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ABSTRACT

An Approximation for Early Universe Neutron Abundance
Until the Onset of Neutron Decay

Martin Clemens
Department of Physics and Astronomy, BYU

Bachelor of Science

[An approximation for the fractional neutron abundance in the 1 MeV to .1 MeV range in the
early universe is derived. This is then computed and plotted using the Mathematica software. It
is compared with and found in agreement with similar plots and acts as an upper limit on 4He
during Big bang nucleosynthesis. The approximation falls short at around 0.1 MeV due the onset
of neutron decay and D production, changing effective degrees of relativistic freedom, and the
increasing consequence of the mass of the electron as the universe cooled.]
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Chapter 1

Introduction

1.1 General Overview of BBN

There are light nuclei that are commonly found throughout the universe such as 1H (written as just

H), 2H (written as D and called Deuterium), 3H (written as T and called Tritium) 4He, and to a

much lesser extent 7Li. To an observer, the question naturally arises as to how these nuclei were

formed, and why do we have the particular mix that we have; that is to say, why is the ratio of D to

H what it is, etc. The best agreement with observed abundances of these light elements is in the

predictions that result from the hot big bang model with the process for their formation known as

Big Bang Nucleosynthesis (BBN) [3]. In BBN, these nuclei formed as the result of a very dense,

high temperature plasma that rapidly expanded [4]. As it expanded, it cooled enough such that

electrons, protons, and neutrons could form. Further expansion led to sufficient cooling that allowed

for protons and neutrons to begin lumping together, with more and more interactions resulting in

the formation of heavier and heavier elements. All the while the universe continued to expand and

this lowering of density and temperature reduced the number of interactions which effectively put a

cap on how heavy of elements, to an appreciable amount, were formed in the early universe. Nuclei

1



1.2 CMB and BBN 2

Figure 1.1 Black Body radiation of the CMB is plotted, which has a temperature of 2.725
K. The energy density is plotted as a function of wavelength as a function of wavelength.
Graph from Peatross and Ware (2015) [1].

up to 7Be had formed to an abundance worth noting within the window given by the expanding

universe. 7Be though, being unstable, mostly decays into 7Li and a positron, and thus 7Li is the

heaviest of the light elements that is of interest in looking at as far as model matching for early

universe nucleosynthesis goes classically.

1.2 CMB and BBN

As the early universe can be modeled in a way to expect black body radiation, it also follows that

there should be a characteristic spectrum of intensities of wavelengths being given off along with a

principle wavelengths associated with the temperature [1]. This associated spectrum of wavelengths

is indeed found throughout the universe. The name for this is the Cosmic Microwave Background

(CMB). The associated temperature to the CMB is 2.725 K [2] [5].

With the temperature constrained through the CMB, BBN is able to predict what abundances

we should see of light elements that are a product from the early Universe. Standard practice is to

express these abundances as ratios with respect to the observed 1H. BBN’s predictions agree well
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with observed abundances with the exception of 7Li which has historically not agreed. In recent

years, the disagreement has come into question and the so called Lithium-7 problem is no longer

strongly motivated. [6]. This general agreement builds confidence both in the Standard Model and

our understanding of basic nuclear interactions.

1.3 Neutron Abundance in the Early Universe’s Part in BBN

In this paper, it will be convenient to roll the Boltzmann’s constant into the temperature and express

temperatures as energies, mostly as MeV. It will also be convenient to choose units such that atomic

masses normally written as MeV/c2 can also be expressed as energies in MeV. At temperatures

much higher than 1 MeV, the ratio of neutrons to protons was 1 due to the ratio [2]

n(0)p

n(0)n

= eQ/T . (1.1)

ni is the particle number density, in this case for protons and neutrons respectively. The super script

(0) denotes that the number densities are equilibrium number densities. Q is the mass difference

between neutrons and protons which is 1.293 MeV and T is the temperature. Thus as the Universe

cools and draws closer to the MeV energy scale, the ratio in (1.1) increases which skews it in favor

of the protons.

This ratio works well at high temperatures, and gives an accurate big picture that as the tempera-

ture goes down the number of neutrons goes down, but it also misses the real ratio substantially as it

assumes perfect efficiency in weak interactions which would convert neutrons into protons. This is

referring to interactions discussed in Chapter 2 other than neutron decay, as neutrons are unstable

while protons are stable. The time scale for neutron decay is longer than the time scale of interac-

tions at this point in the early Universe and is a smaller contributing factor. Perfection in conversion

through the weak interactions doesn’t happen for similar reasons as to why later in the BBN process

the baryons don’t instantaneously clump into iron nuclei, which has the highest binding energy [2].
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The baryon densities aren’t high enough in the time scale given by the expanding early universe for

every neutron to be converted. A critical aspect of modeling BBN and light element production is

to be able to accurately approximate how the neutron-proton ratio as a function of temperature.

1.4 Approximating Neutron Abundance Prior to Neutron Decay

In this paper, I recreate an approximation for the neutron abundance done in Dodelson’s Modern

Cosmology. This approximation is aimed at being accessible yet somewhat accurate prior to neutron

decay, and later D production. This approximation serves the purpose of setting an upper bound on

the expected 4He production in BBN, providing a good starting point for adding to when calculating

the neutron abundance during light element production, and showing that the neutron-proton ratio

falls out of equilibrium as the temperature drops.

In the following chapter I discuss the theoretical methods for calculating the neutron abundance

as well as plotting it. Then in chapters 3 and 4, I compare this plot to the plot found in Dodelson’s

Modern Cosmology and find it in agreement. In chapter 5 I discuss where the approximation falls

short as neutron decay and D production become more dominant in their contributions. In chapter 5

I also discuss future work that can use the result of this approximation of the neutron abundance.



Chapter 2

Methods

In this chapter, I go over the methods used for deriving the theoretical neutron abundance as a

function of temperature as well as plotting it. In section 2.1, I begin with the Boltzmann equation

for annihilation and end with an ODE for the number density. In section 2.2 I derive an ODE for

neutron abundance using the result from 2.1. In section 2.3 I go through my methods of solving

the ODE from section 2.2 using the method of variation of parameters. In section 2.4 I discuss

how the result found in 2.3 was used to compute and plot the neutron abundance as a function of

temperature.

2.1 Boltzmann Equation for Annihilation to ODE for Number

Density

a−3 d(n1a3)

dt
=
∫ d3 p1

(2π)32E1

∫ d3 p2

(2π)32E2

∫ d3 p3

(2π)32E3

∫ d3 p4

(2π)32E4

× (2π)4
δ

3(p1 + p2 − p3 − p4)δ (E1 +E2 −E3 −E4)|M |2

× ( f3 f4(1± f1)(1± f2)− f1 f2(1± f3)( f ± f4))

(2.1)

5
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1+2 ↔ 3+4 (2.2)

The Boltzmann equation for annihilation, (2.1), operates under the principle that the rate that an

abundance changes is simply the net result of processes that create or annihilate said species. In

(2.1) a is the scale factor of the universe, ni is the species number density for species involved in the

interaction in (2.2). The notation for pi and Ei is the same, which are the momenta and energies

respectively. The δ ’s are Dirac deltas and serve to conserve momentum and energy. The M is the

amplitude of the interaction and is determined based on the physics involved with the interaction

between particular particles. The fi’s are the occupation numbers of the particular species.

There is a lot to unpack here in general, but for the purposes of this paper we make note of a

few things. The quantity µ is the chemical potential when we are dealing with things in equilibrium.

Also of note is that we will be working with species not in equilibrium and at temperatures smaller

than E −µ . This simplifies distributions significantly. Secondly, we choose to define the thermally

averaged cross section as (2.3), where n(0)i denotes the equilibrium number density. The superscript

(0) denotes that we are referring specifically to equilibrium number densities.

⟨σv⟩ ≡ 1

n(0)1 n(0)2

∫ d3 p1

(2π)32E1

∫ d3 p2

(2π)32E2

∫ d3 p3

(2π)32E3

∫ d3 p4

(2π)32E4
E−(E1+E2)/T

× (2π)4
δ

3(p1 + p2 − p3 − p4)δ (E1 +E2 −E3 −E4)|M|2 (2.3)

Applying these definitions to (2.1) allows us to arrive at (2.4) which is what we want to work with.

For a more thorough treatment and derivation, see Dodelson (2003) [2].

a−3 d(n1a3)

dt
= n(0)1 n(0)2 ⟨σv⟩

(
n3n4

n(0)3 n(0)4

− n1n2

n(0)1 n(0)2

)
(2.4)
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2.2 ODE for Neutron Abundance

Going from the general case in Eq. (2.4) to the case for neutrons, we consider these two interactions

shown in (2.5) and (2.6), that can contribute to neutron production or annihilation.

p+ ν̄ ↔ n+ e+ (2.5)

p+ e− ↔ n+ν (2.6)

Here p is for proton, e is for electrons and positrons and ν is for neutrinos. The leptons (electrons,

positrons, and neutrinos) at the MeV temperature scale are no longer coupled, but are still relativistic,

share the same temperature, and are close to the same abundance as one another [2]. As a result,

their densities are the same, and we let any number density by a lepton be denoted as nl . For our

situation, we will apply (2.4) to our situation of interest by letting 1 be neutrons, 2 and 4 be leptons,

and 3 be protons, which then gives us

a−3 d(nna3)

dt
= n(0)n n(0)l ⟨σv⟩

(
npnl

n(0)p n(0)l

− nnnl

n(0)n n(0)l

)
. (2.7)

Rearranging (2.7) and recognizing that n(0)l = nl as the leptons are in equilibrium, we get

a−3 d(nna3)

dt
= n(0)l ⟨σv⟩

(
np

n(0)n

n(0)p

−nn

)
. (2.8)

It is also useful to define the ratio of neutrons to baryons in general, which is denoted by Xn and is

given as

Xn ≡
nn

nn +np
. (2.9)

We then find

nn = Xn(nn +np) , (2.10)

and

np = (nn +np)(1−Xn) . (2.11)
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Substituting (2.10) and (2.11) into (2.8) and also the equilibrium proton-neutron ratio, (1.1) gives us

a−3 d(Xn(nn +np)a3)

dt
= n(0)l ⟨σv⟩

(
(nn +np)(1−Xn)e−Q/T −Xn(nn +np)

)
. (2.12)

On the left hand side of the equation, we make note of the fact that in the case where we are

concerned with protons being converted into neutrons or vice versa, their sum density, nn+np, times

the space, a3, does not change with time. We can then pull the two together out of the derivative,

giving

(nn +np)a3a−3 dXn

dt
= n(0)l ⟨σv⟩

(
(nn +np)(1−Xn)e−Q/T −Xn(nn +np)

)
. (2.13)

We can then simplify the equation by canceling the nn +np and the a terms out, leaving us with

dXn

dt
= n(0)l ⟨σv⟩

(
(1−Xn)e−Q/T −Xn

)
. (2.14)

At this point we should focus on the term outside the parenthesis on the right hand side, n(0)l ⟨σv⟩.

This is the product of the number density of a lepton and the thermally averaged cross section,

which is the reaction rate of the reactions we are considering. This is then the conversion rate of

neutrons and protons. This rate we’ll denote as λn p. Applying this to to 2.14 gives us

dXn

dt
= λnp

(
(1−Xn)e−Q/T −Xn

)
. (2.15)

Finally, we make a change of variable where we let x ≡ Q/T in order to simplify the work that

we will have to do later on due to the time dependence that both T and λnp have. In doing so, we

are seeking to let x be our independent variable. In order to do so, we rewrite the left hand side of

(2.15) as dx
dt

dXn
dx . From how we’ve defined x, dx/dt =−Q(dT/dt)/T 2 =−(x/T )(dT/dt).

Now, there are a couple of important relations to draw in order to make the next substitution.

First is that T ∝ 1/a, which is to say that as the universe expands, it also cools at an inverse rate.

Next is that the Hubble rate H, which is a measure of how rapidly the scale factor of the universe

changes, is defined as H(t)≡ da/dt
a . Lastly, a relation that comes as a result from analysis done with
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the Einstein equations is that H2(t) = 8πGρ/3 [2]. Where G is the gravitational constant, and ρ is

the energy density of the Universe. Stringing this all together gives

dT/dt
T

=−da/dt
a

=−H =−
(

8πGρ

3

)1/2

. (2.16)

This then makes dx/dt = xH, and the left hand side of 2.15 xH dXn
dx . Isolating the derivative leaves

us with
dXn

dx
=

λnp

xH

(
(1−Xn)e−x −Xn

)
. (2.17)

Now, before we move onto solving our ODE, it is important that we figure out how H and

λn p depend on our independent variable x. For H’s part, ρ is the only thing that is a function of x.

In order to simplify our calculation, we’ll treat ρ as roughly constant with x through our area of

interest. At the 1 MeV temperature scale, the relativistic particles are the main contributors to the

energy density, whose contributions are quantified as [2]

ρ =
π2

30
T 4

[
∑

i=bosons
gi +

7
8 ∑

i=fermions
gi

]
. (2.18)

Where gi denotes the degrees of freedom of the contributing species. Photons are the relativistic

bosons that contribute with 2 degrees of freedom. From the fermions neutrinos contribute 6, and

electrons and positrons each contribute 2. This makes the effective degrees of freedom denoted as

g∗ equal to 10.75. In this regime then, with we defined x so that T 4 = Q4/x4, we end up with 2.19.

dXn

dx
=

λnp

x

(
3∗30x4

8π3GQ4g∗

)1/2 [
(1−Xn)e−x −Xn

]
(2.19)

Which when cleaned up gives 2.20.

dXn

dx
= xλnp

(
45

4π3GQ4g∗

)1/2 [
(1−Xn)e−x −Xn

]
(2.20)

For λn p’s part it has its own rather extensive calculation [2] and for the purpose of this paper

we’ll just use the result 2.21.

λnp =
255
τnx5 (12+6x+ x2) (2.21)
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Where τn = 886.7 sec, and is the half life of the neutron. This sets us up to now solve the first order

nonhomogeneous ODE, 2.20, for Xn, the neutron fractional abundance.

2.3 Solving for the Neutron Fractional Abundance as a Function

of Temperature

We’ll now go about solving the ODE we just found in the previous subsection. Rearranging

2.20 into a more familiar form, and making some definitions allows the application of first order

ODE theory to be straight forward. First we rearrange the right hand-side so that we separate the

nonhomogeneous part of the equation from the bits that are multiplying Xn, giving us 2.22.

dXn

dx
= xλnp

(
45

4π3GQ4g∗

)1/2

e−x − xλnp

(
45

4π3GQ4g∗

)1/2

(1− e−x)Xn (2.22)

Next we define

C ≡
(

45
4π3GQ4g∗

)1/2

= 1.13sec−1, (2.23)

as well as

ξ (x)≡Cxλnpe−x, (2.24)

and

χ(x)≡Cxλnp(1+ e−x). (2.25)

We then isolate the nonhomogeneous term on the right hand side leaving us with

dXn

dx
+χ(x)Xn = ξ (x). (2.26)

Now, in the case that ξ (x) is 0, 2.26 is homogeneous and the solution is simply given by 2.27.

Xn = Ae−P (2.27)
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Where A is a constant and P(x) is the anti-derivative of χ(x). As ξ (x) is not 0, we can use the

method of variation of parameters to reach a solution. This entails taking the homogeneous solution

and altering it so that it takes the form of 2.28.

Xn = η(x)e−P(x) (2.28)

P doesn’t change, so if we solve for η(x) we will have solved for Xn. Plugging 2.28 into 2.26 we

get 2.29.
d
dx

(η(x)e−P(x))+χ(x)η(x)e−P(x) = ξ (x) (2.29)

Carrying through the derivative by applying the product rule in the first term of 2.29 gives us

2.30.
dη(x)

dx
e−P(x)−χ(x)η(x)e−P(x)+χ(x)η(x)e−P(x) = ξ (x) (2.30)

The second and third terms on the left hand side cancel out and if we isolate the derivative term, we

have 2.31.
dη(x)

dx
= ξ (x)e−P(x) (2.31)

Taking the anti-derivative of both sides gives us η(x) and so, mathematically speaking, we’ve solved

for Xn, the neutron fractional abundance in terms of x. To get it in terms of T we substitute back in

for x using x = Q/T . The only other bits that have to be considered are the bounds of the integrals

and also substituting dx for something with dT . This relation is shown in 2.32 and 2.33.

dx
dT

=
d

dT

(
Q

T

)
=−Q

T 2 (2.32)

dx =−Q

T 2 dT (2.33)

2.4 Computing and Graphing the Solution with Mathematica

While the solution stands solved mathematically speaking, actually computing the integrals is its

own problem. The integrals turned out to be quite messy and so were numerically evaluated using
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the Mathematica software. As a complicated integral had to be evaluated for every value of T

being plotted, just using the Plot function proved to be too time consuming. Instead, a table of

values was produced from plugging in values of T across the range of interest. These points were

then plotted. To be particular, the range was from 1 MeV to 0.01 MeV, with the step size between

points being 0.03 MeV. The high temperature used in the integrals as the lower bound was 100 MeV.

Additionally, 2Xn was plotted instead of Xn to follow suite as was done by Dodelson [2], and to

show the upper bound for 4He as it uses 2 neutrons, and so the asymptotic behavior of 2Xn is the

limit as to how abundant 4He can be.



Chapter 3

Results

3.1 Graph of Neutron Fractional Abundance Approximation

Figure 3.1 is the resulting plot for both the approximation and the equilibrium neutron fractional

abundances as a function of temperature. Included below is figure 3.2 for comparison which is the

plot from Dodelson’s Modern Cosmology. It includes plots for 4He and D in addition to the two

plots I recreated.

13
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Figure 3.1 Twice the fractional neutron abundance (Xn) plotted as a function of decreasing
temperature. The approximation done in this paper is plotted in blue and the equilibrium
abundance is plotted in orange

Figure 3.2 Fractional abundances for neutrons (denoted by Xn), 4He, and D. Xn,EQ is what
the neutron fractional abundance would’ve been if equilibrium had been maintained. The
dashed line is the approximation for 2Xn done in this paper and is only visibly different
from the more complete treatment at around 0.1 MeV. Figure from Dodelson (2003) [2]



Chapter 4

Discussion

4.1 Graph Comparison

The two figures, 3.1 and 3.2 agree quite well on the approximation and equilibrium plots. A few

things do need to be taken into account otherwise there might appear to be discrepancies. First is

that in 3.1 the plots do not go all the way to the edges of the graph. Second is that the vertical axes,

while similar, are not the same on the two graphs. If 3.1 were cropped so that the plot went to the

edges, and if we cut off both graphs at 10−3 on the vertical axis, the agreement between the graphs

would become even clearer.

Beyond agreement, there are a few things that are worth noting. First is that the equilibrium

fractional abundance would have been extremely low before Deuterium (D) production had began,

effectively cutting off the process of BBN before it even began. It is also worth noting that around

and above 1 MeV, there is significant agreement between the approximations and the equilibrium

prediction. With regards to the approximation and the full treatment, they agree up until about 0.1

MeV. Finally, we see that the 4He fractional abundance does not surpass the upper limit set by the

2Xn approximation done in this paper as expected.

15



Chapter 5

Conclusion

5.1 Approximation Works until Neutron Decay and D produc-

tion

The approximation made in this paper works well for the fractional neutron abundance until the

onset of two interactions we didn’t take into account, neutron decay 5.2

n → p+ e−+ ν̄ , (5.1)

and later D production,

n+ p → D+ γ . (5.2)

In addition, there are a few approximations that were made that do not hold as the temperature

cools. The first is the number of relativistic degrees of freedom. This goes down significantly from

10.75 at 1 MeV to 3.36 [2] around 0.1 MeV. The second is that we’ve been able to get away with

treating the electron as if it were massless due to the incredible amount of energy it had from it’s

momentum at relativistic speeds. Again, as the universe cooled, this approximation became less and

16
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less viable. Regardless, the approximations made in this paper work in the regime hoped for and is

set to act as a great basis to build off of in future work.

5.2 Future Work

To keep going forward with this work, it would be good to take neutron decay and D production

into account as well as the changing effective degrees of relativistic freedom and electron mass.

This should give a good approximation of the neutron abundance going into BBN.

It would then be good to take that neutron abundance and use it along with the principle

interactions to get some predictions for BBN with regards to D and 4He and compare those

with observed quantities. Going further, it would be good to use a recent BBN program such

as PRyMordial [7] to get light element abundance predictions and compare that with the basic

calculations done and observation.

Having this basis for BBN opens doors to exploring the current situation of the 7Li problem as

well as baryogenesis and possibly dark matter production in the early universe.



Appendix A

Mathematica Code for Neutron Abundance

Below is the code that was used to plot 3.1. A few things to note is that Mathematica threw a lot

of precision errors when calculating the integrals and that in order to get the temperature value to

decrease as it went to the right and be logarithmic on both axes, I used the ScalingFunction, as can

be seen on A.2

18



19

Figure A.1 First page from the Mathematica code used to create 3.1
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Figure A.2 Second page from the Mathematica code used to create 3.1



Bibliography

[1] J. Peatross and M. Ware, Physics of Light and Optics (2015).

[2] S. Dodelson, Modern Cosmology (Academic Press, Amsterdam, 2003).

[3] R. H. Cyburt, B. D. Fields, and K. A. Olive, “Primordial nucleosynthesis in light of WMAP,”

Physics Letters B 567, 227–234 (2003).

[4] S. Weinberg, The First Three Minutes. A Modern View of the Origin of the Universe (1977).

[5] D. J. Fixsen, “THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND,”

The Astrophysical Journal 707, 916–920 (2009).

[6] B. D. Fields and K. A. Olive, “Implications of the non-observation of 6Li in halo stars for the

primordial 7Li problem,” JCAP 10, 078 (2022).

[7] A.-K. Burns, T. M. P. Tait, and M. Valli, “PRyMordial: The First Three Minutes, Within and

Beyond the Standard Model,”, 2023.

21



Index

Abundance, 1

Big Bang Nucleosynthesis (BBN), 1
Black Body, 2

Cosmic Microwave Background (CMB), 2

Deuterium (D), 1

Lithium-7 (7Li), 1

Tritium (T), 1

22


	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 General Overview of BBN
	1.2 CMB and BBN
	1.3 Neutron Abundance in the Early Universe's Part in BBN
	1.4 Approximating Neutron Abundance Prior to Neutron Decay

	2 Methods
	2.1 Boltzmann Equation for Annihilation to ODE for Number Density
	2.2 ODE for Neutron Abundance
	2.3 Solving for the Neutron Fractional Abundance as a Function of Temperature
	2.4 Computing and Graphing the Solution with Mathematica

	3 Results
	3.1 Graph of Neutron Fractional Abundance Approximation

	4 Discussion
	4.1 Graph Comparison

	5 Conclusion
	5.1 Approximation Works until Neutron Decay and D production
	5.2 Future Work

	Appendix A Mathematica Code for Neutron Abundance
	Bibliography
	Index

