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ABSTRACT

Quantum Game Theory and Ideal Quantum Strategies

Noah Dane Hebdon
Department of Physics and Astronomy, BYU

Bachelor of Science

Game theory is the study of strategic interactions between rational actors. Classical games
within this field, such as the penny flip and the prisoner’s dilemma, may be modeled with quantum
systems, where select players leverage principles like superposition and entanglement to maximize
their payoff. Such games offer a platform to investigate notions of “quantum advantage” over
classical strategies. Presenting a striking example of quantum advantage, Meyer [1] claims that
quantum strategies guarantee victory against a classical player within the PQ penny flip game, which
he devised. Using IBM quantum simulators [2], I first investigate whether this quantum advantage
is solely attributable to the use of quantum strategies. I then generalize Meyer’s quantum strategy to
games with an arbitrary number of plays and to games featuring abstract multi-sided objects. I also
demonstrate that in a variation of Meyer’s three-play game biased in favor of the classical player, no
quantum strategy may ensure victory. Throughout this work, I show that quantum advantage within
the PQ penny flip game is genuine, although not absolute.

Keywords: quantum game theory, penny flip game, quantum simulators, IBM quantum computing,
quantum computing applications
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Chapter 1

Introduction

1.1 Game Theory

Game theory, first formulated in the mid-twentieth century, concerns the study of strategic interaction

between rational actors [3]. These actors, with access to a defined set of strategies for a given

interaction, attempt to maximize their payoff by encouraging an outcome with a pre-established

reward. These interactions include games such as the penny flip game, the prisoner’s dilemma, or

even chess.

By analyzing various strategies within these small confrontations, economists, political scientists,

and military strategists can maximize their payoff, leading to victory in the stock market [4], on the

campaign trail [5], and even on the battlefield [6]. As such, the scope of game theory’s application

is wide.

1



2 Chapter 1 Introduction

1.2 Quantum Computing

1.2.1 Overview

In recent years, the application of quantum mechanics to computational challenges has aroused

great excitement [7]. A quantum system refers to any microscopic system whose states take on

only discrete or quantized values. For example, the spin of an electron is described by quantum

mechanics because it may only take on discrete values of ±1/2. In contrast, macroscopic objects can

“spin” or self-rotate at any value of angular momentum.

In many instances, the development of quantum computing has been validated. Shor’s quantum

algorithm, for instance, solves the problem of prime factorization exponentially faster than its

classical counterpart [8]. Grover’s algorithm, a quantum search algorithm for unsorted databases,

outperforms its classical equivalent by a quadratic amount [9]. Quantum supremacy, at least in some

cases, seems unquestionable, motivating the development of other methods of quantum computation

and hardware as well as the widening of its application.

1.2.2 IBM Quantum Platform and Qiskit

Through their "Quantum Platform," IBM is working to make quantum computing accessible to

anyone with a laptop. With a Python package known as Qiskit, any enthusiast is able to utilize

IBM’s simulators and superconducting quantum computers. To send computational tasks to some

piece of hardware, a user simply constructs a quantum circuit designed around their computational

issue. In general, the user specifies the number of qubits - the quantum-equivalent of a bit - needed

for their computation. Each qubit is represented as a line at the top of a quantum circuit, as shown

in Figure 1.1. The user also specifies the number of classical bits needed to store the results of any

measurements conducted on the qubits in question. These are labeled as A and B in Figure 1.1.

Throughout a computation, time moves from left to right as a user applies unitary operators to the
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qubits. These operators, referred to as "gates," are used to manipulate the qubits. The measurement

gates determine the state of a qubit at a certain point in time and store its value is one of the bits

mentioned before.

Figure 1.1 Example Circuit from IBM Quantum Platform

These circuits can be designed to handle any number of computational tasks. This is due to the

existence of universal quantum gates, which can be used to approximate any unitary operation on a

quantum system to arbitrary accuracy. Quite simply, the existence of a universal set of quantum gates

allows any quantum circuit or quantum algorithm to be constructed. As we will show, these circuits

are particularly useful when modeling games and other competitive exchanges of information.

1.3 Quantum Game Theory

One development within quantum computing was instigated in 1998 by D. A. Meyer. Ultimately,

he built a bridge between game theory and quantum computing, asserting that one may not only

successfully represent interactions between rational actors with quantum systems, but one may

find promising new strategies in these systems as well [1]. These new strategies incorporate

quantum principles of superposition, entanglement, and uncertainty, ultimately providing a quantum
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player with access to strategies that a classical player cannot claim, conferring upon them a certain

"quantum advantage."

Meyer first introduced quantum game theory with a simple penny flip game; a game lucid

enough to clearly illustrate the advantages of employing quantum strategies. Other games have also

been “quantized,” such as Prisoner’s Dilemma [10] and even Rock, Paper, Scissors [11]. In such

games, however, the plays do not build off one another, and the players do not manipulate a central

object, making the application of superposition and other quantum principles more difficult. The

current work is centered around the penny flip game, its quantum representation - the PQ penny

flip game - first devised by Meyer, and the advantage a quantum player enjoys. Some of the results

found in the following sections have been presented at conferences of the American Physical Society

and the Utah Academy of Sciences, Arts, and Letters and have also been published separately [12].



Chapter 2

Methods

We begin with the classical description of the penny flip game in Section 2.1.1. Then, an introduction

to quantum principles will be presented, followed by details regarding the quantum representation

of the penny flip game in Section 2.1.2. Then, in Section 2.2, Meyer’s findings will be critically

discussed and followed by an analysis of the limitations of quantum advantage.

2.1 Penny Flip Game

2.1.1 Classical Penny Flip

The classical penny flip game involves two players which we will call C and Q for later convenience.

There is a penny between the two players, whose initial state is heads, which is known to both

participants. The penny, however, is then placed in a box and hidden from both players. Both

players have access to the following strategies: Flip the penny so that the other side is facing up

(F); Don’t flip the penny (N). After the penny is placed in the box, one game includes three moves,

including an opening move from Q, a move from C, and a closing move from Q. After these three

moves, the penny is revealed. If the final state of the penny is heads-up, then Q wins. Otherwise, C

5



6 Chapter 2 Methods

wins. In this case, each player has a 50% chance of victory. With the details of the game set forth,

we now turn to an explanation of its quantum formulation.

2.1.2 PQ Penny Flip

In classical descriptions, any state may be represented as a collection of bits. For our penny, the

states Heads (|H⟩) and Tails (|T ⟩) can be defined as follows, utilizing Dirac notation and matrix

representations [13]:

|H⟩= |0⟩=

1

0

 , |T ⟩= |1⟩=

0

1

 . (2.1)

In quantum mechanics, however, each state is represented as a linear combination of basis states.

Generally, a complex two-dimensional vector space with orthonormal basis vectors |0⟩ and |1⟩ is

used within quantum computing. Our case is no different. We can then represent our penny |Ψ⟩ in

this complex vector space as follows, where α and β are complex numbers:

|Ψ⟩= α |H⟩+β |T ⟩ . (2.2)

With this description, use is made of superposition, where a probability (|α|2 or |β |2) is

associated with each basis state. For this reason, it must be the case that

|α|2 + |β |2 = 1. (2.3)

The system, however, exists between these two basis states until measured. Imagine our penny

standing on its edge rather than being purely characterized as heads or tails. In a classical setting,

any state is manipulated with matrix multiplication. For example, the classical play F is applied to

|H⟩ as a matrix operation, producing |T ⟩:

F |H⟩= |T ⟩ or

0 1

1 0


1

0

=

0

1

 . (2.4)
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The other available classical play N is given by the identity matrix and does not alter the state of

the penny:

N |H⟩= |H⟩ or

1 0

0 1


1

0

=

1

0

 . (2.5)

In a quantum setting, similarly, operators must take a physical state as an input and then produce

a physical state as an output. In other words, the magnitude of a vector in the complex vector

space cannot be compromised by any application of an operator. As such, any operator must be

unitary, meaning that its inverse must be equal to its conjugate transpose. A quantum play could

then be given by a Hadamard matrix, an intrinsically quantum matrix that produces superposition in

a system. Such matrices have rows that are mutually orthogonal, have entries limited to ±1, and

may be devised with the Paley construction [14]:

UH =
1√
2

1 1

1 −1

 . (2.6)

It is important to note that players limited to classical strategies may select only one of two

plays (F or N), both of which are inherently unitary, while a quantum player has access to unlimited

plays, given that their matrix equivalent is unitary.

Meyer showed that the application of the above quantum strategy (UH) renders victory for our

quantum player regardless of the play that is made by our classical player [1]. This is because

the Hadamard operator, when applied as the opening and closing moves of the penny flip game,

ultimately eliminates the action of the classical player. This is shown as follows:

UHFUH |H⟩= |H⟩ , (2.7)

UHNUH |H⟩= |H⟩ . (2.8)

Such a result from Meyer, it seems, is a mighty display of the advantages of quantum information

exchange over its classical counterpart. However, could one more appropriately attribute the
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advantage not to quantum strategies, but to the arbitrary construction of the penny flip game? After

all, the quantum player is given two turns, including the opening and closing plays, while the

classical player is given only one. Such is the central question of this work.

2.2 Verification of Quantum Advantage

To verify that the advantage of our quantum player is actually derived from quantum strategies,

the construction of the penny flip game was altered, and ideal quantum strategies identified. The

probability of quantum victory was then assessed to determine whether quantum advantage was

preserved despite added biases in favor of our classical player. These biases included the alteration

of the initial state of the penny as well as the number of moves granted to each player.

2.2.1 Initial Tails State

Firstly, the initial state of the penny was altered to begin as |T ⟩ rather than |H⟩, seemingly giving

the classical player a subtle advantage that the quantum player once enjoyed. An ideal quantum

strategy in response to this was identified with ease:

UQ1 =
1√
2

1 −1

1 1

 . (2.9)

When applied, this strategy guarantees quantum victory as before, strengthening the assumption

that the advantage of our quantum player is derived primarily from the use of quantum strategies:

UQ1FUQ1 |T ⟩= |H⟩ , (2.10)

UQ1NUQ1 |T ⟩= |H⟩ . (2.11)
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To model this situation and verify our analytic solution, Qiskit was utilized to create a quantum

circuit. The reader may refer to Section A.0.1 for the associated code. After running on an IBM

quantum simulator, the circuit produced a result of 100% chance of quantum victory [2].

2.2.2 Two Plays to Classical Player

The game was then further biased against our quantum player. Specifically, the classical player was

granted the opening and closing plays, leaving our quantum player with only one move. In this case,

however, the beginning state of the penny was |H⟩ once again. Within this game construction, two

scenarios were investigated: one in which there was a 50% chance of the classical player flipping

the penny during each of their turns and one in which the classical plays were correlated. We begin

by considering the former.

Uncorrelated Plays

For this portion, Qiskit was employed in the identification of an ideal strategy. Further details are

given in Section A.0.3. As shown in Figure 2.1, the quantum circuit for this case included one

qubit to function as the penny. Three operators or gates were also included to function as each play

in the game. The gate below labeled as "Unitary" on the line associated with the "Penny" qubit

signifies the quantum play. The two blue "+" operators, also known as Controlled-Not or CNOT

operators, function as the classical moves. At the very end of the circuit, the penny is measured,

indicated by the black measurement icon, while its final state is stored in a classical bit on the

bottom line, indicating the game’s victor. Also, notice the other two qubits C1 and C2 included

above the "Penny" qubit. These qubits function as random number generators to approximate the

behavior of a classical player that chooses randomly between the F and N plays. Using Hadamard

operators, indicated by the blue “H” icons, both C1 and C2 are placed in a superposition of both |0⟩
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and |1⟩. They are then individually measured using the CNOT gates, possessing a 50% of being |0⟩.

Based on the outcome of each measurement, the penny is either flipped or not affected.

Figure 2.1 Quantum Circuit for Uncorrelated Classical Plays

For this scenario, the circuit was run one hundred times with a unique and randomly produced

quantum play. With the intent of identifying the quantum operator that produced the greatest

likelihood of quantum success, results for each quantum operator were compared. For each of the

one hundred operators, however, the simulator ran the circuit one hundred times and produced the

probabilistic results illustrated in Figure 2.2:
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Figure 2.2 Results for Uncorrelated Classical Plays

The leftmost column relates to the |0⟩ or |H⟩ state, and the other to the |1⟩ or |T ⟩ state. The

magnitude of each column reflects the probability that each state is found to be the final state of

the penny. Clearly, the likelihood of quantum victory is 50%, regardless of the quantum operator

utilized. This makes sense. The best the quantum player can do is put the penny into a superposition

of |H⟩ and |T ⟩, making the probability of each state 50%. Had they been given the last play, they

could also pull the penny out of the superposition into the |H⟩ state as before. Hence, in this case,

any quantum operator produces the maximum chance of quantum victory, which is 50%. With this

result, it appears that the advantage of two plays outweighs the advantage provided by quantum

strategies.

Correlated Plays

We now consider the case where the classical plays are correlated. It should be noted that correlated

plays may be identical to one another or the opposite of each other. Of these two cases, we first

consider the case where the classical plays are the same. Hence, the classical plays are either both

F or both N. Removing the C2 qubit and having C1 act as the control qubit for both CNOT gates
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allows us to represent the scenario where the plays of the classical player are identical. The resulting

quantum circuit was constructed with the code found in Section A.0.4 and is given as follows:

Figure 2.3 Quantum Circuit for Correlated Classical Plays - Identical Plays

Once again, the circuit was run one hundred times on an IBM quantum simulator, with a

randomly produced unitary operator acting as the quantum play. Then, the operator producing

the greatest chance of quantum victory was recorded. It was found that a quantum strategy does

exist that guarantees quantum victory in the case where the plays made by the classical player are

identical. The ideal strategy is given as follows:

UQ2 =

−0.59021396+0.80351867i −0.02145772−0.07446331i

0.05446345−0.05512667i −0.13393704−0.98795529i

 (2.12)

For verification, this operator was inserted as the “Unitary” gate on the quantum circuit of Figure

2.3 and run another hundred times. The code developed for this step is given in Section A.0.5. For

each iteration, a 99% chance of quantum victory was discovered.
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Figure 2.4 Results for Correlated Classical Plays - Identical Plays

In the other case of correlated classical plays, the opening and closing moves are dissimilar.

The quantum circuit was only slightly modified to discover an ideal quantum operator. Specifically,

an X-gate was added to the C1 qubit path between the two CNOT gates. This guarantees that the

opening and closing classical plays are opposites.

Figure 2.5 Quantum Circuit for Correlated Classical Plays - Opposite Plays

Again, the circuit was run one hundred times with a unique and random quantum operator. From

the one hundred histograms produced, an ideal quantum operator was identified:
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UQ3 =

−0.18287237−0.00699522349i −0.38743878+0.903548534i

0.35143341+0.918152122i −0.18300595−0.000236252265i


This ideal operator was then plugged directly into the circuit of Figure 2.5 and run another

hundred times (A.0.5). The verified histogram, showing a 96.7% chance of quantum victory, was

produced as shown in Figure 2.6. We may assume that if more than one hundred unique quantum

plays were developed, a strategy guaranteeing greater than a 96.7% chance of quantum victory

could be discovered.

Figure 2.6 Results for Correlated Classical Plays - Opposite Plays

So, in the case where the classical player has both the opening and closing moves, the quantum

player has a probability of victory of 50%-100%, ultimately depending on whether the classical

moves are correlated. In this case, it does not matter whether F or N is played first by the classical

player. It should also be noted, however, that in the case of correlated classical plays, a quantum

player may only increase their chance of victory to nearly 100% if they know which of the two ideal

operators to employ. That is, they must have some valid prediction as to the behavior or strategy
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of the classical player. Guessing randomly between the two strategies found above in the case of

correlated classical plays, the quantum player has only a 50% chance of victory.

Density matrices were also employed in the course of this work to show that when the classical

player is granted the opening and closing moves, the quantum player is unable to guarantee victory

for herself with just one move. In Section A.0.6, a formal proof is given to justify this finding.

2.3 Generalized Findings

It is possible to generalize the above findings to other variations of the penny flip game. To that end,

we first expand the penny flip game to an arbitrary number of moves. This is found in Section 2.3.1.

Then, in Section 2.3.2, we generalize our results to games involving abstract objects with more than

two basis states.

2.3.1 Multi-Play Games

We divide all possible games into those of an odd number of plays and those with an even number

of plays. The plays alternate between players Q and C as before.

Figure 2.7 Games of Multiple Plays

As seen in Figure 2.7, the likelihood of quantum victory is highly dependent on the number of

moves within the game. It should be noted that when one unitary matrix is applied to another, the

resulting matrix is also unitary. Hence, in an odd-play game, all moves between the opening and

closing quantum moves can be collapsed into a single unitary operator. This yields the three-play
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game, in which an ideal strategy has already been found. Within games of an even number of

plays, the quantum player may only guarantee a 50% chance of victory, regardless of whether they

possess the opening or closing move. Once again, the quantum player cannot place the penny in

a superposition of |H⟩ and |T ⟩ and still pull it back into the heads state without interference from

the classical player. Therefore, within the penny flip game of an arbitrary number of moves, the

quantum player has a 50%-100% chance of victory.

2.3.2 Multi-Sided Objects

We now consider games of three plays involving an abstract object of an arbitrary number of sides.

This may be visualized with a die. Initially, we discuss a four-sided object but later show how the

results may be generalized. Our object then becomes a quantum state involving four basis states that

we will associate with color for simplicity: Red (|R⟩), Yellow (|Y ⟩), Green (|G⟩), and Blue (|B⟩).

Our penny is then shown as follows:

|Ψ⟩= α |R⟩+β |Y ⟩+δ |G⟩+ γ |B⟩ , (2.13)

where

|α|2 + |β |2 + |δ |2 + |γ|2 = 1. (2.14)

In a game such as this, the classical play of flipping may be equated with altering the color

of the penny. The classical player may convert the color from red to yellow, for example. These

classical moves are easily defined in a matrix where the transpose of the target state is placed in the

same row as the “1” that appears in the state that is being manipulated. Similarly, the transpose of

the state that is being manipulated is placed in the same row as the “1” that appears in the target

state. The remaining rows are filled out such that “1” occurs only once in each row and column.

Operators defined this way, although not unique, satisfy the requirements of unitary matrices. They
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allow us to "rotate" the multi-sided object in our Hilbert space, mimicking the act of flipping a

penny as before. For example, define (|R⟩) and (|Y ⟩) as follows:

|R⟩=



1

0

0

0


, |Y ⟩=



0

1

0

0


. (2.15)

The classical operator to convert |R⟩ to |Y ⟩ is easily produced, following the guidelines above.



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0





1

0

0

0


=



0

1

0

0


If we are to follow the strategies already discussed above, then supplying a Hadamard matrix as

our quantum strategy will guarantee victory in a three-play game. We find this to be exactly the

case. In four dimensions, the Hadamard is constructed and applied as follows, placing our object

into a superposition of |R⟩, |Y ⟩, |G⟩, |B⟩:

1√
4



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1





1

0

0

0


=

1√
4



1

1

1

1


With this strategy, given the opening and closing moves of a three-play game, our quantum

player is able to nullify any move made by the classical player, making them victorious 100% of

the time. It follows that our quantum player may guarantee victory when there exists a Hadamard

operator in the dimension that matches the number of basis states that describe our object. It is
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a known fact that there exists an N ×N Hadamard matrix, where N = 1,2, or 4k, for k ∈ Z [14].

Hence, victory is guaranteed for our quantum player in any game involving an N-sided penny.

For the cases in which N ̸= 1,2, or 4k, for k ∈ Z, it is possible to place the object into a

superposition of all states. In particular, one may employ a discrete Fourier transform matrix as a

quantum strategy, as shown below:

FN =
1√
N



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

... . . . ...

1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)


,

where

ω = e−2πi/N .

However, in this case, when the operator is applied again as a closing move, the quantum player

cannot "pull" the object back into a desired state to guarantee victory. Despite the current issues,

there is great promise in the discovery of quantum strategies that may guarantee victory in a game

including an object where N may take any integer-value.



Chapter 3

Discussion

3.1 Results

When the penny begins in state |T ⟩, the desired final state for our classical player, there exists

a quantum operator that guarantees quantum victory. This was shown in Section 2.2.1. When

the classical player is given two plays, there exist operators that provide a 50%-100% chance of

victory for our quantum player, depending on the assumption made by the quantum player as to the

correlation of the classical plays. If the classical plays are uncorrelated, as was shown in Figure 2.2,

there exists a 50% chance of quantum victory. However, when the classical plays are correlated,

Figure 2.4 demonstrates that we may guarantee up to a 99% chance of quantum victory. In either

case, this is far greater than the 0%-50% chance of victory that the classical player possesses when

the quantum player is given the same two-play advantage.

It was also shown in Section 2.3.1 that quantum victory is guaranteed in modified games of an

odd number of plays where the quantum player is given both the opening and closing plays. As

was shown in Section 2.3.2, the same guarantee of quantum victory persists in games involving an

abstract object with N basis states, where N = 1,2, or 4k, for k ∈ Z.

19
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3.2 Conclusion

The advantage enjoyed by the quantum player in Meyer’s penny flip game is generally authentic,

being derived from quantum principles rather than the arbitrary construction of the penny flip game.

As has been shown, quantum representations of competitive exchanges of information provide

strategies that are generally superior to their classical counterparts, not only for Meyer’s penny

flip, but also for its more general variations. Shor’s algorithm [8], Grover’s algorithm [9], and

others have already provided examples of the superiority of quantum computation over classical

information exchange. Yes, quantum mechanics serves well to find the prime factorization of large

integers and search through unsorted databases. However, we may now also say that quantum

mechanics provides superior strategies for specific scenarios in game theory, bringing us one step

closer to the application of these strategies to competitive environments wherein game theory is

already applied, including the stock market, the campaign trail, and even the battlefield.



Appendix A

Computational Methods and Proofs

Sections A.0.1 - A.0.5 contain Qiskit code used in the production of the quantum circuits described

in earlier sections. It should be noted that Qiskit packages have been updated since these files were

written. As such, it will be necessary to download the Qiskit "primitives" package before executing

any code found below.

Finally, Section A.0.6 includes a proof showing that the quantum player is unable to guarantee

victory for herself with just one move when the classical player is granted the opening and closing

moves within the PQ penny flip game. Within this proof, density matrices are used, facilitating the

inclusion of the parameters p and q, which corresponds to the probability that the classical player

makes a certain move.

A.0.1 Operator Verification: Initial Tails State

1

2 from qiskit import QuantumRegister , QuantumCircuit , execute , IBMQ

3 from qiskit_ibm_runtime import QiskitRuntimeService

4 from qiskit.visualization import plot_histogram

5 from qiskit import *

21
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6 from math import sqrt

7

8 service = QiskitRuntimeService () # Initialize Qiskit Runtime service

9

10 quant = Operator ([[1/ sqrt (2), -1/sqrt (2)], [1/ sqrt (2), 1/sqrt (2) ]]) #

Ideal quantum strategy

11 flip = Operator ([[0, 1], [1, 0]]) # Classical plays

12 noFlip = Operator ([[1, 0], [0, 1]])

13

14 q = QuantumRegister (1, "q") # Create quantum register and circuit

15 qc = QuantumCircuit(q)

16

17 qc.append(quant , q) # Append operations to quantum circuit

18 qc.append(flip , q)

19 qc.append(quant , q)

20 qc.measure_all ()

21

22 provider = IBMQ.get_provider(hub="ibm -q", group="open", project="main") #

Define backend provider and simulator

23 backend = provider.get_backend("ibmq_qasm_simulator")

24

25 job = execute(qc , backend , shots =1024) # Execute circuit on simulator

backend

26 print('Executing␣Job ...\n')

27 job_monitor(job)

28

29 result = job.result () # Get results and plot histogram

30 counts = result.get_counts ()

31 print("Counts:␣", counts)

32
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33 plot_histogram(counts)

A.0.2 Operator Identification: Biased Game, Draft 1

1 from qiskit import QuantumRegister , ClassicalRegister , QuantumCircuit ,

execute

2 from qiskit_ibm_runtime import QiskitRuntimeService

3 from qiskit.quantum_info.operators import Operator

4 from qiskit.quantum_info import random_unitary

5 from qiskit.tools.monitor import job_monitor

6 from qiskit_ibm_provider import IBMProvider

7 from qiskit.extensions import UnitaryGate

8 from qiskit import *

9

10 service = QiskitRuntimeService () # Initialize the IBM Quantum service

11 circuit_list = [] # List to store quantum circuits

12 operators = [] # List to store randomly generated unitary operators

13

14 def randNum ():

15 global zero , one

16

17 q = QuantumRegister (1, 'q')

18 c = ClassicalRegister (1, 'c')

19

20 circuit = QuantumCircuit(q, c) # Create quantum circuit with one

qubit and one bit

21 circuit.h(q) # Apply Hadamard gate to place qubit in superposition

22 circuit.measure(q, c) # Measure qubit

23
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24 provider = IBMProvider(instance="ibm -q/open/main") # Execute circuit

on IBM Quantum backend

25 backend = provider.get_backend("ibm_perth")

26 job = execute(circuit , backend , shots =1)

27

28 print('Executing␣Job ...\n')

29 job_monitor(job)

30 counts = job.result ().get_counts ()

31 one = counts.get("1") # Store count of outcome "1" or tails

32 zero = counts.get("0") # Store count of outcome "0" or heads

33 print(counts)

34

35 for i in range (100): # Generate 100 quantum circuits

36

37 randNum ()

38

39 penny = QuantumRegister (1, "Penny") # Create new quantum register for

each circuit

40 qc = QuantumCircuit(penny)

41

42 rand = UnitaryGate(random_unitary (2)) # Generate random unitary gate

43

44 # Define Pauli -X (flip) and Identity (no flip) operators

45 flip = Operator ([[0, 1], [1, 0]])

46 noFlip = Operator ([[1, 0], [0, 1]])

47

48 if one == 1: # Apply classical play based on quantum -generated bit

49 print("Classical␣Play:␣Flip")

50 qc.append(flip , penny)

51 else:
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52 print("Classical␣Play:␣No␣Flip")

53 qc.append(noFlip , penny)

54

55 qc.append(rand , penny) # Apply random unitary gate

56 operators.append(rand.to_matrix ())

57

58 randNum () # Generate another random bit

59

60 if one == 1: # Apply second classical play based on quantum -generated

bit

61 print("Classical␣Play:␣Flip")

62 qc.append(flip , penny)

63 else:

64 print("Classical␣Play:␣No␣Flip")

65 qc.append(noFlip , penny)

66

67 qc.measure_all () # Measure the qubit

68

69 # Store the circuit in the list

70 circuit_list.append(qc)

71

72 provider = IBMProvider(instance="ibm -q/open/main") # Execute all circuits

on IBM Quantum backend

73 backend = provider.get_backend("ibm_perth")

74 job = execute(circuit_list , backend , shots =100)

75

76 for i in operators: # Save the unitary operators to a .txt file

77 file1 = open("operators.txt", "a")

78 file1.write(str(operators[i]) + "\n")

79 file1.close()
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A.0.3 Operator Identification: Biased Game, Draft 2: Uncorrelated Plays

1 from qiskit import QuantumRegister , QuantumCircuit

2 from qiskit_ibm_runtime import QiskitRuntimeService

3 from qiskit.quantum_info import random_unitary

4 from qiskit.extensions import UnitaryGate

5 from qiskit.primitives import Sampler

6 from qiskit.visualization import plot_histogram

7

8 service = QiskitRuntimeService () # Initialize IBM Quantum service

9

10 circuit_list = []

11

12 for i in range (100): # Create and store 100 quantum circuits

13

14 q = QuantumRegister (3, "q")

15 c1 = ClassicalRegister (1, 'c1')

16

17 qc = QuantumCircuit(q, c1) # Define a quantum circuit with three

qubits and 1 bit

18

19 qc.h(0) # Apply Hadamard gate to first two qubits to create

superposition

20 qc.h(1)

21

22 qc.cx(q[0], q[2]) # Apply a CNOT gate from qubit 0 (control) to qubit

2 (target)

23

24 rand = UnitaryGate(random_unitary (2))

25 qc.append(rand , [2]) # Apply random 2x2 unitary matrix

26



27

27 qc.cx(q[1], q[2]) # Apply another CNOT gate from qubit 1 (control) to

qubit 2 (target)

28

29 qc.measure(2, 0)

30

31 circuit_list.append(qc)

32

33 sampler = Sampler () # Initialize Sampler primitive to run quantum circuits

34 results = sampler.run(circuit_list).result ()

35

36 statistics = results.quasi_dists [0]. binary_probabilities () # Extract and

process measurement results

37

38 display(plot_histogram(statistics)) # Display measurement results as

histogram

39

40 qc.draw(output="mpl", initial_state=True) # Draw final quantum circuit

A.0.4 Operator Identification: Biased Game, Draft 2: Correlated Plays

1 from qiskit import QuantumRegister , QuantumCircuit

2 from qiskit_ibm_runtime import QiskitRuntimeService

3 from qiskit.quantum_info import random_unitary

4 from qiskit.extensions import UnitaryGate

5 from qiskit.primitives import Sampler

6 from qiskit.visualization import plot_histogram

7

8 service = QiskitRuntimeService ()

9

10 circuit_list = []
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11

12 for i in range (100): # Create and store 100 quantum circuits

13

14 q = QuantumRegister (2, "q") # Construct a quantum circuit of three

qubits and three bits

15 c1 = ClassicalRegister (1,'c1')

16 qc = QuantumCircuit(q, c1)

17

18 qc.h(0) # Apply hadamard gate to first qubit

19

20 qc.cx(q[0], q[1])

21

22 rand = UnitaryGate(random_unitary (2))

23 qc.append(rand , [2]) # Apply random 2x2 unitary matrix

24

25 # qc.x([0]) Uncomment to make classical plays opposites of one another

26 qc.append(rand , [1])

27 qc.cx(q[0],q[1])

28

29 qc.measure (1,0)

30

31 circuit_list.append(qc)

32

33 sampler = Sampler () # Initialize Sampler primitive to run quantum circuits

34 results = sampler.run(circuit_list).result ()

35

36 statistics = results.quasi_dists [0]. binary_probabilities () # Extract and

process measurement results

37
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38 display(plot_histogram(statistics)) # Display measurement results as

histogram

39

40 qc.draw(output="mpl", initial_state=True) # Draw final quantum circuit

A.0.5 Operator Verification: Biased Game

1 from qiskit import QuantumRegister , QuantumCircuit , ClassicalRegister ,

display

2 from qiskit_ibm_runtime import QiskitRuntimeService

3 from qiskit.quantum_info.operators import Operator

4 from qiskit.primitives import Sampler

5 from qiskit.visualization import plot_histogram

6

7 service = QiskitRuntimeService () # Initialize IBM Quantum service

8

9 q = QuantumRegister (2, "q")

10 c1 = ClassicalRegister (1, 'c1')

11

12 qc = QuantumCircuit(q, c1) # Define a quantum circuit with two qubits and

1 bit

13

14 qc.h(0) # Apply Hadamard gate to first qubit to create superposition

15

16 qc.cx(q[0], q[1]) # Apply CNOT gate with qubit 0 as control and qubit 1 as

target

17

18 op = Operator ([ # Define 2*2 unitary operator solution

19 [ -0.18287237 - 6.99522349e-03j, -0.38743878 + 9.03548534e-01j],

20 [ 0.35143341 + 9.18152122e-01j, -0.18300595 - 2.36252265e-04j]
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21 ])

22

23 # qc.x([0]) Uncomment to make classical plays opposites of one another

24

25 qc.append(op, [1]) # Apply solution operator to qubit 1

26

27 qc.cx(q[0], q[1]) # Apply another CNOT gate with qubit 0 as control and

qubit 1 as target

28

29 qc.measure(1, 0)

30

31 sampler = Sampler () # Initialize Sampler primitive to execute quantum

circuit

32

33 results = sampler.run(qc).result ()

34 statistics = results.quasi_dists [0]. binary_probabilities ()

35

36 display(plot_histogram(statistics)) # Display measurement results as

histogram

37

38 qc.draw(output="mpl") # Draw final quantum circuit

A.0.6 Density Matrix Proof

Within quantum mechanics, density matrices may describe quantum states in scenarios involving

mixed states and statistical ensembles [15]. In practice, a density matrix ρ is defined as follows:

ρ = ∑
i

pi |ψi⟩⟨ψi| ,

where |ψi⟩ are pure state vectors and pi are probabilities satisfying ∑i pi = 1.
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Embracing this formalism, we define the current state of the penny on the nth stage of the

PQ Penny Flip game as ρn. A single game is then composed of the initial state of the penny (ρ0)

and three subsequent plays (ρ1,ρ2,ρ3). The beginning state of the penny is heads and is defined

as ρ0 = |0⟩⟨0|. The classical player is then limited to the following moves: flip (F), and do not

flip (N). The quantum player has only one strategy, which we denote as U . The parameter p is

associated with the probability that the classical player flips the penny on their first move. Similarly,

the parameter q indicates the probability that the classical player flips the penny on their second

turn. A single game is then defined as follows:

ρ0 = |0⟩⟨0|

ρ1 = pFρ0F† +(1− p)Nρ0N†

ρ2 =Uρ1U†

=U
(

pFρ0F† +(1− p)Nρ0N†)U†

ρ3 = qFρ2F† +(1−q)Nρ2N†

= qF
(
U
(

pFρ0F† +(1− p)Nρ0N†)U†)F†

+(1−q)N
(
U
(

pFρ0F† +(1− p)Nρ0N†)U†)N†

We then let F = σ1 and N = I. The action of σ1, or the Pauli-X matrix, corresponds to flipping

the penny while I, or the identity matrix, corresponds to the action of not flipping. We make use of

the fact that σ1 = σ
†
1 and that I= I† to simplify the final state of our penny in the following way:

ρ3 = qpσ1Uσ1ρ0σ1U†
σ1

+(1− p)qσ1Uρ0U†
σ1

+(1−q)pUσ1ρ0σ1U†

+(1−q)(1− p)Uρ0U†
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Quantum Victory

For a quantum victory, the final state of the penny must be heads, or, to put it explicitly, it must be

the case that ρ3 = ρ0. To find a general solution U that produces quantum victory, we must set each

term in the equation for ρ3 proportional to ρ0. We then have the following four conditions:

1) σ1U |1⟩⟨1|U†
σ1 ∝ |0⟩⟨0|

2) σ1U |0⟩⟨0|U†
σ1 ∝ |0⟩⟨0|

3) U |1⟩⟨1|U†
∝ |0⟩⟨0|

4) U |0⟩⟨0|U†
∝ |0⟩⟨0|

To satisfy the conditions above, U must preserve ρ0 when acted upon by combinations of U

and σ1. It must do this regardless of the values that p and q take. It is clear, however, that ρ0 is

not invariant under the following transformations: Uρ0U†, and σ1ρ0σ1. Each of these alters the

eigenbasis of ρ0, which prevents a general solution U from satisfying all four of the equations at

once.

However, for certain combinations of p and q, we are able to simplify ρ3 and produce conditions

where a solution U is possible. There are four cases of interest.

Case One

Let p = q = 1. As a result, ρ3 reduces to the following:

ρ3 = σ1U |1⟩⟨1|U†
σ1

As a result, we only need to satisfy condition 1). This is done by setting U = I.
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Case Two

Now, let p = 0 and q = 1, which reduces ρ3 to the following:

ρ3 = σ1U |0⟩⟨0|U†
σ1

Then, we set U = σ1 to satisfy condition 2).

Case Three

Let p = 1 and q = 0. From this, ρ3 reduces to the following:

ρ3 =U |1⟩⟨1|U†

To satisfy condition 3), we set U = σ1.

Case Four

Finally, let p = q = 0. As a result, ρ3 reduces to the following:

ρ3 =U |0⟩⟨0|U†

Now, we only need to satisfy condition 4). This is done easily by setting U = I.

Notice that the solution U is identical for cases one and three, where U = σ1. Similarly, U

is the same for cases two and four, where U = I. With this in mind, we see that if the quantum

player knows that either or both p and q are 0 or 1, there exists a strategy U that guarantees victory.

Of course, the quantum player must have knowledge of their classical opponent’s moves to apply

any of these strategies. Consider, however, a similar scenario where the classical player is granted

knowledge of their quantum opponent’s strategy. This case is set in Meyer’s original PQ Penny

Flip game, where the classical player is given only one move. Applying the ideal quantum strategy

devised by Meyer, the quantum player places the penny into a superposition of heads and tails. As a
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result, the penny is neither in the heads or tails state completely, which deprives the classical player

of any advantage even when they know of the quantum player’s strategy.

Although the quantum player can’t always win the classically biased PQ penny flip game, they

certainly possess a greater advantage with knowledge of their opponent’s strategy. The classical

player shares no such advantage in the game where they possess the same knowledge. As a result,

we conclude that quantum strategies are superior to their classical counterpart.

Generalized Results

These results shown above may be generalized to a game of an arbitrary number of odd moves.

With this in mind, we justify the use of p and q as our probability parameters rather than p1, p2,

p3,.... To make this point, we briefly consider a game of five plays. The final two plays of the game

would be given as follows:

ρ4 =U2ρ3U†
2

ρ5 = p3Fρ4F† +(1− p3)Nρ4N†

= p3U2Fρ4F†U†
2 +(1− p3)U2Nρ4N†U†

2
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Applying our definition of ρ3 above, we then have the following:

ρ5 = p1 p2 p3(FU4σ1U2σ1ρ0σ1U†
2 σ1U†

4 F†)

+(1− p1)p2 p3(FU4σ1U2ρ0U†
2 σ1U†

4 F†)

+(1− p2)p1 p2(FU4U2σ1ρ0σ1U†
2 U†

4 F†)

+(1− p2)(1− p1)p3(FU4U2ρ0U†
2 U†

4 F†)

+(1− p3)p1 p2(NU4σ1U2σ1ρ0σ1U†
2 σ1U†

4 N†)

+(1− p3)(1− p1)p2(NU4σ1U2ρ0U†
2 σ1U†

4 N†)

+(1− p3)(1− p2)p1(NU4U2σ1ρ0σ1U†
2 U†

4 N†)

+(1− p3)(1− p2)(1− p1)(NU4U2ρ0U†
2 U†

4 N†)

Once again, we then let F = σ1 and N = I. This gives the following:

ρ5 = p1 p2 p3(σ1U4σ1U2σ1ρ0σ1U†
2 σ1U†

4 σ1)

+(1− p1)p2 p3(σ1U4σ1U2ρ0U†
2 σ1U†

4 σ1)

+(1− p2)p1 p2(σ1U4U2σ1ρ0σ1U†
2 U†

4 σ1)

+(1− p2)(1− p1)p3(σ1U4U2ρ0U†
2 U†

4 σ1)

+(1− p3)p1 p2(U4σ1U2σ1ρ0σ1U†
2 σ1U†

4 )

+(1− p3)(1− p1)p2(U4σ1U2ρ0U†
2 σ1U†

4 )

+(1− p3)(1− p2)p1(U4U2σ1ρ0σ1U†
2 U†

4 )

+(1− p3)(1− p2)(1− p1)(U4U2ρ0U†
2 U†

4 )

For our case, we then let U4 = I. From this, we will find that ρ5 = ρ3. One may apply this to any

multi-play game and set Un>2 = I. This will reduce any game of an odd number of plays down to a

game of three plays. We proceed by seeing how this applies in the five-play game. We have the
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following:

ρ5 = p1 p2 p3(σ1σ1U2σ1ρ0σ1U†
2 σ1σ1)

+(1− p1)p2 p3(σ1σ1U2ρ0U†
2 σ1σ1)

+(1− p2)p1 p2(σ1U2σ1ρ0σ1U†
2 σ1)

+(1− p2)(1− p1)p3(σ1U2ρ0U†
2 σ1)

+(1− p3)p1 p2(σ1U2σ1ρ0σ1U†
2 σ1)

+(1− p3)(1− p1)p2(σ1U2ρ0U†
2 σ1)

+(1− p3)(1− p2)p1(U2σ1ρ0σ1U†
2 )

+(1− p3)(1− p2)(1− p1)(U2ρ0U†
2 )

Considering that σ1σ1 = I, we can simplify further.

ρ5 = p1 p2 p3(U2σ1ρ0σ1U†
2 )

+(1− p1)p2 p3(U2ρ0U†
2 )

+(1− p2)p1 p2(σ1U2σ1ρ0σ1U†
2 σ1)

+(1− p2)(1− p1)p3(σ1U2ρ0U†
2 σ1)

+(1− p3)p1 p2(σ1U2σ1ρ0σ1U†
2 σ1)

+(1− p3)(1− p1)p2(σ1U2ρ0U†
2 σ1)

+(1− p3)(1− p2)p1(U2σ1ρ0σ1U†
2 )

+(1− p3)(1− p2)(1− p1)(U2ρ0U†
2 )



37

We are then able to collect terms.

ρ5 = (p1 p2 p3 +((1− p3)(1− p2)p1)(U2σ1ρ0σ1U†
2 )

+((1− p1)p2 p3 +(1− p3)(1− p2)(1− p1))(U2ρ0U†
2 )

+((1− p2)p1 p2 +(1− p3)p1 p2)(σ1U2σ1ρ0σ1U†
2 σ1)

+(1− p3)(1− p1)p2(σ1U2ρ0U†
2 σ1)

We then reorder the equation.

ρ5 = ((1− p2)p1 p2 +(1− p3)p1 p2)(σ1U2σ1ρ0σ1U†
2 σ1)

+(1− p2)(1− p1)p3(σ1U2ρ0U†
2 σ1)

+(p1 p2 p3 +((1− p3)(1− p2)p1)(U2σ1ρ0σ1U†
2 )

+((1− p1)p2 p3 +(1− p3)(1− p2)(1− p1))(U2ρ0U†
2 )

Finally, let

pa pb = ((1− p2)p1 p2 +(1− p3)p1 p2),

(1− pa)pb = (1− p2)(1− p1)p3,

(1− pb)pa = (p1 p2 p3 +((1− p3)(1− p2)p1),

(1− pb)(1− pa) = ((1− p1)p2 p3 +(1− p3)(1− p2)(1− p1)).
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With these definitions, we are able to simplify p5 to the following:

ρ5 = pa pbσ1Uσ1ρ0σ1U†
σ1

+(1− pa)pbσ1Uρ0U†
σ1

+(1− pb)paUσ1ρ0σ1U†

+(1− pb)(1− pa)Uρ0U†

Assigning pa = p and pb = q, we get the following:

ρ5 = qpσ1Uσ1ρ0σ1U†
σ1

+(1− p)qσ1Uρ0U†
σ1

+(1−q)pUσ1ρ0σ1U†

+(1−q)(1− p)Uρ0U†

= ρ3

This technique may be applied to a game of an arbitrary number of odd plays. In short, ρ(2n+1>3) =

ρ3 for n ∈ N. For this reason, the proofs above only include the three-play game with probability

parameters defined as p and q. From this, it also follows that if the quantum player possesses

knowledge that both or either p or q is equal to 0 or 1, for any game of an odd number of plays,

they may always employ a strategy that guarantees victory.

It can just as easily be shown that games involving an even number of plays all reduce to games

of two plays. In this case, however, the quantum player is unable to "pull" the penny out of its

superposition after applying the Hadamaard matrix as their strategy. As a result, they are left with a

50% chance of victory. Still, it is clear that, when considering games of even and odd plays, the

quantum player possesses an undeniable advantage over their classical opponent.
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