8). This symmetry significantly reduces 

computational demand by a factor of 1/𝑛, where 𝑛 is the number of mesh elements. For unbaffled 

structures (see Ch. 9), a double-layer rotational symmetry was identified, yielding approximately 

a 75% reduction in computational effort. Together, these symmetries offer a promising approach 

to expedite calculations in applications involving the Kirchhoff-Helmholtz integral equation. 

In Unit 4, three custom enclosures were designed and fabricated to allow the VBSP method 

to estimate sound power from sources with encased components that are otherwise challenging for 

scanning. This indirect VBSP (I-VBSP) approach was successfully demonstrated with a Bluetooth 

speaker over a 400 Hz to 10 kHz one-third octave (OTO) bandwidth, achieving accuracy within 

about 1 dB. Future research may include developing empirical calibration formulas for these 

enclosures and assessing their applicability to other noise sources.  

Overall, this research establishes the VBSP method as a significant alternative for sound 

power measurement, especially in scenarios where traditional methods are limited, such as in situ 

testing in uncontrolled acoustic environments with variable conditions. While the VBSP method’s 
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extended scan times remain a challenge, substantial progress has been made in reducing 

computational demands through physical and acoustical symmetries. Furthermore, enhanced 3D 

scanning and stitching techniques facilitate measurements of complex structures, and the potential 

to scale up the indirect method using an acoustic tent was demonstrated. This work lays the 

groundwork for future advancements, with the prospect of streamlining sound power estimation 

through fewer, more efficient scans around a structure. 
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Chapter 15   Recommendations for Future Research 

15.1  VBSP Method 

For the VBSP method, there are several theoretical and computational steps. The theoretical 

development for thin and thick unbaffled plates needs to be finished. The study of joining two or 

more vibrating structures to compute the radiated sound power should be completed. The 

experimental validation of the VBSP method for composite structures to obtain sound power needs 

to be done. Finally, the generalized radiation resistance (𝐑) matrix development will round off this 

project nicely. The development of a code to compute the shortest distances between all element 

combinations along the surface of a vibrating structure will help quantify the uncertainty using the 

general 𝐑 matrix. 

15.2  Symmetry 

The script to compute the geodesic between any two elements on a surface or given geometry 

will also need to incorporate high-performance computing (HPC) techniques will wrap this portion 

up for BEM and VBSP problems. 
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15.3  I-VBSP Method 

While the Indirect Vibration-Based Sound Power (I-VBSP) method has proven effective for 

speakers, its application to other sound sources requires further investigation. Key areas of 

exploration include the impact of enclosure size relative to the internal source, the identification 

of additional acoustic sources that maintain a steady response, and the development of an empirical 

calibration formula potentially incorporating mass law principles so any enclosure can be 

constructed and effectively applied. 

One approach is to use a sand-filled enclosure to enhance wall rigidity. The performance of 

various materials in this context is currently being evaluated. After successful verification of the 

I-VBSP method’s precision for additional sources, a new rectangular enclosure (similar to that 

described in Ch. 12) can be constructed, which may involve filling the air gap with sand or concrete 

to increase rigidity. Previous enclosures in Unit 4 reduced acoustic transmission through the 

perimeter’s four sides, but the goal is to make these sides rigid to direct as much acoustic energy 

as possible toward the flexible face. A calibration curve will need to be developed and with steady 

acoustic sources, a mylar face can also be used to significantly reduce the enclosure’s weight. 

The next phase may include implementing a cylindrical enclosure with a mounted circular 

plate to measure sound power from noise-induced vibrations in circular panels. This investigation 

will assess the advantages of cylindrical geometry over rectangular configurations. 

Radiation from vibrating circular panels is particularly significant due to their prevalence in 

various engineering and acoustics applications, including electro-acoustic transducers, 

electrostatic speakers, earphones, microphones, diaphragms, covers, musical instruments, and 

structures. Preliminary investigations have focused on determining the radiated sound power from 

clamped and simply supported circular plates, utilizing the 𝐑 matrix for low-frequency analysis 



243 

[1]-[5]. Researchers such as Rayleigh [6], Morse and Ingard [7], and Rao [8] have extensively 

studied the vibrations of circular panels. Initial identification of the first few radiation modes for 

circular plates has been conducted for potential use in Active Structural Acoustic Control (ASAC) 

[4]. However, partitioning these circular plates into equally sized elements presents challenges. 

Beckers [9] proposed a solution to partitioning the plate by dividing the plate into concentric rings, 

facilitating the creation of equal-area elements (though not necessarily of equal shape), as 

illustrated in Fig. 15.1. If an analytical expression for the 𝐑 matrix of a circular plate is desired, 

then employing the I-VBSP method using a circular plate on a cylindrical enclosure could facilitate 

experimental validation. 

 

Figure 15.1: An example of the discretized circular plate using the methods described in [9]. 
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