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ABSTRACT

Magnetostructural Coupling in Magnetocaloric MnSb via X-ray and Neutron Scattering

Blake Hawkins
Department of Physics and Astronomy, BYU

Bachelor of Science

Magnetocaloric materials have drawn significant research interest for their potential in envi-
ronmentally friendly solid-state refrigeration and waste-heat recovery technologies. Manganese
antimony (MnSb) is a promising candidate due to its high refrigerant capacity and tunable magnetic
properties. As with many magnetocaloric materials, magnetostructural coupling plays a key role
in its performance. Here, we investigate the magnetostructural behavior of stoichiometric MnSb,
which undergoes a transition to a ferromagnetic state at its Curie temperature (TC = 577 K). Our
analysis uses temperature-dependent x-ray and neutron diffraction, along with pair distribution
function analysis. The results reveal strong magnetoelastic coupling, with a volume expansion of
over 0.5% upon cooling into the ferromagnetic state, relative to the non-magnetic trend. Sponta-
neous magnetostriction of this magnitude is very rare. Notably, the lattice response begins above
TC, driven by the growth of short-range ferromagnetic correlations. Additionally, field-dependent
measurements confirm the presence of field-induced magnetostriction with a nontrivial temperature
dependence. These findings provide new insight into the magnetostructural behavior of MnSb,
furthering its potential as a powerful magnetocaloric material.

Keywords: Magnetocalorics, MCE, Magnetostriction, MnSb, Refrigeration, Waste Heat, Solid State,
PDF, mPDF, NSLS II, Magnetostructural Coupling
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1 Introduction

A major goal of condensed matter physics is to understand and utilize the properties of materials for

the betterment of life on earth. Our research focuses on the potential magnetocaloric properties of a

specific material, MnSb. These properties have the potential to improve the efficiency and reduce

environmental impact of current methods of refrigeration and waste heat recovery. Our research is

focused on probing the atomic and magnetic structure of MnSb to better understand the properties

that make it a promising magnetocaloric candidate.

1.1 Magnetocalorics

The Magnetocaloric Effect (MCE) occurs when an applied magnetic field causes a reversible

temperature change in a material [1]. The external magnetic field aligns the magnetic spins in

a magnetocaloric material. The sudden alignment of spins reduces the intrinsic entropy of the

system. In order to satisfy the second law of thermodynamics, the temperature of the material will

then increase and release heat. If cycled correctly, this effect can be harnessed in refrigeration.

The reverse magnetocaloric effect (RMCE), on the other hand, occurs when a change in external

temperature induces a change in the magnetic field. This change in magnetic field can be harnessed

to produce mechanical energy and electricity from waste heat. These environmental applications are

especially pertinent now, given the global need to mitigate and adapt to a rapidly changing climate.

1



1.2 Manganese Antimony (MnSb) 2

1.2 Manganese Antimony (MnSb)

The ferromagnetic metal, manganese antimony (MnSb), has recently attracted significant interest as

a potential high-performance magnetocaloric material [2]. In a ferromagnet the magnetic spins are

aligned parallel to each other, even without an external magnetic field. MnSb transitions from a

ferromagnet to a paramagnet at temperatures above 577 K. This transition temperature is termed

the Curie temperature. Above the Curie temperature, thermal energy disrupts the alignment of

the magnetic domains, causing the material to lose its spontaneous magnetization and become a

paramagnet. MnSb’s particularly promising properties are due in large part to short-range magnetic

correlations in the paramagnetic state.

The magnitude of the MCE is correlated with the change in volume of the physical unit cell in

response to an applied magnetic field. This phenomenon is called forced magnetostriction. The

change in the size of the unit cell across the transition temperature in the absence of an applied field

is known as spontaneous magnetostriction. magnetostriction.

By studying this unique material, we identified MnSb as a strong candidate in the search for

useful magnetocaloric materials. A useful candidate would have a strong MCE and a tunable

transition temperature–both of which are manifest in MnSb [3]. Understanding the magnetocaloric

properties of MnSb may be crucial for developing efficient, environmentally friendly refrigeration

and energy conversion technologies. By studying MnSb’s magnetic transitions and structural

changes, we can optimize materials for sustainable cooling and waste heat recovery.

The question is, how does the structure and magnetism of Manganese Antimony change across

the Curie temperature and in an applied magnetic field? My research and this paper attempt to fully

address this question. First we will address the methodology of our research, then transition into the

results. Finally, I will draw conclusions and contextualize our findings within the broader scope of

past and future studies.



2 Methods

Figure 2.1 NSLS II, Beamline 28, at Brookhaven National Laboratory. Here the blue line
indicates a concentrated beam of x-rays. These x-rays hit the sample and diffract onto the
sensor as indicated by the red arrows.

2.1 Synchrotron X-ray Diffraction Experiments

We conducted our experiments at Brookhaven National Laboratory (BNL) using the National

Synchrotron Light Source II (NSLS-II) [4]. A synchrotron first accelerates high-energy electrons
3
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to produce photons in the x-ray range of the electromagnetic spectrum. The machine concentrates

the x-rays onto our material. The x-rays scatter off of our fine powder sample creating a pattern of

concentric rings on the sensor. We are able to perform a Fourier transform on the pattern, which

yields a pair distribution function (PDF). From the PDF, we can extract data about the proximity of

the atoms and the size of the unit cell. The primary goal of our first experiment was to investigate

the effect of a varied applied magnetic field on the lattice parameters of the unit cell at different

temperatures. Our second experiment focused on the spontaneous magnetostriction that occurred

across TC in zero applied field.

2.1.1 Magnetic Field Dependence at Fixed Temperatures

First we examined the effect of an external magnetic field on the lattice structure at different fixed

temperatures. Using PDF analysis of the x-ray diffraction (XRD) data we compared the evolution

of the a and c lattice parameters to the changing applied magnetic field. For each temperature, we

gradually increased the applied field from 0 to 5 T while recording diffraction data. This process

was repeated at temperatures of 10 K, 100 K, 200 K, 300 K, 400 K, and 500 K.

2.1.2 Temperature-Dependent Measurements Across the TC

In the second phase of the experiment, we returned to NSLS-II to investigate the structural evolution

across the Curie temperature (577 K). This time, measurements were taken in zero field while

continuously heating the sample using a hot air blower. XRD data were collected as we increased

the temperature past the TC and subsequently as the sample was cooled back down. Again we used

PDF analysis to extract the a and c lattice parameters this time as a function temperature.
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Figure 2.2 X-ray Pair Distribution Function. The x axis is in units of Angstroms. The
y axis is the related to the probability density. The Pair Distribution Function provides
information about the lattice structure. Peaks in the function correspond to preferred
atomic distance. In other words, a peak represents a distance where atoms are more likely
to be found relative to one another.

2.2 Neutron Diffraction Experiment

A complementary experiment was performed using neutron scattering data, in order to obtain the

magnetic pair distribution function data (mPDF). Using neutron diffraction allows one to extract the

magnetic component of the PDF and analyze both local and average magnetic order parameters. [5]

The neutron scattering data allowed for a direct comparison between x-ray scattering results

obtained at NSLS-II and the neutron scattering data. The structural trends observed in both

techniques were analyzed to ensure consistency and better understand the underlying mechanisms

governing the lattice parameter evolution [3]. These comparisons and results can be seen below.
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Figure 2.3 Neutron PDF with separated mPDF data. Here we can see the Neutron PDF
data which contains the same structural information as the x-ray PDF, but also includes
information about the magnetic correlations between neighboring spins. The separated
magnetic signal can be seen in gray below the atomic PDF data.



3 Results

The results presented below demonstrate strong magnetostructural coupling in MnSb, including

forced magnetostriction in an applied field and spontaneous magnetostriction in zero field. I will

first present the zero-field results, then the results with an applied field, and finally the magnetic

PDF results.

3.1 Magnetostructural Coupling in Zero Applied Field

First, we performed fits of the hexagonal structural model of MnSb to the x-ray and neutron PDF

data collected at various temperatures above and below the Curie temperature. From these fits, the

a and c lattice parameters were extracted as a function of temperature, as plotted in Fig. 3.1. To

analyze the temperature-dependent structural changes, we fit a linear model to the high-temperature

region (above the Curie transition). This provided a baseline for evaluating the fractional deviation

of the measured lattice parameters from the expected high-temperature trend. The deviation from

the linear, high-temperature, volumetric expansion of the unit cell can largely be attributed to the

Pauli Exclusion Principle. The Pauli Exclusion Principle states that no two fermions in can occupy

the same quantum state at the same time. At high temperatures, in the paramagnetic state, the

magnetic spins in our sample were unaligned, so Pauli’s Principle did not apply. However, as the

material cools into the ferromagnetic state, the spins begin to realign. In accordance with the Pauli

Exclusion Principle, the unit cell expands in order avoid overlapping spins. This was demonstrated

7



3.1 Magnetostructural Coupling in Zero Applied Field 8

in our x-ray and neutron scattering data. This is the reverse of what happens in antiferromagnetic

materials when they go through a magnetic transition [2]. Both the x-ray and neutron scattering

data compared to the slope lines over a wide temperature range are shown in Fig. 3.2. The high

temperature slopes and fractional volume differences for both the x-ray and neutron data are very

comparable.
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Figure 3.1 Anisotropic responses from a lattice (a) and c lattice (b) parameters across
transition temperature. The transition temperature or Curie Temperature is marked by the
red dashed line. Note in both cases there is a clear deviation from the linear trend well
before the transition temperature as discussed further in the main text.

The volume expansion before the transition temperature means that short range magnetic order

is driving a physical response well before long range order comes into effect. The data clearly show

that the a and c lattice parameters expand differently across the transition temperature. Thus, the

interactions within the crystal are described as anisotropic . If the unit cell were cubic, we would
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Figure 3.2 Comparison of x-ray and neutron PDF data factoring out linear temperature
dependent expansion. There is a slight offset in the measured volume from neutron and
x-ray diffraction. We can safely attribute this to calibration differences. Note the clear
deviation from the slope line right above the Curie Temperature of 577 K.

expect the lattice parameters to have an isotropic reaction to the magnetic transition. But MnSb

has a NiAs hexagonal crystal structure type. Bonds in the plane are different from bonds above

and below the plane. Elastic energy of bonds and magnetic exchange interactions have different

strengths in plane and out of plane.
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3.2 Structural Response in an Applied Magnetic Field

Unexpectedly, observed the strength of the magnetostrictive response varied at different temperatures.

At different temperatures the effect of the applied magnetic field on the size of the unit cell was

different. This can be seen very clearly in Fig. 3.3, where the a lattice expands with increasing

field at 10 K, but shows no systematic behavior at 400 K. This indicates nontrivial temperature

dependence of the sign and magnitude of the magnetostriction coefficient in MnSb.
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Figure 3.3 Measured c lattice parameters as a function of applied magnetic field. At
certain temperatures, like 10 K (a), there was a clear positive relationship between the
applied field and the lattice parameters. While at other temperatures, like 400 K (b), the
field and lattice parameters shows no relationship at all.
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Figure 3.4 Neutron PDF data above and below TC. Note that below TC there is a clear long
range magnetic signal. While above the transition temperature, the long range signal dies
off. We can still extract the local magnetic order parameter by fitting the magnetic signal
over a much smaller range

3.3 Magnetic Parameters

Representative neutron PDF fits, including the magnetic PDF component, are shown in Fig. 3.4.

The isolated magnetic PDF component confirms the sensitivity of the data to the local magnetic
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correlations in MnSb. By fitting the mPDF data over different data ranges we can extract information

about the magnetic correlations on different length scales. The average magnetic order parameter

(AMOP) is the long-range ordered moment. This reflects typical order parameter behavior, but dies

above TC as illustrated in Fig. 3.4. The local magnetic order parameter (LMOP) is the correlated

magnetic moment between the nearest neighbor spins. As seen in Fig. 3.4, the LMOP shows quite

different behavior from the AMOP; instead of vanishing at TC, it survives well into the paramagnetic

phase. The persistence of the LMOP well above TC is direct evidence that short-range magnetic

correlations remain in MnSb to very high temperatures, consistent with the previously mentioned

idea that short-range magnetic correlations above TC are responsible for the structural response

observed above TC from the structural PDF data.
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Figure 3.5 ∆V/V and Magnetic order Parameters as functions of temperature. Note
that the volume change begins above TC tracking roughly with the short-range magnetic
correlations above TC



4 Discussion

The experimental results revealed a large spontaneous magnetostriction effect in MnSb that begins

well above the 577K Curie temperature, causing an expansion of the unit cell volume relative to the

high-temperature linear thermal expansion trend. In addition, the neutron PDF data demonstrated

that robust short-range magnetic correlations survive well above TC. The forced magnetostriction

appears to be somewhat small in magnitude compared to the spontaneous effect, and there was a

clear but unexpected temperature dependence. There are robust short-range magnetic correlations

that survive well above TC. The forced magnetostriction appears to be somewhat small in magnitude

compared to the spontaneous effect, and there was a clear but unexpected temperature dependence.

Our findings build upon previous studies of MnSb. The data confirm strong magnetostructural

coupling, and provide greater detail regarding the temperature dependence and spatial anisotropy

of the lattice response to the magnetic order. The observed temperature dependence of the forced

magnetostriction response introduces a new dimension to this coupling. It suggests a more complex

interplay between thermal energy and magnetic ordering than previously documented. While earlier

studies have explored lattice distortions in response to magnetic fields, fewer have investigated

temperature-dependent variations, making our results an important contribution to this area [6].

Additionally, the anisotropic response of the a and c lattice parameters across the Curie temperature

deviates from expectations based on conventional magnetostructural transitions, where lattice

distortions are often assumed to be more isotropic. The magnitude of spontaneous magnetostriction

16
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was also notably large. This suggests a need to revisit existing models of structural response in

MnSb and similar materials. Comparison with neutron scattering data further reinforces these

findings, offering independent verification and highlighting the complementary nature of x-ray and

neutron-based techniques.

The lattice response to the applied magnetic field is unique at different set temperatures. This

suggests a complex interplay between thermal energy and magnetic ordering. This could be due to

either a change in the magnetization process at different temperatures, thermal expansion effects,

which might interfere with or enhance magnetostriction, or a shift in the balance between competing

magnetic interactions as temperature increases.

The differing behavior of the a and c lattice parameters across the Curie temperature reflects

the anisotropy of bonding and magnetic interactions in MnSb. Bonds within the basal plane differ

fundamentally from those connecting adjacent planes, leading to distinct elastic and magnetic

exchange strengths along the a and c directions. This directional dependence results in unequal

lattice responses during the magnetic phase transition near 577 K. The asymmetry is evident in

both the x-ray and neutron scattering data, confirming that it arises from intrinsic structural and

magnetic properties rather than experimental uncertainty. Anisotropic lattice responses have also

been observed in MnTe [2]. However, in the case of MnTe, the c lattice had a larger response than

the a.

The most intriguing finding from our research is the deviation of the lattice parameters from

their high-temperature linear trend beginning above 600K and well above TC of 577 K. This is

around the same temperature where the short-range magnetic correlations start grow in magnitude

and correlation length. As seen in Fig. 4.1 there is roughly linear coupling between the unit cell

volume and the LMOP above TC. The coupling between the volume and the AMOP crosses over and

becomes roughly quadratic below TC. Conventionally, we would expect purely quadratic coupling

at temperatures below TC, and purely linear coupling above the transition temperature. This is the
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behavior we observed in antiferromagnetic MnTe, which shares the same crystal structure type as

MnSb [2]. This unique behavior from MnSb motivates further theoretical investigations into the

mechanisms of magnetostructural coupling in MnSb and related materials.
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Figure 4.1 Magnetic order parameters as functions of ∆V/V. The conventional theory is
that the relationship between the fractional volume change and the AMOP will be quadratic
and there should be no coupling in the paramagnetic phase. What we see in the data is
linear relationship between LMOP and the fractional volume change in the paramagnetic
phase, and quadratic relationship with AMOP in ferromagnetic phase.



5 Conclusion

In summary, our findings confirm strong magnetostructural coupling in MnSb, as evidenced by

changes in the lattice parameters in response to an external magnetic field. This behavior, relevant to

magnetocaloric and magnetostrictive applications, invites comparison with other magnetostructural

materials. Additionally, the observed temperature-dependent magnetostriction suggests a complex

interplay between thermal energy and magnetic ordering, raising questions about reversibility and

persistence across a broader temperature range. The anisotropic response of the a and c lattice

parameters across the Curie temperature reflects the directional dependence of interatomic bonding

and magnetic exchange interactions, highlighting fundamental differences between in-plane and

out-of-plane atomic environments. Future work should explore these anomalies through theoretical

modeling and extended experimental analysis to better understand the fundamental mechanisms

driving the behavior of MnSb.

Future studies should extend the temperature range of measurements to determine whether

the observed magnetostriction behavior persists at lower or higher temperatures, particularly near

quantum regimes or extreme thermal conditions. Future studies will deepen our understanding of

magnetostructural coupling in MnSb by combining theoretical and experimental approaches. Theo-

retical investigations should address how short-range magnetic correlations drive long-range lattice

responses. Experimentally, more sensitive forced magnetostriction measurements—particularly

those extending to higher applied magnetic fields—could provide a clearer picture of the coupling

20
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between magnetic and structural degrees of freedom. In addition, conducting similar studies on

MnSb samples with excess interstitial Mn would be valuable, as this off-stoichiometry significantly

lowers the Curie temperature and may impact the nature of the coupling [1]. Finally, comparative

analysis with other promising magnetocaloric materials could help identify shared features or unique

mechanisms, offering broader insight into design principles for efficient solid-state refrigerants.



A Python Code

import numpy as np

from scipy import integrate

from scipy.optimize import curve_fit , least_squares

from scipy.integrate import quad

import matplotlib.pyplot as plt

def plot_csv(file_name , x_col , y_col):

df = pd.read_csv(file_name)

array = df.values

temp = file_name [:-9]

x = np.array(array [:,0])

y = np.array(array [:,1])

coefficients = np.polyfit(x, y, 1)

slope , intercept = coefficients

# Generate and display the line of best fit

line_of_best_fit = np.polyval(coefficients , x)

22



23

plt.plot(x, line_of_best_fit , color='red', label='Line of Best Fit'

)

equation = f'y = {slope :.6f}x + {intercept :.2f}'

plt.annotate(equation , xy=(0.5, 0.95), xycoords='axes fraction ', ha

='center ', fontsize =10, color='red')

plt.plot(x[:-1],y[:-1], marker='o')

plt.plot(x[-1],y[-1], marker='o')

plt.xlabel(x_col)

plt.ylabel(y_col)

plt.savefig(file_name [:-4]+'.png', dpi=300, bbox_inches='tight')

plt.show()

return slope

m1 = plot_csv('10 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m2 = plot_csv('100 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m3 = plot_csv('150 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m4 = plot_csv('200 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m5 = plot_csv('250 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m6 = plot_csv('300 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');
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m7 = plot_csv('350 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m8 = plot_csv('400 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m9 = plot_csv('450 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

m10 = plot_csv('500 K_MnSb.csv','Magnet Field (Tesla)','a Lattice

Parameter (Angstroms)');

n1 = plot_csv('10 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n2 = plot_csv('100 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n3 = plot_csv('150 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n4 = plot_csv('200 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n5 = plot_csv('250 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n6 = plot_csv('300 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n7 = plot_csv('350 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n8 = plot_csv('400 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

n9 = plot_csv('450 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');
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n10 = plot_csv('500 K_MnSb_c.csv','Magnet Field (Tesla)','c Lattice

Parameter (Angstroms)');

slopes_a= [n1,n2,n3,n4,n5 ,n6,n7,n8,n10]

slopes_c= [m1,m2,m3,m4,m5 ,m6,m7,m8,m10]

y_values_a = slopes_a /(np.sum(slopes_a)/len(slopes_a))

y_values_c = slopes_c /(np.sum(slopes_c)/len(slopes_c))

temps = [10 ,100 ,150 ,200 ,250 ,300 ,350 ,400 ,500]

fig , ax = plt.subplots ()

# Plot the first graph (y = x)

ax.plot(temps , y_values_a , label="a lattice slope", color="blue",

marker='o')

# Plot the second graph (y = x^2)

ax.plot(temps , y_values_c , label="c lattice slope", color="red",

marker='o')

# Add a legend

ax.legend ()

# Add labels and title

ax.set_xlabel("Temperature (K)")

ax.set_ylabel("Lattice (Angstroms)")

ax.set_title("Change in Lattice vs Temperature")

plt.grid(True)
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# Show the plot

plt.show()

plt.savefig("Slopes.png")

data1=np.genfromtxt('c-vs-T-cooling.dat', skip_header =6) # import

lattice a

data2=np.genfromtxt('a-vs-T-cooling.dat',skip_header =6) # import

lattice c

# Load the data , skipping the header

data3 = np.loadtxt('a_1p5 -20. txt', skiprows =1)

data4 = np.loadtxt('c_1p5 -20. txt', skiprows =1)

data5 = np.loadtxt('mvals_long -range_30 -45. txt', skiprows =1)

data6 = np.loadtxt('mvals_short -range_1p5 -20. txt', skiprows =1)

# Extract the columns. Note "_n" indicates neutron data and "m"

indicates magnetic data other data is from atomic xray data

T_n = data3[:, 0] # Temperature (first column)

a_n = data3[:, 1] # a parameter (third column)

c_n = data4[:, 1] # c parameter (third column)

T_m = data5[:, 0] # Temperature (first column)

m_long = data5[:, 1] # magnetic order parameter (third column)

m_short= data6[:, 1] # magnetic order parameter (third column)

T = data1 [: ,0]+273.15 #temperature data in kelvin

a = data2 [:,1] #a lattice parameter

c = data1 [:,1] #c lattice parameter
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v = np.sqrt (3)/2*a**2*c #volume

def func(p, T): # for fixed TD and variable alpha

alpha , v0 = p

fn = lambda x: x**3/(np.exp(x) -1)

debye_int = np.array ([ integrate.quad(fn ,0,TD/t)[0]for t in T])

debye_equ = alpha*1e30 * (9 * 4 * 1.38e-23)*T*(T/TD)**3* debye_int

# alpha=gamma/B0

#debye_equ = alpha*T**4/TD**3* debye_int

#debye_equ = alpha *745200000*T**4/TD**3* debye_int

return debye_equ + v0

def resid(p, T, data):

return func(p, T) - data

def func2(p, T): # for fixed alpha and variable TD

TD, v0 = p

alpha = 1.68302497e-02

fn = lambda x: x**3/(np.exp(x) -1)

debye_int = np.array ([ integrate.quad(fn ,0,TD/t)[0]for t in T])

debye_equ = alpha*T*(T/TD)**3* debye_int # alpha=gamma/B0

#debye_equ = alpha*T**4/TD**3* debye_int

#debye_equ = alpha *745200000*T**4/TD**3* debye_int

return debye_equ + v0

def resid2(p, T, data):

return func2(p, T) - data



28

def funcsingle_linear(p, T): # for single lattice parameter

alpha , a0 = p

fn = lambda x: x**3/(np.exp(x) -1)

debye_int = np.array ([ integrate.quad(fn ,0,TD/t)[0]for t in T])

debye_equ = alpha*1e30 * (9 * 4 * 1.38e-23)*T*(T/TD)**3* debye_int

# alpha=gamma/B0

#debye_equ = alpha*T**4/TD**3* debye_int

#debye_equ = alpha *745200000*T**4/TD**3* debye_int

return (debye_equ + a0**3)

def funcsingle(p, T): # for single lattice parameter

alpha , a0 = p

fn = lambda x: x**3/(np.exp(x) -1)

debye_int = np.array ([ integrate.quad(fn ,0,TD/t)[0]for t in T])

debye_equ = alpha*1e30 * (9 * 4 * 1.38e-23)*T*(T/TD)**3* debye_int

# alpha=gamma/B0

#print(debye_equ)

#debye_equ = alpha*T**4/TD**3* debye_int

#debye_equ = alpha *745200000*T**4/TD**3* debye_int

return np.abs(( debye_equ + a0**3))**0.3333

def residsingle(p, T, data):

return funcsingle(p, T) - data

length=len(T)

step = (T[-1]-T[0])/length -0.35 # Step size
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Tnew = np.linspace(T[0], T[0] + step * (length - 1), length)

mask = Tnew >650

mask=T>700

fig=plt.figure ()

def line(params , x):

m, b = params

return m * x + b

def residuals(params , T, v):

y = line(params , T)

return v - y

##Volume data vs linear fit and fractional difference plots

# Initial guess for slope and intercept

x0 = [6.75825271e-03, 4.02]

# Perform least squares fitting

opt = least_squares(residuals , x0, args=(T[mask], v[mask]))

coefs = opt.x

vxline = line(opt.x, T)

print(opt.x)

plt.plot(T, v, 'o')

plt.xlabel('T (K)')
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plt.ylabel('v ($A^{3}$)')

plt.title('volume vs temp with linear fit MnSb')

plt.plot(T, vxline)

plt.show()

#Plot fractional difference between line and data

FDiffvx =(v-vxline)/v

plt.figure ()

plt.plot(T,FDiffvx)

plt.title('fractional difference between data and fit')

plt.show()

## a lattice parameter data vs linear fit and fractional difference

plots

fig=plt.figure ()

mask = T>740

def line(params , x):

m, b = params

return m * x + b

def residuals(params , T, a):

y = line(params , T)

return a - y

# Initial guess for slope and intercept

x0 = [1.3e-11, 4.02]
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# Perform least squares fitting

opt = least_squares(residuals , x0, args=(T[mask], a[mask]))

coefs= opt.x

axline = line(opt.x, T)

plt.plot(T, a, 'o')

plt.xlabel('T (K)')

plt.ylabel('a (A)')

plt.title('a lattice with linear fit MnSb')

plt.plot(T, axline)

plt.show()

#Plot fractional difference between line and data

FDiffax =(a-axline)/a

plt.figure ()

plt.plot(T,FDiffax)

plt.title('fractional difference between data and fit')

plt.show()

## c lattice parameter data vs linear fit and fractional difference

plots

plt.figure ()

mask = T>650

def line(params , x):

m, b = params

return m * x + b
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def residuals(params , T, c):

y = line(params , T)

return c - y

# Initial guess for slope and intercept

x0 = [1.3e-11, 4.02]

# Perform least squares fitting

opt = least_squares(residuals , x0, args=(T[mask], c[mask]))

coefs = opt.x

cxline = line(opt.x, T)

plt.plot(T, c, 'o')

plt.xlabel('T (K)')

plt.ylabel('c ( )')

plt.title('c lattice with linear fit MnSb')

plt.plot(T, cxline)

plt.show()

#Plot fractional difference between line and data

plt.figure ()

FDiffcx =(c-cxline)/c

plt.figure ()

plt.plot(T,FDiffcx)

plt.title('fractional difference between data and fit')

plt.show()
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plt.figure ()

mask = T>650

def line(params , x):

m, b = params

return m * x + b

def residuals(params , T, c):

y = line(params , T)

return c - y

# Initial guess for slope and intercept

x0 = [1.3e-11, 4.02]

# Perform least squares fitting

opt = least_squares(residuals , x0, args=(T[mask], c[mask]))

coefs = opt.x

cxline = line(opt.x, T)

plt.plot(T, c, 'o')

plt.xlabel('T (K)')

plt.ylabel('c (A)')

plt.title('c lattice with linear fit MnSb')

plt.plot(T, cxline)

plt.show()

#Plot fractional difference between line and data

plt.figure ()
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FDiffcx =(c-cxline)/c

plt.figure ()

plt.plot(T,FDiffcx)

plt.title('fractional difference between data and fit')

plt.show()

## Neutron Volume data vs linear fit and fractional difference graphs

v_n=np.sqrt (3) /2*a_n **2* c_n

fig=plt.figure ()

mask = T_n >620

def line(params , x):

m, b = params

return m * x + b

def residuals(params , T, a):

y = line(params , T)

return a - y

# Initial guess for slope and intercept

x0 = [1.3e-11, 4.02]

# Perform least squares fitting

opt = least_squares(residuals , x0, args=(T_n[mask], v_n[mask]))

coefs= opt.x
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print(opt.x)

slope_n=opt.x[0]

vnline = line(opt.x, T_n)

plt.plot(T_n , v_n , 'o')

plt.xlabel('T_n (K)')

plt.ylabel('volume ($A^{3}$)')

plt.title('volume with linear fit MnSb')

plt.plot(T_n , vnline)

plt.show()

#Plot fractional difference between line and data

plt.figure ()

FDiffvn =(v_n -vnline)/v_n

plt.figure ()

plt.scatter(T_n ,FDiffvn)

plt.title('fractional difference between data and fit')

plt.show()

## Comparing Neutron and X-ray Data

plt.figure ()

plt.plot(T_n[1:], v_n[1:],'o', label='Neutron ')

plt.plot(Tnew , v,'o', label='X-ray')

plt.plot(T_n , vnline , label='xray fit')

plt.plot(Tnew , vxline , label= 'neutron fit')
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plt.xlabel('T (K)')

plt.ylabel('volume ($A^{3}$)')

plt.legend ()

plt.figure ()

plt.scatter(T_n[1:], FDiffvn [1:], label='Neutron ')

plt.scatter(Tnew ,FDiffvx ,label='X-ray')

plt.xlabel('T (K)')

plt.ylabel('fractional volume difference ')

plt.legend ()

plt.show()

plt.figure ()

##LMOP and dV/V vs Temperature

# Create primary y-axis

fig , ax1 = plt.subplots ()

# Plot magnetic parameter on the primary y-axis

ax1.plot(T_m , m_short , 'bo', label='Magnetic Order Parameter ')

ax1.set_xlabel("Temperature (K)")

ax1.set_ylabel(r'Short -Range Magnetic Order Parameter ($\mu_B$)',

color='b')

ax1.tick_params(axis='y', labelcolor='b')

# Create secondary y-axis

ax2 = ax1.twinx()
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ax2.plot(T_n[1:], FDiffvn [1:], 'ro', label='Volume Change ')

ax2.set_ylabel("dV/V", color='r')

ax2.tick_params(axis='y', labelcolor='r')

# Legends

ax1.legend(loc="lower left")

ax2.legend(loc="upper right")

#plt.title("LMOP and dV/V vs Temperature ")

plt.show()

plt.figure ()

# Create primary y-axis

fig , ax1 = plt.subplots ()

##AMOP and dV/V vs Temperature

# Plot magnetic parameter on the primary y-axis

ax1.plot(T_m , m_long , 'bo', label='Magnetic Order Parameter ')

ax1.set_xlabel("Temperature (K)")

ax1.set_ylabel(r'Long -Range Magnetic Order Parameter ($\mu_B$)',

color='b')

ax1.tick_params(axis='y', labelcolor='b')

# Create secondary y-axis

ax2 = ax1.twinx()

ax2.plot(T_n[1:-1], FDiffvn [1:-1], 'ro', label='Volume Change ')
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ax2.set_ylabel("dV/V", color='r')

ax2.tick_params(axis='y', labelcolor='r')

# Legends

ax1.legend(loc="lower left")

ax2.legend(loc="upper right")

#plt.title("AMOP and dV/V vs Temperature ")

plt.show()

##Neutron LMOP and AMOP vs fractional difference

plt.scatter(m_short [1:], FDiffvn [1:])

plt.xlabel(r'Local Magnetic Order Parameter ($\mu_B$)')

plt.ylabel("dV/V Neutron Scattering")

#plt.title("LMOP vs. dV/V")

plt.show()

plt.scatter(m_long [1:], FDiffvn [1:])

plt.xlabel(r'Average Magnetic Order Parameter ($\mu_B$)')

plt.ylabel("dV/V Neutron Scattering")

#plt.title("AMOP vs. dV/V")

plt.show()
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