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ABSTRACT

Grain Boundary Solute Segregation Across the 5D Space
of Crystallographic Character

Lydia Harris Serafin
Department of Physics and Astronomy, BYU

Master of Science

Solute segregation in materials with grain boundaries (GBs) has emerged as a popular method
to thermodynamically stabilize nanocrystalline structures. However, the impact of varied GB
crystallographic character on solute segregation has never been thoroughly examined. This work
examines Co solute segregation in a dataset of 7272 Al bicrystal GBs that span the 5D space of GB
crystallographic character. Considerable attention is paid to verification of the calculations in the
diverse and large set of GBs. In addition, the results of this work are favorably validated against
similar bicrystal and polycrystal simulations. As with other work, we show that Co atoms exhibit
strong segregation to sites in Al GBs and that segregation correlates strongly with GB energy and
GB excess volume. Segregation varies smoothly in the 5D crystallographic space but has a complex
landscape without an obvious functional form.

Keywords: Grain boundaries, Solute segregation, Atomistic simulations, Aluminum, Cobalt, Metals
and alloys
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Chapter 1

Introduction

Solute atoms in polycrystalline materials with grain boundaries (GBs) may stay in the bulk, diffuse

to the surface, or segregate to the GB, among other behaviors such as forming precipitates. When

solute atoms segregate, they often remain in the GB network due to both kinetic mechanisms and

thermodynamic stabilization. Some examples of kinetic mechanisms are solute drag that slows

GB mobility [1] and solute pinning that prevents GB mobility under external driving forces [2].

Thermodynamic stabilization involves lowering the Gibbs free energy of a GB interface by the

presence of the solute atom [3, 4], and is described in a theoretical framework developed by

Weissmüller [5, 6]. Thermodynamic stabilization can be utilized to engineer materials with greater

hardness than a pure material even at elevated temperatures (e.g., in [3, 7–9]) due to the Hall-

Petch effect that causes greater hardness with smaller grain sizes [10, 11]. A recent review of

thermodynamic stabilization is given in [12].

Early on, simple effective segregation energy models of solute segregation [13] were derived

from experimentally determined values and are still often used to predict solute concentration

at GBs and in larger mesoscale models [14–19].1 However, such models violate the third law

of thermodynamics [21], do not account for the effects of GB character on the system, and are

1Other models of segregation energy are reviewed in Chapter 4 of [20].
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insufficient to describe experimental behavior [22–24], in particular of strong segregation to specific

atom sites (e.g., in the Co-Al-W system [25]).

Recently, models that are informed by simulated data have been developed to address such

issues. GB solute segregation has been examined in the dilute limit in atomistic studies utilizing

polycrystals [21, 26–30] and bicrystals in small regions of the 5D GB space [31–36], as well as in

first-principles [36–41] and experimental studies [42, 43]. Some studies improve on the segregation

energy calculations by including entropic and other effects in the atomistic simulations [30, 44].

Others move beyond the dilute limit by considering solute-solute interactions [45], or multiple-solute

interactions [46]. From these data, segregation models are often created using machine learning

techniques [27, 31, 32], specifically to predict segregation energy of specific atom sites from their

local environments. Recent reviews of computational modeling of solute segregation are given

in [47, 48]. Here, we highlight two recent and notable efforts to create more accurate segregation

energy models based on segregation energy spectra, which permits enforcement of the third law of

thermodynamics [21].

Huber et al. created a small dataset of densely sampled Σ5 coincident site lattice (CSL) Al

bicrystal GBs and calculated segregation energy spectra for 6 different solute types to inform

machine learning models for solute segregation at the atomic level [31]. They found that a thorough

sampling of the 5D space of GB crystallographic character was necessary for the creation of a

segregation energy spectrum that informs a model more accurate than the rudimentary effective

segregation energy model. Wagih et al. [28] also point out issues with using an effective segregation

energy for solute concentration models, demonstrated by the bimodal spectrum of segregation

energies in the Pd-H system due to the occupation of interstitial sites. In response, they created solute

segregation spectra in polycrystals for use in segregation energy models by performing atomistic

simulations of Mg in Al polycrystals [26]. This polycrystal approach creates one segregation

energy spectrum for the entire dataset, rather than many small spectra that are concatenated to
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represent the dataset, as is necessary for bicrystal GBs. Wagih et al. used machine learning on these

polycrystal spectra to inform 259 binary alloy system segregation models [27], as well as some

quantum-accurate models [49].

Wagih et al. use polycrystal simulations in order to more fully capture the behavior of real

materials, and they caution against using bicrystal simulations [26]. They suggest that only thorough

samplings of bicrystal GBs in the 5D space of crystallographic character should be used for this

purpose, promoting the work by Huber et al. in [31] as an example of sufficient sampling, albeit

in a small subspace of the 5D space. Others have also noted the insufficiency of bicrystal GB

simulations, such as Tucker et al. who use the strain functional description of atomic configurations

to show that symmetric twist GBs (STGBs) cannot be used to represent polycrystals or amorphous

structures [50]. Wagih et al. also present evidence that STGBs and low coincidence site lattice

(CSL) GBs do not represent polycrystals generally [51].

In this work, we compute the segregation energy of 70 million Co atoms in 7272 Al bicrystal

GBs from the Homer GB dataset [52]. The use of this dataset attempts to address most of the

concerns raised about using bicrystal GBs simulations to inform GB solute segregation models

in [26, 50, 51] because it spans the 5D space of GB crystallographic character. It is also not limited

to STGBs or low CSL GBs; it includes CSL values up to Σ999. Additionally, the use of this dataset

is a step towards examining the behavior of solute segregation across the entire GB space, which is

noted as an important next step for the field [48], since segregation has been found to depend on GB

character [53]. Co is used as a solute in this work because of its use in similar works [27,31], because

Al-Co alloys can be used in a wide variety of applications [54], and because Co additions in small

quantities can mitigate challenges in 3D printing of otherwise pure Al [55]. However, the methods

and analysis described in this work could be repeated with other solvent-solute combinations. We

verify and validate the resulting data, including direct comparisons to the works by Huber et al.

in [31] and Wagih et al. in [27]. Finally, we examine the spectra using several techniques, including
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a statistical overview, a classification scheme, and reduction to a solute concentration for each GB,

and we identify some subsets of GBs that deviate significantly from the mean solute concentration.



Chapter 2

Methods

2.1 Theory of solute segregation

The segregation energy Eseg of an atom is defined as the energy difference between a solute atom

and a solvent atom at the same site in the GB minus the same energy difference at a reference

atom site located in bulk [20, 26]. In this work, we examine the segregation of Co in Al, which is

calculated according to:

ECoi
seg =

(
E i

Co −E i
Al
)
−
(

Eref
Co −Eref

Al

)
(2.1)

where E i
Co is the energy of a Co atom in the i-th atomic site in a GB, E i

Al is the energy of an Al atom

in the i-th atomic site, and Eref
Co and Eref

Al are the energies for a reference atom in bulk, far away from

the GB.1 All of these values are calculated at 0 K. In this formulation, segregation is energetically

favorable for a site when ECoi
seg is negative.

1Equation 2.1 is an approximation for the free energy or enthalpy change due to the solute segregation at the grain

boundary. This formulation is only valid in the dilute limit, since it neglects solute-solute interactions [56].

5



2.2 Solute segregation energy spectrum creation 6

2.2 Solute segregation energy spectrum creation

In this work, segregation energy data is collected by substituting single Co atoms into Al GBs from

a dataset created by Homer et al. [52, 57] which used the pure Al EAM potential from Mishin et

al. [58]. This dataset is referred to in the present work as the Homer dataset. The Homer dataset

contains GB structures that have 150 different CSL values corresponding to unique disorientations

up to Σ999, sampled at intervals of ∼5◦ in the disorientation space. For each CSL value, a sampling

of boundary planes (BPs) was selected to provide comprehensive coverage, making 7304 unique

GBs in the 5D space of GB crystallographic character.2 The optimal atomic configuration for each

GB was then found by varying 6 parameters of GB construction while maintaining the 5D constraint

of the GB, relaxing each structure via conjugate gradient energy minimization. In this work we

examine only the minimum energy configuration of the 6 GB construction parameters. See [57] for

additional details about the construction of the Homer dataset.

Segregation energy values in Equation 2.1 were computed in LAMMPS molecular statics

simulations [59] using the Ni-Al-Co empirical EAM potential from Purja Pun et al. [60], which is

the same potential used by Huber et al. in [31] and Wagih et al. in [27]. Note that Co is known to

develop a magnetic moment [61], but this EAM potential has been carefully fitted to the Al-Co phase

diagram [60] and all our calculations are with individual Co atoms so we assume that magnetic

effects are negligible and can be disregarded in this work. In addition, this potential reproduces

similar GB behavior to the Mishin potential ( [58]) used in the creation of the GB dataset. We

start with a relaxed GB structure and replace an existing Al atom with a Co atom at the same atom

site. The entire GB structure is then relaxed via conjugate gradient minimization to an energy and

force tolerance of 10−10 relative error and 10−10 eV/Å, respectively. Following minimization, the

segregation energy for the substituted atom, ECoi
seg , is calculated using Equation 2.1.

210 of the 7304 GB structures in the Homer dataset [52] are excluded from this work due to computational difficulties.

See Supplemental Table S3 for a list of excluded GBs.
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This process was completed for approximately 70 million atoms from 7272 GBs: each atom

closer than 15 Å to the GB plane was replaced by a Co atom, as well as a random sample of 100

atoms for each GB in the range of 15–25 Å to use for bulk reference energies (Eref
Co & Eref

Al ). Atoms

further away from the GB are not substituted because ECoi
seg rapidly falls to 0 eV with distance from

the GB plane [62, 63].

2.3 Analysis techniques

Since the segregation data for each GB results in a spectrum of values, we employ two methods

to simplify comparison of the spectra across the set of GBs. Specifically, these methods are i) a

classification scheme and ii) a grain boundary solute concentration, which are described below.

For reasons that will be clear in the verification section (3.1), we implement a classification

scheme that classifies any atom with near-bulk segregation behavior as “negligibly segregating.”

We do this because the segregation energy values of the bulk atoms actually take on a range

of values about 0 eV and GB atoms with segregation energy values in that same range would

behave the same as if they were in bulk. We designate segregation energy values in the 95%

interval3 of the bulk atom distribution as “negligibly segregating”. This allows us to more easily

determine which atoms are “segregating” and “anti-segregating” because they are outside the range

of typical bulk atom segregation energies. The ranges for these three possible classifications are:

i) segregating; ECoi
seg <−0.0875 eV, ii) negligibly segregating; −0.0875 eV ≤ ECoi

seg <+0.018 eV,

and iii) anti-segregating; ECoi
seg ≥+0.018 eV.

A standard measure of solute segregation at GBs is the solute concentration at the GB in

the dilute limit, cGB. Early literature calculated this value using a single effective segregation

3Supplemental Figure S3 shows a number of intervals on the distribution of FCC atoms, from which we determined

to use a 95% interval for the “negligible” classification. Supplemental Figure S4 shows a number of intervals on the

distribution of non-FCC atoms.
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energy [13] or a continuous distribution of segregation energies for atoms in the GB [64]. This type

of approach is computationally simple but has some pitfalls (as mentioned in Section 1) that can be

avoided by using a discrete segregation energy spectrum. Coghlan and White first created such a

spectrum [22], which was later adapted by Huber et al. [31] for an array of individually described

atoms in a single GB. The concentration of solute atoms in the GB is then calculated according to:

cGB =
1
N ∑

i

[
1+

1− cbulk

cbulk
exp

(
ECoi

seg /kBT
)]−1

(2.2)

where ECoi
seg is defined by Equation 2.1, N is the number of sites in the GB, kB is the Boltzmann

constant, T is the temperature, and cbulk is the concentration of solute in bulk, held fixed as an

independent variable. Bulk atom sites are chosen for solute occupancy at finite temperatures with

increasing probability, lowering cGB; the temperature dependence of this value is demonstrated for

this work in Section 4, and is a well known feature of GB segregation [65]. The 1−cbulk
cbulk

term scales

the Fermi level down as bulk atom sites are filled at finite temperatures, as discussed in [31]. In this

work we use a bulk concentration of cbulk = 0.2 at.%, chosen to be the same as in Huber et al. [31].



Chapter 3

Verification and Validation

An important step in collection of any data is the verification and validation of the results [66]. In

the following sections we verify that the calculated values are representative of true segregation

energies and validate the results by comparing them to other published examples.

3.1 Verification

In verifying the data collected in this work, we noted that some data was incorrect or did not match

expected behavior. The following sections discuss the process of determining which data could be

verified for accuracy and inclusion in the work.

Verification of bulk segregation energies

By definition (Equation 2.1), solute atoms in the bulk have segregation energies of 0 eV. In order to

verify this behavior, we must classify atoms as either bulk or GB atoms. The method by which the

GB atoms are separated from the bulk atoms will have an impact on whether bulk atoms exhibit

the expected 0 eV segregation energy. Since a segregation energy spectrum typically only includes

9
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GB atoms, the classification scheme can also affect the segregation energy spectra based on the

inclusion of atoms near or in the GB that may or may not have segregation energies near 0 eV.

Bulk atoms are often identified in simulations by adaptive common neighbor analysis (aCNA),

as employed in [26–28, 30–33], which can identify each atom’s environment as HCP, BCC, ICO,

FCC or other [67]. Alternatively, the centrosymmetry parameter (CSP) [68] can be used to identify

atom environments where the expected centrosymmetry breaks down, such as near a GB in an

FCC-type crystal structure. In bicrystal simulations, a simple identification method is to categorize

atoms within some fixed width (e.g. ±5Å) of the center of the GB as belonging to the GB. There

are several less commonly used methods to determine bulk atoms, such as the dislocation extraction

algorithm (DXA) [69, 70] used in [42], the per-site Voronoi volume criterion used in [35], and

the experimentally determined one-atomic layer region from the GB center [71, 72], as employed

in [29].

There are challenges with using aCNA, CSP, and DXA as classification methods because they

were designed for purposes other than determining whether an atom belongs to a GB. The aCNA

method excels at structure identification, but tolerates distortions of atoms in those structures. The

CSP method, since it is continuous, is better suited to differentiate smaller distortions. However, it

has no defined cutoff value for discerning when a distortion has changed the structure sufficiently to

be classified as something other than FCC, which is left for the user to choose. The fixed width

method does not generalize easily to polycrystal simulations, and due to relaxation in the positions

of atoms near the initial position of the GB plane, defining the center of the GB can be difficult,

especially in the case of GB faceting. Additionally, the width of the GBs across a single dataset

can very drastically (e.g. in ref [57], Figure 5 shows that the width of GBs in the Homer dataset

range from 3-18Å, and the selection of a single fixed width would bias the number of FCC atoms

included). The experimentally determined one-atomic layer region from the GB center is difficult to

compare to simulations. The other methods suffer from similar challenges. There is no clear way to
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determine whether an atom definitively belongs to the GB because the transition from bulk to GB

can be subtle; elastic strains that cause some deviation from a “perfect” bulk structure are present

even at large distances.

These challenges and the differences between the most commonly used methods of aCNA and

CSP classification are illustrated in Figure 3.1 for a) a [100] symmetric tilt GB with an array of edge

dislocations and for b) a high-angle GB. The atoms are colored according to their segregation energy

value (red for anti-segregating, blue for segregating, grey for negligible). The figure depicts the full

structure of the GB in the “All atoms” row, and the removal of more and more of the surrounding

atoms depending on the CSP value used to remove “bulk” atoms. The “CNA” row shows that the

aCNA is aggressive in its removal of “bulk” atoms, since its goal is not to identify local distortions

in structure but clear changes in crystal structure. The result is that many surrounding atoms with

non-negligible segregation energy values are removed by aCNA bulk determination.

Figure 3.1 illustrates that there is no definitive approach to atom selection for 0 eV bulk GB

segregation energies using aCNA or CSP. In this work, we present results for bulk atom selection

using both aCNA and CSP methods to compare the impact the selection method has since the aCNA

method removes many atoms that could meaningfully contribute to segregation energy spectra. We

also show cumulative segregation energy spectra of several fixed width cutoffs in Supplemental

Figures S5 and S6, where liberal width leads to CSP-like distributions and conservative width leads

to aCNA-like distributions. In this work, CSP labeled results use a CSP cutoff of 0.1, as it includes

a reasonable number of surrounding atoms with non-negligible values of the segregation energies

while limiting the number of bulk atoms with negligible values of the segregation energy.

Supplemental Section S1 contains a discussion comparing bulk atom selection by the aCNA and

CSP techniques. The discussion can be summarized in the segregation energy distributions of the

bulk atoms by the two classification techniques shown in Figure 3.2. The majority of bulk atoms

have segregation energy values close to 0 eV, though there is a larger than expected variation in
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Figure 3.1 a) A [100] symmetric tilt GB with an array of edge dislocations and b) a
high angle, low symmetry GB with “All atoms”, “CSP” bulk atom removal (2nd row:
CSP ≤ 0.3, 3rd row: CSP ≤ 0.1, 4th row: CSP ≤ 0.01), and adaptive “CNA” bulk atom
removal. Red atoms have positive segregation energies, blue have negative, and grey have
negligible, according to the colorbar shown. In both cases, the positive y-axis corresponds
to the positive z-axis in the GB simulations, and the GB plane is located at z = 0Å. The
crystallographic directions for each are given in Supplemental Table S2 . The GB images
are produced using OVITO [73].

the local environments of bulk atoms as determined by both aCNA and CSP. In short, both bulk

atom classification schemes classify some atoms as bulk even though they have non-negligible
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segregation energy values. Given the range of elastic strains near defects, it remains a challenge

to find a single defensible method to identify GB and bulk atoms. By contrasting the aCNA and

CSP bulk classification schemes in this work, we illustrate the difference between conservative and

liberal classification schemes. The determination of a better method for selecting GB atoms is left

for the community to resolve.

Recalling that theory defines segregation energy of an atom in the bulk as equal to 0 eV, one

would expect segregation energies to converge to 0 eV as distance from the GB plane increases

[62, 63]. In an initial analysis, it was found that while the majority of data behaved in this way,

some did not converge to 0 eV more than 15 Å away from the GB plane. This is illustrated in a

plot of segregation energy vs. distance from the GB plane in the scatter plot of Figure 3.3 for three

different populations. These populations make up the 70 million atoms and are: the bulk atoms

(gray), the GB atoms (blue), and atoms belonging to GBs excluded from the dataset because of

errors described here and the following section (red). Four GBs in particular account for the scatter

(non-zero segregation energy values) at large distance from the GB, and were therefore excluded

from further analysis. These four GBs are listed in Supplemental Table S3 along with GBs excluded

for reasons that are discussed in the next section. It can be seen in Figure 3.3 that their are still GB

atoms at large distance from the GB, but in all cases these have segregation energy values near zero;

furthermore, there are very few of these, so they contribute negligibly to the spectra of individual

GBs.

Challenges due to GB restructuring

It can be seen in the red data points in Figure 3.3 that there are a small number of very negative

segregation energy values, far below what would be expected for this system. When substituting a

solute atom for segregation energy calculations, the energy of the new system is calculated after the

system has relaxed into the new configuration that accommodates the solute atom. Usually, this
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Figure 3.2 Logarithmic scale of the distribution of segregation energies for bulk atoms as
determined by CSP ≤ 0.1 (blue) and aCNA (orange). Bin width is 0.008 eV. The aCNA
peak is broader because it classifies more distorted atoms as bulk.

relaxation results in almost no change to the atom positions. However, non-negligible changes to

the atom positions occur occasionally. The reference energies (Eref
Co and Eref

Al in Equation 2.1) pertain



3.1 Verification 15

to the original pre-substitution configuration and not the restructured configuration, therefore the

segregation energy values are not valid when significant restructuring occurs. A valid segregation

energy value for the restructured configuration would require calculation of new reference energies.

To determine when GB restructuring occurs and the magnitude of such restructuring, we

calculated the mean squared displacement (MSD) for all atoms in a GB during the relaxation

following solute substitution. Generally, the MSD at GB atom sites was found to be higher than the

MSD at FCC bulk atoms (see Supplemental Figure S7), but there is considerable overlap between

the two distributions. A plot of segregation energy vs. MSD is shown in Supplemental Figure S9. In

this figure it can be seen that i) the most extreme segregation energies occur when the MSD values

are higher and ii) there are also lots of reasonable segregation energies with relatively large MSD

values. Here, we examine examples of these two cases.

In one case where the segregation energy was very negative, ECoi
seg =−6.1 eV, and the MSD value

was large, 0.076 Å2, considerable restructuring occurred during the post-substitution relaxation.

To check the accuracy of this atom’s segregation energy value, new reference energy values were

determined using the restructured GB for the reference energies. The segregation energy value

was re-calculated to be ECoi
seg =−0.45 eV. Restructuring clearly caused the reference energies to be

invalid for the post-substitution GB structure in this case, and MSD was a good determination of

this invalidity.

In another case where the segregation energy was in the normal range, ECoi
seg =−0.38 eV, but

the MSD was still reasonably large, 3×10−4 Å2, there was minimal restructuring. The accuracy

of this atom’s segregation energy value was also checked, and even with new reference energy

values, the segregation energy value remained the same at ECoi
seg =−0.38 eV. In this case, the atomic

shuffles had no impact on the segregation energy and the larger than expected MSD values were not

indicative of invalid segregation energy values.
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Although some high MSD value simulations yield valid segregation energies, we attempted

to address the issue of invalid segregation energies caused by restructuring by omitting atoms

where MSD values were large. We defined a high-MSD cutoff of 10−4 Å2, since it was above

this MSD value that the low segregation energies started to diverge (c.f., Supplemental Figure

S9). Unfortunately, this approach removed 7 entire GBs and 38% of the atoms from analysis.

Additionally, in some individual GBs, most of the data was lost, as illustrated in Supplemental

Figure S10, which shows the effect of removing atoms with high MSD values. This approach also

removed segregation energy values that were valid, as indicated by the second case examined above.

This approach causes severe data loss and could lead to misinterpretations of the results.

Additional analysis showed that most of the extreme (and likely invalid) segregation energy

values belonged to a small number of GBs, and these GBs had a high percentage of extreme

segregation energy values. In other words, certain GBs were prone to restructuring upon substitution

of a solute atom. While not a perfect solution, we removed 18 GBs with segregation energy data less

than −3.0 eV, which belong to the population of atoms in the excluded GBs shown in red in Figure

3.3 and listed in Supplemental Table S3. Supplemental Figure S11 shows the segregation energy

spectra for other possible segregation energy cutoff values. The chosen cutoff value of −3.0 eV

removes most of the extreme values while only removing 0.25% of the GBs simulated.

While this approach leaves some invalid data in the spectrum due to restructuring in individual

simulations, the removal of these 18 GBs seemed the best option, as it only removes 0.25% of

the GBs. We assume that the contributions of any remaining invalid datapoints to the spectrum

is minimal, as illustrated in Figure 3.3. One way to get around this issue in the future would

be to recalculate the reference energy values any time restructuring is detected. Unfortunately,

recalculating these reference energies after the fact was impractical for this work.
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Final dataset

As discussed in Section 3.1, 4 GBs were removed due to the failure to converge to a zero segregation

energy value in the bulk. Another 18 GBs were removed from the dataset because they possessed

extremely low segregation energy values, as discussed in Section 3.1. There were 10 GBs that were

not included due to issues refilling the partially full simulation cells in the dataset. These 32 GBs

are listed in Supplemental Table S3. The remaining data contains 70 million atoms with segregation

energy values to analyze from 7272 unique GBs. With bulk atoms removed via CSP or aCNA,

this number is reduced to 18 or 11.5 million GB atoms, respectively. Despite the imperfections of

these methods as discussed above, it is anticipated that this dataset will provide unique insight into

segregation energy trends. Having verified the Homer dataset here, we validate it in the following

section.

3.2 Validation

In order to validate our work, we compare our results to two computational datasets of Co segregation

energies in Al GBs that use the same EAM potential [60] and similar methods to this work; no

experimental data for Co enrichment in an Al matrix could be found. Huber et al. examine a number

of Σ5 GBs in [31], and Wagih et al. examine a polycrystal with a variety of different GBs and focus

on the overall distribution of segregation energies in [27]. These two datasets are referred to as the

Huber dataset and Wagih dataset in the following sections where they are compared with the present

results obtained from the Homer dataset.

Comparison to selected Σ5 GBs

Huber et al. examine solute segregation in a GB dataset of 38 Σ5(53.1◦[100]) GBs [31]. The Homer

dataset includes 17 GBs of this type, although the two datasets only have four GBs that share all 5
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crystallographic degrees of freedom. Figure 3.4 compares the segregation energy spectra for these

four GBs. Figure 3.4a is from the Huber dataset with a kernel density estimation (KDE) fit shown

with a solid line and a model fit described in [31] shown with a dashed line. Figure 3.4b is from the

present work using the Homer dataset, with segregation energies for non-bulk atoms as determined

by aCNA, which is the same method used by Huber et al. [31]. Figure 3.4c is also from the present

work using the Homer dataset, but with segregation energies for non-bulk atoms determined by CSP.

KDE fits to the distributions in b) and c) are shown with solid lines.

The locations of segregation energy peaks and their relative magnitudes are similar. The [02̄1]

GB has the most favorable comparison, though the Huber dataset in a) has a small scattering of

infrequent peaks that do not show up in the aCNA Homer dataset in b). In c), the CSP Homer

dataset has an additional peak at approximately −0.05 eV. The [01̄2] GB has peaks in the same

general locations, but slightly different relative magnitudes, again with more scatter in the peaks of

the Huber dataset. The CSP Homer dataset again has a large population of atoms with segregation

energies near −0.10 eV and an additional peak near 0.10 eV in both b) and c). The [100] GB in our

work has a missing peak at approximately −0.55 eV, and an additional missing peak near −0.01 eV

in b) that is present in c). Finally, the [11̄2] GB has more distinct peaks in b) and c) that make up

the multimodal distributions around −0.50 eV, 0.00 eV, and 0.30 eV in a), and a higher relative

magnitude in the peak near 0.00 eV.

In all of the GBs, c) seems to have more data around −0.05 eV, indicating that bulk determi-

nation via CSP leaves a larger population of atoms with near-negligible segregation energies that

are removed by the aCNA bulk determination method. This is perhaps why aCNA is used in many

other works for bulk classification. However, it can be noted that these values are not identically

zero, and contribute to the overall relative frequency of the various peaks. This observation is not to

advocate for one method over another, but simply to acknowledge a bias introduced by the method

of bulk and GB atom selection.
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The segregation energy spectra of the two datasets are in general agreement, with appropriate

magnitudes and frequency of occurrence. Clearly there is not an exact match, perhaps due to the

GBs not having identical structures or not extracting the same GB atoms. For example, the high

symmetry structure of the Σ5 GBs in column 1 of Figure 3.4 has only 6 GB sites as determined by

CNA. Any small variations in GB structure and/or GB atom selection could result in the addition or

subtraction of a GB atom, which would lead to large changes in the spectra by adding or subtracting

entire peaks. For example, the missing peak at approximately −0.55 eV in the [100] GB from the

Homer dataset when using both aCNA and CSP indicates that the local atomic environment making

up that peak in the Huber dataset is not found in the Homer dataset. With no atomic structures

from the Huber dataset published, there is no means to verify this conclusion. However, given the

fact that we cannot guarantee identical atomic structures, we consider the general agreement of the

segregation energy spectra to be sufficient validation of the Homer dataset in comparison with the

Huber dataset.

Comparison to polycrystal spectrum

While the Homer dataset contains only bicrystal GBs, most materials are polycrystalline, containing

a GB network with additional features such as triple junctions and facets. Some recent works have

focused on extracting segregation energy distributions from polycrystalline simulations [26–29, 50,

51]. Here we compare the spectrum of segregation energies obtained from bicrystals of the present

work with that obtained by Wagih et al. from a polycrystal [27]. The Al-Co segregation energy

spectrum from the Wagih dataset is represented by a skew-normal distribution of the form:

F(ECoi
seg ) =

1√
2πσ

exp

−
(

ECoi
seg −µ

)2

2σ2

erfc

−α

(
ECoi

seg −µ

)
√

2σ

 (3.1)
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with the fitted location parameter µ , scale parameter σ , and shape parameter α . Note that these

values are not the typical mean, standard deviation, and shape parameter of a normal distribution.1

The segregation energy spectra for this work are presented in Figure 3.5. The spectra from the

Homer dataset are obtained by combining the individual GB segregation energy spectra from all

7272 GBs. There are two distributions for the two methods by which bulk atoms are removed:

aCNA in blue and CSP in orange. The figure includes the Wagih spectrum, scaled to match the

two distributions in this work, plotted as dashed black lines, and skew-normal fits in solid lines in

corresponding colors to the spectra. Note that the authors use a skew-normal form for the sake of

comparison, and did not attempt to find another functional form with a better fit. See Supplemental

Figures S5 and S6 for the spectra creating using fixed width bulk determination.

First, we note that the inclusion of bulk-like atoms using the CSP approach leads to a much

larger peak near the origin, though other parts of the histogram of segregation energies are very

similar between the aCNA and CSP distributions of the Homer dataset. A comparison of statistical

measures of the distributions, in the form of Equation 3.1, are provided in Table 3.1. It can be seen

from Table 3.1 that the aCNA and CSP distributions of the Homer dataset are in general agreement.

To compare the datasets to the Wagih dataset, we scaled the magnitude of the skew-normal

distribution fitted to the Wagih dataset to match the magnitude of both distributions of the Homer

dataset. Note that the Wagih dataset uses aCNA for bulk classification. Despite their quantitative

and statistical similarity, there are notable differences in the bicrystal and polycrystal spectra. First,

in comparison to the polycrystal spectrum, the bicrystal spectrum that uses aCNA has a slightly

higher number of sites with segregation energies just greater than zero and a slightly lower number

of sites with segregation energies just less than zero. In the inset with the frequency on a logarithmic

1Others have also observed the skew-normal form of the spectrum of segregation energies in GBs, including when

bicrystals are used [74, 75].
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Table 3.1 Comparison of skew-normal statistical measures for the distributions shown
in Figure 3.5. These parameters—the fitted location parameter µ , scale parameter σ ,
and shape parameter α—are for the skew-normal distribution described in Equation 3.1.
Note that these are not the usual mean, standard deviation, or shape parameter of a
Gaussian distribution. Fixed width distributions are shown in Supplemental Figure S5 and
Supplemental Table S1.

Dataset µ σ α

Polycrystal [27] -0.0104 0.3224 -3.300

Bicrystals, no FCC via aCNA 0.0328 0.3794 -2.424

Bicrystals, no FCC via CSP 0.0706 0.3502 -3.365

scale, it can be seen that there is also significant divergence of both bicrystal spectra from the

polycrystal spectrum in the lower tail, but this difference is negligible in the linear frequency scale.

The source of the differences in the two spectra is likely due to the differences in the datasets.

First, the polycrystal dataset has 16 distinct grains, 72 GBs, and ∼105 non-bulk GB atoms [27],

in comparison to the 2× 7272 distinct grains, 7272 GBs, and ∼106 non-bulk GB atoms for the

bicrystals in the present work. In addition, the polycrystalline simulation has atomic environments

found in GB triple junctions and quadruple nodes that may not appear in bicrystal simulations,

or if those environments show up in bicrystal GB simulations, they may appear with a different

frequency than they do in a polycrystalline structure.

It has been shown that small populations of bicrystal GBs fail to produce the same segregation

energy distributions as those of polycrystalline materials [50,51], but that as the population diversity

increases with GBs of lower symmetry, there is better coverage of the atomic environment space [51].

The present dataset of 7272 bicrystal GBs is comprised of mostly low symmetry GBs; only 89

of the 7272 grain boundaries, or 1.2%, have low CSL values (i.e., Σ ≤ 10), suggesting that issues

related to diversity in the dataset are minimized by the large variety of GBs in the Homer dataset.
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Conversely, the polycrystal simulation with its 72 GBs may not provide adequate sampling of

the variation in structure across the 5D space, or be large enough to be considered a representative

volume element (RVE) such that it is truly representative of atomic environments in a polycrystal.

The Mackenzie Distribution, which represents the distribution of disorientation angles for a poly-

crystalline sample with random cubic crystal orientations [76, 77], can be used as a justification for

the selection of an RVE [78]. As shown in Figure 3 of [57], the Homer bicrystal dataset gives a

reasonable approximation of the Mackenzie Distribution. The Wagih polycrystal dataset does not

claim to follow the Mackenzie Distribution of disorientations, nor do they consider their simulation

to be an RVE. Wagih et al. do however assert that their simulations are similar enough to randomly

oriented grains to represent the local atomic environments present in the polycrystalline GB space,

and that the segregation energy spectrum obtained is universal to any segregation energy spectrum

obtained from a polycrystal [26, 51].

At this point, it is unclear if the differences between the Wagih and aCNA bicrystal distributions

are significant. The degree to which either of the methods incorporates aspects of the distribution of

GBs that are critical to a proper representation of segregation energies in a diverse polycrystal is

also unclear. The discussion leads to several unanswered questions:

1. How many GB types would be needed to establish an RVE for segregation energies? (i.e., is

the polycrystal sample from Wagih et al. large enough? Does the present work have enough

and sufficiently diverse bicrystals to represent a polycrystal?)

2. How would a change in GB texture of the polycrystal change the GB sampling and thus the

segregation energy spectrum? (i.e., does the texture used in the work of Wagih et al. bias the

sampled spectrum significantly? Is it appropriate to make these distributions from a random

sampling?)
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3. To what degree do the local atomic environments of triple junctions and quadruple nodes

affect the sampled segregation energy spectrum? (i.e., the volume fraction of such atomic

environments will be different in nanometer-sized grains as compared with micron-sized

grains, and may be entirely absent from the bicrystal dataset of this work.)

We leave these questions to the community to address. Nevertheless, the similarity in the two

spectra is seen as a positive validation of the methods and use of the Homer GB dataset in this work.
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Figure 3.3 (Top) Histograms of segregation energy for GB atoms (blue), bulk atoms
(gray), and atoms in GBs excluded due to invalid calculations (red). Bin width is 0.165
eV. A linear-scale histogram with the same data is included as Supplemental Figure S8
to show how low segregation energies contribute negligibly to the distribution. (Bottom)
Distance from the GB plane in Å as a function of segregation energy, (ECoi

seg ). In the GB
construction simulations, the GB plane is initialized at z = 0 Å and is allowed to shift as
the simulation cell relaxes, however, this distance is calculated as a distance from z = 0 Å.
The non-converged and low energy GBs that were removed from analysis as described in
Sections 3.1 and 3.1 are shown in red, the bulk FCC atoms as determined by a CSP cutoff
of 0.1 are shown in grey, and the non-bulk GB atoms are shown in blue. The distribution
decays to 0 eV as the distance from the GB increases (with the exception of the excluded
GBs, shown in red), as predicted in [62, 63].
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a)

b)

c)

Figure 3.4 Segregation energy distributions of the shared Σ5 GBs between the a) Huber
dataset from [31] (bin width 0.04 eV) and the b/c) Homer dataset (bin width 0.01 eV). a)
has two fit lines: a KDE fit to the data (solid) and a model fit discussed in [31] (dashed). b)
includes the non-bulk atoms from this work as determined by aCNA (the same method
of FCC atom removal as is used in [31]). c) includes the non-bulk atoms from this work
as determined by CSP. The Huber dataset in a) is reproduced from [31] and relabeled
according to the Homer dataset labelling conventions [52].
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Figure 3.5 The spectrum of segregation energies aggregated from all GBs simulated in this
work, with all bulk atoms removed via aCNA (blue) and via CSP (orange), with fit lines for
their respective skew-normal distributions in the form of Equation 3.1 in their respective
colors. The dashed black lines are the polycrystal spectrum from Wagih et al. in [27],
scaled to both of this work’s distributions. Inset are the same spectra on a logarithmic
scale. Statistics for each skew-normal distribution are given in Table 3.1. The spectrum
of all atoms (including bulk atoms) is shown in Supplemental Figure S12. Bin width is
0.0412 eV.



Chapter 4

Results & Discussion

Having provided some context and discussion of the results in the Verification and Validation

section, we begin our analysis here by taking several different views of the segregation energy

spectra produced in this work. Note that most of the results presented in this section are produced

using CSP to determine bulk atoms, but similar results would be obtained using aCNA, as shown in

the supplemental materials and described in Section 4.4.

Examining the spectra of segregation energies across the 5D space is challenging because at

each point in the space we obtain a spectrum of segregation energies. To provide insight into the

dataset, we employ several different tactics: i) statistical measures of the spectra, ii) classification of

the segregation energy spectra into fractions of atoms segregating, anti-segregating and negligibly

segregating, and iii) calculation of a GB solute concentration for each GB (cGB defined in Equation

2.2) based on Coghlan and White’s model [22]. Each of these provide different insight into trends

in the large set of GBs.

27
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Table 4.1 Statistics for the Σ5 GBs shown in Figure 3.4. Note that the the max, mean, and
min values in the table refer to the maximum, mean, and minimum values from each GB’s
ECoi

seg spectrum.

GB max (eV) mean (eV) min (eV) fseg fnegl fanti cGB (at.%) γ ( mJ
m2 ) Vexc (Å3

Å2 )

021 0.52 -0.01 -0.31 0.29 0.29 0.43 28.9 494 0.529

012 0.46 -0.14 -0.53 0.47 0.40 0.14 37.7 496 0.347

100 0.34 -0.05 -0.20 0.44 0.44 0.11 35.5 326 0.296

112 0.30 -0.18 -0.57 0.58 0.24 0.18 59.7 472 0.340

4.1 Statistical measures of the spectra

In this section, to examine the segregation energy spectra across all of the dataset, we present the

mean, maximum, and minimum values of the multimodal distributions of each GB’s segregation

energy spectrum. As an example, the maximum, mean, and minimum values for the Σ5 GB spectra

shown in Figure 3.4c are given in Table 4.1.

Although this represents a significant reduction of information, some observations can be still

made by comparing these values against one-dimensional parameterizations of the GB dataset.

For example, these values are plotted as a function of GB interface energy, γ , in Figure 4.1 and

disorientation angle in Supplemental Figure S13. Generally, the mean segregation energy of a GB

becomes more negative as GB energy increases, as shown by the green datapoints and trendline in

Figure 4.1. Note that the [111] symmetric twist GBs (aside from the lowest energy perfect twin

GB) have a slight increase of the mean segregation energy as GB energy increases, contrary to the

general trend. We will further analyze this subset of GBs in Section 4.3 because of their likely

presence in Al [79]. The average range of segregation energies also increases as a function of GB

energy, as indicated by the linear fits to the three populations shown in black. This is probably due

to greater deviation from the bulk FCC structure in the higher energy GBs, which likely leads to a
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greater distribution of segregation energies in the solute atom sites. Finally, it can be seen in Figure

4.1 that the lower the mean segregation energy for a GB, the higher the probability for segregation

in that GB.

GB energy, γ , has been shown to have a Read-Shockley relationship with disorientation angle

[80, 81]. Despite the relationship observed between GB energy and mean segregation energy, there

is no observable transitive relationship between mean segregation energy and disorientation angle

(see Supplemental Figure S13). It is interesting that the two separate correlations do not result

in the correlation between segregation energy and disorientation angle. While the correlation of

segregation energy with GB energy provides some insight to global trends in segregation energy,

we continue with more detailed analyses of the dataset.

4.2 Classification of the spectra

To examine the segregation energy spectra in this section, we employ the segregation energy classifi-

cations described in Section 2.3. This approach classifies each atom based on its segregation energy

value into one of three categories: i) segregating (ECoi
seg <−0.0875 eV), ii) negligibly segregating

(−0.0875 eV ≤ ECoi
seg <+0.018 eV), or iii) anti-segregating (ECoi

seg ≥+0.018 eV). Using these clas-

sifications, we compute the fraction of atoms in each GB that fall into each category, i) fseg, ii) fnegl,

and iii) fanti. For each GB, these fractions add to 1 (i.e., fseg + fnegl + fanti = 1). As an example, the

fseg, fnegl, and fanti values for the Σ5 GB spectra shown in Figure 3.4c are given in Table 4.1.

The distributions of these fractions for the 7272 GBs are shown in Figure 4.2a; these are

the distributions for non-bulk atoms identified using the CSP scheme. The mean value for these

categories over all GBs are fseg = 0.62, fanti = 0.15, and fnegl = 0.23, as shown by the dotted

vertical lines in Figure 4.2a. The global fractions in the aggregated spectrum are fseg = 0.63,

fanti = 0.15, and fnegl = 0.22.
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In Figure 4.2b, this same data is shown on a ternary plot, that shows the 2D plane that the 3D

points all lie on, since they all add to 1 (i.e., fseg + fnegl + fanti = 1). The data points in the plot are

colored by GB energy, γ . It can be seen in Figure 4.2b that increased GB energy corresponds to an

increased fraction of segregating atoms, fseg. This supports the trend for more negative segregation

energies with higher GB energy observed in Figure 4.1. To see the same plots for aCNA, see

Supplemental Figure S14.

As expected from the histograms, the general distribution of points in Figure 4.2b is located

closest to the “all segregating” corner of the triangle. There are several notable outliers. The [111]

perfect twin GB is located at “all anti-segregating”, and its closest neighbor in the ternary plot has

the same misorientation of 60◦ about the [111] axis. [100], [110] and [111] disorientation axis GBs

make up 50% of the GBs along and near the top right edge of the triangle with fnegl ≤ .1. 34% of

the GBs with fanti ≤ .075 belong to the [111] disorientation axis.1 Thus, many of the outliers in the

ternary plot belong to high symmetry disorientation axes. Additionally, it can be seen that there

are a number of GBs along the left side of the plot which have no anti-segregating atoms, though

this is perhaps unsurprising given the proximity of the distribution to this edge and the tendency to

segregate in this system.

In short, most GBs have a tendency to segregate, evidenced by the fseg value of 0.62. Addition-

ally, high energy GBs have a tendency to segregate more than lower energy GBs, which is supported

by the results shown in Figure 4.1. However, while these trends are interesting, this analysis is still

insufficient to predict segregation behavior generally.

1To see the ternary plot with the [111] disorientation axis GBs highlighted, see Supplemental Figure S15.
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4.3 Solute concentration at GBs

One of the challenges with the representations of the segregation energy spectra analyzed in the

preceding sections is that they still have multiple values for each GB, which makes it hard to analyze

trends across the 5D space. As such, we have included the calculation of the grain boundary solute

concentration, cGB, from Equation 2.2. This singular value for each GB allows the display of some

trends more clearly in subsets of the 5D space that still take into account attributes of the full

spectrum of GB energies, as the value is computed from a sum over the whole spectrum of GB

atoms in each GB. Note that most of the cGB values presented in this section are well above the

dilute limit; as such, many of the assumptions made in the calculation of the concentration values

(e.g., neglecting solute-solute interactions) are invalid. However, we assume that the general trends

observed in cGB are still valid.

As with the other sections, the cGB values for the Σ5 GB spectra shown in Figure 3.4c are given

in Table 4.1. However, because cGB takes into account the full spectrum, we use a set of GBs that

have a unique trajectory through the 5D space of GB crystallographic character to illustrate the

cGB values. This set of GBs is the low GB energy [111] symmetric twist GBs noted in [57] and

mentioned in Section 4.1, used because they have a large range of disorientation angles, their likely

appearance in Al due to their low energy [79], and because they show interesting segregation energy

results. However, care should be exercised in extrapolating the [111] symmetric twist GB results to

rest of the dataset precisely because they are low energy GBs and may behave differently. Note that

the disorientation angles related to these particular boundaries also define their twist angles about

the [111] axis.

The [111] symmetric twist GBs exhibit an energy trend of an inverted parabola with low

GB energy values at low and high disorientation angles, illustrated in blue in Figure 4.3a. A

corresponding trend for GB excess volume is also shown in orange in Figure 4.3a. Figure 4.3b plots

the segregation energy spectra for the GB atoms as determined by aCNA (blue) and CSP (orange)
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for each of these GBs, against their disorientation angle. Note the data loss from using aCNA (blue)

over CSP (orange), which was discussed in Section 3.1. Also note the exclusion of many near-bulk

segregation energies in the CSP (orange) spectrum.

Although a significant portion of each GB’s spectra falls in the “negligible segregation” category

shown by horizontal dotted black lines in Figure 4.3b, a majority do not, and almost all of the non-

negligible segregation energies are negative, implying that a Co atom added to an Al [111] symmetric

twist GB will prefer to segregate to the GB. With the exception of the perfect twin, this segregation

data shown in Figure 4.3b generally runs counter to the general trend that was observed in Figure

4.1 for lower energy GBs to have less segregation than higher energy GBs. This is evidenced by the

more negative segregation energy spectra in Figure 4.3b for the corresponding lower GB energies in

Figure 4.3a, and was perhaps expected from the analysis of the [111] symmetric twist GBs shown

with black “x” markings in Figure 4.1.

In Figure 4.3c, we show the cGB values as determined by CSP (solid) and aCNA (dotted) for

the [111] symmetric twist GBs as a function of disorientation angle at 3 different temperatures.

In addition to the low energy GBs in this dataset having more negative segregation energies, they

also have higher solute concentrations, excepting the perfect twin at 60◦. This is seen most clearly

in the cGB line for 300 K (orange) in Figure 4.3c. This correlation is expected from the inverse

relationship between segregation energy, ECoi
seg , and solute concentration, cGB, in Equation 2.2, and

can be seen clearly by the paraboloid quality of the segregation energy spectra across disorientation

angles in Figure 4.3b with a matching inverse paraboloid in Figure 4.3c.

As demonstrated in Figure 4.3c and expected from Equation 2.2, the concentration of solute

at the GB, cGB, is temperature dependent. Note that segregation energies were calculated at 0 K,

but that Equation 2.2 expects this to be the case. We expect that as the temperature increases, less

favorable atom sites in the bulk of the material are occupied with increasing probability. This causes

the concentration to approach the bulk value of cbulk = 0.2 at.% at elevated temperatures, which is
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shown clearly by the decreasing concentration values at higher temperatures in Figure 4.3c. Thus

the concentrations calculated here match the theory presented in Section 2.3.

The perfect twin GB at a 60◦ twist angle about the [111] disorientation axis is an exception

to most of the trends in the [111] symmetric twist GBs discussed here. For example, it has all

positive segregation energies, shown in Figure 4.3b. This is unsurprising given the structure of the

twin boundary; its density and structure provide no easy sites for segregation as compared with

the bulk (evidenced by its low excess volume), leading to positive segregation energy values in

all cases. The highly symmetric structure also results in a very low GB energy, shown in Figure

4.3a. The perfect twin has lower cGB values than the rest of the [111] symmetric twist GBs at every

temperature, as shown in Figure 4.3c, as a result of its entirely positive segregation energy spectrum.

It is also the only GB in the Homer dataset with a cGB value below cbulk = 0.2 at.%, having a value

of cGB = 0.03 at.% for T = 300K.

It can be seen that aCNA and CSP give similar results at 300 K (compare the 300 K solid and

dotted lines in Figure 4.3c). This was found to be the case for the entire dataset; the correlation

between cGB computed from CSP vs. aCNA GB atoms is plotted in Supplemental Figure S16. Using

CSP nearly always results in a similar, but slightly lower, cGB value since it includes more near-bulk

atoms than aCNA, but the positive correlation means that all trends should remain the same. This

similarity in cGB emerges despite the differences in the distributions shown in Figure 4.3b), though

it is difficult to point to specific aspects of the distributions that lead to bigger differences in cGB

based on CSP and aCNA for some GBs than others.

Having examined the [111] symmetric twist GBs, we now turn our attention to the cGB values

for all 7272 GBs over the 5D space. 82.1% of non-FCC GB atom sites observed in this work, as

determined by CSP, have negative segregation energies, which corresponds to segregation being

favorable. Therefore, a majority of GB sites will accommodate a Co atom in the dilute limit. This

implies that the concentration of Co atoms in the GB, cGB, will be higher than in bulk value of
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Table 4.2 Disorientation axes with the highest mean cGB values, and the number of GBs
that belong to that axis.

Disorientation Axis cGB for this axis # of GBs

[443] 52.7±4.6 at.% 86

[751] 51.4±5.5 at.% 108

[654] 51.3±7.7 at.% 20

Table 4.3 Disorientation axes with the lowest mean cGB values, and the number of GBs
that belong to that axis.

Disorientation Axis cGB for this axis # of GBs

[100] 40.6±6.7 at.% 217

[554] 41.1±8.5 at.% 32

[110] 42.6±10.4 at.% 352

[111] 43.0±11.6 at.% 253

cbulk = 0.2 at.%, and is evidenced by the mean concentration of all GBs in the Homer dataset, which

is cGB = 46.7±7.2 at.% at T = 300K. Supplemental Figure S17 shows cGB vs. GB energy for all

GBs in the Homer dataset. Supplemental Figure S18 shows cGB as a function of disorientation

angle.

The disorientation axes with the highest and lowest mean cGB values are given in Tables 4.2

and 4.3, respectively. It is worth noting that the low cGB disorientation axes in Table 4.3 have

high symmetry, with the exception of the [554] axis. However, it is also worth noting that the

mean cGB for the entire dataset lies within one standard deviation of each of both the low and high

concentration disorientation axes’ mean values given in Tables 4.2 & 4.3, aside from the [443] axis.

Thus, there is considerable overlap in the distributions. Additionally some of the axes listed here

may not be statistically significant enough to be considered outliers, based on their small populations
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(e.g., the [654] GB containing only 20 GBs). So, while they may have more extreme cGB values in

general and also contain some of the GBs with outlying ternary plot locations mentioned in Section

4.2, the actual range of cGB values in all cases is not large and it is difficult to find meaningful trends

among the averaged values of the disorientation axes.

The effect of disorientation is shown in Supplemental Figure S20, where the mean concentrations

of all of the Homer dataset GBs at each CSL are plotted in Rodriguez space.2 Consistent with Table

4.3, the [100], [110], and [111] disorientation axis GBs have the lowest cGB values per disorientation

axis, although the [111] axis has a larger deviation. The smooth variation of cGB in Rodriguez space

is an indicator that there may be broader global trends in cGB, but because these represent averages

of dozens of cGB values for the different boundary planes, any functional would be complex.

The effect of boundary plane is illustrated in Figure 4.4, which shows three small subsections of

the 5D GB space—the a)[100], b)[110], and c)[111] disorientation axis GBs. Shown are volumetric

plots of concentration, cGB, where the z-axis defines the disorientation angle and the x- and y-axes

define a stereographic projection of the boundary plane normal in boundary plane fundamental

zones. The vertices of the plots define high symmetry boundaries; the two vertices that terminate

each arc are symmetric tilt boundaries about the disorientation axis and the other vertex defines

symmetric twist boundaries about the disorientation axis. The [111] symmetric twist boundaries

examined in Figure 4.3 correspond to the points along the red line in Figure 4.4c.

All three plots in Figure 4.4 show smooth but unpredictable variation of the cGB from areas

with high cGB to other areas of low cGB. We refer to this as a complex or rugged landscape [82].

This means that while cGB varies smoothly, there are many irregular local extrema and a lack of

symmetry or global trends. Of the three axes shown in Figure 4.4, the c) [111] disorientation axis

exhibits the largest range of cGB. This is perhaps unsurprising because it has the low energy twin

2Rodriguez space is also known as Rodriguez-Frank space and is a fundamental zone where the CSL values of

cubic-cubic disorientation GBs are defined. It is a 3D parameterization of disorientation, and as such is often used to

aid in visualization of 5D datasets of GBs.
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GB at the top of the red line, and Table 4.3 shows that it has a large standard deviation of 11.6 at.%.

Additionally, as noted above, GBs from the three axes in Figure 4.4 make up many of the outliers in

the ternary plot in Figure 4.2b, which may be related to their low mean cGB values (noted in Table

4.3) as compared to the global mean concentration of cGB = 46.7 at.%. However, as stated earlier,

not every GB from these axes will be an outlier.

While there are not broad global trends that we can extract from these few subspaces analyzed,

these plots illustrate the effects of disorientation and boundary plane on changes to segregation

energy spectra in grain boundaries. The segregation energy spectra or cGB values computed in

this work could be used to develop a model for segregation across the 5D space (e.g., using an

expansion [83] or an interpolation function [84]). Such a model could subsequently be used to

examine the effects of texture or estimate segregation for a GB of arbitrary character.

4.4 Overall trends in dataset

The broad effect of GB crystallographic character on GB segregation trends has to this point been

unknown and was recently listed as a future perspective worth considering [48]. The plots of cGB in

Figure 4.4 and Supplemental Figure S19 show that segregation varies smoothly throughout the 5D

crystallographic space. Unfortunately, the landscape produced in this work is rugged and beyond

the averaged trends observed in the Rodriguez plot in Supplemental Figure S20, there is no obvious

global trends of segregation as a function of 5D crystallographic character. This is futher illustrated

in Figure 4.5, where the scatter in the data makes it hard to observe any obvious trend.

This stands in contrast to a variety of experimental reports that show trends of grain boundary

enrichment as a function of misorientation angle [20, 43, 63, 85]. While these various reports do

consistently show different results for low vs. high angle GBs, the trends at high angles are highly

variable between the different reports, which could be attributed to the comparison of different
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materials or different sets of GB types. Finally, most involve small samplings of GBs, likely due to

the difficulty in experimental measuring GB enrichment in a large population of GBs.

It is not clear at this point whether the various sources of information are in conflict or in

support of the results presented here. It is certain that at least some of the differences between

the reports should be attributed to different materials, structures, and their segregation tendencies.

But the variation due to GB type could be the sign that there are local but not global trends in GB

concentration as indicated by the present work. Additional experiments will be required to verify

whether their limited data is representative of broader global trends or whether they have extracted

local trends.

To determine whether we have missed a possible global low vs. high angle GB characterization

often reported in the literature, we fit GB concentration as a function of disorientation angle for

GBs with angles less than 15°. These fits are provided in Supplemental Figure S18 where it can be

seen that R2 values for the low angle fits are all less than 0.3. This is insufficient to verify a global

low vs. high angle trend, so once again, it may be that there are local but not global trends even in

this simplified characterization. The slightly better fit in the fixed width GB atom selection once

again highlights the need to further understand the effect of GB atom selection. More importantly,

more low angle data would be required to definitively say that the computational data does or does

not match the experimental observations; only 6 unique misorientations over 250 boundary planes

exist in the Al dataset.

However, given that cGB and the segregation energy spectrum do appear to correlate with GB

energy and GB excess volume at the local scale, as illustrated in this work by the [111] symmetric

twist GBs in Figure 4.3 and by others [27, 56, 65, 85–87], we examine these correlations further. In

addition, segregation energies appear to be correlated with GB energy across the whole dataset as

illustrated in Figure 4.1. This is supported by observations from Huber et al. in their exploration of
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Table 4.4 Estimate, standard error (SE), and p-value of variables of the following linear
model used to predict cGB in at.%: cGB = x0 + x1 · γ + x2 ·Vexc + x3 ·θdis.

Variable Estimate SE p−value

x0 7.08 0.496 1.33×10−45

x1 0.175 0.00154 0

x2 -142 1.63 0

x3 0.00504 0.00410 0.220

Σ5 GBs, who found that segregation energy per site depended on excess volume and coordination

number at the site.

Given these apparent correlations, we created a simple linear model to predict cGB. We include

disorientation angle to search for possible crystallographic dependence as well as two variables

known to correlate with segregation, GB energy and GB excess volume. A plot of these variables,

excluding disorientation angle, is shown in Figure 4.6. The linear model is given in Table 4.4. The

model has an R2 value of 0.642 and a root mean squared error (RMSE) value of 0.043 at.%. In

contrast, a linear model of cGB as a function of GB energy alone, shown in Supplemental Figure S7,

has an R2 value of 0.271. A plot of cGB vs. disorientation angle is shown in Supplemental Figure

S18 to confirm the lack of a global correlation with θdis found in the model; the p-value on the

coefficient is 0.217.

Figure 4.6 and the linear model given in Table 4.4 confirm the previously shown dependence

of segregation on GB energy, γ , and GB excess volume, Vexc, for GBs sampled over the entire 5D

space. However, the linear model for cGB has almost no dependence on the disorientation angle,

θdis.

This lack of a relationship with the disorientation angle as well as the rugged landscape in 5D

space shown in Figure 4.4 make it difficult to understand how to optimize GB segregation energy

characteristics through texture control or GB engineering. It may be that sufficient advantage can be
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obtained through traditional GB engineering efforts to obtain large populations of low-angle GBs or

Σ3 and other special CSL GBs to obtain enhanced properties, as in [43, 53, 85]. GB engineering for

segregation through the use of other types of boundaries remains a challenge to be solved.
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Figure 4.1 Maximum (red), mean (green), and minimum (blue) values of the segregation
energy, ECoi

seg , spectrum for each GB vs. their GB interface energy, γ . Linear fits for each
are shown in black. The mean segregation energy for the [111] symmetric twist GBs are
shown with black “x” markings. The range of segregation energies increases with GB
energy, and the mean segregation energy has an inverse relationship with increasing GB
energy.
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a)

b)

Figure 4.2 a) Histograms of fseg (blue), fanti (red), fnegl (grey) for GB atoms as determined
by CSP. The mean of each histogram is marked with a dashed vertical line of a correspond-
ing color. Bin size is 0.005 eV. b) Ternary scatter plot of the same data, colored by GB
energy, γ . Since the sum of these values is 1 (i.e., fseg + fanti + fnegl = 1), they lie on a 2D
plane in 3D space.
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Figure 4.3 a) Plot of GB energy ( mJ
m2 ) and GB excess volume (Å3

Å2 ) as functions of disori-
entation angle (◦) for the [111] symmetric twist GBs. b) Plot of the segregation energy
(eV) spectra for GB atoms as determined by CSP (orange) and aCNA (blue) in the [111]
symmetric twist GBs, against their disorientation angles. Aside from the perfect twin
GB at 60◦ twist, their segregation energies are almost always negative, or favorable to
segregation. The “negligible segregation" (−0.0875 eV ≤ ECoi

seg <+0.018 eV) limits are
shown with dotted black lines. c) Concentration of solute at the GB, cGB (at.%), as a
function of disorientation angle (◦) and temperature for the [111] symmetric twist GBs,
for CSP (solid) and aCNA (dotted). This is calculated using Equation 2.2. The bulk
concentration, cbulk = 0.2 at.%, is shown with a solid black line.
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Figure 4.4 Disorientation angle vs. boundary plane volumetric plots of concentration in
the GB, cGB, with isosurfaces colored by different cGB values for 3 different disorientation
axes: a) [100] b) [110] c) [111]. These plots are equivalent to stacking boundary plane
fundamental zone plots with the same disorientation axes. The [111] symmetric twist GBs
are located along the vertical red line in plot c), with the perfect twin located at the top,
corresponding to the darkest blue contour, and the lowest cGB.
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Figure 4.5 Disorientation angle vs. concentration in the GB, cGB at 300 K using CSP for
GB atom selection.
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Figure 4.6 Concentration of solute at the GB, cGB, as a function of GB excess volume
and GB energy. The following are projected onto their corresponding planes: cGB vs. GB
energy (green), cGB vs. GB excess volume (orange), and GB excess volume vs. GB energy
(blue).



Chapter 5

Conclusions

In this work, we examined grain boundary segregation energy spectra of Co in 7272 Al GBs that

comprehensively sample the 5D space of crystallographic character. This included calculating

segregation energies for more than 70 million possible sites.

Verification of the dataset involved determining how to identify bulk vs. GB atoms. While aCNA

is often used for bulk determination in GBs, the number of non-negligible segregation energies that

were excluded by aCNA categorization caused us to consider CSP as an alternative, with a cutoff of

0.1 for bulk determination. The differences between these two methods are illustrated in Figures 3.1

and 3.2 and discussed further in Supplemental Section S1. The resulting segregation energy spectra

from both methods were also compared in Figures 3.4, 3.5 and 4.3b. It was determined that they

give similar answers despite the reduced number of atoms included by aCNA, as illustrated in a

comparison of cGB values calculated by both CSP and aCNA shown in Supplemental Figure S16.

However, the small differences point to a need for the community to address GB atom selection

when examining segregation energy spectra and consider possible alternatives such as a fixed width

approach, which best matches the low disorientation angle cGB expectations (c.f. Supplemental

Figure S18). Such efforts by the community may help determine the optimal approach to extracting

segregation energy distributions from both bicrystal and polcrystalline simulations. Verification

46



47

also involved removing invalid segregation energy calculations that did not converge to 0 eV at

large distances from the GB, since they do not match the expected behavior [62, 63], and GBs with

unreasonably low segregation energies. The complete list of GBs excluded from analysis in this

work is given in Supplemental Table S3.

Validation involved comparing the computed GB segregation energies to similar bicrystal and

polycrystal computational studies. In Figure 3.4 it was shown that a subset of the data produced in

this work is similar to the work of Huber et al. in [31]. The aggregated spectrum of segregation

energies in the Homer bicrystal GB dataset is also similar to the segregation energy spectrum in

polycrystals obtained by Wagih et al. in [27], as shown in Figure 3.5 and Table 3.1. Both validation

comparisons are favorable, but some minor differences between the polycrystal and bicrystal spectra

raise a number of questions, posed in Section 3.2, that are worth resolving and that could impact the

quality of an aggregate segregation energy spectrum.

Several insights arose from different methods of analysis. Figure 4.1 shows that as GB energy

increases, Co segregation in Al GBs becomes more favorable. This is supported by the increase of

cGB with GB energy shown in Figure 4.2b, Figure 4.6, and Supplemental Figure S17. Additionally,

all of the GBs have higher cGB than cbulk, except the [111] symmetric twist perfect twin GB.

Figure 4.2b shows that most GBs have a preference for segregation, evidenced by their proximity

to the “all segregating” corner of the plot. However, there are some some interesting GBs that

are outliers, many of which have [100], [110], and [111] disorientation axes. The most extreme

outlier is the [111] twin GB that is located at “all anti-segregating”. In addition, the temperature

dependence of cGB was demonstrated in Figure 4.3c, which shows that cGB drops dramatically at

higher temperatures.

In general, it was found that cGB has smooth variation across the 5D space of crystallographic

character (see Figure 4.4 and Supplemental Figure S19). Additional examination confirmed that cGB

can be described in a linear model with GB energy and GB excess volume (see Figure 4.6 and Table
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4.4), which linear model finds no correlation with disorientation angle (see Supplemental Figure

S18) across the 5D space. cGB does not have an obvious functional form in 5D crystallographic

space, which is shown by the rugged landscapes in Figure 4.4 and the lack of obvious trends in

Supplemental Figure S19. This emergence of local but not global trends may or may not be inline

with the limited experimental datasets available in the literature, as discussed above; additional data

will be required to verify such conclusions.



Appendix A

Comparison of bulk atom selection by aCNA

and CSP

To contrast the differences between bulk atom selection by aCNA and CSP, we examine a few

different items. First, we note that 90% of the atoms classified as bulk FCC by aCNA have CSP

values less than 0.1, as illustrated in Supplemental Figure A.1. However, the remaining 10% of

atoms classified as bulk FCC by aCNA can have CSP values as high as 5, indicating the tendency for

aCNA to tolerate some noise in the classification of environments as as the FCC structure. Second,

we present a contingency table in Figure A.2 showing that of the 70 million atoms simulated, only

17% (11.5 million) were classified by aCNA as GB atoms, compared to the 26% (18 million)

atoms classified as GB atoms by CSP. This also results in a larger bulk atom population for aCNA

than CSP. The segregation energy spectrum for these bulk atoms by both classification schemes

is illustrated in Figure 3.2. The aCNA spectrum is slightly wider than the CSP spectrum because

atoms with larger structural distortions and therefore a wider distribution of segregation energies

are categorized as FCC by the aCNA classifier. In short, the aCNA and CSP give fairly similar

results, with aCNA being more restrictive in its selection of GB atoms and therefore leaving out

49



50

some atoms with non-negligble segregation energies. On the other hand, classification of bulk atoms

by CSP ≤ 0.1 results in a more generous selection of GB atoms that capture the segregation energy

deviations left out by aCNA. But, this comes at the cost of having more GB atoms with very small

segregation energies. The effect of these near-negligible segregation energies on the cGB in the CSP

spectra is shown in Supplemental Figure B.9; CSP predicts lower cGB values, however any trends in

cGB appear to be the same whether CSP or aCNA were used due to the positive correlation between

the two methods. Perhaps a more restrictive CSP value might bridge this difference better but we do

not attempt to fine tune the CSP value in this work.

Figure A.1 Logarithmic scale of the distribution of centrosymmetry parameters (CSP)
for FCC atoms as determined by aCNA. The bin size is 0.1. Only 7% of FCC atoms
determined by aCNA have a CSP greater than 0.1.



51

CSP

GB Bulk

aCNA
GB 11.5M 0

11.5M

17%

Bulk 6.5M 51M
57.5M

83%

18M

26%

51M

74%

Figure A.2 Contingency table comparing CSP and aCNA bulk atom determination. All
atoms determined by aCNA to be bulk are also classified as bulk by CSP, although aCNA
includes 6.5 million additional atoms in the bulk category.

Figure A.3 Distribution of segregation energies for FCC atoms as determined by CSP.
Different intervals are shown. This work uses the 95% interval for the limits of the
“negligible segregation” category (−0.040 eV ≤ ECoi

seg <+0.0115 eV).
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Figure A.4 Distribution of segregation energies for non-FCC atoms as determined by CSP.
Different intervals of the distribution of segregation energies for FCC atoms as determined
by CSP are shown. This work uses the 95% interval for the limits of the “negligible
segregation” category (−0.040 eV ≤ ECoi

seg <+0.0115 eV).



Appendix B

Supplemental Figures

Figure B.1 Mean Squared Displacement distribution of all atoms (blue) all FCC atoms as
determined by aCNA (orange), and all non-FCC GB atoms (green). All of the distributions
are approximately log normal.

53



54

Figure B.2 Scatter plot of mean squared displacement (MSD) vs. segregation energy
(ECoi

seg ) for all non-FCC atoms. This scatter plot was used to decide on a (later discarded)
“high-MSD” cutoff for atoms to remove from analysis, noting that the approximately
skew-normal distribution of segregation energies was interrupted mostly by atoms with
MSD > 10−4, which was decided somewhat arbitrarily to be the “high-MSD” cutoff value
considered in this work.
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Figure B.3 A [100] symmetric tilt GB with an array of edge dislocations with all atoms,
and bulk atoms cut out using 4 different techniques: CSP ≤ 0.3, CSP ≤ 0.1, CSP ≤ 0.01,
and aCNA. The right side also cuts out atoms according to the high-MSD cutoff of
10−4. Red atoms have positive segregation energies, blue have negative, and grey have
negligible, according to the colorbar shown. On the right, using the combination of high-
MSD and CNA, only one atom per structural unit [88–94] in the GB remains to analyze,
giving the impression that the entire GB is unfavorable to solute segregation (red coloring
corresponds to anti-segregation), when other removal methods show that the GB contains
many other sites favorable to solute segregation (blue colored atom sites). Such aggressive
atom removal via aCNA and MSD caused the authors to consider other methods of atom
removal, discussed in Sections 3.1 and 3.1.
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Figure B.4 Spectrum of segregation energies for the entire Homer GB dataset [52], with all
atoms from GBs below several different cutoffs removed. A high concentration of extreme
segregation energy values were found in several GBs. The authors chose to remove 18
GBs.

Figure B.5 The spectrum of segregation energies aggregated from all GBs simulated in
this work, including bulk atoms (blue), with all bulk atoms removed via aCNA (orange),
and via CSP (green). The dotted line is the polycrystal spectrum from Wagih et al. in [27].
Compare to Figure 3.5

.
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Figure B.6 Minimum (blue), maximum (red), and mean (green) of segregation energy
ECoi

seg vs. their disorientation angle. [111] symmetric twist GBs marked by black “x”s.
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a)

b)

Figure B.7 Ternary Plot for CNA.
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Figure B.8 Ternary Plot for CSP with the [111] disorientation axis GBs shown in black.

Figure B.9 Correlation plot between cGB as calculated using GB atoms determined by
aCNA (x-axis) and CSP (y-axis) for all 7272 GBs. CSP bulk determination includes more
negligibly segregating atom sites, and therefore has a lower cGB than the corresponding
value for aCNA bulk determination, with a correlation of cCSP

GB = .8caCNA
GB .
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Figure B.10 Concentration of solute at the GB, cGB (shown in fractions, not at%), vs. GB
energy, γ , for all GBs in the Homer dataset [52] at T = 300 K, for aCNA (red) and CSP
(blue) bulk atom determination. Density contours overlaid, with linear fit line with R2

values indicated in the legend. All GBs except the [111] symmetric twist perfect twin have
a higher concentration, cGB, than cbulk=0.2at%, shown with a black dotted line.

Figure B.11 cGB (CSP) vs. disorientation angle (◦) for 9 special types of GBs: the
symmetric twist GBs (red) and the symmetric tilt GBs (green + blue) for the [100], [110],
and [111] disorientation axes. None of these subsets demonstrate the general trends very
well, but the [111] symmetric twist GBs are noted in the main body of this paper for
illustration purposes. (Note: given are the disorientation angles about the disorientation
axes but for the symmetric tilt GBs, their tilt angle is a derived quantity.)
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Figure B.12 Multiple views of cGB (100×at%) in Rodriguez-Frank space. The following
disorientation axes are found along the corresponding (color)ed lines: [100] (red), [110]
(green), [111] (blue).

Figure B.13 Concentration of solute at the GB, cGB, as a function of disorientation angle.
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Table B.1 GBs excluded from the Al Homer dataset [52]. The CSL value, disorientation
(dis.) angle and axis, and boundary plane normals from both sides of the grain NA / NB
are provided, along with the reason the GB is excluded from the analysis.

CSL Dis. angle and axis NA / NB Reason excluded

Σ145h 56.5◦ [652] (29165153)/
(
5453

)
Refill Issues

Σ265a 5.0◦ [100]
(
03756

)
/
(
03259

)
Refill Issues

Σ265a 5.0◦ [100]
(
265293379

)
/
(
265259403

)
Refill Issues

Σ265a 5.0◦ [100]
(
265239727

)
/
(
5335149

)
Refill Issues

Σ265a 5.0◦ [100]
(
2652151235

)
/
(
2651071249

)
Refill Issues

Σ303a 24.8◦ [321]
(
5885307

)
/
(
106191239

)
Refill Issues

Σ441o 49.2◦ [1144]
(
269212638

)
/
(
269638212

)
Refill Issues

Σ647q 60.3◦ [991]
(
141185396

)
/
(
185141396

)
Refill Issues

Σ943l 38.4◦ [1011]
(
11776303

)
/
(
135132275

)
Refill Issues

Σ999ae 58.5◦ [161110]
(
72161587

)
/
(
68562591

)
Refill Issues

Σ131e 60.3◦ [554]
(
2111471211

)
/
(
1157391201

)
Conv. Issues

Σ131e 60.3◦ [554]
(
97703869

)
/
(
833137739

)
Conv. Issues

Σ265a 5.0◦ [100]
(
26563389

)
/
(
26529393

)
Conv. Issues

Σ549h 32.4◦ [1311]
(
1395155

)
/
(
14391121

)
Conv. Issues

Σ55b 38.6◦ [211]
(
393870

)
/(11088) Low Eseg Values

Σ55c 57.6◦ [551]
(
672670

)
/
(
43295

)
Low Eseg Values

Σ55c 57.6◦ [551]
(
10911795

)
/
(
917185

)
Low Eseg Values

Σ73b 13.4◦ [110]
(
192119114

)
/
(
16996162

)
Low Eseg Values

Σ73b 13.4◦ [110]
(
23589119

)
/
(
21165169

)
Low Eseg Values

Σ73e 48.9◦ [430]
(
507311331

)
/
(
543359199

)
Low Eseg Values

Σ83d 57.2◦ [331]
(
259681685

)
/
(
42965901

)
Low Eseg Values



63

CSL Dis. angle and axis NA / NB Reason excluded

Σ145h 56.5◦ [652]
(
609515467

)
/
(
477695379

)
Low Eseg Values

Σ145h 56.5◦ [652]
(
2955123

)
/
(
5345119

)
Low Eseg Values

Σ197g 54.1◦ [991]
(
2911141

)
/
(
20557203

)
Low Eseg Values

Σ197g 54.1◦ [991]
(
248335586

)
/
(
215118676

)
Low Eseg Values

Σ197g 54.1◦ [991]
(
111451499

)
/
(
30745607

)
Low Eseg Values

Σ201a 8.1◦ [110]
(
24140197

)
/
(
22019223

)
Low Eseg Values

Σ201a 8.1◦ [110]
(
779377103

)
/
(
763361217

)
Low Eseg Values

Σ215e 45.9◦ [971]
(
189323345

)
/
(
99101

)
Low Eseg Values

Σ265a 5.0◦ [100]
(
2656891007

)
/
(
2655991063

)
Low Eseg Values

Σ283 f 44.7◦ [910]
(
515107273

)
/
(
53125179

)
Low Eseg Values

Σ303a 24.8◦ [321]
(
46151139

)
/
(
5019367

)
Low Eseg Values



Data Availability

The datasets for the current study are available in the Mendeley Data repository. The GB structures

analyzed in the study are available at https://doi.org/10.17632/4ykjz4ngw [52, 57] and the dataset

containing all of the per GB quantities computed in this work, including the cGB values and a

histogram of each GB’s segregation spectrum, is available at https://doi.org/10.17632/rf3bt5f4hd

[95].
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